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Abstract

The so-called Colombo-Nyquist (Colombo, The global mapping of gravity with

two satellites, 1984) rule in satellite geodesy has been revisited. This rule predicts

that for a gravimetric satellite flying in a (near-)polar circular repeat orbit, the

maximum resolvable geopotential spherical harmonic degree (lmax) is equal to

half the number of orbital revolutions (nr) the satellite completes in one repeat

period. This rule has been tested for different observation types, including geoid

values at sea level along the satellite ground track, orbit perturbations (radial,

along-track, cross-track), low-low satellite-to-satellite tracking, and satellite grav-

ity gradiometry observations (all three diagonal components). Results show that

the Colombo–Nyquist must be reformulated. Simulations indicate that the maxi-

mum resolvable degree is in fact equal to knr + 1, where k can be equal to 1, 2, or

even 3 depending on the combination of observation types. However, the original

rule is correct to some extent, considering that the quality of recovered gravity

field models is homogeneous as a function of geographical longitude as long as

l max < nr/2.

45.1 Introduction

Colombo (1984) has indicated that for exact satellite

circular repeat orbits and for continuous space-borne

gravimetric observations, the normal matrix of gravity

field spherical harmonic (SH) coefficients becomes

block-diagonal when organized per SH order. The

correlation between different orders is zero as long

as one can avoid overlapping frequencies, which is

generally guaranteed if the maximum resolvable SH

degree (lmax) is less than half the number of orbital

revolutions nr which the satellite completes in a repeat

period of nd nodal days, or lmax < nr/2 (Schrama

1990). Although Sneeuw (2000) has pointed out that

avoiding overlapping frequencies is fundamentally a

restriction on the maximum SH order. Nevertheless

this has led to the rule-of-thumb that the maximum

resolvable degree is equal to nr/2, referred to as the

Colombo–Nyquist rule. This rule has major

implications for the design of future gravity field

missions, where several trade-offs have to be made,

such as temporal and spatial resolution, the observa-

tion/decoupling of different sources of gravity field
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changes, etc. (Bender et al. 2008; Reubelt et al. 2010;

Visser and Schrama 2005). Also, this rule has

implications for designing efficient gravity field esti-

mation schemes taking advantage of the structure of

normal matrices (Schrama 1991). It has to be noted

that the maximum resolvable degree is defined as the

maximum SH degree for which also all coefficients

with SH orders complete to this maximum degree can

be resolved. It is thus not precluded that certain indi-

vidual coefficients with a higher SH degree can be

resolved, however with a SH order that is not higher.

The Colombo–Nyquist rule-of-thumb has been

tested for a number of mission scenarios, i.e. different

repeat orbits and combinations of observables. It is

shown that this rule needs to be reformulated. The

selected mission scenarios are outlined in Sect. 45.2.

The method used for establishing the maximum

resolvable degree for these mission scenarios is briefly

described in Sect. 45.3. Results are presented in

Sect. 45.4 and summarized in Sect. 45.5.

45.2 Mission Scenarios

The selected repeat orbits and observable types are

listed in Table 45.1. The orbits are polar to ensure

global coverage. A repeat orbit is specified by the

number of revolutions nr that is completed in nd
nodal days, where nr and nd do not have common

prime factors (except 1). Short repeat periods ranging

from 1 to 3 days have been selected to limit the

computational burden. These short repeat periods are

however sufficient to test the validity of the

Colombo–Nyquist rule. Different parities for nr and

nd were selected to assess the possible impact on the

maximum resolvable degree of the number of distinct

equator crossings. For nr � nd even the number of

equator crossings is equal to nr, whereas this is 2nr
for nr � nd odd (Fig. 45.1).

The observable types include geoid values at sea

level along the satellite ground path (closely related

to altimeter observations), orbit perturbations in

the radial, along-track and cross-track direction,

low-low satellite-to-satellite tracking (ll-SST) range

observations, and satellite gravity gradient (SGG)

observations (the diagonal components, where the gra-

diometer instrument is aligned with the radial, along-

track, and cross-track direction). The observations are

assumed to be provided continuously with a constant

time step of 1 s. The relation between SH gravity

field coefficients and observations is given by well-

established and tested transfer functions (e.g. Schrama

1991; Sneeuw 2000; Visser 1992, 2005; Visser et al.

1994, 2001, 2003). These transfer functions are used to

set up the observation equations, which are to be solved

by the weighted least-squares method (Sect. 45.3). The

observations are assigned weights in accordance with

the precision levels listed in Table 45.1.

Table 45.1 Selected polar repeat orbits and observation

techniques. The time interval between observations is always

taken equal to 1 s

Repeat period nd (days) Number of revolutions nr Height

(km)

1 15 554.25

2 31 404.35

3 46 453.41

3 47 356.16

Observation technique Precision level

Geoid 1 cm

Orbit 1 cm

ll-SST 1 mm
SGG 0.01 E

Fig. 45.1 Ground track pattern for polar repeat orbits, where nr/nd is equal to respectively 15/1 (left) and 31/2 (right)
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45.3 Estimating the Maximum
Resolvable Spherical Harmonic
Degree

For a repeat orbit, Colombo (1984) indicated that

when a least-squares estimation method is used and

if a continuous time series of observations is obtained

with constant time interval, the normal matrix for the

SH coefficients will become block-diagonal when

organized per order, and correlations between differ-

ent orders will be equal to zero as long as the maxi-

mum resolvable degree is below nr/2. For higher

degrees, different orders get correlated and the normal

matrix adopts a Kite-like structure (e.g. Fig. 45.2). The

question is addressed if still a stable gravity field

solution can be obtained in the presence of these

correlations, thereby assuming that no use is made of

prior knowledge and/or regularization. This is tested

by computing the condition number of this matrix

Fig. 45.2 Structure of

normal matrix for gravity field

coefficients complete to

degree and order 40 for a

nr/nd ¼ 15/1 polar repeat orbit

based on ll-SST observations

(“kite matrix”). Zero values

are indicated by white and

non-zero by gray color

Fig. 45.3 Condition number of the normal equations (left) and global RMS formal geoid error as a function of the maximum

retrieved spherical harmonic degree. Use is made of geoid observations at sea level
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(ratio of maximum and minimum eigenvalue) and by

computing the Root-Mean-Square (RMS) of the

cumulative global formal geoid commission error for

the estimated SH coefficients. The formal geoid errors

were taken from the inverse (if the normal matrix is

invertible) of the weighted normal matrix. In all cases,

normal equations were set up for all SH coefficients

from degree 2 to a certain maximum degree lmax. Thus

the impact of omission and/or aliasing of unmodeled

gravity field sources are not taken into account. The

exercises described in this paper only address the issue

of observability of a static gravity field complete to the

maximum SH degree solved for.

45.4 Gravity Field Observability

As a first test case, the condition numbers of the

normal matrix and associated geoid error were

computed for nr/nd ¼ 46/3 and nr/nd ¼ 47/3 repeat

orbits using geoid observations along the ground

track. The condition numbers display a large jump at

lmax ¼ nr (Fig. 45.3, left) and in fact the normal matrix

could not be inverted for higher degrees (no formal

geoid errors could be estimated, Fig. 45.3, right). For

lmax ¼ nr/2, a small jump in the condition number

occurs due to the additional correlations between dif-

ferent SH orders, but this does not lead to an unstable

normal matrix. Also, the slope of the geoid error

increases for lmax > nr/2. Based on these results, it

can already be concluded that the maximum resolv-

able degree can be as big as nr and does not depend on

the parity of nr and nd.
It is interesting to note that as long as lmax < nr/2,

the geoid error is only latitude dependent and does not

change with longitude, whereas for lmax > nr/2 the

correlations between different orders cause the geoid

error to change as a function of longitude as well

(Fig. 45.4). The variation of the geoid error as a func-

tion of latitude and longitude depends on the observ-

able. For a nr/nd ¼ 15/1 repeat orbit and geoid

observations, the minimum and maximum formal

geoid error is equal to 0.19 and 6.42 mm for a gravity

field recovery complete to degree and order 15, i.e. a

ratio of 34, compared 0.0059 and 0.0109 or a ratio of

1.8 for ll-SST observations (Table 45.2).

Figures 45.5 and 45.6 display the condition num-

bers of the normal matrix and formal geoid error

lmax = 7 lmax = 8

Fig. 45.4 Formal geoid error as a function of the geographical location for geoid observations along a nr/nd ¼ 15/1 repeat orbit

Table 45.2 Formal global geoid error (mm) (RMS, minimum

and maximum) and the ratio of maximum and minimum geoid

error at the equator (req) for nr/nd ¼ 15/1 and 31/2 repeat orbits.

For lmax < nr/2 the error is always constant as a function of

longitude

Obs. lmax RMS req Minimum Maximum

nr/nd ¼ 15/1-repeat

Geoid 7 0.2632 1.00 0.1333 0.3200

Geoid 8 0.3976 1.08 0.1419 0.9105

Geoid 15 1.7342 12.54 0.1924 6.4213

ll-SST 7 0.0023 1.00 0.0013 0.0028

ll-SST 8 0.0027 1.00 0.0014 0.0034

ll-SST 15 0.0076 1.37 0.0059 0.0109

nr/nd ¼ 31/2-repeat

Geoid 15 0.3810 1.00 0.1350 0.4724

Geoid 16 0.4092 1.00 0.1392 0.5314

Geoid 32 1.4984 1.00 0.1922 4.9795

ll-SST 15 0.0033 1.00 0.0013 0.0038

ll-SST 16 0.0036 1.00 0.0014 0.0042

ll-SST 31 0.0108 1.00 0.0041 0.0139

376 P.N.A.M. Visser et al.



estimates for gravity field recoveries up to lmax ¼ 50

for the nr/nd ¼ 15/1 repeat orbit, i.e. lmax > 3nr + 1,

and up to lmax ¼ 65 for the nr/nd ¼ 31/2 repeat period,

i.e. lmax > 2nr +1. The observable types include (1)

geoid values, (2) radial orbit perturbations, (3) along-

track orbit perturbations, (4) orbit perturbations in all

directions (3D), (5) along-track diagonal gravity gra-

dient component (Гxx), (6) cross-track diagonal grav-

ity gradient component (Гyy), (7) radial diagonal

gravity gradient component (Гxx), and (8) all three

diagonal gravity gradient components (Гxx+yy+zz).

It can be observed that for one-directional

observables, such as geoid values, radial orbit

perturbations, along-track perturbations, and one diag-

onal of the gravity gradients, the condition numbers

display in general small jumps at nr/2 and large jumps

at nr + 1. The same can be observed for the associated

geoid error estimate (provided the normal matrix was

invertible). In other words, for such one-directional

observables it seems like the maximum resolvable

SH degree is equal to the number of revolutions

nr + 1 in a repeat period. When using ll-SST

observations, combinations of orbit perturbations

(3D) or combinations of SGG diagonal components,

the normal matrix is stable up to at least lmax ¼ 2nr + 1.

For the 3D combination of orbit perturbations, the

condition number and associated formal geoid error

estimate stays stable for lmax + 1 up to 3nr + 1,

whereas for the combination of all three diagonal

SGG components, this is still 2nr + 1.

Two questions that might now immediately be

raised is why this is not 3nr + 1 for the combination

nr/nd=15/1 polar repeat orbit

nr/nd=31/2 polar repeat orbit

Fig. 45.5 Condition number of the normal equations as a function of the maximum retrieved spherical harmonic degree and the

observation technique (the minimum degree is equal to 2)
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of three SGG components as well and why it is 2nr + 1

for ll-SST observations, which is a one-directional

observation type, namely along the line-of-sight

between two trailing satellites. Concerning the SGG

observations, it can be argued that the three diagonal

components are not independent because the gravita-

tional potential satisfies the Laplace equation, or Gxx +

Gyy + Gzz ¼ 0. Thus one diagonal SGG components

can always be written as a linear combination of the

other two. Thus, in fact only two independent

components remain. Concerning the ll-SST

observations, it can be argued that these observations

are a modulated combination of along-track and radial

orbit perturbations (Visser 2005), assuming the two

associated satellites fly in the same orbital plane.

Conclusions

Computations have shown that the

Colombo–Nyquist rule in satellite geodesy, which

predicts that the maximum resolvable degree is

equal to half the number of orbital revolutions nr
in a repeat period of nd nodal days, requires revi-

sion. Colombo’s rule is correct in the sense that

block-diagonal matrices are formed when lmax <

nr/2 and when organized per SH order, with no

correlations between the orders. Colombo’s rule is

in general too pessimistic to infer statistical signifi-

cance of SH coefficients in a gravity field model,

i.e. solutions are possible where lmax � nr/2 as is

discussed in this paper. If the maximum degree of

nr/nd=15/1 polar repeat orbit

nr/nd=31/2 polar repeat orbit

Fig. 45.6 Global RMS formal geoid error from the inverse of the normal equations as a function of the maximum retrieved

spherical harmonic degree and the observation technique (the minimum degree is equal to 2)
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estimated SH coefficients is larger than nr/2, the
gravity field solution will however no longer be

homogeneous in the longitude direction for even

parities of nr and nd. However, the

Colombo–Nyqyist rule can be considered to be cor-

rect to some extent. Namely, as stated in the previous

paragraph, the quality of recovered gravity field

models is always homogeneous as a function of geo-

graphical longitude as long as lmax < nr/2.

It was also found that the maximum resolvable

degree does not depend on the parity of the number

of revolutions and nodal days in a repeat orbit, but

that the recovery error as a function of longitude

does vary due to the increasing ground track den-

sity when traveling away from the equator. Finally,

the maximum resolvable degree depends on the

(combination of) observable type(s). In case of

combinations of independent observables, this

maximum degree can be one, two or three times

the number of orbital revolutions in a repeat period

(plus 1 if the minimum SH degree is taken equal to

2). Fortunately, in general gravity satellites carry a

complement of observing instruments, including

always GPS receivers in addition to for example

ll-SST instruments or a gradiometer.
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