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SVR-AMA: An Asynchronous Alternating
Minimization Algorithm With Variance Reduction

for Model Predictive Control Applications
Laura Ferranti , Ye Pu , Colin N. Jones, Member, IEEE, and Tamás Keviczky

Abstract—This paper focuses on the design of an asyn-
chronous dual solver suitable for model predictive con-
trol (MPC) applications. The proposed solver relies on a
state-of-the-art variance reduction (VR) scheme, previously
used in the context of proximal stochastic gradient meth-
ods (Prox-SVRG) and on the alternating minimization al-
gorithm (AMA). The resultant algorithm, a stochastic AMA
with VR (SVR-AMA), shows geometric convergence (in the
expectation) to a suboptimal solution of the MPC problem
and, compared to other state-of-the-art dual asynchronous
algorithms, allows one to tune the probability of the asyn-
chronous updates to improve the quality of the estimates.
Two novel accelerated versions of the Prox-SVRG (and, by
duality, of SVR-AMA) are also provided. We apply the pro-
posed algorithm to a specific class of splitting methods,
that is, the decomposition along the length of the prediction
horizon. Numerical results on the longitudinal control prob-
lem of an Airbus passenger aircraft show the benefits that
we can gain in terms of computation time when using our
proposed solver with an adaptive probability distribution.

Index Terms—Aerospace, control systems, linear sys-
tems, optimization methods, predictive control, quadratic
programming.

I. INTRODUCTION

MODEL predictive control (MPC) applications to systems
with fast dynamics are still relatively limited [1]–[9].

Applications in fields, such as automotive and aerospace, have
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to deal often with embedded legacy systems. These systems usu-
ally run on certified (for safety purposes) hardware architectures
with limited availability of, for example, parallel computation
units and only support a small set of (certified) mathematical
functions. In particular, the availability of optimization tool-
boxes suitable for MPC purposes on these platforms are limited
(or nonexistent).

First-order methods are promising to address the issues men-
tioned earlier to use fast MPC applications. Recently, growing
attention has been dedicated to the design of simple first-order
solvers for MPC [10]–[14]. These solvers are relatively easy to
certify (in terms of the level of suboptimality of the solution),
use only simple algebraic operations, and require little memory.
In [12] and [14], operator-splitting methods, such as the alternat-
ing direction method of multipliers [15] and the fast alternating
minimization algorithm (AMA) [16], have been used to exploit
the MPC problem structure and speed-up the computation of the
solution. These algorithms can also benefit parallel hardware ar-
chitectures. These algorithms, however, often require frequent
exchange of information at given synchronization points leading
to computational bottlenecks. To reduce the bottlenecks at the
synchronization points, a solver that can offer more flexibility in
how the solutions are computed (for example, by allowing asyn-
chronous updates) would be attractive. Motivated by the afore-
mentioned issues, in this paper, we are interested in extending
the use of splitting methods to this asynchronous framework.

A. Contribution

The contribution of the paper is threefold. First, we propose
a novel algorithm, a stochastic AMA with variance reduction
(SVR-AMA), suitable for MPC applications with state and input
constraints. The proposed algorithm operates in the dual space
and combines the advantages of the variance reduction (VR)
scheme proposed in [17] and [18] for the proximal stochastic
gradient method with the AMA [19]. The result is that the solu-
tion of the MPC problem can be computed in an asynchronous
fashion (i.e., at each iteration, the algorithm updates a randomly
selected subset of the dual variables instead of the whole set of
dual variables) and the resultant algorithm has geometric conver-
gence (in the expectation) to the optimal solution. Furthermore,
the proposed algorithm allows the use of a generic probabil-
ity distribution for the asynchronous updates. In addition, the
probability distribution can be updated online to improve the

0018-9286 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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quality of the estimates, as our numerical results show. Finally,
the proposed algorithm is suitable for a more general class of
optimization problems, namely strongly convex quadratic pro-
gramming problems with linear coupling constraints.

Second, we show how the proximal stochastic gradient
method with VR (Prox-SVRG) can be accelerated, by relying
on its similarities with the inexact proximal gradient method
(I-PGM) in [20] and the existing convergence results in [18].
In particular, first we show how the VR scheme in [18] can be
viewed as an error in the calculation of the gradient that con-
verges (according to the analysis of [18]) geometrically in the
expectation. By exploiting this observation, we can rely on the
analysis of the work in [20] to accelerate the VR loop (or inner
loop) of Prox-SVRG. Second, we derive similar conclusions for
the outer loop of Prox-SVRG by combining the convergence
analysis derived in [18] for the inner loop with classical stabil-
ity arguments based on dynamical systems theory. Finally, we
apply the proposed acceleration strategies for Prox-SVRG in the
dual framework to derive an inner-accelerated SVR-AMA (IA-
SVR-AMA) and an outer-accelerated SVR-AMA (OA-SVR-
AMA) that can be used to solve problems that come from MPC
applications.

Third, we show how we can use SVR-AMA (the same anal-
ysis can be extended to its accelerated versions) for a specific
splitting technique, that is, the decomposition along the length
of the prediction horizon (or time splitting [12]), and present
simulation results on a practical aerospace application, that is,
the longitudinal control of an Airbus passenger aircraft [21].
The results show that the proposed algorithms (i.e., SVR-AMA
and its accelerated versions) are more robust when solving ill-
conditioned problems, outperforming synchronous methods in
terms of computation time (measured in terms of number of
iterations) and suboptimality level of the solution.

B. Related Work

SVR-AMA derives from the application to the dual prob-
lem of the proximal stochastic gradient method with VR (Prox-
SVRG) proposed in [18]. SVR-AMA operates in the dual frame-
work motivated by the presence of coupling constraints in the
MPC problem formulation. SVR-AMA has been proposed by
the same authors of this paper in [22]. Compared to [22], we
extend the analysis of the proposed algorithm with two different
acceleration techniques, which is not trivial, provide additional
proofs for the convergence of SVR-AMA, and improve the nu-
merical results. An accelerated version of the inner loop of
Prox-SVRG has been proposed in [23]. Compared to [23], we
approach the analysis of the acceleration of the inner loop from
the perspective of an inexact proximal gradient algorithm, which
significantly simplifies the analysis, and we provide guidelines
to select the number of inner-loop iterations to exploit both the
benefits of the acceleration and the VR. Furthermore, an accel-
erated version of the outer loop of an algorithm similar to Prox-
SVRG (i.e., the stochastic dual coordinate ascent method [24])
has been proposed in [25]. The algorithm in [25] focused on
regularized loss minimization. Compared to our proposed outer-
loop acceleration of Prox-SVRG, the work in [25] requires
the minimization of a regularized version of the original cost

function in the outer loop. Furthermore, our analysis derives
from the results in [18] leading to a simplified proof and an al-
gorithm that can be used to minimize the sum of two functions in
which one of the two terms does not have to be strongly convex,
which is of importance in order to handle control problems.

The investigation of asynchronous dual algorithms for MPC
is gaining more attention recently. In [26], for example, an asyn-
chronous dual algorithm is proposed. Compared to [26], SVR-
AMA allows the use of a generic (i.e., not necessarily uniform)
probability distribution and, consequently, more flexibility in
the tuning phase of the algorithm.

Finally, the idea of the time splitting has been previously
proposed in [12]. Their work relies on a synchronous alternating
direction method of multipliers. In this context, we reformulate
the approach for AMA to exploit SVR-AMA.

C. Outline

The paper is structured as follows. Section II introduces
the MPC problem formulation. Section III summarizes AMA
and Prox-SVRG. Section IV details the two acceleration tech-
niques (Section IV-A describes the acceleration of the inner
loop and Section IV-C describes the acceleration of the outer
loop). Section V introduces SVR-AMA and its accelerated ver-
sions. Then, Section VI shows how to reformulate the pro-
posed MPC problem for SVR-AMA using the time splitting.
Section VII presents numerical results using an aerospace exam-
ple. Section VIII concludes the paper. Finally, Appendices A–C
provide all the proofs contained in this paper.

D. Notation

For u ∈ Rn , ‖u‖ =
√〈u, u〉 is the Euclidean norm. Let C be

a convex set. Then, PrC(u) is the projection of u onto C. Let
f : D → C be a function. Then, f�(y) = supx(yTx− f(x))
and∇f(x) are the conjugate function and the gradient of f(x),
respectively. Furthermore, δC(σ) is the indicator function on the
convex set C, which is zero if σ ∈ C and infinity otherwise. Let
A ∈ Rn×m . Then, eigmax(A) and eigmin(A) are the largest and
the smallest (modulus) eigenvalues of ATA. P ∈ Sn×n

+ denotes
that P ∈ Rn×n is positive definite. In addition, let x ∈ Rn be a
random variable, E[x] is its expected value. Finally, details on
the notions of strong convexity and Lipschitz continuity used in
the paper can be found in [27].

II. PROBLEM FORMULATION

Consider the discrete linear time-invariant (LTI) system as
follows:

x(t + 1) = Ax(t) + Bu(t), t = 0, 1, 2, . . . . (1)

The state x(t) ∈ Rn and the control input u(t) ∈ Rm are subject
to the following polyhedral constraints:

Cx(t) + Du(t) ≤ d (2)

where C ∈ Rp×n and D ∈ Rp×m . Note that the definition of
constraints (2) can include constraints on x(t) only or on u(t)
only. We aim to regulate the state x(t) to the origin using the
control input u(t) while respecting constraints (2). This goal

Authorized licensed use limited to: TU Delft Library. Downloaded on January 12,2022 at 13:57:47 UTC from IEEE Xplore.  Restrictions apply. 



1802 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 5, MAY 2019

Algorithm 1: AMA [19].

Given μ0, T , and τ < σf / eigmax(Hy ).
while k = 1, . . . , T do

1a. yk = argminy f(y) + 〈μk−1 ,−Hyy〉.
1b. zk = argminz g(z) + 〈μk−1 ,−Hzz〉+ τ

2 ‖d−Hyyk −Hzz‖2 .
2. μk = μk−1 + τ(d−Hyyk −Hzzk ).

end while

can be translated into the following MPC problem:

min
x,u

1
2

N∑

t=0

xT
t Qxt +

1
2

N−1∑

t=0

uT
t Rut (3a)

s.t.: xt+1 = Axt + But, t = 0, . . . , N − 1 (3b)

Cxt + Dut ≤ d, t = 0, . . . , N − 1 (3c)

CxN ≤ d, x0 = xinit (3d)

where xt and ut represent the t-step-ahead state and control
predictions, respectively. Furthermore, N indicates the length
of the prediction horizon, Q ∈ Sn×n

+ , R ∈ Sm×m
+ . Finally, xinit

is the initial (measured) state vector. We assume that xinit is such
that a solution of the aforementioned MPC problem exists.

The MPC law implemented in closed loop is given by the first
element of the optimal control sequence obtained by solving
Problem (3), that is, uMPC = u∗0 .

Our goal is to solve Problem (3) in an embedded environment.
In particular, we assume that explicit MPC [28] cannot be used
due to the problem size and that the computational resources are
limited, that is, parallel architectures are not available, memory
resources are limited, and only simple algebraic operations are
supported. With this framework in mind, in the remainder of
the paper, we focus on the design of a simple solver for Prob-
lem (3). The proposed solver relies on: 1) operator-splitting
methods (which, for example, usually rely on parallel hard-
ware architectures) and 2) asynchronicity (which allows one to
perform updates of a randomly selected subset of variables to
reduce the computational effort). The following section intro-
duces the techniques we rely on to solve Problem (3): AMA [19]
and the proximal stochastic gradient descent method with VR
(Prox-SVRG) [18].

III. PRELIMINARIES

A. AMA: Alternating Minimization Algorithm

Consider the following problem:

minimize f(y) + g(z) (4a)

subject to Hyy + Hzz = d (4b)

where f(y) :=
∑N

t=0 f (t)(y) under the following assumptions.
Assumption 1: f (t) is a strongly convex function and σf ( t )

denotes its convexity parameter (t = 0, . . . , N ).
Assumption 2: f (t) has a Lipschitz continuous gradient with

modulus Lf ( t ) (t = 0, . . . , N ).

Assumption 3: g is a convex function not necessarily smooth.
The MPC problem (3) that we aim to solve is a particular

case of Problem (4). Section VI provides more details on the
relationship between the two problems.

Recall the following properties of the conjugate function f� .
Lemma III.1 (see Th. 4.2.1 in [29]): If f is strongly convex

with convexity parameter σf , then f� has a Lipschitz continuous
gradient with constant L(∇f�) = σ−1

f .
Lemma III.2 (see Th. 4.2.2 in [29]): If f is convex and has

a Lipschitz continuous gradient with modulus Lf , then f� is
strongly convex with convexity parameter L−1

f .
An algorithm suitable to solve Problem (4) is the AMA

proposed in [19]. AMA operates as a proximal gradient al-
gorithm, such as the iterative shrinkage-thresholding algorithm
(ISTA) [30], on the dual of Problem (4). Specifically, given the
dual of Problem (4) (under the assumptions mentioned earlier),
described as follows:

maximize
μ∈Rn μ

D(μ) (5)

where D(μ) := −Fd(μ)−Gd(μ), Fd(μ) :=
∑N

t=0 Ft(μ), Ft

(μ) := f (t)�
(H(t)T

y μ) for t=0, . . . , N , and Gd(μ) :=g�(HT
z μ)

− dTμ, the following holds.
Lemma III.3: If Assumptions 1–3 are satisfied, Fd(μ) is

strongly convex with Lipschitz continuous gradient character-
ized by Lipschitz constant L� = L(∇Fd) := eigmax(Hy )σ−1

f .
Furthermore, Gd(μ) is convex with convexity parameter σGd

.
Proof: We can use Lemmas III.1 and III.2 to derive the prop-

erties of F (μ). Convexity of G(μ) follows from the properties
of the conjugate of a convex function and from the fact that dTμ
is a linear function. �

Remark 1: An example of g(z) that satisfies Assumption 3 is
the indicator function on the closed convex set C, that is, g(z) =
δC(z). In particular, if g(z) = δC(z), then Gd(μ) is a support
function, that is, Gd(μ) is a convex function. Furthermore, note
that σGd

is only required for theoretical purposes and its value
is not needed to tune the parameters of Algorithm 5 and its
accelerated versions.

AMA updates the dual variables μ ∈ Rpμ as described in
Algorithm 1. In general, AMA uses only simple algebraic op-
erations (if y and z are unconstrained, Steps 1a and 1b can be
performed efficiently) and does not require advanced hardware
architectures. Nevertheless, the algorithm requires frequent ex-
change of information at given synchronization points (e.g.,
Step 1b requires y computed at Step 1a, which can lead to bot-
tlenecks in the computation of the problem solution). Hence, it
would be better to have some flexibility in the update strategy.
Motivated by this observation, the following section introduces
Prox-SVRG used to derive our proposed asynchronous AMA,
as described in Section V.

B. Prox-SVRG: Proximal Stochastic Gradient Method
With VR

Consider the following primal problem:

minimize
y∈Rn y

P (y) (6)
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Algorithm 2: Prox-SVRG [18].

Given ỹ0, N , s̄, IN := {0, . . . , N}, η, and T .
while s ≤ s̄ do

0a. Set ỹ = ỹs−1 .
0b. Set β̃ = ∇F (ỹ).
0c. Set y0 = ỹ.
0d. Set Π := {π0 , . . . , πN }.
for k = 1, . . . , T do

1. Pick i ∈ IN randomly according to Π.
2. βk = β̃ + ∇Fi (yk −1 )−∇Fi (ỹ )

πi
.

3. yk = proxηG (yk−1 − ηβk ).
end for
4. ỹs = (1/T )

∑T
k=1 yk .

6. s = s + 1.
end while

where P (y) := F (y) + G(y), F (y) :=
∑N

t=0 Ft(y), and G(y)
satisfy the following assumptions.

Assumption 4: F (y) is a strongly convex function with con-
vexity parameter σF and Lipschitz continuous gradient charac-
terized by a Lipschitz constant L ≤∑N

t=0 Lt , where Lt are the
Lipschitz constants of each Ft(y).

Assumption 5: G(y) is a convex function.
Furthermore, define the proximal operator as follows:

proxηG (x) := argmin
y∈Rn y

{
1
2
‖y − x‖2 + ηG(y)

}
. (7)

The main idea behind Prox-SVRG [18] is to eliminate the
dependence of the number of iterations (typical of stochastic
gradient methods) in the definition of the step size and to reduce
the burden in the computation of ∇F (y) (typical of classical
gradient methods). As pointed out in [18], proximal stochastic
gradient methods (such as [31] and [32]) suffer from sublinear
convergence [to a suboptimal solution of Problem (6)] given
that the step size decreases at each iteration of the algorithm,
but behave well when N is large. On the other hand, classi-
cal proximal gradient methods require at each iteration of the
algorithm to compute the full gradient of F (y), which can be
an involved operation if N is large, but the step size is fixed
and independent of the number of iterations (leading to better
theoretical convergence properties). Hence, Prox-SVRG aims
to exploit the benefits of the two techniques as explained ahead
and described in Algorithm 2.

Prox-SVRG uses a multistage strategy to gradually reduce
the variance in the estimation of the full gradient∇F (y) (with-
out computing the actual full gradient at each iteration). In
particular, the full gradient of F (y) is updated only every T
iterations to reduce the computational effort compared to the
classical gradient methods, and the proximal step (Step 3)
uses a modified direction βk (Step 2) that leads to a smaller
variance E‖βk −∇F (yk−1)‖2 compared to the one obtained
using classical stochastic gradient methods E‖∇Fi(yk−1)−
∇F (yk−1)‖2 (i ∈ DN ), where∇Fi(yk−1) is used as update di-
rection (refer to [18] for more details). Furthermore, the random
sampling (Step 1) is performed on a probability distribution

Π := {π0 , . . . , πN } that does not necessarily have to be uni-
form, that is, the algorithm allows more flexibility in the tuning
phase by supporting other distributions as well, such as Poisson
distributions, normal distributions, etc. Algorithm 2 achieves
geometric convergence in the expectation, as stated in the fol-
lowing theorem.

Theorem III.1 (Th. 3.1 in [18]): Suppose Assumptions 4
and 5 hold. Let y∗ = argminyP (y) and LΠ :=maxtLt/πt . As-
sume that 0 <η <1/(4LΠ) and T is sufficiently large so that

ρ :=
1

ησF T (1− 4ηLΠ)
+

4ηLΠ(T + 1)
T (1− 4ηLΠ)

< 1. (8)

Then, for s̄ > 1, Algorithm 2 has geometric convergence in the
expectation

E (P (ỹs̄))− P (y∗) ≤ ρs̄ [P (ỹ0)− P (y∗)] . (9)

Remark 2: The dependence on the probability πt in the
choice of the step size η can be problematic when πt → 0
or when N →∞ (e.g., the constrained infinite horizon linear
quadratic regulator (LQR)). Nevertheless, this dependence can
be removed in the special case in which F (y) =

∑N
t=1 Ft(yt),

that is, when the cost is separable in yt . In this scenario, we can
select 0 < η < 1/(4maxt Lt). From the MPC perspective, this
covers many scenarios, such as regulation and tracking prob-
lems in which we optimize with respect to states and inputs.
Distributed MPC applications can have separable costs in the
local decision variables. A negative example, in which the cost is
not separable in the decision variables, is when a condensed cen-
tralized MPC formulation (in which we optimize with respect
to the control variables eliminating the dynamic constraints) is
used. Hence, this observation can be taken into account in the
design phase (when designing the controller itself) to improve
the choice of the step size and the quality of the MPC solution.

IV. ACCELERATED PROX-SVRG

In the following, we propose two different acceleration strate-
gies for Algorithm 2. In particular, Section IV-A describes
a strategy to accelerate the inner loop of Prox-SVRG (see
Algorithm 3), whereas Section IV-C describes a strategy to ac-
celerate the outer loop of Prox-SVRG (see Algorithm 4). We
rely on the following observation in order to show that we can
accelerate Prox-SVRG.

A. Analysis of Algorithm 3

The analysis of Algorithm 3 relies on some properties of
Algorithm 2. In particular, Algorithm 2 can be interpreted as
a proximal gradient method (such as ISTA [30]) in which the
gradient of F is computed inexactly, that is, by using a modified
direction βk obtained by using the VR strategy. In particular,
Prox-SVRG reduces to the inexact proximal gradient proposed
in [20], in which the full gradient of F is computed inexactly
(Step 3 of Algorithm 2)

yk = proxηG (yk−1 − ηβk ) (10a)

= proxηG (yk−1 − η (∇F (yk−1) + ek )) . (10b)
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Algorithm 3: Inner-Loop Acceleration of Prox-SVRG.

Given ỹ0, N , s̄, IN := {0, . . . , N} η, γ := σF

L , and T .
while s ≤ s̄ do

0a. Set ỹ = ỹs−1 .
0b. Set β̃ = ∇F (ỹ).
0c. Set y0 = ỹ.
0d. Set Π := {π0 , . . . , πN }.
for k = 1, . . . , T + 1 do

1. Pick i ∈ IN randomly according to Π.
2. βk = β̃ + ∇Fi (ŷk −1 )−∇Fi (ỹ )

πi
.

3. yk = proxηG (ŷk−1 − ηβk ).

4. ŷk = yk + 1−√γ

1+
√

γ (yk − yk−1).
end for
5. ỹs = (1/T )

∑T
k=1 yk .

6. s = s + 1.
end while

The error in the gradient calculation is defined as follows:

ek = βk −∇F (yk−1). (11)

Hence, Algorithm 2 is a particular case of the I-PGM proposed
in [20]. As a consequence, we can derive a framework similar
to the one proposed in [20] to show the acceleration of Prox-
SVRG. In this respect, we proceed as follows.

1) The first step is to use the convergence results in [20,
Proposition 4] to derive conclusions on the convergence
of the inner loop of Algorithm 3.

2) Second, we check that the expectation on the gradient cal-
culation error E‖ek‖2 is bounded and converges linearly
to zero, in order to satisfy the assumptions in [20].

3) Third, we show how the acceleration of the inner loop
impacts the outer loop of Algorithm 3.

Analysis of the inner loop of Algorithm 3: In the follow-
ing, we reformulate [20, Proposition 4] for the problem we take
into account, that is, we do not consider the error in the calcula-
tion of the proximal operator and we consider that we deal with
stochastic variables in the inner loop of Algorithm 3.

Proposition IV.1: Suppose Assumptions 4 and 5 hold. For
k ≥ 0 and yk computed according to Algorithm 3, the following
holds:

EP (yk )− P (y∗)

≤ (1−√γ)k

[√
2(P (ỹ)− P (y∗)) + Γk (ỹ)

√
2

σF

]2

(12)

with Γk (ỹ) :=
∑k

i=1 E‖ei−1(ỹ)‖(1−√γ)−i/2 .
Proof: We exploit the equivalence between Prox-SVRG and

I-PGM. In particular, recall (10) and (11). Then, the proof
follows directly from [20, Proposition 4] by taking into account
that the proximal step is computed exactly and the only error we
take into account is the one in the gradient calculations, which is
a stochastic error (hence the expectation in the definition of Γk ).
Furthermore, we take into account that each yk is a stochastic
variable and, consequently, we can consider the expectation in
the value of P (yk ). �

Bound on the variance in Algorithm 3: The error in the
gradient calculations that we take into account by using Prox-
SVRG is a stochastic error and it is bounded (in the expecta-
tion) according to [18, Corollary 3.5]. We can compute the
bound on the error when βk is computed according to Step 2 in
Algorithm 3.

Corollary IV.1: Consider βk , which is defined as follows
(k = 0, . . . , T ):

βk = ∇F (ỹ) +
∇Fik

(ŷk−1)−∇Fik
(ỹ)

πik

. (13)

In addition, let LΠ = maxi=1,...,N Li/(πi).1 Conditioned on
yk−1 , we have Eβk = ∇F (ŷk−1) and

E‖ek−1(ỹs−1)‖2 ≤ 4LΠ[P (ŷk−1) + P (ỹs−1)− 2P (y∗)].
(14)

Proof: The proof follows from the one of [18, Corollary 3.5]
by using the update rule for βk in Step 2 of Algorithm 3. �

Remark 3: Accelerating the inner loop does not affect the up-
per bound on the error, as can be easily shown by looking at the
proof of [18, Corollary 3.5]. The upper bound above suggests
that when ỹs → y∗ and ŷk−1 := (1− α)yk−1 + αyk−2 → y∗
(α = (1−√γ)/(1 +

√
γ) < 1), the expected error in the gradi-

ent calculation is zero, that is, the error goes to zero at the same
rate of the estimates (i.e., ŷk and ỹs) of the optimal solution of
Problem (6). As shown in Theorem III.1, in which the conver-
gence of Prox-SVRG is discussed, ỹs → y∗ and consequently
E‖ek‖ is guaranteed by design to converge to zero. For E‖ek‖2
to decrease to zero linearly (in order to exploit the upper bound
provided in Proposition IV.1), the following condition must be
verified (we omit the dependence on ỹs−1 when it is clear from
the context):

E‖ek‖2 ≤ 1
k

E‖ek−1‖2 . (15)

The aforementioned condition can be checked on the error upper
bound (14). If we formulate this condition, we notice immedi-
ately that we can derive guidelines to select the batch size T ,
that is, the number of inner-loop iterations. In particular, the
following holds:

P (yk−1) ≤ 1− α− kα

k(1− α)
P (yk−2) +

α

k(1− α)
P (yk−3)

+
2

(1− α)
P (y∗) +

1
k(1− α)

P (ỹ).

The right-hand side of the previous equation is the sum of pos-
itive terms if and only if the coefficient of P (yk−2) is greater
than or equal to zero. Hence, we have to limit the number of
inner-loop iterations. In particular, we can derive the following
upper bound:

T ≤
⌈

2
√

γ

1−√γ

⌉
(16)

which means that if the problem is ill-conditioned, the acceler-
ation is not recommended.

1i in this case is not the iteration counter, but indicates that Li is associated
with the function Fi , i = 1, . . . , N .

Authorized licensed use limited to: TU Delft Library. Downloaded on January 12,2022 at 13:57:47 UTC from IEEE Xplore.  Restrictions apply. 



FERRANTI et al.: SVR-AMA: AN ASYNCHRONOUS AMA WITH VR FOR MODEL PREDICTIVE CONTROL APPLICATIONS 1805

Algorithm 4: Outer-Loop Acceleration of Prox-SVRG.

Given ỹ0, N , s̄, IN := {0, . . . , N} η, γ, and T .
while s ≤ s̄ do

0a. Set ỹ = ŷs−1 .
0b. Set β̃ = ∇F (ỹ).
0c. Set y0 = ỹ.
0d. Set Π := {π0 , . . . , πN }.
for k = 1, . . . , T do

1. Pick i ∈ IN randomly according to Π.
2. βk = β̃ + ∇Fi (yk −1 )−∇Fi (ỹ )

πi
.

3. yk = proxηG (yk−1 − ηβk ).
end for
4. ỹs = (1/T )

∑T
k=1 yk .

5. ŷs = ỹs + 1−√γ

1+
√

γ (ỹs − ỹs−1).
6. s = s + 1.

end while

Analysis of the outer loop of Algorithm 3: By exploiting
Proposition IV.1, we are able to immediately derive an upper
bound for the cost computed using Algorithm 3 that depends on
Γk , as described in the following theorem.

Theorem IV.1: Suppose Assumptions 4 and 5 hold. Let y∗
be the optimal solution of Problem (6), γ := (σF /LΠ), and
0 < η ≤ (1/LΠ). For 
 4√

γ (1−√γ)� ≤ T ≤ � 2
√

γ

1−√γ � and s̄ >

0, the following holds:

EP (ỹs̄)− P (y∗) ≤ ρs̄
IA,I-PGM [P (ỹ0)− P (y∗)]

+
4

TσF

s̄−1∑

s=0

ρs
IA,I-PGMΓ(ỹs) (17)

where ρIA,I-PGM and Γ(ỹs) are defined as follows:

ρIA,I-PGM :=
4

T
√

γ

[
(1−√γ)− (1−√γ)T +1] < 1 (18a)

Γ(ỹs) :=
T∑

k=1

E‖ek−1(ỹs−1)‖2
(1−√γ)k

. (18b)

The proof can be found in Appendix A-A.
Remark 4: Note that T > 4√

γ (1−√γ) is required in order
to have ρIA,I-PGM < 1. If we analyze the upper and lower bound
on T in the statement of Theorem IV.1, Algorithm 3 can be
used only when the conditioning of Problem (6) is such that the
following holds:

1 ≤ 2
√

γ (19)

which only holds if 1 > γ > 0.25.

B. Analysis of Algorithm 4

In the following, we propose an alternative acceleration
strategy of Prox-SVRG. Compared to the results provided in
Section IV-A, this section focuses on the acceleration of the
outer loop of Prox-SVRG. In this respect, we proceed by ana-
lyzing Algorithm 4 as follows.

1) First, we check that the acceleration of the outer loop
does not affect the bound on the error in the gradient
calculations of the inner loop.

2) Second, we provide a proof of convergence of
Algorithm 4. This proof mainly relies on the convergence
analysis in [18].

Bound on the variance in Algorithm 4: In the following,
we show that the acceleration of the outer loop does not affect the
VR strategy in the inner loop and that the results of [18, Corollary
3.5] hold to prove the convergence of Algorithm 4. In particular,
when βk is computed according to Step 2 in Algorithm 4, the
following holds.

Corollary IV.2: Consider βk , which is defined as follows:

βk = ∇F (ỹ) +
∇Fik

(yk−1)−∇Fik
(ỹ)

πik

. (20)

In addition, let LΠ := maxi Li/(Nπi), βs :=
∑T

k=1 βk , and
ys−1,avg := 1

T

∑T
k=1 yk−1 . Conditioned on yk−1 , the following

holds:

Eβs := ∇F (yavg)

and

E‖es‖2 ≤ 2LΠ

T

[
P
(
ys−1,avg

)
+ P (ỹ)− 2P (y∗)

]
. (21)

The proof can be found in Appendix B-A.
Accelerating the outer loop does not affect the upper bound

on the error expectation provided in [18]. Furthermore, notice
that (21) provides guidelines to select the number of inner-loop
iterations. In particular, if the following holds, the error in the
gradient calculations decreases linearly with respect to ỹ → y∗
and ys−1,avg → y∗:

T > �2LΠ�. (22)

Convergence of Algorithm 4: We can now show the con-
vergence of Algorithm 4 using the following theorem.

Theorem IV.2: Suppose Assumptions 4 and 5 hold. For s ≥ 0,
the following holds for ỹs computed according to Algorithm 4:

EP (ỹs)− P (y∗) ≤ (1−√γ)s(P (ỹ0)− P (y∗)). (23)

The proof can be found in Appendix B-B.
Remark 5: The outer-loop acceleration converges geomet-

rically at a rate that depends on γ := μ/L. If (1−√γ) < ρ,
we can expect to converge to the optimal solution at a faster
rate, compared to Algorithm 2. If that does not hold, due to
the problem conditioning, the acceleration of the outer loop
is not beneficial. In general, note that ρ depends on the num-
ber of inner-loop iterations T and ρ� 1 only if T is large.
Hence, in general, we expect that the condition for the accel-
eration (1−√γ) < ρ holds in many applications to keep the
overall computation time of the algorithm bounded (i.e., we
expect to keep T small to reduce the computation time of the
algorithm).

V. SVR-AMA AND ITS ACCELERATED VERSIONS

Our goal is to solve Problem (4) in an asynchronous fashion,
that is, by allowing updates of a randomly selected subset of the
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Algorithm 5: SVR-AMA.

Given μ̃0, N , s̄, IN := {0, . . . , N}, η, γ, and T .
while s ≤ s̄ do

0a. Set μ̃ = μ̃s−1 , ỹ = ỹs−1 .
0b. Set β̃ = ∇F (μ̃).
0c. Set μ0 = μ̃.
0d. Set Π := {π(0) , . . . , π(N )}.
for k = 1, . . . , T do

1. Pick i ∈ IN randomly according to Π.

2a. yk = argminy f (i)(y) + 〈μk−1 ,−H
(i)
y y〉.

2b. zk = argminz g(z) + 〈μk−1 ,−Hzz〉
+ η

2 ‖d−Hyyk −Hzz‖2 .

3. βk = β̃ + ∇Fi (μk −1 )−∇Fi (μ̃)
πi

.
4. μk = μk−1 − η(βk + Hzzk − d).

end for
5. μ̃s = 1

T

∑T
k=1 μk , ỹs = 1

T

∑T
k=1 yk .

6. s = s + 1.
end while

Algorithm 6: Inner-Loop Accelerated SVR-AMA.

Given μ̃0 , N , s̄, IN := {0, . . . , N}η, γ, and T .
while s ≤ s̄ do

0a. Set μ̃ = μ̃s−1 , ỹ = ỹs−1 .
0b. Set β̃ = ∇F (μ̃).
0c. Set μ̂0 = μ0 = μ̃.
0d. Set Π := {π0 , . . . , πN }.
for k = 1, . . . , T + 1 do

1. Pick i ∈ IN randomly according to Π.

2a. yk = argminy f (i)(y) + 〈μ̂k−1 ,−H
(i)
y y〉.

2b. zk = argminz g(z) + 〈μ̂k−1 ,−Hzz〉
+ η

2 ‖d−Hyyk −Hzz‖2 .

3. βk = β̃ + ∇Fi (μ̂k −1 )−∇Fi (μ̃)
πi

.
4. μk = μ̂k−1 − η(βk + Hzzk − d).
5. μ̂k = μk + 1−√γ

1+
√

γ (μk − μk−1).
end for
6. μ̃s = (1/T )

∑T
k=1 μk , ỹs = (1/T )

∑T
k=1 yk .

7. s = s + 1.
end while

dual variables at each iteration of the solver. Hence, given that
Algorithm 2 cannot be directly applied to Problem (4), we pro-
ceed as explained in Section III-A, that is, we apply Algorithm 2
to the dual of Problem (4). The resulting algorithm (SVR-AMA)
is described by Algorithm 5. In order to derive convergence re-
sults for Algorithm 5, we consider the dual formulation of [18,
Lemma 3.6]. Note that in the remainder of the paper, we use
F (μ) and G(μ) instead of Fd(μ) and Gd(μ) to simplify the
notation.

Lemma V.1: Let D(μ) = −F (μ)−G(μ) defined in (5),
where ∇F (μ) is Lipschitz continuous with parameter L� :=
σ−1

f (according to Lemma III.1), and F (μ) and G(μ) have con-
vexity parameters σF := L−1

f and σG , respectively. For any

Algorithm 7: Outer-Loop Accelerated SVR-AMA.

Given μ̂0, ỹ0 , N , s̄, IN := {0, . . . , N} η, γ and T .
while s ≤ s̄ do

0a. Set μ̃ = μ̂s−1 , ỹ = ỹs−1 .
0b. Set β̃ = ∇F (μ̃).
0c. Set μ0 = μ̃.
0d. Set Π := {π0 , . . . , πN }.
for k = 1, . . . , T do

1. Pick i ∈ IN randomly according to Π.

2a. yk = argminy f (i)(y) + 〈μk−1 ,−H
(i)
y y〉.

2b. zk = argminz g(z) + 〈μk−1 ,−Hzz〉
+ η

2 ‖d−Hyyk −Hzz‖2 .

3. βk = β̃ + ∇Fi (μk −1 )−∇Fi (μ̃)
πi

.
4. μk = μk−1 − η(βk + Hzzk − d).

end for
5. μ̃s = (1/T )

∑T
k=1 μk , ỹs = (1/T )

∑T
k=1 yk .

6. μ̂s = μ̃s + 1−√γ

1+
√

γ (μ̃s − μ̃s−1).
7. s = s + 1.

end while

μ ∈ dom(G) and β ∈ Rnμ , define

μ+ = proxηG(μ) (μ− ηβ) (24a)

h =
1
η
(μ− μ+) (24b)

Δ = β −∇F (μ) (24c)

where η ≤ σf . Then, for any μ̃ ∈ Rnμ , we have

D(μ+)−D(μ̃) ≥ hT(μ̃− μ) +
η

2
‖h‖2

+
σF

2
‖μ̃− μ‖2 +

σG

2
‖μ̃− μ+‖2

+ ΔT(μ+ − μ̃). (25)

Proof: The definition of μ+ in (24a) follows from [16, Th.
4] (in particular using [16, Th. 4], it is shown that Steps 2 and
4 in Algorithm 5 are equivalent to proxηG (μ− ηβ), which is
equivalent to the proximal Step 3 of Algorithm 2). Then, (25)
follows from the proof of [18, Lemma 3.6] by taking into account
the definition of D(μ). �

We can now establish the convergence of Algorithm 5.
Theorem V.1: Suppose Assumptions 1–3 hold. Let μ∗ =

argmaxμ D(μ), where D(μ) is the dual cost defined in (5). Let
L�

Π :=maxt=0,...,N eigmax(Hy)(πtσf)−1=maxt=0,...,N π−1
t L� ,

πt ∈ Π. Assume that 0 < η < 1/(4L�
Π) and T ≥ 1 such that

ρ� :=
Lf

ηT (1− 4ηL�
Π)

+
4ηL�

Π(T + 1)
T (1− 4ηL�

Π)
< 1. (26)

Then, for s̄ > 0, Algorithm 5 has geometric convergence in the
expectation

D(μ∗)− ED(μ̃s̄) ≤ ρ�s̄ [D(μ∗)−D(μ̃0)] . (27)

The proof can be found in Appendix C-A.
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Corollary V.1 (Corollary 3.5 in [18] on the dual): Consider
βk , which is defined in Step 3 of Algorithm 5. Conditioned on
μk−1 , the following holds:

Eβk = ∇F (μk−1) (28)

and

E‖βk−∇F (μk−1)‖2 ≤ 4L�
Π[P (yk )+P (ỹ)−2P (y∗)]. (29)

The proof can be found in Appendix C-B.
Remark 6: According to Corollary V.1, by exploiting the

definition of ∇F (μ), we can relate the upper bound on the
variance in the gradient calculations in the dual framework with
the primal cost. This observation is useful to preserve (in the
dual framework) the results obtained in the primal framework
in Sections IV-A and IV-C to select the inner- and outer-loop
iterations for E‖βk −∇F (μk−1)‖2 → 0.

Sections IV-A and IV-C showed how to accelerate Prox-
SVRG, while Section V showed how Algorithm 5 (i.e., SVR-
AMA) is equivalent to Algorithm 2 (i.e., Prox-SVRG [18]) ap-
plied to the dual of Problem (6). This observation allows us to
formulate the accelerated versions of SVR-AMA, knowing that
their convergence can be derived from Theorems IV.1 and IV.4
applied to the dual. In this respect, Algorithm 6 describes IA-
SVR-AMA, whereas Algorithm 7 describes OA-SVR-AMA.

VI. MPC FORMULATION FOR SVR-AMA

Our aim is to solve the MPC Problem (3) presented in
Section II using SVR-AMA and its accelerated versions. In
this respect, we rely on the decomposition provided in [22]
summarized ahead.

First, we decompose Problem (3) along the length of the
prediction horizon N into N + 1 smaller subproblems, accord-
ing to the time-splitting strategy proposed in [12]. This result
is achieved thanks to the introduction of N consensus vari-
ables zt ∈ Rn (t = 1, . . . , N ) used to break up the dynamic
coupling (3b). This decomposition allows us to reformulate
Problem (3) as follows:

min
x,u

1
2

N∑

t=0

x
(t)T

t Qx
(t)
t +

1
2

N−1∑

t=0

u
(t)T

t Ru
(t)
t (30a)

s.t.: zt+1 = Ax
(t)
t + Bu

(t)
t , t = 0, . . . , N − 1 (30b)

zt+1 = x
(t+1)
t+1 , t = 0, . . . , N − 1 (30c)

Cx
(t)
t + Du

(t)
t ≤ d, t = 0, . . . , N − 1 (30d)

Cx
(N )
N ≤ d, x

(0)
0 = xinit (30e)

where the original dynamic coupling (3b) has been replaced
by the consensus constraints (30b) and (30c). Note that we
introduced the superscript t to emphasize that xt and ut are local
variables of the subproblems obtained after the time splitting.

Remark 7: The time-splitting strategy supports more general
MPC formulations, such as MPC problems with terminal cost,
terminal set, known disturbances, and time-varying constraints.
More details can be found in [12].

Finally, if we introduce N + 1 additional slack variables σt ∈
Rp to remove the inequality constraints (30d) and define C :=
{σt ∈ Rp |σt ≥ 0}, Problem (30) can be written as the sum of
the following subproblems:

min
yt

ft (yt) +
p∑

i=1

δC(σti
) (31a)

s.t.: wt : zt = H1yt (31b)

vt+1 : zt+1 = H2yt (31c)

λt : σt = d−Gyt (31d)

where we define yT
t := [x(t)T

t u
(t)T

t ], ft(yt) := yT
t Qyt , Q :=

diag {Q,R}, G := [C D], H1 := [In 0n×m ], H2 := [AB]. Fur-
thermore, for each equality constraint in Problem (31), the
corresponding Lagrange multipliers have been highlighted. If
we define yT = [yT

0 . . . yT
N ], zT = [zT

1 . . . zT
N σT

0 . . . σT
N ], f(y)

= yTQy =
∑N

t=0 ft(yt), Q = diag{Q . . .Q}, g(z) =
∑N

t=0
δC(σt)

hT
y0

= [HT
2 | −GT], hT

y = [HT
1 HT

2 | −GT]

hT
yN

= [HT
1 | − [C 0]T], hT

d0
= hT

dN
= [0n | − dT]

hT
d = [0n 0n | − dT],Hy = diag {hy0 , hy , . . . , hy , hyN

}
d :=

[
hT

d0
hT

d . . . hT
d hT

dN

]T

Hz :=

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

In 0 . . . 0 0 0 . . . 0
0 0 . . . 0 Ip 0 . . . 0
In 0 . . . 0 0 0 . . . 0
0 In . . . 0 0 0 . . . 0
0 0 . . . 0 0 Ip . . . 0
...

. . .
...

. . . 0
0 0 . . . In 0 0 . . . 0
0 0 . . . 0 0 0 . . . Ip

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

.

Problem (3) can be rewritten as follows:

minimize f(y) + g(z) (32a)

Hyy + Hzz = d. (32b)

According to the definition ofQ, f(y) is strongly convex, has
a convexity parameter σf := eigmin(Q) = eigmin(blockdiag
{Q,R}) = σft

, and a Lipschitz constant Lf := eigmax(Q). In
addition, g(z) is a convex function.

For the proposed splitting, Assumptions 2 and 3 are satisfied.
Concerning Assumption 1, note that L(∇F ) := eigmax(Hy)
σ−1

f = maxt(eigmax(Hyt
)σ−1

ft
)= maxt(Lt(∇Ft))= Lt(∇Ft)

≤∑N
t=0 Lt(∇Ft), where the last equality follows from the fact

that we deal with LTI systems (L0 = L1 = . . . = LN ). Hence,
on the dual, Assumption 4 still holds and, consequently, we can
use SVR-AMA to solve Problem (3).

The associated SVR-AMA algorithm to solve Problem (30)
is detailed in Algorithm 8. The accelerated versions are omit-
ted here due to space limitations, but can be easily derived
from Algorithms 6 and 7, respectively. In particular, defin-
ing µT := [vT

1 λT
0 |wT

1 . . . wT
N−1 vT

N λT
N−1 |wT

N λT
N ], according
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Algorithm 8: SVR-AMA for Problem (30).

Given μ̃0, N , s̄, IN := {0, . . . , N}, L� := (σf )−1eigmax
(Hy ), η, and T .
while s ≤ s̄ do

0a. Set w̃ = w̃s−1 , ṽ = ṽs−1 ,
λ̃ = λ̃

s−1
, and ỹ = ỹs−1 .

0b. Set β̃w = ∇F (w̃), β̃v = ∇F (ṽ), and
β̃λ = ∇F (λ̃).

0c. Set w0 = w̃, v0 = ṽ, and λ0 = λ̃.
0d. Set Π := {π0 , . . . , πN } on IN

for k = 1, . . . , T do
1. Pick i ∈ IN randomly according to Π.
2a. yk

i = argminy fi(yi) + 〈wi,H1yi〉+
〈vi+1 ,H2yi〉+ 〈λi ,−Gyi〉.

2.b σk
i = PrC(Gyk

i − d− ηλi).
2c. zk

i = 1
2

[
H1y

k
i + H2yi−1 − η(wi + vi)

]
.

3a. βk
wi

= β̃wi
+ (yk

i −ỹ i )TH T
1

πi
.

3b. βk
vi

= β̃vi
+ (yi−1−ỹ i−1 )TH T

2
πi

.

3c. βk
λi

= β̃λi
− (yk

i −ỹ i )TGT

πi
.

4a. wk
i = wi + η

(
zk
i − βk

wi

)
.

4b. vk
i = vi + η

(
zk
i − βk

vi

)
.

4c. λk
i = λi + η

(
βk

λi
+ d− σk

i

)
.

end for
5. w̃s = 1

T

∑T
k=1 wk , ṽs = 1

T

∑T
k=1 vk

λ̃
s

= 1
T

∑T
k=1 λk , and ỹs = 1

T

∑T
k=1 yk .

6. s = s + 1.
end while

to the partitioning of Hy and Hz , F (µ) = f�(HT
yµ). Further-

more,∇F (w) is the gradient of F at w,∇F (v) is the gradient
of F at v, and ∇F (λ) is the gradient of F at λ. Note that
the calculation of the gradient step for this particular splitting
is very simple and requires the evaluation of the product Hyy,
which can be performed efficiently by exploiting the structure of
matrix Hy . Finally, note that, given the structure of F (µ), prob-
ability πt does not affect the choice of the step size η, according
to Remark 2.

The following complexity upper bound on the primal se-
quence can be defined.

Theorem VI.1: Consider Problem (30). Let {yk} and {µk}
be the sequence of primal and dual variables, respectively, gen-
erated by Algorithm 9. If Assumptions 1–3 are satisfied, given
µ̃0 ∈ dom(G), where G := g�(HT

z µ)− dTµ, then, the follow-
ing holds:

E‖ỹs − y∗‖2 ≤ 2
σf

(D(µ∗)− ED(µ̃0)). (33)

Proof: The inequality can be derived by the results of [14,
Th. 5.3] by noticing that the primal updates in the inner loop
are the same as AMA. Then, we have to take into account for
Algorithm 8 that the primal variables are stochastic variables and
that we must consider their expected values. These observations
combined with the results of Theorem V.1 lead to (33). �

Remark 8: The initial value of the dual variables µ̃0 should
be a feasible starting point in order to use the results of
Theorem 5.3. This can be accomplished by noticing the fol-
lowing. Concerning the λ̃0

t components of µ̃0 , they must be in
Ct . Concerning the w̃0

t and ṽ0
t components of µ̃0 , by providing

an initial primal solution satisfying the consensus constraints
(e.g., by using the evolution of the state starting from xinit under
the associated unconstrained LQR control law ut = KLQRxt),
they can be set equal to zero.

In theory, the decomposition along the length of the pre-
diction horizon allows one to fully parallelize the solution of
Problem (3), thanks to the introduction of the consensus vari-
ables. If N + 1 independent workers are available, the dual up-
date of each subproblem can be assigned to its dedicated worker
that exchanges information with its neighbors only at dedicated
synchronization points to update the consensus variables, as de-
tailed in [12]. If the prediction horizon, however, is larger than
the number of available workers, the computation of the solu-
tion has to be partially (or fully, if only one worker is available)
serialized. This scenario can be quite common for embedded
legacy control systems, where the serial hardware architecture
is formally verified and the costs to upgrade to the parallel one
are too high. In this scenario, Algorithm 5 plays a fundamental
role to compute a suboptimal solution of Problem (3).

Algorithm 5 applied to Problem (30) translates into the possi-
bility of asynchronous updates of the independent subproblems.
Compared to solving the subproblems in a serialized fashion
(i.e., one after the other) in a synchronous framework, the
asynchronous updates lead to less costly (in terms of compu-
tation time) iterations of the algorithm. In particular, assuming
that only one worker is available, at each inner-loop iteration
(Steps 1–4 of the algorithm), only one subproblem is randomly
selected for the update. In a synchronous framework, the update
of all the subproblems would have been required, which can be
costly if the length of the horizon is large.

Compared to other asynchronous dual algorithms (see, e.g.,
[26]), Algorithm 5 allows one to tune and adapt (online) the
probability distribution Π. This is particularly useful, for exam-
ple, to give priority in the update to those subproblems whose
associated dual variables vary the most between two iterations
of the algorithm, as shown in the following section.

VII. NUMERICAL EXAMPLE

This section considers the linearized model (at a given trim
condition) of an Airbus passenger aircraft [21] to test the pro-
posed design. Aerospace applications offer several challenges
for MPC from the computational perspective. First, these ap-
plications usually have strict real-time requirements. Second,
the aircraft has different modes (some slower than others), re-
flected in the eigenvalues of the dynamic matrix, that lead to
an ill-conditioned control problem. Finally, the problem size is
relatively large and a long prediction horizon is required.

We focus on the longitudinal control of the aircraft. In this
respect, the model we consider has n = 6 states (to describe the
longitudinal dynamics) and m = 4 control actuators. In partic-
ular, the states associated with the longitudinal dynamics are
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pitch rate (deg/s), roll rate (deg/s), ground speed (km), angle of
attack (deg), pitch angle (deg), and altitude (ft). Finally, the con-
trol surfaces for the longitudinal dynamics are the four elevators
on the tail of the aircraft.

The sampling time of the system is Ts = 0.04 s and we con-
sider an horizon length N = 60. The total number of decision
variables is 600. Furthermore, we have 3000 inequality con-
straints and 600 equality constraints. The goal of the MPC con-
troller is to regulate the state of the system to the origin starting
from a nonzero initial condition close to the saturation limits of
the system.

We compared the behavior of Algorithms 5 (SVR-AMA), 6
(SVR-AMA with inner-loop acceleration), and 7 (SVR-AMA
with outer-loop acceleration) with Algorithm 1 (AMA). The
baseline for the comparison is the trajectory obtained using the
MPC functions of MPT3 [33].

First, we are interested in showing that the possibility of tun-
ing the probability distribution that the algorithm offers can
lead to improvements in terms of performance of the MPC
controller, especially when the solver runs for a limited num-
ber of iterations to reach a medium accuracy. In this respect,
we consider three different probability distributions (depicted
in Figs. 1 and 2): 1) uniform, 2) generalized Pareto, and
3) adaptive. The adaptive distribution is computed online by
the algorithm according to the following guidelines. We ini-
tialize Π to be the Pareto distribution. Then, every T inner-
loop iterations, we check, for each t = 0, . . . , N whether the
following condition is verified ‖μ̃T − μ̃T −1‖2 < 0.01. If the
condition is verified, πt ← 0.5πt and the probabilities of its
neighbors become πt+1 ← πt+1 + 0.25πt and πt−1 ← πt−1 +
0.25πt . Fig. 2 shows how the distribution varies when running
Algorithm 5.

Second, we are interested in showing the benefits that the
acceleration of the inner and outer loops can bring in terms
of number of iterations needed to reach a suboptimal solution
of the MPC problem (4). In this respect, we run the proposed
algorithms (i.e., Algorithms 5–7) and AMA for one problem
instance that causes active inequality constraints at the optimum.

In the remainder of the section, we first analyze the proposed
algorithms in open loop (see Section VII-A). Then, based on the
achieved results, we propose a real-time implementation of the
most promising algorithm in closed loop (see Section VII-B).
Note that the units on the vertical axes of the plots presented
ahead have been removed upon request of our industrial partners.

A. Open-Loop Analysis
Figs. 3–10 show the results obtained when testing the pro-

posed algorithms for one problem instance. For the open-loop
comparison, we fixed the total number of iterations for all the
algorithms (T s̄ = 15 · 105) and we use the same step size η.
Concerning the tuning of the number of inner iterations, on one
hand, we select T = 500 when using Algorithm 6 (according to
the guidelines provided to select the number of inner-loop iter-
ations for IA-SVR-AMA), leading to a larger number of outer-
loop iterations. On the other hand, we select T = 3000 when
using Algorithm 7 (according to the guidelines provided to se-
lect the number of inner-loop iterations for OA-SVR-AMA),

Fig. 3. Control trajectories obtained using different probability distribu-
tions Π in Algorithm 5 in open loop.

Fig. 4. Pitch-rate trajectories obtained using different probability distri-
butions Π in Algorithm 5 in open loop.

leading to a smaller number of outer-loop iterations (that re-
quires the update of the full gradient). Concerning the tuning of
η, we selected the value according to the guidelines that derive
from the theory.

Figs. 3 and 4 show the behavior of one of the actuators and
one of the states (the pitch rate) when using Algorithm 5. The
behavior of SVR-AMA is compared with AMA and the optimal
trajectory. We notice that, within the limited number of itera-
tions, the possibility to tune Π leads to improvements in terms
of quality of the solution. In particular, notice that the uniform
distribution leads to a behavior comparable to AMA, while us-
ing the Pareto and the adaptive distribution lead to improved
trajectories.

Figs. 5 and 6 show the behavior of one of the actuators and
one of the pitch rate when using Algorithm 6 to accelerate
the inner-loop iterates. The behavior of the inner-accelerated
algorithm is compared with SVR-AMA (with adaptive distri-
bution) and AMA. We notice that the algorithm leads to some
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Fig. 5. Control trajectories obtained using different probability distribu-
tions Π in Algorithm 6 in open loop.

Fig. 6. Pitch-rate trajectories obtained using different probability distri-
butions Π in Algorithm 6 in open loop.

Fig. 7. Control trajectories obtained using different probability distribu-
tions Π in Algorithm 7 in open loop.

Fig. 8. Pitch-rate trajectories obtained using different probability distri-
butions Π in Algorithm 7 in open loop.

improvements in the calculation of the optimal solution of the
MPC problem. The main issue with the inner acceleration is
that the algorithm requires more updates of the full gradient of
F , which can be problematic when N is large. It is, however,
interesting to notice that the combined use of VR (which is

Fig. 9. Comparison of the best control trajectory computed by SVR-
AMA, IA-SVR-AMA, and OA-SVR-AMA in open loop.

Fig. 10. Comparison of the best pitch-rate trajectory computed by SVR-
AMA, IA-SVR-AMA, and OA-SVR-AMA in open loop.

also an acceleration strategy from the stochastic point of view)
and inner-loop acceleration (which is an acceleration strategy
in a more classical sense) still lead to some benefits in the
computation of the optimal solution.

Figs. 7 and 8 show the behavior of one of the actuators and the
pitch rate when using Algorithm 7 to accelerate the outer-loop
iterates. As in the previous case, the behavior of the outer-
accelerated algorithm is compared with SVR-AMA (with adap-
tive distribution) and AMA. We notice that the solution returned
by OA-SVR-AMA is closer to the optimal one. Furthermore,
we can also observe the benefits of tuning Π online. In partic-
ular, note that the Pareto and the adaptive distributions clearly
outperform the uniform distribution.

Figs. 9 and 10 directly compare the best results obtained using
SVR-AMA, IA-SVR-AMA, and OA-SVR-AMA. In particular,
the plots highlight the significant improvements obtained using
the outer-loop acceleration. Furthermore, note that Algorithm 7
requires less full gradient updates and fully exploits the benefits
of the VR scheme in the inner loop. Hence, it can be more
efficient when used for applications with large N , compared to
Algorithm 6.

B. Closed-Loop Analysis

Encouraged by the results obtained in open loop, we tested
Algorithm 7 with adaptive distribution in closed loop, taking
into account the limited computation time available for online
optimization (Ts = 0.04 s). Based on the median of 1001 ex-
periments, the maximum number of inner-loop and outer-loop
iterations allowed within the sampling time of the system are
360 and 50, respectively. Given the limited number of iterations
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Fig. 11. Comparison of the control command obtained using AMA and
OA-SVR-AMA, respectively, in closed loop.

Fig. 12. Comparison of the pitch rate behavior obtained using AMA
and OA-SVR-AMA, respectively, in closed loop.

Fig. 13. Comparison of the costs obtained using AMA and OA-SVR-
AMA, respectively, in closed loop.

available within the sampling time, we empirically used a larger
(compared to the guidelines) step size η. We tested different
initial conditions within the flight envelope. Figs. 11–13 show
the behavior of the algorithm at an initial condition that causes
the control command and the pitch rate to saturate. The behav-
ior of Algorithm 7 is compared with the optimal one and with
AMA (tuned to run in real time, as well). By simply looking at
Figs. 11 and 12, this could lead to wrong conclusions, given that
it seems that the solution obtained using the proposed solver is
better than the optimal one. Fig. 13 clarifies this issue. In partic-
ular, the figure compares the optimal cost with the one obtained
with OA-SVR-AMA and AMA. Fig. 13 is important to judge
and interpret the performance of the different solvers in closed
loop using the MPC cost as impartial metric. Given the limited
number of iterations, the performance of the controller using
Algorithm 7 (solid blue line) is clearly suboptimal, as Fig. 13
shows. Nevertheless, the closed-loop simulations show that the

proposed algorithm, given the limited number of iterations, still
improves with respect to AMA. Furthermore, as Fig. 11 shows,
compared to AMA, the ability of MPC to exploit the full range
of the actuators is preserved.

VIII. CONCLUSION

We presented an asynchronous AMA with VR (SVR-AMA)
scheme and its accelerated versions suitable for MPC appli-
cations. As our numerical example showed, the proposed al-
gorithms, compared to a state-of-the art solver (i.e., AMA),
provide higher accuracy solutions within the same number of
overall iterations. Furthermore, compared to other state-of-the-
art asynchronous dual solvers that only perform random updates
according to a uniform distribution, the proposed algorithms al-
low one to prioritize the update of the variables at the beginning
of the prediction horizon, leading to improved behavior in closed
loop, as our numerical example showed.

We analyzed the possibility of tuning the probability distribu-
tion to improve the performance of the algorithm in closed loop
when the computation time for online optimization is limited.
As part of our future work, we plan to further investigate the ben-
efits that the proposed algorithm (SVR-AMA and its accelerated
versions) can have in a distributed framework. In particular, we
plan to investigate how to use the probability distribution as a
tuning parameter to plan the communications among the agents
in the network.

APPENDIX A
PROOFS OF SECTION IV-A

A. Proof of Theorem IV.1

According to Proposition IV.1, the following holds:

EP (yk )− P (y∗) ≤ 4(1−√γ)k (P (ỹs−1)− P (y∗))

+
4

σF
(1−√γ)kΓ2

k (ỹs−1) (34)

where we used the following relationship: for any a, b ∈ R
2ab = a2 + b2 − (a− b)2 . We are interested in the conver-
gence of the outer loop of the algorithm. Hence, we sum, for
k = 1, . . . , T , the aforementioned inequality

T∑

k=1

[EP (yk)− P (y∗)] ≤
T∑

k=1

[
4(1−√γ)k (P (ỹs−1)− P (y∗))

]

+
4

σF

T∑

k=1

(1−√γ)kΓ2
k (ỹs−1).

Then, the following holds:

T∑

k=1

EP (yk)− TP (y∗) ≤
T∑

k=1

[
4(1−√γ)k

]
[P (ỹs−1)− P (y∗)]

+
4

σF

T∑

k=1

(1−√γ)kΓ2
k (ỹs−1).
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Using
∑

E[·] = E
∑

[·] and dividing by T > 0, the following
holds:

E

(
1
T

T∑

k=1

P (yk )

)

− P (y∗)

≤ 4
T

T∑

k=1

[
(1−√γ)k

]
[P (ỹs−1)− P (y∗)]

+
4

TσF

T∑

k=1

(1−√γ)kΓ2
k (ỹs−1).

Exploiting the convexity of P and the fact that 1−√γ < 1, we
have

EP (ỹs)− P (y∗)

≤ 4
T
√

γ

(
(1−√γ)− (1−√γ)T +1) [P (ỹs−1)− P (y∗)]

+
4

TσF

T∑

k=1

(1−√γ)kΓ2
k (ỹs−1).

The following holds:

EP (ỹs)− P (y∗) ≤ ρIA,I-PGM [P (ỹs−1)− P (y∗)]

+
4

TσF
Γ(ỹs−1).

Applying recursively for s = 1, 2, . . . , s̄

EP (ỹs̄)− P (y∗) ≤ ρs̄
IA,I-PGM [P (ỹ0)− P (y∗)]

+
4

TσF

s̄−1∑

s=0

ρs
IA,I-PGMΓ(ỹs)

which proves the theorem.

APPENDIX B
PROOFS OF SECTION IV-C

A. Proof of Corollary IV.2

The proof follows the same steps of the one of [18,
Corollary 3.5] but takes into account that we are considering
βs instead of βk . In particular, the following holds:

E‖es‖2 = E

∥∥
∥∥∥

1
T

T∑

k=1

(βk −∇F (yk−1))

∥∥
∥∥∥

2

≤ 1
T 2 E

T∑

k=1

‖βk −∇F (yk−1)‖2 ≤ 1
T 2 E

T∑

k=1

‖vk‖2

where vk := ∇Fi k
(yk −1 )−∇Fi k

(ỹ )
πi k

+∇F (ỹ)−∇F (yk−1). Us-

ing the fact that
∑

i E[xi ] = E
∑

i xi and E‖x− Ex‖2 =

E‖x‖2 − ‖Ex‖2 according to [18], the following holds:

E‖es‖2

≤ 1
T 2 E

T∑

k=1

‖vk‖2 =
1

T 2

T∑

k=1

E

∥∥∥∥
∇Fik

(yk−1)−∇Fik
(ỹ)

πik

∥∥∥∥

2

− 1
T 2

T∑

k=1

‖∇F (yk−1)−∇F (ỹ)‖2

≤ 1
T 2

T∑

k=1

N∑

i=1

1
Nπi

‖∇Fi(yk−1)−∇Fi(ỹ)‖2

≤ 1
T 2

T∑

k=1

N∑

i=1

2Li

Nπi
(Pi(yk−1)− Pi(y∗) + Pi(ỹ)− Pi(y∗))

≤ 2LΠ

T 2

T∑

k=1

(P (yk−1)− P (y∗) + P (ỹ)− P (y∗))

≤ 2LΠ

T
(P (ys−1,avg)− P (y∗) + P (ỹ)− P (y∗)) .

B. Proof of Theorem IV.4

In the following, we provide a proof for the convergence of
Algorithm 4.

Given that the inner loop of Algorithm 4 is not affected by
the acceleration, the following result from [18, Theorem III.1]
holds:

EP (ỹs)− P (y∗) ≤ ρ (P (ŷs−1)− P (y∗)) . (35)

Consider for simplicity α := 1−√γ

1+
√

γ . Then, define the following
quantity (according to [20, Sec. 6.4]):

vs :=
(

1− 1√
γ

)
ỹs−1 +

1√
γ

ỹs (36)

and

θ =
√

γ − γ

1− γ
< 1. (37)

Hence, the following holds:

ŷs = (1− θ)ỹs + θvs. (38)

Given that
√

γ < 1, by using the convexity of P and the defini-
tion of vs in (36), the following holds:

EP (ỹs)− P (y∗) ≤ (1−√γ)(P (ỹs−1)− P (y∗))

+
√

γ(EP (vs)− P (y∗)). (39)

At the same time, by using (35) and the definition of ŷs

in (38), the following holds:

EP (ỹs+1)− P (y∗) ≤ ρ(1− θ)(P (ỹs)− P (y∗))

+ ρθ(P (vs)− P (y∗)). (40)
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From (40), the following holds:

EP (ỹs)− P (y∗)

≥ EP (ỹs+1)− P (y∗)− ρθ(EP (vs)− P (y∗))
ρ(1− θ)

. (41)

At the same time, using (39), the following holds:

(ρ(1− θ))(1−√γ)(P (ỹs−1)− P (y∗))

+ (ρ(1− θ))
√

γ(EP (vs)− P (y∗))

≥ ρ(1− θ)(EP (ỹs)− P (y∗))

≥ (EP (ỹs+1)− P (y∗))− ρθ(EP (vs)− P (y∗)).

Then, the following holds:

(ρ(1− θ))(1−√γ)(P (ỹs−1)− P (y∗))

+ ((ρ(1− θ))
√

γ + ρθ)(EP (vs)− P (y∗))

≥ ρ(1− θ)(EP (ỹs)− P (y∗)) + ρθ(EP (vs)− P (y∗))

≥ (EP (ỹs+1)− P (y∗)). (42)

Given the fact that ρθ(EP (vs)− P (y∗)) ≤ ((ρ(1− θ))
√

γ +
ρθ)(EP (vs)− P (y∗)) and, at the same time, (42) holds, the
following must hold for all s > 0 :

(EP (ỹs)− P (y∗)) ≤ (1−√γ)(P (ỹs−1)− P (y∗)). (43)

Hence, if we apply the aforementioned inequality recursively,
the following holds:

EP (ỹs)− P (y∗) ≤ (1−√γ)s(P (ỹ0)− P (y∗)). (44)

APPENDIX C
PROOFS OF SECTION V

A. Proof of Theorem V.1

If the assumptions of the theorem are satisfied, exploiting a
similar argument to the one in [16, Th. 4] for AMA, we can
show that Algorithm 5 is equivalent to apply Algorithm 2 to
Problem (5), that is, the dual of Problem (4). In particular, ac-
cording to the proof of Theorem 4, using the optimality condi-
tions that derive from Steps 2a and 2b, we can show that Steps 2
and 4 are equivalent to computing proxηG (μk − ηβk ), which
is equivalent to the proximal Step 3 of Algorithm 2. The defi-
nition of βk in Step 3 of Algorithm 5 follows the same logic of
Prox-SVRG on the dual. In particular, by defining β̃ = ∇F (μ̃),
we replace the calculation of the full gradient of F (μ) with the
following:

βk = β̃ +
∇Fi(μk−1)−∇Fi(μ̃)

πi
(45a)

= β̃ +
(yk − ỹ)TH

(i)T

y

πi
(45b)

where H
(i)
y indicates the components of Hy associated with

∇Fi(μ). Hence, we can conclude that Algorithm 5 is equivalent
to Algorithm 2 applied to the dual of Problem (4). Then, we
can use Lemmas III.1 and III.2 to derive the upper bound on

η and to satisfy the assumptions of Theorem III.1. Finally, by
using Lemma V.1, we can derive the results of the theorem by
following the proof of Theorem III.1 (applied to the dual).

B. Proof of Corollary V.1

We first prove (28) by using the same logic in the proof of
[18, Corollary 3.5]. In particular, the following holds:

Eβk = E∇F (μ̃) + E
∇Fi(μk−1)

πi
− E
∇Fi(μ̃)

πi

= ∇F (μ̃) +
N∑

i=0

πi∇Fi(μk−1)
πi

−
N∑

i=0

πi∇Fi(μ̃)
πi

= ∇F (μ̃) +
N∑

i=0

∇Fi(μk−1)−
N∑

i=0

∇Fi(μ̃)

= ∇F (μ̃) +∇F (μk−1)−∇F (μ̃)

= ∇F (μk−1).

Then, the proof of (29) follows exactly the proof in [18] with
the only difference that in the last step, we use the definition of
∇F (μ). Hence, the following holds:

E‖βk −∇F (μk−1)‖2

≤ 2
N∑

i=0

1
πi
‖∇Fi(μk−1)−∇Fi(μ∗)‖2

+ 2
N∑

i=0

1
πi
‖∇Fi(μ̃)−∇Fi(μ∗)‖2

⇓ using the definition of∇F (μ)

=
N∑

i=0

2
πi
‖H(i)

y (yk − y∗)‖2 +
N∑

i=0

2
πi
‖H(i)

y (ỹ − y∗)‖2

⇓ using the Cauchy–Schwarz inequality

≤ 2
N∑

i=0

‖H(i)
y ‖2
πi

(‖yk − y∗‖2 + ‖ỹ − y∗‖2)

⇓ using ‖y − y∗‖2 ≤ 2
σF

(P (y)− P (y∗))

≤ 4
N∑

i=0

‖H(i)
y ‖2

σF πi
[P (yk )− P (y∗) + P (ỹ)− P (y∗)]

≤ 4L�
π [P (yk )− P (y∗) + P (ỹ)− P (y∗)]

where L�
Π := maxi(eigmax(H

(i)
y )/(σF πi)).
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