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Abstract

The transition to more sustainable operations is being widely adapted in order to reduce the green
house gas emissions and meet future sustainability requirements. This transition most often utilizes
electrification as a means to reduce emissions and utilize renewable energy sources. This transition
comes with extra burden on container terminal authorities who have to manage their power demands
and transmission and distribution system operators who have to keep up with providing this growing
electricity demand.

This comes with extra costs as distribution system operators have to build and maintain a larger
network and larger power capacities can not always be ensured for consumers such as container terminal
authorities due to grid congestion. To achieve electrification for container terminals these distribution
system operator costs as well as electricity costs and a congesting grid should be taken into account.
To combat this, this thesis will analyze the electrification for a container terminal with a case study
considering these factors.

However, scheduling power demands for container terminals is not trivial as they operate in a very
dynamic and uncertain environment. This stochasticity is caused by uncertainty due to for example
uncertain energy generation or uncertainty in operations, such as arrival time of ships. To ensure a
container terminal has sufficient electric capacity and can manage its power demand for the day-ahead
around this uncertain arrival time, a two-stage stochastic power optimization is modeled.

This optimization takes into account the flexible resources which a container terminal could benefit from,
such as a battery energy storage system and flexible cooling of refrigerated containers. The charging
decisions for the electric yard fleet as well as charging and discharging of battery energy storage system
and cooling of reefers are scheduled for the next day. Power such as shore power and crane power for
berthed ships which are loading or unloading are considered uncertain due to the uncertainty in arrival
and its deviation from the estimated time of arrival will be taken into account.

In this two-stage optimization where the aforementioned uncertain loads are second stage decisions,
while decision such as when to charge batteries or cool refrigerated containers are made beforehand and
therefore belonging to the first stage decisions. This stochastic two-stage optimization with uncertain
ship arrival time is then solved with the progressive hedging algorithm, which decomposes the possible
ship arrival scenarios in to individual solvable problems. These solutions are then pushed towards a
common decision value through a penalty term.

With this model it is found that with the current electric contracted capacity, full electrification of the
port equipment will not be a viable option. The necessary capacity is then optimized considering the
flexible resources and electricity pricing. Dynamic electricity pricing will utilize a higher capacity to
benefit from the lower electricity prices by charging and cooling at these times, despite the cost for a
higher capacity. Despite these higher distribution costs, the total costs for electricity for a dynamic
electricity price contract is significantly lower, minimally 23.65 % lower for the same configuration. A
Time Constraint Transport Right is also analyzed, which could work for container terminals with many
flexible loads, but this does not provide more incentive compared to a regular contracted capacity.

ii



AI Statement

For this Thesis for the course ME54035, I have used Generative AI to:

• Fill in many of my data points into a latex table such as Table A.1, only inserting my own data
points from python into the proper layout for a latex table.

• Troubleshoot latex errors and formatting issues of pictures and tables to help achieve the layout
I want.

In all cases I have reviewed and corrected the work and remain fully responsible for the content of the
report.

iii



Contents

Preface i

Abstract ii

AI Statement iii

Nomenclature vi

1 Introduction 1
1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Layout paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
2.1 Port loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Tethered equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Untethered equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Energy management systems in electrified ports . . . . . . . . . . . . . . . . . . . 13

2.2 The grid in the Netherlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Electricity pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 DSO tariffs and contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Problem formulation 27
3.1 Literature gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Mathematical model: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Decomposition method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Implementation 39
4.1 Information about case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Case study values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Ships and shore power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Reefers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Port equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.4 Battery Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.5 Electricity pricing and weather . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.6 Ship arrivals and uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Results & Discussion 49
5.1 Full electrification currently . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Full electrification ideally sized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Capacity limiting contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Conclusion 66

References 69

A Additional Pictures & Tables 80
A.1 Electricity prices 2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.2 Ship classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.3 Distribution fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.4 Case 2 Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

iv



Contents v

A.5 Case 3 Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B Literature 106

C Journal Paper 147



Nomenclature

Abbreviations
Abbreviation Definition
AGV Automated Guided Vehicle
ATA Actual Time of Arrival
B-AGV Battery Automated Guided Vehicle
BCHE Battery Container Handling Equipment
BES Battery Energy Storage
CHE Container Handling Equipment
CI Cold-Ironing
DSM Demand Side Management
DSO Distribution System Operator
EMS Energy Management System
ESS Energy Storage System
ETA Estimated Time of Arrival
GHG Green House Gasses
MPC Model Predictive Control
PH Progressive Hedging
PHA Progressive Hedging Algorithm
QC Quay Crane
RMG Rail Mounted Gantry crane
RTG Rubber Tired Gantry crane
SOC State of Charge
STS Ship-to-Shore Crane
TCTR Time Constrained Transport Right
TSO Transmission System Operator
VAT Value Added Tax
YC Yard Crane

vi



1
Introduction

The objective of container terminals has always been to maximise container throughput as competitively
as possible. However, there is a shift towards more sustainable operations as ports as an industry account
for 3% of global greenhouse gas (GHG) emissions [72]. In light of these recent changes towards greater
sustainability, port authorities will have to take on a new role to include more energy efficient measures
and better management of their energy [3]. This can lead to energy savings, improve the green image of
the port and provide a competitive advantage. The approach to a more sustainable port has two sides,
the generation side and the consumption side.

In terms of energy generation, port authorities can continue to invest in renewable energy generation for
their own use, such as wind power or solar energy and the possibility of storing excess energy generated
in batteries for later use.

Container terminal can achieve more sustainable operations and reduce greenhouse gas (GHG) emis-
sions by adapting their energy consumption through alternative energy sources, efficiency measures,
and better energy management. This can be applied to port equipment by replacing typical diesel fuel
powered equipment with electric, hydrogen, or other alternative/bio-fuels. It also involves assessing
energy consumption within port operations and minimizing it while still maintaining the high opera-
tional throughput a container terminal requires. Additionally, managing available energy in an efficient
manner, whether through self-generation, grid electricity, or other fuel sources, ensures more efficient
and sustainable power use.

For this transition to more sustainable port operations, electrification is a promising solution [51]. All of
the equipment used in container terminals can be or is electrified, from quay cranes, cold-ironing, gantry
cranes and reefers to battery powered equipment such as automated guided vehicles. The electrification
of cranes and transportation equipment allow for regenerative capabilities for example by lowering
containers or regenerative braking, the power train of electric vehicles also has a higher efficiency when
compared to the diesel ICE [14]. Furthermore, it also offers a universal solution to manage the energy
usage in the port and is also able to use generated renewable energy. Going fully electric however has its
caveats, it can introduce large peaks of electricity demand when equipment is simultaneously drawing
power. Another problem that arises is the downtime of battery equipment due to charging, as this
process still takes significantly longer than simply refueling and will have to be accounted for by either
larger batteries or faster charging speeds.

With many businesses opting for electrification this also places a burden on the grid as electricity
demand is rapidly increasing and grid operators having to keep up with this rising demand. This thesis
proposes scheduling of the flexible loads: reefers, battery energy storage system and charging of battery
powered equipment within a container terminal to assess the required demand for a fully electrified
container terminal with uncertain ship arrival times. It will also compare fixed and dynamic electricity
pricing and distribution system operator fees which are applicable for large electricity consumers in the
Netherlands. Additionally, different distribution system operator contracts which are available in the
Netherlands will be discussed and implemented.

1
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1.1. Problem description
As electrification is one of the main adapters for ports to switch to more sustainable energy usage, partly
due to the increasing implementation of renewable energy and electric alternatives to the original fossil
fueled equipment. This transition does require significant investments for businesses and grid operators
to make this switch. It also proposes new challenges for port authorities to manage their power demand
more accurately, compared to previously diesel based operations. This makes the logistic operation
more complex due to the additional energy-logistic coupling, especially when accounting for uncertainty
in operations or uncertain renewable energy generation.

The electrification is currently happening at such a fast pace that the grid is becoming congested and
demand for larger stations and capacities keep rising. For ports that have little electric infrastructure
this is also a big problem, as requests for expansion can be put on hold, while they do not want to
stay behind in this transition. So optimizing the existing electrical infrastructure and their own power
usage becomes even more important. It is also important to not overestimate the needed capacity as
this would give extra costs as well as take up more space in congested grid. Furthermore, DSOs have
contracts in place to help mitigate and alleviate peak burdens on the grid by adjusting the capacities
on a fixed or dynamic.

While many studies have considered electrification or renewable integration in container terminals, fewer
have accounted for the uncertainty of ship arrivals and its impact on flexible loads. This Thesis will
schedule the charging and discharging of battery energy storage, cooling of reefers and charging of
equipment before the exact arrival time is known. Furthermore, often only the electricity price is being
minimized not taking into account the necessary contracted capacity, as an already existing one is
assumed, and other fees for distribution and transmission towards grid system operators are often not
taken into account. Additionally, these papers use a greater time step for modeling the power demands,
but with a smaller time step berth arrival times and stay times can more accurately be modeled, which
is especially useful for smaller terminals due to their shorter stay times. It also allows 15-minute fees and
day-ahead pricing to be modeled and give a more accurate depiction of the costs. This thesis contributes
to filling these gaps by proposing a two-stage stochastic optimization framework to schedule flexible
loads, such as: reefers, battery energy storage, and charging of mobile equipment under uncertain ship
arrival times. The study also evaluates different electricity pricing schemes and takes into account
distribution system operator (DSO) costs and contracts relevant to Dutch container terminals.

1.2. Research
Main question: How can power scheduling scheduling of flexible loads for container terminal equipment
be optimized to minimize electricity and distribution system operator cost and what are the resulting
operational and economic impacts for an electrified terminal?

Sub questions:
1. What is the literature on power demand and management for container terminal equipment?

To this end the power demand and management of electric tethered and untetherd port equip-
ment are analysed such as cranes, refrigerated containers and battery container handling equip-
ment

2. What are the relevant system operator contracts and costs for electricity consumers such as con-
tainer terminals?

An overview has been made of all the relevant fees that container terminals have to take into
account as well as listing the potential flexible DSO contracts that container terminals could
work with.

3. How can the operations and power demand be modeled, considering all equipment’s energy con-
sumption and ship arrival uncertainty?

Based on the literature and interviews with local container terminals a two-stage optimization
approach is formalized accounting for uncertain arrival times of ships. The model considers
typical container terminal equipment such as cranes reefers and battery container handling
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equipment and their energy demands. A battery energy storage device is added to be used to
provide additional flexibility of power demand.

4. Can full electrification of container terminal be achieved with limited grid capacity and current
working scheme? – Case study

The full electrification of an examined port will be realized on existing electric contracted
capacity and examined whether it would be feasible for such a container terminal to make this
transition without needing any extra contracted capacity.

5. How much capacity would be necessary for a port considering full electrification and different
operational levels, electricity pricing contracts and dso fees

The necessary contracted capacity will be optimized along with the optimized two-stage power
management, to determine the ideal contracted capacity based on electricity costs and DSO
fees.

6. What energy contracts and contracted capacity contracts would be most beneficial for the studied
port and could other contract options offered by DSO work for studied port.

Other relevant capacity contracts found will be examined and compared considering electricity
prices and feasibility of operations

1.3. Layout paper
Starting with background information in chapter 2 on literature for electric load management for ports
and the electric grid in the Netherlands. Then the gap found in the literature and the proposed model
to tackle this problem will be discussed in chapter 3. This model will then be implemented on a case
study and an approach to implement this model will be provided in chapter 4. The results for this
case study will be provided in chapter 5 along with a discussion about these results. Ending with a
conclusion in chapter 6, which gives answers to the proposed research questions.



2
Background

This chapter will provide the background information obtained and used for this thesis. Firstly, back-
ground information about the electric loads of ports and current energy management systems in place to
deal with these electric loads, both for tethered and untethered equipment will be analyzed. Secondly,
the grid in the Netherlands will be discussed and its congested state, resulting from the significant
growth in electricity demand over the last few years. The electricity costs and transmission and distri-
bution costs, along with flexible contracts that are being offered will be discussed.

2.1. Port loads
In this section the literature on electrified port equipment and their energy management will be discussed
for both tethered equipment, i.e. equipment which is directly connected to the grid, and untethered
equipment which are capable of operation without direct electricity supply because of the battery inside
this equipment. Firstly, a short introduction will be given on the literature on what has been investigated
for the individual equipment relating to the management of electricity loads and then how these loads
combine into larger energy management system.

2.1.1. Tethered equipment
This subsection will discuss the container terminal equipment which is directly supplied with electricity
such as Refrigerated containers which have to be cooled; Cranes for the lifting and lowering of containers
and cold-ironing for ships to replace the power of their generators. These types of equipment have direct
impact on power usage as these are connected directly to the grid.

Reefer
Starting with refrigerated containers, also known as reefers, which are use world wide for the trans-
portation of frozen or chilled goods. These containers require a constant power supply to manage the
internal temperature and humidity. They typically operate at a set point temperature and have a lower
and upper threshold for allowed temperatures to ensure the quality of the product.

Peak power consumption of a typical integral refrigerated container is approximately 10kW, while its
average hourly energy consumption is 3-4 kWh [23]. Taking into account the typical maximum reefer
power demand and assuming that a port hosts 1000 reefers operating in freezing mode, the peak power
demand of the reefers could rise up to 10MW, approximately. Moreover, measurements have shown
that under typical weather conditions the internal temperature in a well-insulated reefer increases
approximately by 1°C per 9 hours, when it is switched off (ISO 668, [30], [31]). This makes clear that
reefers with less stringent temperature ranges can act as flexible loads that can easily shift their power
demand in time [28]. Most common method to simulate temperature and power for reefers can also be
found in the container handbook [23] and by Kanellos, Volanis, and Hatziargyriou [51], which specify
the temperature increase due to the difference between the internal temperature of a reefer and the
ambient temperature

4
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T (t + ∆T ) = T (t) + (T (t) − Tamb) ∗ (1 − e
− A∗k∗∆t

m∗Cp ) (2.1)

As can been seen in the equation 2.1, the main influence of the power of the reefers are the set point
cooling temperature, the ambient temperature and the mass and the specific heat of what is cooled
inside the reefers. The sun intensity could also be taken into account as reefers on the edges of reefer
stacks are also effected by this, but for simplicity reasons and to not over complicate this, its often not
taken into account. The difference in power demand according to the outside temperature can be seen
in Figure 2.1 and the effect of solar intensity in Fig. 2.2.

Figure 2.1: Power consumption of ten reefers and
ambient temperature [32]

Figure 2.2: Power consumption reefer and solar
intensity [15]

Reefers can account for a large sum of the ports energy demand, for some ports around 30-35 % [28].
They could also lead to large peaks in the power profile due to simultaneous cooling at maximum cooling
power and should therefore be properly managed to deal with this power allocation.

Cranes
Cranes are essential for port operations as they fulfill one of the main purposes of container terminals,
the loading and unloading of ships. There are many types of cranes used in container terminals such
as Quay cranes (QC), rubber tired gantry cranes (RTG) or yard cranes (YC) and have unique load
patterns, with high peak power during lifting and smaller for gantry/trolley and idle/auxiliary power.
In the literature there are multiple ways of dealing with the power associated to lifting containers, as
can be seen in Figure 2.3. One approach is by changing the behavior in which the QCs operate by
for example avoiding simultaneous lifting with multiple cranes at a time. Results by Geerlings, Heij,
and Duin [34] show that the peak demand (and peak-related costs) can be reduced by 50%, with an
increase in the handling time of containerships of less than half a minute per hour handling time, which
was achieved by reducing the maximum energy demand of all operating STS cranes or by limiting the
maximum number of simultaneously lifting STS cranes.
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Figure 2.3: Power curve STS crane [34]

Another way of dealing with these high peak loads from cranes is to outfit them with some form of
Energy Storage System (ESS). The main energy storage used for these are Battery Energy Storage
(BES), Super Capacitors (SC) and Flywheel Energy Storage (FES). These can be implemented both on
cranes working with a diesel generator or powered directly by the grid. To give an overview of all the
combinations that are made with these energy storage Table 2.1, shows what has been implemented
and the resulting energy saving gains or peak shaving achieved by the adaptation of these ESS.

Table 2.1: Overview of ESS applied in cranes.

Source Equipment,
E-Source

BES SC FES GES Method Energy/fuel
saving

PS

Ovrum and
Bergh [81]

Port crane,
Diesel

GenSet

3 7 7 7 PID control 30% -

Niu et al.
[78]

RTG, Diesel
GenSet

3 7 7 7 SOC control 57% -

Hong-lei,
Wei, and
Jian-Xin

[43]

RTG, Diesel
GenSet

3 7 7 7 SOC control 73.9% -

Kusakaka,
Phiri, and
Numbi [61]

RTG, Diesel
GenSet

3 7 7 7 Deterministic
non-linear

optimization

76.04% (cost) -

Parise and
Honorati

[83]

STS, Grid 7 3 7 7 Logic control 57 % 90 %

Kermani
et al. [55]

STS, Grid 7 3 7 7 PSO - 62 %

Corral-
Vega,

Fernández-
Ramírez,

and García-
Triviño [25]

RTG, Diesel
GenSet

7 3 7 7 DC/SOC
control

21% -

Antonelli
et al. [8]

RTG, Diesel
GenSet

- 3 7 7 SOC control,
internal

algorithm

30-60% -

Zhao,
Schofield,
and Niu

[121]

RTG,
Battery

3 3 7 7 Double
closed-loop PI

control

71.5% -

Continued on next page
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Table 2.1 – continued from previous page
Source Equipment,

E-Source
BES SC FES GES Method Energy/fuel

saving
PS

Bolonne
and

Chandima
[13]

RTG, Diesel
GenSet

3 3 7 7 State machine
controller

27% (to other
hybrid)

-

Chen et al.
[20]

RTG, Diesel
GenSet

3 3 7 7 Game-based 72.8% 88%

Parise et al.
[84]

STS, Grid 7 3 3 7 POT - 85%

Kermani
et al. [52]

STS, Grid 7 3 3 7 PSO - -

Pietrosanti,
Holder-

baum, and
Becerra [87]

RTG, Diesel
or Grid

7 7 3 7 Optimal control 38.47% -

Kermani
et al. [53]

STS, Grid 7 7 3 7 PSO - 82.3 %

Pietrosanti,
Alasali, and
Holderbaum

[86]

ERTG,
Grid

7 7 3 7 Fuzzy logic 32% -

Alasali et al.
[6]

ERTG,
Grid

7 7 7 3 MPC - 28.9%

Alasali,
Haben, and
Holderbaum

[4]

ERTG,
Grid

7 7 7 3 SMPC - 32.8%

Alasali,
Haben, and
Holderbaum

[5]

ERTG,
Grid

7 7 7 3 Genetic
Algorithm

- 28.7%

E-Source: Main Energy Source, BES: Battery energy storage, SC: Supercapacitor, FES: Flywheel
Energy Storage, GES: General Energy Storage (Energy storage not specified, general approach),
PS: Peak Shaving

Because it is difficult to compare the possible energy savings from all of the implemented hybrid systems,
due to the different crane models, different controllers and various sizing of e.g. diesel GenSets before
and after hybrid transformation and ESSs equiped. Vlahopoulos and Bouhouras [110] compares the
solutions for the RTG diesel and ESS hybrids in a case study and determines an average liter diesel
used by the diesel generator per move as the performance indicator.

Papaioannou et al. [82] analysed the energy usage per motor for a RTG and found that during average
operations the following energy distribution holds: hoist energy share was 62 %;+ gantry energy share
31 % and 7 % for trolley, idle and losses. The potential energy recovery ability for hoisting in normal
operations was 84 % to 89 % and for gantry 4 % to 5 %. For a Ship to Shore crane this absorb potential
is up to 90 % [54] with similar characteristics of peak loads from hoisting and lowering as that of the
RTG. It is assumed that the energy share for hoisting with STS crane is larger than that of the RTG
crane, as the horizontal travel distances are shorter and only the trolley moves over the crane, instead
of the total weight of the RTG. From graph in [34] it is assumed that the vertical movement of the
spreader accounts for approximately 75 % of the total energy.

To approximate the energy saving from the potential energy recovery of adding a properly sized ESS
(capable of peak load), equation (2.2) is used considering the Round Trip Efficiency (RTE). Which is
an indicator of how much of the mechanical energy from for example lowering the container and then
storing it into the ESS, which can be used again to power the motors. The RTE includes the converter
efficiency to transmit the electricity to and from the ESS, including the RTE of the ESS itself. For
batteries, SCs and flywheels it is usually transmitted to a DC bus which would require a AC/DC and
DC/DC converter steps, however there also exists AC flywheels.
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Energy saving RTG = 0.62 ∗ 0.85 ∗ RTE + 0.31 ∗ 0.04 ∗ RTE (2.2)

Energy saving STS = 0.75 ∗ 0.90 ∗ RTE (2.3)

Figure 2.4: Diesel generator
efficiency curve [73]

Efficiency Value

ηDC/AC 0.97-0.98

ηAC/AC 0.95-0.98

ηAC/DC 0.95

ηDC/DC 0.98

ηBES 0.60-0.90

ηSC 0.90-0.95

ηF ES 0.85-0.95

Table 2.2: Power converter
efficiency [74] and ESS efficiency

[76], [18], [75]

Furthermore the extra efficiency from changing the diesel GenSet can also be considered, see Figure
2.1.1, as an addition to equation (2.2) and (2.3). When the total investment cost for the properly sized
ESS and the RTE is known, a total cost of ownership can be made to see the benefits of using such a
hybrid system.

Crane type Li-Ion BES SC FES

Energy saving RTG,
regen

∼ 41 % ∼ 46 % ∼ 44 %

Energy saving STS, regen ∼ 52 % ∼ 58 % ∼ 55 %

Table 2.3: Energy saving from regeneration

To summarize the cranes can adjust their power demands by changing their operational pattern such
as avoiding simultaneous loading or limiting the amount of lifting. Or by adapting a form of Energy
Storage System which can provide additional power for the lifting of containers, reducing their peaks
and storing the energy again during lowering of the containers.

Shore power
Ships arriving at container terminals will also make use of shore power, also known as cold-ironing
(CI). This CI is used to supply the ships energy system when its berthed, so the ships generators can
be switched off which can reduce the environmental impacts by avoiding the emissions these auxiliary
engines create during berth. A typical connection with shore power for ships from the quay side can be
seen in Figure 2.5.
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Figure 2.5: Typical connection of shore power [88]

Zero-emission requirements for passenger ships and container ships at berth are also included. The
Regulation mandates the use of on-shore power supply (OPS) or alternative zero-emission technologies,
from 1 January 2030 in EU ports covered by the Alternative Fuels Infrastructure Regulation (AFIR),
and, from 1 January 2035 in all EU ports equipped with OPS facilities [77]. These steps to more
sustainable ports as well as the requirements listed by AFIR has set for growth of CI utilization.

The power demand for shore power supply depends on the size and type of ship. For instance cruise
ships require more power for the necessities on board, while for example container ships need power to
cool the reefers, an overview can be seen in Figure 2.6 of the average power demand some ship types
would require. All these ships would need to turn off their auxiliary engines at berth and the power
should be substituted by shore power.

Figure 2.6: Overview of shore power demands per ship from EMSA [source]

2.1.2. Untethered equipment
In the container transportation on the yard side, besides the gantry cranes mentioned in the previous
subchapter, there are many pieces of equipment which can be used for horizontal transport of containers.
Some of these options are automated guided vehicles (AGV), straddle carriers, reach stackers, empty
container handlers, yard trucks and forklifts. These pieces of equipment can not be directly charged
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through a direct grid connection, as they move freely through the yard area. This means that for
electrification these pieces of equipment will have to switch to a battery alternative, which will be referred
to as Battery Container Handling Equipment (BCHE). Converting to a battery powered alternative,
however comes with the downside that they will have to recharge, which increases there downtime.
Battery size and charging speeds are also limited, which poses a challenge for heavy industrial vehicles
which have large power demands. For example the straddle carrier and the reach stacker both have the
possibility to lift full containers, which increases their power demands significantly.

In the literature the problem of charging and logistic coupling is being tackled for the AGVs. For the
horizontal transport between the quayside and yard side in large container terminals the Automated
Guided Vehicle (AGV) is mostly used. Similar to the batteries and ESSs discussed in the previous
section the AGV when shifted to a Battery-AGV (B-AGV) could also benefit from regenerative energy
by reclaiming the kinetic energy through braking ([39]). However, as these batteries are not connected
to a power supply during operations, the B-AGVs must also be able to operate for long periods of time
and/or have short recharge times so that the B-AGV can be operational again. For a long time, this was
not feasible or economically viable due to insufficient battery performance. Bian et al. [11] noted that
the new upcoming battery technology could enable the use of electric AGVs in automated container
terminals in the future.

The potential for the B-AGV was assesed and the economic viability was optimized. It was found that
electric mobility is economically beneficial in container terminals because the charging and maintenance
costs of a B-AGV fleet are significantly lower than their diesel counterpart, which can compensate for
the higher investment costs of charging infrastructure and spare batteries ([93]). Furthermore it was
found that using their controlled charging strategy which used a BSS (battery swapping station) the
economic efficiency could be increased even further, as can be seen in Figure 2.7.

With this possibility to transition to B-AGVs, many papers have researched this topic to come up
with viable charging strategies and scheduling methods within container terminals to minimize B-AGV
downtime. In these papers, two main strategies for implementing and charging the B-AGVs emerge:
Charging stations for fixed batteries and battery swapping stations for removable batteries.

Figure 2.7: Economic viability AGV ([93])

To determine the optimal configuration of the charging stations and B-AGVs, Ma, Zhou, and Stephen
[67] made a discrete event simulation model to compare the performance of a decentralized or centalized
scheme and a conservative or progressive charging policy. From the results it was determined that
the decentralized layout, which are spread out charging locations, and a progressive charging policy
performed best.

Due to the dynamically changing environment in which the B-AGVs have to operate, which has a
negative on the performance of the B-AGV scheduling problem, Gao et al. [33] proposed a digital-twin
based decision support to improve the scheduling efficiency in these complex scenarios. With recent
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technology allowing for faster charging, Li et al. [64] investigated CS with fast charging capabilities
while aiming to reduce the total charging cost and penalty costs such as tardiness.

To improve the efficiency of the ACT, Sun et al. [103] implement a multi-resource collaborative schedul-
ing of quay crane, B-AGV and yard crane to realize the integration of the scheduling plan along with
the charging effects for the B-AGV. It then aims to achieve energy saving of the terminal by quantifying
the used energy.

Zhou et al. [122] address challenges due to limited charging station capacity and tight vehicle schedules,
using a Multiagent Q-Learning approach to optimize recharging decisions. Which showed to perform
better than rule-based heuristics and benefits from the consideration of both assignment and scheduling
at charging stations.

The disparity in energy consumption between B-AGVs in unloaded and loaded states is adressed by
Zhou et al. [123] and allows for more resilient B-AGV scheduling. A mixed-integer programming model
is developed with the objective of minimizing energy consumption costs while satisfying AGV battery
constraints and is solved with A Large Neighbourhood Search based algorithm. Similarly Song et al.
[100] considers more detail of the B-AGV operation with power under loaded and empty conditions as
well as the non linearity of battery charging.

Che, Wang, and Zhou [19] approached the B-AGV charging problem as the recharging-considered
vehicle scheduling problem (R-VSP) for B-AGVs and aims to minimize the makespan. Limited number
of charging stations and tight schedules were considered with scheduling based on the actor-critic
multi-agent deep reinforcement learning framework, outperforming distributed-agent deep reinforcement
learning and several benchmark heuristics.

Battery swapping:
Battery swapping involves replacing the entire battery from the particular equipment and replacing it
with a charged battery inside a BSS. This approach has the benefit that it decouples the energy-logistic
relation more. As mentioned previously, Schmidt et al. [93] implemented the BSS to asses the total
cost of ownership for implementing an ACT and B-AGVs with this approach. It also implements a
controlled charging strategy with the goal of minimizing the charging costs by charging the batteries in
the BSS at moments with low electricity prices, which proved to be a more cost efficient method.

Xiang and Liu [113] implemented both the CS and Battery Swapping Station approach for battery
recovery of the AGV into a Semi-Open Queuing Network (SOQN). The different strategies were inves-
tigated by comparing annual cost and results show that the BSS performs better than the CS strategy
unless the price of the spare battery is very high.

A speed control strategy was developed by Yang et al. [116] that considers the traffic environment
of the terminal with the aim of energy conservation and emission reduction and the BSS’s limited
handling capacity is modeled to avoid congestion. Yang, Hu, and Jin [115] also considers the limited
handling capacity at the BSS. Zhou et al. [124] expanded on the integration of a BSS with the aim for
co-optimization of both operation and energy for B-AGV. Minimizing both the makespan of B-AGVs
and the maintenance cost of the implemented energy system, using a multi-objective mathematical,
which reduced the terminal operation cost significantly.

Due to the heavy logistic environment of ACT, a two-stage stochastic programming model for B-AGV
task allocation and battery swapping joint scheduling problem with random tasks in an uncertain
environment with double-threshold battery constraint for B-AGVs is investigated by [63].

An integrated scheduling model is created by Li et al. [66] that takes into account different battery
degradation for task assignment and battery swap time for B-AGVs, with the aim of minimizing task
completion time.

Xiao et al. [114] introduces battery swapping and opportunity charging modes into the B-AGV system
and proposes a new B-AGV scheduling problem considering the hybrid mode. This reduced the average
number of battery swapping times by 43.48%, and the total costby 7.2%.
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Charging constraints:
The papers mentioned in the sections over the charging stations and battery swapping stations imple-
ment different constraints for the B-AGVs and the decision whether they should charge or not. To make
an overview of the implemented battery constraints and when the B-AGVs are scheduled for charging
the papers’ strategies will be categorized.

• Charged if depleted: The most common method is to check whether the battery is depleted or
has sufficient energy left. So the first category will be charging when the B-AGV can no longer
perform another task, so the B-AGV is scheduled to recharge.

• Charged lower threshold reached: The second common option is setting a lower threshold for the
SOC or used energy, instead of driving till the battery is depleted, avoiding a high DOD.

• Dual threshold charging: Similarly a dual threshold charging strategy works with an opportunity
interval from a higher SOC to a mandatory charging SOC for the B-AGV to be scheduled. This is
for example implemented by Gao et al. [33] where the opportunity interval starts when the SOC
is below the high threshold of 80% SOC and ends at 20%, after which the mandatory interval
starts and charging will be enforced.

• Triple threshold charging: Ma, Zhou, and Stephen [67] proposed a triple interval charging strategy.
If the SOC drops below 50% the opportunity interval (checks if CS is idle) starts for the nearest
CS, when dropped below 30% the oppertunity interval extends to the nearest 3 CS, followed by
mandatory charging when SOC reaches 15%.

• Charging is allowed at all times, but is mandatory when the battery reaches a lower SOC threshold

To give an overview of the papers a Table 2.4 is made with the Author and year; the battery recovery
method; their optimization goal; Constraints as listed above and additional battery constraints; the
method which was used for the implemented model.

Table 2.4: Overview of battery charging strategies for AGVs

Source Battery
recovery

Objective function Charging constraints Method

Schmidt
et al.
[93]

BSS Total cost of ownership of B-AGV with
BSS

Charged lower threshold reached.
Batteries charged at hours with lowest

electricity prices, if possible

Simulation

Xiang
and Liu

[113]

BSS,
CS

Optimize the number of AGVs R to
match the capacity of QC and YC.

Optimal layout design of the yard with
the objective of minimizing system

throughput time. Optimize task
assignment strategy to minimize system

throughput time. Which charging
strategy is more effective from an

economic perspective, with a throughput
time constraint.

Charged if depleted. Battery checked
after completing task, traveling distance

and time taking into account.

Semi-open
queueing

network model

Ma,
Zhou,
and

Stephen
[67]

CS Minimum number of B-AGVs required
for an acceptable waiting time when

visiting a CS. Best configuration of CS,
how they are distributed. Best

recharging policy for charging B-AGVs.
Minimum ratio of B-AGVs to Diesel

AGVs that achieves similar performance

Triple threshold charging strategy, with
upper threshold of 50 % SOC, below

this the opportunity charging starts for
nearest CS, below 30 % for the nearest 3
CS and mandatory charging below 15 %

Discrete event
simulation

Yang
et al.
[116]

BSS Speed control strategy that considers
traffic and energy conservation/emission
reduction. Minimize the CO2 emission

cost and penalty costs caused by
operational delays

Constraints to ensure B-AGV has
sufficient power to travel to

battery-swapping station or taks

Mixed integer
programming,

genetic
algorithm

Li et al.
[63]

BSS Minimize the total cost of the B-AGV
no-load cost, waiting time cost, task
waiting time cost, and tardiness cost

A double-threshold constraint for
battery swapping decision-making is

adopted

Simulation-
based ant

colony
optimization

Yang,
Hu, and

Jin
[115]

BSS Minimize the no-load energy
consumption of the B-AGVs

Charging when lower threshold is
reached

Mixed integer
programming,

set partitioning

Continued on next page
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Table 2.4 – continued from previous page
Source Battery

recovery
Objective function Charging constraints Method

Li et al.
[64]

CS Minimize the charging cost of B-AGVs
and penalty cost related to makespan for
finishing a set of assigned container jobs

Charging when lower threshold is
reached. During charging SOC is
bounded between maximum and

minimum thresholds to avoid
overcharging and DOD.

Mixed integer
programming, A
decomposition-

iteration
algorithm

Zhou
et al.
[124]

BSS Minimize operation and maintenance
cost of the implemented energy system

and the makespan of B-AGV.

Dual threshold charging. If remaining
energy of an B-AGV is less than upper
threshold then checks if swapping can

be performed before next earliest
operation. Else continues normal

operation until reaching lower threshold
when swapping must be performed

Multi-objective
mathematical

model,
(DMWOA)

Li et al.
[66]

BSS Minimize task completion time SOC must remain above safety/lower
threshold, based on state of battery

degradation

Hybrid genetic
algorithm,

neighborhood
search

Xiao
et al.
[114]

BSS Minimize the sum of the energy
consumption cost and delay cost of the

B-AGVs

Opportunity charging with a lower
threshold, battery must have sufficient
energy left after task to drive to BSS

Mathematical
model, adaptive

large-
neighborhood

search
Gao
et al.
[33]

CS Minimize the completion time of tasks Charging when lower threshold is
reached when it is depleted. Check If

remaining capacity is sufficient for
completing current task.

Digital twin

Che,
Wang,

and
Zhou
[19]

CS Minimize the makespan of the transport
jobs

Allowed to charge even at high SOC,
not allowed to drop below a threshold,

batteries are fully charged after charging

Multi-Agent
DRL

Zhou
et al.
[123]

CS Minimize travel distance of B-AGVs
within the planning horizon

Charging when lower threshold is
reached. Ensure that B-AGVs travel to
the charging area for recharging after

completing a task once SOC is below a
lower threshold

Mathematical
model, Large
neighborhood

search

Song
et al.
[100]

CS Largest AGV spent the shortest time
completing all the tasks

Dual charging strategy. Nonlinear
characteristics of lithium battery

charging is considered. Partial charging
for the B-AGVs is allowed

Metaheuristic
algorithm

Zhou
et al.
[122]

CS Minimize the total job delay in the
planning period

Operates between minimum and
maximum SOC, not allowed to drop
below minimum SOC. When charged

the battery is assumed full

Markov decision
process model,

Multiagent
Q-learning

2.1.3. Energy management systems in electrified ports
Ports with electrified infrastructure can manage their loads through energy management systems where
Batteries/ESSs powering the equipment, reefers or large stand alone batteries/ESSs offer opportunities
in the incentivized management of electricity demand, also known as Demard Response (DR). This can
be through the optimization or change of the port’s own electrical load, but ports could also play a
role for the grid through the energy market. Demand response is the overarching topic that consists
of multiple strategies for balancing the power demands on the grid. To achieve this balance there are
three different categories for implementing DR [7]:

• DR Incentive Based Program, classical: Direct Load Control programs, see Figure 2.8, and Inter-
ruptible/Curtailable Load programs.

• DR Incentive Based Program, market based: Demand Bidding, Emergency DR Programs, Capac-
ity Market, and the Ancillary services market

• DR Price Based Programs: Different pricing schemes



2.1. Port loads 14

Figure 2.8: Peak shaving methods ([47])

To achieve the balancing of the different loads within a container terminal and deal with their dynamic
and stochastic nature many models, simulations and optimizations, are created to recreate the demand.
One of the first steps to making a complete model of the container terminal is knowing all the loads and
characteristic profiles of the different equipment used and modeling the operations, these can be based
off of calculations or measured with smart meters [97], [46]. With this approach the energy demand
can be forecasted and different energy management strategies can be implemented by modeling these
demands around the operations.

According to Lee Lam et al. [62] their one of the first in the literature to investigate the costs and
benefits of employing energy management system in ports. Unloading and loading process of a ship
is simulated along with the respective equipments power usage and solar energy. It is found that the
implementation of an energy management system is financially beneficial for terminal operators, giving
port authorities and researchers incentive to investigate this area further.

To forecast the short-term energy load and their profiles in a CT, Grundmeier et al. [36] used a simulation
based approach of the CT including BSS, which has the benefit of decoupling energy use and logistic
operation. The benefit of using the BSS in this manner is that it allows for load shifting and peak
clipping, see Figure 2.8. A software architecture for demand-side energy integration CTs, leveraging the
flexibility provided by the BSS was also developed by Ihle et al. [46]. The simulation of logistics which
forecasts the exchange times of batteries and logistic operation, followed by energy demand optimization
which determines the optimal battery charging strategy from the forecasted loads. These flexible loads
can reduce battery charging energy costs by up to 10%, using day-ahead EPEX-Spot prices and minute
reserve auction data. Schmidt et al. [92] and Schmidt, Eisel, and Kolbe [91] examines both the technical
feasibility and the commercial viability of several demand-side integration (DSI) programs to utilize the
charging flexibility of electric transport vehicles in a logistic facility (BESIC project Altenwerder) to
optimize load profiles, control charging based on variable prices or possibly provide minute reserve.

By introducing batteries inside equipment and utilizing ESSs and the flexible cooling of reefers, ports
are now able to manage their energy profile even with their operational constraints. This is especially
due to the fact that there is a growing amount of predictable load shifting potential due to manipulating
the battery charging and discharging cycle [36]. Reefers also have the capability of flexible loads, their
frozen goods can for example be cooled ahead if the electricity price is low and delay cooling when
the price is high, or when there is limited electricity capacity during heavy operations. This could be
counteracted by cooling during off peak hours so that less cooling will have to be done during hours
with higher demand.

A larger BES can also be placed in systems storing the renewable energy, which allows for better uti-
lization of renewable energy. These systems, also known as Hybrid Renewable Energy System (HRES),
smart-grids or micro-grids for ports usually consist of renewables, shore power and a BESS. There are
many more variations possible some including container terminal operations [48] others incorporating
Combined Cooling Heat and power [70], or the use of hydrogen [24]. The optimal management, de-
sign and sizing of such energy systems can be very challenging due to the uncertainties of renewable
resources and operations, system constraints, and multiple design objectives. To this end many studies
have investigated the optimal design or management of these systems for a wide variety of ports. Table
2.5 and Table 2.6 aim to give an overview of the literature of what aspects of the port has been in-
vestigated, their energy providers and consumers, what has been implemented and which method they
used to achieve this. The most commonly modeled aspect for all ports is shore power, as no matter
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what ship type, ferries, cruises, tankers or container ships are all aiming to diminish their emissions by
turning off their auxiliary engines while berthed and are instead supplied with power from cold-ironing,
as mentioned in previous section 2.1.1. Starting with an overview of the studies focusing on CI imple-
mentation with a BES and possibly renewables in seaports. These studies often focus on the sizing of
renewables and BES to be optimally used for the seaport. They will also account for ship arrival times
and the CI power demands for the respective ships. BES could also play a role here by providing the
peak power necessary for these ships, to reduce the burden on the grid and/or to avoid going over the
capacity of the ports electric substation.

Table 2.5: Overview of load management studies in ports

Source Energy Suppliers Energy consumers What is implemented Method
Wang et al.

[111]
Grid, Wind,

ESS
CI, ESS To overcome the dynamic and uncertain nature

of seaports and often lack of real energy data, a
two-stage optimal framework is proposed. The

first stage determines the optimal installed
capacity of the sub systems and the second stage

models the stochastic characteristics of wind
energy and port energy demands to minimize

operational costs

Discrete Event
Simulation

Hein et al. [41] Distributed
generators, PV,

Wind, ESS

CI, ESS Addresses the uncertainty in the renewable
energy sources by modeling the day-ahead

operation as a two-stage robust optimization
model. The results are used as input parameters
for the hour-ahead generation scheduling in the

following day.

Two-stage
optimization,
column and
constraint
generation
algorithm

Sifakis,
Konidakis, and
Tsoutsos [96]

Grid, PV,
Wind, ESS

Port load, ESS Cycle charging and PS strategies for three
different ESSs have been studied, as well as two
billing tariffs with PS providing better results

and improved energy management and the
vandaium redox flow battery being the preferred

choice of ESS

Optimization
analysis

Bakar et al. [9] Grid, PV,
Wind, ESS

CI, ESS Design of a hybrid system for a seaport
microgrid with optimally sized components. The

selected case study is the Port of Aalborg,
Denmark.

Hybrid
Optimization

Model for
Electric

Renewables
(HOMER)

Conte et al. [24] Grid, PV,
Hydrogen, ESS

CI, Electrolyzer,
ESS

A model predictive controller is designed to
define the best economic strategy to be followed
during operations. The control algorithm takes

into account the uncertainties of renewable
energy generation using stochastic optimization.

Components were sized using HOMER

HOMER, Model
predictive

control

Caprara et al.
[17]

Grid, ESS CI, ESS Providing CI for cruise ships will require
significant power draw from the grid. To avoid
installing an extra substation, the possibility of
installing a high power and high energy ESS is

researched.

Energy
Management
Simulation
Software

Colarossi and
Principi [21]

Grid, PV, ESS CI, ESS The optimization model proposed aims to
provide the best power plant, consisting of PV
and ESS, size to support a cold ironing system.

The model is based on a life cycle cost approach

Optimization

Darwish [26] Grid, PV, ESS CI, ESS Modular power electronic converter, with an
isolated cuk converter as the sub module, for

power flow of PV, ESS and shore power

Mathematical
analyses,

Simulation,
Prototype

Vakili and Ölçer
[107]

Grid Ferries, CI, ESS The Philippines is aiming to significantly reduce
its carbon footprint by 75% by 2030 as part of
its Nationally Determined Contribution. One

step in this process is making its domestic
ferries emit zero emissions. To this end, the use

of electrified and battery powered vessels is
being explored with a life cycle analysis

Life Cycle
Analysis

Tao et al. [104] Grid,
Renewables

AES, CI, ESS This paper discusses flexible scheduling of All
Electric Ship (AES), their ESS and CI to satisfy
both the transportation demands and mitigate

the burden of charging AES on the grid

Temporal
Spatial

Dynamics

Continued on next page
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Table 2.5 – Continued from previous page
Source Energy Suppliers Energy consumers What is implemented Method

Buonomano
et al. [16]

Grid, PV,
CCHP, Biogas

production,
Ocean energy,

ESS

CI, CCHP, ESS ESS and renewable sources can be designed to
be connected to national electricity and natural
gas grids and can also include alternative fuels,
thermal energy networks and different biomass
fluxes. Energy demands of nearby towns and

port infrastructure, as well as CI power supply
are also included in the dynamic assessments

Constrained
optimization

Vakili and Ölçer
[108]

Diesel
generator, PV,

Wind, ESS

ESS In this study, the potential use of solar and wind
energy and diesel generators in different stand
alone and grid connected systems for a port in

the Philippines were assessed

HOMER

Abu Bakar et al.
[2]

Grid, PV, ESS Ferries, CI, ESS Two-stage energy management for CI of short
berthing ferries with BES and solar energy.

Where the first stage sizes the PV, BES and CI
installation and the second stage optimizes the

operations

Two-stage
optimization

Binot et al. [12] Grid, PV, ESS CI, ESS Proposes a methodology for optimizing both
sizing of PV and storage as well as use of an

energy management for a seaport microgrid to
minimize costs and CO2 emissions

Bi-objective,
Mixed integer

Linear
programming

Besides modeling the renewables and shore power demand, ports or container terminals can model more
of their electric loads to further optimize or forecast their demands. In Figure 2.9 a typical layout for a
smart electrical grid is displayed for a container terminal, making use of BES and renewables to power
an electrified terminal. Modeling these can be very complex due to the coupling between energy and
logistics, size of the terminals and the uncertainties of ports such as uncertain arrival time of ships and
uncertain renewable energy supply which can not be perfectly forecasted. With this extra coupling
between more modeled resources different studies investigate this electrified port with different aims.

Figure 2.9: A smart grid incorporating renewables, energy storage, reefers, container terminal equipment and
shore power [48]

To get better oversight of energy management in more container terminal oriented energy systems
another Table is provided. Similar to the layout in Table 2.5, Table 2.6 depicts what the paper’s energy
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generators and consumers were, what they investigated and which methods they used. Battery energy
storage in these container terminals can not only be used for optimizing the renewable energy usage, but
could also function as peak power control and can also be used for energy arbitrage which is for example
done by Iris and Lam [48]. These flexible loads could also be effective under different pricing strategies
which could reduce the electricity bill. Again it can be seen that most studies include the CI demand
for ships replacing their auxiliary engine usage, however these are mostly container ships which have
different demands as depicted in Figure 2.6. Also a wide variety of energy resources and renewables
are implemented. However these studies include more loads which are typically present in container
terminals such as the cooling of reefers and crane power loads from hoisting containers. These loads
account for a large part of the container terminal’s total energy consumption and are also responsible
for peak power present in ports. Therefore modeling these demands is significant to forecasting energy
demands for container terminals. Modeling and managing energy distribution like this also gives port
authorities insight how much they can diminish in terms of costs and emissions, but could also relieve
the burden on the grid by some extent.

It is also important to account for uncertainties of renewable energy generation and ship arrivals as
these influence the energy management of the port drastically. Uncertain ship arrival will not only
account for when CI is provided but the cranes assigned to empty or load the ship will also be affected
and this way it propagates through the energy-logistic management. The uncertainty for renewable
energy generation affect the power available throughout the day even if the BES is able to partially
offset this. Therefore these subjects are also addressed in some of these studies.

As previously mentioned it can also be seen that reefers and BES provide flexibility in the container
terminals power supply, while CI and QC operations are more or less tied to ship arrival. Unless the
berth allocation problem is solved to account both for the uncertainty of arrival and energy-logistic
scheduling, which would allow the power demands to be shifted by adjusting the arrival schedule of
ships. However if studies would be solving for all these uncertainties and dispatching decisions the
complexity of these models would become very large. As well as the fact that every port is different
and researchers are interested in different aspects of the port’s energy-logistic operation, it results in a
wide variety of studies each contributing their own part for an energy aware port.

Table 2.6: Overview of load management studies in container terminals

Source Energy Suppliers Energy consumers What is implemented Method
Lee Lam et al.

[62]
Grid, PV QC, AGV,

RMG
According to paper the first in the literature to
investigate the costs and benefits of employing

energy management system in ports. Unloading
and loading process of a ship is simulated along
with the respective equipments power usage and

solar energy

Discrete Event
Simulation

Manolis et al.
[69]

Grid, PV, Wind Reefers Distributed demand response application using
Multi-Agent System of reefers for improving the
voltage in distribution network. Co simulation
framework, power system simulator and agent

environment

Multi agent
system

Kanellos [50] Grid, Wind Reefer, PEV A hierarchical multi-agent system is
implemented for the demand response of flexible

loads. The port management agent is at the
head of operations connected with a wind park

agent and followed by a cluster of reefer and
PEV agents. Each of these clusters subsequently

have agents for each reefer and PEV

Multi-Agent
System

Li et al. [65] Wind, ESS QC, YC, CI,
ESS

Optimizes installation capacity and operation
strategy for a container terminal with offshore
wind energy using a hybrid renewable energy

system

Simulation-
based

optimization
algorithm

Kanellos,
Volanis, and

Hatziargyriou
[51]

Grid Reefer, PEVs,
CI

To combat the large number of decision
variables and constraints in large ports, this
paper proposes a power management method

based on multi-agent systems to maximize the
flexibility of power demand. A hierarchical

structure is implemented, where each equipment
is an individual agent with a cluster agent for

the group of equipment and a central port agent

Multi-Agent
System

Continued on next page
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Table 2.6 – Continued from previous page
Source Energy Suppliers Energy consumers What is implemented Method

Gennitsaris and
Kanellos [35]

Grid, Wind Reefer, CI A hierarchical multi-agent system is
implemented for the real-time control of flexible
port loads. This real-time distributed demand
response controls the electric demands with a

fuzzy-logic-based system for reefers

Multi-Agent
System, Fuzzy

Logic

Iris and Lam
[48]

Grid, PV, ESS QC, YC, CI,
Reefer, ESS

Port operations and energy management with
ESS and renewables with their uncertainties,

using a mixed integer linear programming model.
Bidirectional energy trading is used between

energy sources and ESS allowing for the
possibility of energy arbitrage, furthermore

different pricing schemes are examined: single
price, peak/off-peak price and market price

Mixed Integer
Linear

Programming

Shi et al. [94] Grid, Hydrogen
storage,
Thermal

storage, ESS,
Wind, PV

QC, YC, CI,
Reefer

This paper proposes an optimal operation
strategy for the integrated energy-logistics
system to minimize the operation cost of a

green-port considering a multitude of energy
generation options

Mixed Integer
Linear

Programming

Mao et al. [70] Grid, PV, Wind,
Thermal energy

storage, ESS

CI, Thermal
energy storage,

ESS

An optimization for the multi-energy
coordination and berth allocation with the

objective of reducing the energy and electricity
costs, the dispatch and mooring decision of

reefer vessels and cruise ships are established

Mixed Integer
Linear

Programming

Fang et al. [30] Grid, Thermal
Network

QC, YC, CI,
Reefers

An optimization is formulated for the seaport
power scheduling, which integrates various

logistic demand response methods for cranes’
operating speed and ESS as well as reefer areas
into an unbalanced multi-phase power network

model coupled with a thermal network

Non-Linear,
Non-Convex
Optimization

Yu, Voß, and
Song [119]

Grid QC, CI This paper proposes a multi-objective model to
optimize the problem of berth allocation and

quay crane assignment. The proposed
optimization model integrates the decisions on
each vessel’s berthing position, berthing start

and departure time. In this time the duration of
using CI and duration of using auxiliary engines
is also optimized to minimize the costs of using

CI, departure delay and emissions

Multi-objective
optimization,

Partial
optimization
Metaheuristic
(POPMUSIC)

Yin et al. [118] Grid, PV, Wind,
Fuel cell, ESS

CI, QC,
Electrolyzer,

ESS

An energy management and scheduling method
for the day-ahead planning with intraday

adjustments is proposed to reduce the impact of
random power during the day using a scenario

tree prediction model and stochastic model
predictive control

Stochastic
Model

Predictive
Control

Yin et al. [117] Grid, PV, Wind,
Hydrogen, ESS

CI, QC, RTG,
Container truck,

BES

A day-ahead energy logistic scheduling model
considering carbon emission costs is

implemented to improve the economic
performance and reduce emissions of port

operations. A nested bi-layer energy
management and capacity allocation method is

made to coordinate the imbalance between
hydrogen and electricity supply and demand

Model pursuing
sampling
algorithm

Sarantakos et al.
[90]

Grid, ESS Cranes, CI,
Cargo handling

equipment,
Reefer, ESS

A robust micro grid for multipurpose ports
considering uncertainty of arrival time is

developed. An optimal power flow method is
made for multiple port logistic assets such as

cargo handling equipment, reefers, and
renewable energy sources. The aim is to
minimize the total operation costs while

ensuring that grid limits are not violated due to
the uncertainty of ship arrivals

Two-stage
adaptive robust

optimization

Shi et al. [95] Grid, PV, Wind,
Hydrogen,
Thermal

Storage, ESS

Reefer,ESS Establishes an optimal strategy for flexible
operations of ESSs and reefers with a multistage
stochastic optimization model to minimize costs.
It takes into account uncertainties of renewables,

load demands, electricity prices and ambient
temperatures. The first stage is for the day
ahead and power is adjusted intraday with

BESS, reefers and thermal storage

Multi Stage
Stochastic

Optimization

Continued on next page
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Table 2.6 – Continued from previous page
Source Energy Suppliers Energy consumers What is implemented Method

Song et al. [99] Grid, BSS CI, BSS To deal with the uncertainty of renewable
energy generation, vessel arrival times and lack

of real-time adjustability, a two-layer deep
reinforcement learning based energy

management strategy is proposed, considering
berth allocation, energy management and BSS

scheduling

Deep
Reinforcement

Learning

Energy markets
Beside the possibility for load management of the Port, the BES/ESS and reefers can also be used for
actively participating in energy markets, such as ancillary services for Transmission System Operators
(TSO). Flexibility of port resources can not only be used for its own energy demand but could also
alleviate grid burdens with these types of services. With all these flexibility options from the ESS,
Battery equipment, Reefers, SMGs and other energy resources there are many opportunities to partake
in these services

Virtual power plant (VPP) is a network that manages decentralized energy resources (DER) which
include power generation and storage on the consumer side, its implementation could lower emissions
and the electricity bill. Kolenc et al. [59] explore the use of a VPP to operate DERs over public internet
infrastructure. The study focuses on utilizing the battery stacks of B-AGVs within a container terminal
to provide ancillary services to the TSO

One of these ancillary services is frequency containment reserve (FCR), which is a mechanism used by
TSOs to keep the electricity grid stable. The main objective of the FCR is to restore grid frequency
back to its nominal value following disturbances, which can for example happen when there is a sudden
increase in demand or when a provider stops generating energy, which can for example be caused by
cloudier weather than expected. When such a disturbance occurs, the FCR comes into action and the
reserve power is immediately injected or withdrawn from the grid to balance the mismatch between
supply and demand to stabilize the frequency. In the case of ports, BES and battery-charging processes
can be initiated earlier or accelerated to withdraw more from the grid, also known as negative reserve,
or can be postponed or injected, decelerated or discharged to offer positive reserve.

Holly et al. [42] discuss how the potential of a fleet of battery vehicles can be used to provide FCR in a
logistical context, such as a port. For this an artificial neural networks is used to predict the availability
of B-AGVs day-ahead, the marketable flexibility is computed with a heuristic approach and checked if
plausible in schedule with a simulation. The B-AGVs are continuously supervised and controlled with
a multi-agent system and the electric fleet’s flexibility is integrated into a larger pool of DER within a
VPP.

Kanellos [50] proposes a decentralized demand response method for a port comprising of flexible loads
and power generation from a wind park, using a multi-agent system. This proposed method also proved
to be efficient in providing ancillary services. Later Kanellos, Volanis, and Hatziargyriou [51] expanded
the research further with the previous multi-agent system for reefer and plug in electric vehicles, with
the aspect of cold-ironing instead of a wind park. Gennitsaris and Kanellos [35] then combines the
previous two without PEVs for a more complete agent based model of a container terminals flexible
load which could be used.

The FCR with batteries has the issue that it could lead to faster degradation of vehicles’ batteries due
to the additional charging cycles. How much this affects the battery life and what degradation costs are
incurred depends on its implementation and is evaluated by Harnischmacher et al. [40]. For their setup
Cycle-Count Models best represent battery degradation, showing an increase in battery degradation of
just 1.36% through the use for FCR. Improving the business case for its implementation.
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2.2. The grid in the Netherlands
This chapter will discuss the grid in the Netherlands from its structure depicting the role of transmis-
sion and distribution system operators. The current difficulties with the electric infrastructure in the
Netherlands. Electricity prices and Stedin DSO fees and flexible contracts.

2.2.1. Structure
The Dutch electricity grid is an interconnected system that transports electricity from power plants,
renewable energy sources, and foreign imports to end users. It consists of different voltage levels that
together form one national electric network, ensuring that households, businesse, and industries can
access electricity reliably. At the highest voltage level, the transmission grid (220–380 kV) is managed
by the Treansmission System Operator (TSO) TenneT. Tennet connects the large power plants and
stations and neighboruing countries their TSO’s on this high voltage grid. One level below this, the
distribution grids (110–150 kV down to 0.4 kV) are managed by Distribution System Operators (DSO)
such as Stedin, Liander and Enexis as seen in Figure 2.11. These grid system operators are tasked
with keeping the grid in balance by matching supply and demand, maintaining and expanding the
existing infrastructure and prevent and solve disturbances or outages. The Dutch electricity grid is
designed with high reliability in mind. To reduce the impact of failures parts of the network, especially
at the high-voltage level, are built with extra redundancy measures by installing double parallel cables,
reducing and limiting outages [10].

The ongoing energy transition has significant consequences for the Dutch electricity grid. The increase
of renewable energy resources comes with extra uncertainty as predictions for its generation would have
to made according to weather forecasts. Furthermore, with the increase in electric demand from electric
mobility, electric heating and many businesses transitioning towards full electrification. The grid has to
account for all these peak demands. Currently in the Netherlands the increasing demand for additional
transmission capacity and distribution is outpacing the speed at which grid operators can expand the
power grid. This leads to grid congestion and businesses and consumers are restricted in the expanding
of their power usage until the particular grid area is expanded. Figure 2.10 depicts the state of grid
congestion within the Netherlands, with red signifying that their is a shortage of transport capacity and
orange noting the area is under investigation. Due to restricted pace the transport capacity is able to
expand, it is important to optimize the own power usage as much as possible to still continue the path
of electrification.

Figure 2.10: Net congestion map of the
Netherlands

Figure 2.11: DSOs Netherlands

These challenges require both short-term and long-term solutions. In the short-term, TSOs and DSOs
are optimizing the use of existing networks, while in the long term, large-scale investments for the
high- and medium-voltage grids are required. However, expansions can take a long time to finalize,
thereby the need for optimizing within the current limits of this grid. For the short-term contracts and



2.2. The grid in the Netherlands 21

management of power demands ensure for greater utilization of the grid and reduction in peak demands
for stations.

This relates back to container terminals who are currently for a large part adopting electrification as a
means to more sustainable operations. A container terminal typically has power demands for cranes,
reefers, charging of battery equipment and also shore power or cold-ironing when the ship is berthed.
These container terminals can be connected to a DSO at medium voltage level or directly on the high
voltage level at the TSO, depending on the power needs for the specific port.

Figure 2.12: Port connected to grid

Large power consumers have multiple options of contracts for their electricity needs. There are options
for the purchased electricity, for example fixed pricing or dynamic pricing. Also contracts with the DSO
/TSO which give incentive to change your power use to avoid peaks/congestion.

2.2.2. Electricity pricing
The most common form of energy or electricity pricing is a contract with a constant rate per kWh for
the entire year. This rate is set in a contract which lasts for around 1-3 years. This has the benefit
that customers and businesses have certainty of what their costs will be and do not have to worry
about adjusting their power usage behavior through out the day or during energy crisis’s with suddenly
greater energy prices.

Another form of electricity pricing contracts is dynamic pricing. These prices fluctuate hourly during
the day based on supply and demand and are determined on the day ahead market. These prices
fluctuate not only hourly but also seasonal effects have large influence, as can be seen in Figure 2.13.
In this Figure the average hourly electricity price can be seen per month for the year 2024, with green
associating to relatively low electricity prices and red to relatively high prices.
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Figure 2.13: Varying hourly prices for 2024 (buy cost without taxes and fees), data from ENTSOE

The seasonal effect seen in Figure 2.13 is for example caused by less solar energy during the winter
and heating for households and businesses. There is also significant difference between electricity prices
during weekdays and during the weekend which can be viewed in the appendix in Figure A.1 and A.2.
Efforts are also being made to decrease the sampling interval from one hour intervals to 15 minute
intervals to improve the coordination of electricity throughout Europe. The participating countries can
be seen in Figure 2.14 and Figure 2.15. This would mean that instead of having hourly electricity prices,
these prices would fluctuate in 15 minute intervals based on supply and demand.

Figure 2.14: Single Intraday Coupling (SIDC) Figure 2.15: Single Day-ahead Coupling (SDAC)

The price consumers pay for electricity with an electricity contract is not just the buy price of electricity
at each hour or fixed rate but consists also of other fees and taxes, based on the type of contract and
how much energy is consumed. In Table 2.7 the energy tax per kWh can be seen based on the customers
total yearly consumption. This

Table 2.7: Electricity tariffs in the Netherlands per consumption range [source belastingsdienst]

Jaar 0–2.900 kWh 2.901–10.000 kWh 10.001–50.000 kWh 50.001–10 mln kWh >10 mln kWh particulier >10 mln kWh zakelijk

2024 € 0,10880 € 0,10880 € 0,09037 € 0,03943 € 0,00254 € 0,00188

2025 € 0,10154 € 0,10154 € 0,06937 € 0,03868 € 0,00388 € 0,00321
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Furthermore the VAT rate of 21 % is applicable on top of all the associated costs of electricity. To
demonstrate the actual price the customers or businesses have to pay the following steps can be used
to calculate the total amount per kWh.

1. Buying price of electricity on the day-ahead market.
2. Energy tax per kWh, divided into brackets of the total yearly consumption in kWh.
3. Small free from the energy provider, covering for storage/balancing costs, when buying is done

through an energy provider who has to account for fluctuations in energy demand.
4. Tax rate (BTW) of 21% over the sum of the aforementioned costs.

2.2.3. DSO tariffs and contracts
Large electricity consumers with a connection greater than 3x80A have to pay transmission and distri-
bution fees on top of the electricity price. These fees consist of annual fixed charges for infrastructure,
as well as variable charges for transmission services. Additionally, different contract options available
to large electricity consumers from DSO Stedin will be discussed. This will give more insight to what
the total cost will be related to electricity consumption for these larger electricity consumers.

Tariffs Stedin
Starting with the tariffs that all large energy consumers have to pay. As well as paying for electricity,
large energy consumers also have to pay grid operators for the infrastructure that provides them with
electricity. These fees consist of the following parts:

1. A one time payment for installing the connection.
2. A periodic fee for the connection to the grid that is installed.
3. Variable fees based on the transported power.

Each of these fees can be retrieved from their respective tables which are listed in this section and are
Tariffs from Stedin for the year 2025 [105]. An overview of the costs needed for installing the required
connection that would be necessary for a Business can be seen in Figure 2.16. This cost is based on the
size of the connection required and the required cable length to the needed station per meter. Once
this installation is in place these fees are no longer relevant, unlike the fees to maintain this connection.

Figure 2.16: One time installation fee for required grid connection (excluding BTW)

The periodic fee for the grid connection is similar to the one time installation fee mentioned before.
Figure 2.17 shows the yearly or monthly fee for using the installed connection divided into similar but
fewer categories. These fees are associated with the maintenance and upkeep cost for this connection.
Lastly there are fees for the transportation services for the installed capacity, consisting of fixed and
variable costs.
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Figure 2.17: Periodic fee for grid connection (excluding BTW)

As shown in Figure 2.18, the fees based on transported power are divided into multiple components.
There is a fixed monthly rate for the contracted capacity category and size (kW), multiplied by the kW
size. Another fee is charged for the maximum power used in a 15-minute interval during the month,
multiplied by the power used in kW. There are also fees for power used from Monday to Friday, 07:00–
23:00, for the ’Dubbel tarief normaal’ period, and for the night hours, weekends, and holidays, for
the ’Dubbel tarief laag’ period. These fees apply to contracted capacities above 51 kW and are not
applicable to those above 1500 kW. Lastly, there is a fee for exceeding the power factor to ensure that
the reactive power stays within limits.

Figure 2.18: Transport fee of power (excluding BTW)

For long term use these variable transport fees are the most relevant when assumed the contracted
capacity remains in the same capacity category, as they give the monthly costs for the contracted
capacity and the maximum power used in a 15 minute interval based on the transport category, besides
the fixed fees based on transportation type. For determining optimal contracted capacity these fees
should be taken into account. However, these values are monthly fees so they will be normalized to
daily values, to be used in the model later.

Flex contracts at Stedin
Beside the standard transport fee costs there are also flex contracts options available at Stedin which
would give incentive for parties to adjust their power by increasing or decreasing their demand or supply
[79]. These contracts are different in that they are not continuously fixed power contracts but alter their
capacity throughout time or are combined into groups. These contracts aim to reduce grid congestion
and resolve disturbance and maintenance, which allows for better utilization of the grid. An overview
of the current flexible electricity contracts at Stedin can be seen in Figure 2.19.
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Figure 2.19: Flex contract options at Stedin [79]

Energy hub
Starting from the left of Figure 2.19, we see the fixed contracts. In this context, ’fixed’ means that the
contract remains the same each day, week, month or year. The Energyhub is a group contract in which
neighboring companies or businesses can match their power profiles based on demand and supply, for
example to flatten each other’s peaks. A requirement for this is that they must be part of the same
local grid infrastructure, by for example being on the same medium-voltage circuit. They will have
a combined total transport capacity, which will be monitored, while the individual contracted power
capacities will not. This allows more flexibility for individuals within this hub and their electricity
usage. There is also a cost benefit to this approach, as electricity or other energy sources can be bought
collectively, and combined investments can be made. They can for example invest in renewables and
energy storage, which can be used within this group. Another benefit of this approach is that Stedin
can offer this possibility despite congestion, which can also help to reduce it. This contract option
allows for better utilization of the local grid and creates room for businesses and sustainability goals.

Static Capacity Limit
Another fixed contract format is a static capacity limit. This involves reducing a company’s contracted
capacity at set times during the day. For example, this could be a fixed reduction in contracted capacity
during peak hours, such as a 40% reduction from 16:00 to 21:00. A company with flexible power could
adjust to help alleviate these peak hours, for which it would be reimbursed.

This could also enable growth outside local peak hours, with an increase in contracted capacity, except
during the aforementioned peak hours. However, as more businesses want this opportunity, the elec-
tricity available outside peak hours is shrinking. Peak demand differs by region and station, so each
business would need to be assessed to determine how much its contracted capacity could be reduced
on a fixed basis and at what times. This contract type is suitable for battery, cooling & heating, and
charging infrastructure, which can adjust their power. For example, freezers could cool more before the
reduction in power, and cool less during it. These characteristics would also make it suitable for the
power flexibility of ports. However, it is not possible for the container terminal itself to determine how
much and when it should decrease power. The container terminal can only give bounds at what times
and the size of the reduction, after which it will be determined wether this is suitable for the station
which its connected to. So in this sense, the container terminal cannot opt for such a contract at its
own accord, but this should be discussed with the DSO at a regional and station level.

Dynamic Capacity contracts
Similar to the static capacity limit, the dynamic capacity limit reduces capacity at a given block of time.
However, unlike the static capacity limit contract, the dynamic capacity limit does not adhere to fixed,
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predictable time slots. Instead, the dynamic capacity limit time slots will only be known until 08:00
for the following day. This contract helps to avoid peaks for the day-ahead; enables the system to react
to possible maintenance at the same station level and can also be implemented in real time to react to
and solve disturbances. Day-ahead options for this dynamic contract type could also be suitable for
container terminals, provided their power demands are optimized for the day-ahead and flexible port
resources can accommodate this reduced contracted capacity. However, managing power in real time
would be complex in the energy-logistic context of ports and is usually not implemented for these types
of businesses. As with the static capacity limit, the dynamic capacity limit cannot be determined by
the container terminal itself, an agreement could only be made with mutual benefit between Stedin and
the container terminal.

Other contracted capacity contracts, Alternative transport rights
There are also two additional contract capacities that are not listed in Figure 2.19 and are referred to
as alternative transport rights. These two are the Time Constrained Transport Right (TCTR) and the
Fully Variable Transport Right (FVTR). The Time Constrained Transport Right is being introduced
in the Netherlands and enables businesses to increase their contracted capacity, typically between 00:00
and 06:00. This can supplement the existing contracted capacity. This is especially useful for parties
who need to charge their equipment in the morning but do not require extra capacity throughout the
day. Container terminals that do not operate on a 24/7 basis could also use this time slot in the morning
to charge their battery container handling equipment. However, not every region allows this type of
contract due to congestion and is not always available at the same time slots mentioned previously.
The amount of additional power is determined by the container terminal, but, as previously mentioned,
depends on whether this contract will be made available in this region.

A Fully Variable Transport Right (FVTR) is a type of contract where electricity is only provided when
it is available. This creates a large amount of uncertainty and would only be useful for a very small
number of businesses. It is usually only offered when there is no more room available on the grid, but
the DSO has to provide an option to provide power. This would then have to be supplemented with a
different energy source. This would only be a temporary solution, and other contract types should be
considered. Therefore, this would not be a suitable contract option for the electrification of a container
terminal.

Contracted capacity limitation
What is stopping businesses from spending just a little more to claim more capacity than they require?
In the Netherlands, this is called GOTORK (”Gebruik op Tijd of Raak Het Kwijt”), and it is also used
in different countries under the name ”Use It Or Lose It” (UIOLI). These rules state that, if parties are
not using most of their capacity, grid operators are permitted to reduce the contracted capacity [71].
This allows for other parties to use this unused capacity and ensures that parties look more critically
at how much contracted capacity they would need.

It also gives grid operators more certainty regarding evaluating expected growth, enabling them to
take smaller safety margins and freeing up more space on the grid for all consumers. However, UIOLI
cannot be invoked suddenly and requires a strong basis. It only applies to contracts for medium, high
or extra-high voltage connections. It can also only be applied in regions with congestion and substantial
unnecessary contracted capacity. First, there will be discussions about the reason for the high contracted
capacity. If no proper reason is provided for the current or near-future power demand, the contracted
capacity will be limited.

This ruling means that businesses will not be able to claim unnecessarily high contracted capacities
and will have to investigate how much capacity they really need. This is partly enforced by fees based
on contracted capacity as shown in section 2.2.3, which could increase in the future due to growth in
electricity infrastructure.



3
Problem formulation

This chapter will highlight the key differences between the implemented model and models used in
literature. The mathematical model will then be formalized with an explanation for all the parameters
and constraints. Afterwards will be discussed how to solve the formalized two-stage optimization, by
utilizing the progressive hedging decomposition method. The first stage decisions and second stage
decisions will be specified and explained how the progressive hedging algorithm will find a solution to
this problem. Finally, all the assumptions and limitations of the model will be listed which are made.

3.1. Literature gap
To highlight the key differences between the work in this thesis and literature mentioned in chapter 2
about port energy management, Table 3.1 is made. It depicts what is currently lacking or missing in
the literature and how this thesis aims to bridge this gap.

27
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What is missing/lacking in literature This thesis

A significant amount of papers study the energy
and logistics coupling for large/automated ports,
with little attention going to smaller terminals

In this thesis the model can also be applied for
the energy-logistic planning of smaller terminals,
with shorter berthing times, for which the time

step is appropriately sized

Most papers assume an existing electric
infrastructure from the grid with an already

properly sized contracted power capacity

The optimal sizing of the electric contracted
capacity considering different weather, electricity

pricing and operational loads

Many papers use a timestep of an hour or half
an hour for the logistic and energy planning.

This only allows for example the arrival of ships
to be rounded to the nearest hour and only

allows for hourly electricity prices. Furthermore
it also does not account for the future possibility
of 15-minute electricity pricing of day-ahead and

intraday electricity costs

This Thesis uses a 15 minute interval in the
optimization model, which allows for shorter stay
times which are more relevant for smaller ports.

And also the opportunity of modeling the
electricity costs on a 15 minute bases as well as
the DSO costs which are based on 15 minute

averages

Most papers only consider fixed, time of use or
real time pricing options for their optimization.
Not accounting for fees from DSO such as fees
for maximum power used, monthly contracted
capacity costs etc. Also all studies consider a
continuous fixed contracted capacpity without

considering contract options where the capacity
is limited during certain time blocks

This thesis also considers the fees from DSO and
capacity constraint contracts. It considers fees

for maximum power used, fees for the contracted
capacity, penalty for exceeding the contracted

capacity, flat energy tax fees, costs for unbalance
and VAT. Also discusses additonial contracted

capacity options offered by DSO in the
Netherlands.

Most papers assume more real-time knowledge
for scheduling of power resources or only have

few decision beforehand, for example Sarantakos
et al. [90] only considers reefer cooling ahead of

uncertain arrival

This thesis uses two-stage optimization for the
power scheduling using progressive hedging.
BCHE, BES and reefer power scheduled are

decided before ship arrival to give a more robust
approach to power management

Table 3.1: Literature Gaps and Thesis Contributions

3.2. Mathematical model:
To achieve the goals of this thesis the mathematical model formulation will be provided. In the math-
ematical model the parameters will be denoted with a small letter and the decision variables will be
denoted by a capital letter.

Table 3.2: Name, Description, and Variables

Indices Parameters Variables

Sets and indices

I Set of BCHE types at the port i ∈ I

J Set of Reefer clusters at the port j ∈ J

V Set of vessels arriving at the port v ∈ V

T Set of time periods in the day t ∈ T

S Set of possible scenarios for ship arrivals s ∈ S

Parameters

dt Size of timestep [h]
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Table 3.2 – continued from previous page: Sets, Parameters and variables

tmax Total number of time steps in the model [int]

socmin, socmax Minimum and maximum SOC [%]

wlim
i Maximum work rate per BCHE type i [TEU/h]

pbche,ch Maximum charging speed for BCHE [kW]

jbche
i Average power usage of BCHE i per job [kWh]

bbche
i Battery size of BCHE i [kWh]

ηbche Charging efficiency BCHE i [%]

cs Number of available charging stations [int]

m Number of available employees [int]

bBES Capacity of Battery Energy Storage [kWh]

pbes,max Max charge/discharge power of Battery Energy Storage [kW]

ηBES Efficiency of BES [%]

plim Power limit from the station [kW]

nreefer
j Number of reefers per cluster [int]

T des
j Desired temperature of reefer j [◦C]

T tolerance
j Temperature tolerance of reefer j [◦C]

wloss
j , surj , cpj , mj Thermal parameters for reefer j

T amb
t Ambient temperature at time t [◦C]

T initial
j Initial temperature for reefers [◦C]

preefer,max Maximum cooling power of reefer [kW]

ept Electricity price at time t [€/kWh]

ec Monthly cost of contracted electricity capacity of the DSO [€/kW]

em Monthly cost of peak electricity used in a 15 minute interval [€/kW]

eo Penalty cost for going over contracted electric capacaity [€/kW]

cr Maximum container handling per crane per time period [Teu]

q Total number of cranes available [int]

zi Number of battery equipment per type [int]

av,s Arrival time of vessel v for scenario s [t]

kt Truck arrivals per time step t [int]

lv Total containers to handle for vessel v [Teu]

pcrane Maximum power consumption per crane per time unit [kW]

pshore
v Shore power usage when vessel v is berthed [kW]

P con Positive contracted power capacity [kW]

P undercon Negative contracted power capacity [kW]

Variables

Xi,t Amount of BCHE type i charging at time t [int]
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Table 3.2 – continued from previous page: Sets, Parameters and variables

Yi,t Amount of BCHE type i working at time t [int]

SOCbche
i,t,s SOC of BCHE type i at time t in scenario s [%]

SOCinit,bche
i Initial SOC of BCHE type i [%]

Wi,t,s Working rate of BCHE type i at time step t in scenario s [TEU/h]

P charge
i,t Charging speed of BCHE type i at time step t [kW]

P reefer
j,t,s Power used by reefer j at time t [kW]

P bes,ch
t Charging power for BES [kW]

P bes,dch
t Discharging power for BES [kW]

SOCbes
t SOC of BES at time t [%]

SOCinit,bes Initial BES capacity [%]

T reefer
j,t Temperature of reefer cluster j at time t [◦C]

P total
t,s Total power used at time t in scenario s [kW]

P max
s Maximum power used in a 15 minute interval during the day

in scenario s
[kW]

Dv,s Departure time of vessel v in scenario s [int]

Hv,t,s Containers handled for vessel v at time t in scenario s [Teu]

Cv,t,s Cranes assigned to vessel v at time t in scenarios s [int]

Bv,t,s Whether vessel v is berthed at time t in scenario s [0,1]

P crane
t,s Total crane power usage at time t in scenario s [kW]

P shore
t,s Total shore power usage at time t in scenario s [kW]

Objective function
The objective minimizes the electricity costs and the fees from the DSO, which are a monthly fee for
the contracted capacity and the maximum average power used measured in a 15 minute interval. There
is also a penalty for exceeding the contracted capacity.

min πs

∑
s∈S

(
∑
t∈T

(P total
t,s · ept · dt) + (P over

s + P under
s ) · eo + P max

s · em + P con · ec) (3.1)

Global power constraints
The global power constraint of the port considers the power of cooling the reefers; power of charging the
battery energy storage; the discharged power from the battery energy storage; the power of charging the
batteries of the battery electric container handling equipment; The shore power of berthed ships and
the cranes working on these berthed ships. The electric contracted capacity is enforced by penalizing
the power over and under their respective capacities. This is done so the contracted power can also
be optimized as well as operating as a more feasible constraint, because stringent constraints might be
violated with the chosen decomposition method by a tiny margin.
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P total
t,s =

∑
j∈J

P reefer
j,t + P bes,ch

t + P bes,dch
t +

∑
i∈I

P charge
i,t + P shore

t,s + P crane
t,s , ∀t ∈ T, s ∈ S (3.2)

P total
t,s ≤ P max

s , ∀t ∈ T, s ∈ S (3.3)
P total

t,s − P con ≤ P over
s , ∀t ∈ T, s ∈ S (3.4)

P under
s ≤ P undercon − P total

t,s , ∀t ∈ T, s ∈ S (3.5)

The limits for the power usage of these are described in constraint 3.6 for reefer cooling power; 3.7 for
BCHE charging power; 3.8 and 3.9 for charging and discharging of BES respectively.

0 ≤ P reefer
j,t,s ≤ preefer,max, ∀j ∈ J, t ∈ T s ∈ S (3.6)

0 ≤ P charge
i,t ≤ pcharge,max, ∀i ∈ I, t ∈ T (3.7)

0 ≤ P bes,ch
t ≤ pbes,max, ∀t ∈ T (3.8)

−pbes,max ≤ P bes,dch
t ≤ 0, ∀t ∈ T (3.9)

(3.10)

Constraints of Ships and cranes
For the ship arrivals and the cranes loading or unloading the ship the following constraints are created.
The ships are planned according to a typical working rate at the terminal to determine the length of
stay at the port. Ships however can deviate from their estimated time of arrival due to delays or they
could be ahead of schedule. Furthermore ports typically have multiple cranes on the quay which could
work simultaneously on one ship or could spread over multiple ships.

Hv,t,s ≤ Cv,t,s · cr, ∀v ∈ V, t ∈ T, s ∈ S (3.11)
Cv,t,s ≤ q · Bv,t,s, ∀v ∈ V, t ∈ T, s ∈ S (3.12)∑

t∈T

Bv,t,s = Dv,s − av,s, ∀v ∈ V, s ∈ S (3.13)

Bv,t,s · (t + 1) ≤ Dv,s, ∀v ∈ V, t ∈ T, s ∈ S (3.14)
t · Bv,t,s + (1 − Bv,t,s) · tmax ≥ av,s, ∀v ∈ V, t ∈ T, s ∈ S (3.15)

Dv,s ≤ av,s + lv
cr

, ∀v ∈ V, s ∈ S (3.16)∑
t∈T

Hv,t,s = lv, ∀v ∈ V, s ∈ S (3.17)∑
v∈V

Cv,t,s ≤ q, ∀t ∈ T, s ∈ S (3.18)

P crane
t,s =

∑
v∈V

(
Hv,t,s

cr
· pcrane

)
, ∀t ∈ T, s ∈ S (3.19)

P shore
t,s =

∑
v∈V

pshore
v · Bv,t,s, ∀t ∈ T, s ∈ S (3.20)

Constraint 3.11 specifies the handling rate for a ship must be smaller or equal to the assigned cranes
and their maximum working rate. Constraints 3.13, 3.14, 3.15 specify that the ship is berthed during its
arrival up untill its departure, and can not be berthed before its arrival or after its departure. Constraint
3.16 sets an upper limit on the departure time with the maximum allowed stay time, which is based on
the handling rate used for scheduling purposes. Constraint 3.17 denotes that the amount of containers
handled by the cranes for each ship must be equal to the amount of containers to be loaded and/or
unloaded from each ship. Constraint 3.18 sets the limit for the sum of the assigned crane for each ship
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to not be larger than the total amount of cranes available. Constraint 3.19 specifies the power used
by each crane by dividing it by its max work rate and multiplying by its power when working at its
maximum rate. Constraint 3.20 sets the total shore power to be equal to shore power of each ship
multiplied by whether they are berthed or not at every time step.

Constraints of battery handling equipment
To model the State Of Charge (SOC) of the batteries equations 3.21 and 3.22 are composed, which
take into account at every time step whether they are charging or performing jobs at a certain rate and
the resulting gain or loss in SOC. This SOC must stay between the minimum and maximum threshold
according to 3.23 to prolong battery life. Furthermore it is assumed that the SOC of the BCHEs start
with some capacity, this capacity needs to be the same as which it started with, as can be seen in
constraint 3.24.

SOCbche
i,0 = SOCinit,bche

i +
P charge

i,0 · dt · ηbche

nbche · bbche
· 100 − Wi,0,s · jbche

i · dt

nbche · bbche
i

· 100, ∀i ∈ I, t = 0 (3.21)

SOCbche
i,t = SOCbche

i,t−1 +
P charge

i,t · dt · ηbche

nbche · bbche
i

· 100 − Wi,t,s · jbche
i · dt

nbche · bbche
i

· 100, ∀i ∈ I, t > 0 (3.22)

SOCmin ≤ SOCbche
t,s ≤ SOCmax, ∀i ∈ I, t ∈ T (3.23)

SOCbche
i,|T |−1 = SOCinit,bche

i , ∀i ∈ I (3.24)

Constraint 3.25 sets the maximum arrival rate of jobs must never be larger than the combined work
rate of the BCHEs at every time step. This constraint can be redefined more specifically to specify
which BCHE type does what, but for ports with only the same equipment type this constraint holds.
Constraint 3.30 ensures that the BCHE can not simultaneously charge and perform jobs at the same
time with the integer decision variables. Constraints 3.26 and 3.27 set the limits for the continuous
decision variables, by multiplying the integer variables with the maximum charge/work rate. The total
amount of BCHEs that can charge simultaneously is limited by the amount of charging stations that
are available at that time step, denoted by constraint 3.28. And the amount that can work at the same
time is also limited for non-automated ports by constraint 3.29.

kt +
∑
v∈V

Hv,t,s −
∑
i∈I

Wi,t,s = 0, ∀t ∈ T, s ∈ S (3.25)

Wi,t,s ≤ Yi,t,s · wlim
i , ∀t ∈ T, s ∈ S (3.26)

P charge
i,t ≤ Xi,t · pbche,ch, ∀i ∈ I, t ∈ T (3.27)∑

i∈I

Xi,t ≤ cs, ∀t ∈ T (3.28)∑
i∈I

Yi,t ≤ m, ∀t ∈ T (3.29)

Xi,t + Yi,t,s ≤ zi ∀i ∈ I (3.30)
(3.31)

Reefer constraints
The Reefers need to maintain a set temperature and are allowed minor fluctuation, but product health
is crucial. Constraint 3.32 sets the relation of the internal temperature of the reefer to the loss with the
outside temperature and the cooling power. Constraint 3.33 sets the bounds for the allowed temperature
fluctuation of the content inside the refrigerated container. Furthermore it is assumed that the starting
temperature and end temperature must be at the desired temperature, denoted in constraint 3.34.
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T reefer
j,t = T reefer

j,t−1 +
(

T amb
t − T reefer

j,t−1

)(
1 − e

−
wloss

j
·dt·surj

mj ·cpj

)
−

P reefer
j,t · dt

mj · cpj · nreefer
j

, ∀j ∈ J, t > 0

(3.32)

T des
j − T tolerance

j ≤ T reefer
j,t ≤ T des

j + T tolerance
j , ∀j ∈ J, t ∈ T (3.33)

T reefer
j,0 = T reefer

j,|T |−1 = T des
j , ∀j ∈ J (3.34)

Battery Energy Storage constraints
Similar to the constraints for the batteries of the battery handling equipment, the battery energy
storage system has constraints describing the SOC transition in equation 3.35 and 3.36. Charging and
discharging the battery has some efficiency loss accounted for both in the charging power increasing the
SOC less and discharging decreasing the SOC more than the discharging power. The battery energy
storage also starts with some initial stored capacity which needs to be the same at the end, according
to constraint 3.37.

SOCbes
0 = SOCinit,bes + ηbes · P bes,ch

0 · dt

bBES
+ P bes,dch

0 · dt

ηbes · bBES
, t = 0 (3.35)

SOCbes
t = SOCbes

t−1 + ηbes · P bes,ch
t · dt

bBES
+ P bes,dch

t · dt

ηbes · bBES
, t > 0 (3.36)

SOCbes
|T |−1 = SOCinit,bes (3.37)

First and second stage variables
Similar to real life decision making, not every decision can be made real-time. For example it is not
certain when exactly the ship will arrive. To account for this uncertainty it is preferred to make decisions
that would hold up for all possible scenarios that could come along. The decisions that can be made for
the next day can be: when to charge the container handling equipment; when to charge or discharge
the battery; when to cool the reefers. To give a better overview of the chosen first and second stage
variables that have been chosen Table 3.3 is made. The second stage variables can also be interpreted
by the index s under the variables, denoting a changing variable for every scenario.
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Decision variable First stage Second stage

Xi,t, Decision whether to charge at t 3* 7

SOCbche
0 , Battery state of charge of bche at t 3 7

SOCbche
t,s , Battery state of charge of bche at t 7 3

SOCinit,bche
i , Initial Battery charge of bche 3 7

Wi,t, Working rate of bche at t 7 3

P charge
t , Charging speed of BCHEs at t 3 7

P reefer
j,t , Cooling power of reefer cluster j at t 3 7

P bes,ch
t , Charging speed of BES at t 3 7

P bes,dch
t , Discharging speed of BES at t 3 7

SOCbes
t , State of charge BES at t 3* 7

SOCinit,bes, Initial state of charge BES at t 3 7

T reefer
j,t , Temperature of reefer cluster j at time t 3* 7

P total
t , Total power used at t in scenario s 7 3

P max
s , Max power used in the day in scenario s 7 3

Dv,s, Departure time of vessel v in scenario s 7 3

Hv,t,s, Containers handled from ship v at time t in scenario s 7 3

Cv,t,s, Cranes assigned for ship v at time t in scenario s 7 3

Bv,t,s, Whether ship v is berthed at quay at time t in scenario s 7 3

P crane
t,s , Power used by cranes at time t in scenario s 7 3

P shore
t,s , Shore power used by ships at time t in scenario s 7 3

Table 3.3: First stage and Second stage variables

Variables denoted with an asterisk are in reality first stage variables as they are fully defined by other
first stage variables, however they are not penalized. For example the temperature of reefers is fully
defined by the power allocated to these reefers. Furthermore, if uncertainty in weather prediction were
to be added it would also not make sense to set the reefer temperature as a first stage decision.

3.2.1. Decomposition method
Even with relatively few scenarios, solving the extensive form of such an optimization problem is not
trivial [89], therefore a decomposition algorithm will be utilized to obtain a solution which will split
the extensive form into smaller subproblems by scenario which can be solved significantly faster. Each
scenario used will have equal probability of occurring and the expected value will be minimized, as
opposed to risk averse or robust calculations of the second stage cost. The first-stage objective cost is
known while the second stage cost is an expected value. The reason why this is called a risk-neutral
approach is because costs below and above are treated equally, unlike risk averse which minimizes the
edge/critical cases and robust which minimizes the worst-case cost, as can be seen in Figure 3.1. There
are multiple decomposition methods that can be used to solve the extensive form of the optimization
problem. Four common decomposition methods being [89]:

• Benders Decomposition: Solves the first-stage problem by iteratively refining the second-stage
cost until an optimal first-stage solution is obtained. Splits the problem into a main problem
(first stage) and a subproblem (second stage). The main problem is solved step by step, while
information from the subproblem is added through cuts until an optimal solution is reached.
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• Stochastic Dual Dynamic Programming (SDDP): Is used for solving linear multi-stage problems,
which breaks the problem into smaller stages and solves them efficiently over time.

• Dual Decomposition: Also Utilizes cutting planes and separates the problem into smaller parts
that can be solved independently, then coordinates these independent solutions to obtain a final
solution

• Progressive Hedging: Uses Augmented Lagrangian, proximal method, quadratic penalty. With a
penalty approach to push the scenario-based solutions towards each other, iteratively adjusting
this penalty until consistency is achieved.

To solve this Two-stage stochastic optimization model the progressive hedging technique will be used,
because of the complexity of the model and as the library mpi-sppy [58] has a implementation for this
approach. It should be noted that this library also has an approach similar to benders decomposition,
however this breaks discrete variables such as binary and integer variables by relaxing them in the
second stage. This is not desired as this will result in constraints relating to ship arrival to no longer
be valid.

Figure 3.1: Ways of implementing uncertainty modeling [89]

This model implements the risk neutral approach as this gives a realistic expected cost and still enforces
the constraints of the contracted capacity on the grid with a high penalty for exceeding this value.
This way it minimizes for the average outcome, or expected value, while still maintaining the power
constraints.

The progressive hedging algorithm decomposes the problem by scenario and uses a quadratic term to
penalize a lack of consensus among the first-stage variables which all should be the same value across
all the individual scenarios, i.e. subproblems. Firstly all the individual scenarios are solved, then the
average x̄ will be calculated of each first stage variable based on the probability of each scenario and
then the difference between this average x̄ and the first stage variable values xs across the scenarios will
be penalized with a quadratic term, as can be seen in Figure 3.2.

min
xs,ys

πF
s fF (xs) + πS

s fS(ys) + λ⊤
s (xs − x̄) + ρ

2
∥xs − x̄∥2 (3.38)

hF (xs) = 0, gF (xs) ≤ 0 (3.39)
hS(xs, ys, ξs) = 0, ∀s ∈ S (3.40)
gS(xs, ys, ξs) ≤ 0, ∀s ∈ S (3.41)
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Figure 3.2: Ph algorithm

Figure 3.2 gives the steps the progressive hedging algorithm takes until a stopping criterion is met. In
this case it stops until all scenario solutions are equal, however this stopping criteria can be user defined
as convergence is not always guaranteed for mixed-integer problems [37]. For this model a different
stopping criteria is chosen which will be discussed more in depth in the results chapter. It stops when
the first stage variables are considered close enough to obtain quality solutions.

Figure 3.3: Timeline of two stage optimization

The allocation of power during the first stage is further described in Figure 3.3 and Figure 3.4. For the
day ahead, considering the electricity price and temperature, the power supplied to the batteries from
the equipment and the stand-alone BES, as well as the cooling of reefers, is determined. This accounts
for the unrealised power required by ships that need shore power and crane power for unloading or
loading of these ships.
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Figure 3.4: First stage and second stage decisions for each scenario s

3.3. limitations
In this optimization approach multiple assumptions have been made considering energy consumption,
logistics and power demands. The following list aims to provide all the resulting limitations by making
these assumptions

• Shore-power not widely implemented yet, limited information available about the required demand
for shore power for large inland container vessels

• Assumptions energy use of crane are based on the handling rate, height, weight of the containers
and efficiency and accounting for non vertical lift power. However, this is only an estimation
based on its maximum working capabilities. This value can differ for example when lifting empty
containers.

• Additionally, peak power effects from the container terminal are not taken into account such as
simultaneous lifting of containers. Only the average power demand over 15 minute intervals are
considered.

• It is also assumed that when a ship arrives multiple cranes could work on it at the same time and
the unloading time decreases linearly. However for example in the port studied it is not always
the case that this relation holds.

• Assumption are made for the energy consumption of container handling equipment, as there is
limited data available. The optimization does not account for factors such as travel distance, how
many containers have to be shuffled per move and how heavy the containers are, again an average
is taken to account for these factors.

• Berthing and scheduling assumptions are also made, as every day for these terminals differ. Data
is collected for two months to get insight of how these schedules would look like. Based on this
data, a few scenarios are created to show what a day might look like when the port is fully
electrified.

• Arrival times of ships, because these ports have short stay times sometimes even only unloading
or loading a few containers, assumptions will be made that the minimum stay time is equal to the
smallest timestep of the model, in this case 15 minutes.

• The reefers are also assumed stationary and effects such as arriving of undercooled reefers or extra
cooling before transit are not taken into account. It is also assumed the reefer clusters have to
start and end with the same temperature.

• The Reefers temperature constraint and power is aggregated, while in reality each reefer also has
to control its temperature individually. However, the power allocated to these reefer clusters does
give a depiction of how much power it would require for all these reefers with similar contents in
the same cluster.

• Similar to the temperature constraint for the reefers, the SOC for the BCHE is also aggregated
for this two stage optimization approach. In reality they all have individual SOCs which they
have to stay in bounds for and could no longer work when it drops below a threshold. This would
however be too computational and complex to track in this two stage approach as each handling
equipment would have to handle the same amount of containers in each scenario. While having a
combined SOC is more traceable.

• To reduce the solve time the reefer’s temperature constraint and the state of charge constraint for
the battery container handling equipment are aggregated. It is an approximation, in reality they
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are all individually bounded.
• Temperature and charging speeds effects and degredation of the battery are not taking into account.

For example less battery capacity when it is cold. Or Nonlinear charging when reaching the 80 %
mark, upon which the charging will be slower.

• Electric loads such as lighting, PEV charging in the parking lot and others are not taken into
account. However lighting could easily be added as a base load through an additional parameter.
Only the power demands associated to the container terminal are modeled.

• Simultaneous charging and discharging of the battery is not strictly disallowed with for example
a binary indicator. When solving single arrival instances this is not such a big problem as a
solver can quite easily find the optimal values and determine charging and discharging at the
same time is not optimal due to round trip efficiency loss. However, with multiple scenarios and
progressive hedging this might lead to undesired behavior of the battery, as will be shown in the
results. Adding this indicator would make the model significantly slower and would take too long
to obtain results for this thesis. Therefore it is chosen to leave these constraints as is.



4
Implementation

In this chapter the model designed in chapter 3 will be implemented in a case study for a specific port
in Rotterdam. It will provide the parameter values used for this case study. How the uncertain arrivals
will be generated along with scenario generation for electricity pricing and temperatures

4.1. Information about case
For the implementation of the model, container terminals/depots for the inland waterway transport
will be examined. Beside the transport over sea or inland over rail and by truck there is also inland
transport utilizing the waterways. The Netherlands and Germany have some of the highest transport
in inland waterways in Europe as can be seen in Figure 4.3 and Figure 4.4. The connections that can
be reached with these inland container vessels from Rotterdam can be seen in Figure 4.1, extending to
Belgium, Germany. Beside the Netherlands and Germany there are also other EU countries, as seen in
Figure 4.2, and many other countries using their rivers for the transport of goods also having similar
ports. Inland container vessels also require similar ports for unloading as the larger sea going vessels,
however on a much smaller scale. For this case study these ports will be studied as they will also make
a transition to more sustainable operations in the future, with electrification being one of the main
contenders.

Figure 4.1: Inland waterway connections
Netherlands from route scanner Figure 4.2: Inland waterway connections in Europe [106]

39
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Figure 4.3: Million Tonne-Kilometer (MTK)
transported via inland waterways in the EU (Eurostat

[1])

Figure 4.4: Thousand Tonnes transported transported
via inland waterways in the EU (Eurostat [1])

4.2. Case study values
To get realistic values for this model interviews have been done with inland shipping ports in the Port
of Rotterdam. The values for the case are therefore based on these small container terminals that
serve inland container vessels, also known as barges. These terminals have fewer cranes when compared
to large terminals in the Port of Rotterdam, they usually have container handling equipment such as
reachstackers and empty container handlers. They will also often store refrigerated containers, mostly
containing frozen goods. These inland container vessels also do not require a lot of shore power compared
to typical container ships. Truck transport is also a significant part of the container logistics for these
container terminals, compared to larger terminals which container flow is mostly through shore side.

4.2.1. Ships and shore power
Unlike the power demand for large cruises, container ships or RORO vessels, the demand for shore
power of inland shipping vessels is much lower. The most common inland shipping vessels visiting these
ports are inland container ships with a lenght of 110 to 135 meter, also known as larger Rhine vessels or
inland container vessels. These types of ships are given the CEMT class V or Va for reference, further
details of the ship size and classes can be seen in A.

Figure 4.5: Typical inland container ship

The reason these inland container vessels also do not require a lot of shore power compared to typical
larger container ships is because they usually only require a little more than a typical household, having
the same loads plus power for heating, ac, navigation, lighting, pumps, etc. They travel short distances
and hop over the river with short stay times, they do not carry a lot of reefers if at all and they are
often pre-cooled for transport so these ships do not have a large quantity of reefer plugs which would
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increase the shore power requirement significantly. Furthermore, it is rare for inland shipping vessels to
connect with shore power during loading and unloading operations due to their often short stay times
[102], but it is often used for overnight stays. This is done to reduce emissions and reduce the noise
during their stay by turning off their diesel generators. In this study it will be assumed that all ships
will make use of the shore power however short the stay time will be, similar to how larger terminals will
have to provide shore power for larger container vessels. To give a range of the estimated shore power
demand of these inland shipping vessels a Table is made of the values found in literature investigating
the shore power and emissions for inland shipping.

Will probably be reinforced more heavily in the feature to reduce emissions further in this sector

Report Shore power demand

CE Delft Verkeersmaatregelen ter vermindering van de
NEC-emissies [27]

3.5 kW

CE Delft Stimulering van walstroom [102] < 3 kW

CE Delft Maatregelen verschoning binnenvaart Rotterdam
[68]

5-15 kW Hotel load, 23 kW Other

Elaad quickscan walstroom [60] 5 kW

Clinsh Onshore power supply [22] 6.33 kW, 2 kW

TNO-Rapport, Millieueffecten van de invoering van wal-
stroom voor zeecruiseschepen, riviercruisescehepen en bin-
nenvaartschepen in de haven van Amsterdam [45]

5 kW, 10.5 kW

Future Proof Shipping, Interreg North Sea (2021) [80] Average 8.5 kW, Max 28.6 kW

Sustainable ships [44] 40 kW

Table 4.1: Reports on shore power for inland container vessels

There is a lack of information about the actual demand of shore power per ship class and cargo for
the inland water transport ships. Many studies only estimate an average for the entirety of inland
shipping or make basic assumptions, instead of measured values from for example the diesel usage of
the auxiliary engines, which is often hard to track. The average inland shipping vessel has a diesel
generator onboard with a power rating typically between 50-60 kW [68]. They will not be used at full
capacity when moored, resulting in the large variety of assumptions of how much shore power these
inland shipping vessels will require. Some assume only the loads necessary for an overnight stay with the
bare minimum of shore power demand of around 2 kW, which could also differ for power when loading
and unloading. However values for normal operations are harder to get by, so to this end assumptions
will also be made. From the values of TNO report, measured values of future proof shipping for a 110m
inland container ship and CE Delft’s interview with an expert, a value of 10 kW can be assumed as an
average continuous load for these larger inland vessels to be on the safe side.

Ship detail overview

Type of ship Inland container ship

CEMT Class Va , VIa

Max containers per ship Max 450 TEU

Required shore power 10 kW

Table 4.2: Case study: Ship specifications
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4.2.2. Reefers
These inland terminals or river terminals also often store reefers. The most common type of reefers
here is the 40 foot refrigerated containers storing frozen goods between -18 and -20 degrees. Reefers
with a frozen load will require less cooling power compared to cooled or chilled products, at 45 ◦C a 40
foot refrigerated container will require 4 kW for low temperatures and 7-8 kW for chilled temperatures
[23]. These reefers have the following common characteristics for frozen goods/meats.

Refrigerated Containers (Reefers)

Usual amount of Reefers 50, 40 foot containers

Usual temperature setting -18/-20 ≈ -19 ◦C

Temperature tolerance ± 1◦C

Outer surface area of container 135.26 m2 [51]

Mass in reefer 22,300 kg - 26,240 kg ≈ 25,000 kg [51]

Specific heat 2.1 - 3.2 KJ/(Kg ◦C) ≈ 2.6 KJ/(Kg ◦C) [57]

Thermal insulation reefer 0.4-0.9 W/m2 ◦C ≈ 0.5 W/m2 ◦C [28][51]

Maximum cooling power (frozen) 6.0 kW [23] [51]

Ambient temperature Based on 2024 data

Table 4.3: Case study: Reefer specifications

To account for the variety of goods and their thermal properties and that of the reefers thermal insulation
of the reefer which depends on the age of the reefer, average values will be taken between the specified
intervals. The specific heat is based on the specific heat values for different meats [57] and is also
inside the range used by Kanellos, Volanis, and Hatziargyriou [51]. As mentioned before the thermal
insulation of the reefer worsens with age, this value will range for 0.4 for new reefers and 0.9 for old
reefers (older than 12 years) [28]. It is assumed that this value will be around 0.5 for slightly used
refrigerated containers. Scenarios for weather will be created in chapter 4.2.5 to not assume just a fixed
temperature. Finaly, as a last sanity check the power demand will be compared to what is mentioned
in the container handbook [23], which specify an average of 4.2 kW for a 40 foot container operating
at -21 degrees with an ambient temperature of 45 degrees. Rewriting the reefer constraint in chapter
3 for a single reefer and filling the values from the table and operating temperatures of the container
handbook gives equation 4.1 and is fairly similar to the value specified by the container handbook only
on a slightly higher end.

P reefer
j,t =

mj · cpj · nreefer
j

dt

(
T amb

t − T reefer
j,t−1

)(
1 − e

−
wloss

j
·dt·surj

mj ·cpj

)
= 4.46 kW (4.1)

4.2.3. Port equipment
To convert the current diesel based equipment to an electric counterpart the following values will be
used based on the ports operations and its energy usage. To model the estimated maximum average
power for the cranes when working at its maximum rate can unfortunately not be determined by its
diesel usage. Instead a simple calculation will be made to estimate its maximum average power usage.
For power the maximum container weight will be multiplied by the height of the crane, gravity and the
amount of lifts per hour, then divided by time to convert it to kW and also divided by 0.7 (roughly
70% of energy share is from lifting vertically, refer to chapter in the beginning). This results in a rough
estimate of 42 kW per hour at its maximum handling rate.
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Eavg,max = mcontainer,max · hcrane · g · lifts

3600 · 0.7 · ηefficiency
= 42 kW (4.2)

Furthermore for the particular port which schedules were used, the cranes make use of a stack under-
neath the crane as a well beside the more common stack in the yard. It can be assumed that about half
of the containers handled by the crane will be passed along to a reach stacker as well. This will change
the constraint mentioned in the previous chapter only slightly.

Cranes

Amount of cranes on the quay 2 identical cranes

Safe working load of the cranes 40 tons

Handling rate per crane 18 Containers/h

Estimated max power consumption per crane 42 kW

Energy Storage System for energy capture None installed

Table 4.4: Case study: Crane values

The container handling equipment in the port will be replaced by battery electric alternatives, for this
study a large commercially available battery size of 600 kWh [49] will be chosen because of the extended
working hours. The charging speed will have an upper limit, which is the lowest charging speed that
is offered for this model with a maximum charging rate of 175 kW. It is assumed that these batteries
can charge at any rate, which will alcharging speed. Furthermore, it is assumed that the amount of
charging stations will be equal to the amount of battery container handling equipment. This assumption
is made because most of these terminal do not operate on a 24 hour basis and the charging will have
to be performed manually. Assuming limited amount of charging stations will not allow all container
handlers to be charged overnight or over the weekend. Additionally, the SOC will be limited to a lower
threshold of 20 % to avoid a too high depth of discharge, similar to what is done in literature in section
2.1.2.

Battery Container Handling Equipment

Amount of container handling equipment 4 reachstackers

Amount of charging stations 4 stations

Maximum amount of reachstackers working at a time 3 reachstackers

Estimated power consumption for electric variant 60 kW

Battery size available on the market 600 kWh [49]

Maximum charging speed 175 kW [49]

Charging efficiency 95 % [49]

Maximum and Minimum SOC 100 %, 20%

Handling rate of reachstacker 20 Containers/h

Average power used per move 3 kWh

Table 4.5: Case study: Battery container handling equipment parameters

4.2.4. Battery Energy Storage
As there currently is no battery energy storage system installed at these ports, again values will be
determined based on literature and what currently is available. The BES is sized at 200 kW / 400
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kWh to match the port’s current contracted capacity while enabling load shifting and peak shaving
for anticipated future electrification. The 2-hour discharge duration provides operational flexibility
without exceeding the existing grid connection, this is also to set the bounds for the battery energy
storage system constraints. The model can choose any charging and discharging value between zero
and the maximum charging and discharging rate, similar to the battery container handling equipment.
This also holds for the SOC range used throughout the day.

Battery Energy Storage

Capacity of BES 400 kWh

Charge & Discharge rate 200 kW

Round trip efficiency 90 % [98]

Efficiency charging/ discharging ηbes
√

0.9 ≃ 0.95

Table 4.6: Case study: Battery Energy Storage parameters

4.2.5. Electricity pricing and weather
In addition to the ship arrival scenarios that can occur within a day and within the optimization,
different electricity prices and temperature conditions will also be considered. To generate unique
weather and day-ahead electricity pricing scenarios, k-means clustering will be performed using the
scikit-learn library [85]. The K-means algorithm from scikit-learn aims to select centroids that minimize
the inertia, or within-cluster sum-of-squares criterion according to equation 4.3.

arg min
C

n∑
i=1

min
µj∈C

∥xi − µj∥2 (4.3)

To achieve this, the hourly historical temperature data for Rotterdam in 2024 from the Royal Nether-
lands Meteorological Institute (KNMI) [56] is used alongside the day-ahead prices of 2024 from ENTSO-
E [29]. Only the weekdays will be selected as the specific port usually does not operate during the
weekend. The electricity price and temperature are then jointly clustered according to their hourly
profile 24-hour arrays, rather than just their average values. Both the temperature and the electricity
price are scaled using the robust scalar from sklearn beforehand due to some outliers, especially in the
electricity price.
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Figure 4.6: Elbow and Silhouette of kmeans clustering temperature and electricity price
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A direct relationship is not realistic as the correlation coefficient is -0.234, which indicates a weak
correlation relationship as can also be seen in Figure 4.7. These parameters will be used to create
different and unique weather and electricity price scenarios beside the usual operations. The amount
of clusters is based on the elbow method and the silhouette score as can be seen in 4.6. The chosen
amount of clusters is 3 due to the higher silhouette score and the diminishing return of adding more
clusters, adding an additional cluster would single out the day with the highest electricity price, which
is just one extreme case. In Figure 4.8 the grouped electricity prices and temperatures can be seen,
with Figure 4.9 and 4.10 showing which hourly profiles fit into the respective clusters.
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Figure 4.7: Correlation between hourly electricity price
and temperature
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Figure 4.10: Overview of selected hourly temperature
profiles

The mean values of the clustered groups are chosen as to not neglect the outliers present in one of the
groups for electricity price, as can be seen in Figure 4.11. This choice is less relevant for the other
clustered groups in electricity and the respective temperature profiles where the difference between
median and mean values are less significant.
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Figure 4.11: Difference between mean and median
electricity price values for clusters
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Figure 4.13: The difference between mean and median values for the clustered groups

To the clustered buying price of electricity additional levies and taxes will be added which are present
in the Netherlands, as noted in Section 2.2.3. The three temperature scenarios will also be used for
fixed electricity price to compare the difference between the two on an equal basis, resulting in a total
of 6 scenarios.

4.2.6. Ship arrivals and uncertainty
From the Estimated Time of Arrivals (ETA) and Actual Time of Arrivals (ATA) gathered at these
terminals the delay was calculated. As the gathered data size is not significantly large a distribution
will be fitted to remove the roughness. These distributions were fitted within bounded IQR ranges
to reduce extremities and outliers and decrease the width of the distribution, which can be sampled
for possible ship arrivals. This fitting was performed with the fitter library [31] and scipy distributions
[109] were tested with the Sum Squared Error, Akaik Information Criterion (AIC), Bayesian Information
Criterion (BIC), and Kolmogorov Smirnov (KS) test. The top 10 best fitting distributions can be found
in Table 4.7 and all the fitted distributions can be found in the appendix. It should be noted that the p-
values for the KS test however are optimistic or unrealistic as they are performed with the same sample
as which the distribution was generated with, which classifies as a type 1 error. The KS statistic value
however does give an indication of the performance of the Cumulative Distribution Function (CDF)
compared to the data, which gives the maximum distance between the two CDFs of the sampled data
and the distribution.
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Distribution scipy Sum Squared Error AIC BIC KS statistic KS p-value

genhyperbolic 1.5743 451.6611 468.3967 0.0534 0.5694

laplace_asymmetric 1.6141 445.8787 455.9200 0.0498 0.6559

dgamma 1.6355 444.5963 454.6376 0.0626 0.3683

skewcauchy 1.6467 488.0257 498.0670 0.0798 0.1303

foldcauchy 1.6598 457.1731 467.2144 0.0932 0.0486

laplace 1.6719 440.7989 447.4931 0.0617 0.3853

cauchy 1.6787 483.5927 490.2869 0.0672 0.2867

dweibull 1.6815 445.1109 455.1522 0.0605 0.4095

gennorm 1.7837 435.6970 445.7383 0.0667 0.2948

hypsecant 1.9587 433.5909 440.2851 0.0645 0.3332

Table 4.7: Distribution testing

From Table 4.7 it can be concluded that the best fit is from distributions with a high kurtosis, meaning
a high peak and bigger tails. The Cauchy distributions overestimate these tails more than the other
distributions listed in this table, while the generalized hyperbolic, asymmetric Laplace and generalize
normal distribution both match the tails the best when inspecting the QQ plots. To not over complicate
the fitting of a distribution further and avoid overfitting, the generalized normal distribution is chosen
for this thesis to simulate the delay from the estimated time of arrival. The resulting distribution can
be seen in Figure 4.14.
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Figure 4.14: Generalized normal distribution of delays

From this generalized normal distribution will be sampled to create possible arrival scenarios of these
ships. However, not all ship arrivals are possible by just sampling from this distribution, either because
they would arrive outside working hours or because they would arrive outside of the time range of this
model. To counteract this the generalized normal distribution will be truncated in these edge cases to
fit inside the range of working hours by truncating the distribution to these edge values with equations
4.4.
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fP DF
X|a≤X≤b(x) =


fX(x)

FX(b) − FX(a)
, a ≤ x ≤ b

0, otherwise
, F CDF

X|a≤X≤b(x) =


0, x < a
FX(x) − FX(a)
FX(b) − FX(a)

, a ≤ x ≤ b

1, x > b

(4.4)

As mentioned in the limitations, inserting every possible ship arrival from this distribution multiplied
by its probability for each 15 minute bin would increase the amount of scenarios significantly. To give
an example, for 5 arriving ships it would result in 255 scenarios, assuming a spread between three
hours early and three hours late arrival time. Therefore a limited amount of samples will be taken to
approximate the possible arrival scenarios. These samples are then rounded to the nearest 15 minute
interval to be used in the model.

To sample from this distribution different sampling techniques exist instead of just pseudo randomly
sampling, also known as Monte Carlo (MC) sampling, from this distribution for each ship, Random
Quasi-Monte Carlo (RQMC) sampling could also be used. These methods sometimes have a better
convergence rate to the distribution compared to random sampling (Monte Carlo). QMC methods will
give a better spread and will reduce the possibility of clumps, because of their Low discrepancy property.
However this behavior is not true to real natural randomness, where ships delays not need to be spread
out as much and grouped events are also relevant, for example all ships arriving late or all arriving
on time. Therefore MC sampling will be chosen for sampling from the distribution, although it might
perform worse in estimating the true distribution.

A medium and heavier operational working day have been chosen with their respective ETAs to generate
the uncertain arrivals on and to depict different operational levels of the port, which will also have
influence on total energy use and charging and cooling possibilities. A total of 100 ship arrival scenarios
will be created by sampling a delay for each ship. A higher number of ship arrival scenarios is preferable
to reflect many possible arrival scenarios. However, the model can only handle a limited amount of
scenarios, which 100 is on the high end of reasonable running time.
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Results & Discussion

To solve and run this two stage optimization model the pyomo mpi-sppy [58] module was used and
utilized the Gurobi solver [38]. The pc on which it was run has Intel(R) Core(TM) i7-8750H CPU @
2.20 GHz and 16 GB of RAM. Message Passing Interface (MPI) was used to run the scenarios on 6 cores
in parallel to speed up the total computation time as it solves all scenarios individually. The stopping
criteria for the progressive hedging algorithm is a convergence metric gap of 1x10-5 specified in equation
5.1. This equation gives the distance between the common or average nonanticipativity variables x̄n (i.e.
first stage variables) and the nonanticipative variables used in every scenario xs,n divided by the total
number of scenarios, as in this case each scenario is equally likely. The maximum number of iterations
has been set high enough to ensure all results atleast have a gap of 1x10-5 even for instances where
the problem converges slowly, this especially occurs when the given contracted capacity is not sufficient
and would result in occurring penalties with the added penalty term for exceeding contracted capacity
as can be seen in the objective or when the contracted capacity is set as a variable. The solve time for
every result is on average 20-30 minutes.

x̄n = 1
|S|
∑
s∈S

xn,s, CM = 1
|S|
∑
s∈S

 1
Nf

∑
n∈Nf

|xn,s − x̄n|

 ,
ρn

2
||xn,s − x̄n||2 (5.1)

Choosing proper values for the penalty term is not an easy endeavor [112] and requires tuning. A
fixed rho parameter could be chosen for all first stage variables, it could be set individually per first
stage variable and there are also methods which can update rho per iteration of the progressive hedging
algorithm [120]. As this model has many first stage variable values in total and has to be solved for
100 arrival scenario combinations which differ quite significantly, i.e. ship arrivals deviate quite much,
it is important to choose proper penalty values and also base it on the variable and the objective size.
To fine tune this for every first stage variable per different scenario were running, for example weather,
electricity price, operational load, with or without batteries etc, it would take too much time. Because
of this, consistent use of the same rhos will be used for all the generated results.

A popular method that can be chosen for finding ρ values is mentioned in equation 5.2 and depicts a
ρ calculation by its effect on the objective [112]. In this equation c(i) represents the cost coefficient
per first-stage variable and the denominator reflects the sum of the difference of that variable over all
scenarios multiplied with its probability.

ρ(i) = c(i)
max

(
(
∑

s∈S Pr(s) · |xs(i) − x̄(i)|), 1
) (5.2)

The primary advantages of this ρ heuristic is that its problem-independent and parameter-free, elim-
inating the need for repeated execution of PH in the search for high-quality ρ values [112]. But it is
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mentioned there exist more effective methods for any specific problem which is the case for this model
considering many first stage variables, also including ones which are indexed by time t or other. The
rho values will be calculated by running an example scenario with BES and dynamic pricing to obtain
a more sensitive rho value and determine the order of magnitude. This approach has been chosen as
having different rho values per time index for the same variable did not help converge the problem
to a satisfactory result. The problem here lies in the trade-off between a high quality solution and
convergence speed for this specific problem. As choosing a large rho will reach consensus faster among
the first stage variables, however this does not have to be an optimal one. Choosing a smaller rho will
not force consensus fast after the initial phase as the penalty size will become very small, but can reach
a more optimal solution compared to higher rho starting values which could drive the solution towards
suboptimal solutions [120]. With these rho characteristics an increasing rho value approach [120] has
been chosen as specified in equation 5.3.

ρk+1 = τρ · ρk, τρ ≥ 1 (5.3)

• The starting ρ0 penalty has been set to 1x10-4 for every variable.
• With each iteration the rho penalty will be increased with a factor τρ of 1.04.
• Iterations stop when the convergence metric of 1x10-5 has been reached.

More finetuning of the initial rho value and multiplication factor can be done to improve the results,
but these parameters have been chosen as they provided the best and most stable results in the time
spent testing, also given a reasonable computation time is desired.

Furthermore, progressive hedging does not give an optimality gap as this is a heuristic algorithm.
However, it does give a Trivial Bound (TB), which is the objective value of the scenarios in the list
without enforcing non-anticipativity, meaning optimization of the scenarios with perfect information.
It can be interpreted as the average of all individually optimized scenarios. This does not give a very
tight lower bound which can be used to compare the solution with, as it does not solve the exact same
problem. It does give the objective value of what can be achieved with real-time perfect information,
which is also known as Wait and See (W&S), refering to no decisions being made before others and
all information is known. To obtain a more realistic lower bound to quantify the performance of the
model, mutiple runs are made for case 2 where the full extensive form is run for an extended duration
to obtain a lower bound it has computed in this time, similar as is done in [112].

Finally, the xhatclosest extension from mpisppy [58] was used to obtain a final xhat result, which utilizes
a truncated z-score and obtains these values according to steps depicted in equations 5.4, 5.5, 5.6, and
5.7. It will choose the first-stage variable from scenario s which is closest to the value of xbar, this will
give a much more likely feasible outcome for this model compared to directly using xbar, even when
the convergence gap is not very low, due to for example equality constraints that have to be enforced.

Given: x̄n = 1
|S|
∑
s∈S

xs
n, σn =

√
1

|S|
∑
s∈S

(xs
n)2 − x̄2

n, (5.4)

Compute for each scenario s ∈ S :

d(s) =
∑
n∈N

min
(

3,
|xs

n − x̄n|
σn

)
, (5.5)

Select: s∗ ∈ arg min
s∈S

d(s), (5.6)

Define: x̂ := xs∗
,by resolving the model for scenario s∗. (5.7)

As can be seen in equation 5.1 when solving to a convergence gap of 1e-5 there might be slight discrepancy
between the first stage variables (total sum of absolute distance between scenario first stage decision
values and xbar) to obtain valid first stage results which are identical among all scenarios this extension
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is used to obtain the final first stage variables. It takes the values for a scenario closest to x̄, as it is
not always guaranteed that the averaged result allows for feasibility. Afterwards it is checked that all
scenarios are feasible given the nonanticipativity variables.

An overview is provided of which scenario for electricity price and temperature is solved for, Table 5.1
denotes which electricity price and which temperature profile is used by stating their average value.
The electricity prices are adjusted to account for electricity levies and taxes.

Scenario Electricity Price Temperature

Scenario 1 Fixed EP (0.239 €/kWh Eurostat) Cluster 1 Temp. (17.20 ◦C Avg.)

Scenario 2 Fixed EP (0.239 €/kWh Eurostat) Cluster 2 Temp. (5.94 ◦C Avg.)

Scenario 3 Fixed EP (0.239 €/kWh Eurostat) Cluster 3 Temp. (8.97 ◦C Avg.)

Scenario 4 Cluster 1 EP (0.18 €/kWh Avg.) Cluster 1 Temp. (17.20 ◦C Avg.)

Scenario 5 Cluster 2 EP (0.24 €/kWh Avg.) Cluster 2 Temp. (5.94 ◦C Avg.)

Scenario 6 Cluster 3 EP (0.17 €/kWh Avg.) Cluster 3 Temp. (8.97 ◦C Avg.)

Table 5.1: Electricity price and temperature scenarios

Furthermore a distinction will also be made to what flexible asset is used for the EP, Temperature
and operational level scenario. This consists of adopting a BES or not and whether the reefers can be
flexibly cooled or wether they are fixed at their temperature set point.

Three different cases will be discussed:

• Case 1 (5.1): Full electrification with currently limited contracted capacity. Is it feasible to
transition to a fully electrified port with optimal management?

• Case 2 (5.2): What would be the necessary required contracted capacity for full electrification for
this port considering electricity pricing schemes and DSO costs.

• Case 3 (5.3): Time Constrained Transport Right, DSO contract for large electricity consumers.

5.1. Full electrification currently
Currently there is limited grid availability, because most of the equipment has not yet been replaced
with an electric alternative and the contracted capacity has not yet been increased to account for this
additional electricity consumption. To examine whether its still feasible for the port to fully electrify,
without having to get a larger contracted capacity which is not as easily obtainable with the current grid
congestion in the Netherlands. For this test flexibility is allowed using a scenario with Battery Energy
Storage (BES) system and of course when the charging of battery electric equipment is performed, but
the reefer cooling is fixed as it currently the case for these terminals. The current contracted grid
capacity is assumed at 200 kW and only the fixed electricity cost will be used as there is currently little
room to adjust power consumption and are focused wether this capacity is feasible for the operational
and weather scenarios.
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Operation Scenarios Max & Exceeded power Max & Exceeded power (W&S)

Medium, average
operations

Scenario 1 247.90 kW, 1085.76 kWh 200.00 kW, 0.00 kWh

Scenario 2 199.93 kW, 0.00 kWh 168.69 kW, 0.00 kWh

Scenario 3 200.00 kW, 0.00 kWh 179.91 kW, 0.00 kWh

Heavy
operations

Scenario 1 301.11 kW, 2723.55 kWh 214.56 kW, 1397.68 kWh

Scenario 2 200.06 kW, 2.40 kWh 181.94 kW, 0.00 kWh

Scenario 3 229.71 kW, 828.32 kWh 192.49 kW, 0.00 kWh

Table 5.2: Full electrification with flexible batteries and reefers

Figure 5.1: Scenario 1 overlapping power profiles of all scenarios

As can be seen from Table 5.2 and in Figure 5.1, the current contracted capacity is not sufficient to
accommodate the operations even for a medium operation level load. What could be added is an energy
storage system to capture energy during lowering from the cranes which could reduce the electric load
by approximately 50% referring back to the literature in section 2.1.1. However, even with the help of
such an energy capture device for cranes it will not be able to overcome the limited contracted capacity
for the medium and heavier operational day, as seen in table 5.3. Furthermore, each day would be
very difficult to stay within the contracted capacity range and schedule around the logistic planning.
Therefore full electrification with current contracted capacity will not be feasible and additional capacity
will be required.
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Operation Scenarios Max & Exceeded power Max & Exceeded power (W&S)

Medium, average
operations

Scenario 1 203.87 kW, 64.70 kWh 183.26 kW, 0.00 kWh

Scenario 2 186.23 kW, 0.00 kWh 145.5 kW, 0.00 kWh

Scenario 3 196.40 kW, 0.00 kWh 155.67 kW, 0.00 kWh

Heavy
operations

Scenario 1 249.77 kW, 1007.34 kWh 199.40 kW, 0.00 kWh

Scenario 2 200.001 kW, 0.005 kWh 161.66 kW, 0.00 kWh

Scenario 3 200.002 kW, 0.013 kWh 171.81 kW, 0.00 kWh

Table 5.3: Full electrification with flexible batteries, reefers and ESS for cranes

5.2. Full electrification ideally sized
The optimum required contracted capacity given the logistic and electric loads will be determined by
changing the fixed contracted capacity parameter to a variable which will be added to the list of first-
stage variables decisions. Per result the objective value (OBJ) found by PHA; the optimal contracted
capacity (CC); the Trivial Bound/ Wait and See (TB/ W&S) objective value; the Convergence Metric
(CM) gap of the solution and the number of iterations it took for the PHA to converge to this solution
will be denoted.

Config. Scenario OBJ (€) CC (kW) TB/W&S (€) CM Gap # Iter.

No BES,
Flex Reef

Scenario 1 1140.82 231.78 1130.22 2.43 x 10-6 334

Scenario 2 917.37 191.98 906.71 9.60 x 10-6 296

Scenario 3 977.15 205.12 966.78 5.15 x 10-6 292

Scenario 4 778.15 552.11 769.16 5.90 x 10-6 231

Scenario 5 844.73 328.15 842.18 4.88 x 10-6 282

Scenario 6 673.22 292.79 669.27 9.46 x 10-6 272

With BES,
Flex Reef

Scenario 1 1140.80 230.89 1130.23 4.56 x 10-6 317

Scenario 2 916.76 192.76 906.71 9.57 x 10-6 286

Scenario 3 977.27 201.72 966.78 8.23 x 10-6 295

Scenario 4 776.81 592.43 758.93 9.96 x 10-6 332

Scenario 5 845.14 324.65 832.62 8.13 x 10-6 268

Scenario 6 673.72 292.35 664.59 9.13 x 10-6 281

Table 5.4: Average operation level results grouped by their configurations 1 of 2

To compare the quality of the results obtained with the progressive hedging method a comparison will
be made by running the extensive form for 3 hours per scenario, notating the best incumbent and
the associated gap and compared with the solution from PHA. In table 5.5 the difference between the
objective value obtained from the progressive hedging algorithm and the extensive form of the problem
can be seen. The gap between the optimal solution found in the extensive form and the progressive
hedging is determined and the optimal gap in the EF solution is denoted.
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Config Scenario OBJ PH (€) OBJ EF (€) Opt. Gap EF-PH EF gap

No BES,
Flex Reef

Scenario 1 1140.82 1140.14 0.060 % 0.02 %

Scenario 2 917.37 916.16 0.13 % 0.02 %

Scenario 3 977.15 976.40 0.077 % 0.02 %

Scenario 4 778.15 777.73 0.054 % 0.02 %

Scenario 5 844.73 844.18 0.065 % 0.00 %

Scenario 6 673.22 672.86 0.053 % 0.00 %

With BES,
Flex Reef

Scenario 1 1140.80 1140.11 0.061 % 0.02 %

Scenario 2 916.76 916.15 0.067 % 0.02 %

Scenario 3 977.27 976.40 0.089 % 0.02 %

Scenario 4 776.81 776.20 0.078 % 0.02 %

Scenario 5 845.15 844.14 0.12 % 0.00 %

Scenario 6 673.72 672.86 0.13 % 0.00 %

Table 5.5: Comparison PH results and solved EF

Two main differences can be noticed between the optimal solution found in the extensive form and when
solved with progressive hedging method. Firstly, when the battery energy storage system is added and
is used in the individually solved scenarios (As can be seen by the difference in TB/W&S values with
and without BES in Table 5.4), with the current rho values the progressive hedging algorithm aims
to use the battery as well, although very little. This happens despite the fully solved extensive form
concluding that using the battery energy storage system in scenario 5 and 6 is not actually beneficial, as
can be seen that there is almost no difference between the solution with and without BES. Something
similar happens as well when assessing the assigned contracted capacity, as the PHA assigns a lower
contracted capacity compared to the extensive form solution which is closer to the originally individually
solved solutions. This is something that can be fine tuned further by decreasing the initial rho penalty
either specifically for: BES charging, discharging and the assignment of the contracted capacity or
a lower starting penalty value entirely or reducing the multiplication factor. However, these changes
would result in greater computational time and is a trade-off that should be made whether this tiny
improvement in objective is worth it. The reasons why the use of BES in this scenario is not beneficial
is two fold, both charging and discharging decisions are made beforehand while ship arrival is only know
afterwards leading to difficulty in aligning battery discharging for ship arrivals when the power is close
to zero. Furthermore, the flexible cooling of the reefers and charging of battery equipment already ”take
up” most of the power during times with low electricity prices and the BES does not have significant
benefit here as there is no renewable generation either and the model gives preference to the cooling of
reefers and charging of battery equipment as these are neccasry loads and the BES also has round trip
losses.
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Config. Scenario OBJ (€) CC (kW) TB/W&S (€) CM Gap # Iter.

No BES,
Fix Reef

Scenario 1 1147.67 227.82 1144.54 9.82 x 10-6 294

Scenario 2 923.46 189.66 919.68 8.50 x 10-6 293

Scenario 3 983.78 200.06 980.11 5.27 x 10-6 317

Scenario 4 846.40 383.62 836.75 9.49 x 10-6 244

Scenario 5 895.50 225.46 894.59 4.32 x 10-6 186

Scenario 6 695.73 219.38 692.50 9.95 x 10-6 219

With BES,
Fix Reef

Scenario 1 1147.68 228.17 1142.36 8.02 x 10-6 282

Scenario 2 923.30 189.48 917.71 7.19 x 10-6 289

Scenario 3 983.82 199.52 978.10 5.35 x 10-6 303

Scenario 4 817.91 429.66 807.90 9.62 x 10-6 287

Scenario 5 874.62 263.95 869.57 9.95 x 10-6 261

Scenario 6 688.93 262.47 683.47 8.06 x 10-6 235

Table 5.6: Average operation level results grouped by their configurations 2 of 2

However, when it is not possible to flexibly cool the containers, either because of constraints of the
costumers or because of lack of control over these refrigerated systems, the BES becomes more useful.
In table 5.6 the same scenarios are run but the flexibility in temperature which had a tolerance of ±
1 degree has been set to 0, so the reefers cool as much as necessary needed to overcome the difference
in temperature from the reefer and the ambient temperature. Now in every scenario with dynamic
electricity prices the BES is actually able to be used as a flexible asset, by charging during low electricity
prices and discharging to accommodate other port power loads such as the now fixed reefers, cold-ironing
for ships and crane power.

Similar to the previous two tables for average operation for this port, energy profiles during heavy
operations will also be analyzed. The same two tables are created for the different configurations and
electricity price and weather scenarios.
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Config. Scenario OBJ (€) CC (kW) TB/W&S (€) CM Gap # Iter.

No BES,
Flex Reef

Scenario 1 1270.49 257.40 1260.60 4.86 x 10-6 270

Scenario 2 1046.65 218.88 1037.10 9.53 x 10-6 302

Scenario 3 1107.13 229.25 1097.18 7.11 x 10-6 268

Scenario 4 864.96 586.47 858.30 9.76 x 10-6 301

Scenario 5 980.30 364.09 977.80 8.26 x 10-6 225

Scenario 6 766.24 313.25 762.31 9.23 x 10-6 253

With BES,
Flex Reef

Scenario 1 1270.61 255.23 1260.60 9.22 x 10-6 305

Scenario 2 1046.80 217.37 1037.10 6.13 x 10-6 316

Scenario 3 1106.98 227.61 1097.18 8.16 x 10-6 310

Scenario 4 863.53 622.47 846.89 9.53 x 10-6 317

Scenario 5 980.25 376.68 961.55 7.54 x 10-6 376

Scenario 6 767.04 306.33 756.63 7.42 x 10-6 333

Table 5.7: Heavy operation level results grouped by their configurations 1 of 2

Config. Scenario OBJ (€) CC (kW) TB/W&S (€) CM Gap # Iter.

No BES,
Fix Reef

Scenario 1 1277.52 246.04 1271.87 8.92 x 10-6 279

Scenario 2 1052.95 208.41 1046.78 6.58 x 10-6 296

Scenario 3 1113.36 218.54 1107.26 1.67 x 10-6 336

Scenario 4 932.33 417.10 925.89 7.90 x 10-6 264

Scenario 5 1031.73 254.46 1029.75 7.27 x 10-6 150

Scenario 6 788.69 240.75 785.90 4.66 x 10-6 242

With BES,
Fix Reef

Scenario 1 1277.23 246.43 1271.26 1.94 x 10-6 341

Scenario 2 1052.96 208.70 1046.31 8.75 x 10-6 289

Scenario 3 1113.31 218.84 1106.75 7.77 x 10-6 322

Scenario 4 904.77 463.97 897.09 9.37 x 10-6 264

Scenario 5 1009.67 293.90 1003.74 8.36 x 10-6 258

Scenario 6 781.98 288.24 776.69 9.55 x 10-6 254

Table 5.8: Heavy operation level results grouped by their configurations 2 of 2

The contracted capacity is however not something that can be changed on a day by day basis so ensuring
that there is enough capacity, the hottest day in 2024 will be tested along with a heavy operational
day, to give an upper case of how much capacity would be necessary. The average temperature for
this day was 25.1 degrees Celsius and the average day-ahead electricity including levies and taxes was
0.18 €/kWh. This day’s day-ahead electricity price will again be used to compare the ideal contracted
capacity for both fixed electricity price and dynamic electricity pricing.
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Config. Electricity price OBJ (€) CC (kW) TB/W&S (€) CM Gap # Iter.

No BES,
Fix Reef

Fixed 1437.47 273.42 1434.00 7.79 x 10-6 273

Dynamic 1011.81 522.55 1004.67 9.40 x 10-6 250

With BES,
Fix Reef

Fixed 1437.42 273.61 1432.62 9.40 x 10-6 295

Dynamic 947.70 589.50 940.14 6.61 x 10-6 315

No BES,
Flex Reef

Fixed 1431.90 284.44 1421.88 9.71 x 10-6 300

Dynamic 875.37 655.11 868.24 8.76 x 10-6 268

With BES,
Flex Reef

Fixed 1432.00 282.31 1421.88 9.68 x 10-6 315

Dynamic 858.15 722.25 838.14 9.38 x 10-6 299

Table 5.9: Hottest day of 2024 and heavy operation level results grouped by their configuration

An interesting note, counterintuitively for the fixed price scenarios a lower contracted would save cost
but the flexible reefer configuration appears to be cheaper despite having a higher contracted capacity,
while the prices would be the same. However, the average maximum power used across these scenarios
is lower which compensated for this difference. Furthermore it can be seen that a contracted capacity
around 280 kW would be the minimum requirement to meet the electricity demand throughout such
a day. So for the final comparison fixed electricity price and a contracted capacity of 300 kW will be
compared against day-ahead pricing with a contracted capacities based on previous tables as this is not
constrained by this maximum case scenario. The following contracted capacities will be chosen based
on weighted averages of the scenarios. Size of the first cluster is 115 days, the second is composed of 43
days and the third cluster consists of 104 day.

No BES, Fix reef BES, Fix reef No BES, flex reef BES, flex reef

Fixed pricing 300 kW 300 kW 300 kW 300 kW

Dynamic pricing 320 kW 360 kW 440 kW 455 kW

Table 5.10: Capacities, for chosen configurations
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No BES, Fix reef BES, Fix reef No BES, Flex reef BES, Flex reef

Fixed pricing

Cluster 1 € 1156.95 € 1159.86 € 1147.20 1147.69

Cluster 2 935.54 937.73 926.76 926.76

Cluster 3 995.08 997.33 985.95 985.94

Weighted Avg. 1056.36 1058.89 1047.01 1047.22

Dynamic pricing

Cluster 4 861.72 839.60 800.22 803.84

Cluster 5 904.30 892.36 853.78 867.76

Cluster 6 705.01 703.90 686.47 702.84

Weighted Avg. 806.50 794.39 763.86 774.24

Table 5.11: Results for chosen configurations and contracted capacities

Looking into the results listed in Table 5.11 it can be seen that the dynamic electricity pricing is
currently always the better option compared to fixed electricity pricing. In Appendix Section A.4 all
the first stage power decision are plotted for each of the scenarios. In these pictures the top left plot
depicts the total power used for each of these scenarios, its mean, minimum and maximum along with
the electricity price for that scenario. The other three plots display the scheduled first stage power
decisions, with the top right plot showing the power the reefers use and its internal temperature. The
bottom left plot displaying the charging throughout the day and the aggregated SOC. The bottom
right plot shows the charging, discharging and change in charge if applicable. As mentioned in the
limitations it can be seen that not explicitly disallowing simultaneous charging and discharging of the
BES can lead to an outcome doing just that, as can be seen in for example Figure 5.2. The reason for
this is that the BES will be used in the first iteration when each scenario is solved individually, but
these scenarios differ quite significantly so the charging and discharging will be penalized. However,
these are acting as two different variables so when they are pushed to a common first stage value they
can overlap. Furthermore, from the figures in Section A.4 it can be seen that the battery capacity for
the BCHE is on the high end as its not fully utilizing the range of its SOC. Other battery capacities
for these BCHE can be tested using this model, but it should be noted that this is an aggregated SOC
so some play within this range is desired. Additionally, even the lowest offered charging speed for this
reach stacker brand is on the high end for this container terminal and could possibly get away with
slower charging stations if possible.
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Figure 5.2: Dynamic electricity price cluster 5, fixed reefers, with battery energy storage

To summarize these results, currently dynamic electricity pricing is always the better option, as given
in percentages in Table 5.12 and Table 5.13. No BES and no flexible reefer cooling will be set as base
case, from which the other configurations are compared. Furthermore, flexible cooling of reefers will be
the best option given the possibility. BES could perform better after taking into account its sometimes
simultaneous charging and discharging behavior by accounting for this after the optimization. However,
this would not perform much better alongside the flexible reefers, as the W&S difference is also only
slightly better.

Fixed EP No BES with BES

No Flexible Reefer 0.0 % +0.24%

With Flexible Reefer -0.89 % -0.87 %

Table 5.12: Case 2, Fixed EP

Dynamic EP No BES with BES

No Flexible Reefer -23.65 % -24.80%

With Flexible Reefer -27.69 % -26.71 %

Table 5.13: Case 2, Dynamic EP

5.3. Capacity limiting contracts
There are multiple flexible contracts that can be analyzed with this day-ahead model. The TCTR
contract, static CBC contract and dynamic day-ahead CBC contracts. These contracts all depend on
the local grid congestion and when peak power withdrawal and insertion are. The TCTR contract
which is making its introduction in the Netherlands is usually offered between the hours of 0:00 and
6:00, which could make it suitable for businesses with battery equipment such as this container terminal.
For this case the necessary extra capacity will be analyzed which would be necessary between these
hours on top of the already existing 200 kW contracted capacity. A similar approach will be taken
as done in the second case, however instead the contracted capacity variable can only be increased in
the aforementioned time range. This will provide information if the addition of this contract would
be feasible and whether this would be more incentivized compared to the usual continuously fixed
contracted capacity.
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This table will include the following information: The configuration of BES and reefers; the weather
and electricity scenario; the objective value; the Extra Contracted Capacity (ECC) between 00:00 and
06:00; The maximum Power Exceeded (PE) if applicable in any of the scenarios and thereby occurring
penalties; the Trivial Bound (TB) or Wait and See (W&S) objective value; the Convergence Metric
(CM) and the number of iterations

Config. Scenario OBJ (€) ECC (kW) Max PE (kW) TB/W&S (€) CM Gap # Iter.

No BES,
Fix Reef

Scenario 1 - 112.4 27.28 - 4.71 x 10-6 106

Scenario 2 927.94 2.93 0.00 921.94 9.54 x 10-6 123

Scenario 3 986.62 18.25 0.00 981.51 7.08 x 10-7 154

Scenario 4 - 90.98 27.28 - 5.23 x 10-6 99

Scenario 5 897.32 38.06 0.00 893.85 2.38 x 10-9 51

Scenario 6 700.13 14.60 0.00 692.61 9.19 x 10-6 104

With BES,
Fix Reef

Scenario 1 1169.87 102.80 0.00 1142.85 1.41 x 10-6 180

Scenario 2 930.90 5.01 0.00 921.26 3.82 x 10-10 143

Scenario 3 992.48 13.61 0.00 980.82 1.74 x 10-6 92

Scenario 4 893.38 121.07 0.00 850.14 8.22 x 10-6 109

Scenario 5 887.50 128.74 0.00 867.92 3.80 x 10-6 111

Scenario 6 700.44 139.69 0.00 683.12 9.73 x 10-6 95

No BES,
Flex Reef

Scenario 1 1160.68 116.11 0.00 1130.96 9.61 x 10-6 222

Scenario 2 919.58 0.00 0.00 910.58 7.02 x 10-6 85

Scenario 3 980.11 0.00 0.00 969.82 1.74 x 10-6 168

Scenario 4 884.07 179.18 0.00 836.77 9.67 x 10-6 240

Scenario 5 852.68 218.77 0.00 842.02 8.08 x 10-6 69

Scenario 6 685.51 123.12 0.00 671.22 1.05 x 10-6 122

With BES,
Flex Reef

Scenario 1 1165.35 108.33 0.00 1130.96 8.1 x 10-7 153

Scenario 2 921.00 0.00 0.00 910.58 3.77 x 10-6 140

Scenario 3 982.22 0.00 0.00 969.82 9.99 x 10-6 171

Scenario 4 883.53 192.25 0.00 834.97 1.01 x 10-6 171

Scenario 5 860.41 296.59 0.00 831.21 6.63 x 10-6 91

Scenario 6 691.00 182.72 0.00 667.49 1.42 x 10-6 92

Table 5.14: Average operation level results grouped by their configurations for capacity limited contract
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Config. Scenario OBJ (€) ECC (kW) Max PE (kW) TB/W&S (€) CM Gap # Iter.

No BES,
Fix Reef

Scenario 1 - 138.26 8.48 - 9.18 x 10-6 102

Scenario 2 1057.57 22.46 0.00 1048.50 3.63 x 10-7 215

Scenario 3 1121.55 52.03 0.00 1108.09 7.51 x 10-6 150

Scenario 4 - 135.74 8.48 - 9.90 x 10-6 143

Scenario 5 1034.36 71.25 0.00 1027.98 2.76 x 10-6 33

Scenario 6 794.03 49.55 0.00 785.77 1.98 x 10-6 147

With BES,
Fix Reef

Scenario 1 1305.50 149.94 0.00 1279.39 1.63 x 10-8 182

Scenario 2 1061.24 10.37 0.00 1048.22 2.72 x 10-7 224

Scenario 3 1127.39 43.4 0.00 1107.81 9.38 x 10-7 202

Scenario 4 991.04 211.22 0.00 960.04 1.77 x 10-7 237

Scenario 5 1025.82 165.81 0.00 1001.48 9.24 x 10-6 63

Scenario 6 794.35 189.57 0.00 776.35 1.50 x 10-6 124

No BES,
Flex Reef

Scenario 1 1297.40 154.34 0.00 1266.81 3.98 x 10-6 136

Scenario 2 1051.09 3.28 0.00 1039.18 9.43 x 10-6 200

Scenario 3 1117.43 39.49 0.00 1098.44 6.84 x 10-6 175

Scenario 4 978.99 239.78 0.00 946.81 1.11 x 10-6 211

Scenario 5 988.61 249.92 0.00 977.28 6.72 x 10-7 110

Scenario 6 780.53 160.17 0.00 765.35 9.33 x 10-6 58

With BES,
Flex Reef

Scenario 1 1300.87 151.30 0.00 1266.80 2.12 x 10-6 199

Scenario 2 1052.94 2.94 0.00 1039.18 3.51 x 10-6 153

Scenario 3 1120.04 38.90 0.00 1098.43 9.81 x 10-6 177

Scenario 4 976.95 268.10 0.00 944.60 5.92 x 10-6 279

Scenario 5 998.97 338.45 0.00 959.29 2.56 x 10-6 138

Scenario 6 785.10 229.24 0.00 760.61 3.02 x 10-6 132

Table 5.15: Heavy operation level results grouped by their configurations for capacity limited contract

Similarly to the previous section the hottest day of 2024 and a heavy operational day will be analyzed
to assess the feasibility of this contract.
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Config. Elec. price OBJ (€) ECC (kW) Max PE (kW) TB/W&S (€) CM Gap # Iter.

No BES,
Fix Reef

Fixed - 135.53 45.54 - 1.98 x 10-6 132

Dynamic - 128.64 45.54 - 7.15 x 10-6 128

With BES,
Fix Reef

Fixed - 251.36 36.62 - 9.66 x 10-6 319

Dynamic - 249.15 36.62 - 2.22 x 10-6 295

No BES,
Flex Reef

Fixed 1483.32 325.16 0.00 1442.97 9.93 x 10-6 188

Dynamic 1153.11 320.66 0.00 1096.55 7.59 x 10-6 126

With BES,
Flex Reef

Fixed 1480.22 275.22 0.00 1442.96 2.91 x 10-6 235

Dynamic 1136.57 339.59 0.00 1090.62 5.57 x 10-6 207

Table 5.16: Hottest day of 2024 and heavy operation level results grouped by their configuration

As can be seen in Table 5.16 having no flexibility in cooling with reefers will not allow for this contract
to work on top of the existing contracted capacity in the heaviest conditions. The amount of extra
contracted capacity differs in these results due to early converging values of this contracted capacity,
especially as the costs for this extra contracted capacity are now lower when compared to the previous
case. It can be seen as a very large search space and where the impact of cost for contracted capacity
is even lower, resulting in more deviation. Furthermore, the configuration with BES and fixed reefers
would be able to work with an even larger BES, but this is not deemed as a reasonable solution.
Therefore in Table 5.17 only the cases with flexible reefers will be considered. The values listed in this
table is the required extra capacity between 00:00 and 06:00 on top of the original 200 kW contracted
capacity. This means that between 00:00 and 06:00 there is a capacity of 500 kW and for the rest of
the day it will be 200 kW.

No BES, Fix reef BES, Fix reef No BES, flex reef BES, flex reef

Fixed pricing - - 300 kW 300 kW

Dynamic pricing - - 300 kW 300 kW

Table 5.17: Extra capacity necessary for chosen configurations

Similar as for case 2, the determined capacities will be fixed to assess the costs of this contract for
average working days throughout the year to be compared against the normal contract type. In Table
5.18 the results from each configuration and scenario for the TCTR contract can be seen. All the figures
corresponding to the table values can be found in Section A.5, which display type of plots as mentioned
in Section 5.2
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No BES, Flex reef BES, Flex reef

Fixed pricing

Cluster 1 1164.71 1169.53

Cluster 2 925.67 927.13

Cluster 3 986.25 988.36

Weighted Avg. 1054.64 1057.83

Dynamic pricing

Cluster 4 886.90 886.21

Cluster 5 854.97 860.29

Cluster 6 687.49 690.30

Weighted Avg. 802.50 804.19

Table 5.18: Results for chosen configurations and contracted capacities

In Figure 5.3 an illustration of the TCTR contract can be seen. During this time with additional extra
capacity the reefers will be cooled, BCHE will be charged and also the BES in this case. Reefers must
be able to adjust their cooling to cool in the morning, otherwise the contracted capacity would be
exceeded later in the day when the ships would start arriving, especially when considering a hot day.
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Figure 5.3: TCTR, Dynamic electricity price cluster 4, flexible reefers, with battery energy storage

The obtained average daily costs for this TCTR contract will again be compared against the No BES,
No flexible reefer cooling from case 2, Table ??. From this table it can be concluded that this contract



5.4. Future research 64

is not beneficial for terminal operators in terms of costs and would also require more precise scheduling
considering the tight power limits for the rest of the day.

Fixed EP No BES with BES

With Flexible Reefer -0.16 % +0.14 %

Table 5.19: TCTR, Fixed EP

Dynamic EP No BES with BES

With Flexible Reefer -24.0 % -23.9 %

Table 5.20: TCTR, Dynamic EP

5.4. Future research
This model is intended to tackle the optimal power demand use for different electricity contracts as
well as DSO costs. To analyze this historic electricity pricing from 2024 was used. However, it must
be considered that electricity pricing have fluctuated pretty significantly the last few years as can be
seen in Figure 5.4. It can not be ensured that the currently obtained values will be the same for future
electricity prices. Future energy demand can also differ due to more renewable integration. DSO costs
could also increase as they have to maintain a larger infrastructure with the increasing electrification.
These elements combined will have effect on the total and hourly power use and could also be analyzed
further as these costs will change. Similarly for weather, this thesis made three clusters for temperature
and electricity pricing and also considered the hottest day in 2024. The outlier for such events with
very high temperatures during heatwaves could also be considered further. However, it is not expected
that such a unique event would have a very large impact as this will most likely not be significantly
hotter than the hottest day also considered in this model.

Figure 5.4: History of electricity prices EUROSTAT

Furthermore, the model is conservative in the fact that it assumes it has no knowledge when the ship
will arrive except the ETA and a delay corresponding to a distribution. However, in reality a ship will
for example notify if its running later or coming in earlier ahead of actually arriving. This could also
give time to change decisions, which could be explored with a model predictive controller with a rolling
horizon, which could take this initial power allocation as a base.
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For small fleet sizes it would be more accurate to model the working and charging decisions as binary
or integer decisions as well as individual SOC tracking. However, due to the complexity of the model
with uncertainty it is chosen to model them as continuous values and aggregated SOC. The benefit
of this is that it does scale well with larger ports with more equipment, but looses out on per vehicle
planning. This is also the case for the binary indicator for the BES as this could charge and discharge
simultaneously due to no strict enforcement. Adding this binary indicator would improve the results for
the BES cases, but would come at a significant computational cost. Further improvements in modeling
these characteristics, while still maintaining reasonable solve time can be investigated further

Additionally, the model currently dictates how much power should go to the cluster of Reefers and
battery handling equipment. This could be analyzed further by a model/optimization which delegates
this power on an individual level, i.e. per reefer from the total power allocation in this model. This
could allow for per level equipment scheduling instead of pooled power

Also, if container terminals will start to carry more chilled reefers instead of frozen reefers, more power
will be required. The port analyzed mostly adapts frozen containers and is also modeled this way in
the optimization model. Chilled reefers however are less flexible in temperature tolerance ranges and
will also require more power for these types of chilled goods. Modeling this behavior for chilled goods
could be very significant for container terminals these types of reefers.

The actual demand for shore power can also be further analyzed as there is inconsistency in the reported
required demand. Many reports in the Netherlands examined the emissions from inland vessels, but
these values range quite significantly and an analysis for expected shore power demand per inland vessel
type will be insightful to more accurately depict this additional demand.

Sizing of batteries and charging speed limits can also be tweaked further or optimized to a container
terminals operational desires by changing these parameters or by making additional first stage or multi
stage decisions. A container terminal might for example prefer more BCHE with smaller battery size
compared to fewer BCHE with higher capacities. The current battery size chosen for this particular
terminal was large and might be too costly, but can also easily be replaced by one of the smaller options
available on the market.

Integration of renewable energy sources within this energy management system can be investigated as
well. Currently the BES is only used for shifting loads, but would work better with integration of for
example solar energy, which terminals could implement to reduce their electricity bill further.



6
Conclusion

Main question: How can power scheduling scheduling of flexible loads for container terminal equipment
be optimized to minimize electricity and distribution system operator cost and what are the resulting
operational and economic impacts for an electrified terminal?

Sub questions:
1. What is the literature on power demand and management for container terminal equipment?

There is extensive literature about managing and optimzing power for single equipment such as
cranes, agvs and reefers as well as energy management systems for the entire container terminal.
These energy management systems for container terminals are often referred to as micro-grids
and typically implement power loads such as cold-ironing, crane power and renewable energy.
These micro-grids can also implement logistic loads related to container handling in these ter-
minals. This energy and logistic equipment are intertwined in an energy-logistic problem and
tackling this problem can reduce energy costs as well as possibly optimizing the logistics around
container terminal operation.

2. What are the relevant system operator contracts and costs for electricity consumers such as con-
tainer terminals?

Large electricty consumers such as container terminals also have to pay for the transmission
fees and their installed capacity. These costs consider the type of station to which they are
connected; monthly costs for their contracted capacity; monthly costs for the maximum power
used in a 15 minute interval and other fixed and flat rate fees. DSO Stedin also offer flexible
contracts to help mitigate grid congestion and help avoid disturbances or congestion during
maintenance which limit the capacity on fixed times, day-ahead or even intraday and real-time.
Partaking in these contracts is also incentivize by for example reducing the system operator feed
or by reimbursement. For container terminals these intraday and real-time contracts can be
complex to manage and are also often not the typical applicant for these type of contracts. But
the static limits such as the TCTR and fixed static reductions could be implemented considering
the port has flexible loads, such as: the cooling of reefers, charging of equipment and possibly
the use of a battery energy storage. This is also the case for the day-ahead capacity limiting
contract. However these contracts can only be used if their is mutual benefit for both the
container terminal and the DSO, as for example the TCTR can not be used if a region or
station is congested.

3. How can the operations and power demand be modeled, considering all equipment’s energy con-
sumption and ship arrival uncertainty?

The logistics and power scheduling of the equipment can be modeled with mixed integer pro-
gramming. To also take into account uncertain ship arrival this problem is turned into a
two-stage stochastic optimization. This allows for decisions to be made before the uncertain
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ship arrival is known, which avoids optimizing the problem with perfect information which is
often not very practical in a dynamic logistic setting such as container terminals

. The flexible power loads such as charging or discharging of batteries and the cooling of reefers
can be manipulated and scheduled beforehand to accommodate for the uncertain ship arrival.

4. Can full electrification of container terminal be achieved with limited grid capacity and current
working scheme? – Case study

After the model has been formalized and all the parameters for the specific case have been
determined it can be assessed wether full electrification with current contracted capacity is fea-
sible. However, despite using many flexible assests such as the battery energy storage, charging
of equipment and energy storage system for cranes it is still not feasible for the container ter-
minal to make the transition towards full electrification given the current contracted capacity.
Therefore additional capacity will have to be obtained for this transition.

5. How much capacity would be necessary for a port considering full electrification and different
operational levels, electricity pricing contracts and dso fees

The necessary contracted capacity will be optimized as a first stage variable along side other
first stage power variables to minimize the costs for electricity as well as costs associated to fees
from the distribution system operator. The resulting determined contracted capacity depends
on the flexible assets implemented in the port as well as electricity price and operational load
and ambient temperature. As the contracted capacity is not something that can be continuously
changed day by day, a sufficiently high contracted capacity will be chosen which would still allow
for feasible operation as well as allow for optimal power usage with the associated electricity
contract. From the results it can be seen that the contracted capacity used for a dynamic
electricity price contract will be higher compared to a fixed electricity price. This is because
the model tries to maximize power usage during times with low electricity prices which will
result in lower costs compared to having a lower contracted capacity costs and having to use
more power during times with higher electricity prices. But for fixed electricity pricing the only
incentive is to minimize the maximum power and contracted capacity as there is no difference
between electricity prices over time. Furthermore it can be observed that additional flexibility

6. What energy contracts and contracted capacity contracts would be most beneficial for the studied
port and could other contract options offered by DSO work for studied port.

The Time Costrained Tranport Right contract(TCTR) has been analyzed which is a capacity
that is only available for certain time blocks considering local congestion. The most common
case is for example between 00:00-06:00, during this time additional capacity is availble during
which flexible assests can be charged or cooled. This contract will be analyzed on top of the
already existing contracted capacity and the additional capacity required between 0:00 and
6:00 will be optimized. From the results for an average working day it can already be seen that
with no Battery energy storage or flexible cooling of reefers that this contract would not be
sufficient on top of the existing contracted capacity, no matter how high the additional starting
capacity would be. As there is not enough flexibility to use the power during these early hours.
The configuration with just a battery energy storage system will also not succeed during the
hottest day and an even larger battery would be required to make this happen. When there is
flexible reefer cooling the required additional capacity necessary for the hottest day and heavy
operational load is determined to be 300 kW. However, when this contract is calculated through
for the rest of the year it is deemed as more costly

To answer the main research question. This thesis aimed in assisting container terminals towards
fully electrifying, by scheduling powers such as charging batteries and cooling of reefers to ensure
the container terminal stays within its contracted capacity even with uncertain arrival of ships. This
contracted capacity can be optimized with this model for a terminals flexible assets configuration by
considering the fees from the DSO to determine an appropriate capacity based on analyzing multiple
scenarios. It is found that with current electricity prices, the dynamic electricity pricing is always more
beneficial (Table 5.12 & 5.13) despite the slightly higher DSO costs by utilizing a higher contracted
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capacity (Table 5.10), as can be seen in and maximum power, which would put more strain on the
grid in the Netherlands. Equipment is charged more and reefers cool more during these times of low
electricity prices avoiding the higher electricity peaks throughout the day. For fixed electricity pricing,
cooling and charging is spread out as much as possible throughout the day to reduce the cost related
to contracted capacity and maximum power used

Fees related to this maximum power usage could increase in the future as the electric infrastructure in
the Netherlands is increasing and grid congestion becomes a larger topic. The TCTR contract aimed
at providing power outside peak-hour demand, often between 00:00-06:00 would also come with an
incentive in the form of a reduction in DSO fees. The required extra capacity in this contract type
would be 300 kW (Table 5.17) and would only be feasible if the container terminal had the ability to
flexibly cool the refrigerated containers, as reefers who strictly maintain there internal set temperature
would exceed the contracted capacity later during the day as ships and cranes would be operating. When
there are refrigerated containers that can flexibly cool their internal load within a 1 ◦C temperature
tolerance, they would be cooling extra in the morning between 00:00 and 06:00. Similarly, the battery
container handling equipment would also charge more during this interval as well as the battery energy
storage, if applicable. However for this specific terminal this reduction in DSO fees is not enough to
consider this type of contract (Table 5.19 & 5.20), especially as it also involves significant load shifting
and would likely choose for a larger continuous contracted capacity. For avoiding local grid congestion,
adjustments in power behavior would need more incentive to help alleviate congestion further.
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A.1. Electricity prices 2024

Figure A.1: Varying hourly prices for 2024 workdays (buy cost without taxes and fees), data from
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Figure A.2: Varying hourly prices for 2024 weekends (buy cost without taxes and fees), data from
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A.2. Ship classes

Figure A.3: CEMT Classes of ships part 1 [101]



A.3. Distribution fitting 83

Figure A.4: CEMT Classes of ships part 2 [101]

A.3. Distribution fitting
Table A.1: Fit Statistics for Various Distributions

Distribution sumsquare_error AIC BIC KS Statistic KS p-value

genhyperbolic 1.5743 451.6611 468.3967 0.0534 0.5694

laplace_asymmetric 1.6141 445.8787 455.9200 0.0498 0.6559

dgamma 1.6355 444.5963 454.6376 0.0626 0.3683

Continued on next page
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Table A.1 – Continued from previous page

Distribution sumsquare_error AIC BIC KS Statistic KS p-value

skewcauchy 1.6467 488.0257 498.0670 0.0798 0.1303

foldcauchy 1.6598 457.1731 467.2144 0.0932 0.0486

laplace 1.6719 440.7989 447.4931 0.0617 0.3853

cauchy 1.6787 483.5927 490.2869 0.0672 0.2867

dweibull 1.6815 445.1109 455.1522 0.0605 0.4095

gennorm 1.7837 435.6970 445.7383 0.0667 0.2948

hypsecant 1.9587 433.5909 440.2851 0.0645 0.3332

vonmises_line 1.9963 397.0896 407.1309 0.1125 0.0090

vonmises 2.0076 407.6059 417.6473 0.0768 0.1592

burr 2.0461 431.8706 445.2590 0.0710 0.2288

genlogistic 2.0467 429.6601 439.7014 0.0710 0.2293

mielke 2.0493 430.9419 444.3303 0.0718 0.2187

logistic 2.0578 426.8034 433.4976 0.0747 0.1827

triang 2.1495 395.3594 405.4008 0.1048 0.0184

recipinvgauss 2.1659 420.3240 430.3654 0.0861 0.0839

alpha 2.1709 424.0231 434.0644 0.1026 0.0222

invgamma 2.1716 418.1867 428.2281 0.0922 0.0526

skewnorm 2.1747 417.5261 427.5674 0.0817 0.1146

betaprime 2.1764 419.3890 432.7775 0.0819 0.1133

powerlognorm 2.1770 419.3060 432.6944 0.0824 0.1092

fatiguelife 2.1786 417.1670 427.2083 0.0824 0.1089

johnsonsu 2.1787 419.1949 432.5833 0.0827 0.1070

lognorm 2.1790 417.1516 427.1929 0.0826 0.1080

geninvgauss 2.1790 419.1447 432.5331 0.0826 0.1079

pearson3 2.1790 417.1428 427.1841 0.0826 0.1079

erlang 2.1792 417.1286 427.1699 0.0826 0.1077

gamma 2.1792 417.1307 427.1721 0.0826 0.1076

nakagami 2.1794 417.1029 427.1443 0.0824 0.1088

norminvgauss 2.1798 419.1544 432.5428 0.0838 0.0992

powernorm 2.1823 416.8787 426.9200 0.0831 0.1040

jf_skew_t 2.1825 418.9512 432.3397 0.0844 0.0948

exponnorm 2.1844 416.7979 426.8392 0.0851 0.0899

nct 2.1849 418.7245 432.1129 0.0851 0.0900

exponweib 2.1862 424.4012 437.7896 0.1054 0.0175

Continued on next page
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Table A.1 – Continued from previous page

Distribution sumsquare_error AIC BIC KS Statistic KS p-value

norm 2.1868 414.6128 421.3070 0.0858 0.0854

t 2.1868 416.6128 426.6541 0.0858 0.0854

crystalball 2.1868 418.6128 432.0012 0.0858 0.0854

loggamma 2.1929 416.0787 426.1200 0.0879 0.0734

invgauss 2.1974 419.0100 429.0513 0.1078 0.0141

gengamma 2.2110 415.7296 429.1181 0.0846 0.0937

johnsonsb 2.2194 415.1149 428.5033 0.0852 0.0892

genextreme 2.2210 411.9507 421.9920 0.0868 0.0793

burr12 2.2310 413.3938 426.7822 0.0856 0.0871

beta 2.2391 413.1070 426.4954 0.0869 0.0790

gausshyper 2.2442 416.5542 436.6369 0.0876 0.0752

weibull_min 2.2447 410.1221 420.1634 0.0866 0.0805

truncnorm 2.2737 401.6395 415.0279 0.1193 0.0046

cosine 2.3292 399.2923 405.9865 0.0929 0.0500

maxwell 2.3429 407.6702 414.3644 0.1342 0.0009

invweibull 2.3801 427.7861 437.8274 0.1343 0.0009

gumbel_r 2.3802 425.7813 432.4755 0.1343 0.0009

anglit 2.4681 385.3705 392.0648 0.1173 0.0057

gompertz 2.4750 387.9245 397.9658 0.1100 0.0114

kstwobign 2.5465 416.8699 423.5641 0.1603 0.0000

rayleigh 2.6061 395.1970 401.8912 0.1810 0.0000

moyal 2.6199 429.5415 436.2358 0.1544 0.0001

gumbel_l 2.6204 409.4865 416.1808 0.1413 0.0004

genexpon 2.6550 398.2858 415.0214 0.1902 0.0000

semicircular 2.7172 368.6038 375.2981 0.1478 0.0002

rice 2.7201 401.6817 411.7230 0.2239 0.0000

argus 2.7830 382.3719 392.4132 0.1850 0.0000

truncweibull_min 2.8649 368.3400 385.0755 0.1297 0.0015

landau 2.9329 460.1989 466.8931 0.2255 0.0000

powerlaw 3.0589 366.5878 376.6291 0.1875 0.0000

halfgennorm 3.1017 374.7006 384.7419 0.2361 0.0000

kappa3 3.1147 369.6128 379.6541 0.1995 0.0000

genhalflogistic 3.1260 365.8746 375.9159 0.1953 0.0000

uniform 3.1642 358.4247 365.1189 0.1793 0.0000

Continued on next page
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Table A.1 – Continued from previous page

Distribution sumsquare_error AIC BIC KS Statistic KS p-value

bradford 3.1651 360.4274 370.4687 0.1800 0.0000

wrapcauchy 3.1680 367.8540 377.8953 0.2047 0.0000

truncpareto 3.2377 397.1820 410.5705 0.2381 0.0000

ksone 3.2444 396.8890 406.9303 0.2123 0.0000

kappa4 3.2707 362.8017 376.1901 0.1935 0.0000

tukeylambda 3.3138 360.8329 370.8742 0.1890 0.0000

loglaplace 3.4199 440.5424 450.5837 0.2540 0.0000

trapz 3.4669 417.0040 430.3924 0.3445 0.0000

trapezoid 3.4669 417.0040 430.3924 0.3445 0.0000

truncexpon 3.5086 365.9021 375.9434 0.2706 0.0000

halfnorm 3.6633 393.7620 400.4562 0.2890 0.0000

wald 3.7130 436.0183 442.7125 0.2135 0.0000

rdist 3.7368 474.0611 484.1024 0.4778 0.0000

halflogistic 3.7726 402.7726 409.4668 0.2833 0.0000

gibrat 3.7891 434.8511 441.5453 0.2236 0.0000

lomax 4.0484 426.1490 436.1903 0.2626 0.0000

halfcauchy 4.1049 453.0134 459.7076 0.2899 0.0000

ncx2 4.1333 413.9079 427.2964 0.3249 0.0000

expon 4.3408 420.0438 426.7380 0.3143 0.0000

pareto 4.3408 422.0438 432.0851 0.3143 0.0000

levy_l 4.3427 509.3691 516.0633 0.4151 0.0000

levy 4.4107 515.4518 522.1460 0.4563 0.0000

genpareto 4.6447 478.9464 488.9877 0.3317 0.0000

arcsine 4.9469 389.5935 396.2877 0.2500 0.0000

foldnorm 5.1856 441.4405 451.4819 0.4780 0.0000

fisk 7.1879 495.7968 505.8381 0.4567 0.0000

ncf 7.2153 535.1780 551.9135 0.3799 0.0000

weibull_max 8.6321 497.2179 507.2592 0.5293 0.0000

f 9.5573 555.0858 568.4742 0.4673 0.0000

rel_breitwigner 10.5522 678.8219 688.8632 0.7396 0.0000

chi2 11.7276 524.7258 534.7671 0.6492 0.0000

chi 12.8766 684.0877 694.1291 0.7265 0.0000

exponpow 16.5439 590.4606 600.5019 0.7246 0.0000

dpareto_lognorm 32.1787 80.8865 100.9691 0.3303 0.0000

Continued on next page



A.4. Case 2 Pictures 87

Table A.1 – Continued from previous page

Distribution sumsquare_error AIC BIC KS Statistic KS p-value

vonmises_fisher inf inf inf NaN NaN

multivariate_normal inf inf inf NaN NaN

rv_histogram inf inf inf NaN NaN

rv_continuous inf inf inf NaN NaN

reciprocal inf inf inf NaN NaN

irwinhall inf inf inf NaN NaN

kstwo inf inf inf NaN NaN

levy_stable inf inf inf NaN NaN

loguniform inf inf inf NaN NaN

studentized_range inf inf inf NaN NaN

_fit inf inf inf NaN NaN

A.4. Case 2 Pictures
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Figure A.5: Fixed electricity price cluster 1, fixed reefers, no battery energy storage
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Figure A.6: Fixed electricity price cluster 2, fixed reefers, no battery energy storage
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Figure A.7: Fixed electricity price cluster 3, fixed reefers, no battery energy storage
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Figure A.8: Fixed electricity price cluster 1, fixed reefers, with battery energy storage
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Figure A.9: Fixed electricity price cluster 2, fixed reefers, with battery energy storage
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Figure A.10: Fixed electricity price cluster 3, fixed reefers, with battery energy storage
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Figure A.11: Fixed electricity price cluster 1, flexible reefers, no battery energy storage



A.4. Case 2 Pictures 91

0 5 10 15 20

Time (hours)

0

50

100

150

200

250

300

P
ow

er
(k

W
)

Total Power profile across scenarios

Mean

Min-Max Interval

Contracted Capacity

0 5 10 15 20

Time (hours)

−20.00

−19.75

−19.50

−19.25

−19.00

−18.75

−18.50

−18.25

−18.00

T
em

p
er

at
u

re
(°

C
)

Reefer Temperature & Power

Reefer Temperature

Desired Temp

Upper Limit

Lower Limit

0 5 10 15 20

Time (hours)

0

20

40

60

80

100

120

140

P
ow

er
(k

W
)

BCHE Power & SOC

BCHE Power

0 5 10 15 20

Time (hours)

−0.04

−0.02

0.00

0.02

0.04

P
ow

er
(k

W
)

BES Power & Capacity

BES Charging

BES Discharging

0.230

0.235

0.240

0.245

0.250

P
ri

ce
(€

/k
W

h
)

Electricity Price

0

20

40

60

80

100

120

140

P
ow

er
(k

W
)

Reefer Power

20

30

40

50

60

70

80

90

100

S
O

C
(%

)

BCHE SOC

Max SOC

Min SOC

0

50

100

150

200

250

300

350

400

C
ap

ac
it

y
(k

W
h

)

BES Capacity

Max Charge

Min Charge

Figure A.12: Fixed electricity price cluster 2, flexible reefers, no battery energy storage
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Figure A.13: Fixed electricity price cluster 3, flexible reefers, no battery energy storage
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Figure A.14: Fixed electricity price cluster 1, flexible reefers, with battery energy storage
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Figure A.15: Fixed electricity price cluster 2, flexible reefers, with battery energy storage
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Figure A.16: Fixed electricity price cluster 3, flexible reefers, with battery energy storage
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Figure A.17: Dynamic electricity price cluster 4, fixed reefers, no battery energy storage
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Figure A.18: Dynamic electricity price cluster 5, fixed reefers, no battery energy storage
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Figure A.19: Dynamic electricity price cluster 6, fixed reefers, no battery energy storage
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Figure A.20: Dynamic electricity price cluster 4, fixed reefers, with battery energy storage
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Figure A.21: Dynamic electricity price cluster 5, fixed reefers, with battery energy storage
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Figure A.22: Dynamic electricity price cluster 6, fixed reefers, with battery energy storage
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Figure A.23: Dynamic electricity price cluster 4, flexible reefers, no battery energy storage
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Figure A.24: Dynamic electricity price cluster 5, flexible reefers, no battery energy storage
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Figure A.25: Dynamic electricity price cluster 6, flexible reefers, no battery energy storage



A.4. Case 2 Pictures 98

0 5 10 15 20

Time (hours)

0

100

200

300

400

P
ow

er
(k

W
)

Total Power profile across scenarios

Mean

Min-Max Interval

Contracted Capacity

0 5 10 15 20

Time (hours)

−20.00

−19.75

−19.50

−19.25

−19.00

−18.75

−18.50

−18.25

−18.00

T
em

p
er

at
u

re
(°

C
)

Reefer Temperature & Power

Reefer Temperature

Desired Temp

Upper Limit

Lower Limit

0 5 10 15 20

Time (hours)

0

50

100

150

200

250

300

350

400

P
ow

er
(k

W
)

BCHE Power & SOC

BCHE Power

0 5 10 15 20

Time (hours)

−60

−40

−20

0

20

40

60

80

P
ow

er
(k

W
)

BES Power & Capacity

BES Charging

BES Discharging

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

P
ri

ce
(€

/k
W

h
)

Electricity Price

0

50

100

150

200

250

300

P
ow

er
(k

W
)

Reefer Power

20

30

40

50

60

70

80

90

100

S
O

C
(%

)

BCHE SOC

Max SOC

Min SOC

100

150

200

250

300

350

400

C
ap

ac
it

y
(k

W
h

)

BES Capacity

Max Charge

Min Charge

Figure A.26: Dynamic electricity price cluster 4, flexible reefers, with battery energy storage
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Figure A.27: Dynamic electricity price cluster 5, flexible reefers, with battery energy storage
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Figure A.28: Dynamic electricity price cluster 6, flexible reefers, with battery energy storage
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Figure A.29: TCTR, Fixed electricity price cluster 1, flexible reefers, no battery energy storage
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Figure A.30: TCTR, Fixed electricity price cluster 2, flexible reefers, no battery energy storage
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Figure A.31: TCTR, Fixed electricity price cluster 3, flexible reefers, no battery energy storage
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Figure A.32: TCTR, Fixed electricity price cluster 1, flexible reefers, with battery energy storage
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Figure A.33: TCTR, Fixed electricity price cluster 2, flexible reefers, with battery energy storage
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Figure A.34: TCTR, Fixed electricity price cluster 3, flexible reefers, with battery energy storage
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Figure A.35: TCTR, Dynamic electricity price cluster 4, flexible reefers, no battery energy storage
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Figure A.36: TCTR, Dynamic electricity price cluster 5, flexible reefers, no battery energy storage
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Figure A.37: TCTR, Dynamic electricity price cluster 6, flexible reefers, no battery energy storage
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Figure A.38: TCTR, Dynamic electricity price cluster 4, flexible reefers, with battery energy storage
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Figure A.39: TCTR, Dynamic electricity price cluster 5, flexible reefers, with battery energy storage
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Figure A.40: TCTR, Dynamic electricity price cluster 6, flexible reefers, with battery energy storage
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Abstract. The encouraged transition to more sustainable ports and the increased
cost of energy prices has lead to improved energy efficiency measures and reduction
in greenhouse gas emissions. For the transition away from diesel fuels, electrification
of port has become a promising solution due to their efficiency, regeneration capabili-
ties and the increasing integration of renewable energy into the grid. To support this
transition, port equipment can be either directly powered by electricity or for mobile
equipment equipped with batteries. These batteries and energy storage systems can
also be implemented on equipment directly powered with electricity to capture and
store the regenerated electricity, further optimizing energy efficiency. Beyond power-
ing equipment and storing renewables these batteries also present an opportunity to
enhance port energy management through demand response strategies through load
management and electricity markets. This paper conducts a literature review of the
implementation of batteries and battery electric energy storage systems in container
terminal equipment and as a resource for demand response. Analyzing the literature
shows that implementing battery and energy storage systems in electrified container
terminals have significant benefits for energy efficiency, reduction of peak loads, re-
ducing the energy bill and reduction of greenhouse gas emissions.

Keywords: Electrification · Charging · Battery · Logistics decarbonisation · B-AGV
· Systematic literature review

1 Introduction

The objective of container terminals has for a long time been to maximize container through-
put as competitively as possible. However, there is a shift towards more sustainable opera-
tions as ports as an industry account for 3% of global greenhouse gas (GHG) emissions [27].
In light of these recent changes towards greater sustainability, port authorities will have to
take on a new role to include more energy efficient measures and better management of their
energy [5]. This can lead to energy savings, improve the green image of the port and provide
a competitive advantage. The approach to a more sustainable electric port has two sides,
the generation and the consumption side.

In terms of energy generation, port authorities can continue to invest in renewable energy
generation for their own use, such as wind power or photovoltaic cells and the possibility of
storing the excess energy generated in large stand alone batteries for later use.

From the consumption side, ports can achieve more sustainable operations and reduce
greenhouse gas (GHG) emissions by adapting their energy consumption through alternative
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energy sources, efficiency measures and better energy management. This can be applied to
port equipment by replacing typical diesel fuel powered equipment with electric, hydrogen
or other more sustainable fuels. It also involves assessing energy consumption within port
operations and minimizing it while still maintaining the high operational throughput a
container terminal requires. Additionally, managing available energy in an efficient manner
whether through self-generated electricity, from the grid, or other energy sources , ensures
more efficient and sustainable power use.

For this transition to more sustainable port operations, electrification is a promising so-
lution [47]. All of the equipment used in container terminals can be electrified, from quay
cranes, cold-ironing, gantry cranes, reefers to battery powering equipment such as auto-
mated guided vehicles. The power train of electric vehicles also have a higher efficiency
when compared to the diesel ICE [3], while also having regenerative capabilities with for
example regenerative breaking. Furthermore, full electrification also offers a universal solu-
tion to manage the energy usage in the port. However a fully electric port has its problems,
it can introduce large peaks of electricity demand when multiple equipment or ships are
drawing power simultaneously. Another logistical difficulty that arises is the downtime of
battery equipment due to charging, as this process still takes significantly longer than simply
refueling.

This literature review will discuss the implementation of battery and electric energy
storage systems for equipment in a container terminal and the extra possibilities for demand
response. It will include the potential benefits from adding a battery or electric energy
storage system to port equipment and the integration into port logistics. It will also discuss
the use of batteries from a port power management perspective.

The structure of this paper is as follows: Chapter 2 explains the methodology used to
find the relevant articles for this literature review. Chapter 3 briefly discusses the different
energy consumptions of container terminals. This is followed in Chapter 4 by an overview
of the current literature on battery and electric energy storage for equipment in container
terminals. This chapter is split into two parts, the first part discusses the equipment which is
fixed and directly supplied with electricity and the second part an overview of the charging
strategies for mobile equipment. Chapter 5 discusses the battery as a means of stabilizing,
storing and optimizing the use of electricity within a container terminal. Chapter 6 discusses
the gaps in the literature and future research opportunities and finally in Chapter 7 the
conclusion.

2 Methodology

This literature review was conducted using the Scopus database to identify relevant articles
and possible gaps in this area. A number of search strings were created using keywords
relevant to this topic and scanned to check suitability. To find the relevant articles, the titles
and abstracts were read first to check suitability before analysing the full text. A table 1 is
provided of the search process used to find the relevant articles for this paper. This table
also gives an overview of the search terms used and the resulting number of articles found
and how many were selected and found from related articles or snowballing.

Table 1: Finding of relevant articles

Search Results
( battery OR ess OR "energy storage system" ) AND ( rtg OR rmg OR qc OR gantry OR crane )

AND ( "container terminal" OR seaport OR port )
56

Continued on next page
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Table 1 – continued from previous page
Search Results

Relevant articles found for chapter 4 through search expression & articles found by related
articles and/or snowballing

26

( charging OR swap OR battery ) AND ( "straddle carrier" OR "yard truck" OR agv OR
"automated guided vehicle" OR "container handler" OR "reach stacker" OR "reachstacker" )

AND ( "container terminal" OR seaport OR port )

49

Relevant articles found for chapter 4 through search expression & articles found by related
articles and/or snowballing

28

( microgrid* OR smartgrid* OR "smart grid*" OR "demand response" OR "energy system" OR
"energy management system" ) AND ( "container terminal*" ) OR ( ( port* OR seaport* ) AND
( qc OR "quay crane*" OR "shore power" OR "cold-ironing" OR "cold ironing" OR reefer* OR
"refrigerated container*" OR "automated guided vehicle*" OR "battery swapping station" OR

rtg OR crane ) ) OR ( seaport AND "charging station" ) AND ALL ((battery OR ess OR
"energy storage system" OR "energy storage"))

121

Relevant articles found for chapter 5 through search expression & articles found by related
articles and/or snowballing

47

Articles found by related articles or snowballing

The chosen articles will be divided into three chapters based on how the Battery Energy
Storage System (BESS) or electric Energy Storage System (ESS) is integrated into the port,
as can been seen in Fig. 1. The first chapter will include the articles about the ESS/BESS
for the energy and peak shaving of stationary equipment, e.g. Ship-to-Shore cranes (STS).
This is then followed by the literature of batteries in mobile equipment and their charging
strategies. Lastly an overview of the literature for large stand alone BESS used in port
microgrids and energy management systems will be given.

Fig. 1: Overview of Chapters

3 Energy consumption

To get a better understanding of what the major drivers are for the energy consumption
in container terminals and where the possibilities lie for improvement, Wilmsmeier and
Spengler [19] made an analysis of trends in energy consumption by activity cluster, as seen
in Fig. 2. It takes into account the static energy consumption such as energy for building and
lighting as well as quay cranes (QC) and horizontal transport. It revealed that horizontal
activities accounted for the greatest and fastest-growing share of energy consumption in the
period between 2012 and 2015. In this research horizontal activities were defined as activities
that are carried out by RTGs, reach stackers, RMGs, etc. which are for a large part based
on diesel consumption. This means that impacting this cluster with cleaner and more energy
efficient equipment and measures, will have a significant impact. The variations in Fig. 2 are
due to differences in the operational layout of different terminals, with the share of undefined
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and other energy consumption decreasing over time because of higher quality data over the
years. Another major share of energy, which is not shown in the figure, will go to the cooling
of reefers and providing shore power for large ships while they are berthed and will replace
the power from their auxiliary engines.

Fig. 2: Median litres of diesel equivalent consumed per activity cluster (excluding reefer cooling),
2012-2015 [19]

4 Battery and energy storage for equipment

Electrifying port equipment such as Automated Guided Vehicles (AGVs), terminal trucks,
empty container handlers and reachstackers present a challenge due to the fact that charging
increases the down time. Unlike diesel-powered equipment, which can operate continuously
with quick refueling, battery-electric alternatives require downtime for recharging, poten-
tially reducing operational efficiency. To maintain the same level of operations, ports must
either invest in a larger fleet of vehicles or adopt other energy management solutions. These
vehicles operate dynamically across large areas, making fixed power connections difficult.
As a result, their transition to electric power depends heavily on advancements in battery
technology and charging infrastructure.

While several types of port equipment have successfully transitioned to direct electrical
supply, such as: quay cranes (QC), yard cranes (YC), and both rubber-tired and rail-mounted
gantry cranes (RTG, RMG) with e.g. a cable reel or busbar [4]. However, cranes can still
profit from the implementation of an electric ESS to optimize their power flows and make
use of the regenerative capabilities, predominantly from the lowering of containers.

This chapter will discuss the use for batteries and ESS for equipment with direct power
supply from the grid in chapter 4.1 and the equipment without a direct electrical supply
and how these mobile batteries should be charged during operation in chapter 4.2.
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4.1 Connected equipment

Cranes, particularly ship-to-shore (STS), RTG, RMG and shore power (cold-ironing) have
a distinctive load profile due to their sudden load peaks. RTG cranes, for example, have a
wide range of power requirements, varying from 10kW to 350kW, 170kW regen power and
a maximum of 30kW auxiliary power [40]. In order to manage these fluctuating loads and
reduce costs, an ESS can be implemented to utilize the regenerative energy from the lowering
of containers. Due to the characteristics of these load profiles, both energy storage with high
power, energy densities and fast response time are required. Installing the most prominent
and suitable technology devices such as battery energy storage (BES), supercapacitors (SC)
and flywheel energy storage (FES) acting as ESS [78] provides this opportunity. An overview
of the different ESS and their characteristics can be seen in Fig. 3.

Peak shaving (PS) can minimize the maximum load demand and facilitate the participa-
tion of small renewable generation. One of the challenges for cranes that are solely powered
by a diesel generator is that they cannot benefit from regeneration capabilities. Addition-
ally, the diesel generators used had to be oversized to meet the highest peak energy demands
during operations, resulting in that the diesel generators would not be operating at their
optimum load most of the time. This is also true for an electrical power source, as the grid
would have to handle the entire peak demand from which the substation capacity may have
to be increased to handle this demand, these peaks could also result in higher electricity
bills. To tackle these problems many new hybrid combinations can be implemented, with
the aforementioned energy storage systems, taking advantage of their characteristics and
optimizing power flows.

Fig. 3: Energy density of ESS Farhadi and Mohammed [14]

Battery energy storage: One of the possible hybrid combinations is that of a diesel
generator combined with a battery. As mentioned before the implementation of such a
storage device allows for reducing the diesel Generator Sets (GenSet), as the battery is
charged by the GenSet and helps overcome the peak loads and regenerates during loading.
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This hybrid combination was dicussed for a port crane by Ovrum and Bergh [11], with a
hybrid control strategy. The implemented lithium battery of 156 KWh reduced the diesel
GenSet from 3x960 KW to 2x960 KW with one kept for redundancy. Similarly, a RTG crane
was turned to this hybrid by Niu et al. [28]. Replacing the old diesel engine of 410 kW and
generator of 322 kW to A 128-kWh lithium battery and a 50 kW diesel generator to charge
the battery, which output power was controlled by a 60 kW Active Front End (AFE). With
the use of a thermostat control method the battery was charged when State Of Charge
(SOC) was below 0.5 and turned off when SOC is greater than 0.8. SOC control was also
used by Hong-lei, Wei, and Jian-Xin [44] with a lower and a higher threshold. Below the low
threshold the GenSet supplies load requirement, when above the high threshold the GenSet
is switched off and when in between the thresholds it maintains its last state. The hybrid
RTG reduced the conventional 322 KW diesel GenSet to a 50 KW diesel GenSet and 128
KWh (640 Vdc/200 Ah) lithium battery. To improve upon the usual control measures such
as the SOC control, Kusakaka, Phiri, and Numbi [66] proposes a deterministic non-linear
optimization approach to solve the power dispatch, which is investigated for a hybrid diesel
(410 kW)/battery (128 kWh) RTG and minimizes the resulting energy costs.

Supercapacitor energy storage: SC is an energy storage that can charge and discharge
much faster than a regular battery by storing energy electrostatically rather than converting
the charge to another form, such as mechanical energy in flywheels or chemical energy in
batteries. They also have a much higher cycle life compared to li-ion batteries [14], but
a lower lifespan. SCs have limited storage capacity, but these characteristics make them
ideal for scenarios where burst of energy are required, for example the lifting and loading
of a heavy container. A comparison is made by Antonelli et al. [22] between a SC stack
versus a battery stack for the application of a hybrid RTG crane with diesel GenSet. In
this comparison SCs were the first choice in terms of offered performance and costs, due
to the load profile being oriented towards charging or discharging in a few seconds at high
current rates. In this aspect the SCs excel due to their high depth of discharge (DOD)
and power density. However, high power lithium batteries were found to be competitive
as well if correctly sized. A new energy management system was introduced by Corral-
Vega, Fernández-Ramírez, and García-Triviño [42], which is able to regulate the operation
of the SCs through a DC bus voltage control by using two cascaded control loops. This
implementation has a low investment cost while still reducing fuel by 21%, which results in
an internal rate of return of 78%, which could make it a worthwhile investment.

Supercapacitors also offer a promising solution to STS cranes. Parise and Honorati [7]
suggests an evoluted drive system with a SC for the port cranes in order to optimize the
energy absorptions. This solution allows PS of 90 % and reduces energy consumption up to
57%. The economic efficiency of peak demand reduction in STS cranes based on SC energy
storage sizing is further investigated by Kermani et al. [56], by applying a particle swarm
optimization (PSO) algorithm for the optimization. The results show the SC significantly
reduces the peak demand by PS as well as increasing the load factor, load leveling and
reducing the energy cost.

Flywheel energy storage: A flywheel can store rotational energy by spinning, the amount
of energy is determined by the inertia of the flywheel and its rotational speed. The flywheel
can be sped up to store electricity from the grid, generator or while lowering containers
and also be slowed down again to utilize the energy. FES also has a higher cycle life when
compared to li-ion batteries [14] and a high life span of up to 20 years.
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The integration of a harbor crane and flywheel energy storage has been investigated by
Ahamad et al. [36], where the dc-link control and modeling of a FES is discussed. Results
showed that with the proposed method the dc-link voltage can be held constant and energy
can be regenerated into the FES while lowering the containers, which can greatly maintain
the supply quality and enhance the energy efficiency. Pietrosanti, Holderbaum, and Becerra
[17] implemented a flywheel with a total capacity of 3.34 MJ and a power management
strategy to minimize the energy costs of a grid or diesel powered RTG. Besides achieving a
38.47 % reduction of fuel, the percentage of time for peak demands above 150 and 200 KW
also reduced significantly from 3.997% to 1.356 % and 0.0437 % to 0.0028 % respectively.
Pietrosanti, Alasali, and Holderbaum [58] expanded on previous work with the FES by
adding a fuzzy logic controller, which improved on the robustness of the typical PI controller
and gained better results comparatively. Kermani et al. [33] used two strategies for peak load
shaving of a STS crane: duty cycle coordination between the cranes based on PSO algorithm
and utilization of FES to make a power balance between generation and demand side. This
method achieved 82.3 % PS for a network of 10 STS cranes.

Generalised Energy storage: Alasali et al. investigated ESSs for an electric RTG (ERTG).
Alasali et al. [21] started with a Model Predictive Controller (MPC) to optimize the power
flows of a general energy storage and an electric RTG, powered through conductor rail,
which reduced the electricity cost and peak power demand. The Model predictive controller
outperformed both the optimal energy controller and set-point control. It could also poten-
tially minimize the stress on the electrical infrastructure at the port and avoid the need to
upgrade or build a new substation. Alasali, Haben, and Holderbaum [38] followed up on
previous paper introducing a stochastic model predictive controller aiming to improve the
reliability and economic performance for two RTG cranes, to better forecast the volatile
power demand. A central ESS for the two RTG cranes is also compared to two individual
ESS per RTG. The annual electricity bill savings for the central ESS and for the two indi-
vidual ESS were 7.99%, 7.87% respectively. Shortly after this research, Alasali, Haben, and
Holderbaum [37] continued with the central ESS for two gantry cranes and now an off-line
stochastic optimal controller without the previously implemented rolling forecast model,
which assumed knowing the container weights and crane moves ahead of time

Active front end: It is complicated to use all regenerated energy because of the technical
and economic constraints of ESS technologies. For this purpose an Active Front End (AFE)
could provide a solution. This AFE is a controllable rectifier providing a bidirectional power
exchange between AC and DC power. The DC energy created from lowering a container can
be fed into the grid, which can subsequently be used by another RTG crane for example to
help hoist a container.

Luque et al. [16], Pietrosanti et al. [18] and further worked on by Alasali et al. [39] focus
on the implementation of active front end. The latter paper’s focus on two RTG cranes
network with and without ESS or AFE. The energy storage considered is a FES powered
by a 150 kW switched reluctance motor and stores up 3.6 MJ of energy. The AFE as a
bi-directional converter allows for the regenerated power during lowering to be fed back into
the electrical network of the port terminal, which could then be used by other cranes in this
network during e.g. hoisting when modeled as a switch, reducing the peak power demand.
This system is modeled using a PI controller, where the model aims to regulate the DC
voltage at each RTG crane bus system by setting a reference value which helps to minimize
the regenerative power that goes to the dump resistors and also protects the network. The
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ESS approach resulted in a total of 30 % energy saving compared to the 47 % of the AFE
approach and AFE also showed better PS capabilities.

Battery and supercapacitor energy storage: Combining the battery and SC has the
benefit of the large power density from SC for peak power and the large energy density from
the battery for greater storage.

Bolonne and Chandima [40] reduced old 400 KW diesel generator with a new energy
management system for a RTG. This system consists of a 200 kW variable speed diesel
generator (VSDG) with a 250 kW active front end (AFE) to control the output power,
along with a 13.8 kWh/75 kW Li-ion battery and a 3.10kWh/250 kW SC to provide the
peak power demand. The battery and SC banks absorb the regenerated power and the
battery provides the energy for the auxiliary systems when idling. When the batteries’ state
of charge is less than 40%, VSDG will be used to charge the battery to 60%. Chen et al. [41]
proposes another diesel GenSet, battery and SC hybrid for RTG cranes. A 300 KW diesel
generator is reduced to only a 20 kW diesel generator combined with an AFE, a battery
pack with 73.9 KWh/147.8 KW and a 3.7 MJ SC. The SoC variation of the battery is again
limited between 0.5 and 0.8 to avoid the impacts of deep discharging and overcharging and a
total of 72.8 % fuel reduction was achieved. Zhao, Schofield, and Niu [20] Propose (ZEBRA)
battery as the prime energy source for RTG crane and SC to handle the large peak transient
current. The hybrid energy storage systems are designed for both short- and long-period
operation, which results in effective energy conversion and lower emissions.

Supercapacitor and flywheel energy storage Similar to the battery and SC approach is
the integration of FES and SC. Parise et al. [30] implemented the coordination of STS cranes’
duty cycles with a Power Optimization Tool (POT) And a combination of SC and FES.
These two ESSs work together in leveling and lowering the maximum power demand. On each
crane, a reduced number of SCs are fitted and in the ports’ substation a flywheel is operating
on the simultaneous behavior of the crane network. With this approach a peakshaving of
85 % could be realised for a group of 5 STS cranes. Whereas PS is focused on reducing
peaks, load leveling attempts to flatten the entire load for STS cranes’ power supply from
two transformers substation increasing the reliability. In contrast to the previous case that
an operation delay method was considered, an optimal handling time based on the PSO
algorithm is obtained by Kermani et al. [48] to maximize regenerated energy by the cranes
into the dc bus which makes other cranes able to use this energy.

Energy savings To give an overview of the potential gains from implementing an ESS,
table 2 is made. This table lists the source; equipment and its main power source; The
implemented ESS/ESSs; The method for their control; the energy/ fuel saving achieved; the
reduction of the peak power used.

Table 2: Overview of ESS applied in cranes.

Source Equipment,
E-Source

BES SC FES GES Method Energy/fuel
saving

PS

Ovrum and
Bergh [11]

Port crane,
Diesel
GenSet

✓ ✗ ✗ ✗ PID control 30% -

Continued on next page
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Table 2 – continued from previous page

Source Equipment,
E-Source

BES SC FES GES Method Energy/fuel
saving

PS

Niu et al.
[28]

RTG, Diesel
GenSet

✓ ✗ ✗ ✗ SOC control 57% -

Hong-lei,
Wei, and
Jian-Xin

[44]

RTG, Diesel
GenSet

✓ ✗ ✗ ✗ SOC control 73.9% -

Kusakaka,
Phiri, and
Numbi [66]

RTG, Diesel
GenSet

✓ ✗ ✗ ✗ Deterministic
non-linear

optimization

76.04% (cost) -

Parise and
Honorati [7]

STS, Grid ✗ ✓ ✗ ✗ Logic control 57 % 90 %

Kermani
et al. [56]

STS, Grid ✗ ✓ ✗ ✗ PSO - 62 %

Corral-
Vega,

Fernández-
Ramírez,

and García-
Triviño [42]

RTG, Diesel
GenSet

✗ ✓ ✗ ✗ DC/SOC
control

21% -

Antonelli
et al. [22]

RTG, Diesel
GenSet

- ✓ ✗ ✗ SOC control,
internal

algorithm

30-60% -

Zhao,
Schofield,

and Niu [20]

RTG,
Battery

✓ ✓ ✗ ✗ Double
closed-loop PI

control

71.5% -

Bolonne
and

Chandima
[40]

RTG, Diesel
GenSet

✓ ✓ ✗ ✗ State machine
controller

27% (to other
hybrid)

-

Chen et al.
[41]

RTG, Diesel
GenSet

✓ ✓ ✗ ✗ Game-based 72.8% 88%

Parise et al.
[30]

STS, Grid ✗ ✓ ✓ ✗ POT - 85%

Kermani
et al. [48]

STS, Grid ✗ ✓ ✓ ✗ PSO - -

Pietrosanti,
Holder-

baum, and
Becerra [17]

RTG, Diesel
or Grid

✗ ✗ ✓ ✗ Optimal control 38.47% -

Kermani
et al. [33]

STS, Grid ✗ ✗ ✓ ✗ PSO - 82.3 %

Pietrosanti,
Alasali, and
Holderbaum

[58]

ERTG,
Grid

✗ ✗ ✓ ✗ Fuzzy logic 32% -

Alasali
et al. [21]

ERTG,
Grid

✗ ✗ ✗ ✓ MPC - 28.9%

Alasali,
Haben, and
Holderbaum

[37]

ERTG,
Grid

✗ ✗ ✗ ✓ SMPC - 32.8%

Alasali,
Haben, and
Holderbaum

[38]

ERTG,
Grid

✗ ✗ ✗ ✓ Genetic
Algorithm

- 28.7%

E-Source: Main Energy Source, BES: Battery energy storage, SC: Supercapacitor, FES: Flywheel
Energy Storage, GES: General Energy Storage (Energy storage not specified, general approach),
PS: Peak Shaving

Continued on next page
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Table 2 – continued from previous page

Source Equipment,
E-Source

BES SC FES GES Method Energy/fuel
saving

PS

Because it is difficult to compare the possible energy or fuel savings from all of the
implemented hybrid systems, due to the different crane models, different controllers and
various sizing of e.g. diesel GenSets before and after hybrid transformation and ESSs equiped.
Vlahopoulos and Bouhouras [85] compares the solutions for the RTG diesel and ESS hybrids
in a case study and determines an average liter diesel used by the diesel generator per move
as the performance indicator.

Papaioannou et al. [29] analyzed the energy usage per motor for a RTG and found that
during average operations the following energy distribution holds: hoist energy share was
62 %; gantry energy share 31 % and 7 % for trolley, idle and losses. The potential energy
recovery ability for hoisting in normal operations was 84 % to 89 % and for gantry 4 %
to 5 %. For a Ship to Shore crane this absorb potential is up to 90 % [49] with similar
characteristics of peak loads from hoisting and lowering as that of the RTG. It is assumed
that the energy share for hoisting with STS crane is larger than that of the RTG crane, as
the horizontal travel distances are shorter and only the trolley moves over the crane, instead
of the total weight of the RTG. From graph in [32] it is assumed that the hoisting energy
accounts for approximately 75 % of the total energy.

To approximate the energy saving from the potential energy recovery of adding a properly
sized ESS (capable of peak load), equation (1) is used considering the Round Trip Efficiency
(RTE). Which is an indicator of how much of the mechanical energy from for example
lowering the container and then storing it into the ESS, which can be used again to power
the motors. The RTE includes the converter efficiency to transmit the electricity to and
from the ESS, including the RTE of the ESS itself. For batteries, SCs and flywheels it is
usually transmitted to a DC bus which would require a AC/DC and DC/DC converter steps,
however there also flywheels which work with AC.

Energy saving RTG = 0.62 ∗ 0.85 ∗RTE + 0.31 ∗ 0.04 ∗RTE (1)

Energy saving STS = 0.75 ∗ 0.90 ∗RTE (2)

Fig. 4: Diesel generator efficiency
curve [81]

Efficiency Value
ηDC/AC 0.97-0.98
ηAC/AC 0.95-0.98
ηAC/DC 0.95
ηDC/DC 0.98
ηBES 0.60-0.90
ηSC 0.90-0.95
ηFES 0.85-0.95

Table 3: Power converter efficiency
[68] and ESS efficiency [53], [23],
[52]

Furthermore the extra efficiency from changing the diesel GenSet could also be con-
sidered when is chosen for a reduced GenSet plus battery, see Fig. 4.1, as an addition to



Battery and ESS in ports 11

Li-Ion BES SC FES
Energy saving
RTG, regen

∼ 41 % ∼ 46 % ∼ 44 %

Energy saving
STS, regen

∼ 52 % ∼ 58 % ∼ 55 %

Table 4: Energy saving from regeneration

equation (1) and (2). When the total investment cost for the properly sized ESS and the
RTE is known, a total cost of ownership can be made to see the benefits of using such a
hybrid system.

4.2 Disconnected equipment

For the container transportation on the yard side, besides the gantry cranes mentioned in the
previous subchapter, there are many pieces of equipment which can be used for transporting
containers. Some of these options are automated guided vehicles (AGV), straddle carriers,
reach stackers, empty container handlers, yard trucks and forklifts. These pieces of equipment
can not be directly charged through a direct connection, as they move freely through the
yard area. This means that for electrification these pieces of equipment will have to switch to
a battery alternative. This however comes with the downside that they will have to recharge,
which increases there downtime. Battery size and charging speeds are also limited, which
poses a challenge for heavy industrial vehicles which have large power demands.

Beside literature about AGVs there exists little literature about the electrification of
reachstackers, straddle carriers or yard trucks in container terminals. Four papers have been
found in this search discussing the implementation of a fuell cell based yard truck in port
operations [96], [61], [79], [63]. However Di Ilio et al. [61] made a preliminary design for a
fuel cell and battery hybrid alternative for a yard truck is made and assessed, outperforming
its original diesel variant.

For the horizontal transport between the quayside and yard side in large container ter-
minals the Automated Guided Vehicle (AGV) is mostly used, due to their optimizable man-
agement and thereby increased throughput. Similar to the batteries and ESSs discussed in
the previous section the AGV when shifted to a Battery-AGV (B-AGV) could also benefit
from regenerative energy by reclaiming the kinetic energy through braking [77]. However,
as these batteries are not connected to a power supply during operations, the B-AGVs must
also be able to operate for long periods of time and/or have short recharge times so that
the B-AGV can be operational again. For a long time, this was not feasible or economically
viable due to insufficient battery performance. Bian et al. [9] noted that the new upcoming
battery technology could enable the use of electric AGVs in automated container terminals
in the future.

The potential for the B-AGV was assesed and the economic viability was optimized. It
was found that electric mobility is economically beneficial in container terminals because the
charging and maintenance costs of a B-AGV fleet are significantly lower than their diesel
counterpart, which can compensate for the higher investment costs of charging infrastructure
and spare batteries [13]. Furthermore it was found that using their controlled charging
strategy which used a Battery Swapping Station (BSS) the economic efficiency could be
increased even further, as can be seen in Fig. 5.

With this possibility to transition to B-AGVs, many papers have researched this topic to
come up with viable charging strategies and scheduling methods within container terminals
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to minimize B-AGV downtime. In these papers, two main strategies for implementing and
charging the B-AGVs emerge: Charging Stations (CS) for charging fixed batteries and BSS
for charging removable batteries.

Fig. 5: Economic viability AGV [13]

Charging fixed batteries: Starting with the B-AGVs that have a fixed battery, where
the vehicle is plugged in and charged at a Charging Station (CS), which is also the typical
method of recharging for regular electric vehicles used today. The downside of this method
is that the entire vehicle is not usable for operation instead of just the battery. Recently
to optimize this approach papers have investigated the implementation of CS inside an
automated container terminal (ACT).

To determine the optimal configuration of the charging stations and B-AGVs, Ma, Zhou,
and Stephen [67] made a discrete event simulation model to compare the performance of a
decentralized or centalized scheme and a conservative or progressive charging policy. From
the results it was determined that the decentralized layout, which are spread out charging
locations, and a progressive charging policy performed best.

Due to the dynamically changing environment in which the B-AGVs have to operate,
which has a negative on the performance of the B-AGV scheduling problem, Gao et al.
[107] proposed a digital-twin based decision support to improve the scheduling efficiency in
these complex scenarios. With recent technology allowing for faster charging, Li et al. [95]
investigated CS with fast charging capabilities while aiming to reduce the total charging
cost and penalty costs such as tardiness.

To improve the efficiency of the ACT, Sun et al. [97] implement a multi-resource col-
laborative scheduling of quay crane, B-AGV and yard crane to realize the integration of
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the scheduling plan along with the charging effects for the B-AGV. It then aims to achieve
energy saving of the terminal by quantifying the used energy.

Zhou et al. [116] address challenges due to limited charging station capacity and tight
vehicle schedules, using a Multiagent Q-Learning approach to optimize recharging decisions.
Which showed to perform better than rule-based heuristics and benefits from the consider-
ation of both assignment and scheduling at charging stations.

The disparity in energy consumption between B-AGVs in unloaded and loaded states
is adressed by Zhou et al. [117] and allows for more resilient B-AGV scheduling. A mixed-
integer programming model is developed with the objective of minimizing energy consump-
tion costs while satisfying AGV battery constraints and is solved with A Large Neighbour-
hood Search based algorithm. Similarly Song et al. [112] considers more detail of the B-AGV
operation with power under loaded and empty conditions as well as the non linearity of bat-
tery charging.

Che, Wang, and Zhou [106] approached the B-AGV charging problem as the recharging-
considered vehicle scheduling problem (R-VSP) for B-AGVs and aims to minimize the
makespan. Limited number of charging stations and tight schedules were considered with
scheduling based on the actor-critic multi-agent deep reinforcement learning framework, out-
performing distributed-agent deep reinforcement learning and several benchmark heuristics.

Battery swapping: Battery swapping involves replacing the entire battery from the par-
ticular equipment and replacing it with a charged battery inside a BSS. This approach has
the benefit that it decouples the energy-logistic relation more. As mentioned previously,
Schmidt et al. [13] implemented the BSS to asses the total cost of ownership for imple-
menting an ACT and B-AGVs with this approach. It also implements a controlled charging
strategy with the goal of minimizing the charging costs by charging the batteries in the BSS
at moments with low electricity prices, which proved to be a more cost efficient method.

Xiang and Liu [72] implemented both the CS and Battery Swapping Station approach
for battery recovery of the AGV into a Semi-Open Queuing Network (SOQN). The differ-
ent strategies were investigated by comparing annual cost and results show that the BSS
performs better than the CS strategy unless the price of the spare battery is very high.

A speed control strategy was developed by Yang et al. [102] that considers the traffic
environment of the terminal with the aim of energy conservation and emission reduction
and the BSS’s limited handling capacity is modeled to avoid congestion. Yang, Hu, and Jin
[101] also considers the limited handling capacity at the BSS. Zhou et al. [118] expanded on
the integration of a BSS with the aim for co-optimization of both operation and energy for
B-AGV. Minimizing both the makespan of B-AGVs and the maintenance cost of the imple-
mented energy system, using a multi-objective mathematical, which reduced the terminal
operation cost significantly.

Due to the heavy logistic environment of ACT, a two-stage stochastic programming
model for B-AGV task allocation and battery swapping joint scheduling problem with ran-
dom tasks in an uncertain environment with double-threshold battery constraint for B-AGVs
is investigated by [94].

An integrated scheduling model is created by Li et al. [108] that takes into account
different battery degradation for task assignment and battery swap time for B-AGVs, with
the aim of minimizing task completion time.

Xiao et al. [113] introduces battery swapping and opportunity charging modes into the B-
AGV system and proposes a new B-AGV scheduling problem considering the hybrid mode.
This reduced the average number of battery swapping times by 43.48%, and the total costby
7.2%.



14 I. Schriemer et al.

Charging constraints: The papers mentioned in the sections over the charging stations
and battery swapping stations implement different constraints for the B-AGVs and the
decision whether they should charge or not. To make an overview of the implemented battery
constraints and when the B-AGVs are scheduled for charging the papers’ strategies will be
categorized.

– Charged if depleted: The most common method is to check whether the battery is
depleted or has sufficient energy left. So the first category will be charging when the
B-AGV can no longer perform another task, so the B-AGV is scheduled to recharge.

– Charged lower threshold reached: The second common option is setting a lower threshold
for the SOC or used energy, instead of driving till the battery is depleted, avoiding a
high DOD.

– Dual threshold charging: Similarly a dual threshold charging strategy works with an
opportunity interval from a higher SOC to a mandatory charging SOC for the B-AGV to
be scheduled. This is for example implemented by Gao et al. [107] where the opportunity
interval starts when the SOC is below the high threshold of 80% SOC and ends at 20%,
after which the mandatory interval starts and charging will be enforced.

– Triple threshold charging: Ma, Zhou, and Stephen [67] proposed a triple interval charging
strategy. If the SOC drops below 50% the opportunity interval (checks if CS is idle) starts
for the nearest CS, when dropped below 30% the oppertunity interval extends to the
nearest 3 CS, followed by mandatory charging when SOC reaches 15%.

– Charging is allowed at all times, but is mandatory when the battery reaches a lower
SOC threshold

To give an overview of the papers a table 5 is made with the Author and year; the battery
recovery method; their optimization goal; Constraints as listed above and additional battery
constraints; the method which was used for the implemented model.

Table 5: Overview of battery charging strategies for AGVs

Source Battery
recov-
ery

Objective function Charging constraints Method

Schmidt
et al.
[13]

BSS Total cost of ownership of B-AGV with
BSS

Charged lower threshold reached.
Batteries charged at hours with lowest

electricity prices, if possible

Simulation

Xiang
and Liu

[72]

BSS,
CS

Optimize the number of AGVs R to
match the capacity of QC and YC.

Optimal layout design of the yard with
the objective of minimizing system
throughput time. Optimize task

assignment strategy to minimize system
throughput time. Which charging
strategy is more effective from an

economic perspective, with a
throughput time constraint.

Charged if depleted. Battery checked
after completing task, traveling distance

and time taking into account.

Semi-open
queueing

network model

Ma,
Zhou,
and

Stephen
[67]

CS Minimum number of B-AGVs required
for an acceptable waiting time when

visiting a CS. Best configuration of CS,
how they are distributed. Best

recharging policy for charging B-AGVs.
Minimum ratio of B-AGVs to Diesel

AGVs that achieves similar performance

Triple threshold charging strategy, with
upper threshold of 50 % SOC, below

this the opportunity charging starts for
nearest CS, below 30 % for the nearest 3
CS and mandatory charging below 15 %

Discrete event
simulation

Continued on next page
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Table 5 – continued from previous page

Source Battery
recov-
ery

Objective function Charging constraints Method

Yang
et al.
[102]

BSS Speed control strategy that considers
traffic and energy conservation/emission
reduction. Minimize the CO2 emission

cost and penalty costs caused by
operational delays

Constraints to ensure B-AGV has
sufficient power to travel to

battery-swapping station or taks

Mixed integer
programming,

genetic
algorithm

Li et al.
[94]

BSS Minimize the total cost of the B-AGV
no-load cost, waiting time cost, task
waiting time cost, and tardiness cost

A double-threshold constraint for
battery swapping decision-making is

adopted

Simulation-
based ant

colony
optimization

Yang,
Hu, and

Jin
[101]

BSS Minimize the no-load energy
consumption of the B-AGVs

Charging when lower threshold is
reached

Mixed integer
programming,
set partitioning

Li et al.
[95]

CS Minimize the charging cost of B-AGVs
and penalty cost related to makespan for
finishing a set of assigned container jobs

Charging when lower threshold is
reached. During charging SOC is
bounded between maximum and

minimum thresholds to avoid
overcharging and DOD.

Mixed integer
programming,

A
decomposition-

iteration
algorithm

Zhou
et al.
[118]

BSS Minimize operation and maintenance
cost of the implemented energy system

and the makespan of B-AGV.

Dual threshold charging. If remaining
energy of an B-AGV is less than upper
threshold then checks if swapping can

be performed before next earliest
operation. Else continues normal

operation until reaching lower threshold
when swapping must be performed

Multi-objective
mathematical

model,
(DMWOA)

Li et al.
[108]

BSS Minimize task completion time SOC must remain above safety/lower
threshold, based on state of battery

degradation

Hybrid genetic
algorithm,

neighborhood
search

Xiao
et al.
[113]

BSS Minimize the sum of the energy
consumption cost and delay cost of the

B-AGVs

Opportunity charging with a lower
threshold, battery must have sufficient
energy left after task to drive to BSS

Mathematical
model, adaptive

large-
neighborhood

search

Gao
et al.
[107]

CS Minimize the completion time of tasks Charging when lower threshold is
reached when it is depleted. Check If
remaining capacity is sufficient for

completing current task.

Digital twin

Che,
Wang,
and
Zhou
[106]

CS Minimize the makespan of the transport
jobs

Allowed to charge even at high SOC,
not allowed to drop below a threshold,

batteries are fully charged after charging

Multi-Agent
DRL

Zhou
et al.
[117]

CS Minimize travel distance of B-AGVs
within the planning horizon

Charging when lower threshold is
reached. Ensure that B-AGVs travel to
the charging area for recharging after

completing a task once SOC is below a
lower threshold

Mathematical
model, Large
neighborhood

search

Song
et al.
[112]

CS Largest AGV spent the shortest time
completing all the tasks

Dual charging strategy. Nonlinear
characteristics of lithium battery

charging is considered. Partial charging
for the B-AGVs is allowed

Metaheuristic
algorithm

Zhou
et al.
[116]

CS Minimize the total job delay in the
planning period

Operates between minimum and
maximum SOC, not allowed to drop
below minimum SOC. When charged

the battery is assumed full

Markov decision
process model,

Multiagent
Q-learning



16 I. Schriemer et al.

B-AGV in other setting: If the constraint for port and container terminal were to be
lifted from the search results, many more papers can be found about the integration of B-
AGVs in a logistic or industrial setting. This can be seen by the search query listed in table
6, which resulted in a total of 167 articles compared to the 44 articles found when limiting
it to ports and container terminals.

Search query Results
(Charging OR swap OR swapping ) AND "automated guided vehicle" 167

Charging AND (inductive OR wireless) AND "automated guided vehicle" 47
Table 6: Search results AGV and charging

From the remaining articles, ignoring the articles that were found in the previous section,
there is a large number of papers addressing the design for inductive charging for B-AGVs.
This is also known as wireless charging and is done as an approach to increase the mileage
and decrease the down time [1] [10] [31] [45] [57] [86]. This wireless charging capability allows
for the AGVs to be charged while driving as these inductive chargers are placed in the roads
of which the AGVs are traveling.

Many more articles also discuss the implementation of charging for the AGV or Auto-
matic Mobile Robots (AMR), which also provide capabilities such as lifting and grabbing, in
job planning or scheduling [65] [60] [84]. The major difference between container terminals
and these warehouse or industrial setting is the coupling and scheduling of different equip-
ment. Where as the latter often compromises of just the AGV fleet, the container terminal
has to schedule with the arrival of ships, quay cranes, yard cranes, etc. However, charging
strategies, solving methods and other ideas for improving the integration of B-AGV in op-
erations can still be learned and implemented for ports to further improve the efficiency and
should also be studied.

5 Demand response possibilities with port’s batteries

Batteries powering the equipment, or large stand alone batteries, also offer opportunities in
the incentivized management of electricity demand, also known as Demand Response (DR).
This can be through the optimization with energy efficiency measures or change of the port’s
own electrical load and benefit from reduced costs from lower peaks or for example different
electricity pricing schemes. Ports could also play a role for the grid through the energy
market and their ancillary services. DR is the overarching topic that consists of multiple
strategies for balancing the power demands on the grid. To achieve this balance there are
three different categories for implementing DR [2]:

– DR Incentive Based Program, classical: Direct Load Control programs, see Fig. 6, and
Interruptible/Curtailable Load programs.

– DR Incentive Based Program, market based: Demand Bidding, Emergency DR Pro-
grams, Capacity Market, and the Ancillary services market

– DR Price Based Programs: Different pricing schemes
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Fig. 6: Peak shaving methods [46]

To achieve the balancing of the different loads within a container terminal and deal
with their dynamic and stochastic nature many models, simulations and optimizations, are
created to recreate the demand. One of the first steps to making a complete model of
the container terminal is knowing all the loads and characteristic profiles of the different
equipment used and modeling the operations, these can be based off of calculations or
measured with smart meters [120], [15]. With this approach the energy demand can be
forecasted and different energy management strategies can be implemented by modeling
these demands around the operations.

According to Lee Lam et al. [25] their one of the first in the literature to investigate
the costs and benefits of employing energy management system in ports. Unloading and
loading process of a ship is simulated along with the respective equipments power usage
and solar energy. It is found that the implementation of an energy management system is
financially beneficial for terminal operators, giving port authorities and researchers incentive
to investigate this area further.

To forecast the short-term energy load and their profiles in a CT, Grundmeier et al.
[6] used a simulation based approach of the CT including BSS, which has the benefit of
decoupling energy use and logistic operation. The benefit of using the BSS in this manner
is that it allows for load shifting and peak clipping, see Fig. 6. A software architecture for
demand-side energy integration CTs, leveraging the flexibility provided by the BSS was also
developed by Ihle et al. [15]. The simulation of logistics which forecasts the exchange times of
batteries and logistic operation, followed by energy demand optimization which determines
the optimal battery charging strategy from the forecasted loads. These flexible loads can
reduce battery charging energy costs by up to 10%, using day-ahead EPEX-Spot prices and
minute reserve auction data. Schmidt et al. [12] and Schmidt, Eisel, and Kolbe [8] examines
both the technical feasibility and the commercial viability of several demand-side integration
(DSI) programs to utilize the charging flexibility of electric transport vehicles in a logistic
facility (BESIC project Altenwerder) to optimize load profiles, control charging based on
variable prices or possibly provide minute reserve.

By introducing batteries inside equipment and utilizing ESSs, ports are now able to
manage their energy profile even with their operational constraints. This is especially due
to the fact that there is a growing amount of predictable load shifting potential due to
manipulating the battery charging and discharging cycle [6]. Reefers also have the capability
of flexible loads, reefers with frozen goods can for example be cooled ahead if the electricity
price is low and stop cooling when the price is high, or when there is limited electricity
capacity during heavy operations. This could be counteracted by cooling during off peak
hours so that less cooling will have to be done during hours with higher demand.
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Fig. 7: Shore power demand for different ships, European Maritime Safety Agency (EMSA) [121]

The larger BES can also be placed in systems storing the renewable energy, which allows
for better utilization of renewable energy. These systems, also known as Hybrid Renewable
Energy System (HRES), smart-grids or micro-grids for ports usually consist of renewables,
shore power and a BESS. There are many more variations possible some including container
terminal operations [64] others incorporating Combined Cooling Heat and power [80], or the
use of hydrogen [75]. The optimal management, design and sizing of such energy systems can
be very challenging due to the uncertainties of renewable resources and operations, system
constraints, and multiple design objectives. To this end many studies have investigated the
optimal design or management of these systems for a wide variety of ports. Table 7 and Table
8 aim to give an overview of the literature of what aspects of the port has been investigated,
their energy providers and consumers, what has been implemented and which method they
used to achieve this. The most commonly modeled aspect for all ports is shore power, as no
matter what ship type, ferries, cruises, tankers or container ships are all aiming to diminish
their emissions by turning off their auxiliary engines while berthed and are instead supplied
with power from shore, also referred to as Cold-Ironing (CI). The estimated power demands
for these ships can be seen in Fig. 7. Starting with an overview of the studies focusing on CI
implementation with a BES and possibly renewables in seaports. These studies often focus
on the sizing of renewables and BES to be optimally used for the seaport. They will also
account for ship arrival times and the CI power demands for the respective ships. BES could
also play a role here by providing the peak power necessary for these ships, to reduce the
burden on the grid and/or to avoid going over the capacity of the ports electric substation.



Battery and ESS in ports 19

Table 7: Overview of load management studies in ports

Source Energy
Suppliers

Energy
consumers

What is implemented Method

Wang et al. [54] Grid, Wind,
ESS

CI, ESS To overcome the dynamic and uncertain nature
of seaports and often lack of real energy data, a
two-stage optimal framework is proposed. The

first stage determines the optimal installed
capacity of the sub systems and the second stage

models the stochastic characteristics of wind
energy and port energy demands to minimize

operational costs

Discrete Event
Simulation

Hein et al. [62] Distributed
generators, PV,

Wind, ESS

CI, ESS Addresses the uncertainty in the renewable
energy sources by modeling the day-ahead

operation as a two-stage robust optimization
model. The results are used as input parameters
for the hour-ahead generation scheduling in the

following day.

Two-stage
optimization,
column and
constraint
generation
algorithm

Sifakis,
Konidakis, and
Tsoutsos [70]

Grid, PV,
Wind, ESS

Port load, ESS Cycle charging and PS strategies for three
different ESSs have been studied, as well as two
billing tariffs with PS providing better results

and improved energy management and the
vandaium redox flow battery being the preferred

choice of ESS

Optimization
analysis

Bakar et al. [73] Grid, PV,
Wind, ESS

CI, ESS Design of a hybrid system for a seaport
microgrid with optimally sized components. The

selected case study is the Port of Aalborg,
Denmark.

Hybrid
Optimization

Model for
Electric

Renewables
(HOMER)

Conte et al. [75] Grid, PV,
Hydrogen,

BESS

CI,
Electrolyzer,

BESS

A model predictive controller is designed to
define the best economic strategy to be followed
during operations. The control algorithm takes

into account the uncertainties of renewable
energy generation using stochastic optimization.

Components were sized using HOMER

HOMER, Model
predictive
control

Caprara et al.
[74]

Grid, ESS CI, ESS Providing CI for cruise ships will require
significant power draw from the grid. To avoid
installing an extra substation, the possibility of
installing a high power and high energy ESS is

researched.

Energy
Management
Simulation
Software

Colarossi and
Principi [90]

Grid, PV, ESS CI, ESS The optimization model proposed aims to
provide the best power plant, consisting of PV
and ESS, size to support a cold ironing system.
The model is based on a life cycle cost approach

Optimization

Darwish [91] Grid, PV, ESS CI, ESS Modular power electronic converter, with an
isolated cuk converter as the sub module, for

power flow of PV, ESS and shore power

Mathematical
analyses,

Simulation,
Prototype

Vakili and Ölçer
[99]

Grid Ferries, CI, ESS The Philippines is aiming to significantly reduce
its carbon footprint by 75% by 2030 as part of
its Nationally Determined Contribution. One
step in this process is making its domestic

ferries emit zero emissions. To this end, the use
of electrified and battery powered vessels is

being explored with a life cycle analysis

Life Cycle
Analysis

Tao et al. [98] Grid,
Renewables

AES, CI, ESS This paper discusses flexible scheduling of All
Electric Ship (AES), their ESS and CI to satisfy
both the transportation demands and mitigate

the burden of charging AES on the grid

Temporal
Spatial

Dynamics

Continued on next page
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Table 7 – Continued from previous page

Source Energy
Suppliers

Energy
consumers

What is implemented Method

Buonomano
et al. [89]

Grid, PV,
CCHP, Biogas
production,

Ocean energy,
ESS

CI, CCHP, ESS ESS and renewable sources can be designed to
be connected to national electricity and natural
gas grids and can also include alternative fuels,
thermal energy networks and different biomass
fluxes. Energy demands of nearby towns and

port infrastructure, as well as CI power supply
are also included in the dynamic assessments

Constrained
optimization

Vakili and Ölçer
[100]

Diesel
generator, PV,

Wind, BES

BES In this study, the potential use of solar and wind
energy and diesel generators in different stand
alone and grid connected systems for a port in

the Philippines were assessed

HOMER

Abu Bakar
et al. [104]

Grid, PV, BES Ferries, CI, ESS Two-stage energy management for CI of short
berthing ferries with BES and solar energy.

Where the first stage sizes the PV, BES and CI
installation and the second stage optimizes the

operations

Two-stage
optimization

Binot et al.
[105]

Grid, PV, BES CI, ESS Proposes a methodology for optimizing both
sizing of PV and storage as well as use of an

energy management for a seaport microgrid to
minimize costs and CO2 emissions

Bi-objective,
Mixed integer

Linear
programming

Besides modeling the renewables and shore power demand, ports or container terminals
can model more of their electric loads to further optimize or forecast their demands. In
Figure 8 a typical layout for a smart electrical grid is displayed for a container terminal,
making use of BES and renewables to power an electrified terminal. Modeling these can be
very complex due to the coupling between energy and logistics, size of the terminals and
the uncertainties of ports such as uncertain arrival time of ships and uncertain renewable
energy supply which can not be perfectly forecasted. With this extra coupling between more
modeled resources different studies investigate this electrified port with different aims.

To get better oversight of energy management in more container terminal oriented energy
systems another table is provided. Similar to the layout in Table 7, Table 8 depicts what the
paper’s energy generators and consumers were, what they investigated and which methods
they used. Battery energy storage in these container terminals can not only be used for
optimizing the renewable energy usage, but could also function as peak power control and can
also be used for energy arbitrage which is for example done by Iris and Lam [64]. This BES
could also be effective under different pricing strategies which could reduce the electricity
bill. Again it can be seen that most studies include the CI demand for ships replacing
their auxiliary engine usage, however these are mostly container ships which have different
demands as depicted in Fig. 7. Also a wide variety of energy resources and renewables
are implemented. However these studies include more loads which are typically present
in container terminals such as the cooling of reefers and crane power loads from hoisting
containers. These loads account for a large part of the container terminal’s total energy
consumption and are also responsible for peak power present in ports. Therefore modeling
these demands is significant to forecasting energy demands for container terminals. Modeling
and managing energy distribution like this also gives port authorities insight how much they
can diminish in terms of costs and emissions, but could also relieve the burden on the grid
by some extent.

It is also important to account for uncertainties of renewable energy generation and ship
arrivals as these influence the energy management of the port drastically. Uncertain ship
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Fig. 8: A smart grid incorporating renewables, energy storage, reefers, container terminal equipment
and shore power [64]

arrival will not only account for when CI is provided but the cranes assigned to empty or
load the ship will also be affected and this way it propagates through the energy-logistic
management. The uncertainty for renewable energy generation affect the power available
throughout the day even if the BES is able to partially offset this. Therefore these subjects
are also addressed in some of these studies.

As previously mentioned it can also be seen that reefers and BES provide flexibility in the
container terminals power supply, while CI and QC operations are more or less tied to ship
arrival. Unless the berth allocation problem is solved to account both for the uncertainty of
arrival and energy-logistic scheduling, which would allow the power demands to be shifted
by adjusting the arrival schedule of ships. However if studies would be solving for all these
uncertainties and dispatching decisions the complexity of these models would become very
large. As well as the fact that every port is different and researchers are interested in different
aspects of the port’s energy-logistic operation, it results in a wide variety of studies each
contributing their own part for an energy aware port.

Table 8: Overview of load management studies in container terminals

Source Energy
Suppliers

Energy
consumers

What is implemented Method

Lee Lam et al.
[25]

Grid, PV QC, AGV,
RMG

According to paper the first in the literature to
investigate the costs and benefits of employing
energy management system in ports. Unloading
and loading process of a ship is simulated along
with the respective equipments power usage and

solar energy

Discrete Event
Simulation

Continued on next page
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Table 8 – Continued from previous page

Source Energy
Suppliers

Energy
consumers

What is implemented Method

Manolis et al.
[26]

Grid, PV, Wind Reefers Distributed demand response application using
Multi-Agent System of reefers for improving the
voltage in distribution network. Co simulation
framework, power system simulator and agent

environment

Multi agent
system

Kanellos [24] Grid, Wind Reefer, PEV A hierarchical multi-agent system is
implemented for the demand response of flexible

loads. The port management agent is at the
head of operations connected with a wind park
agent and followed by a cluster of reefer and

PEV agents. Each of these clusters subsequently
have agents for each reefer and PEV

Multi-Agent
System

Li et al. [51] Wind, ESS QC, YC, CI,
ESS

Optimizes installation capacity and operation
strategy for a container terminal with offshore
wind energy using a hybrid renewable energy

system

Simulation-
based

optimization
algorithm

Kanellos,
Volanis, and
Hatziargyriou

[47]

Grid Reefer, PEVs,
CI

To combat the large number of decision
variables and constraints in large ports, this
paper proposes a power management method
based on multi-agent systems to maximize the

flexibility of power demand. A hierarchical
structure is implemented, where each equipment
is an individual agent with a cluster agent for

the group of equipment and a central port agent

Multi-Agent
System

Gennitsaris and
Kanellos [43]

Grid, Wind Reefer, CI A hierarchical multi-agent system is
implemented for the real-time control of flexible
port loads. This real-time distributed demand
response controls the electric demands with a

fuzzy-logic-based system for reefers

Multi-Agent
System, Fuzzy

Logic

Iris and Lam
[64]

Grid, PV, ESS QC, YC, CI,
Reefer, ESS

Port operations and energy management with
ESS and renewables with their uncertainties,
using a mixed integer linear programming
model. Bidirectional energy trading is used

between energy sources and ESS allowing for the
possibility of energy arbitrage, furthermore

different pricing schemes are examined: single
price, peak/off-peak price and market price

Mixed Integer
Linear

Programming

Shi et al. [83] Grid, Hydrogen
storage,
Thermal

storage, ESS,
Wind, PV

QC, YC, CI,
Reefer

This paper proposes an optimal operation
strategy for the integrated energy-logistics
system to minimize the operation cost of a

green-port considering a multitude of energy
generation options

Mixed Integer
Linear

Programming

Mao et al. [80] Grid, PV,
Wind, Thermal
energy storage,

ESS

CI, Thermal
energy storage,

ESS

An optimization for the multi-energy
coordination and berth allocation with the

objective of reducing the energy and electricity
costs, the dispatch and mooring decision of

reefer vessels and cruise ships are established

Mixed Integer
Linear

Programming

Fang et al. [76] Grid, Thermal
Network

QC, YC, CI,
Reefers

An optimization is formulated for the seaport
power scheduling, which integrates various

logistic demand response methods for cranes’
operating speed and ESS as well as reefer areas
into an unbalanced multi-phase power network

model coupled with a thermal network

Non-Linear,
Non-Convex
Optimization

Yu, Voß, and
Song [87]

Grid QC, CI This paper proposes a multi-objective model to
optimize the problem of berth allocation and

quay crane assignment. The proposed
optimization model integrates the decisions on
each vessel’s berthing position, berthing start

and departure time. In this time the duration of
using CI and duration of using auxiliary engines
is also optimized to minimize the costs of using

CI, departure delay and emissions

Multi-objective
optimization,

Partial
optimization
Metaheuristic
(POPMUSIC)

Continued on next page
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Table 8 – Continued from previous page

Source Energy
Suppliers

Energy
consumers

What is implemented Method

Yin et al. [103] Grid, PV,
Wind, Fuel cell,

ESS

CI, QC,
Electrolyzer,

ESS

An energy management and scheduling method
for the day-ahead planning with intraday

adjustments is proposed to reduce the impact of
random power during the day using a scenario

tree prediction model and stochastic model
predictive control

Stochastic
Model

Predictive
Control

Yin et al. [115] Grid, PV,
Wind,

Hydrogen, ESS

CI, QC, RTG,
Container
truck, BES

A day-ahead energy logistic scheduling model
considering carbon emission costs is

implemented to improve the economic
performance and reduce emissions of port

operations. A nested bi-layer energy
management and capacity allocation method is

made to coordinate the imbalance between
hydrogen and electricity supply and demand

Model pursuing
sampling
algorithm

Sarantakos
et al. [110]

Grid, ESS Cranes, CI,
Cargo handling

equipment,
Reefer, ESS

A robust micro grid for multipurpose ports
considering uncertainty of arrival time is

developed. An optimal power flow method is
made for multiple port logistic assets such as

cargo handling equipment, reefers, and
renewable energy sources. The aim is to
minimize the total operation costs while

ensuring that grid limits are not violated due to
the uncertainty of ship arrivals

Two-stage
adaptive robust
optimization

Shi et al. [111] Grid, PV,
Wind,

Hydrogen,
Thermal

Storage, ESS

Reefer,ESS Establishes an optimal strategy for flexible
operations of ESSs and reefers with a multistage
stochastic optimization model to minimize costs.
It takes into account uncertainties of renewables,

load demands, electricity prices and ambient
temperatures. The first stage is for the day
ahead and power is adjusted intraday with

BESS, reefers and thermal storage

Multi Stage
Stochastic

Optimization

Song et al. [119] Grid, BSS CI, BSS To deal with the uncertainty of renewable
energy generation, vessel arrival times and lack

of real-time adjustability, a two-layer deep
reinforcement learning based energy

management strategy is proposed, considering
berth allocation, energy management and BSS

scheduling

Deep
Reinforcement

Learning

Ship board microgrid It should be noted that there exists quite extensive literature about
ship based microgrid or marine energy systems. These Ship Board Microgrids (SMG) also
often called All Electric Ships (AES) are just like other microgrids where the ships have their
own energy systems. The main difference compared to previously mentioned studies is that
the BES is placed ship side instead of on the shore side. These SMGs are composed of their
propulsion load, diesel generators, BES and sometimes PV, all managed on the ship and are
also a form of a hybrid energy system. These SMGs have the potential of reducing fuel usage
and increasing power production, similar to maximizing the efficiency of diesel generators for
hybrid cranes as mentioned in the previous chapter. Alam et al. [88] address energy demand
with a SMG containing PV, BES, multiple diesel generators and propulsion on a AC and
DC bus with hierarchical control and a sliding mode controller for droop control.

The BES inside these ships allows for the integration of renewables and more flexibility
when requiring shore power. The BES will act as a buffer for the ships power supply without
having to solely rely on the auxiliary engines of a ship or on the shore power when berthed.
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This BES can thereby also control when it receives shore power and change its demand at
ports based on electricity supply and price.

This is done by Qiu et al. [82] which analyzes CI for SMG consisting of PV, BES, diesel
generator with time of use pricing and locational marginal pricing. Giving better incentive for
power congestion management and emission control than fixed and real-time pricing. Tang,
Li, and Lai [34] investigates another similar SMG, implementing a PV array, BES, a diesel
generator and CI minimizing the electricity costs solved with a particle swarm optimization.
Similarly Tang, Wu, and Li [35], has the same SMG layout and accounts for CI prices, but
the power dispatch is controlled and solved with MPC.

The decision when to berth for these SMGs can also be adjusted according to predicted
prices of shore side electricity. Tang et al. [59] focuses on the modeling and scheduling
methodology for these SMGs with an ultrahigh-dimensional HES model. to provide a solution
for shipping company to achieve promising performance on operational cost control with the
increasingly stringent emission regulations.

Similarly, Wen et al. [71] developed a two-stage hybrid optimization algorithm to improve
the energy efficiency and reduce GHG emissions of the AES based on the predicted shore
side electricity prices, for scheduling arrival times with minimum cost and emissions.

These SMGs can also coordinate amongst each other to coordinate their power demands
when berthed at ports. This can especially be useful to alleviate peak power burdens at
these ports and is an additional option to lower the electricity bill. Fan et al. [92] uses this
SMG with BES and thereby the flexibility of CI power as a demand response tool. The port
will coordinate berthed ships with shipboard microgrid to adjust their CI demand requests,
to alleviate peak burden. An incentive-based cooperative coordination framework between
port microgrid and berthed ships is proposed by Fan et al. [92]. With the aim of minimizing
the net cost comprising energy cost and potential demand charge, the port will differentially
coordinate berthed ships to adjust their CI demand requests, to alleviate peak burden.
Multiple SMGs could combine their CI services to alleviate peak burden. When multiple
ships require shore power at a port that does not have enough capacity or to optimally
distribute shore power among the ships, Mutarraf et al. [69] proposes a communication-less
method for managing power among multiple SMGs. Their approach uses a decentralized
droop control strategy that adjusts power flow based on battery SOC levels. Similarly, Yang
et al. [114] also discusses the limitation of port CI quantity and power supply capacity.
To solve this problem, this paper proposes a multi-ship power sharing strategy based on
two-stage robust optimization. Sadiq et al. [109] investigates next-generation smart ports,
wherein the integration of internet of things and sensors transforms ports into intelligent
hubs. this paper proposes a seaport microgrid with a DC distribution that would be created
by integrating multiple ships with decentralized control mechanisms supplemented by an
onshore charging infrastructure Shipboard microgrid.

There is also a future for all electric ships without diesel generators. This will likely only
be possible for smaller type ships such as ferries in the near future as changing all the diesel
engines will require large amounts of power and storage. This will require large swap-able
batteries for these ships or very high charging speeds.

Energy markets Beside the possibility for load management of the Port, the BES and
ESS can also be used for actively participating in energy markets, such as ancillary services
for Transmission System Operators (TSO). Flexibility of port resources can not only be
used for its own energy demand but could also alleviate grid burdens with these types of
services. With all these flexibility options from the ESS, Battery equipment, Reefers, SMGs
and other energy resources there are many opportunities to partake in these services
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Virtual power plant (VPP) is a network that manages decentralized energy resources
(DER) which include power generation and storage on the consumer side, its implementation
could lower emissions and the electricity bill. Kolenc et al. [50] explore the use of a VPP to
operate DERs over public internet infrastructure. The study focuses on utilizing the battery
stacks of B-AGVs within a container terminal to provide ancillary services to the TSO

One of these ancillary services is frequency containment reserve (FCR), which is a mech-
anism used by TSOs to keep the electricity grid stable. The main objective of the FCR is
to restore grid frequency back to its nominal value following disturbances, which can for
example happen when there is a sudden increase in demand or when a provider stops gen-
erating energy, which can for example be caused by cloudier weather than expected. When
such a disturbance occurs, the FCR comes into action and the reserve power is immediately
injected or withdrawn from the grid to balance the mismatch between supply and demand
to stabilize the frequency. In the case of ports, BES and battery-charging processes can
be initiated earlier or accelerated to withdraw more from the grid, also known as negative
reserve, or can be postponed or injected, decelerated or discharged to offer positive reserve.

Holly et al. [55] discuss how the potential of a fleet of battery vehicles can be used to
provide FCR in a logistical context, such as a port. For this an artificial neural networks is
used to predict the availability of B-AGVs day-ahead, the marketable flexibility is computed
with a heuristic approach and checked if plausible in schedule with a simulation. The B-
AGVs are continuously supervised and controlled with a multi-agent system and the electric
fleet’s flexibility is integrated into a larger pool of DER within a VPP.

Kanellos [24] proposes a decentralized demand response method for a port comprising
of flexible loads and power generation from a wind park, using a multi-agent system. This
proposed method also proved to be efficient in providing ancillary services. Later Kanellos,
Volanis, and Hatziargyriou [47] expanded the research further with the previous multi-agent
system for reefer and plug in electric vehicles, with the aspect of cold-ironing instead of a
wind park. Gennitsaris and Kanellos [43] then combines the previous two without PEVs for
a more complete agent based model of a container terminals flexible load which could be
used.

The FCR with batteries has the issue that it could lead to faster degradation of vehi-
cles’ batteries due to the additional charging cycles. How much this affects the battery life
and what degradation costs are incurred depends on its implementation and is evaluated
by Harnischmacher et al. [93]. For their setup Cycle-Count Models best represent battery
degradation, showing an increase in battery degradation of just 1.36% through the use for
FCR. Improving the business case for its implementation.

6 Research gap and future work

Despite the extensive research that has been done for more sustainable use of port assets,
incorporating renewables and optimizing energy management within ports, there is always
room for more research in certain areas for the transition to more sustainable and energy
aware ports. These suggested proposals for future research will be divided into four sections
of energy sources and use; on the topic of battery powered equipment; ships and their cold-
ironing power demand and lastly on energy management.

Energy usage and distribution: There are more paths for ports to be more sustainable
with for example infrastructure for ESS, Green Hydrogen and Thermal Storage, to name a
few. It will be interesting to see the trade off between these different storage methods and
what would be suitable for varying ports. This same question also holds for battery based
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equipment compared to for example their fuel cell based counterparts, to strengthen the
case of electrifying these with batteries or provide as an alternative for ports with limited
power availability.

An up to date overview of the energy use per asset of ports and container terminal as a
percentage of energy use would give insightful results of the development in more sustainable
ports and expected growth. For example now that Cold-Ironing is becoming a more adapted
method and more battery equipment is being used this difference would be interesting when
compared to what has been done by older studies. This can be studied for different layouts,
from the biggest automated container terminals to the smaller non automated ones. More
accurate measurement and forecast of energy demands with smart meters could also be
adapted for this effort, which can also improve the forecasting of power demands of aspects
such as cold-ironing for ships.

Battery powered equipment: The AGV has been quite extensively researched from
energy efficient pathing in container terminals to correlated planning with yard cranes and
as mentioned in this paper, the charging strategies for B-AGV in ports. Due to complexity,
most of these charging strategies do not consider partial charging of their batteries as an
option to reduce the down time of the B-AGV while still being able to perform for the
rest of its listed jobs, which could be studied further. The same holds for the charging of
other battery powered equipment, as charging management for other equipment could also
be studied in this manner.

The sizing of a battery powered equipment and charging stations or battery swapping
stations can be researched further, giving a guide for port authorities into how large the
batteries of the equipment should be how fast the charging speed of the chargers should be
and still fit withing the ports energy-logistic system.

The possibility of inductive charging for B-AGV in the setting of a container terminal
could can also be assessed, to analyze the viability of this solution. As this is already being
thoroughly researched within other logistic fields such as warehouses it would be insightful
to see if there is any benefit in implementing such a charging method for the battery powered
equipment in ports.

For the operation and charging additional battery effects can be modeled, as these are
often not taken into account. These effects include battery degradation of equipment and
loss of SOC and nonlinear charging effects, especially when fast charging the charging speed
will not be consistent throughout its charge time. These affects could make the scheduling
of these battery powered equipment more precise, as both the approximated SOC and time
spent charging would improve.

Ships and cold-ironing As discussed previously there is already quite extensive literature
on shipboard micrgogrid, their energy management and how they could interact with ports
to adapt their cold-ironing demand. However an analysis of using sustainable fuels powering
ships when berthed versus diesel and their effect on cold-ironing be made. As these SMGs
often optimize for costs and emissions, it would be insightful to see how this behaviour would
change with more sustainable fuels.

Electric powered vessels, for inland shipping or ferries will require large charging stations
or large battery swapping station with for example battery containers. A case could be made
how these vessels could charge in rivers and see the viability of such an approach as seagoing
vessels will require too much power to be achievable with an electric counterpart and such
an approach. These could be implemented at the ports or at communal stations where these
ships could recharge.
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More precise values for cold-ironing demand of ships and their profile characteristics can
be analyzed as current estimates fluctuate in average and maximum demand for different
types of ships. This will allow for better modeling of these loads for ports and reduce the
possibility of underestimating or overestimating this demand.

Energy management for ports Current literature on energy management within ports
already model and implement many different port assets and energy sources, however there
are still areas that could be explored further.

To start, the charging of the B-AGV’s batteries and other battery powered equipment
used in ports bring an extra load on the grid as the large fleets will have to be charged
with either a charging station or a battery swapping station. Both these approaches also
have uniquely different effect on when they require power and how they fit into the loigstic
operations. However, currently there are few studies also incorporating the charging of these
batteries for equipment inside energy management systems for the entire port, accounting
for most of the port loads but few consider these different charging implementations into
those studies.

Because the path of electrification is one of the more popular ways for more sustainable
operations it also brings extra burden on the grid which has to adapt to the rapid growth
of electricity demand. Ancillary services such as FCR can be investigated further with the
growing amount of shift-able loads in ports such as the reefers, ESS, SMGs and battery
powered equipment. Ports can play a larger role when it comes to keeping the keeping the
grid stable and can still be incentivized while doing so. This could be added to the already
existing energy port models and account for day-ahead and intraday disturbances in the
grid. One of the most straightforward methods of doing so would be to use the ESS, with
possibly sotred renewable energy to this end.

Studies also seem to largely focus on the costs related to electricity price and sometimes
greenhouse gas prices, but costs related to DSO’s and TSO’s distribution and transimission
services is often not incorporated. Some of these variable costs can be significant and should
not be ignored when optimizing energy management systems for costs. Costs such as max-
imum power and peak power becoming more relevant, flexible resources such as ESS can
help mitigate these higher penalties.

The ESS for cranes or use of AFE can be studied further in the context of energy-
logistic management as the use of these allows for energy capture and a reduction in power
demand which the effects of will propogate through the energy management optimization
and operations

7 Conclusion

The transition to an electrified and energy efficient port is a complex task but necessary
step in response to increasing energy costs and sustainability goals. This literature review
highlights the growing role of battery and electric energy storage systems in port operations,
which can be implemented and enhance many different assets in a port. The efficiency of
cranes can be improved within ports by outfitting them with electric energy storage systems
to capture energy during lowering, which can save a significant amount of energy as well as
reduce the peak power from these cranes. Furthermore, batteries enable the electrification
of mobile equipment and have been proven to haven an economic benefit with numerous of
studies investigating charging station or battery swapping operations for this mobile equip-
ment in ports. Battery energy storage also allows for storing generated renewable energy,
peak shaving and along with other flexible loads for load leveling. This flexibility of power
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can help reduce costs and also be used for ancillary services. However, challenges remain
in accurately modeling battery health degradation, non-linear charging, complex charging
logistics, and uncertainties from renewable energy generation and vessel arrivals. Overall,
battery and electric energy storage provide an effective way of managing the electrical loads
and provides flexibility even in logistically demanding ports.

Disclosure of Interests. The authors has no competing interests to declare that are relevant to
the content of this article.
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Abstract

The transition to more sustainable operations is being widely adapted to reduce the green house
gas emissions and meet the future sustainability requirements. This transition most often uti-
lizes electrification as a means to reduce emissions and utilize renewable energy. This transition
comes with extra burden on container terminal authorities who have to manage their power de-
mands and grid service operators. This comes with extra costs as service operators have to build
and maintain a larger network and larger power capacities can not always be ensured for con-
sumers such as container terminal due to grid congestion. To achieve electrification for container
terminals these distribution service operator costs as well as electricity costs should be taken into
account.

Scheduling power demands for container terminals is not trivial as they operate in a dynamic
environment. To ensure a container terminal has sufficient electric capacity and can manage
its power demand a two-stage power optimization is made considering uncertain arrival time
of ships. The charging decisions for the electric yard fleet as well as charging and discharging
of battery energy storage system and cooling of reefers are scheduled for the next day. The
necessary capacity is optimized considering the flexible resources which would be required and
the electricity pricing is taken into account, with dynamic electricity pricing outperforming a
fixed price. A Time Constraint Transport Right is also analyzed, which could work for container
terminals with many flexible loads, but does not save costs for this terminal.

Keywords: Container Terminal, Power Management, Uncertain arrival, Load shifting,
Electrification

1. Introduction

There is a shift towards more sustainable operations as ports as an industry account for 3%
of global greenhouse gas (GHG) emissions [25]. In light of these sustainability goals and steps
towards greater sustainability, port authorities will have to take on a new role to include more
energy efficient measures and better management of their energy loads [1]. This can lead to
energy savings, improve the green image of the port and provide a competitive advantage.

In terms of energy generation, port authorities can continue to invest in renewable energy
generation for their own use, such as wind power or solar energy, and the possibility of storing
excess energy generated in batteries for later use.

Preprint submitted to Elsevier September 26, 2025



Container terminal can achieve more sustainable operations and reduce greenhouse gas (GHG)
emissions by adapting their energy consumption through alternative energy sources, efficiency
measures, and better energy management. This can be applied to port equipment by replacing
typical diesel fuel powered equipment with electric, hydrogen, or other alternative/bio-fuels. It
also involves assessing energy consumption within port operations and minimizing it while still
maintaining the high operational throughput a container terminal requires. Additionally, manag-
ing available energy in an efficient manner, whether through self-generation, grid electricity, or
other fuel sources, ensures more efficient and sustainable power use.

For this transition to more sustainable port operations, electrification is a promising solu-
tion [15]. All of the equipment used in container terminals can be or is electrified, from quay
cranes, cold-ironing, cranes and reefers to battery powered equipment such as automated guided
vehicles, also allowing for regenerative capabilities.

Furthermore, it also offers a universal solution to manage the energy usage in container ter-
minals and able to utilize generated renewable energy. However, going fully electric has some
caveats, it can introduce large peaks of electricity demand when equipment is simultaneously
drawing power. Another problem that arises is the downtime of battery equipment due to charg-
ing, as this process still takes significantly longer than simply refueling and will have to be
accounted for by either larger batteries, faster charging speeds or larger fleets.

With many businesses opting for electrification this also places a burden on the grid as elec-
tricity demand is rapidly increasing and grid operators having to keep up with this rising demand.
This paper proposes scheduling of the flexible loads: reefers, Battery Energy Storage (BES) and
charging of battery powered equipment within a container terminal to assess the required demand
for a fully electrified container terminal with uncertain ship arrival times. It will also compare
fixed and dynamic electricity pricing and account for Distribution Service operator (DSO) fees
which are applicable for large electricity consumers in the Netherlands. Additionally, a Time
Constrained Transport Right (TCTR) contract offered by this DSO will be investigated.

2. Literature

There is extensive literature on modeling electric loads for container terminals including dif-
ferent loads such as shore power demand, cranes, reefers and renewable energy. Container ter-
minals can model these electric loads to further optimize or forecast their demands and possibly
reduce their costs or emissions. In Figure 1 a typical layout for a smart electrical grid is displayed
for a container terminal, making use of Battery Energy Storage (BES) and renewable energy to
power an electrified terminal. Modeling these type of smart grids can be very complex due to the
coupling between: energy and logistics, size of the terminals and the uncertainties of ports such
as uncertain arrival time of ships and uncertain renewable energy generation which can not be
perfectly forecasted. With this extra coupling between more modeled resources, different studies
investigate this electrified port with different aims.

To get better oversight of power management in container terminal oriented energy systems,
Table 1 is provided. This table depicts what the paper’s energy generators and consumers were,
what was investigated and which methods were used. Battery energy storage in these container
terminals can not only be used for optimizing the renewable energy usage, but could also function
as peak power control and can also be used for energy arbitrage which is for example done by
[12]. These flexible loads could also be effective under different pricing strategies which could
reduce the electricity bill.
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Figure 1: A smart grid incorporating renewables, energy storage, reefers, container terminal equipment and shore power
[12]

From this table it can be noted that a wide variety of energy resources are being analyzed for
different types of terminals. It can also be seen that reefers and BES provide flexibility in the
container terminals power supply, while CI and QC operations are tied to ship arrival. Unless
the berth allocation problem is solved to account both for the uncertainty of arrival and energy-
logistic scheduling, which would allow the power demands to be shifted by adjusting the arrival
schedule of ships. However, this will quickly become too computationally expensive due to its
complexity. Accounting for uncertainties relating to ship arrival is important as it influences
much of the container terminal’s logistic and energy scheduling.

Table 1: Overview of load management studies in container terminals

Source Energy
Suppliers

Energy
consumers

What is implemented Method

Lee Lam
et al. [20]

Grid, PV QC, AGV,
RMG

According to paper the first in the literature to investigate the
costs and benefits of employing energy management system

in ports. Unloading and loading process of a ship is
simulated along with the respective equipments power usage

and solar energy

Discrete Event
Simulation

Manolis
et al. [23]

Grid, PV,
Wind

Reefers Distributed demand response application using Multi-Agent
System of reefers for improving the voltage in distribution

network. Co simulation framework, power system simulator
and agent environment

Multi agent system

Continued on next page
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Table 1 – Continued from previous page

Source Energy
Suppliers

Energy
consumers

What is implemented Method

Kanellos
[14]

Grid, Wind Reefer, PEV A hierarchical multi-agent system is implemented for the
demand response of flexible loads. The port management

agent is at the head of operations connected with a wind park
agent and followed by a cluster of reefer and PEV agents.
Each of these clusters subsequently have agents for each

reefer and PEV

Multi-Agent
System

Li et al.
[21]

Wind, ESS QC, YC, CI,
ESS

Optimizes installation capacity and operation strategy for a
container terminal with offshore wind energy using a hybrid

renewable energy system

Simulation-based
optimization

algorithm

Kanellos,
Volanis,

and
Hatziar-
gyriou
[15]

Grid Reefer, PEVs,
CI

To combat the large number of decision variables and
constraints in large ports, this paper proposes a power
management method based on multi-agent systems to

maximize the flexibility of power demand. A hierarchical
structure is implemented, where each equipment is an
individual agent with a cluster agent for the group of

equipment and a central port agent

Multi-Agent
System

Gennitsaris
and

Kanellos
[8]

Grid, Wind Reefer, CI A hierarchical multi-agent system is implemented for the
real-time control of flexible port loads. This real-time

distributed demand response controls the electric demands
with a fuzzy-logic-based system for reefers

Multi-Agent
System, Fuzzy

Logic

Iris and
Lam [12]

Grid, PV, ESS QC, YC, CI,
Reefer, ESS

Port operations and energy management with ESS and
renewables with their uncertainties, using a mixed integer
linear programming model. Bidirectional energy trading is

used between energy sources and ESS allowing for the
possibility of energy arbitrage, furthermore different pricing
schemes are examined: single price, peak/off-peak price and

market price

Mixed Integer
Linear

Programming

Shi et al.
[31]

Grid,
Hydrogen
storage,
Thermal

storage, ESS,
Wind, PV

QC, YC, CI,
Reefer

This paper proposes an optimal operation strategy for the
integrated energy-logistics system to minimize the operation

cost of a green-port considering a multitude of energy
generation options

Mixed Integer
Linear

Programming

Mao et al.
[24]

Grid, PV,
Wind, Thermal
energy storage,

ESS

CI, Thermal
energy storage,

ESS

An optimization for the multi-energy coordination and berth
allocation with the objective of reducing the energy and

electricity costs, the dispatch and mooring decision of reefer
vessels and cruise ships are established

Mixed Integer
Linear

Programming

Fang
et al. [6]

Grid, Thermal
Network

QC, YC, CI,
Reefers

An optimization is formulated for the seaport power
scheduling, which integrates various logistic demand

response methods for cranes’ operating speed and ESS as
well as reefer areas into an unbalanced multi-phase power

network model coupled with a thermal network

Non-Linear,
Non-Convex
Optimization

Yu, Voß,
and Song

[40]

Grid QC, CI This paper proposes a multi-objective model to optimize the
problem of berth allocation and quay crane assignment. The

proposed optimization model integrates the decisions on
each vessel’s berthing position, berthing start and departure
time. In this time the duration of using CI and duration of
using auxiliary engines is also optimized to minimize the

costs of using CI, departure delay and emissions

Multi-objective
optimization,

Partial optimization
Metaheuristic
(POPMUSIC)

Yin et al.
[39]

Grid, PV,
Wind, Fuel
cell, ESS

CI, QC,
Electrolyzer,

ESS

An energy management and scheduling method for the
day-ahead planning with intraday adjustments is proposed to
reduce the impact of random power during the day using a

scenario tree prediction model and stochastic model
predictive control

Stochastic Model
Predictive Control

Continued on next page

4



Table 1 – Continued from previous page

Source Energy
Suppliers

Energy
consumers

What is implemented Method

Yin et al.
[38]

Grid, PV,
Wind,

Hydrogen,
ESS

CI, QC, RTG,
Container
truck, BES

A day-ahead energy logistic scheduling model considering
carbon emission costs is implemented to improve the
economic performance and reduce emissions of port

operations. A nested bi-layer energy management and
capacity allocation method is made to coordinate the

imbalance between hydrogen and electricity supply and
demand

Model pursuing
sampling algorithm

Sarantakos
et al. [30]

Grid, ESS Cranes, CI,
Cargo

handling
equipment,
Reefer, ESS

A robust micro grid for multipurpose ports considering
uncertainty of arrival time is developed. An optimal power

flow method is made for multiple port logistic assets such as
cargo handling equipment, reefers, and renewable energy
sources. The aim is to minimize the total operation costs
while ensuring that grid limits are not violated due to the

uncertainty of ship arrivals

Two-stage adaptive
robust optimization

Shi et al.
[32]

Grid, PV,
Wind,

Hydrogen,
Thermal

Storage, ESS

Reefer,ESS Establishes an optimal strategy for flexible operations of
ESSs and reefers with a multistage stochastic optimization
model to minimize costs. It takes into account uncertainties
of renewables, load demands, electricity prices and ambient
temperatures. The first stage is for the day ahead and power
is adjusted intraday with BESS, reefers and thermal storage

Multi Stage
Stochastic

Optimization

Song
et al. [34]

Grid, BSS CI, BSS To deal with the uncertainty of renewable energy generation,
vessel arrival times and lack of real-time adjustability, a

two-layer deep reinforcement learning based energy
management strategy is proposed, considering berth
allocation, energy management and BSS scheduling

Deep
Reinforcement

Learning

2.1. Contracts at Distribution Service Operator

Beside the standard transmission fee costs there are also flex contracts options available at
Stedin which would give incentive for parties to adjust their power by increasing or decreasing
their demand or supply [26]. These contracts are different in that they are not continuously fixed
power contracts but alter their capacity throughout time or are combined into groups. These
contracts aim to reduce grid congestion and resolve disturbance and maintenance, which allows
for better utilization of the grid. An overview of the current flexible electricity contracts at Stedin
can be seen in Figure 2.
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Figure 2: Flex contract options at Stedin [26]

There are many contract options, however the Time Constrained Transport Right (TCTR)
will be analyzed. The Time Constrained Transport Right is being introduced in the Netherlands
and enables businesses to increase their contracted capacity, typically between 00:00 and 06:00,
depending on region. This can supplement the existing contracted capacity. This is especially
useful for parties who need to charge their equipment in the morning but do not require extra
capacity throughout the day. Container terminals that do not operate on a 24/7 basis could also
use this time slot in the morning to charge their battery container handling equipment. However,
not every region allows this type of contract due to congestion and is not always available at
the same time slots mentioned previously. The amount of additional power is determined by the
container terminal, but, as previously mentioned, depends on whether this contract will be made
available in this region.

3. Literature Gap

With these many energy management studies in mind, this paper aims to expand upon them
with the following aspects:

• Few studies adapt the charging scheduling of battery container handling equipment through
charging stations in power management systems. This study aims to provide power schedul-
ing of when to charge this equipment, considering the uncertain arrival times of ships.

• Little to no studies consider the distribution service operator fees such as contracted capac-
ity costs and maximum power used in 15 minute averages, inside the optimization. This
also allows for optimization of necessary contracted capacity for an electrifying container
terminal. Furthermore, another capacity contract (Time Constrained Transport Right) will
be analyzed, which has also not been implemented in the literature.

• This model will have a small time step of 15 minutes to account for the fees mentioned
above, as well as allow for shorter berth times which occur at smaller container terminals.
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• To ensure the capacity is sufficient and represent more real-life decision making the de-
cisions for charging of the battery container handling equipment, cooling of refrigerated
containers and charging and discharging of a battery energy storage, are considered first
stage. While only shore power and crane power will be provided when the ship actually
arrives and ensured there is enough power.

4. Methodology

To achieve these goals the mathematical model formulation will be provided. In this mathe-
matical model the parameters will be denoted with a small letter and the decision variables will
be denoted by a capital letter. Table 2 denotes the sets and indices used for all parameters and
variables used for this optimization. The parameters used can be viewed in Table 3 along with
their description and unit. Similarly Table 4 denotes the decision variables for this problem.

Set Description Indice

I Set of BCHE types at the port i ∈ I
J Set of Reefer clusters at the port j ∈ J
V Set of vessels arriving at the port v ∈ V
T Set of time periods in the day t ∈ T
S Set of possible scenarios for ship arrivals s ∈ S

Table 2: Sets and Indices
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Parameters Description Unit

dt Size of timestep [h]
tmax Total number of time steps in the model [int]
socmin, socmax Minimum and maximum SOC [%]
wlim

i Maximum work rate per BCHE type i [TEU/h]
pbche,ch Maximum charging speed for BCHE [kW]
jbche
i Average power usage of BCHE i per job [kWh]

bbche
i Battery size of BCHE i [kWh]
ηbche Charging efficiency BCHE i [%]
cs Number of available charging stations [int]
m Number of available employees [int]
bBES Capacity of Battery Energy Storage [kWh]
pbes,max Max charge/discharge power of Battery Energy Storage [kW]
ηBES Efficiency of BES [%]
plim Power limit from the station [kW]
nree f er

j Number of reefers per cluster [int]
T des

j Desired temperature of reefer j [◦C]
T tolerance

j Temperature tolerance of reefer j [◦C]
wloss

j , sur j, cp j,m j Thermal parameters for reefer j
T amb

t Ambient temperature at time t [◦C]
T initial

j Initial temperature for reefers [◦C]
pree f er,max Maximum cooling power of reefer [kW]
ept Electricity price at time t [€/kWh]
ec Monthly cost of contracted electricity capacity of the DSO [€/kW]
em Monthly cost of peak electricity used in a 15 minute interval [€/kW]
eo Penalty cost for going over contracted electric capacaity [€/kW]
cr Maximum container handling per crane per time period [Teu]
q Total number of cranes available [int]
zi Number of battery equipment per type [int]
av,s Arrival time of vessel v for scenario s [int]
kt Truck arrivals per time step t [int]
lv Total containers to handle for vessel v [Teu]
pcrane Maximum power consumption per crane per time unit [kW]
pshore

v Shore power usage when vessel v is berthed [kW]
Pcon Positive contracted power capacity [kW]
Pundercon Negative contracted power capacity [kW]

Table 3: Paramters
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Variable Description Unit

Xi,t Amount of BCHE type i charging at time t [Num]
Yi,t Amount of BCHE type i working at time t [Num]
S OCbche

i,t,s SOC of BCHE type i at time t in scenario s [%]
S OCinit,bche

i Initial SOC of BCHE type i [%]
Wi,t,s Working rate of BCHE type i at time step t in scenario s [TEU/h]
Pcharge

i,t Charging speed of BCHE type i at time step t [kW]
Pree f er

j,t,s Power used by reefer j at time t [kW]
Pbes,ch

t Charging power for BES [kW]
Pbes,dch

t Discharging power for BES [kW]
S OCbes

t SOC of BES at time t [%]
S OCinit,bes Initial BES capacity [%]
T ree f er

j,t Temperature of reefer cluster j at time t [◦C]
Ptotal

t,s Total power used at time t in scenario s [kW]
Pmax

s Maximum power used in a 15 minute interval during the day in
scenario s

[kW]

Dv,s Departure time of vessel v in scenario s [int]
Hv,t,s Containers handled for vessel v at time t in scenario s [Teu]
Cv,t,s Cranes assigned to vessel v at time t in scenarios s [int]
Bv,t,s Whether vessel v is berthed at time t in scenario s [0,1]
Pcrane

t,s Total crane power usage at time t in scenario s [kW]
Pshore

t,s Total shore power usage at time t in scenario s [kW]

Table 4: Decision variables

4.1. Objective function

The objective minimizes the electricity costs and the fees from the DSO, which are a monthly
fee for the contracted capacity and the maximum average power used measured in a 15 minute
interval. There is also a penalty for exceeding the contracted capacity.

min πs

∑
s∈S

(
∑
t∈T

(Ptotal
t,s · ept · dt) + (Pover

s + Punder
s ) · eo + Pmax

s · em + Pcon · ec) (1)

4.2. Global power constraints

The global power constraint of the port considers the power of cooling the reefers; power of
charging the battery energy storage; the discharged power from the battery energy storage; the
power of charging the batteries of the battery electric container handling equipment; The shore
power of berthed ships and the cranes working on these berthed ships. The electric contracted
capacity is enforced by penalizing the power over and under their respective capacities. This
is done so the contracted power can also be optimized as well as operating as a more feasible
constraint, because stringent constraints might be numerically violated with the chosen decom-
position method by a tiny margin.
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Ptotal
t,s =

∑
j∈J

Pree f er
j,t + Pbes,ch

t + Pbes,dch
t +

∑
i∈I

Pcharge
i,t + Pshore

t,s + Pcrane
t,s , ∀t ∈ T, s ∈ S (2)

Ptotal
t,s ≤ Pmax

s , ∀t ∈ T, s ∈ S (3)

Ptotal
t,s − Pcon ≤ Pover

s , ∀t ∈ T, s ∈ S (4)

Punder
s ≤ Pundercon − Ptotal

t,s , ∀t ∈ T, s ∈ S (5)

The limits for the power usage of these are described in constraint 6 for reefer cooling power;
7 for BCHE charging power; 8 and 9 for charging and discharging of BES respectively.

0 ≤ Pree f er
j,t,s ≤ pree f er,max, ∀ j ∈ J, t ∈ T s ∈ S (6)

0 ≤ Pcharge
i,t ≤ pcharge,max, ∀i ∈ I, t ∈ T (7)

0 ≤ Pbes,ch
t ≤ pbes,max, ∀t ∈ T (8)

−pbes,max ≤ Pbes,dch
t ≤ 0, ∀t ∈ T (9)

(10)

4.3. Constraints of Ships and cranes

For the ship arrivals and the cranes loading or unloading the ship the following constraints are
created. The ships are planned according to a typical working rate at the terminal to determine
the length of stay at the port. Ships however can deviate from their estimated time of arrival due
to delays or they could be ahead of schedule. Furthermore ports typically have multiple cranes
on the quay which could work simultaneously on one ship or could spread over multiple ships.

Hv,t,s ≤ Cv,t,s · cr, ∀v ∈ V, t ∈ T, s ∈ S (11)
Cv,t,s ≤ q · Bv,t,s, ∀v ∈ V, t ∈ T, s ∈ S (12)∑

t∈T

Bv,t,s = Dv,s − av,s, ∀v ∈ V, s ∈ S (13)

Bv,t,s · (t + 1) ≤ Dv,s, ∀v ∈ V, t ∈ T, s ∈ S (14)
t · Bv,t,s + (1 − Bv,t,s) · tmax ≥ av,s, ∀v ∈ V, t ∈ T, s ∈ S (15)

Dv,s ≤ av,s +
lv
cr
, ∀v ∈ V, s ∈ S (16)∑

t∈T

Hv,t,s = lv, ∀v ∈ V, s ∈ S (17)∑
v∈V

Cv,t,s ≤ q, ∀t ∈ T, s ∈ S (18)

Pcrane
t,s =

∑
v∈V

(
Hv,t,s

cr
· pcrane

)
, ∀t ∈ T, s ∈ S (19)

Pshore
t,s =

∑
v∈V

pshore
v · Bv,t,s, ∀t ∈ T, s ∈ S (20)
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Constraint 11 specifies the handling rate for a ship must be smaller or equal to the assigned
cranes and their maximum working rate. Constraints 13, 14, 15 specify that the ship is berthed
during its arrival up untill its departure, and can not be berthed before its arrival or after its
departure. Constraint 16 sets an upper limit on the departure time with the maximum allowed
stay time, which is based on the handling rate used for scheduling purposes. Constraint 17
denotes that the amount of containers handled by the cranes for each ship must be equal to the
amount of containers to be loaded and/or unloaded from each ship. Constraint 18 sets the limit
for the sum of the assigned crane for each ship to not be larger than the total amount of cranes
available. Constraint 19 specifies the power used by each crane by dividing it by its max work
rate and multiplying by its power when working at its maximum rate. Constraint 20 sets the total
shore power to be equal to shore power of each ship multiplied by whether they are berthed or
not at every time step.

4.4. Constraints of battery handling equipment

To model the State Of Charge (SOC) of the batteries equations 21 and 22 are composed,
which take into account at every time step whether they are charging or performing jobs at a
certain rate and the resulting gain or loss in SOC. This SOC must stay between the minimum
and maximum threshold according to 23 to prolong battery life. Furthermore it is assumed that
the SOC of the BCHEs start with some capacity, this capacity needs to be the same as which it
started with, as can be seen in constraint 24.

S OCbche
i,0 = S OCinit,bche

i +
Pcharge

i,0 · dt · ηbche

nbche · bbche · 100 −
Wi,0,s · jbche

i · dt

nbche · bbche
i

· 100, ∀i ∈ I, t = 0 (21)

S OCbche
i,t = S OCbche

i,t−1 +
Pcharge

i,t · dt · ηbche

nbche · bbche
i

· 100 −
Wi,t,s · jbche

i · dt

nbche · bbche
i

· 100, ∀i ∈ I, t > 0 (22)

S OCmin ≤ S OCbche
t,s ≤ S OCmax, ∀i ∈ I, t ∈ T (23)

S OCbche
i,|T |−1 = S OCinit,bche

i , ∀i ∈ I (24)

Constraint 25 sets the maximum arrival rate of jobs must never be larger than the combined
work rate of the BCHEs at every time step. This constraint can be redefined more specifically to
specify which BCHE type does what, but for ports with only the same equipment type this con-
straint holds. Constraint 30 ensures that the BCHE can not simultaneously charge and perform
jobs at the same time with the integer decision variables. Constraints 26 and 27 set the limits
for the continuous decision variables, by multiplying the integer variables with the maximum
charge/work rate. The total amount of BCHEs that can charge simultaneously is limited by the
amount of charging stations that are available at that time step, denoted by constraint 28. And
the amount that can work at the same time is also limited for non-automated ports by constraint
29.

kt +
∑
v∈V

Hv,t,s −
∑
i∈I

Wi,t,s = 0, ∀t ∈ T, s ∈ S (25)
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Wi,t,s ≤ Yi,t,s · wlim
i , ∀t ∈ T, s ∈ S (26)

Pcharge
i,t ≤ Xi,t · pbche,ch, ∀i ∈ I, t ∈ T (27)∑

i∈I

Xi,t ≤ cs, ∀t ∈ T (28)∑
i∈I

Yi,t ≤ m, ∀t ∈ T (29)

Xi,t + Yi,t,s ≤ zi ∀i ∈ I (30)
(31)

4.5. Reefer constraints

The Reefers need to maintain a set temperature and are allowed minor fluctuation, but product
health is crucial. Constraint 32 sets the relation of the internal temperature of the reefer to the
loss with the outside temperature and the cooling power. Constraint 33 sets the bounds for the
allowed temperature fluctuation of the content inside the refrigerated container. Furthermore it
is assumed that the starting temperature and end temperature must be at the desired temperature,
denoted in constraint 34.

T ree f er
j,t = T ree f er

j,t−1 +
(
T amb

t − T ree f er
j,t−1

) 1 − e
−

wloss
j ·dt·sur j
m j ·cp j

 − Pree f er
j,t · dt

m j · cp j · n
ree f er
j

, ∀ j ∈ J, t > 0 (32)

T des
j − T tolerance

j ≤ T ree f er
j,t ≤ T des

j + T tolerance
j , ∀ j ∈ J, t ∈ T (33)

T ree f er
j,0 = T ree f er

j,|T |−1 = T des
j , ∀ j ∈ J (34)

4.6. Battery Energy Storage constraints

Similar to the constraints for the batteries of the battery handling equipment, the battery en-
ergy storage system has constraints describing the SOC transition in equation 35 and 36. Charg-
ing and discharging the battery has some efficiency loss accounted for both in the charging power
increasing the SOC less and discharging decreasing the SOC more than the discharging power.
The battery energy storage also starts with some initial stored capacity which needs to be the
same at the end, according to constraint 37.

S OCbes
0 = S OCinit,bes +

ηbes · Pbes,ch
0 · dt

bBES +
Pbes,dch

0 · dt

ηbes · bBES , t = 0 (35)

S OCbes
t = S OCbes

t−1 +
ηbes · Pbes,ch

t · dt
bBES +

Pbes,dch
t · dt
ηbes · bBES , t > 0 (36)

S OCbes
|T |−1 = S OCinit,bes (37)
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4.7. First and second stage variables

Similar to real life decision making, not every decision can be made real-time. For example
it is not certain when exactly the ship will arrive. To account for this uncertainty it is preferred
to make decisions that would hold up for all possible scenarios that could come along. The
decisions that can be made for the next day can be: when to charge the container handling
equipment; when to charge or discharge the battery; when to cool the reefers. The second stage
variables can also be interpreted by the index s under the variables, denoting a changing variable
for every scenario.

Figure 3: Timeline of two stage optimization

The allocation of power during the first stage is further described in Figure 3. For the day
ahead, considering the electricity price and temperature, the power supplied to the batteries from
the equipment and the stand-alone BES, as well as the cooling of reefers, is determined. This
accounts for the unrealized power required by ships that need shore power and crane power for
loading or unloading of these ships.

4.8. Decomposition method: Progressive hedging

Even with relatively few scenarios, solving the extensive form of such an optimization prob-
lem is not trivial [29], therefore a decomposition algorithm will be utilized to obtain a solution
which will split the extensive form into smaller subproblems by scenario which can be solved
significantly faster. To solve this Two-stage stochastic optimization model the progressive hedg-
ing technique will be used with mpi-sppy library [18].

Furthermore, this model implements the risk neutral approach as this gives a realistic ex-
pected cost and still enforces the constraints of the contracted capacity on the grid with a high
penalty for exceeding this value. This way it minimizes for the average outcome, or expected
value, while still maintaining the power constraints.

The progressive hedging algorithm decomposes the problem by scenario and uses a quadratic
term to penalize a lack of consensus among the first-stage variables which all should be the same
value across all the individual scenarios, i.e. subproblems. Firstly all the individual scenarios
are solved, then the average first stage decisions will be calculated of each first stage variable
based on the probability of each scenario and then the difference between this average and the
first stage variable values across the scenarios will be penalized with a quadratic term, as can be
seen in Figure 4.

13



Figure 4: Ph algorithm

In Figure 4 the progressive hedging stops until all scenario solutions are equal, however this
stopping criteria can be user defined as convergence is not always guaranteed for mixed-integer
problems [9]. For this model a different stopping criteria is chosen which will be discussed more
in depth in the tuning chapter. It stops when the first stage variables are considered close enough
to obtain quality solutions.

5. Case Study

For the implementation of the model, container terminals/depots for the inland waterway
transport will be examined. To get realistic values for this model, interviews have been done
with inland shipping ports in the Port of Rotterdam. The values for the case are therefore based
on these small container terminals that serve inland container vessels, also known as barges, and
truck transported containers.

5.1. Ships and shore power

Unlike the power demand for large cruises, container ships or RORO vessels, the demand
for shore power of inland shipping vessels is much lower. The most common inland shipping
vessels visiting these ports are inland container vessels, also known as larger Rhine vessels. The
estimated shore power demand varies per report [3] [35] [22] [19] [2] [11] [27] [10], but will be
estimated at 10 kW for these specific types of ships.

5.2. Reefers

These inland terminals or river terminals also often store reefers. The most common type
of reefer here is the 40 foot refrigerated container storing frozen goods between -18 and -20
degrees, these will be assumed as upper and lower limits with a set temperature of -19. These
reefers have the following common characteristics for frozen goods/meats. An average weight
of 25000 kg [15], specfic heat 2.6 KJ/(Kg ◦C) [17], thermal insulation 0.5 W/m2 ◦C [4] and a
maximum cooling power of 6.0 kW [15]
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5.3. Cranes

To model the estimated maximum average power for the cranes when working at its maxi-
mum rate can unfortunately not be determined by its diesel usage. Instead a simple calculation
will be made to estimate its maximum average power usage. This results in a rough estimate of
42 kW per hour at its maximum handling rate of 20 containers per hour. Furthermore, for the
particular terminal which schedules were used, the cranes make use of a stack underneath the
crane as a well beside the more common stack in the yard. It can be assumed that about half of
the containers handled by the crane will be passed along to a reach stacker as well.

5.4. Battery container handling equipment

The container handling equipment in the port will be replaced by battery electric alternatives.
This specific terminal operates with 4 reachstackers. For this study a large commercially avail-
able battery size of 600 kWh [13] will be chosen because of the extended working hours. The
charging speed will have an upper limit, which is the lowest charging speed that is offered for this
model with a maximum charging rate of 175 kW[13] with an effiency of 95 % [13]. The reach-
stackers handle 20 containers per hour and an average move will be 3 kWh, based on fuel use of
its hybrid counterpart. It is assumed that these batteries can charge at any rate. Furthermore, it
is assumed that the amount of charging stations will be equal to the amount of battery container
handling equipment which is 4. This assumption is made because most of these terminals do not
operate on a 24 hour basis and the charging will have to be performed manually. Additionally,
the SOC will be limited to a lower threshold of 20 % to avoid a too high depth of discharge,
similar to what is done in literature.

5.5. Battery Energy Storage

As there currently is no battery energy storage system installed at these ports, again values
will be determined based on literature and what currently is available. The BES is sized at 200
kW / 400 kWh to match the port’s current contracted capacity while enabling load shifting and
peak shaving for anticipated future electrification. The BES has a round trip efficiency of 90 %
[33], which corresponds with an efficiency ηbes of 0.95.

5.6. Ship arrivals and uncertainty

From the Estimated Time of Arrivals (ETA) and Actual Time of Arrivals (ATA) gathered at
these terminals the delay was calculated. As the gathered data size is not significantly large a
distribution will be fitted to remove roughness and remove outliers. These distributions were
fitted with the fitter library [7] and scipy distributions [36] were tested with the Sum Squared Er-
ror (SSE), Akaik Information Criterion (AIC), Bayesian Information Criterion (BIC), and Kol-
mogorov Smirnov (KS) test. The top 10 best fitting distributions can be found in Table ?? in
appendix A. The generalized normal distribution is chosen for this thesis to simulate the delay
from the estimated time of arrival.

From this distribution will be sampled to create possible arrival scenarios of these ships.
However, not all ship arrivals are possible by just sampling delays from this distribution, either
because they would arrive outside working hours or arrive outside of the time range of this model.
To counteract this the distribution will be truncated in these edge cases to fit inside the range of
working hours 38. This sampling will be performed a 100 times to build an estimate and not
become to computationally expensive.
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f PDF
X|a≤X≤b(x) =


fX(x)

FX(b) − FX(a)
, a ≤ x ≤ b

0, otherwise
, FCDF

X|a≤X≤b(x) =


0, x < a
FX(x) − FX(a)
FX(b) − FX(a)

, a ≤ x ≤ b

1, x > b
(38)

A medium and heavier operational working day have been chosen with their respective ETAs
to generate the uncertain arrivals on and to depict different operational levels of the terminal.
This will also have influence on total energy use, charging times and cooling opportunities.

5.7. Electricity pricing and weather

In addition to the ship arrival scenarios that can occur within a day and within the optimiza-
tion, different electricity prices and temperature conditions will also be considered. To generate
unique weather and day-ahead electricity pricing scenarios, k-means clustering will be performed
using the scikit-learn library [28], which utilizes equation 39.

arg min
C

n∑
i=1

min
µ j∈C
∥xi − µ j∥

2 (39)

To achieve this, the hourly historical temperature data for Rotterdam in 2024 from the Royal
Netherlands Meteorological Institute (KNMI) [16] is used alongside the day-ahead prices of
2024 from ENTSO-E [5]. Only the weekdays will be selected as the specific port usually does
not operate during the weekend. The electricity price and temperature are scaled using the robust
scalar from scikit-learn and then jointly clustered according to their hourly profile 24-hour arrays.
The amount of clusters is based on the elbow method and the silhouette score and results in three
unique clusters. The clustered electricity prices and temperatures can be seen in Figure 5 and
Figure 6, showing which hourly profiles fit into their respective clusters.
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Figure 5: Overview of selected hourly electricity profiles
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Figure 6: Overview of selected hourly temperature profiles
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The mean values of the clustered groups are chosen as to not neglect the outliers present in
one of the groups for electricity price. To this electricity price additional levies and taxes will be
added which are present in the Netherlands.

6. Progressive hedging tuning

The Progressive hedging algorithm parameters needs to be tuned to a specific problem and
case, for its penalty term and stopping criteria. The chosen stopping criteria for the progressive
hedging algorithm is a convergence metric gap of 1x10-5 specified in equation 40. This equa-
tion gives the distance between the common or average non-anticipative variables x̄n (i.e. first
stage variables) and the non-anticipative variables used in every scenario xs,n divided by the total
number of scenarios, as in this case each scenario is equally likely.

x̄n =
1
|S |

∑
s∈S

xn,s, CM =
1
|S |

∑
s∈S

 1
N f

∑
n∈N f

∣∣∣xn,s − x̄n

∣∣∣ (40)

Choosing proper values for the penalty term is not an easy endeavor [37] and requires tuning.
To fine tune this for every first stage variable per different scenario were running, for exam-
ple weather, electricity price, operational load, with or without batteries etc, would be tedious.
Because of this, consistent use of the same rhos will be used for all the generated results.

Another problem here lies in the trade-off between a high quality solution and convergence
speed for this specific problem. As choosing a large penalty term rho will reach consensus faster
among the first stage variables, however this does not have to be an optimal one. Choosing a
smaller rho will not force consensus fast after the initial phase as the penalty size will become
very small, but can reach a more optimal solution compared to higher rho starting values which
could drive the solution towards suboptimal solutions [41]. With these characteristics in mind,
an increasing rho value approach [41] has been chosen as specified in equation 41.

ρk+1 = τρ · ρ
k, τρ ≥ 1 (41)

• The starting ρ0 penalty has been set to 1x10-4 for every variable.

• With each iteration the rho penalty will be increased with a factor τρ of 1.04.

• Iterations stop when the convergence metric of 1x10-5 has been reached.

Furthermore, progressive hedging does not give an optimality gap as this is a heuristic algo-
rithm. However, it does give a Trivial Bound (TB), which is the objective value of the scenarios
in the list without enforcing non-anticipativity, meaning optimization of the individual scenarios
with perfect information. It can be interpreted as the average of all individually optimized sce-
narios. This does not give a very tight lower bound which can be used to compare the solution
with, as it does not solve the exact same problem. It does give the objective value of what can
be achieved with real-time perfect information, which is also known as Wait and See (W&S),
referring to no decisions being made before others and all information known simultaneously.
To obtain a more realistic lower bound to quantify the performance of the model, multiple runs
will be made for an average day where the full extensive form is run for an extended duration to
obtain a lower bound it has computed in this time, similar as done by Watson and Woodruff [37].
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Given: x̄n =
1
|S|

∑
s∈S

xs
n, σn =

√
1
|S|

∑
s∈S

(xs
n)2 − x̄2

n, (42)

Compute for each scenario s ∈ S :

d(s) =
∑
n∈N

min
(
3,
|xs

n − x̄n|

σn

)
, (43)

Select: s∗ ∈ arg min
s∈S

d(s), (44)

Define: x̂ := xs∗ , by resolving the model for scenario s∗. (45)

Finally, the xhatclosest extension from mpisppy [18] was used to obtain a final xhat result,
which utilizes a truncated z-score and obtains these values according to steps depicted in equa-
tions 42, 43, 44, and 45. It will choose the first-stage variable from scenario s which is closest to
the value of x̄, this will give a more numerically stable feasible outcome for this model compared
to directly using x̄. Afterwards it is checked that all scenarios are feasible given the nonanticipa-
tivity variables.

7. Results and Discussion

With the container terminal’s current contracted capacity, full electrification is not feasible.
For this transition to full electrification an approach is made to determine the required contracted
capacity. For this the contracted capacity will be set as a variable. An overview of the different
electricity price and temperature scenarios analyzed can be found in Table 5.

Scenario Electricity Price Temperature

Scenario 1 Fixed EP (0.239 €/kWh Eurostat) Cluster 1 Temp. (17.20 ◦C Avg.)
Scenario 2 Fixed EP (0.239 €/kWh Eurostat) Cluster 2 Temp. (5.94 ◦C Avg.)
Scenario 3 Fixed EP (0.239 €/kWh Eurostat) Cluster 3 Temp. (8.97 ◦C Avg.)
Scenario 4 Cluster 1 EP (0.18 €/kWh Avg.) Cluster 1 Temp. (17.20 ◦C Avg.)
Scenario 5 Cluster 2 EP (0.24 €/kWh Avg.) Cluster 2 Temp. (5.94 ◦C Avg.)
Scenario 6 Cluster 3 EP (0.17 €/kWh Avg.) Cluster 3 Temp. (8.97 ◦C Avg.)

Table 5: Electricity price and temperature scenarios

Before continuing a comparison will be made to assess the quality of the results obtained with
the progressive hedging method by running the extensive form for 3 hours per scenario, notating
the best incumbent and the associated gap and compare it with the solution from progressive
hedging algorithm. In table 6 the difference between the objective value obtained from the pro-
gressive hedging algorithm and the extensive form of the problem can be seen. The gap between
the optimal solution found in the extensive form and the progressive hedging is determined and
the optimal gap in the Extensive Form (EF) solution is denoted.
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Config Scenario OBJ PH (€) OBJ EF (€) Opt. Gap EF-PH EF gap

No BES,
Flex Reef

Scenario 1 1140.82 1140.14 0.060 % 0.02 %
Scenario 2 917.37 916.16 0.13 % 0.02 %
Scenario 3 977.15 976.40 0.077 % 0.02 %
Scenario 4 778.15 777.73 0.054 % 0.02 %
Scenario 5 844.73 844.18 0.065 % 0.00 %
Scenario 6 673.22 672.86 0.053 % 0.00 %

With BES,
Flex Reef

Scenario 1 1140.80 1140.11 0.061 % 0.02 %
Scenario 2 916.76 916.15 0.067 % 0.02 %
Scenario 3 977.27 976.40 0.089 % 0.02 %
Scenario 4 776.81 776.20 0.078 % 0.02 %
Scenario 5 845.15 844.14 0.12 % 0.00 %
Scenario 6 673.72 672.86 0.13 % 0.00 %

Table 6: Comparison PH results and solved EF

Given the reasonable results of the progressive hedging algorithm for an average working
day it will be used for further analysis. The aforementioned electricity price scenarios and tem-
perature scenarios as well as the hottest day of 2024 in Rotterdam were analyzed for heavy
operational days. These were performed to determine the necessary capacity for a traditional
continuous electric contracted capacity as well as a Time Constraint Transport Right (TCTR)
contract on top of the existing contracted capacity. Full results of these runs can be found in the
appendix.

No BES, Fix reef BES, Fix reef No BES, flex reef BES, flex reef

Fixed pricing 300 kW 300 kW 300 kW 300 kW
Dynamic pricing 320 kW 360 kW 440 kW 455 kW

Table 7: Capacities, for chosen configurations

From these runs the capacities were determined requiring at least enough to sustain the heav-
iest combination or using more when it is considered beneficial, in the case of dynamic pricing.
Then the capacity is based on the weighted average. It can be observed that for fixed electricity
pricing it aims to minimize DSO costs relating to fees for contracted capacity and maximum
power used, while for dynamic electricity pricing it is more beneficial to use more power dur-
ing times with lower prices, despite the higher DSO costs. Now with these given capacities for
their respective configurations the average daily costs throughout the year can be calculated us-
ing the generated scenarios for an average working day. Table 8 present these results for their
configuration and cluster and the resulting weighted average.
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No BES, Fix reef BES, Fix reef No BES, Flex reef BES, Flex reef

Fixed pricing
Cluster 1 € 1156.95 € 1159.86 € 1147.20 1147.69
Cluster 2 935.54 937.73 926.76 926.76
Cluster 3 995.08 997.33 985.95 985.94

Weighted Avg. 1056.36 1058.89 1047.01 1047.22

Dynamic pricing
Cluster 4 861.72 839.60 800.22 803.84
Cluster 5 904.30 892.36 853.78 867.76
Cluster 6 705.01 703.90 686.47 702.84

Weighted Avg. 806.50 794.39 763.86 774.24

Table 8: Results for chosen configurations and contracted capacities

All the first stage power decision are plotted for a scenario in Figure 7. In these pictures
the top left plot depicts the total power used for each of these scenarios, its mean, minimum
and maximum along with the electricity price for that scenario. The other three plots display
the scheduled first stage power decisions, with the top right plot showing the power the reefers
use and its internal temperature. The bottom left plot displaying the charging throughout the
day and the aggregated SOC. The bottom right plot shows the charging, discharging and change
in charge if applicable. It can be seen that not explicitly disallowing simultaneous charging and
discharging of the BES can lead to an outcome doing just that. The reason for this is that the BES
will be used in the first iteration when each scenario is solved individually, but these scenarios
differ quite significantly so the charging and discharging will be penalized. However, these are
acting as two different variables so when they are pushed to a common first stage value they can
overlap. Furthermore, from this figures it can be seen that the battery capacity for the BCHE is
on the high end as its not fully utilizing the range of its SOC. Other battery capacities for these
BCHE can be tested using this model, but it should be noted that this is an aggregated SOC so
some play within this range is desired. Additionally, even the lowest offered charging speed for
this reach stacker brand is on the high end for this container terminal and could possibly get away
with slower charging stations if possible.
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Figure 7: Dynamic electricity price cluster 5, fixed reefers, with battery energy storage

To summarize these results, currently dynamic electricity pricing is always the better option,
as given in percentages in Table 9 and Table 10. No BES and no flexible reefer cooling will be set
as base case, from which the other configurations are compared percentage wise. Furthermore,
flexible cooling of reefers will be the best load shifting option given the possibility.

Fixed EP No BES with BES

No Flexible Reefer 0.0 % +0.24%
With Flexible Reefer -0.89 % -0.87 %

Table 9: Case 2, Fixed EP

Dynamic EP No BES with BES

No Flexible Reefer -23.65 % -24.80%
With Flexible Reefer -27.69 % -26.71 %

Table 10: Case 2, Dynamic EP

A similar approach is taken for assessing the required additional capacity between 00:00 and
06:00 on top of the original 200 kW contracted capacity. Table 11 depicts the necessary extra
capacity, from which it can be seen that this contract would not work for reefers that can not
flexibly cool during the day. This is due to the combined power of still having to cool reefers
during for example ship arrivals and crane operation, which will exceed the contracted capacity.

No BES, Fix reef BES, Fix reef No BES, flex reef BES, flex reef

Fixed pricing - - 300 kW 300 kW
Dynamic pricing - - 300 kW 300 kW

Table 11: Extra capacity necessary for chosen configurations
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For the TCTR the same plot is made to compare the difference between total power usage
and how the first stage powers are scheduled. It can be seen that battery container handling
equipment, reefers as well as BES will use as much power during this time with extra capacity
to compensate for the rest of the day.
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Figure 8: TCTR, Dynamic electricity price cluster 4, flexible reefers, with battery energy storage

However, this TCTR does not give enough incentive for container terminals to change their
scheduling this drastically as can be seen in Table 12 and Table 13. The percentage in these tables
are compared against the no BES, no flexible cooling in Table 9. The TCTR contract performs
slightly worse compared to the traditional fixed contracted capacity.

Fixed EP No BES with BES

With Flexible Reefer -0.16 % +0.14 %

Table 12: TCTR, Fixed EP

Dynamic EP No BES with BES

With Flexible Reefer -24.0 % -23.9 %

Table 13: TCTR, Dynamic EP

8. Conclusions

This paper aims in assisting container terminals towards fully electrifying, by scheduling
powers such as charging batteries and cooling of reefers to ensure the container terminal stays
within its contracted capacity even with uncertain arrival of ships. This contracted capacity can
be optimized with this model for a terminals configuration by considering the fees from the DSO
to determine an appropriate capacity by analyzing multiple scenarios. It is found that with current
electricity prices, the dynamic electricity pricing is always more beneficial despite the slightly
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higher DSO costs by utilizing a higher contracted capacity, which would put more strain on the
grid in the Netherlands. However, these fees could increase in the future as the electric infras-
tructure in the Netherlands is increasing and grid congestion becomes a larger topic. The TCTR
contract aimed at providing power outside peak-hour demand, often between 00:00-06:00 would
also come with an incentive in the form of a reduction in DSO fees. For this specific terminal this
reduction is not enough to consider this type of contract, especially as it also involves significant
load shifting and would likely choose for a larger continuous contracted capacity. For avoid-
ing local grid congestion, adjustments in power behavior would need more incentive to avoid
businesses using simultaneous power during for example times with low electricity prices.

9. Appendix

Config. Scenario OBJ (€) CC (kW) TB/W&S (€) CM Gap # Iter.

No BES,
Flex Reef

Scenario 1 1270.49 257.40 1260.60 4.86 x 10-6 270
Scenario 2 1046.65 218.88 1037.10 9.53 x 10-6 302
Scenario 3 1107.13 229.25 1097.18 7.11 x 10-6 268
Scenario 4 864.96 586.47 858.30 9.76 x 10-6 301
Scenario 5 980.30 364.09 977.80 8.26 x 10-6 225
Scenario 6 766.24 313.25 762.31 9.23 x 10-6 253

With BES,
Flex Reef

Scenario 1 1270.61 255.23 1260.60 9.22 x 10-6 305
Scenario 2 1046.80 217.37 1037.10 6.13 x 10-6 316
Scenario 3 1106.98 227.61 1097.18 8.16 x 10-6 310
Scenario 4 863.53 622.47 846.89 9.53 x 10-6 317
Scenario 5 980.25 376.68 961.55 7.54 x 10-6 376
Scenario 6 767.04 306.33 756.63 7.42 x 10-6 333

Table 14: Heavy operation level results grouped by their configurations 1 of 2, continous contract

Config. Scenario OBJ (€) CC (kW) TB/W&S (€) CM Gap # Iter.

No BES,
Fix Reef

Scenario 1 1277.52 246.04 1271.87 8.92 x 10-6 279
Scenario 2 1052.95 208.41 1046.78 6.58 x 10-6 296
Scenario 3 1113.36 218.54 1107.26 1.67 x 10-6 336
Scenario 4 932.33 417.10 925.89 7.90 x 10-6 264
Scenario 5 1031.73 254.46 1029.75 7.27 x 10-6 150
Scenario 6 788.69 240.75 785.90 4.66 x 10-6 242

With BES,
Fix Reef

Scenario 1 1277.23 246.43 1271.26 1.94 x 10-6 341
Scenario 2 1052.96 208.70 1046.31 8.75 x 10-6 289
Scenario 3 1113.31 218.84 1106.75 7.77 x 10-6 322
Scenario 4 904.77 463.97 897.09 9.37 x 10-6 264
Scenario 5 1009.67 293.90 1003.74 8.36 x 10-6 258
Scenario 6 781.98 288.24 776.69 9.55 x 10-6 254

Table 15: Heavy operation level results grouped by their configurations 2 of 2, continuous contract
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Config. Electricity price OBJ (€) CC (kW) TB/W&S (€) CM Gap # Iter.

No BES,
Fix Reef

Fixed 1437.47 273.42 1434.00 7.79 x 10-6 273
Dynamic 1011.81 522.55 1004.67 9.40 x 10-6 250

With BES,
Fix Reef

Fixed 1437.42 273.61 1432.62 9.40 x 10-6 295
Dynamic 947.70 589.50 940.14 6.61 x 10-6 315

No BES,
Flex Reef

Fixed 1431.90 284.44 1421.88 9.71 x 10-6 300
Dynamic 875.37 655.11 868.24 8.76 x 10-6 268

With BES,
Flex Reef

Fixed 1432.00 282.31 1421.88 9.68 x 10-6 315
Dynamic 858.15 722.25 838.14 9.38 x 10-6 299

Table 16: Hottest day of 2024 and heavy operation level results grouped by their configuration, continuous contract

Config. Scenario OBJ (€) ECC (kW) Max PE (kW) TB/W&S (€) CM Gap # Iter.

No BES,
Fix Reef

Scenario 1 - 138.26 8.48 - 9.18 x 10-6 102
Scenario 2 1057.57 22.46 0.00 1048.50 3.63 x 10-7 215
Scenario 3 1121.55 52.03 0.00 1108.09 7.51 x 10-6 150
Scenario 4 - 135.74 8.48 - 9.90 x 10-6 143
Scenario 5 1034.36 71.25 0.00 1027.98 2.76 x 10-6 33
Scenario 6 794.03 49.55 0.00 785.77 1.98 x 10-6 147

With BES,
Fix Reef

Scenario 1 1305.50 149.94 0.00 1279.39 1.63 x 10-8 182
Scenario 2 1061.24 10.37 0.00 1048.22 2.72 x 10-7 224
Scenario 3 1127.39 43.4 0.00 1107.81 9.38 x 10-7 202
Scenario 4 991.04 211.22 0.00 960.04 1.77 x 10-7 237
Scenario 5 1025.82 165.81 0.00 1001.48 9.24 x 10-6 63
Scenario 6 794.35 189.57 0.00 776.35 1.50 x 10-6 124

No BES,
Flex Reef

Scenario 1 1297.40 154.34 0.00 1266.81 3.98 x 10-6 136
Scenario 2 1051.09 3.28 0.00 1039.18 9.43 x 10-6 200
Scenario 3 1117.43 39.49 0.00 1098.44 6.84 x 10-6 175
Scenario 4 978.99 239.78 0.00 946.81 1.11 x 10-6 211
Scenario 5 988.61 249.92 0.00 977.28 6.72 x 10-7 110
Scenario 6 780.53 160.17 0.00 765.35 9.33 x 10-6 58

With BES,
Flex Reef

Scenario 1 1300.87 151.30 0.00 1266.80 2.12 x 10-6 199
Scenario 2 1052.94 2.94 0.00 1039.18 3.51 x 10-6 153
Scenario 3 1120.04 38.90 0.00 1098.43 9.81 x 10-6 177
Scenario 4 976.95 268.10 0.00 944.60 5.92 x 10-6 279
Scenario 5 998.97 338.45 0.00 959.29 2.56 x 10-6 138
Scenario 6 785.10 229.24 0.00 760.61 3.02 x 10-6 132

Table 17: Heavy operation level results grouped by their configurations for TCTR contracts
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Config. Elec. price OBJ (€) ECC (kW) Max PE (kW) TB/W&S (€) CM Gap # Iter.

No BES,
Fix Reef

Fixed - 135.53 45.54 - 1.98 x 10-6 132
Dynamic - 128.64 45.54 - 7.15 x 10-6 128

With BES,
Fix Reef

Fixed - 251.36 36.62 - 9.66 x 10-6 319
Dynamic - 249.15 36.62 - 2.22 x 10-6 295

No BES,
Flex Reef

Fixed 1483.32 325.16 0.00 1442.97 9.93 x 10-6 188
Dynamic 1153.11 320.66 0.00 1096.55 7.59 x 10-6 126

With BES,
Flex Reef

Fixed 1480.22 275.22 0.00 1442.96 2.91 x 10-6 235
Dynamic 1136.57 339.59 0.00 1090.62 5.57 x 10-6 207

Table 18: Hottest day of 2024 and heavy operation level results grouped by their configuration, TCTR contracts
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