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Preface

Although nature commences with reason and ends in experience it is necessary
for us to do the opposite, that is to commence with experience and from this to
proceed to investigate the reason.

Leonardo da Vinci
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the opportunity to work on such an interesting project, with real-life applications and real hardware, | want
to thank my supervisor, Salua Hamaza. And also for all the support, patience and guidance throughout the
project, as well as giving me the freedom to make my own decisions and trail my own path.

The path was not an easy one and | wish to acknowledge everyone who helped me through it. | am
thankful to everyone in the MavLab, for making it a very open and helpful environment, where | could learn
so much. To Georg, Giorgia, Mahima and Nils, who | met along the way, | could not be more grateful for all
your support and friendship. A special thank you goes to Mahima and Nils, for helping me in the hardest
period of this thesis and being there on the day of Dora’s first flight.

| came to Delft three years ago. It was the biggest adventure of my life, and the most rewarding one. |
made incredible friends, for whom | am truly thankful, and who made Delft feel like home. To Lea, | am so
happy that we met on that first introduction day and stayed really good friends. To Chaimae, thank you for
all the moments we spent together and the fun trips and for having the patience to practice dutch with me.
To Elena, Magda, Sal and Ale, you were like my family in the Netherlands, always checking on me in the
last year. To Anténio, Johan, Gigi, Leo, Micha, Sara and Sofia, thank you for keeping me sane in all the
study breaks in the library, for supporting me and also all the fun moments. And to Teresa, Diogo and
Mariana, your friendship is very important to me and | am so happy we manage to stay close, even apart.

To Michele, my best friend, the last three years were so special because you were there by my side.
You were there every day of this thesis. You were by my side to glue and fold and unfold Ikea curtains, to
help me 3d print and debug and brainstorm, to feed me pasta and to hug me. You were so patient and
taught me so much, about everything. Grazie mille, per tutto, eu gosto muito de ti.

| dedicate this thesis to the most important people in my life, my parents and Mariana. You are my
unconditional support, | am so grateful, | really could not have done this without you. Thank you for always
believing in me, even when | did not, and pushing me to work hard and pursue my dreams. Obrigada, eu
adoro-vos.



1 Introduction

I Scientific Article

Il Literature Review

References

Contents

21
59



Introduction

Recent studies predict that global warming will have severe consequences for animal species that in-
habit tropical rainforests, including resident bird populations [1, 2]. Therefore, scientists are increasingly
concerned with researching new solutions and technologies to perform biodiversity surveys in these
environments. The aim of these technologies is to sense and collect data in situ, which can then be used
for more accurate and extensive monitoring and conservation studies.

One of the main approaches taken by researchers to conduct remote sensing in environments such as
rainforests is the deployment of wireless sensor networks. Large wireless sensor networks, with multiple
sensor nodes that are placed directly in the environment, can collect larger amounts of data, over longer
periods of time, compared to other approaches, such as mobile sensing with a moving platform [3]. With
regards to monitoring bird populations, acoustic sensor networks are among the most widely researched
options [4, 5]. The main reasons are the lower dimensions of the data compared to visual sensors and
novel post-processing methods using machine learning to distinguish between species [6]. Thus, the data
obtained can provide deeper insights on the effects of climate change, for different bird populations.

Placement of acoustic sensor networks in the rainforest presents with unique challenges related to 1)
the characteristics of the environment, such as remoteness and very dense vegetation, 2) the network
architecture, for example, the power, sensing and communication capabilities of the sensor nodes and
3) the deployment process itself. The first problem can be addressed if the deployment is performed
autonomously, using a quadrotor platform, and the sensor nodes are placed on top of the rainforest canopy,
where bird sounds are actually detected with less interference. Besides allowing access to hard-to-reach
areas, autonomous navigation in the emergent layer of the rainforest is less challenging as the environment
is significantly less cluttered. It is also less computationally demanding, as GPS-guided navigation is
possible. The second and third problems can be tackled if a detection method is employed, to identify and
map suitable locations to place individual sensor nodes on top of the canopy. Furthermore, the sensor
network architecture can also be considered in the selection of suitable deployment positions.

The aim of this research is to propose a framework for an aerial sensor network placement mission.
While previous studies often suggest random or uniform placement of sensor nodes within the target
environment [7, 8], this research specifically focuses on placing acoustic sensor nodes atop the rainforest
canopy. The emphasis is on autonomous deployment in predefined locations, minimizing travel distance to
enhance efficiency.Thus, the main goal is to propose an initial proof-of-concept for a path planner for safe
and autonomous exploration and detection of suitable deployment locations. In doing so, the following
research question shall be answered:

How to design an efficient path planner for an aerial sensor network, to explore and detect
precise deployment locations in an obstacle dense environment such as the rainforest using a
quadrotor?

The structure of this report is divided in two parts. First, Part | presents the scientific article, where all
the work developed to answer the research question is detailed, along with the results obtained in several
flight experiments. Then, Part Il contains the literature study conducted prior to the thesis work, where
different path planning algorithms were introduced and analyzed. This section can be reviewed to gain
further insight into the choices made throughout the thesis.
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Autonomous Aerial Sensor Network Placement in
Rainforests: Exploration and Detection of
Deployment Locations

Rita Santos Raminhos
Department of Control & Operations,
Section of Control & Simulation,
BioMorphic Intelligence Lab
Delft University of Technology, The Netherlands

Abstract—The effects of climate change put increasing strain
on rainforests and their inhabitants, highlighting the demand for
technological developments to aid in biodiversity monitoring and
conservation efforts. This research work proposes a novel frame-
work for the autonomous placement of acoustic sensor networks
on top of the rainforest canopy, using a quadrotor platform.
In order to tackle the challenge posed by multirotors’ limited
autonomy, an initial canopy exploration mission is considered and
an exploration planner is developed to detect suitable locations on
top of the rainforest canopy for sensor node deployment. Specif-
ically, green detection and pointcloud projection is performed
online and combined with our proposed sampling method to
accomplish targeted exploration, towards the estimated location
of detected green components. Flight experiments are conducted
across multiple scenarios that mimic distinct rainforest features.
The results validate the system architecture and demonstrate the
effectiveness of our smart sampling method, laying the foundation
for future autonomous sensor network exploration missions at
larger-scale.

[. INTRODUCTION

Biodiversity loss as a consequence of climate change has
been measured by scientists in recent decades [1]. There is
ample evidence of the impact on different plant and animal
species in distinct environments around the world, raising the
need for more and more extensive biodiversity conservation
campaigns. Rainforest environments, while representing only
six percent of Earth’s land surface, are inhabited by over fifty
percent of known animal and plant species [2]. Therefore,
studies to perform biodiversity monitoring in the rainforest
are essential but pose specific difficulties due to the character-
istics of these environments, namely their remoteness, dense
vegetation and high humidity levels. New technologies are
being developed by researchers to aid in biodiversity survey
and monitoring in such challenging environments [3, 4, 5, 6].
Multirotors are used in these works as they are lightweight
and agile platforms and thus easier to operate in complex
environments, compared to other Unmanned Aerial Vehicles
(UAVs).

Two trends are observed currently in biodiversity monitoring
applications: missions where data collection is conducted
online, using UAVs with longer endurance capabilites [7], and
missions where data collection is achieved over longer periods

Sensor N\
Network
Exploration
Planner

Green detection

Fig. 1: Our proposed ROS2 exploration planner sampling paths
towards detected green components, captured in RViz.

of time, via the deployment of wireless sensor networks
(WSNs) in the environment, as they enable the collection
of larger amounts of environment data [8]. WSNs combine
multiple sensor nodes with communication, localization and
processing capabilities that depend on the application [9].
Sensor nodes that capture acoustic information are suited for
performing biodiversity surveys in the rainforest environment,
due to the lower dimensions of the data and increasing suc-
cess of post-processing solutions [10]. Most works currently
assume that the placement of the sensor nodes in a sensor
network is random [11, 12] or uniform [13]. When placed on
the top of the tree canopy, acoustic sensors capture the sounds
of birds, bats and gliders that inhabit the emergent layer, where
navigation for multirotors also becomes less complex than in
the lower levels of the rainforest. We propose a framework
for the deployment of an acoustic sensor network on the
rainforest canopy using a lightweight quadrotor. The focus of
our framework is on autonomous navigation and deployment,
while giving consideration to the limitations of quadrotors,
namely their limited autonomy. Therefore, we divide the aerial
placement mission into three phases: exploration mission,
offline planning and deployment mission.

The methodology developed in this paper focuses on the



first stage of deployment, the initial exploration of the en-
vironment to identify suitable locations in the canopy for
sensor deployment. An exploration path planner is proposed
to plan local paths around obstacles towards possible regions
of interest. Our planner uses nvblox for generation of an
occupancy map [14]. The generation of sampling-based paths
is based on the Motion Primitives-based Planner proposed by
M. Dharmadhikari et al. [15]. The main contributions of the
proposed approach are listed below:

« A ROS2-based local exploration planner, combined with
a complete volumetric mapping and detection pipeline;

o Integration of state-of-the-art volumetric mapping li-
brary nvblox, optimized for faster computations, within
Nvidia’s Isaac ROS environment, to perform two-
dimensional (2-D) collision checking for the proposed
planner;

« Resource-efficient online processing method of color and
depth images sensed by an RGB-depth camera to identify
and estimate the position of green components;

o Smart sampling method to obtain local paths that guide
exploration towards detected green components.

In section II related work is presented and section III
introduces the methodology developed. In section IV the setup
for the flight experiments is explained and the results obtained
are discussed in section V. Then, section VI follows to include
various recommendations for future work. Finally, section VII
draws conclusions on the research work conducted.

II. RELATED WORK

Path planning for autonomous exploration of an unknown
environment is a widely researched problem within the
robotics field. Different approaches have been proposed by
researchers using multi-rotors. Frontier-based and sampling-
based methods are two of the most well-known methods.
Frontier-based methods such as [16] direct exploration towards
unknown space, as frontiers are defined as the limits between
mapped and unmapped space. On the other hand, sampling
based methods for exploration focus on increasing the amount
of new information acquired at each planning step, considering
both positioning and sensor characteristics. In their work
[17] A. Bircher et al. sample “Next-Best-Views” within free
configuration space as nodes of a Rapidly-exploring Random
Trees (RRT). The sampled collision-free paths are evaluated
at each re-planning step based on their volumetric gain, while
longer paths are penalized. The authors reported better explo-
ration rates using NBV planner compared to a frontier based
implementation for larger and more complex environments.

However, M. Selin et al. [18] proved that NBV planner can
get stuck exploring large scale environments, when a region
that has not been explored is far from the current location and
therefore outside the sampling range. As a solution, the authors
propose the AE planner, combining NBV as a local planner
with a frontier based global planner that generates paths when
local exploration gets stuck and reports zero information gain.
Node caching is implemented to estimate the gain of new
sampled nodes and save high gain nodes to use in the global
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Fig. 2: Framework for the autonomous deployment of aerial
sensor network using a quadrotor. We propose an initial explo-
ration mission (left) that maps and detects suitable deployment
positions, followed by an offline planning step (middle), when
the characteristics of the sensor network are considered and
the final placement path is computed, and finally the actual
deployment mission (right), in which the quadorotor navigates
to the locations and placement of the sensor nodes occurs.

planner, as high gain nodes are linked with frontier regions.
The results show that their planner successfully explores
environments where NBV planner fails and also validate the
node caching strategy, since the computational times obtained
are lower compared to NBV planner.

Other state-of-the-art planners such as FUEL [19] and
Graph based planner (GBP) [20] have proposed architectures
that include both a local and a global planner. Their results
highlight the advantages of planning at a global scale for
exploration of large-scale environments. In the case of GBP,
it was tested in two underground mine environments and their
global planner also includes a return-to-home feature.

The current state-of-the-art is also moving towards including
the UAV’s kinodynamics - kinematic and dynamic constraints
- in the sampling of new paths to enable more agile and faster
exploration. In their Motion Primitives based (MPB) planner
[15], Mihir Dharmadhikari et al. introduce an approach of sam-
pling accelerations and obtaining the sampled paths through
their primitives. Besides position and heading, the authors
also include velocity states in their configuration definition.
Therefore, sampled paths are checked for collisions but also
if they are future-safe and a hover can be reached safely from
the samples configurations, since a final velocity of zero is not
assumed. Similarly to GBP, MPB planner was tested in two
underground mines and achieved an average flight speed of
1.8m/s in one of the tests. REAL is a recent work by E. Lee et
al. [21] that samples minimum-snap trajectories [22] to achieve
faster exploration. In their paper REAL was compared and
outperformed other state-of-the-art planners NBV planner, AE
planner, GBP and MPB planner in a large scale environment.
With regards to MPB planner, the authors attribute this result
both to the sampling based approach that resulted in less
smooth movements and the lack of a global planner.

III. AERIAL SENSOR NETWORK PLACEMENT MISSION

Fully autonomous placement of an acoustic sensor network
using a quadrotor in a rainforest is conditioned by both the
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Fig. 3: Illustration of a sensor network with both sensor nodes
and relay nodes. Sensor nodes connect to relay nodes, which
link to other relays and the ground control station. In the pro-
posed offline planning step, optimized deployment positions
for the sensor nodes can be determined, based on the network
characteristics, e.g. the number of sensor nodes, sensing radius
(rs) and communication radius (r.) with relays and ground
control station. The multirotor then deploys the nodes to the
selected locations, in the final deployment mission.

characteristics of the environment and quadrotors’ inherent
limitations, namely their limited flight time. In order to address
the problem, we propose a framework to autonomously deploy
as many sensor nodes as possible in an unknown environment,
while covering the least distance.

A. Mission framework

We divide the autonomous placement of a sensor network
in three stages: exploration mission, offline planning and
deployment mission, illustrated in Figure 2.

We assume that the environment is completely unknown
prior to the exploration mission. Therefore, the quadrotor must
autonomously map and explore the surrounding environment,
while simultaneously avoiding obstacles and detecting loca-
tions of interest for sensor placement. Sensor nodes should
be placed on top of the canopy in flat and densely vegetated
areas, so the exploration goal is to map such locations. After
exploration, offline planning takes place, where the identified
regions of interest are considered to plan the shortest deploy-
ment path for the deployment mission. The architecture and
characteristics of the sensor network should be considered in
this phase, for instance, the number of sensor nodes, communi-
cation radius and sensing radius, depicted in Figure 3. Finally,
the deployment mission involves navigation to the selected
deployment locations and local re-planning is necessary to
avoid obstacles.

In this paper we propose a local exploration planner to
complete the first part of the placement mission, the explo-
ration mission. The planner explores the environment and
plans safe collision-free paths to identify suitable positions for
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Fig. 4: Overview of the software modules related to the map-
ping (nvblox) and green detection (Green detector) pipeline
from camera sensor data. Open source libraries are highlighted
in orange amd our own code modules in green. The outputs
from nvblox and Green detector are inputs to our exploration
planner, namely ESDF distance map slice, green components
and green pointcloud.

sensor placement. The detected positions for sensor placement
positions are saved by our planner. They can then be used for
offline planning in the following stage.

B. System Overview

Exploration path planners are highly dependent on sensing
and mapping capabilities of the mobile platform. The most
important sensor characteristics are the range and field of view
(FoV). These are inputs to our planner, such that paths are not
computed outside this region. Volumetric mapping libraries are
able to perform volumetric reconstruction of an environment
from sensor data. In our implementation, nvblox [14] is used to
generate dense occupancy maps to be used by the exploration
planner. nvblox is a state of the art library for GPU-accelerated
volumetric mapping proposed by A. Millane et al. Their library
provides both Truncated Signed Distance Fields (TSDFs) and
Euclidean Signed Distance Fields (ESDFs). While TSDFs are
used for surface reconstruction and have lower computational
times, ESDFs are useful for path planning applications as
they enable collision checking and selection of collision-free
paths. Compared to other recent works including Voxblox [23],
Voxfield [24] and FIESTA [25], nvblox provides high resolution
maps and is significantly faster at both querying and distance
field computations. Furthermore, a library tailored to GPU
processing allows us to take advantage of the full capabilities
of our hardware implementation, detailed in section IV.

We propose the architecture in Figure 4 for the mapping
and detection pipeline of our system. Our local exploration
planner uses the ESDF distance map slice provided by Nvblox



to perform collision checking. At the same time, we developed
our own green detection module that obtains the green com-
ponents and pointcloud from the color and depth images. The
detected green components and pointcloud are also provided as
inputs to our planner, in order to guide exploration towards the
unmapped green components. The following section elaborates
on the details of our green detector module.

C. Green detection

For the initial detection of green areas, we develop a green
detector that operates on the color images from the camera
sensor. As the purpose is to identify full green areas, non-green
pixels are filtered out and a set of morphological operations
is applied using the Open CV library. Then, the different
connected components in the image are saved and their
statistics are computed, namely area and centroid location.
The corresponding green pointcloud and 3-D position of the
centroid is computed on the GPU by leveraging functions from
nvblox’s library.

In Figure 5 we show the green detection of the same arti-
ficial palm tree in two environments and compare the results
with and without the implemented morphology operations, in
two distinct settings. Clearly, the applied morphology opera-
tions are essential to obtain satisfactory results and distinguish
one green component, in this case.

Our method uses color filtering in the HSV color space.
This method is influenced by lighting conditions, which can
lead to both missed components or false positives, which
will in turn influence the planner results in the exploration
tasks. It is important to mention that more complex and
computational expensive methods, such as neural networks or
3-D tree detection could achieve more accurate results.

D. Exploration planner

Most exploration planners proposed in literature aim to
explore the highest amount of volume possible in the least
amount of time. In order to do so, paths are generated
within collision-free space and then evaluated through the
computation of a gain function. In MPB and GBP planners
[15, 20], the authors define a gain function that includes the
volumetric gain sensed by the path and additional terms to
penalize longer paths and sharp changes of direction.

In our case, we also wish to direct exploration of the
environment towards possible deployment locations for sensor
nodes in the rainforest. Our quadrotor should fly above the
canopy layer and identify suitable positions in the canopy
below it. Since the canopy height is approximately constant,
during the proposed exploration task we assume a fixed height
for the entire mission duration, set by the operator before the
start of the mission. Therefore, our planner samples horizontal
paths in 2-D space. Navigation is safer above the canopy
layer and few obstacles exist. However, there are also trees
in the emergent layer so collision checking is necessary
and performed by checking the distance map slice (at the
planning height) provided by nvblox, as mentioned previously.
We assume that GPS-guided navigation above the canopy is

Al - Cluttered lab

B2 - Green detection
w/o morphology ops.

B1 - Green detection
w/o morphology ops.

C2 - Green detection
‘ -

C1 - Green detection

Fig. 5: Green detection results for one palm tree in two distinct
environments with different lighting conditions: a cluttered lab
environment (Al, B1 and Cl) and outside, on a sunny day
(A2, B2 and C2). The top images, Al and A2, are the color
images from the RGB-depth camera, and the middle images,
B1 and B2 are obtained after masking non-green pixels in the
HSV color space, using OpenCV functions. At the bottom,
images C1 and C2 show the final green detection results,
after applying a series of morphology operations (dilation and
closing, followed by erosion and opening). These operations
improve the results and clearly distinguish a compact green
component, that corresponds to the palm tree.

possible and reliable above the forest canopy, as experienced
by participation in the XPRIZE rainforest competition !.

Our proposed planner uses the green components from the
green detector module to sample paths towards identified dense
green areas, that would correspond to a dense region in the
canopy, such as the one shown in Figure 6a. We incorporate
the generation of a tree of motion-primitives based paths
implemented by the authors of MPB planner [15], with our
own method of sampling accelerations in the horizontal plane
in the direction of the detected green components. As with
any exploration path planner, it is undesirable that the planner
gets stuck and is not able to plan the next path. For example,

"https://www.xprize.org/prizes/rainforest



(b) River in the rainforest

(a) Canopy trees

Fig. 6: Aerial views from the Amazon rainforest of Brazil,
taken by Georg Strunck during the XPrize Rainforest finals.
Figure 6a shows the type of dense canopy foliage that we
wish to explore and detect with our planner. Figure 6b is
an example of the necessity of the re-exploration step: if the
quadrotor reaches the limit of the canopy, where there is the
river, no paths can be sampled because no green components
are detected, so the planner will fail to plan a path.

in our case, this is possible if the planner gets stuck in a
corner with emergent trees surrounding it and it cannot find a
collision-free path to exit or if there is clearing in the forest
or a river, like in Figure 6b. We propose a re-exploration step
to address this problem, which is executed when the number
of consecutive runs where the planner obtains a very low
gain exceeds a threshold. The pseudo-code of our planner is
provided in Algorithms 1 and 2.

Algorithm 1 Sensor Network Exploration Planner

while planner node is running do
> Save new green components

greenComponent < greenComponentCallback()
if area(greenComponent) > areami, then

if componentNotY et Explored() then

currentComponents < greenComponent

end if

end if
> Build tree and get best path

tree « buildTree()
leafs < findLeafNodes(tree)
for all leafs do

path < getPathfromLeaf(leaf)

gain < computeGain(path)

if gain > bestGain then

bestGain < gain;bestPath < path

end if
end for
if gain > gain,,;, then

publishPath(best Path)
end if

> Check consecutive runs with low gain
if runsGainTooLow > runsGainT ooLow,,., then
reExploration()
end if
end while

Algorithm 2 Tree Generation

function buildI'ree
treeRoot < currentPosition
while treeSize < treeSizemq, do
for all currentComponents do
while sample < samples,,q, do
a, theta < sampleAcceleration()
> Check if acceleration is inside FoV
if fouvy, . <a< fou,, . then
pos « computeMotion Primitives()
> Check if position is in known free space
status < checkStatusInM ap(pos)
if status = Free then
insertNodeInTree()
end if
end if
sample < sample + 1
end while
end for
end while
end function

E. Sampling method

The proposed planner follows a sampling-based approach,
where a tree of possible paths is generated. The tree generation
mechanism is adapted from MPB planner [15]. The control
space is sampled by sampling accelerations. Each path is
obtained by computing the corresponding motion-primitives
for one sampled acceleration, considering fixed time steps in
a determined time interval. Each tree node is then a position in
the configuration space, that has been checked to be in known
free space. Algorithm 2 outlines the tree building logic.

We propose a method for sampling accelerations that directs
exploration towards detected and previously unexplored green
components. To reduce the probability of plannings towards
false positives, a minimum area threshold on the components
used for planning is set. Similarly to MPB planner, an ac-
celeration magnitude and angle are sampled. The magnitude
value is constrained by the vehicle’s dynamic limits and input
boundaries. The angle value is sampled within a range of
the direction between the component and the current planning
configuration. The sampled angle is immediately checked to
belong inside the current sensor FoV or discarded and re-
sampled. An illustration of the proposed acceleration sampling
can be seen in Figure 7.

F. Gain function

After sampling and building a tree of possible collision
free paths towards the visible green components, each path
must be evaluated and compared with other paths, to find the
path with the best gain. The equation for our gain function
is shown in Equation 1, where each path ¢ was sampled
towards a specified component, C. The detected area of the
component is evaluated by the gain function, along with decay
terms to penalize longer path distances, dist(o) and lack of
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smoothness, S(0). v4,7d,7Vs are the gain function weights
for the area, distance and smoothness terms, respectively, that
can be tuned to increase or decrease the importance of each
term. The equation for the implemented smoothness function
is presented in Equation 2, which aims to penalize abrupt
changes of direct by computing the sum of the yaw angle
1 difference between consecutive nodes in a path, where n
is the total number of nodes and k is the current node being
evaluated.

G(];?’H(O’) =Yg - AT‘ECL(C) . e*"/d-dist(a)—'ys.s(a) (1)

S(o) = W(k+1)— (k) )
k=1

G. Re-exploration step

Our implemented planner samples the configuration space
iteratively, obtaining at each run a tree of possible collision-
free paths that are evaluated by means of the gain function, as
discussed in the section above. However, it is possible that, in
several consecutive runs, the planner fails to compute a path
with a gain that is higher than the minimum desired gain.
The minimum desired gain is a parameter set by the operator
and the lowest value it can take is zero. This can occur in a
cluttered environment where the planner is unable to sample
positions within know free space (since it is very reduced). In
the case of our planner, this can also take place due to our
method of sampling accelerations in the direction of the green

components, so if there are no green components within the
sensor FoV at the re-planning moment, no path can be found.

Thus, we implemented a re-exploration step when the num-
ber of consecutive runs where the gain was too low is higher
than the maximum allowed threshold (planner parameter). A
re-exploration step consists of yawing in an arbitrary direction,
to search for new green components to explore. The value of
the yaw angle is equally a planner parameter. After multiple
consecutive re-exploration steps where the planner still could
not compute a path, exploration is terminated and the landing
sequence is initiated.

IV. EXPERIMENTS

In order to validate the developed code, several flight
experiments were carried out in a controlled indoor setting.

A. Set-up

The aerial platform employed in the flight tests and re-
spective hardware implementation are shown in Figure 8. The
quadrotor was built using a custom frame with a diameter
of approximately 0.3m. The flight controller is a pixracer,
running the PX4 flight stack. The depth camera is an Intel
RealSense D435, with a maximum range of d,,., = 3m and
FoV = 87°x58°. All developed code runs onboard an Nvidia
Jetson Xavier NX board. The code is ROS 2 (Humble) based
and runs within Nvidia’s Isaac ROS environment 2, version
2.1. Therefore, the Isaac nvblox package is used to make
use of GPU functionality of the Jetson board, enabling faster
computations.

The available testing area is approximately 10m x 10m. It
is equipped with an OptiTrack Motion Capture system, that
provides an accurate position estimate to the path planner and
flight controller during the flight tests.

Three distinct mission scenarios were considered and the
set-up for of each of the scenarios A, B and C is shown in
Figure 9, along with detailed explanation of the differences
between each mission. For each scenario, different features of
a forest environment are imitated artificially in our indoor test
area. In scenario A, the drone flies at h = 1m height and
the artificial plants placed in the arena have a height between
1m and 1.6m, such that they can be sensed by the drone’s
depth camera, but will simultaneously work as obstacles. On
the other hand, in mission scenarios B and C, the flight height
is h = 1.5m, the drone’s camera is angled downwards at a 30°
angle and the main goal is to explore from above the plants
placed at the ground level, to mimic the exploration of canopy
trees as seen in Figure 6a. In scenario C, additional obstacles
and trees are arranged, to replicate the presence of emergent
trees in the rainforest. In Figure 10, we present the horizontal
position map of a single test run, for each scenario. The 2-D
position setpoints yielded by our exploration planner during
the mission are highlighted. The green components marked as

2Information about the Nvidia Isaac ROS environment and Isaac ROS
Nvblox package can be found in https://nvidia-isaac-ros.github.io/index.html

3Photo taken from the pixracer page in the official PX4 Guide:
https://docs.px4.io/main/en/flight_controller/pixracer.html



Onboard
computer
(Jetson
Xavier Nx)

Flight
controller
(pixracer)

Depth camera
(RealSense
D435)

Fig. 8: Quadrotor platform used in the experimental evaluation
and its components: from left to right, depth camera, onboard
computer and flight controller. The depth camera is the Intel
RealSense D435, the onboard computer is the Nvidia Jetson
Xavier NX and the flight controller is a pixracer °.

explored can also be observed and compared with the ground
truth estimate for the actual position of each green area.

B. Scenario A: exploration "mid-canopy”

The results for scenario A mission in Figure 10a show that
our planner code marked three out of the four components as
explored, despite clear navigation at the end of the mission
towards the fourth component on the bottom right hand side.
After careful observation of the camera and green detection
data from this flight, we concluded that the two bamboo plants
used had thin, sparse leaves that did not make up a full
green area, to be identified as an individual green component.
Instead, multiple components were detected, which led to
exploration in that direction, but none of the components met
the planner’s minimum area threshold to be identified as an
explored component. Therefore, this result is actually positive,
since our goal is to identify dense green areas. Additionally,
there is a significant error in the position of the first explored
component (the two palm trees on the left), compared with
the ground truth value. We can speculate that this is due to
the palm leaves having very protruding leaves, which pose a
greater challenge for our method of estimating the position
based on the detected centroid position.

C. Scenario B: exploration above the canopy

With regards to the mission of scenario B, Figure 10b,
it is also clear that exploration occurred towards all four
components, with three components identified as explored by
our algorithm, of which one is an undesirable false positive.

This is also likely due to the very irregular and protruding
foliage of the palm leaves of component number one, seen
at the top in Figure 9b. The components that were marked
as explored in the mission are the largest components. The
remaining two components were not identified as explored
because, despite being very dense, they did not meet the min-
imum area threshold. These results showcase the exploration
of canopy-like green areas, which is closer to the proposed
exploration mission for sensor placement conducted in an
actual rainforest.

As it is representative of an exploration mission in the
rainforest, we present the position and yaw tracking obtained
for the same test run of scenario B in Figure 12. The position
controller’s tracking of the desired setpoints is sufficient for
our application. Several re-exploration steps took place during
the mission, namely in the instances following the exploration
of a component. In those moments, no unexplored green
components could be found inside the camera’s FoV and thus
the local planner fails to plan a path. For all cases in the
analyzed mission, the re-exploration approach was effective in
finding new green components to explore, when the planner
gain was too low.

D. Scenario C: exploration above the canopy with emergent
trees

Finally, the results for scenario C, in Figure 10c, show
that the planner generated paths towards three out of the
four total components, and all explored components were
successfully identified as explored. Therefore, one component
was not explored, component number three on the bottom right
corner of Figure 9c, and this was common to all scenario C
runs. However, this result is considered satisfactory, because
the missing component is blocked by the obstacle, from the
drone’s position, making it harder for the planner to sample
safe paths to the third component, and instead the vehicle
safely proceeds to explore the remaining component.

E. Flatness detection experiments

The collaboration between ETH Zurich and TU Delft in the
ETH BiodivX team, that participated in the XPrize rainforest
finals, led to the successful deployment of an ecology canopy
raft on top of the Amazon rainforest canopy. The canopy raft
carried sensor nodes and the deployment was performed in
manual flight, using a commercial quadorotor. Such a platform
is a possibility for future autonomous deployment of the sensor
nodes, which requires not only dense green areas on the top
of the canopy, but also areas that are flat enough, such that
there is less risk of the raft sliding off or tipping over.

Considering this mechanical design, it is interesting to
investigate how flatness detection can be included in our
pipeline. A planar segmentation method using the open-source
Point Cloud Library pcl was added to our code base. This
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(a) Scenario A. The mission starts at the edge of the
CyberZoo and the flight height is set to A = 1m. The camera
is not angled. All plants have a height between 1 and 1.6m
and are placed along with other obstacles.
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(b) Scenario B. The mission starts at the center of the
CyberZoo and the flight height is set to h = 1.5m. The
camera is angled downwards at an angle of 30°. All plants
are placed at the ground level, to mimic a rainforest mission
where the drone explores the canopy trees below.

a8
1A f\’,

(c) Scenario C. Similar to Scenario B, with the same flight
height and camera angle. Additional obstacles and two trees
(on the top right) are placed, to mimic emergent trees in the
rainforest that the drone has to avoid.

Fig. 9: Experimental setup for the 3 test scenarios. Artificial
forest is assembled in indoor drone testing environment. The
world frame is oriented following the ROS convention FLU

(z is forward , y points left and z is up).
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Fig. 10: 2-D map of one test run for each scenario, Scenario
A (Figure 10a), Scenario B (Figure 10b) and Scenario C
(Figure 10c). We show the position setpoints generated by
our planner and the actual tracked position in the horizontal
plane (-y,x). The green components marked as explored by our
algorithm can be compared with the actual estimated ground
truth of the position of each green component. It is clear
that, in each scenario, the exploration if the environment is
successfully guided towards green.
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(a) Set-up used to test the flatness detection logic, with three
canopy-like components. Components number one and two are
placed on the ground and should be detected as “flat components”,
while component number 3 is not flat.
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(b) 2-D position map for one flight. The non-flat component

(number three) is successfully discarded by our implementation and
not marked as an explored component for sensor node deployment.

Fig. 11: Flatness detection experiment results. In this ex-
periment, explored components are subject to an additional
boundary constraint compared to previous Scenarios A, B and
C, related to their flatness.

method was applied to our detected green pointcloud, when the
distance of the vehicle to the detected green component was
below a certain threshold, such that the detected green point-
cloud corresponds to a single component. The implemented
method then returns and saves the percentage of pointcloud
points that fit the planar model, within a desired thickness,
0.3m was used in this case. The goal of this implementa-
tion is that, by analyzing the values obtained for different
components, we can conclude which components represent
flatter surfaces, for easier and safer deployment and retrieval
operations. Figure 11a displays the scenario used in the three
flight tests performed, to test the flatness detection logic, and
Figure 11b shows the results for one flight, where a minimum
threshold of 95% is set for the percentage of “flat points”,
and thus only the flattest components were saved as explored.
Additionally, Table I contains the results obtained for the
pointcloud segmentation method, for three flight experiments,
which show that the method is successful in distinguishing
flatter components.

TABLE I: Average, maximum and minimum percentage of
points that fit a planar model with a height of 0.3m, for succes-
sive measurements applied to the detected pointclouds of each
green components, across three flights. A difference is clearly
noticeable between components 1 and 2, for which almost all
points are inside the segmentated plane and component 3, with
a lower percentage of detected points that are inliers.

% detected “flat” points

Average Max. Min.
Component 1 99.9 100 96.9
Component 2 99.8 99.9 99.4
Component 3 93.4 96.3 82.9
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Fig. 12: Tracking of position and yaw setpoints during Sce-
nario B mission. The position controller is able to follow the
position setpoints sent by our planner module. The tracking is
not perfect, but sufficient for our implementation. Additionally,
six re-exploration steps were successfully executed when the
planner gain was too low and no paths were sampled.

V. DISCUSSION

A collective analysis of the results presented in the previous
section reveals two key insights. First, the desired behavior of
the planner to direct exploration towards dense green areas is
clearly visible in all three missions, since the vehicle traveled
towards the great majority of green areas. This was the main
goal of our method, combining green detection with our
sampling method to obtain safe paths towards the detected
green areas. Second, our collision checking implementation,
that checks nvblox” ESDF distance slice map in the sampling
of collision-free paths, is equally validated, as demonstrated
by the results in both scenarios with obstacles, A and C. In
all flights of scenario A, no collisions were detected despite



the cluttered environment, since all plants also represented
obstacles for the drone in this scenario. This is also evident in
the result for scenario C, where emergent obstacles and trees
were included and successfully avoided.

A total of twenty-four test runs were completed: twelve
flights were performed for mission scenario A and six flights
each for both scenarios B and C. In Table II we present
several metrics to evaluate the planner’s performance across
all 24 runs. The main goal of the proposed exploration mission
was to explore as many sensor node deployment locations
as possible, while covering the least amount of distance,
due to the limited autonomy of quadrotors. Therefore, the
average distance traveled during the exploration mission is
a very important metric. The average distance was highest
for scenario B runs, which also have the largest variation,
while both values are lowest for scenario C mission. This is
easily explained because, as noted previously, in all scenario
C runs, paths were generated only towards three out of the
four components, due to the presence of the obstacle next to
the third component. Scenario B, on the other hand, has no
obstacles and more dense green components than scenario A,
so more paths were planned towards all components, therefore
more distance covered. Across all runs, the average distance
covered was 13.41m. In order to evaluate this performance, we
can draw a simple comparison, illustrated in Figure 13, where
the environment is mapped instead with a non-intelligent
approach, via exhaustive search of the entire space. In this
case, to explore the same volume, we estimate that the traveled
distance would be approximately 49.9m, which is more than
70% higher than our method.

Regarding the number of explored components, the average
obtained is 1.96 components explored per flight, slightly below
half of the total number of components. This result improves
if we consider the scenario without obstacles, scenario B,
with an average of 2.33 components explored per flight and
also less variation between flights. Tests for scenarios A
and C, which had more obstacles, had very similar results,
averaging 1.83 explored components per flight. As planning
towards green components occurs even if the components are
not considered explored, the results on the detection rate of
individual components can provide further insight.

Similarly to what was observed in the mission in Figure 10b,
for most flights of scenario B components number three
and four were marked explored much less often (14.3%) or
not at all, respectively, due to not meeting the minimum
area threshold. Nevertheless, exploration is directed towards
these components successfully. It is also interesting to note
that in the flights with set-up A, where different types of
plants were used, component number three is detected as
explored considerably more times than all other components
(54.4% of the total explored components corresponded to
component number three). This result is positive, as it more
closely resembles the canopy foliage, reason why it was used
exclusively in scenarios B and C.
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Fig. 13: Exploration of the same volume as the flight ex-
periments, with the same depth camera, via a non-intelligent
method would yield a total estimated distance traveled of
49.9m. Mapping and detection operations would be performed
offline, in post-processing. Detailed calculations to obtain
distance values = and y are provided in Appendix B.

Two metrics are especially relevant to evaluate the perfor-
mance of our green detection module, namely the percentage
of false positives obtained and the error in the horizontal
position estimate. In our case, we consider false positives
the components that were saved by our algorithm that were
actually false positive detections. Most cases correspond to
repeated detections, i.e, the algorithm detected and saved the
same component twice, in different locations. The percentage
of false positives obtained is undesirably high, with an average
for all test flights of approximately 27%. This value is slightly
higher for scenario A (29%), compared to 26 and 21% for
scenarios B and C, respectively, which is once more attributed
to the protruding leaves of component number one.

Finally, our green detection module estimates the position
of detected green components, by obtaining the 3-D position
of the centroid detected in the color image. This method is
susceptible to sources of error, such as it can be influenced
by changes in lighting and perspective. Therefore, the error
obtained between the estimate horizontal position of the cen-
troid of explored components and the estimated ground truth
value (obtained with the motion capture camera system), is
also quite high, around 0.59m for all flight tests. Moreover,
the RMSE for the position of individual components confirms
our hypothesis that the leaves of the two palm trees that make
up component number one in set-up A were more prone to
detection errors, since the RMSE value obtained is 0.914, 30%
higher than the average.



TABLE II: Performance metrics obtained in the test runs
conducted, for each scenario and for all flights. Specifically,
we considered the distance traveled during the exploration
mission time (excluding the landing sequence), the number
of explored components per flight (excluding false positives),
the percentage of components identified as explored that are
false positives and the Root Mean Square Error (RMSE)
of the horizontal position of the centroid of explored green
components compared with the estimated ground truth. Ad-
ditionally, for each scenario, two metrics provide insight on
differences between individual components: detection rate for
each component and RMSE of the horizontal centroid position.
Overall, the traveled distance and explored components results
are very positive, while the number of false positives and error
in the estimated horizontal position of the detected centroids
are fairly high.

Total
24

Scenario C
6

Scenario B
6

Scenario A
12

Number of flights
Travelled distance
(mean =+ std. dev.)
[m]
Explored
components /
flight
(mean =+ std. dev.)
Percentage of false
positives
Estimated
horizontal position
of components’
centroid
(RMSE | std. dev.)
[m]
Detection rate of
individual
components
(comp. 1, comp. 2,
comp. 3, comp. 4)

13.1+25 15.0£3.5 125+24 13.4£2.7

1.83+0.83 233052 1.83+£098 1.96+0.79

29.0% 26.0% 21.4% 26.6%

0.61]0.32 0.62 | 0.25 0.50]0.17  0.59]0.27

22.7%, 18.2%, 42.9%, 42.9%, 45.5%,27.3%,
54.4%,4.5% 14.3%,0.0%  0.0%, 27.3%

RMSE position of
individual
components 0.91,0.47, 0.66, 0.63, 0.37, 0.65,
(comp. 1, comp. 2, 0.51,0.17 0.42, - -,0.54 ©

comp. 3, comp. 4)

[m]

VI. FUTURE WORK

To the best of our knowledge, this is the first study to present
a solution for rainforest canopy exploration and detection, in
the context of autonomous aerial placement of a sensor net-
work. While the current method is suited to perform additional
online tests in a controlled environment, on the deployment
mechanism and control logic, for example, there are several
recommendations for future work to perform more complex
missions in rainforest environments.

First, the green detection module can be improved. A
more robust method of estimating the position of centroids
would benefit planning results. The current implementation is
sensitive to lighting conditions and perspective, so consecutive
measurements can be fused in a more complex implementation
to select suitable viewpoints and obtain more accurate results.
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Convolutional neural networks or 3-D tree detection methods
applied to the detected green pointcloud would likely yield
better results, at higher computation costs.

Alternatively, the current implementation can be used to se-
lect the desired exploration direction and approach the detected
components, since it is computationally less demanding, and
combined with a new method to estimate the accurate position.
It would be interesting to train a neural network with aerial
images of the rainforest, to perform canopy detection and
centroid estimation. Data collected from manual flights above
the canopy would certainly yield optimized results, compared
to available forest LIDAR databases.

In relation to the exploration planner, the code developed
only plans 2-D paths. Upgrading to a 3-D planner would
allow to adapt to variations in the canopy height and control
the distance to the canopy. It is noteworthy that this would
require adapting the volumetric mapping library nvblox code
as well, since the ESDF distance map currently provided is
also 2-D. Second, including a global planner in the system
architecture would significantly optimize results, for larger-
scale environments, by redirecting exploration to previously
detected but unexplored areas if the local planner fails, using
algorithms like A* for optimal pathfinding. This global planner
would also assist in return-to-home landings. Finally, a method
for trajectory optimization, stacked on our path planning
implementation, would allow for smoother flight.

VII. CONCLUSION

This work introduced a framework for the autonomous and
optimized placement of an acoustic sensor network on top
of the rainforest canopy, using a multi-rotor platform with
limited autonomy. Based on this framework, an exploration
planner is proposed to perform the initial environment explo-
ration mission, with the goal of mapping suitable deployment
locations, while minimizing the traveled distance. The im-
plemented system architecture integrates a novel volumetric
mapping library, for faster GPU-accelerated computations, and
a developed green detection method to estimate the position of
detected dense green components, with a local path planner,
in order to guide exploration towards the detected green areas.
Detected green components are approached and evaluated by
the algorithm, and their estimated position is saved if the
minimum area for sensor placement is observed.

Flight experiment results, conducted in an indoor envi-
ronment with rainforest mimicking features, demonstrate the
planner’s ability to compute safe collision-free paths towards
detected green components. The proposed planner covered
significantly less distance compared to an exhaustive offline
mapping approach, which is a promising result for larger-scale
tests. Suitable deployment locations were successfully saved
by the developed method. However, the error in estimating
the horizontal position of these locations is noticeably high
and a non-negligible percentage of false positive detections
is identified. These results showcase the sampling method to
direct exploration to regions of interest for sensor deployment
and exhibit potential for further implementations.
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APPENDIX A
FINITE-STATE MACHINE

Besides the software modules present in Figure 4, an additional software module named PX4 planner was developed. This
module sends the necessary commands to the PX4 flight controller via ROS messages, using the PX4-ROS2 bridge running
in a docker in the Jetson board. In order to manage communication with the exploration planner, a finite-state machine (FSM)
was implemented. The code runs in the PX4 offboard mode. Figure 14 below details the different states considered for a full
exploration mission.

Takeoff

Mission

> Land sequence

Fig. 14: Implemented FSM responsible for autonomous navigation. The generated commands, for each state, are sent to the PX4
controller via the PX4-ROS2 bridge. For the highlighted states, the FSM accepts and executes messages from the exploration
planner. After taking-off to the mission height, the vehicle goes into wait state and hovers until a path is generated by the
planner, activating the mission state. Otherwise, if no path is received after 30 seconds, the vehicle lands. During the mission
state, a path is accepted and the yaw and position setpoints are commanded to the PX4 position controller. After a path is
tracked, the wait state is activated for 2 seconds, after which time a new planner path is accepted. During the mission state, if
a re-exploration message with a yaw angle command is received from the planner, the FSM enters the yaw step state to track
the desired yaw. A yaw step is also followed by waiting 2 seconds, after which the vehicle is again in mission state and ready
to received planner messages. Three end conditions are considered for the mission: 1) maximum mission duration is reached,
2) an out-of-bounds path is received and 3) an end of exploration message is received from the planner, due to the maximum
number of re-exploration steps being reached. When the mission ends, the land sequence is activated and the previous positions
are sent to the planner in reverse order, to return to the initial hover position. Finally, land and disarm commands complete
the FSM logic.
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APPENDIX B
SENSOR VIEW DISTANCE CALCULATION

As discussed in the paper, our method can be compared with an exhaustive search method, where the vehicle scans the
entire available space and mapping and detected operations are conducted offline, via post-processing of the collected color
and depth images. The total distance is obtained with horizontal and vertical distances y and z, respectively. These are the
maximum distances in the horizontal plane that are sensed by the camera at each moment and depend on its characteristics,
as shown in section B. Below Equation 3 and Equation 4 show the calculations to obtain = and y, for a mission at a height
of h = 1.5m. Equation 5 is the complete calculation of the total distance traveled using the exhaustive search method.

x1 = h-tan(31°) = 0.9013m; @9 = \/d?,,, — 1?2 =2.598m; x=x9 — a1 = 1.69Tm 3)
87°
%:z1~tan( ) = 0.854 = y = 1.708m @)
distipta =5-y+10—2+5- (10 —2-2) =49.8Tm (5)
Side view Top view
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Fig. 15: Schematics used to obtain horizontal y and vertical x distances used in the exhaustive search approach in Figure 13.
As can be seen, these distance values depend on the flight height and the depth camera range d,,,,, and horizontal and vertical
fields-of-view, FoV, and F'oV},.

14



x [m]

APPENDIX C
ADDITIONAL EXPERIMENTAL RESULTS
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Fig. 16: Representative flight experiments for the three scenarios.
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Introduction

In recent decades, technology for unmanned aerial vehicles (UAVs) has seen big advancements. The
European Commission estimates that by 2035 the European drone market will be worth more than
10 billion euros per year and employ more than 100,000 people [1]. Multirotors are lightweight and
agile UAVs that are easy to deploy. For this reason, they are used in a number of applications ranging
from agriculture [2], surveillance [3], emergency response [4] and communications [5] to environmental
research and monitoring [6, 7].

Technological progress in Micro-Electro-Mechanical Systems (MEMS) enabled the sensing industry to
produce cheap, small and light sensors with some level of processing, communication and localiza-
tion capabilities depending on the application. Sensor nodes can be combined straightforwardly to
form a wireless sensor network (WSN) [8]. Such a network offers great potential for environment and
biodiversity monitoring and survey applications [9] in locations such as rainforests.

Rainforest are very rich and diverse ecosystems despite representing only six percent of the Earth’s
surface - they are inhabited by more than half of known plant and animal species [10]. However, de-
ployment of WSN in these environments is challenging due to a number of factors, including their
remoteness, dense vegetation and humidity levels. Recent developments in aerial manipulators on-
board multirotor platforms open the doors to more possibilities. In this field solutions and frameworks
have been proposed for the deployment of sensors in forest environments using multirotors[11, 12].

The purpose of this report is to establish a research gap in the field of path planning for sensor de-
ployment in the rainforest. Current research will be analysed to determine whether there are prior path
planning implementations for the precise deployment of a sensor network with a UAV or how the current
state-of-the-art can be adapted for this goal.

1.1. Research question

In the context of this project, the research question below is formulated. Several additional sub-questions
are also identified.

How to design an efficient path planner for an aerial sensor network, with one hundred sen-
sor nodes, to map and navigate to precise deployment locations in an obstacle dense environ-
ment such as the rainforest using a quadrotor?

* How can we develop an exploration planner to explore the rainforest environment and map posi-
tions of interest for possible deployment locations?
* What are the parameters and constraints to select possible deployment locations?

+ After possible deployment locations have been identified, should path planning be conducted
offline? Which algorithm is more efficient to plan the actual deployment locations?

* Which method is suitable for online replanning towards the precise deployment locations while
avoiding dynamic obstacles in the safest and fastest way?
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1.2. Content Overview

This literature study report is divided into sequential chapters. First, chapter 2 defines aerial sensor net-
work and elaborates on the context of the thesis project. Second, chapter 3 distinguishes path planning
and trajectory optimisation and introduces the configuration space. Different path planning algorithms
are classified and the most commonly used algorithms are discussed and compared. chapter 4 focuses
on UAV path planning applications and covers important concepts related to sensing and volumetric
mapping used by most planners. chapter 5 follows to elaborate on current state-of-the-art exploration
planners. Next, chapter 6 briefly presents common approaches for trajectory optimisation and their
relation with goal-oriented planners. Finally, the conclusion in chapter 7 brings back research question
to bridge the findings and the proposed thesis project.



Aerlal sensor network

The thesis project aims to develop a path planner for the deployment of an aerial sensor network in a
rainforest environment. Therefore, this chapter starts by introducing the rainforest structure to be able
to explain our concept of aerial sensor network. After presenting previous works from the literature that
propose path planning for WSNs, we discuss the constraints and challenges for developing a planner
for the deployment of an aerial sensor network.

Rainforests have a characteristic layered structure, as shown in Figure 2.1. Layers differ in the amount
of water, sunlight and air circulation therefore plant and animal species vary in the different layers.
Above the forest floor, there is the lower layer - understory layer. Above it, the canopy layer is found.
This is the most densely vegetated layer. Finally the top layer is the emergent layer where taller trees
are found [10].

We consider an aerial sensor network (ASN) a set of sensor nodes, including relay nodes, placed on
top of the forest canopy with a quadrotor. After placement, the main goal of the ASN is to survey
biodiversity. Regarding the deployment strategy, S. Hamaza et al. proposed the three methods [12]
shown in Figure 2.1 in their work. Our method would be similar to their impulsive launch, except that it
take place on the top of the canopy.

Depending on the sensor type, the data collected will naturally differ. For surveying in the rainforest,
some sensors are more adequate than others. For instance, acoustic sensors are strong candidates
given the lower dimensions of the data. Placed on top of the canopy, they will be able to capture
the sounds of birds, bats and gliders in the emergent layers. Also the success of solutions for the
post-processing of the acoustic data is increasing [13].

In the literature, UAVs have been used for aerial collection of data from WSNs. Several works have
proposed path planners for this end [14, 15]. However, they assume random deployment of sensor
nodes. In [16] an autonomous helicopter is used and a solution is proposed for deployment of sensors
but in a uniform way. Therefore, following extensive literature research, path planning that takes into
account a map of the environment to place the sensors and the whole network precisely in positions of
interest has not been implemented to the best of our knowledge.

Figure 2.2 below shows an aerial sensor network as described. The path is planned towards previously
mapped deployment locations. We consider that planning the deployment position of the elements of an
aerial sensor network is not trivial and presents a number of challenges. For optimal placement sensor
characteristics such as range should be taken into account. At the same time, the whole network has
to be considered and there are connectivity constraints with the relay nodes.

We consider that the architecture of the sensor network is outside the scope of the thesis project. Hence,
parameters such as the number of sensors and relay nodes will be inputs to the path planner. Another
possibility is including bio-environmental factors into planning such as proximity to bodies of water.

In addition, challenging factors are mostly related to the environment characteristic and the UAV plat-
form. The limited endurance of lightweight drones is one of the main difficulties of path planning in a
large-scale environment. For this reason, the efficiency of the developed planner is important.



Figure 2.1: Layer division in the rainforest and the three sensor delivery strategies (direct placement on tree trunks, impulsive
launch in the canopy layer and perching on tree branch) proposed by S. Hamaza et al. [12].
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Figure 2.2: Representation of path planning for precise deployment of the aerial sensor network.



Path planning algorithms

The current chapter begins by defining path planning and trajectory optimisation in section 3.1 and the
configuration space in subsection 3.1.1. Then in section 3.2 path planning algorithms are classified
and relevant algorithms are introduced and compared.

3.1. Path planning and trajectory optimisation

Studies of motion planning commonly distinguish two aspects of the problem: front-end discrete path
planning and back-end continuous trajectory optimisation [17]. Although many research works propose
a solution for both the front- and back-end, there are different methods for each.

Path planning algorithms aim to find, for a certain iteration, the next best position within a configuration
space to achieve a certain goal. This means that path planning algorithms do not consider the time
variable and they return a geometric solution - the path.

When this path is parameterised in time a trajectory is obtained [18]. Trajectory optimisation algorithms
compute a trajectory that satisfies feasibility constraints (kinematic, dynamic and safety constraints for
example) while optimising for certain factors such as smoothness [17]. When the trajectory is parame-
terised as a twice-differentiable polynomial it is simple to obtain the velocity and acceleration from its
first and second derivative, respectively. Thus, the desired next state (position, velocity, acceleration)
is known.

3.1.1. Configuration space

To give a more complete definition of path planning it is important to define the configuration space.
Similarly to the literature, in this work we consider a bounded volume V in three-dimensional space
(R%). We further define three categories of V: unknown space V,,, free space V},.. and occupied
space Vos. Viree is the part of V' that we are certain contains no obstacles and is safe for the robot to
transverse. The subsets of V' that contain obstacles are classified as V,,s. V.., is the volume for which
we don’t have sufficient information to classify as V¢, ee OF Vops.

For path planning the configuration space C is generally considered [18]. The configuration space is
the "set of possible transformations that could be applied to robots” [17]. Naturally, these possible
robot configurations are contained in V. Then the free configuration space Cy... is the set of possible
configurations within V... A common practice in path planning applications is to expand the obsta-
cles in occupied configuration C,,s space with the radius of the robot. Subsequently the robot can be
represented as a point in space which simplifies collision avoidance computations. This is illustrated
in Figure 3.1.

Adopting a similar definition to the ones given in [18, 19], path planning involves finding a path o :
[0,T] — V where 0(0) = &nir and o(T') = £goa SUch that o(7) € Cypee for all 7 € [0, T, if such a path
exists. o, @and o404 are the initial and goal configurations, respectively and both belong to Cy ..

L. Yang et al. [19] further define optimal path planning as the process to find the optimal path ¢’ by
minimising a cost function ¢ : Y~ — R > 0 where }_ is the set of solutions to the original path planning
problem, so ¢(o’) = min{c(o)}.
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Figure 3.1: Expansion of mapped obstacle with the dimension of the robot’s radius [17].

3.2. Path planning algorithms

Algorithms for path planning have been proposed for a number of applications using different methods.
The most common classifications for path planning algorithms are based on their approach [17, 19, 20],
complexity [21] and application [17].

In his extensive book on path planning algorithms S. M. LaValle [21] distinguishes sampling-based
motion planning and combinatorial motion planning. The author makes this distinction based on the
concept of completeness. To be considered complete an algorithm must be able to present a solution
within finite time or communicate that one does not exist. Algorithms that match these requirements
are called combinatorial or exact algorithms. Sampling-based algorithms aren’t complete since they
sample the configuration space in a determined way and can get stuck if there is no solution.

Sampling-based algorithms randomly sample the configuration space to obtain a graph of possible
paths to the goal. Starting from an initial configuration of the robot, at each iteration sampling occurs
and the random result is evaluated, for instance, to check for collisions. If it is accepted, the sampled
nodes or edges are added to the graph. If the sampling density is sufficiently high, the probability that
the algorithm finds a solution converges to one [21]. However, the solution found might not match
the optimal solution. On the other hand, combinatorial algorithms consider the entire configuration
space in their search for the optimal solution. For large-scale environments employing these methods
is computationally expensive.

In their literature review work, L. Yang et al. [19] propose the taxonomy shown in Figure 3.2 to classify
3D path planning algorithms for UAVs. They distinguish five different approaches to planning: sampling-
based algorithms, node based optimal algorithms, mathematic model based algorithms, bio-inspired
algorithms and multi-fusion based algorithms. Their classification scheme will be adopted in this paper.
For each category the characteristics will be elaborated below as well as more detail on individual

methods.
@ 3D Path Planning AlgoritD

Sampling Node Mathematic Bio- Multi-

Based Based Model inspired fusion

Algorithms Optimal Based Algorithms based
Algorithms Algorithms Algorithms

Figure 3.2: Taxonomy proposed by L. Yang et al. to classify UAV path planning algorithms [19].
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3.2.1. Sampling-based algorithms

The approach of sampling-based algorithms has been described earlier. Probabilistic roadmaps (PRM)
and rapidly-exploring random trees (RRTs) are sampling-based algorithms.

PRM series

The PRM algorithm [22] works in two stages. First, random nodes are sampled in the configuration
space and checked for feasibility (if they are collision free, i.e. in the free configuration space). Then
they are connected by a local planner to build a graph, as can be observed in Figure 3.6 The second
stage is the query stage. It involves using a graph search algorithm to obtain the shortest path from the
initial configuration to the goal. Although it can be used as a single query method, PRM was developed
to answer multiple queries given different starting configurations as inputs. More advanced versions of
the PRM algorithm have been implemented, including PRM* [23].

PRM based algorithms have proved efficient for holonomic systems [22], i. e. systems where the
number of total degrees of freedom matches the number of controllable degrees of freedom. However,
they can’t be directly applied to the path planning of non-holonomic robots. Three-dimensional and
complex environments with narrow passages are also challenging for PRM algorithms to solve [21].
RRTs were proposed to fill this gap [24].

Figure 3.3: Example of a roadmap in two-dimensional configuration space with obstacles (in grey) obtained in the first phase
of PRM algorithm [18]. A very simple planner is used to connect the nodes with straight lines.

RRT series

RRTs [25] is an algorithm that incrementally builds a random search tree in the configuration space.
The initial configuration is the root of the tree and at each iteration a new edge or branch is added. This
involves randomly sampling the neighbouring space to select a node. Then the connection between
this node and the nearest tree node is evaluated. If it is feasible i.e. if it is collision-free, the new node
is added to the tree graph and the process is repeated until the goal is reached. It has been shown
that the algorithm is initially biased to rapidly explore the configuration space and ultimately converges
to uniform coverage [25]. This is illustrated in Figure 3.4.
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Figure 3.4: Representation of how RRT grows in two-dimensional configuration space [24].

Rapidly-exploring random graph (RRG) [26] is a variation of RRT where sampled nodes are also con-
nected to other nodes within a set range. The path is searched from the obtained graph. It has been
proven that when the number of samples approaches infinity the solution proposed by the algorihtm
will aproach the optimal solution [23] - asymptotic optimality.

RRT* [23] is another algorithm derived from RRT that is also able to find a minimum cost path. RRT*
works in a similar way, but after connecting a new node with the closest tree node it also evaluates the
connection between the new node and all other tree nodes within a defined radius r. If a shorter path
from the root can be obtained from rewiring the connections, the initial edge is deleted and the new
tree structure is linked. Figure 3.5 shows an example of the differently constructed trees and the paths
obtained with RRT and RRT*.

o
B
B

Figure 3.5: Path obtained with RRT (left) and RRT* (right) algorithms ran with 20000 samples in a simulation environment with
obstacles (red) and goal (purple) [23].

Over the last decades since their introduction RRT and derived algorithms have been applied in numer-
ous works in robotics, including as path planning modules for quadrotor applications [27, 28].

3.2.2. Node based optimal algorithms

Node based optimal algorithms approach the path planning problem as a graph search problem, making
it simpler to find the optimal path. These algorithms define a cost function and the nodes in the pre-
built graph are searched to find the minimum-cost path. Dijkstra’s algorithm and A star (A*) search are
examples of widely used node based optimal algorithms.

Dijkstra's algorithm

Dijkstra’s algorithm was proposed in 1959 [29] and is still one of the most representative algorithms for
graph search.



3.2. Path planning algorithms 9

At each run of the algorithm, a node is visited and a distance is calculated as the minimum found cost of
reaching the current node from the starting node. Initially the starting point is set to 0 and the distance
for all other nodes is infinity. The neighbouring nodes are analysed and the one associated with the
lowest cost is chosen and its distance can be set equal to the calculated value. Then it is set as the
next node to be visited and once again its neighbours will be analysed and the algorithm will follow
the minimum cost path onto the next unvisited node. Each time the distance of visited nodes also has
to be checked since it is possible that a lower cost path now exists through the newly visited node.
Termination occurs when the goal node is visited.

t X t X t X
10 00 J———>{ 00 10 10— 10 § —> 14
/ 9 / 9 / 9
2 3 4 16 slo} 2 |3 4 |6 s (0 2| 3 4 |6

s(0 =
\ 7 \ 7
5 5
oo—2> 3

5

Figure 3.6: Simple example of Dijkstra’s algorithm with 5 nodes [30].

A* series

A* evolved from Dijkstra’s algorithm and incorporated heuristics to achieve optimality [31]. Based on
a map grid, A* receives as inputs an initial and a goal position or node and returns the minimum cost
path.

The algorithm defines an evaluation function f(n) = g(n) + h(n) that represents the actual cost of a
path from starting node n; to the goal node n, passing through a node n. Then g(n) is the actual cost
to go from n, to node n and h(n) is the cost of the path from n to n,. If g(n) is an estimate of g(n)
and h(n) is an estimate of h(n) then we can obtain an estimate for f(n) = §(n) + h(n). Now h(n) is a
heuristic function that estimates the cost of the path from n to the goal n,. The goal of the algorithm is

to obtain the path that minimises f(n).

The algorithm defines two classes of nodes: open and closed nodes. Closed nodes are contained in
an obstacle or belong to the optimal path. Open nodes are all other nodes. It starts by computing f(n;)
for each of the possible successor nodes. The open node n for which f is smaller is selected and ties
are resolved randomly. This node is then closed and f(n) is calculated for each successor of n. Each
possible successor should be an open node including any closed node that now has a lower value of
f(n) when recalculated. Once again the node corresponding to the lowest value of f(n) is selected
and closed and the process can be repeated. When the goal is reached the algorithm is terminated.

Choosing an appropriate heuristic function is important. If 2(n) < h(n), ¥n that means that i(n) never
overestimates the real cost to reach the goal. In this case it has been proven that A* will return an
optimal plan [32]. A simple example is provided by LaValle [21] considering a 2-D map with obstacles:
calculating the distance by going in a straight line from a node to the goal is an underestimate of the
cost function. The actual value will naturally be higher if the path has to go around obstacles.

The Jump Point Search (JPS) [33] algorithm is derived from A* for uniform cost grids, achieving a
computation time around one order of magnitude faster than A* using graph pruning.

3.2.3. Mathematic model based algorithms

Mathematic model based algorithms implement methods such as Linear Programming, Nonlinear Pro-
gramming (NLP) [34], Optimal Control [35] or others. Linear Programming includes Mixed Integer Lin-
ear Programming (MILP) [36]. Although these methods can be considered sampling-based algorithms,
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the authors decided to include them in a separate category due to the different planning processes and
inherent computational complexity [19].

These algorithms model the environment and the robot and apply a set of kinematic and dynamic
(kinodynamic) constraints. A cost function is defined to find the optimal path. Figure 3.7 from their
paper represents this method.

Min Goal;
Conditions.

Maximum
Or minimum
principle
results
optimal path

~

Form cost function;
Or Hamiltonian function

/

Kinodynamic
constraints

Figure 3.7: Method of mathematic model based algorithms [19].

3.2.4. Bio-inspired algorithms

Bio-inspired algorithms apply techniques based on biological evolution to solve the path planning prob-
lem. L. Yang et al. [19] subdivide this category into two subcategories: Evolutionary Algorithms and
Neural Network algorithms. For path planning some of the most used evolutionary algorithms are ge-
netic algorithms (GA) [37], ant colony optimisation (ACO) [38], particle swarm optimisation (PSO) [39],
artificial bee colony (ABC) [15].

Genetic Algorithms

In GA for path planning chromosomes are used to represent paths where each gene that constitutes
the chromosome is a random feasible node. GAs start by initialising a population (set of chromosomes)
that is then evaluated based on a defined fitness function. The fitness function considers criteria such
as proximity to goal or obstacle positioning. To obtain the next generation only the fittest parents are
considered. At this stage crossover and mutation of the parents genes take place. The whole process
is repeated until the termination criteria is achieved.

Ant colony optimisation

ACO algorithm is inspired by ants that release pheromones when they find food. Then other ants
can follow the "marked” shortest path to the food source. In the same way, ACO algorithms explore
the environment and record potentially good positions. Compared to other evolutionary algorithms,
improved versions of the basic ACO method are able to incorporate multiple objectives and continuous
planning [40].

Particle swarm optimisation

PSO is inspired by flocks of birds that are able to share information about food sources by flying in a
group. Similarly, PSO algorithms explore the environment with particles that know their best location
and the swarm'’s best location. This is taken into account in successive planning steps.

Artificial bee colony

ACO algorithms imitate the different roles of bees in food search activities. There are three types of
bees: employed bees that keep track and search previous food sources; onlooker bees that evaluate
these sources to select the best one and scout bees that are responsible for exploration to find new
food sources. In path planning applications implementing ABC logic promotes both local and global
exploration [15].
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3.2.5. Multi-fusion based algorithms

The final classification proposed by the authors is multi-fusion based algorithms. These are path plan-
ning algorithms that combine of multiple algorithms to obtain a desired optimal path. This is a very
common approach for applications in the UAV field as will be seen in the next chapters.

3.2.6. Comparative analysis

Table 3.1 adapted from the paper by L. Yang et al. [19] compares sampling based, node based, mathe-
matical model based and bio-inspired algorithms in terms of time complexity, type of environment (static
or dynamic) and processing in real-time (online vs offline). Compared with the approaches of sampling
based and node based algorithms, bio-inspired methods have significantly higher computational times
which means they are unsuitable for most online planning applications. Mathematic model based al-
gorithms also have higher computational requirements. However, as we will observe in chapter 6 they
can be employed online for local planning.

To compare sampling based and node based approaches, C. Zammit and E. van Kampen [41] studied
the performance of RRT and A*. Their results confirm the theoretical properties of each method. While
RRT explores the space uniformly but doesn’t find an optimal solution, A* covers only a part of the
space to converge to the optimal path. The authors propose that A* is more suited for online 3D path
planning environments with static and dynamic obstacles in quadrotor applications subject to battery
constraints, given its optimality and low computational times. On the other hand, RRT will perform
better for exploration of uniform spaces. Nonetheless they find that if sampled nodes are checked in
terms of obstacle positioning and dynamics, RRT can produce faster and optimal results.

Table 3.1: Comparison between the different categories of path planning algorithm adapted from [19], including relevant
examples for each category and evaluation of time complexity, type of environment (S - Static or D - Dynamic) and real-time
processing (online vs offline).

Method Examples Time complexity Environment | Real-time
PRM [22], RRT [25], .

RRG [26], RRT* [23] O(nlogn) <T <O(n?*) | SandD Online
Dijkstra’s [29], 5 .
A* [31], JPS [33] O(mlogn) <T <O(n? | Sand D Online
MILP [36], NLP [34], | Depends on
Optimal Control [35] | polynomial eq.
GA [37], ACO [38], 5 .
PSO [39], ABC [15] | L = O("") S Offline

Sampling based

Node based

Math. Model Based SandD Oflline

Bio-inspired




UAV path planning applications

In their literature survey, L. Quan et al. [17] synthesize the main UAV applications where path plan-
ning algorithms play an important role. In a similar way, we distinguish different planners for UAVs:
goal-oriented planners, exploration planners, uncertainty-aware planners and planners for collabora-
tive robotic systems.

Goal-oriented path planning is the process of reaching a goal configuration autonomously from a start-
ing configuration. It is the most basic form of path planning necessary for most UAV applications [17].

Additionally, a number of applications relates to the information collected by the UAV while flying. This
is the case for exploration path planners that explore and map a previously unknown environment.
Another possibility uncertainty-aware planning that aims to "reduce the uncertainty or improve the ac-
curacy of ego-motion estimation” [17].

Collaborative robotic systems are multiple UAVs or UAVs and ground robots that work together to
perform a variety of tasks [42, 43].

Finally, multi-objective path planners have also been proposed [44, 45]. These planning algorithms
weight multiple goals or adapt them according to the environment characteristics.

For the thesis project, goal-oriented and exploration planners are most relevant. Therefore the state-
of-the-art exploration planners will be covered in chapter 5 and in goal-oriented planners chapter 6.
The remaining of the current chapter will cover some concepts related to sensing (section 4.1) and
volumetric mapping (section 4.2) used by these path planners.

4.1. Sensing

UAVs are equipped with multiple sensors that measure different variables. An Inertial Measurement
Unit (IMU) is composed of accelerometers that measure linear accelerations and gyroscopes to mea-
sure rotational accelerations. A GPS allows the drone to know its current position and velocity. These
are essential sensors in lightweight UAVs for most applications. Obstacle avoidance or exploration
also require visual sensing of the environment and information on the distance to obstacles (depth in-
formation). These algorithms also have to account for the field of view (FoV) and range covered by the
sensor.

As defined previously and similarly to the literature, volume V' is a bounded volume in 3D space. V
can be divided into unknown space V,,,,, free space V... and occupied space V,;;. Cameras and Light
Detection and Ranging (LiDAR) systems are examples of sensors used to perceive V.

While mono cameras use a single lens to capture a 2D image of the environment, stereo cameras
integrate the images from two or more lens. In this case depth data can be extracted using triangulation.
Another possibility are RGB-Depth (RGB-D) cameras that include a depth sensor to produce both color
and depth data.

Time of Flight (ToF) sensors emit a set of pulses per unit time and capture the reflected signals. The
range to the object is determined by measuring the time between emission and detection. LiDAR
systems are ToF sensors that work with one or more laser beams. Multiple LIDAR measurements are

12
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Figure 4.1: Point cloud obtained in a forest environment with a UAV-mounted LiDAR [47].

combined to form a point cloud from which the environment can be mapped in 3D. Other types of ToF
sensors exist for example using infrared light but these have lower range and FoV [46]. Figure 4.1
shows an example of a point cloud obtained with a UAV’s LiDAR.

Visual-Inertial Odometry (VIO) systems combine visual and IMU data for estimation of the drone’s
pose. These systems are necessary in GPS-denied environments and when testing path planning
implementations in an indoor setting. Hence, VIO systems are implemented in several of the path
planning solutions that will be presented in the next chapters

It is important to note that other sensing solutions exist but it is impossible to cover all of them. The
sensor types mentioned are the ones most commonly used in the implementations researched for
autonomous navigation and exploration.

4.2. Volumetric mapping

A 3D representation of the environment is necessary for the applications covered in this literature study.
A common approach in UAV path planning applications is volumetric mapping [48, 49] that divides the
volume into cubic units named voxels with radius r,,,,,. Depending on the chosen mapping system,
voxels can be classified as unknown, free or occupied to create an occupancy map or contain informa-
tion on the distance to occupied voxels. This information is based on the integration and treatment of
sensor data.

Multiple frameworks for 3D mapping have been proposed and applied in online UAV path planning
implementations. Octomap [50], Voxblox [51] and FIESTA [52] are widely used for autonomous ex-
ploration and their source code is available open source. Figure 4.2 shows how a volumetric map is
progressively built using an exploration path planner.

Octomap builds an occupancy map using a hierarchical data structure for 3D spatial subdivision called
octree. Their method is applied to fused sensor data to calculate the probability of occupancy for the
sensed voxels. Because of the hierarchical way in which mapping data is stored, the tree can be
queried for occupied voxels at different resolutions, up to a maximum value.

Euclidean Signed Distance Fields (ESDFs) are an alternative way of representation to occupancy maps.
An ESDF map is divided in voxels and each voxel includes the Euclidean distance to the closest oc-
cupied voxel. This facilitates online collision checking and choosing collision-free paths necessary in
a number of path planning applications [53]. For gradient-based planning methods such as [54] occu-
pancy maps aren’t enough since they don’t provide any information on the gradient to obstacles. ESDF
representations are then useful for these methods, since a gradient computation occurs naturally.

TSDF (Truncated Signed Distance Field) is a representation developed in 2011 [55] and used in com-
puter graphics and surface reconstruction applications. Compared to the ESDF, the difference is the
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Figure 4.2: Volumetric mapping progress in exploration path planning application [27].

way of calculating the distance for each voxel. TSDFs compute the distance along the direction of the
casted sensor ray from the sensor center to the nearest occupied voxel [53]. This distance calculated
along one dimension is called projective distance.

The papers that propose Voxblox and FIESTA construct ESDFs. Voxblox [51] works by building TSDFs
and using the distance values to update voxels and compute their distances in an ESDF map. Fiesta
[52] also propose a method to update the ESDF map incrementally based on their own data structures
and an algorithm to handle and optimize map updates.

The authors of Voxblox acknowledge two sources of error of their system because of building the ESDF
from TSDFs. First, the TSDF projective distance can overestimate the real Euclidean distance to the
closest obstacle despite this error decreasing with the number of observations. The second type of
error is related to the calculation of quasi-Euclidean distances (that is the distance is only measured
along horizonal, vertical and diagonal line segments) to build the ESDF map for faster computation
purposes. Safety margin factors are defined in their paper to account for these errors.

The authors of Fiesta claim that their approach allows for building the ESDF directly without these
errors [52]. They also compared the performance of FIESTA and Voxblox in experiments with real-
world datasets and report an improvement for both accuracy and performance metrics of around one
order of magnitude.

Very recently Y. Pan et al. [56] proposed and validated a new framework named Voxfield. Their sys-
tem is a TSDF-based method to build an ESDF representation in a similar approach to Voxblox. They
implement a new way of calculating non-projective distances on a TSDF map combined with an effi-
cient ESDF update algorithm. A complete comparison with state-of-the-art mapping systems including
Voxblox [51] and Fiesta [52] is presented where the authors claim better accuracy and computation
times. Compared to Voxblox they achieve lower error values on TSDF maps and significantly lower
error values on the ESDF map in tests with different datasets. Regarding the ESDF map, their results
show 15% higher accuracy than FIESTA. The authors explain this result with the different way of com-
puting the Euclidean distance. In FIESTA's implementation the distance is computed from the center
of the origin voxel to to center of the closest voxel that is occupied while in their implementation the
distance is considered up to the surface of the obstacle.



Exploration path planners

The exploration path planning problem consists of finding a safe (collision-free) path that maximizes
the exploration and mapping of unknown volume V while satisfying kinodynamic constraints. For any
path planning algorithm for exploration initially V' = V,,,,. The goal is to fully determine V' = V,.ce U Vi
and eliminate all unknown space V,,,, = @ or reduce it to the residual volume V,,,, = V,.., that is the
volume that cannot be perceived due to the environment characteristics (such as stretches that are too
narrow for the multirotor to navigate).

Path planning starts from an initial configuration &;,,;;. It is common to define the configuration as the
flat state with position and yaw ¢ = (z,y, z,4)T. Then each planning step computes a path of_, to
reach & from the previous configuration &, _;. This path has to be collision-free and respect the UAV’s
dynamic constraints. The path cost is defined c(cf_,). A gain function can be used to determine the
best path for exploration among all collision-free paths. More detail will be provided in section 5.4.

Different strategies have been proposed for exploration. Frontier based and sampling based explo-
ration are representative methods. While they were proposed by earlier works, they are still used in
recent applications and are introduced in section 5.1 and section 5.2 below. The receding horizon ap-
proach is also presented in section 5.3 and the gain function in section 5.4. Finally, section 5.5 analyses
state-of-the-art exploration planners proposed for multirotor applications.

5.1. Frontier based exploration

Frontiers were first defined in [57] as the border region between mapped space and unknown space.
The path planning algorithm presented uses frontiers to accomplish the exploration goal by repeatedly
directing the robot towards these unexplored areas of space. Improved versions of this method have
been proposed recently for exploration with UAVs such as Rapid by T. Cieslewski, E. Kaufmann, and
D. Scaramuzza [58].

In current 3D path planning applications the frontier region usually refers to the set of unknown voxels
that is adjacent to "known” voxels belonging to V... or V. It can be defined mathematically as:

F = {030} € Viree, Ty, € Vi, |10} — Vsl = Timap s (5.1)

where v} and v, are the centroid positions of a free and unknown voxel respectively. For better under-
standing Figure 5.1 highlights frontier regions in 2D.

5.2. Sampling based exploration

In the literature, sampling based exploration is often related to sampling of "next-best-views”. While
earlier mentions exist, the concept of "next-best-views” (NBV) is well introduced in [60] as the best
sensor view among all candidates for the next planning step. The determination of the NBV depends
on the amount of new information that can be sensed as well as positioning (e.g. obstacles in the way)
and sensing constraints (range and FoV of the UAV’s camera).

15
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Figure 5.1: Frontier region (in green) update process based on new sensor data [59].

Among the current state-of-the-art of exploration path planning algorithms, the implementation by A.
Bircher et al. [27] samples NBVs within the free configuration space as nodes of an RRT. Their work
will be analysed in more detail in subsection 5.5.1.

5.3. Receding horizon method

A number of state-of-the-art algorithms for exploration path planning use a receding horizon (RH) strat-
egy. This approach is inspired by model predictive controllers [35] where at each step a sequence of
future control inputs is obtained based on the mathematical model and the current system state. Re-
ceding horizon means that only the first calculated control signal is implemented and the optimization
process is repeated in the next step.

This concept has been applied successfully to UAV path planning problems [27, 48, 49]. In these
implementations at each planning step the best future configurations are computed but only the next
configuration is used and the process is repeated for that configuration with new information.

5.4. Gain function

Most exploration planners define an exploration gain in order to select the best path. This gain is
computed based on the volumetric gain, while penalizing longer paths (paths with higher cost c(c)).

The volumetric gain is the amount of volume i.e. the number of voxels that can be perceived from a
certain configuration taking into account the sensor characteristics and the environment geometry. For
example, if the sensor range and FoV cover a part of the environment from the current position, the
volumetric gain is higher than when there is an obstacle in the sensor’s FoV. The volumetric gain is
estimated from the limited knowledge at that moment, since the volumetric map M is built incrementally
when new sensor data is available.

Different planning methods propose different mathematical definitions for the exploration gain. This will
be further discussed in section 5.5 but we can present a general definition for the exploration gain gez,
of a candidate configuration:

Gexp(§k) = Guot (M, &) - eiAC(J;‘C’_l), (5.2)
where g, is the volumetric gain and X is the tuning factor for penalizing paths with longer distances.

5.5. State-of-the-art planners

This section will analyse in detail six state-of-the-art UAV path planning implementations for autonomous
exploration. In a growing research field with a continuous influx of publications the selection process
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was not an easy one. Besides considering the impact of these works within the academic community,
our primary selection criteria was choosing papers that validate their method through real-world exper-
iments, since one of the main goals of the thesis project is to implement a robust method and test it in
real-world conditions.

5.5.1. NBVPlanner

A. Bircher et al. [27] proposed a Receding Horizon "Next-Best-View” Planner that we will designate
NBVP. Their sampling based exploration method uses RRT to generate collision-free paths that are
then evaluated based on their volumetric gain. At each planning step a tree is built from the current
configuration with a set number of nodes. The gain of each tree node is calculated with the volumetric
gain. Full paths up to the maximum dimension of the tree are analysed so the gain of a node is always
summed with the gain of the previous node. Longer paths are also penalised. The branch or path to
the node with the best gain is chosen but the receding horizon approach means that at each step only
a part of the path is executed. In the next step, a new tree is constructed including the previous best
path so that possible good solutions aren’t lost.

The authors tested their algorithm in different simulation setups and a real-world experiment with a
hexacopter. The exploration progress was measured as the amount of mapped volume in m? over
time and compared with a frontier based planner. Other measured metrics include total exploration
time and total computation time (from which average computation time for each planning step can be
calculated). The results show that the performance of both algorithms is similar in a simple environment,
while NBVP is more suited for exploring more complex and larger environments than the frontier based
approach, due to significantly lower computation times.

However NBVP has been proven to get stuck in larger scale environments if an unexplored region
is far from the current location, so the sampling method does not reach this area and no higher gain
nodes are found [48, 61]. Having verified this behaviour of NBVP but also its advantages M. Selin et
al. proposed AE planner.

5.5.2. AEPlanner

AE Planner [61] combines NBVP with a frontier based approach as a global planner. The authors
implement node caching for the sampled nodes from the RRT step in NBVP, as can be seen in Fig-
ure 5.2. The nodes cached in previous iterations are used in two ways. First, they can be used to
estimate the gain of newly sampled nodes. Second, since nodes with high gain values are linked with
frontier regions these nodes can be used to direct exploration when the local planner can’t find high
gain nodes nearby. Therefore, exploration only ends when both the local and global planner report
zero information gain.

The authors also implement a way of computing the best yaw. At each planning step, before building
the RRT, ray casting is done to determine the best yaw angle that maximizes the potential information
gain from that configuration. This decreases the sampling space for the RRT.

Results from both simulations and a real-world experiment are presented in their paper. Similarly to [27],
the metrics considered are exploration progress (volume explored in m? over time), total exploration
time and computational time for gain estimation and collision checking. NBVP and AEP are compared
in a large-scale simulated environment of a maze. AEP completes the exploration time in significantly
less time while NBVP only covers the full space when the tuning factor is low, meaning that local
exploration could be compromised in more complex environments. The results also validate the gain
estimation from cached nodes, since computational times for this component are lower compared to
NBVP. However, the calculation of best yaw is not completely validated since their method with this
feature disabled is actually shown to perform faster exploration. This is explained due to RRT’s random
sampling while the best yaw method can get stuck locally for longer times.

5.5.3. GBPlanner

Graph-based planner (GBP) [28] is an autonomous exploration path planner designed for subterranean
conditions in the context of the DARPA Subterranean Challenge [62]. These environments are char-
acteristically large-scale and constricted in space. The implemented planner incrementally builds two
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Figure 5.2: Representation of cached points (left) and estimated gain vaues (right) in AEP [61].
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Figure 5.3: Architecture proposed for GBP method for exploration [28].

graphs: one for local exploration and another for the global planner. This architecture is represented
in Figure 5.3.

The first step for the local planner is to build an RRG in V' around the current configuration. Each
sampled configuration is checked and if it belongs to V.. it is connected to nearby nodes. After the
building step, Dijkstra’s algorithm is used to obtain the shortest paths from the graph. The volumetric
gain is then computed for each path. In this case the authors an additional weight functions from the
usual cost function related to the Euclidean distance: a function that computes the distance between
the path considered and a path in a straight line following the current estimated exploration direction,
to penalize sharp changes of direction. As usual, the path with the highest calculated gain is selected.
If the gain is below a set threshold the global planner takes over.

The global planner includes a global graph and a return-to-home feature. After each local planning
step, the global graph is updated with the highest gain path and other high gain paths from the local
planner. The shortest path back to the home position is recomputed. In case the local planner was
unable to provide a solution, the global graph is used so the search space is increased to discover
unexplored regions.

Compared to other methods, GBP planner has been tested more extensively in real-world conditions.
For instance, two experiments took place in underground mines therefore the UAV was actually sub-
jected to the difficult lighting conditions of these environments.

5.5.4. MPBPlanner

Also motivated by the DARPA Subterranean Challenge, a motion primitives-based path planner (MPB)
[63] was proposed. A local planner that samples the control space is proposed to achieve faster explo-
ration.

Besides the position and heading considered by the previous planners, the authors of MPB include
velocity states in the configuration definition. The first step for the local planner is to build a tree of
possible new configurations from the current one. This works by randomly sampling acceleration control
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Figure 5.4: Representation of sampling of motion primitives to obtain a configuration tree (left) and selection of collision-free
and future-safe paths (right) in MBP [63].

inputs that correspond to the new tree configurations if they are collision-free and future-safe. This last
concept is introduced by the authors since zero velocity is not assumed for the new configuration unlike
other planners. Therefore, sampled configurations that don’t have null velocity values are checked for
a collision-free path that is able to reach a final position with null velocity (hover), within the system’s
kinodynamic limits. Figure 5.4 from their paper illustrates the planning process.

The second step is calculating the volumetric gain of the tree of collision-free and future-safe paths.
The calculation is identical to the one described for GBP. Then the path with the highest gain can be
selected and tracked by the controller.

Comparably to GBP, MPB was tested in two distinct underground mines. One of the tests took place in
a mine 165m long and an average flight speed of 1.8m/s was achieved. Exploration rate in m?®/s and
computational cost per iteration in s are the metrics considered by the authors.

5.5.5. FUEL

FUEL [59] is a frontier-based methodology for exploration of unknown environments. The authors
propose a hierarchical planner that exploits information on the frontiers using their own data structure
the Frontier Information Structure (FIS).

Most algorithms for frontier-based exploration consider the center of the frontier region [61]. The au-
thors of FUEL create FIS to support their claim that more information of the frontiers can be obtained
and used by exploration path planning algorithms. In their algorithm frontier regions are regularly up-
dated based on new sensor information. For each frontier region or cluster a set of viewpoints is
evenly created around the center. The coverage quality is evaluated and the viewpoints that reach a
set threshold are considered while the rest are discarded.

Then, path planning occurs in three stages for each planning step. In the first stage global planning
occurs between all detected frontier regions such that there is a path that passes through one viewpoint
of each frontier. Second is what the authors call viewpoint refinement where only a section of the global
path is considered and paths between multiple viewpoints are searched with a graph search algorithm,
Figure 5.5. A local path is obtained with a cost function that penalizes longer distances and changes of
direction. The third step performs back-end trajectory optimization with dynamically feasible B-splines
based on the method in [64].

The authors compared their exploration framework with the classic frontier method [57], Rapid [58]
and NBVP [27] in simulation. In a large-scale maze simulation FUEL achieved four times faster ex-
ploration on average due to the more efficient and smooth paths. However, this was at the cost of a
higher computation time. The results show the advantages of planning on a global scale for large-scale
environments.

5.5.6. REAL

The final autonomous exploration path planner that will be discussed is REAL, a recent work by E. Lee
et al. [48]. Their architecture shown in Figure 5.6 includes both a global and a local exploration planner
and active loop-closing to improve pose estimation accuracy in GPS-denied environments.

The local planner works with Peacock Trajectory [65]. Peacock Trajectory is a set of minimum-snap
trajectories [34] contained in the sensor’s FoV from the initial position with a determined length I;,;.
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Figure 5.5: Representation of viewpoint refinement stage of FUEL path planning method [59].
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Constant velocity v,,,... is considered to enable faster exploration. The coefficients for Peacock Trajec-
tory are computed at the beginning of the exploration process. For each local planning step, one of the
trajectories is selected based on collision avoidance requirements and the amount of frontiers. Only
the first part of the trajectory is actually implemented in a RH approach.

Regarding the global exploration planner it is used when local exploration struggles to find a path
if a frontier is not visible or a collision cannot be avoided. A map of all frontier regions that is built
incrementally from the local exploration progress is used. A* search is then applied to find the shortest
collision-free path to an unexplored region. From the path, a minimum-snap trajectory is obtained. The
whole planning process is illustrated in Figure 5.7.

The authors present comprehensive simulation results to benchmark their method and compare with
state-of-the-art planners: NBVP [27], GBP [28], MPB [63] and AEP [61]. REAL achieved the bestresults
in terms of average exploration times in both a small-scale and a large-scale environment. Sampling
based approaches in NBVP and MPB resulted in less accurate movements so longer exploration times
and got stuck in the large-scale scenario. GBP was able to cover the small-scale environment in lower
time on average and complete the large-scale one in a few runs. This was attributed to the inclusion
of a global planner. Among the tested planners, AEP was the fastest after real for the small-scale
environment but was still slowed down by its high computational complexity. Yet it could not complete
the exploration of the large-scale environment.

5.5.7. Considerations

Table 3.1 summarises the main characteristics, benefits and drawbacks of the exploration path planning
algorithms that were presented.

Based on the methods and results present by the different planners, we conclude that exploration plan-
ners that take into account the kinodynamic constraints of the multirotor when sampling the configura-
tion space achieve faster exploration speeds. It can also translate in higher computational efficiency.

Another important takeaway is that having a global graph improves exploration results in large-scale en-
vironments. It is also useful for return-to-home functionality or to keep a topological graph of important
"landmarks” which will likely be implemented in the thesis project.
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Figure 5.7: Representation of REAL path planning method [48].

Table 5.1: Comparison between the different path planning methods for autonomous exploration.

Planner | Architecture Characteristics Advantages Limitations
- RRT to sample NBV Lower Stuck in
NBVP Local - Volumetric gain function | computation large-scale
to choose best path times environments
- NBVP as local planner | Cached nodes ;cc)lrﬁmlg)l:ittatlonal
AEP Local + global | - Frontier based to estimate nplexity
lobal planner ain - Kinodynamics
9 P 9 not considered
GBP | Local + global | S2mPling based with Field-tested | Knodynamics
graph search not considered
- Control space sampling | -Kinodynamics No alobal
MBP Local to build path tree considered a grjoach
- Future-safe paths -Field-tested PP
Hierarchical - Multiple viewpoints Exploits Higher computation
FUEL : ) .
(3 stages) considered frontiers times
REAL Local + global | ~ Peacock Trajectory Tra!e(_:tory Not open source
- Loop closing optimisation




Goal-oriented path planners

Goal-oriented planners plan safe paths in an unknown environment to reach a target position. To enable
faster navigation, current research uses trajectory optimisation techniques that allow for higher flight
speeds. A common approach is gradient-based trajectory optimisation that will be introduced below in
section 6.1. Then section 6.2 will elaborate on the current state-of-the-art.

6.1. Gradient-based trajectory optimisation

As mentioned previously path planning algorithms provide a geometric safe path from which a tra-
jectory can be obtained. The most common method is formulating the problem as a trajectory opti-
misation problem that minimises a cost function. Hard-constrained methods such as minimum-snap
trajectory generation [34] set safety and kinodynamic constraints. On the other hand, the approach of
soft-constrained methods is to penalise these constraints directly in the cost function [17].

Ratliff et al. were the first to propose gradient-based trajectory optimisation using ESDF gradient infor-
mation with their method CHOMP [66]. By calculating the gradient descent the trajectory can be moved
away from obstacles.

Regarding trajectory optimisation, CHOMP [66] obtains trajectories in discrete-time. H. Oleynikova et al.
[67] adapted it to generate continuous time trajectories suitable for UAV applications using polynomial
splines. V. Usenko et al. [68] propose the use of uniform B-splines that can accomplish faster optimi-
sation. Due to their convex hull property and smoothness they require less variables and constraints
in the optimisation problem.

6.1.1. B-splines parameterisation

Three-dimensional B-spline curves are guided by a set of control points. Uniform B-splines have a fixed
time interval between consecutive control points. The curve does not pass through the control points.
However, if the control points of a B-spline are contained inside a polyhedron so are all the points of the
spline curve. This is the convex hull property and it is very useful for trajectory optimisation problems.
Free space can be divided into polyhedra using convex decomposition. Then it is sufficient to check if
the control points of a spline are contained in these polyhedrons to ensure that the whole trajectory is
safe. Figure 6.1 illustrates this property.

Bézier Curves are specific cases of B-splines for which the polynomial degree is the number of control
point minus one. Therefore, they still enjoy the convex hull property.
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Figure 6.1: Representation of the convex hull property. It can be seen that the control points are marked in gray and the
B-spline curve is clearly contained inside the dotted rectangle that can represent the free space for trajectory planning [54].

6.2. State-of-the-art planners

In this section three goal-oriented path planners will be discussed: FASTER [69], EGO-Planner [54]
and Bubble Planner [49]. FASTER and EGO-Planner are widely cited and recognized implementations.
Bubble Planner was proposed more recently with two novel strategies and achieving higher speeds.
All of them were validated in real-world experiments.

This analysis is naturally limited due to the scope of the thesis project. The current state-of-the-art
is more extensive and planners such as [70] are noteworthy, although its complexity doesn’t make it
useful for the purpose of the project.

6.2.1. FASTER

FASTER or Fast and Safe Trajectory Planner [69] implements a new strategy for achieving faster flight
speeds. Their method combines a global and a local planner. The global planner uses JPS to find the
shortest path to the goal in the uniform voxel map. Locally trajectories are planned in both free and
unknown configuration space. Simultaneously a safe trajectory within free space is always available to
be executed when obstacles are detected in the first trajectory.

Trajectories are represented by Bézier curves and obtained by solving a Mixed Integer Quadratic Pro-
gram (MIQP). Time allocation is done heuristically considering the time interval for which a solution was
obtained in the previous step.

6.2.2. EGO-Planner

EGO-Planner is a gradient-based method proposed by X. Zhou et al. [54]. The authors propose a
novel algorithm to achieve lower computational complexity compared to ESDF-based methods.

Without using an ESDF map, collision-free trajectories are obtained by taking advantage of B-spline
properties. Gradient information is obtained directly from obstacles and control points are penalized
in the cost function if they are within a certain distance to an obstacle. In case a solution does not
satisfy dynamic constraints, the authors propose re-allocation of the time length of the uniform B-spline
followed by trajectory refinement to adjust smoothness and guarantee safety. The results for computa-
tional replanning time in simulation validate the ESDF-free approach with an average of 0.81ms.

6.2.3. Bubble Planner

Bubble Planner is a recent work by Y. Ren et al. [49]. Their paper proposes a planning front-end that
generates sphere-shaped flying corridors within free space and a back-end for trajectory optimisation
based on the MINCO framework [71].
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Compared to other methods that use safe flight corridors, they include a RH approach for generating
the spheres which allows the quadrotor to continue following the first part of the previous trajectory
thus promoting higher flight speeds. The sphere center points are sampled from a distribution around
a guide point and a score function is computed to obtain the best sphere in terms of total volume and
overlapped volume with the previous one.

However, reusing corridors from previous steps does not guarantee collision avoidance since most
recent sensor data was not used. The authors suggest implementing a strategy similar to FASTER
[69] to always have a back-up safe trajectory.

Bubble Planner was tested in several experiments in a forest. The highest speed achieved in au-
tonomous navigation of a quadrotor in an unknown environment is reported for one of the flights, around
13.7m/s. Compared to EGO-Planner, the computational times obtained are higher taking an average
of 4.69ms in simulation and 13ms using the onboard setup for each planning step.



Conclusion

In this literature review the most important topics related to UAV path planning were covered. First,
widely recognized path planning algorithms such as RRT and A* that are used as modules of recent
multirotor path planning implementations were introduced. UAV path planners were then classified
into four categories: goal-oriented planners, uncertainty-aware planners, exploration planners and col-
laborative robotic systems. In addition, state-of-the art exploration and goal-oriented planners were
presented and compared.

The thesis project aims to research how path planning can be implemented to place an aerial sensor
network in a rainforest environment taking into account the network architecture and the quadrotor’s
limited endurance. After extensive investigation we could not find a prior implementation of path plan-
ning for the placement of a sensor network in precise mapped deployment locations. We could also
conclude that our proposed concept of an aerial sensor network is original. Having identified the re-
search gap, we can recall our research question: How to design an efficient path planner for an
aerial sensor network, with one hundred sensor nodes, to map and navigate to precise deploy-
ment locations in an obstacle dense environment such as the rainforest using a quadrotor?. To
answer the research question we will approach the path planning problem in three layers, considering
the state-of-the-art exploration and goal-oriented planners that were analysed.

The first step is to develop an exploration planner and include a global planner in its architecture. Simi-
larly to the state-of-the-art, local exploration will be guided by volumetric gain estimations and comput-
ing safe paths (collision avoidance). In adding a global module, we can construct a topological graph
incrementally to map "good positions” for sensor placement. In the literature we found that having a
global planner is more suited for large-scale exploration preventing the local planner from getting stuck.
It also enables return-to-home functionality.

In a large-scale environment such as a rainforest, termination of exploration will likely be determined
within the algorithm by a threshold on the number of positions of interest for deployment or when the
drone’s battery is running low. Also, in such an environment the drone cannot simply land in case
of critical battery. This would require a specific landing sequence and the drone would be subject to
unknown conditions until retrieval. It is therefore essential to be able to navigate back to the take-off
position where the operator is hence the implementation of the global planning module with return-to-
home feature.

Moreover, before implementation of the exploration planner it is necessary to define parameters for
determination of positions of interest or "good placement positions”. Since we propose to place the
sensors above the canopy, vegetation density is the main factor. Other biological factors can be con-
sidered as well.

In the second planning layer the topological graph built during the exploration phase is used. Not all
mapped locations for deployment will actually be suited for sensor node placement according to the
network’s connectivity constraints and the sensor range. Another relevant factor will be the distance
that has to be travelled by the drone. Therefore, this stage will likely involve offline path planning to
actual placement positions.
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Regarding the third and final stage, the deployment drone runs a goal-oriented planner to navigate to
the defined sensor placement positions. The planned deployment path in the previous planning phase
is adapted online to avoid dynamic obstacles.

In conclusion, the developed path planner should propose a robust solution given the harsh conditions
of the rainforest and the battery limitations of quadrotors. While validation in simulation will be important
for the three planning stages, it remains one of the ambitions of this project to test the implementation
in real-world conditions as representative as possible to the actual rainforest.
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