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Abstract

Due to the increasing number of processors which are integrated in
System On Chips (SOCs) the need for robust, highly configurable pro-
cessors emerged. Preliminary research showed that commercial pro-
cessors are not suited for many research projects due to the fact that
they are closed source and they can not be modified. Open source pro-
cessors on the other hand appeared to be of too low quality. Within
this thesis a light-weight instruction and cycle compatible implementa-
tion of the MicroBlaze architecture called mb-lite is presented to fill
the need for a fast, reliable processor suitable for Field Programmable
Gate Array (FPGA) and semi-custom implementation. This was ac-
complished by using a proven design methodology and using high-level
VHDL abstractions.

Experimental results showed that mb-lite is able to obtain much
higher performance than existing open source processors, while using
very few hardware resources. mb-lite can be easily extended with
existing Intellectual Property (IP) components due to a wishbone bus
adapter and a modular, easily configurable multiplexed memory bus.
All components are thoroughly tested for compliance, and their func-
tionality was proven to be correct using timing back-annotated simu-
lations. Continued work on mb-lite will focus on including the design
in a reconfigurable fabric as well as fabrication in a 90 nm semi-custom
Integrated Circuit (IC) technology.
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Abstract

Due to the increasing number of processors which are integrated in SOCs the need
for robust, highly configurable processors emerged. Preliminary research showed
that commercial processors are not suited for many research projects due to the
fact that they are closed source and they can not be modified. Open source pro-
cessors on the other hand appeared to be of too low quality. Within this thesis
a light-weight instruction and cycle compatible implementation of the MicroBlaze
architecture called mb-lite is presented to fill the need for a fast, reliable proces-
sor suitable for FPGA and semi-custom implementation. This was accomplished
by using a proven design methodology and using high-level VHDL abstractions.

Experimental results showed that mb-lite is able to obtain much higher per-
formance than existing open source processors, while using very few hardware
resources. mb-lite can be easily extended with existing IP components due to a
wishbone bus adapter and a modular, easily configurable multiplexed memory bus.
All components are thoroughly tested for compliance, and their functionality was
proven to be correct using timing back-annotated simulations. Continued work on
mb-lite will focus on including the design in a reconfigurable fabric as well as
fabrication in a 90 nm semi-custom IC technology.
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Introduction 1
Many scientific research in the field of Computer Engineering use one or more soft
core processors within a single SOC to implement new and innovative concepts.
Researchers who use processors like MicroBlaze experience that simulation and
integration within their project is a time consuming and exhausting task. Within
this thesis a solution is proposed to make the life of researchers—and in the second
place hardware developers—a lot easier.

To this extend a platform is developed in which the focus is not only on speed,
but also on usability. An open source 32-bit General Purpose Processor (GPP) is
required which can be used for quick-prototyping of research projects. Projects
who can have major benefit of simple multi-processor configurations can be found
in research on Wireless Signal Networks (WSNs) and Network On Chips (NOCs),
but it is likely that many other projects can take advantage of a reliable, easy to
use processor platform.

Research topics change rather quickly and every topic will probably have differ-
ent requirements and expectations of a microprocessor in terms of features, clock
frequency and processor size. In order to take advantage of experience with a pro-
cessor in one project, it is desirable that we can use this experience also in many
other projects. Due to these differences in requirements a processor needs to be
configurable. The selection of a platform which can fill all different requirements
is therefore a challenging task.

A rather different design metric concerns the portability of a design, which
describes qualitatively the versatility in platforms a design can be implemented
on. Three major technologies can be targeted in a design. A Programmable Logic
Device (PLD) is a component of which the functionality can be programmed at
least once. A FPGA is of this type and can be quickly reprogrammed many times.
The second platform which can be distinguished are semi-custom ICs and consist of
a library of basic building blocks of which a design can be composed. These designs
can not be programmed like PLDs but have to be manufactured in a factory—hence
these designs are much more expensive. Finally, full-custom ICs processes offer the
most flexibility but are very time-consuming and complex to work with. Within
this thesis focus will be on the first two classes. Both of these classes are based on
platform dependent libraries which contain all basic building blocks.

Generally a design is first developed and tested on a PLD before an IC is fabri-
cated. This relation shows the importance of a design which can be easily ported
to both technologies. A PLD is the platform of choice for quickly prototyping a
system and prove correct functionality. Subsequently, steps can be taken towards
IC fabrication while the original design serves as a reference.
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2 Introduction

An infinite list of design goals and requirements can be defined in this way. This
would become an unfair quest if all goals are equally important. The implementa-
tion proposed and the methodology used in this thesis will focus on designers and
researchers. Therefore high usability, portability, simulation speeds and synthesis
speeds will be more important than performance metrics like resource utilization
and processor speed.

Within this thesis a solution to many of these requirements is proposed. In
Section 1.1 it is motivated how a widely applicable processor can improve the
development speed of state of the art concepts. In Section 1.2 the thesis goals will
be formulated. Section 1.4 gives an overview of related work while subsequently
in Section 1.5 an overview is given of basic concepts used within this project. This
chapter is concluded in Section 1.6 with an overview of the organization of this
thesis.

1.1 Motivation

Many applications include at least one—but often many more—GPPs. Due to the
increasing capacity and performance of FPGAs more and more processors can be
used in a design without violating resource constraints. The standard MicroBlaze
tools do not support multi-processor configurations—a topic which is gaining more
and more interest nowadays. Experience with manually inserting these processors
in a project becomes an exhaustive, time consuming task. Experiences within
different research projects also showed that there is a need to quickly change the
design—for example to test a different bus or a new co-processor. It is therefore
also important that the bus is simple enough to support quick prototyping. In order
to provide the best achievable flexibility in hardware an open source alternative is
required.

Many processors have been designed and implementations might be expected
to be widely available. The available designs can be separated in two groups, i.e.
processors with a commercial license and processors with an open source license.
Commercial processors are generally provided as firm-core implementations which
are technology dependent and are practically unmodifiable. An important require-
ment for processors which will be used in research is that they can be changed—
for example to implement a different bus—see for example [1, 2, 3]. Furthermore,
research depends heavily on simulation of components, but simulating firm-core
designs is very time consuming compared to the simulation of a behavioral model.

Since most available processors are closed source, only a fraction of the total
available processors remain which can potentially fill our need for flexibility. Due to
the nature of the open source designs quality and support become major concerns
in the selection of an open source processor for research purposes, especially when
it is considered that at some moment the design must be implemented in a rather
expensive IC fabrication process.

It is concluded that it is far from trivial to select an open source processor
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1.2 Thesis goals 3

which can satisfactorily meet all requirements. A preliminary research will point
out if such a processor exists. However, first a thorough list of requirements need
to be defined.

1.2 Thesis goals

The goal of this research is to develop an open source platform centered around
a processor, which is suitable for a wide range of research projects in the field of
Computer Engineering. A processor is ought to be suitable if the following design
goals are met.

• Open source, to be able to make changes to several parts of the design

• High quality and reliability, in order to simplify maintenance, promote design
reuse and increase its durability

• Standard compliant, in order to reduce the modifications necessary to replace
the processors used in current projects

• High configurability, in order to use the same processor in different configu-
rations and projects

• High usability, in order to be able to quickly build prototypes of novel con-
cepts. Standard interfaces and components must be available.

• High simulation and synthesization speeds, since research designs are always
“under test” and need to be build repeatedly

• High portability, in order to be able to implement it in a 90 nm process
technology

• Small implementation size, in order to reduce production costs or use many
equivalent components within a design

• High performance, in order to avoid the processor to become the bottleneck
in high-performance designs

• Availability of components, to avoid having the need for designing standard
components or interfaces

Many of these design goals can be achieved by following a well-defined design
methodology. To the best of our knowledge the methodology summarized in Sec-
tion 1.5.3 is the only available method. This model will therefore serve as reference
for the qualitative aspects enumerated above. Additionally, design recommenda-
tions from Section 1.5.2 will also be used as starting point to compare existing
designs with.
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4 Introduction

1.3 Achievements

None of the existing processors filled the needs satisfactorily for different reasons.
The most important shortcomings have to do with the lack of a design methodology,
bad performance or low overall quality. Therefore a new processor called mb-lite
was designed according to the MicroBlaze processor specification in which all these
problems were removed. A design strategy and methodology was followed to obtain
a light-weight cycle- and instruction compatible MicroBlaze clone with outstanding
performance. A paper has been submitted for acceptance in the Proceedings of
the Design, Automation and Test in Europe 2010 [4].

Many of the design goals can be achieved by applying a good, generic coding
style. The two-process methodology is a design strategy used by many developers
to obtain high quality designs. A strict separation between behavioral and sequen-
tial logic makes it possible to take the most advantage of optimization strategies
within compilers—it has been proven that this strategy can be applied to obtain
fast designs using less resources than compared with other methodologies. Further-
more, readability is greatly improved since the algorithm is completely determined
by the behavioral part of the component. Therefore projects designed using the
two-process methodology have improved maintainability than other projects.

Compliance with MicroBlaze specification was proven by designing a test bench
which runs programs compiled using the standard toolkit from Xilinx. A program
was assembled which—after compilation—resulted in a test environment with full
statement coverage. Many different programs are generated using different libraries
to make sure that the design correctly implements the specification. To prove
correct behavior on a real platform, mb-lites synthesized netlist was simulated
including time annotations (post place-and-route). The simulation results were
compared with the behavioral model to prove equivalent behavior.

High usability is achieved by including a very flexible, highly configurable mul-
tiplexed bus which can be connected to the mb-lite data bus in a plug-and-play
fashion. The bus contains an address decoder which can be completely config-
ured using two generic parameters: the number of outputs and its address ranges.
Usability and availability of components is improved even more by another plug-
and-play component: a wishbone bus adapter. Using these two components a
memory topology can be created without knowledge of mb-lite itself.

Portability has been optimized by exclusively making use of synchronous,
generic, inferred components—an approach proven to be feasible in [5]. Simple
basic memory structures are used since these are generally the most challenging
components to implement in a semi-custom process. Several important parame-
ters are included in order to configure the processor with an optional multiplier or
barrel shifter or to enable or disable support for interrupts.

This research resulted in a reliable framework for projects using one or several
embedded microprocessors. Since mb-lite has been designed with the intention
to obtain very high usability, very good design quality and high performance this
processor is suited for many different applications.
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1.4 Related work

Although many soft core microprocessors exist, very few research have been done
on aspects like usability and portability. Most research focus exclusively on the
design for specific FPGAs and do not take portability into account. In [6] the
five most used soft core processors are evaluated. Commercial products like Nios
II, MicroBlaze, PicoBlaze and Xtensa of the vendors Altera, Xilinx and Tensilica
respectively and the two open source processors leon3 and OpenRisc1200 are
evaluated and compared. The presented results are incomplete and the conclusion
is quite shallow.

In [7] a clear overview is given of synthesizable Central Processing Unit (CPU)
cores, namely the leon2, MicroBlaze and OpenRisc1200. Many aspects are taken
into account ranging from speed, area usage to synthesization and documentation.
The focus was primarily on “comparing” these processors in terms of performance,
while insufficient attention have been spend on the integration of custom IP blocks.

In [8, 9] the performance of different configurations of an Altera nios clone,
called ut nios is presented and compared with the original. No relation have been
made with other processors, so the results are quite shallow. Only performance
and size metrics were taken into account in their comparison.

The authors of [10] noticed that no reliable and small microprocessor implemen-
tation existed which was small enough for their research on configurable processor
arrays. A small implementation was desired since they needed to include many of
them on a single chip. The author therefore wrote a MicroBlaze compatible clone
called OpenFire.

1.5 Background

Several ideas and concepts about system modeling, microprocessor design as well
as FPGA and Application Specific Integrated Circuit (ASIC) development are fre-
quently used within this thesis. These concepts are used as the foundation for
several lines of thought. Furthermore an short introduction into the classic Re-
duced Instruction Set Computer (RISC) pipeline is given. It is assumed that the
reader has some basic knowledge of instruction set architectures. A brief overview
of these concepts are given as well.

1.5.1 Soft-, firm- and hard-core models

Three levels of hardware descriptions are generally distinguished: behavioral, struc-
tural and physical descriptions. A behavioral model is an abstract description of
the algorithm of a model (i.e. how a model behaves), by defining the outputs as
a function of the inputs. A behavioral model can be synthesized using automated
tools to obtain a structural model which contains information about the implemen-
tation of each component. Finally, a physical model provide most details about
the implementation in terms of selected components, wires and its delays.
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6 Introduction

Traditionally, the design flow starts using the behavioral description. After
the functionality has been verified, subsequent design steps are gradually taken
towards physical implementation. Synthesis is the process to derive a structural
model from a behavioral model. To obtain a physical model using the structural
model requires two more steps: mapping and routing.

Three different names are used frequently to specify how an IP core is provided
(e.g. by a vendor). A piece of hardware can be provided as soft-, firm- or hard-core.
According to Vahid et al. these terms correspond with the three levels of hardware
description (i.e. behavioral, structural and physical) [11].

All process steps depends on large libraries of available components, which
are specific for a platform. Therefore only a purely behavioral description can
be technology independent. Unfortunately, behavioral and structural models are
often mixed by instantiating specific components from a behavioral description.
This reduces portability and must be avoided. A better approach is to “infer” a
component, i.e. writing the model in such a way that the synthesizer is able to
recognize a structure and select the correct implementation. Nevertheless, this
does not always give good results, in which case solid workarounds have to be used
to solve these problems while maintaining platform independence.

1.5.2 ASIC design recommendations

The recommendations presented in this section are derived from the book “Ad-
vanced ASIC Chip Synthesis” [12]. These recommendations in turn originate from
recommendations from Synopsis as well as experiences with Synopsis Design Com-
piler.

A good coding style is very important for several reasons. When working
together with a team on a project, other team members should be able to use and
adapt the design for their needs. This promotes the reuse of components which
in turn will greatly reduce development time. Secondly a good coding style will
improve the synthesis process which in turn results in faster logic and a reduction
of chip area. Finally the design will be more suited for different synthesization
processes which simplifies platform portability.

Components should be modeled while keeping the desired hardware implemen-
tation or construct in mind. Since Very High Speed Integrated Circuit Hardware
Description Language (VHDL) is a hardware description language which is based on
templates, different synthesization processes can infer different components with
alternative area and timing specifications. Therefore all basic hardware compo-
nents like memories and arithmetic operations should be inferred from a general
structure, and for the same reason a ‘case’ statement is preferred with respect to
an if statement. Explicit instantiation of components should be avoided when-
ever possible. In this way the system can be implemented on different technologies
fairly straightforward. If this is not suitable for the desired function the technology
dependent parts should be implemented in separate modules. The use of latches
within a design is strongly discouraged since this makes static timing analysis
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1.5 Background 7

cumbersome.

Clock gating logic and reset generation should be captured within a single
module. Avoid using multiple clocks in a single module since this relieves the
burden and tedious task of managing clock skew. Furthermore it is recommended
that the complete circuit uses the same name for the clock signal.

The top-level component should not contain any combinational glue logic. This
will greatly reduce the compile time of the block since all components can be sim-
ply put together. In a later design phase this will also simplify the place and route
stage which will result in improved area utilization. Another related recommenda-
tion is that unnecessary design hierarchy should be avoided since Synopsis Design
Compiler is unable to optimize efficiently across hierarchies.

All outputs of a module should be registered. Unfortunately this is not always
practical, for example when a memory transaction has to occur in the same cycle.
Adhering to this recommendation improves circuit optimization and prevent timing
problems to occur.

Use of these recommendations is important since it contributes in making a
design comprehensible and portable. It covers the most frequent problems which
occur in the development of hardware for ASIC implementation. Although these
requirements are more important for ASIC designs than for FPGA design these
guidelines are equally applicable for designing programmable logic.

1.5.3 Structured design and the two-process methodology

This section is based on the two-process methodology as explained and motivated
in “Fault-tolerant Microprocessors for Space Applications” [13].

Traditional “ad-hoc” VHDL designs are frequently used to model the behavior
of a component. These designs typically have a large number of signals defined
which are related by many small processes. All processes are active concurrently
which makes it hard to understand its behavior without thorough knowledge of
the “big picture”. Another characteristic of these designs is that many lines of
code are necessary to describe the behavior of basic components like multiplexers
and registers, since coding is done at the lowest level by assignments with logical
expressions. Abstract data structures are generally not used. Due to the many
concurrent statements and the large number of lines of code these designs are hard
to read, difficult to understand and virtually impossible to maintain. Furthermore,
large port declarations are necessary in entity headers and the execution is slow
due to the large number of signals and processes. Therefore the ad-hoc method is
not scalable.

Ideally behavioral VHDL models are easy to understand and can be synthe-
sized without making modifications. Simulation and synthesis should be as fast
as possible while no discrepancies are introduced between the behavioral and the
synthesized model. An ideal model can thus be applied for small as well as very
large designs, or in other words they need to be scalable.
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Combinational
Q <= f(D,r)

rin <= g(D,r)

Sequential
r <= rin

rin
r

D Q

Clk

Figure 1.1: General structure of a two-process component

Combinational
rin <= f(D,r)

Sequential
r <= rin
Q <= r

rin
r

D

QClk

Figure 1.2: Modified structure of a two-process component

The two-process methodology is based on a strict separation between combina-
tional and sequential logic. The combinational process contains the algorithm to
be implemented and is determined based on the current inputs and values stored
in temporary registers. These registers are instantiated in the sequential process.
Due to this strict separation the functionality is completely determined by the
combinational part.

The output of the combinational block Q and rin are computed in an combina-
tional process using the current input (denoted D) and the register values (denoted
r). The register inputs rin are stored in registers (r) in the synchronous process.
The structure of the two-process component component is shown in Figure 1.1.

The signals (D, Q, r and rin) can be collected in records. If a signal needs to
be added, only the record needs to be changed while the component instantiations
do not need to be modified. Note that in this implementation the outputs are not
strictly registered, since logic can be inserted between the combinational inputs D
and r and output Q. Furthermore, this approach requires three different records.
By introducing a modified structure the number of records can be reduced to two
and the outputs become strictly output registered. This structure is shown in
Figure 1.2. In this structure the output Q is connected to register r.

A complication is encountered when memory contents need to be fetched dur-
ing a sequential process. This would imply the use of asynchronous memories.
However, as indicated in previous section this is not always favorable and could
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Combinational
rin <= f(D,r)

Sequential
r <= rin
Q <= r

Memory

rinr

D

QClk

Q’

rin’

Figure 1.3: Structure of a two-process component including memory

potentially lead to problems when implementing large memories. Therefore the
outputs of a memory need to be combined in the outputs of the top level compo-
nent. Asynchronous control signals can be used internally to control the memory.
Logic which need to be inserted after the memory output need to be postponed
to subsequent stages. The structure of a two-process component which includes
synchronous memory is shown in Figure 1.3.

1.5.4 Introduction to the classic RISC pipeline

All modern microprocessors use pipelining as the primary technique to increase
performance. Using this technique we make advantage of parallelism between
subsequent instructions. A pipelined architecture provides overlapped instruction
execution to improve hardware utilization and eventually improve the processors
throughput. The RISC pipeline can be used for many different architectures. mips
and dlx are two of the most famous RISC architectures which are implemented
using this pipeline technique. We will start by separating the execution of a single
instruction in several functions.

The classic RISC pipeline consists of five stages which are consecutively active.
The first stage is called Instruction Fetch (IF) and handles the retrieval of new
instructions from instruction memory. When a new instruction is available it is
passed to the Instruction Decode (ID) phase. During this stage the instruction is
inspected and decoded in a set of control signals. The control signals determine for
example if an Arithmetic Logic Unit (ALU) needs to do an addition or multiplica-
tion, if a branch needs to be taken and if that branch depends on the result of the
ALU and finally if memory should be read or written. Finally, if the instruction
requires operands located in a register file than these are read from the register
file.

After the ID stage the instruction is fed to the Execute (EX) stage where arith-
metic operations are performed and branch conditions are evaluated if necessary.
Subsequently the instruction goes through the Memory (MEM) stage where results
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IFInstruction 1 ID EX MEM WB

Instruction 2 IF ID EX MEM WB

Figure 1.4: Sequential execution of the RISC architecture

IFInstruction 1 ID EX MEM WB

Instruction 2 IF ID EX MEM WB

Instruction 3 IF ID EX MEM WB

Figure 1.5: Pipelined execution of the RISC architecture

are retrieved from or written to data memory. Finally the instruction is transferred
to the WriteBack (WB) stage where the execution result or the memory value is
written back to the register file.

The term memory can be confusing for a novice reader. In a memory mapped
computer model every device connected to the processor can be seen as memory
with a private memory space. These spaces can be physical memory where data
is stored or retrieved, or a device such as for example Universal Asynchronous
Receiver/Transmitter (UART), Ethernet or Universal Serial Bus (USB). The ad-
dresses of all devices are logically distributed and named using a memory map.

All pipeline stages could be executed one after the other during a single clock
cycle. This would result in a long execution path because every instruction needs
to reach the end of path before the next instruction can begin. Figure 1.4 shows
an example of this situation. In this organization only one functional unit will
be active at every point in time so this solution is inefficient because expensive
hardware resources are being spilled.

Pipelining allows us to get more performance by improving hardware utiliza-
tion since logical units are now used concurrently. Due to the improved hardware
utilization instructions can finish faster and hence the processors frequency is im-
proved. The time line for pipelined instruction execution is shown in Figure 1.5.
This organization might increase the clock frequency by a factor which is equal to
the number of pipeline stages if the workload of each stage is equal which is gener-
ally not the case. The bottleneck is determined by the slowest (i.e. most complex)
stage and the stages which are finished earlier must wait for the other stages to
complete. This limits the ideal speedup which can be obtained by pipelining.

There are however three problems which need to be taken into account. Sub-
sequent instructions often use the result of previous instructions resulting in de-
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pendencies within the execution of the pipeline. The register file might be used
by the writeback stage to write values into it while at the same time the decode
stage needs to read values from the register to feed the pipeline. Such hazards are
called structural hazards.

Since several instructions are in the pipeline and as a result are not finished
yet old values might be used since the dependent instruction have not passed the
memory or writeback stage yet. The instruction which is in the execute stage
might use old register values and the program does not run as expected. These
type of hazards are called data hazards.

Control hazards arise from the fact that a branch decision is taken in the EX

stage while the foregoing IF and ID stages have started working on the instructions
which were originally next in order. If the branch is not taken this is good, but if the
branch is taken these two instructions should not have been executed. Therefore
if a control hazard occurs the pipeline should be flushed.

Solving these problems can be done rigorously by removing all erroneous exe-
cuted instructions and issue them again when the dependencies have disappeared.
This would obviously lead to many stalls (i.e. the execution of an instruction is
delayed until all dependencies have been solved) and flushes (i.e. the pipeline is
emptied). Fortunately a better solution can be implemented for all three hazards
to reduce the stalls and hazards to a minimum.

A Harvard architecture has the advantage that a structural hazard will not
occur if the register file supports concurrent reads and writes so during the same
clock cycle a value can be written and a new value can be read from memory. The
register file can be still involved in causing a data hazard if a value is read from and
written to the same logical address. This can be solved by using read-after-write
(i.e. write-first) memories, in that case the updated value is always used as the read
result. If such memory is not available on the targeted platform dedicated logic
must be added to make sure that correct values are used in subsequent stages.

A combinations of instructions can cause a data hazard if the destination reg-
ister is equal to one of the two operands of the next or subsequent instruction. In
these situations the updated destination register is in the EX or MEM stage. For-
warding can be implemented to solve many situations without the need for stalling
the pipeline. Nevertheless one situation that can not be solved by forwarding is
when an operand is read in the MEM stage while in the same clock cycle the EX

stage needs this value. In this particular case we have to stall the pipeline and
make use of the forwarding unit but a stall is unavoidable. It is up to the com-
piler of the software to reduce the number of such dependencies to a minimum by
rearranging the instructions.

Control hazards can not be easily solved by additional logic. The stages IF and
ID need to be executed so the branch decision can be taken at its earliest occasion
in the EX stage. As already mentioned if the branch is not taken the instruction
could in fact be ignored and execution continues normally. However, if the branch
decision evaluates to logic true the branch should have been taken although the
IF and ID stages have fetched and decoded the next two instructions respectively.
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These instructions must be removed from the pipeline which is called flushing the
pipeline.

Obviously control hazards are the most expensive type of hazards since branches
occur very frequently. A technique to reduce the delay penalty to only one cycle
does exist and involves small hardware changes and compiler support to get the
most advantage of it. If the instruction immediately following the branch is always
executed and a useful instruction can be inserted in this slot one out of two cycles is
saved. It is often not very hard to modify the software in such a way that efficient
use can be made of this so called branch delay slot.

An important property of pipelining is the number of cycles the execution of a
single instruction will take on average. This indication is expressed as

CPI =
Clock cycles

Instruction

and is called Cycles Per Instruction (CPI). An ideal pipeline will finish one cycle
per instruction and has a CPI equal to 1 while a realistic CPU can be expected to
have a CPI somewhere around 1.4.

1.6 Thesis organization

The organization of this Master thesis is as follows. Chapter 2 existing CPU cores
are evaluated. A first selection is made of existing open source processors which
have the potential to serve as the core of the platform to be developed. In Chap-
ter 3 it is tried to adapt the selected processor to our needs by applying certain
modifications. Efforts will be spent on improving the design, especially considering
the requirements on portability. Unfortunately, this approach leads to a dead end.
Within the second part of this chapter, a new design called mb-lite based on the
MicroBlaze architecture is presented in order to overcome the drawbacks imposed
by all other open source designs.

In Chapter 4 mb-lite is tested for compliance with the MicroBlaze specifica-
tion and size and performance results are compared with the CPUs of Chapter 2.
Chapter 5 will give a reflection of what has been achieved during this research and
is finished with an overview of future research and recommendations.
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Several implementations of open source soft-core microprocessors are available for
free on the Internet. First a quick selection is made of open source processors
which will serve as a starting point for further exploration. Processors are selected
based on its maturity, features, available bus interface and its reliability (e.g. is
it used in different projects, has it recently been updated). Subsequently each of
the selected processors will be described and deficiencies will be discussed. The
performance of the processors will be analyzed in terms of speed and size. Finally,
several quality aspects will be reviewed in relation to the requirements as presented
in Sections 1.5.2 and 1.5.3. In Section 2.6 our findings will be discussed and a
processor will be selected to serve as reference design.

2.1 Exploration of available processors

In this chapter we analyze the available processors which comply with the require-
ments described in Section 1.2. Our main source of lgpl licensed processors are
the websites of OpenCores [14], Aeste [15], Gaisler Research Laboratories [16],
OpenSPARC [17] and Lattice Semiconductor Corporation [18]. Currently 95 micro-
processors are listed on OpenCores. Since this is a little bit too much to take into
account we will start by reducing this list to a set of candidate processors, based
on several basic requirements involving architecture, bus-width and development
stage. The initial selection of processors together with some features are shown in
Table 2.1.

The processors are gradually more thoroughly explored. Therefore some sec-
tions are much more elaborate than other sections and provide more details about
the design.

Table 2.1: Candidate processors and features

Processor name Architecture HDL Wishbone

AeMB MicroBlaze EDK 6.2 Verilog yes
leon3 Sparc V8 VHDL no
OpenFire MicroBlaze EDK 7.1 Verilog no
OpenRisc 1200 ORBIS Verilog yes
Plasma mips VHDL no
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2.1.1 AeMB

The aeMB 32-bit microprocessor is under development of Aeste Works. The pro-
cessor uses a wishbone interface for both data- and instruction memories. It has a
five stage pipeline and separate instruction and data buses (Harvard architecture).
The organization is based on the classic RISC pipeline, see Section 1.5.4. Both
instruction and data memory comply with the wishbone bus protocol and provides
support for a single external interrupt. Additionally a Fast Simplex Link (FSL)
bus is present. The processor contains 32 x 32-bit general purpose registers.

AeMB is written in Verilog. The width of the buses are fixed within the design.
Parameters are available to enable a hardware multiplier or barrel shifter. The FSL

interfaces as well as the caches can not be disabled. The available documentation
gives little insight in the design, so making changes can be quite challenging and
time consuming. Refer to Table A.1 of Appendix A for a detailed list of features.

The organization of the processor without external connections is shown in
Figure 2.1. The signal names are not descriptive and the suffixes ex, mx, if
and of are pretty confusing. The data path—and the timing of the pipeline—
is not clear from the implementation or documentation. Component delays are
defined within the components which makes verification of an implemented design
unreliable, since discrepancies can exist between the behavioral and the synthesized
model.

The microblaze tool chain can be used to compile software for this processor,
but this appeared to be a tedious task. This is due to the implementation of
a two-threaded system, which performs a context switch after every cycle. For
no obvious reasons some programs compiled for this platform did not execute as
expected. Making the header files compatible with the ansi c solved most—but
not all—problems.

The development status as depicted on opencores is indicated as ‘stable’. It
has been tested using software simulation tools and synthesized on a FPGA. The
Verilog code synthesizes without significant problems using Xilinx ise 10.1. A shell
script is provided to compile the software, synthesize the hardware and simulate
the software using Iverilog.

Many efforts were required to successfully run the provided tests. At first the
memory allocation routine failed. Rewriting the software and libraries according
to the ansi c standard solved this issue. More reliable verification results are not
available, but reports can be found about successful project integration.

In order to use this processor several adjustments are be required. The de-
sign uses asynchronous memories to implement the register file and instruction
cache. Since synchronous components improve the insight into timing issues and
asynchronous memories can not be implemented efficiently on FPGAs it might be
interesting to replace these components with synchronous equivalents. Further-
more the signals should be grouped more clearly and named more descriptively to
increase the insight for future users.
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Figure 2.1: aeMB top level connections

2.1.2 LEON3

The leon family of processors is designed and maintained by Gaisler Research.
This processor family is an implementation of the Sparc V8 architecture which
is non-proprietary and fully open. The latest processor in this family is the 32-
bit leon3 microprocessor [19, 20]. Its implementation is based on a Harvard
architecture and uses the amba Advanced High-performance Bus (AHB) as its
main on-chip communication bus [21] which is free of royalties as well.

A special feature of the Sparc architecture is that it uses register windowing to
increase the performance of context switches. Generally when a procedure is called
the register values are stored in memory which results in a considerable amount
of overhead. Using register windowing a new ’set’ of local registers is selected
upon a procedure call which makes the time consuming process of storing register
contents in memory redundant. In the Sparc architecture window switching is done
by hardware and is therefore transparent to the software developer. This comes at
a price since extra logic and memory is necessary to achieve this efficient way of
context switching. A default implementation has 8 global registers and 8 sets of
register windows, and each window consists of 24 registers. At every time instant
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32 registers will thus be visible for a program, while a total of 200 registers exist.
Custom peripherals can be added to the system bus. The AHB supports split

transactions which will result in better interconnect performance when many differ-
ent IP-blocks need to be connected and controlled concurrently. Designing amba
AHB compatible peripherals is far more challenging than designing wishbone com-
patible devices. The addition of existing peripherals to the system bus is more
complicated since a complex controller needs to be modified. A great advantage
of the leon3 processor is that it uses a structured organization of packets, folders
and VHDL records, which influences the usability in a positive sense.

All components are claimed to be written according to the two-process method-
ology. When a closer look is taken at the integer unit—which is in this research
considered as the top-level component—many constants, procedures and functions
are defined within the same file. Depending on the configuration, at least 6 pro-
cesses are defined. The fact that the file consists of almost 3000 lines of code, the
structure and relations are just as unclear as the “ad-hoc” design method. There-
fore the claim that the processor is written according to a well-defined methodology
is questioned.

According to the documentation of the Sparc architecture the integer instruc-
tion timings are strictly dependent on the implementation. Nevertheless most
instructions take a single clock cycle to execute except for load and store instruc-
tions. An advanced feature is that the leon3 processor can be dual clock to run
the AHB bus on a lower clock speed than the processor core. Additional logic needs
to be added to cross these clock boundaries.

The design is very modular, so it should be relatively easy to disable certain
parts of the processor and save resources while possibly gaining performance. A
configuration utility is used to assemble a complete SOC and to include and con-
figure many optional peripherals. Up to eight microprocessors can be attached to
the AHB bus. The package also comes with implementations for many different
platforms (i.e. several FPGAs and ASIC libraries). Nevertheless it is impossible to
obtain a light-weight (integer unit only) implementation of this processor since the
memory management unit, caches and AHB bus controllers can not be disabled.

The leon3 processor is published under the gnu gpl license and can be used
free of charge for educational and research purposes. We can safely assume that
this processor is very reliable since it is used in military and space applications.
Refer to Table A.1 of Appendix A for a detailed list of features.

2.1.3 OpenFire

The OpenFire 0.3b is a clone of the MicroBlaze Embedded Development Kit (EDK)
7.10 architecture. It has 32-bit instruction- and data words and includes all basic
arithmetic operations. It is designed for research on configurable soft processor ar-
rays. Features like interrupts, exceptions and special registers are not implemented
since the objective of the designer was to keep the core small and simple.

The OpenFire processor connects directly to the instruction memory while the
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Figure 2.2: Internal top level connections of the OpenFire microprocessor

execution stage connects directly to the data memory interface. The instructions
are pipelined in three stages which deviates from the MicroBlaze architecture spec-
ification. Loads and stores take more than 1 cycle to execute, so this processor is
not cycle compatible with the MicroBlaze specification. These differences had to
be found in the source files and are not documented.

The organization of the processor is shown in Figure 2.2. All components—
except for the pipeline controller and the register file—are output registered. Sig-
nals names are clear, and their use is described in comment. To implement the reg-
ister file the designer has chosen to use two dual port memories with asynchronous
read and synchronous write capability. Several processors can be cascaded using
a MicroBlaze FSL bus but unfortunately a wishbone bus is not included in the
design.

If the multiplier or the FSL bus was disabled problems occurred because synthe-
sization did not complete. The current implementation is targeted at Xilinx FPGAs

and has not been designed with portability in mind. The documentation is very
poor and does not give any insight into the design. The documentation mentions
that the break instruction does not function correctly, but no efforts are spend to
solve this issue. A detailed list of processor features can be found in Table A.1 of
Appendix A.
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2.1.4 OpenRisc 1200

The OpenRisc 1200 is part of the OpenRisc 1000 family of embedded microproces-
sors. It contains a five stage pipeline and implements the OpenRisc Basic Instruc-
tion Set (ORBIS) architecture. This Harvard architecture has 32 bit instructions
and can operate on 32- or 64-bit data. Several extensions to this architecture exist
to enhance vector processing (OpenRisc Vector/DSP eXtension (ORVDX)) and add
floating point instructions (OpenRisc Floating Point eXtension (ORFPX)). These
extensions are not implemented in the OpenRisc 1200 implementation.

Both instruction and data buses have a wishbone interface. Instruction as well
as a data cache is available to improve the performance of the operations involving
memory transactions. Other components like Joint Test Action Group (JTAG)
or a Programmable Interrupt Controller (PIC) are also available. The memory
management units for data- and instruction side of the processor can be enabled
or disabled but some components are not completely removed and quite some logic
remains implemented. The power management feature, debug unit, PIC and tick
timer can not be disabled. This suggests that we can not obtain a light weight
implementation, e.g. to execute Digital Signal Processor (DSP) algorithms.

The design does not have a hierarchical file organization nor conventional mod-
ule names and all files are in a single directory. Furthermore, the components are
not generalized so the modularity of the design is not optimal. This might lead to
problems when we want to add custom peripherals to the CPU, since the interface
of the CPU needs to be modified. Therefore the design is not modular, which limits
design reuse.

A gnu Compiler Collection (GCC) port for this Instruction Set Architecture
(ISA) is provided and maintained by voluntary developers of the OpenRisc project.
As a consequence, we rely on volunteers both for software as well as hardware
issues. Although this is common for all open source projects, it is more important
for this processor since they maintain the architecture, its implementation as well
as the tool chain. Therefore this project might have a reduced durability—although
there are no signs of this yet. A list of features can be found in Appendix A.

2.1.5 Plasma

The Plasma 32-bit microprocessor has a Von Neumann architecture and is an
implementation of the mips instruction set architecture which is classified as RISC

processor. This core is published on OpenCores and is one of the few written in
VHDL. Since VHDL offers better possibilities for abstraction than its competitor
Verilog. Therefore it seems that this processor is worth a short review.

Depending on configuration and instruction type the instructions are pipelined
in two, three or four cycles. It contains an interrupt controller, several interfaces
(i.e. UART, Static Random Access Memory (SRAM), Double Data Rate (DDR) Syn-
chronous Dynamic Random Access Memory (SDRAM)) and an Ethernet controller.

The architecture has several instructions which are patented by Mips Com-
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puter Systems Inc and can not be implemented therefore. The most important
of these instructions are the unaligned data access instructions. According to the
documentation the software needs to be manually inspected and altered in order
to see if one of the patented instructions (LWL, LWR, SWL, or SWR) is generated
by the compiler. The tool chain is thus not fully automatic and the generation of
large programs might become a time consuming task.

The Von Neumann architecture has a fundamental memory bottleneck, since
both instructions and data need to be fetched from the same memory. Structural
hazards are therefore likely to occur[22]. This will increase the CPI which decreases
processor performance. Furthermore, all components are connected through a non-
standard system bus. The functionality of the bus is not documented either, so
designing a interface might become a difficult task.

A very poor processor description is given on the opencores website and good
documentation does not exist. Since it does also not have a standard data memory
interface this architecture need big additions. Detailed information about the
features of this processor can be found in Table A.1 of Appendix A.

2.1.6 Other processors

Several well known processors are not included in our discussion. This section
gives the reasons why they are not included in our research.

The Xilinx MicroBlaze, Altera nios and the Altium TSK3000A are closed
source and targeted at specific platforms. Lattice provides the LatticeMico32 pro-
cessor with an open IP core license. However, few software and peripheral devices
(i.e. drivers) are available for this architecture. OpenSPARC is an open source im-
plementation of suns UltraSPARC architecture and is used for desktop and servers.
This processors is incredibly large and complex (e.g. it consists of eight cores and
each core can execute eight threads), and therefore not suited for embedded appli-
cations.

Several 8 bit processors exist, but these are unable to address sufficient memory
for our needs. These are amongst others the 8051 and avr. zpu claims to be the
smallest CPU with a gnu tool chain. At first sight it seems like an interesting CPU,
however it was found that it is a stack based CPU and is therefore not very suited
for many tasks. Furthermore it does not provide other advantages compared with
those included in our discussion.

2.2 Synthesization results

The performance of the selected processors was estimated with Xilinx ISE 10.1.03
using a Xilinx Virtex 5 (XC5VLX110-3FF1760) development board. Since all
processors have a different set of peripherals we aimed to reduce the CPU config-
urations to a minimum, preferably implementing the integer unit only. This will
give results which can be reasonably compared. All results will be discussed in
this section and are summarized in Table 2.2.
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Table 2.2: Numerical performance results

Flipflops LUTs Max frequency (MHz)

AeMB 711 926 279
leon3 1133 3448 183
OpenFire 207 752 198
OpenRisc 1200 1577 3802 185
Plasma 1297 2457 73

The performance of aeMB appeared to be very high. While consuming only
few logic elements the clock frequency is around 279 MHz when the multiplier and
barrel shifters are disabled. It occupies 711 flipflops and 926 lookup tables. Con-
figurations with or without the barrel shifter and multiplier resulted in negligible
changes in the amount of logic and clock frequency.

leon3 has commercial implementations and is used in applications with high
demands (e.g. space and military). The CPU was configured without the mul-
tiplier, AHB and Random Access Memory (RAM) controllers, interrupts or other
peripherals like JTAG and UART. This configuration results in an implementation
running at 183 MHz while using 3448 Lookup Tables (LUTs) and 1133 flipflops.
Furthermore, it uses 10 Block Random Access Memory (BRAM) elements which
is quite a lot. It was noted that the implementation uses six global clocks. In
Section 1.5.2 it was motivated that multiple clocks should be avoided to avoid
problems with clock skew which are incredibly difficult to solve. However, because
ASIC implementations have been created using this architecture this should not be
a problem.

A stand-alone version of OpenFire does not compile immediately with Mod-
elSim SE nor Xilinx. Nevertheless, after some efforts a successful synthesization
was performed. It was estimated that the processor obtains a maximum clock fre-
quency of 198 MHz using relatively few hardware resources, only 752 LUT and 207
flipflops. The hardware requirements are thus very low, but quite some important
instructions and features are not implemented.

OpenRisc 1200 processor synthesizes without problems. The clock frequency
on our target FPGA is estimated to be around 185 MHz. The implementation of
the core uses 3802 LUT and 1577 flipflops.

Plasma synthesizes easily without modifications or configuration changes. De-
spite the fact that only few features are implemented, it uses 2457 LUTs and 1297
flipflops which is quite a lot for this processor. The processor speed is very low
and estimated at 73 MHz on our FPGA.

The measurement results are presented in Figure 2.3. It can be seen that
aeMB obtains the highest clock frequency while OpenFire uses the least hardware
resources. This trade-off between processor speed and implementation size is shown
in Figure 2.4 where the amount of Logic Elements (LEs) is shown divided by the
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performance in MHz. It is assumed that the amount of logic is equally important
as the resulting performance so an unweighed division is applied.

The trade-off between cost and performance between all different processors is
visualized in Figure 2.5. Using this plot a trade-off between size and performance
can be easily made. The fastest processor can be found on the right edge of this
figure, while the smallest processors can be found at the bottom. Often both
performance as well as resource utilization have tight requirements. In those cases
the processors found on the bottom-right of the figure are favored since they use
least hardware resources while obtaining significant speeds.

In conclusion to previous research it has been found that leon3 and aeMB are
the most complete and efficient implementations until so far. Plasma is at this
moment discarded due to the very limited performance in terms of speed, while
OpenRisc is too large for the amount of features it offers. Finally, OpenFire is too
limited since there is no solid data bus nor interrupt. Since none of these processors
have been designed using a well-defined methodology, it will be hard to adapt any
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Figure 2.5: Scatter plot of processor performance

of these designs to our needs. Therefore this option is discarded as well.
The rest of our preliminary study will focus on leon3 and aeMB since these

are the most promising candidates for our research. In subsequent sections the
performance and quality of the tool chains for the MicroBlaze and Sparc architec-
tures will be included to obtain an indication for the real execution time of several
programs.

2.3 Tool chain results

The ISA and corresponding tool chain of leon3 and aeMB play an important role
in the performance of the processor as a system. Therefore several instruction
set simulations were executed. Two simple benchmarks were used to compare the
performance of the aeMB and leon3 microprocessors. The Dhrystone benchmark
is a well-known indication for processor performance developed in 1984 by Reinhold
Weicker. This benchmark is representative for integer operations and has been used
extensively as an indication of processor performance for embedded applications.

To test iterative function calls a Fibonacci formula was used to evaluate perfor-
mance on these areas. This benchmark computes the fifteenth Fibonacci number.
Due to these iterative calls it is expected that leon3 will perform slightly better,
since it can make use of its register windows and thereby reduces the load on the
data memory interface.

The benchmarks were compiled using the compilers sparc-elf-gcc and mb-gcc.
Cycle accurate instruction simulators for these processors were used to measure
the number of instructions and cycles. The leon3 measurements were performed
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Figure 2.6: Number of instructions for both processors

using the evaluation version of tsim distributed by Aeroflex Gaisler [16] while the
aeMB tool chain was tested using the build in Instruction Set Simulator (ISS) of
Xilinx Microprocessor Development of EDK 8.1i1. Using an ISS makes it superfluous
to assemble a design which might be a time consuming task.

According to the project description of the aeMB microprocessor on the Open-
Cores website the processor is “almost cycle and instruction compatible with the
MicroBlaze tool chain”. It is assumed that these processors will perform roughly
the same. Therefore the MicroBlaze ISS was used to obtain performance results 2.

The instruction count, cycle count and CPI of the Dhrystone and Fibonacci
benchmarks are shown in Figure 2.6, 2.7 and 2.8 respectively. The benchmarks
were compiled with and without optimizations. The unoptimized versions give
the best indication of relative performance since modern compilers might apply
rigorous optimizations so that the benchmarks are not representative for general
applications.

Comparing the unoptimized benchmark results we can see that the Sparc V8
compiler needs less instructions for the same result for both benchmarks. As was
already expected this has most likely to do with the register windows used in the
Sparc architecture. leon3 has on the other hand a slightly worse CPI.

In the end, the most important metric is how long the execution of a program
takes, so the clock frequency of the processor needs to be taken into account. The
formula for the computation of the execution time is

Ttotal =
Seconds

Program
=

Instructions

Program
∗

Clock cycles

Instruction
∗

Seconds

Clock cycle

and this figure was computed for both processors and benchmarks. The total
execution time for both benchmarks is shown in Figure 2.9.

1It appeared that subsequent versions of Xilinx ISS have a bug or did not support advanced statistics.
Therefore an older version of ISS had to be used.

2In the next chapter we will see that aeMB is not cycle compatible at all. Performance results as
mentioned in this section might therefore be interpreted incorrectly. Better performance indications can
be found in Section 3.1.3
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Figure 2.7: Measured number of cycles for both benchmarks and processors
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Figure 2.8: Measured CPI for both benchmarks and processors

Although leon3 has a smaller instruction count, this has been compensated by
the higher CPI and lower clock frequency. The Microblaze tool chain and processor
therefore performs better than leon3.
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Figure 2.9: Execution times of the benchmark set
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2.4 Configurability

As explained in Section 1.2 the processor will be used in a variety of projects which
makes configurability an important requirement. We evaluate both processors with
respect to this requirement by testing different configurations while keeping an eye
on size and performance.

The aeMB core provides several parameters to adapt the core to different needs.
Several CPU parameters can be changed, although other parameters are absent or
not implemented. It is impossible to disable the instruction cache. A parameter to
implement the FSL bus is ignored so we can’t disable this part of the microprocessor
without modifying the design. The widths of the three buses (data, instruction
and FSL) can be changed without any problems to values smaller or equal than
32, but larger values are not supported and result in synthesis errors. Size nor
performance advantages are obtained when scaling the width of the data memory.

To facilitate the configuration of a leon3 microprocessor a graphical tool to as-
semble the CPU with some peripherals is provided. Many parameters for Floating
Point Unit (FPU), Memory Management Unit (MMU), data- and instruction-cache
can be changed, even the target technology (several FPGAs, ASIC) can be selected.
Makefiles have been added to automatically create synthesizable projects for differ-
ent development environments. It is however not possible to extract a very small
processor with only basic arithmetic operations only. Therefore it is unlikely that
this processor can be used as DSP.

The width of the instruction and data paths are 32-bits and are fixed within
the design. The AHB cannot be used to connect to another peripheral directly so
a controller is necessary to successfully make use of this bus. Unfortunately this
controller is rather large and consumes a considerable amount of resources.

Regarding the configurability of both processors a trade-off need to be made
between a light-weight processor without many features and a large, complex pro-
cessor providing many features. The considerable amount of configurability em-
bedded in leon3 comes at a price of being hard to use and modify. For research
projects a small implementation will be easier to handle and debug. More impor-
tantly the simulation speeds of aeMB will be most likely much higher than leon3
which is important for a design that needs to be modified constantly.

2.5 Design quality

Several general recommendations and requirements are presented in Section 1.5.2
and 1.5.3 to improve usability and portability of a design. Following these recom-
mendations leads to a design which can be used and modified by a team in stead
of being dependent from an individual.

Projecting the mentioned design recommendations on aeMB leads to the fol-
lowing considerations. The design is synchronous on most component interfaces,
but contains a considerable amount of asynchronous glue logic. Within the code
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many delays are inserted for simulation purposes which is generally a bad idea.
There is no common modeling style which makes the code hard to read. The func-
tionality of the components is not documented and needs to be extracted from the
code. The header file does not contain significant information and the signals are
not documented nor follow any comprehensive naming convention.

No clear and intuitive design style is followed. This ad-hoc implementation is
therefore even more difficult to understand. The lack of a record-like structure in
Verilog results in large lists of signals to instantiate and connect internal compo-
nents. The existence of an ASIC implementation of the aeMB could not be found
and since several ASIC design guidelines are violated it is doubted if this design
can be implemented in a semi-custom process.

The aeMB microprocessor needs some rigorous improvements and additions to
increase the overall quality. A common design methodology is needed to improve
the readability, and the use of parameters can be improved. Since it was not an
easy task to generate software that worked on this processor, this needs to be
investigated more. Since it is known that there is a working uClinux3 version
available for aeMB, it is expected that this will not be a problem.

leon3 and its peripherals is very portable, which is proven by the fact that
designs are available for many development boards. A preconfigured implementa-
tion targeted at ASIC technology is available. New designs and configurations can
be easily added and configured due to the hierarchical structure of files, packages
and libraries. Technology dependent components are separated from the design
and placed in technology dependent libraries. Therefore the design can be very
portable.

When leon3 is used as a stand-alone component (and not inside a simula-
tion environment), several methods are available to load and start a program.
These methods are based on RS232, JTAG, Ethernet or USB connections. The mi-
croprocessor uses a boot loader to configure hardware and start normal program
execution. A utility is available to encapsulate the boot loader and program in a
Programmable Read Only Memory (PROM). Alternatively large programs can be
stored on a compact flash card and loaded using the boot loader.

A drawback of leon3 is that the data memory bus uses the quite complex AHB

protocol. This reduces the opportunity to quickly add and test custom peripher-
als [20]. It will be a time consuming task to design a wishbone adapter in order
to connect existing co-processors to this bus. This reduces the usability aspect of
this processor.

The number of features of aeMB are very limited and the processor need rigor-
ous optimizations. On the other hand, leon3 is too large complex to be quickly
integrated in research projects—especially due to the AHB bus, but offers a quite
complete set of features and peripherals.

3uClinux is a Linux based operating system targeted at embedded processors which does not have a
memory management unit
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2.6 Conclusion

In this chapter five open source processors are compared and evaluated: leon3
(Sparc), aeMB (MicroBlaze), OpenFire (MicroBlaze), OpenRisc (ORBIS) and
Plasma (MIPS). Since a considerable amount of projects use one of these pro-
cessors, the development of these processors are regarded to be mature enough to
rely on. First the features of the architectures and implementations were reviewed.
For each processor it was determined whether it suits our needs our if it needed
modifications or additions. It turned out that leon3 and OpenRisc offer the most
complete set of features. OpenFire, aeMB and Plasma might be a little too limited.

Subsequently processor speeds and resource requirements were evaluated. It
was found that Plasma uses many LEs for a processor without any additions and
that it is terribly slow. OpenFire and aeMB offered the best performance when
taking both the required hardware resources as well as clock frequency into account.
It appeared that OpenRisc did not give any advantage with respect to leon3 and
that OpenFire did not give any advantage with respect to aeMB. Furthermore,
Plasma appeared to be an expensive solution with very few features. At this point
Plasma, OpenFire and OpenRisc were excluded from further research.

The tool chain and instruction set efficiency of the two most promising
candidates—leon3 and aeMB—were taken into account. It turned out that the
program size for MicroBlaze is structurally larger than the program size for the
Sparc architecture. This is probably due to the register windows of Sparc. The
execution of the program also takes less time on the Sparc architecture. The better
performance of the Sparc tool chain is completely compensated by the differences
in clock speed. In the end, MicroBlaze obtains lower execution times than leon3.

Both tool chains are based on GCC and instruction set simulators are available
for both architectures as well. Standard embedded libraries like LibC are freely
available as well. The inclusion of the tool chain and instruction set efficiency did
not lead to a better insight in the selection of a processor core.

leon3 has outstanding configurability and portability. It offers by far the
most features and additions of all free and open source processors available today.
Nevertheless it is unfeasible to remove AHB completely from the design and replace
this by another bus. AeMB does not offer additional interfaces and controllers, and
does not offer many configurable options besides a barrel shifter and multiplier.
AeMB needs quite some improvements to make it usable in our projects.

Finally the quality of both processors was evaluated with respect to the rec-
ommendations presented in Sections 1.5.2 and 1.5.3. leon3 is a nice example of
efficient use of VHDL constructs like libraries, packages and records—although the
use of generics might have been pushed to the limit. Generic parameters are used
for nearly everything, which still results in incredibly long component instantiation
lists. AeMB does not provide a common organization since additional plug-and-
play components are not included. It is also not designed using a well-defined
modeling style.

An important aspect of an embedded processor for research purposes is that it
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can be reduced in size when necessary. This contributes to a better insight in the
behavior of the design, and reduces simulation time. leon3 appears not to be able
to meet this requirement. The AHB which is difficult to configure is hard to use in
an environment aimed at quick prototyping. Due to these aspects it is concluded
that best results can be obtained by improving aeMB instead of reducing leon3.
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Design and implementation 3
Within this chapter the design and implementation of mb-lite is presented. Due
to several problems with aeMB it turned out that this processor could not meet
all design goals satisfactorily and that a more structured design approach was
required. In order to overcome the issues imposed by aeMB, it was unavoidable
to design a completely new processor from scratch. Our design goals have been
achieved by following a proven strategy: the two-process design methodology.

In Section 3.2 the implementation of mb-lite will be discussed. The approach
which was followed to achieve all goals is presented in Section 3.2.2. Subsequently
the MicroBlaze architecture will be briefly reviewed in Section 3.2.3. Using the
description of the architecture, the four basic components of the pipeline will be
introduced and their functionalities and responsibilities will be defined. Details
about the implementation of each component will be given in Section 3.2.4.

Before mb-lite is introduced, a short overview is presented in Section 3.1 of
what needs to be changed to aeMB in order to achieve our design goals and which
restrictions are encountered.

3.1 Improving aeMB

AeMB is a light-weight processor and has quite high performance. The wishbone
buses on both the instruction as well as data side of this Harvard architecture can
be used to easily connect existing devices. The MicroBlaze architecture has a single
interrupt which is implemented in the aeMB as well. The package comes with a
small test bench which tests several basic functions like arithmetic operations, the
FSL bus and the interrupt handling system.

In Section 3.1.1 issues concerning software are discussed and the necessary
changes while in Section 3.1.2 hardware issues are reviewed and improvements are
discussed. Several difficulties and limitations were encountered during this process,
these will be discussed in Section 3.1.3.

3.1.1 Software improvements

The software provided in this package consists of a single program which invokes
six test routines. First the interrupts are enabled which is followed by the interrupt
test. A loop is entered while an interrupt is triggered from within the test bench
to exit that loop. Next the memory allocation is tested by calling the library
function malloc. After this is finished the FSL bus is tested by using put and get
instructions. Subsequently a Fibonacci number is computed using two methods
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and the results of these two functions are compared and the Greatest Common
Divisor is computed using the Euclidean algorithm. Finally the computation of
floating point numbers are tested to find the root of a number using Newton-
Raphson’s method. Since floating point numbers are not natively supported these
are emulated in software by using library functions.

After executing the test bench all tests finished successfully except for the mem-
ory allocation test. This would be the first point of attention for improvement of the
aeMB. Compiling other software appeared to be a complex task. Several header
files needed to be included to be able to generate software which works on this
processor. Failing to include the appropriate header files resulted in compilation
warnings or software which compiled without any hassle but did not execute as
expected. Such problems are very hard to find so a solution had to be found for
this.

A shell script was provided to compile the test bench while invoking the tool
chain with the correct compiler options. To make the tool chain independent
from the platform it is desired to use a Makefile to generate the software. It was
furthermore found that a mix of C and C++ files were used throughout the test
bench. Since C++ requires additional headers to construct and destruct objects
this is not an efficient choice for embedded application development. We had to
get rid of the C++ files and convert these to plain C files, preferably adhering to
the ansi iso c standard.

A last issue concerning software was that to enable hardware threads to work
properly code optimization is necessary. The inability to generate software with-
out optimizations has several consequences. First of all it is hard to check for
hardware problems concerning correct instruction execution because it is hard to
trace the code manually. Secondly a good comparison with other processors could
not be done properly: enabling optimizations in a benchmark (e.g. Dhrystone) will
damage its structure which reduces the reliability of the tool.

3.1.2 Hardware improvements

Since aeMB is written in Verilog and we like to take advantage of the abstraction
levels offered by VHDL such as libraries, packages and records we tend to rewrite
the processor in this language. This should improve the processor structure and
provide better insight in the design. The processor is rewritten in accordance with
the two-process methodology as presented in Section 1.5.3 to obtain even more
insight into the design and especially in the pipeline timing.

To save hardware resources the FSL bus will be made configurable since it
is generally not needed: the memory on FPGAs (e.g. BRAM on Xilinx devices)
is capable of feeding the pipeline fast enough without compromising for speed.
Additionally this will save some more hardware resources.

The register file is implemented using three dual port asynchronous memories,
which cost many LUTs on Xilinx devices. It will be examined if these can be
changed in synchronous equivalents to make advantage of the available BRAM.
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This is desirable since synchronous memories provide the best results with respect
to portability and additional performance might be gained.

While synthesizing the microprocessor a considerable amount of warnings were
generated. Most warnings point out that there are inconsistencies in the design
like unused signals. By getting rid of these warnings more severe issues will be
easier to find.

For the first step an automated translation tool was used to convert the Verilog
code to VHDL (x-hdl from X-Tek Corporation). Nevertheless it took some effort
to obtain synthesizable code out of these results. And worse, the processor did
not work as anymore. Finally the translation of the test bench had to be done
completely by hand since this component uses constructs which are very specific
for Verilog like printing text on the console screen.

After it was discovered that the processor did not work after the translation
was performed a structural method was used to repair the processor. A mixed
design using Verilog and VHDL was created and the components were replaced
one at a time while maintaining correct functionality. Differences were found and
repaired on the level of signals by comparing the functionality of the hardware
with Verilog equivalents using compare functionality of ModelSim. Within several
weeks a working VHDL implementation of aeMB was completed.

In the next step the ad-hoc code was structurally optimized and clarified with
comments. All components were optimized by adhering to the two-process design
methodology. Furthermore records, libraries and packages were introduced to im-
prove portability and to reduce the length of the component instantiations. The
FSL bus was made configurable to save hardware resources.

3.1.3 Limitations

While translating the Verilog aeMB processor several issues were encountered.
The information about the design which was provided in the documentation, the
headers of the files and the comments included in the code was insufficient to
fully see through the complete design. This limited the speed of the translation
and made several adjustments quite impossible. It turned out that some compo-
nents used asynchronous logic at the interfaces, especially the modules related to
cache, pipeline control and instruction decoding could not be easily modified nor
efficiently translated in a two-process architecture.

More serious issues were encountered later on. The processor gave the im-
pression of reaching very high performance in terms of clock frequency. As can
be seen in Figure 3.1 the acknowledge signal repeats every five cycles, and this
holds for a large part of the simulation. AeMB is a single issue architecture which
alternately executes two threads—a so called barrel processor. Execution time
of single-threaded software is likely to degrade in performance since the unused
thread is not occupied.

An instruction cache is used to minimize the latency of the wishbone bus and
optimize the instruction throughput. It had been tried to measure the CPI this
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Figure 3.1: Instruction bus timing of aeMB microprocessor
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Figure 3.2: Corrected Dhrystone benchmark results

processor would obtain in real. As already pointed out it is hard to compile working
software for reasons that are unknown. The Dhrystone benchmark could not be
executed on the aeMB since the execution fails in the software emulated division
procedure divsi3. Therefore an estimation has been made using the original aeMB
test bench (refer to Section 3.1.1). During execution of this test bench the phase
signal which controls the thread toggles 93153 times. Because this test bench only
makes use of a single thread half the number of cycles are wasted. Using this
approximation it can be estimated that effectively 93153

2
≈ 46577 instructions have

been executed. Executing these instructions takes 157450 clock cycles. The CPI

of this single-threaded program is thus 157450

46577
≈ 3.38 which is more than twice the

CPI a MicroBlaze processor would generally obtain. The corrected performance
results of the MicroBlaze, aeMB and leon3 processors are shown in Figure 3.2.

Another issue was found during the translation of the Verilog code to VHDL.
While trying to transform the structure in a two-process design many glitches were
found in the control signals as shown in Figure 3.3. This might not only result
in hardware which is not working correctly but this makes the timing of the com-
ponents incredibly hard. To get rid of these problems it was tried to combine all
these components into a single module so the interfaces were synchronous again.
Unfortunately this did not prove to be a successful strategy. The lack of documen-
tation together with the use of asynchronous signals made it impractical to modify
the structure.

When evaluating the wishbone system buses other irregularities were encoun-
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Figure 3.3: Glitches in the control signals of the aeMB microprocessor

tered. When the acknowledge signals of one of the buses was delayed the bus did
not behave as required. The acknowledge signal had to be deasserted within three
cycles or the program execution would crash. This violates rule 3.55 of the wish-
bone specification revision B3. Although this might not be a problem for most
designs the wishbone bus is not very robust.

3.1.4 Conclusion

When aeMB was modified in order to reach the goals as described in Section 1.2 sev-
eral pitfalls were encountered which could not be easily solved. Due to insufficient
documentation several architectural properties were found to be disadvantageous
instead of useful for a simple microprocessor design. The inflexibility of the control
and cache mechanism made it impractical to modify the design in accordance with
our requirements. Moreover these issues could not be solved satisfactorily and the
deliberately generated glitches might lead to even more problems later on. The
wishbone buses appeared not to be very robust.

It is concluded that aeMB will not meet the requirements without making
rigorous and time consuming changes. Furthermore it is assumed that designing
a microprocessor from the ground up will lead to a working implementation much
quicker. Therefore the aeMB design is left as is and the focus was put on the
design of a portable, customizable microprocessor for rapid system prototyping.

3.2 MB-Lite

The MB-Lite microprocessor is an implementation of the MicroBlaze architecture.
This RISC processor closely resembles the well known dlx and mips architectures.

The MicroBlaze tool chain is well developed and widely available. Many soft-
ware packages are available for this architecture. Petalogix provides amongst oth-
ers a free MicroBlaze GCC compiler and debugger, a port of the uClinux operating
system together with all common standard libraries. This architecture is there-
fore regarded as a reliable base to provide a reference design for an embedded
microprocessor.
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3.2.1 Design methodology

In order to achieve the design goals a structured design approach is necessary.
To this extend all components have been designed using the two-process design
methodology. Extensive research and experience on this methodology has shown
that better synthesization results can be obtained because synthesizers can better
apply their optimization strategies which will eventually result in smaller and faster
designs. Due to the improved component structure designs become much more
readable—which results in better maintainability and in a more durable design.

High-level language constructs in VHDL offer more abstraction and are widely
supported by modern simulation and synthesis tools. A good application of high-
level constructs result in even better readable code. Functions, procedures and
type definitions in shorter code fragments and code that can be easier tested for
correct functionality. This also improves the quality and reliability of the design.

3.2.2 Implementation goals

To achieve a processor which can be used in all projects, standard toolkit programs
need to work with mb-lite without modifications or additions. Our target is to
design a processor which can run C or C++ programs compiled with mb-gcc -
the standard GCC based compiler for the MicroBlaze platform - which is available
in the EDK of Xilinx. Interrupts can be used in the same way as the original
MicroBlaze implementation by defining a function with the type declaration void

attribute ((interrupt handler)).
The key of the MB-Lite design is to create a simple and well defined structure

in hardware as well as in the file and library organization. This will enhance pro-
ductivity of users and makes sure that the design can be maintained and improved
in the future by other contributors in which way the open source concept is used
to the largest extend. The data path and control units of the mips processor will
be implemented as described in the popular books of John L. Hennessy and David
A. Patterson about computer architecture [22, 23]. The naming conventions will
be chosen in accordance with these books whenever applicable. Several changes
need to be made to make this organization compatible with the MicroBlaze ar-
chitecture, but it is tried to follow the concepts as applied in that architecture as
close as possible. In this section it will be described what is to be achieved and
how this can be achieved. First the memory organization of the MicroBlaze is
discussed and a more generalized model is presented. Second the implementation
methodology is presented which will prove why and how small deviations to the
mips processor needs to be made. It is not attempted to design a replacement
part for the commercially licensed MicroBlaze processor. Therefore we will define
which subset of the MicroBlaze will be implemented.

The MicroBlaze architecture has up to three interfaces for memory access. The
Local Memory Bus (LMB) provides low-latency access to a small amounts of mem-
ory. The CoreConnect bus is used to connect peripherals to the processor. This
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bus is a fully synchronous, non multiplexed, pipelined bus topology and supports
concurrent read and write transactions. A complex memory topology can be build
to efficiently sustain devices with different throughput and latency requirements.
The Processor Local Bus (PLB)[24] is a high-bandwidth, low-latency bus and can
be used to connect high performance demands such as memory access. For pe-
ripherals with less throughput and latency requirements the On-Chip Peripheral
Bus (OPB)[25] can be used. These devices can be accessed through the OPB to
PLB bridge unit. The last interface provided by the MicroBlaze architecture is the
Xilinx Cache Link (XCL) which is used as streaming interface between caches and
external memory controllers.

Within the MB-Lite concept the memory bus interface is generalized as much
as possible to a simple core interface. A minimal set of data memory control
wires is provided which can be used to connect immediately to a standard memory
component. The “bare” core thus provides a standard memory interface as primary
bus to make it possible that a range of interfaces can be designed for the MB-Lite.
A fully functioning Wishbone Bus Interface is provided in the form of an adapter
to show the easily extensible processor features.

A minimal subset of the MicroBlaze architecture will be implemented. Features
which can be disabled by compiler parameters will be avoided as much as possi-
ble. Special hardware features like a FPU, multiplier, barrel shifter and compare
instructions will not be implemented. Whenever necessary these can be replaced
by software libraries as provided by Xilinx.

3.2.3 MicroBlaze architecture

The RISC processor as described in Section 1.5.4 will be used as a base to imple-
ment the MicroBlaze architecture. This section contains an introduction to the
MicroBlaze architecture (for detailed information refer to [26]) as well as the de-
scription of the tasks of the four main components which are used to implement the
five pipeline stages. In this section we will take a look at the interaction between
these four components and the responsibilities of each of these processor parts.

Two basic instruction types are defined which are called Type A (i.e. R-Type
or Register Type) and Type B (i.e. I-Type or Immediate Type). The operation
to be performed is identified by a 6-bit field and called the operand field (i.e.
opcode). Type A instructions contain up to two source register operands and one
destination register operand. Type B instructions have one source register, one
destination register and a 16-bit immediate operand. The instruction format and
corresponding bit numbering of both instruction types is shown in Figure 3.4. The
MB-Lite implementation of this architecture prefers linearly ordered bit numbers
instead of reversed bit numbers since this is common practice in hardware design.

If an operation requires more than the available 16 bits immediate value (e.g. for
accessing a high memory address or adding large numbers) the instruction can be
preceded by the IMM instruction to preload the upper half of the immediate value.
The IMM instruction thus only affects the immediate value of the subsequent
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Opcode reg D reg A reg B Function

Opcode reg D reg A ImmediateTYPE B

TYPE A

31 26 25 21 20MB−Lite numbering 16 15 11 10 0

MicroBlaze numbering 0 5 6 10 11 15 16 20 21 31

Figure 3.4: Instruction Format of the MicroBlaze architecture

n

MSBByte significance

Byte address

31MB−Lite bit labels 16 15 0

MicroBlaze bit labels 0 15 16 31

n + 1 n + 2 n + 3

LSB

8 724 23

7 8 23 24

Figure 3.5: Data Format of the MicroBlaze architecture

instruction. By using the IMM instruction all 32 bits of the memory can be
addressed effectively.

Thirty two general purpose registers are available. Some of them are “reserved”
for special purposes such as return addresses of interrupts. MB-Lite obviously fol-
lows these conventions to keep the hardware specification compatible with the
Application Binary Interface (ABI). Furthermore thirty two special purpose reg-
isters are defined. These contain amongst others information about the current
configuration of the processor and the Program Counter (PC). The current MB-
Lite version does not support instructions related to special registers since these
instructions are generally not needed.

MicroBlaze uses Big-Endian bit-reversed form to number individual bytes and
bits. Memory accesses are one byte wide (i.e. bit-addressing is not supported) and
the memory reads and writes must be aligned. Therefore we can also safely change
the bit numbering of the MicroBlaze architecture to our preference. Bit zero thus
represent the Least Significant Bit while bit 31 is regarded as the Most Significant
Bit. The data format, byte addressing as well as the bit and byte numbering for
the data format is shown in Figure 3.5.

All instructions implemented in MB-Lite have the same latency as defined in
the MicroBlaze architecture specification. Most instructions have a single cycle
latency. Taken branches with a delay slot have two cycles latency and taken
branches without a delay slot three cycles.

The IF module feeds the pipeline with the requested instruction and stores the
current program counter. The PC corresponds to the address of the instruction
divided by four and is also referred to as the instruction number. The PC is incre-
mented automatically every clock cycle. The IF stage is responsible for handling
the system reset, branch and hazard signals as well.

During the ID stage (also called the Operand Fetch (OF) stage) it is first de-
termined which instruction needs to be executed. The instruction to be executed
is determined using the reset, hazard, and hazard recovery signals. The operands
corresponding to the instruction are fetched from the register and the instructions
are decoded in control signals. The control signals travel along with the execu-
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tion operands in subsequent stages. This simplifies the control of the pipeline and
makes sure that the implementation can be easily debugged: at every time instant
it can be easily determined what needs to be done and what the final results are.
The decode stage takes care of interrupts by evaluating if the normal execution
flow can be interrupted without causing problems and the control signals will be
overloaded with a branch to the interrupt routine.

If a data hazard is encountered which can not be solved by forwarding, a stall
will be executed which will delay the pipeline. Control hazards which are caused
by taken branches require the pipeline to be flushed, i.e. instructions that should
not have been executed will be erased. Both hazards are detected and handled in
the ID stage. Both situations cause a nop instruction to be inserted instead of the
originally fetched instruction.

In the EX stage all necessary arithmetic is done. Due to data dependencies as
explained in Section 1.5.4 the correct values of registers A, B and D can come either
from the execution unit itself (single level forward), from the memory unit (second
level forward) from the writeback stage (register bypass or third level forward) or
from the register file. The third level forward is required to reduce the requirements
on the memory used in the register file. Very few memories can read and write
the same address during a single cycle, which could potentially lead to memory
hazards. If a register value is forwarded from memory, the result still needs to be
aligned.

The EX stage also checks if a branch condition is met and takes care of assert-
ing the appropriate branch control signals. The branch decision depends on the
relation between the value of register A and zero (e.g. greater than, smaller than
or equal to zero). Therefore the ALU can be used to compute the branch target
address while simple compare logic is used to evaluate the branch condition.

It is the task of the MEM module to control the interaction with the data
memory. It generates the byte select signals (i.e. a 4-bit enable signal), enable and
write enable signals. In case of a branch the current program counter needs to be
stored the ALU result must be replaced by the program counter. In organizational
terms it would made more sense to do this during the EX stage. However, because
the logic depth of this stage is already quite high it was decided to postpone this
selection to the memory stage. The pipeline will be flushed anyway if a branch is
taken, no problems concerning forwarding will be introduced.

The inputs and outputs described previously are drawn in Figure 3.6. Three
types of signals are distinguished: data wires (green), address wires (blue) and
control wires (red). On the top of the figure the writeback signals are drawn while
on the bottom the signals for data- and control hazards are shown.

3.2.4 Detailed design

Now it is known which components are needed and which functionality they must
provide we can focus on the implementation of each component. Pipelining is an
effective method to exploit some of the instruction level parallelism inherent to a
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Figure 3.6: Interface signals of the MB-Lite processor

micro architecture. To increase the frequency of the processor it is important to
take advantage of parallelism within each component by carefully evaluating all
dependencies and reduce the internal dependencies to a minimum.

3.2.4.1 Instruction Fetch

The IF stage generates the signals which are necessary to fetch an instruction
from memory. The control signals going into the instruction memory needs to be
available before the next clock-edge. At the positive clock edge the information
will be available immediately.

Three address sources needs to be distinguished in order to fetch the required
instruction. The primary source is obviously the PC but the hazard and branch
signals need to be taken into account as well. At the positive clock edge the PC

will be incremented automatically. Secondly the external reset signal needs to
be taken into account. When a reset signal is asserted the PC is set to zero and
the corresponding instruction is fetched. Since the memory output is synchronous
(positive edge triggered) it is directly connected to the input of the ID stage. The
ID stage has to make sure that when the reset signal is asserted nop instructions
are inserted in the pipeline instead of continuously feeding the first instruction.

If a branch occurs the PC is set to the requested branch target and the corre-
sponding instruction is immediately fetched from instruction memory. If a hazard
occurs the PC remains unchanged. Since a hazard is detected in the decode stage
and available at the end of a clock cycle the IF module has already loaded the next
instruction. The ID stage is thus responsible for reissuing the instruction which
caused the hazard. A block diagram of the IF stage is shown in Figure 3.7.
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Figure 3.7: Block diagram of the MB-Lite fetch stage

3.2.4.2 Instruction Decode

First the program counter and instruction to be executed is determined by eval-
uating the reset, flush and stall signals. In case of a reset signal the instruction
and program counter will become zero. Subsequently it is determined if the se-
quence of the previous instruction followed by the current instruction results in a
hazard. If this is the case the current instruction and program counter are latched
and a nop operation is inserted. In subsequent cycle the latched instruction and
program counter will be automatically issued again. If all these exceptions are not
true execution will continue normally, i.e. the instruction which is fed into the ID

module will be selected and executed.

Subsequently it is determined if an interrupt is triggered and can be handled.
Several conditions have to be evaluated to see if this can be done without causing
problems for the general program flow. The interrupt is latched if it can not be
taken care of immediately. The instructions that prohibit immediate handling are
a branch, return statement or an instruction in a delay slot. Furthermore the
instruction must not be preceded by an imm instruction or the interrupt will be
delayed.

If an interrupt can be handled safely a branch is executed to the interrupt han-
dling routine which is located at instruction memory address x10. The writeback
register address is set to 14 and the writeback signal is asserted. This will force the
current program counter being written into the interrupt return address as speci-
fied by the microblaze architecture. After the interrupt routine has been executed
normal program execution will continue.

If there is no interrupt to be handled, the instruction is further decoded in
control signals. The immediate value to be used in subsequent stages is determined.
The most significant bits of the immediate value might have been set by a previous
imm instruction, or otherwise the immediate value will be sign-extended from the
lower 16 bits of the instruction.

While the immediate value is determined the control signals for subsequent
stages can be determined as well. Since this is a straight forward translation of
the architecture in control signals only a description of the purpose of each signal
is given in Table 3.1. The control signals are grouped in three records representing
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Table 3.1: Description of the decoded control signals used in MB-Lite

Signal name Module Values Description

alu op Ex alu add, alu or, alu and,
alu xor, alu shift,
alu sext8, alu sext16,
alu mul, alu bs

Set the ALU operation

alu src a Ex alu src rega,
alu src not rega,
alu src pc, alu src zero

Set the input operand
A of the ALU

alu src b Ex alu src regb,
alu src not regb,
alu src imm, alu src not imm

Set the input operand
B of the ALU

operation Ex none, cmpu Special instruction
carry Ex carry zero, carry one,

carry alu, carry arith
Set the carry input of
the ALU

carry keep Ex carry not keep, carry keep Carry behavior
delay Ex 0, 1 Delay slot
branch cond Ex nop, bnc, beq, bne, blt, ble,

bgt, bge
Branch condition

mem read Mem 0, 1 Read from memory
mem write Mem 0, 1 Write to memory
transfer size Mem word, halfword, byte Size of data element

reg write WB 0, 1 Write register back to
register file

the pipeline stage where they are used.
The instruction store word requires three register values. The memory loca-

tion where the value will be stored is composed of the sum of the values of register
A and B while the value which needs to be written is in register D. Therefore the
register file must be able to read three values from the register at the same time1.
Furthermore a value might be stored while the same or another register value is
read. In case the a new value is written while the same register is read it has to
be made sure that the most recent value is used, i.e. the one that is being stored.

The default MB-Lite register file consists of three dual port synchronous 32x32
bit memories (1 clock, 1 write port and 1 read port). The read and write behavior
does not need to be specified explicitly since it can be transparently bypassed using
the forwarding logic in the EX stage. The memory file is therefore less dependent on
the implementation platform. A block diagram of the organization of the decode
stage is shown in Figure 3.8.

1This is another deviation from the mips implementation since mips requires at most two register
values: one for the data and one for the address.
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Figure 3.8: Block diagram of the MB-Lite decode stage

3.2.4.3 Execute

During the execution stage all necessary computations will be performed. Before
the actual computation can be executed the correct operands have to be selected
first. Since a fully synchronous design is demanded the data values depend on the
results of all other stages except the IF stage. Forwarding needs to be applied to
all three register values because a store operation requires up to date values of all
registers.

First the register values from the ID and WB stage are selected using the function
select register data. If the register address is zero the data will be cleared.
If a register other than zero is requested, the value which has been read from the
register file or written back to the register file will be used. Now the forwarding
conditions for the other stages are evaluated. If one of the conditions is met the
most recent value will be used, otherwise the original value from the register file
will be selected.

Four different values can be used as carry in for the ALU. We can use a previ-
ously generated carry, the most significant bit of operand A, a zero or a one. A
carry-keep instruction makes sure that the carry will be spared for another clock
cycle.

Care has to be taken when the cmp instruction is executed. Besides the com-
putation of the difference of registers A and B the Most Significant Bit needs to
be modified to represent equality or inequality. In case of signed comparison no
changes need to be made, but when unsigned comparison and addition is being
performed the Most Significant Bit must be inverted if one of the two—but not
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Figure 3.9: Block diagram of the MB-Lite execute stage

both—operands is negative.

A block diagram of the execute stage without the control signals is shown in
Figure 3.9. The flush action which clears all control signals is not shown either to
keep the image as clear as possible. Forwarding is drawn only for the data value of
register A since this process is exactly the same for register B and D. The compare
instruction is considered to be in the ALU.

3.2.4.4 Memory

The 32-bit memory interface generates the control signals for a standard memory
component. The interface consists of an address bus, two separate data buses
for reading and writing, an enable and write enable signal and a separate 4-bit
signal sel o to indicate which byte or bytes of the 32-bit word is requested. A
synchronous memory component with four write enable signals can be connected
directly. The only difference is that a regular memory component have a 4-bit
write instead of a byte select signal. The select signal needs to be combined with
the write enable signal to obtain a valid 4-bit write enable signal suitable for block
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Figure 3.10: Block diagram of the MB-Lite memory stage

ram. Furthermore the data memory input has an enable signal to be able to halt
the processor.

The wishbone interface signals correspond closely with the MB-Lite data mem-
ory interface signals. Only the handshake protocol signals (ack, stb, cyc) are
missing. This allows memory transactions to complete within a single clock cycle
which is not possible when using the classic wishbone protocol. The byte select
signal is generated using the function decode mem store. The alignment of a
data element which is being stored in memory is already handled in the execution
stage. Alignment of the loaded data elements is distributed to the decode and
execute stages to avoid asynchronous components in the design.

When a load instruction is immediately followed by a store instruction a data
hazard might occur if a register which has just been loaded is immediately written
to a new memory location. Forwarding is successfully implemented to solve these
hazards as shown in Figure 3.10. However, this requires additional forwarding
and alignment logic. Applications with tight resource constraints can take benefit
of a parameter to insert a stall instead of including additional forwarding logic.
Since these hazards are quite rare only a small reduction in performance should
be expected.

3.2.5 Address decoder

To simplify connecting multiple devices to the MB-Lite core a highly configurable
address decoder was added to the design. This address decoder can be directly
attached to the data memory interface and splits the data bus using multiplexers
in a configurable number of slave interfaces. Not only the number of slaves can
be specified during design, but also the memory map can be given transparently
to the decoder by using VHDL generics. This makes the addition of additional
peripherals an extremely simple task.

The topology of the memory decoder is straight forward. First the address
requested by the master for reading or writing is decoded using the generic memory
map. This results in a signal which had been called chip-enable and has the
property that always one bit of the vector is asserted. After the address has been
decoded one of the slaves is activated by asserting the corresponding enable and
write enable signals. The other signals going into all slaves (dat o, adr o and
sel o) can be directly connected since these don’t influence the state of the slaves.
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Figure 3.11: Design of the MB-Lite address decoder implemented with two slaves

Connecting the correct slave signals to the memory signal is a little bit more
challenging. Since the MB-Lite core expects the dat i signal to be registered and
the chip-enable signal is not registered it has to be made sure that the registered
output signal is connected to the master. Therefore the chip-enable signal is stored
in a register and the dat i signal will be forwarded using this registered value. A
block diagram of the decoder is shown in Figure 3.11.

3.2.5.1 Wishbone bus adapter

Memory transactions are in general the most frequent instructions to be executed
by a processor and account roughly for 30 percent of all executed instructions.
The classic wishbone bus protocol uses a synchronous handshake protocol to inter-
change data and will take at least two clock cycles to complete. Implementing this
as standard interface for all components would therefore result in a major perfor-
mance degradation. Therefore the MB-Lite core can be optionally connected to a
wishbone bus adapter. This gives the designer the freedom to design a fast mem-
ory interface with single cycle latency while giving the possibility to add wishbone
compatible components with multiple latency cycles.

The modularity of the design is unimpaired due to this decision. Complete
memory topologies can be build on top of the bus interface and other bus interfaces
can be easily designed using the wishbone interface as example.

The adapter is responsible for disabling the core until the slave has acknowl-
edged correct transmission of a data element. The wishbone interface is imple-
mented according to the classic wishbone bus specification revision 3b [27]. The
acknowledge signal which comes from the slave is evaluated every clock cycle as
is suggested in the wishbone specification. Only the strobe and cycle signals need
to be generated by the adapter using the enable and write enable signals from the
core and the acknowledge signal from the slave. The Wishbone bus as implemented
in MB-Lite is thus fully synchronous.
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Figure 3.12: Finite State Machine of the MB-Lite wishbone adapter

The structure can be regarded as a state machine with the state being equal to
the current cycle output signal. In case the bus is “available” for a transmission
state zero is asserted. If the core requests a transaction by asserting its enable
signal the bus goes in to state one on the premise that previous acknowledge
signal is deasserted. If either the reset or the acknowledge signal is asserted while
the bus is in state one (i.e. a valid transaction is in progress) the transaction will
be terminated. In all other cases the states won’t change. This allows for slow
slaves being connected to the wishbone bus. The state machine which is used to
implement the wishbone bus is shown in Figure 3.12.

During a wishbone transaction the data which is sent to a slave is stored in a
register for multi-cycle transactions. Due to timing complexities it is much easier
to store the data here than forcing the memory to keep the data in a valid state.
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Results 4
Within this chapter we will focus on the results which have been obtained. First
it will be proven that the mb-lite implementation complies with the MicroBlaze
specification in Section 4.1. In Section 4.2 numerical results on performance and
resource utilization will be presented.

4.1 Verification and compliance testing

A good hardware verification process improves the quality and reliability of a design
drastically. To prove that the specification is correctly implemented the design
has been thoroughly simulated using many different configurations and programs.
Other methods for formal verification are regarded to be unfeasible due to the
state explosion problem of large designs [28].

4.1.1 Compliance testing methodology

In order to test the design for compliance with the MicroBlaze architecture a large
C program was designed and compiled using the MicroBlaze tool chain (i.e. mb-
gcc and mb-as from EDK 10.1). This results in the generation of a binary in elf
format. Using the program mb-objcopy a binary is generated. Using a simple
utility bin2mem the binary format is converted into a mem file which can be easily
used with ModelSim. All software provided with mb-lite contain a Makefile which
automatically executes these steps.

The results are verified using a standard Input/Output (IO) interface which
reads characters from a bus and writes these to the console screen using the package
textio. The results can than be checked by inspection, or a similar program can
be compiled and run on a local computer.

4.1.2 Test bench design

The software which is loaded in the instruction memory is responsible for putting
the processor in many different states. This can be measured using coverage anal-
ysis to show that all possible statements have been executed. Due to the great
usability of this method a test bench was designed with complete statement cov-
erage. The design of the test bench went through an iterative process to obtain
100% statement coverage.

First a set of five standard programs are sequentially started. First the correct
behavior of the interrupt signal is evaluated by entering a infinite loop. If an
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Table 4.1: Coverage report summary of the test bench

Component Number of States Number of Hits % Covered

Fetch 11 11 100.0
Decode 160 160 100.0
Execute 72 70 97.2
Memory 21 21 100.0

interrupt occurs the interrupt routine is called which will make sure that the infinite
loop is terminated.

Second some integer arithmetic tests are being executed to test iterative func-
tion calls (fib1), loops, additions, comparisons and branches (fib2) and the Greatest
Common Divisor of two numbers is computed using the Euclidean algorithm (gcd)
to exercise modulo instructions. Along the way intermediate results are printed
to the console screen which is not only for convenience because several standard
libraries as published by Xilinx are tested as well. Printing a character to the stan-
dard output results in a sequence of library calls to determine string size, writing
strings or characters and to interpret the string format constant and insert the
correct data.

After the arithmetic instructions have passed the test the memory allocation
routine is invoked by the function memoryTest. The floating point library is emu-
lated in software since there is no hardware support available yet. The square root
of a certain number is computed and if it corresponds with a known value this test
has been successfully completed.

The Dhrystone benchmark appeared to be an outstanding tool to add to our
test bench. It not only contains a complex mix of instructions and function calls,
but the result is printed to the console together with the expected results. This
makes the verification of correct execution very straight forward.

It appeared practically impossible to let the compiler generate all possible in-
structions. Some instructions are simply never used by the tool chain. A function
with uncommon instructions was created to improve the code coverage of the mi-
croprocessor. During the execution of this function the instructions beq, bsra,
andn, andni, muli and src are invoked and the results are checked against the
expected values.

The console output of the test bench included in Appendix B.1. The coverage
result of this test bench is summarized in Table 4.1, while the complete report is
included in Appendix B.2. It can be seen that in the execute state two statements
have not been reached—which is a good thing since these are error states (c.f.
when others in a case statement). It is concluded that every statement has
been executed at least once, which in turn proves that every instruction have been
executed at least once.
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4.1.3 Verification of the post place-and-route simulation

To check the design for errors after placing and routing the design a post place-
and-route simulation have been performed using the core design. Such simulations
contain detailed and pretty reliable information about delays of components and
wires. The behavioral model of the core has been replaced by the VHDL model
generated by Xilinx. The simulation has eventually successfully been performed
using Mentor Graphics ModelSim SE 6.5 and the post place-and-route model has
been generated using Xilinx ISE (EDK 10.1). The core was replaced by a timing
accurate VHDL model and ideal memory and standard output was connected.

During post place-and-route simulation several issues were encountered which
needed to be solved. The simulator must be set up to simulate with a resolution of
picoseconds. However, the simulator refused to load the design using this setting.
The solution was to disable all optimizations, which is also turned on by default.

After this issue had been solved less problems were found, but the simulator
report dozens of setup and hold timing violations despite the fact that during
synthesization no problems were found. Changing the clock to very low frequencies
(around 10 MHz) still did not solve the issue. It was noticed that all problems
occurred during the interaction with the data and instruction memories. Therefore
the simulated model was extended by including the memories in the synthesized
design as shown in Figure 4.1. To simplify the verification it was desired that the
hello world application could be successfully executed. Due to the libraries this
simple program was already quite large, it required 2048 instructions and data
memory space.

After these modifications the design still did not execute as expected, although
it came again a lot further without any problems. Although the memory timing
warnings had disappeared the execution crashed after some time. Than it was

Master of Science Thesis Tamar Kranenburg



50 Results

realized that the memory topology was the only component which included asyn-
chronous logic to align the data read from memory. It was designed in this way
because memory alignment is clearly a function of a memory component. This
criterion had been dropped and the alignment functionality had been distributed
to both the decode as well as execute components as described in Section 3.2.4.2
and 3.2.4.3 respectively.

Finally another memory issue had come across. The block RAM templates
provided by Xilinx in the language template library were used to make sure that
the memory synthesized to the correct modules. The provided process sensitivity
list is incomplete since the address to be read or written was not listed in the process
sensitivity list. As a result values were randomly written to memory during read
operations. Strangely enough the Xilinx compiler did not notice this and did not
issue a warning about the incomplete list. After this final issue was solved the
hello world application was successfully simulated using the post place-and-route
model.

4.1.4 Verification of the wishbone bus

The verification of the wishbone bus is important since this will allow other people
to attach their peripherals easily. The bus allows both the master and the slave to
determine the speed of the transaction. This can be accomplished by allowing both
the master as well as the slave to keep their control signals asserted for unspecified
time. Therefore a slave needs to be designed which the wishbone behavior can be
easily modified and verified.

A device which is easily verified is a character device which shows the result on
the console screen. It will be immediately apparent if a transaction has failed. To
this extend the core is connected to the address decoder which splits the memory
bus in two separate buses with their own enable and write enable signals. The
lower memory part is connected to regular data memory while the second port
is connected through the wishbone adapter to a standard IO interface which can
write data to the console screen. We can now easily modify the interface properties
like bus timings without disturbing the program execution. This greatly simplifies
the verification of the bus. Wishbone cycles with immediate acknowledge as well
as late acknowledge have been simulated. The resulting bus cycles for reading data
with a delayed acknowledge is shown in Figure 4.2.

The cycle signal (cyc o) remains asserted from the beginning until the ac-
knowledge signal is deasserted. The strobe signal (stb o) remains asserted if valid
information is written to the bus and will probably terminate earlier than the cy-
cle signal. This allows the master IP core to continue execution while the bus is
still being in use. The bus interface is implemented as a synchronous finite state
machine so the design is fully synchronous.

Block reads and writes are currently not supported. This could be advantageous
if many bus transactions take place in a short time. The compiler however has
the tendency to insert many instructions before and after reading a specific port.
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Figure 4.2: Wishbone bus read cycle with delayed acknowledge

Therefore not a lot of time will be saved if block transactions are implemented.
Most of the time the bus will be free when the next transaction needs to be started.

The wishbone rule 3.55 states that an acknowledge signal may be hold in the
acknowledge state and that this may not influence normal operation of the mas-
ter. However, when the transmission is acknowledged the processor immediately
continues with the execution of the program. If an acknowledge signal is kept
asserted so long that the bus is still busy when a next transaction needs to start,
the processor needs to wait first until the bus is free. This was successfully tested
by creating an acknowledge delay of 100 clock cycles.

4.2 Results on performance and resource utilization

The performance of an application is formed out of the 3-tuple speed, efficiency
and program size. These three ingredients are traditionally quantified as maximum
clock frequency, CPI and the total number of instructions. First the focus is put on
the maximum clock frequency which is probably the most important component
of the performance equation.

Another primary design aspect which largely determines the implementation
cost of a design is the amount of resources required. Often a trade-off have to be
made when a processor needs to be selected for a project. The MB-Lite processor
uses just over 834 LUTs and 355 registers, and obtains a clock frequency of 222
MHz on the same Virtex 5 FPGA as used in Chapter 2. In Figure 4.3 all processors
discussed so far are shown in a scatter plot.

In terms of clock frequency the MB-Lite processor is comparable with existing
designs like OpenRisc and OpenFire. AeMB and leon3 still seems to obtain the
highest clock frequency. However if the number of resources are taken into account
this processor can be regarded as a very light-weight MicroBlaze implementation.
Especially if the number of options are taken into account such as interrupt support
and a highly configurable and extensible local memory bus and wishbone bus.

The Dhrystone and Fibonacci benchmarks are executed on these processors as
well. The same files as used during the preliminary research have been executed on
the MB-Lite. The number of cycles have been counted by using ModelSim. The
results of these measurements are shown in Figure 4.4. The number of execution
cycles of both programs on the MB-Lite is lower than on the original MicroBlaze.
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Figure 4.3: Scatter plot of processor performance including MB-Lite
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Figure 4.4: Benchmark results in number of execution cycles

Although the implementation details of MicroBlaze are not available it is probably
due to the two-cycle delay of the LMB which is used for fetching instructions. It is
expected that this introduces a performance penalty of 21%. It is likely that the
performance of the prefetch mechanism depends mostly on the number of taken
branches. This statement is supported by noting that around 20% of all executed
instructions is be a branch. Other discrepancies might arise due to the fact that
MB-Lite introduces a stall when a load-store hazard occurs.

If the number of execution cycles are combined with the number of instructions
of Figure 2.6 the CPI of MB-Lite can be determined as was done for the other
processors in Section 2.3. The results of this computation are shown in Figure 4.5.
This figure clearly shows the lower (i.e. better) CPI of the MB-Lite compared with
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Figure 4.5: Benchmark results in CPI
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Figure 4.6: Benchmark results in execution time

aeMB and MicroBlaze.
If the information about the processor performance in terms of clock frequency

is combined with the CPI and the program size the execution time of the applica-
tions can be determined which is shown in Figure 4.6. The higher clock frequency
of both leon3 as well as the MicroBlaze and the lower CPI have leveled up in
terms of execution time. Therefore the MB-Lite performs around 20% worse than
the leon3 and MicroBlaze processors.

Although it was not our first concern to design a fast microprocessor, the MB-
Lite comes quite far in matching the performance of the commercial MicroBlaze
and leon3 processors.
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Conclusion 5
Within this thesis research has been done to quality and performance aspects of
synthesizable CPU cores which can be easily integrated with research on Very Large
Scale Integrated Systems On Chip. Commercial processors are mainly aimed at
providing many additional functions and obtaining high speeds. Metrics like design
reuse, portability and usability are of less importance. Within research projects
the same metrics are used but the emphasis is completely different. A summary
on the design goals as formulated in Section 1.2 is repeated here.

• Open source

• High quality and reliability

• Standard compliant

• High configurability

• High usability

• High simulation and synthesization speeds

• High portability

• Small size

• High performance

• Availability of components

In order to fill this extensive list of requirements as best as possible an approach
was defined using a collection of many well-known strategies which was eventually
used to design a processor which filled all needs.

5.1 Proposed strategy

Many requirements can be partially filled by using a two-process design method-
ology together with a well-defined component framework. According to the two-
process design method a component is separated in a behavioral and sequential
part. All outputs are connected to the sequential part, and are therefore output
registered. Due to this structured design approach, synthesizers can do a very
good job when optimizing designs by reducing logic levels, and thus obtain high
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performance. Since the behavior of the design is determined as a function of the
inputs and the registers (c.f. state machines) the functionality of the algorithm can
be easily evaluated resulting in more robust implementation.

In traditional ad-hoc design methods many small processes are defined. This
greatly reduces readability and complicates maintenance, which in turn decreases
reliability since it is hard to verify the functionality of the complete circuit. Types
and records are used excessively to reduce code size and improve readability even
more. Since only two processes are used for each component, hardware can be
simulated and synthesized far more efficiently hence increasing simulation speeds.

Besides an improved hardware structure other means can be used to fill all
requirements. Configurability and portability can be improved by making use of
a framework in which a clear separation exist between general components and
design specific components. A hierarchy of related libraries and packages can also
be effectively used to promote design reuse and improve portability.

A wishbone bus is a highly desirable addition to improve usability and avail-
ability of components. Since this is a simple, well-defined open source bus protocol,
many standard components have been designed using this specification. Addition-
ally, a modular bus topology can be applied to promote the open source character
of the system and makes it possible that other buses with different features can be
connected. Finally, the design can be made scalable by introducing a bus which
can be easily extended and configured.

5.2 Proposed implementation

It was determined that commercially licensed processors were unable to solve the
most elementary requirements, amongst others due to the fact that they are dis-
tributed as firm-core implementations and thus can not be modified. Therefore
the focus of the preliminary research was put on open source processors. It turned
out that also none of the open source designs could fill all needs due to different
reasons. All of the evaluated designs—except leon3—were modeled using the old
fashioned ad-hoc method and did not take advantage of the increase in abstraction
offered by modern design tools. Therefore the requirements concerning portabil-
ity and reliability could not be proven. Furthermore, the performance of all open
source designs left much to be desired.

In order to overcome the problems which were encountered in all open source
designs, a light-weight implementation of the MicroBlaze architecture was devel-
oped and named mb-lite. Based on the strategy which was outlined previously,
a processor with five pipeline stages was developed. Besides, the processor was
modeled according to a well-known pipeline implementation to improve reliability.
For those who have some basic knowledge about processors this design will look
familiar, hence using this processor will become even more easy. A highly con-
figurable and modular multiplexed bus was developed as well as a wishbone bus
adapter.
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The processor was thoroughly tested using many different configurations and
software algorithms. A test bench was developed with complete coverage which
indicates that every state of the processor is accessed at least once. The function-
ality of many different libraries was verified. Subsequently this test bench was also
used to verify the functionality of the bus components. Finally a post place and
route (par) model was synthesized and verified. Due to the huge program size, the
memory requirements of the original test bench were too high for par simulation,
so a smaller test bench was used to verify the functionality of this model including
wire and gate delays.

5.3 Recommendations and future research

Future research on mb-lite will focus on the implementation in a reconfigurable
fabric as well as a 90 nm process technology. Therefore mb-lite is designed to be
easily portable, but no efforts have been spend yet to prove the applied concepts.
Nevertheless, because this requirement has been included in the development dur-
ing an early design stage some precautions were taken. During preliminary research
it was found that memory is generally the most challenging component to imple-
ment in an IC process. Therefore all memory components have been implemented
using standard synchronous components and are collected in a separate library
with standard components.

It is recommended that different memory models as well as other components
are added as separate vhdl architectures, while configurations are used to select
the appropriate model for the targeted design. Traditional methods use generics
in order to instantiate platform specific components. This method has an im-
portant drawback since the list of generics during component instantiation might
increase dramatically in size, and the organization becomes unclear. This would
tremendously reduce the readability of the design.

With respect to the use of configurations it might be necessary to replace com-
ponents which are currently inferred from within the code with a separate entity
(e.g. adders, shifters and multipliers). In this way the same method of configura-
tions can be applied to select different implementations of equal components while
maintaining the structure of the design.

It is furthermore highly recommended that all modifications will be gathered
and published using a revision control system like svn. In this way everybody can
take advantage of user contributions which will greatly improve design reuse.
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Nomenclature

ABI Application Binary Interface

AHB Advanced High-performance Bus

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction Set Processor

BFM Bus Functional Model

BRAM Block Random Access Memory

CPI Cycles Per Instruction

CPU Central Processing Unit

DDR Double Data Rate

DSP Digital Signal Processor

EDK Embedded Development Kit

EX Execute

FPGA Field Programmable Gate Array

FPU Floating Point Unit

FSL Fast Simplex Link

FSM Finite State Machine

GCC gnu Compiler Collection

GDB gnu Debugger

GPP General Purpose Processor

HDL Hardware Description Language

IC Integrated Circuit

ID Instruction Decode

IF Instruction Fetch

IO Input/Output
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IP Intellectual Property

ISA Instruction Set Architecture

ISS Instruction Set Simulator

JTAG Joint Test Action Group

LE Logic Element

LMB Local Memory Bus

LSB Least Significant Byte

LUT Lookup Table

MEM Memory

MIPS Million Instructions Per Second

MMU Memory Management Unit

MSB Most Significant Byte

NOC Network On Chip

NRE Nonrecurring Engineering

MPSOC Multi Processor System On Chip

OF Operand Fetch

OPB On-Chip Peripheral Bus

ORBIS OpenRisc Basic Instruction Set

ORFPX OpenRisc Floating Point eXtension

ORVDX OpenRisc Vector/DSP eXtension

PC Program Counter

PIC Programmable Interrupt Controller

PLD Programmable Logic Device

PROM Programmable Read Only Memory

RAM Random Access Memory

PLB Processor Local Bus

PLD Programmable Logic Device
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ROM Read Only Memory

RISC Reduced Instruction Set Computer

RS232 Recommended Standard 232

SDRAM Synchronous Dynamic Random Access Memory

SOC System On Chip

SPI Serial Peripheral Interface

SPP Single Purpose Processor

SRAM Static Random Access Memory

TTM Time To Market

TVM Transaction Verification Model

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

VHDL Very High Speed Integrated Circuit Hardware Description Language

WB WriteBack

WSN Wireless Signal Network

XCL Xilinx Cache Link

XPS Xilinx Platform Studio
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Processor features A
This chapter lists a subset of features of several processors. The chosen features
are selected at importance for this project. The size and maximum clock frequency
are based on the synthesis results with Xilinx ISE 10.1 on a Virtex 5 (XC5VLX110-
3FF1760) device. All processors are configured with as few as possible additions
(i.e. no cache, FPU, multipliers, dividers or other optional peripherals).
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Table A.1: Processor features
AeMB leon3 OpenFire 0.3b OpenRisc1200 Plasma

Architecture Harvard Harvard Harvard Harvard Neumann
Number of registers 32 24 (2-32 windows) 32 32 32
Data bus size (bit) 32 32 32 32 32
Instruction size (bit) 32 32 32 32 32
Pipeline depth 5 7 3 5 2, 3 or 4a

License LGPL GPL MIT License LGPL Free to use
HDL Verilog VHDL Verilog Verilog VHDL

ISA MicroBlaze v6.2 Sparc V8 Microblaze 7.10 ORBIS32 MIPS

Compliant Partially b Fully Partially c Fully Partially d

Debug interface no optional no yes no
Number of Slice Flip Flops 711 1133 207 1577 1297
Number of 4-input LUT 926 3448 752 3802 2457
Max clock frequency 279 MHz e 183 MHz 198 MHz 185 MHz 73 MHz
System bus interface Wishbone AMBA 2.0 AHB FSL Wishbone UART

Additional interfaces FSL UART, RS232, JTAG no JTAG -
Memory controllers RAM, SRAM SRAM, SDRAM no no DDR SDRAM

FPU no optional no no no
Barrel shifter optional optional no no no
Integer multiplier optional optional yes yes yes
Integer divider optional optional no no yes
Timer no optional no yes no
Interrupt yes optional no yes yes
Interrupt controller no optional no yes no
MMU no optional no yes no

Cache yes, Instruction onlyf yes no yes yes

aDepends on the configuration and the instruction type
bThe aeMB microprocessor is instruction compatible with MicroBlaze except for the instructions WIC,WDC,IDIV,IDIVU
cThe OpenFire microprocessor is instruction compatible with MicroBlaze except for the WIC, WDC, IDIV*, BS, BSI, floating point and pattern

instructions
dThe unaligned load and store operations are patented and therefore can not be implemented.
eAeMB is a barrel processor. Hence, it alternately executes two threads. Single thread performance is therefore much lower than might be expected

from this figure.
fCan not be disabled by configuration
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Simulation reports B
B.1 Reference output of the test bench

1 Welcome to the MB−Lite Testbench

2
3 1 . Testing Interrupt . . .
4 Handling interrupt routine

5 OK !
6
7 2 . Testing Integer Arithmetic

8 OK !
9

10 3 . Testing memory allocation

11 OK !
12
13 4 . Testing Floating Point Arithmetic

14 OK !
15
16 5 . Testing uncommon instructions

17 OK !
18
19 6 . Executing dhrystone benchmark

20
21 Dhrystone Benchmark , Version 2 .1 ( Language : C )
22
23 Program compiled without ’ register ’ attribute

24
25 Execution starts , 1 runs through Dhrystone

26 Execution ends

27
28 Final values of the variables used in the benchmark :
29
30 Int_Glob : 5
31 should be : 5
32 Bool_Glob : 1
33 should be : 1
34 Ch_1_Glob : A

35 should be : A

36 Ch_2_Glob : B

37 should be : B

38 Arr_1_Glob [ 8 ] : 7
39 should be : 7
40 Arr_2_Glob [ 8 ] [ 7 ] : 11
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41 should be : Number_Of_Runs + 10
42 Ptr_Glob−>
43 Ptr_Comp : 39088
44 should be : ( implementation−dependent )
45 Discr : 0
46 should be : 0
47 Enum_Comp : 2
48 should be : 2
49 Int_Comp : 17
50 should be : 17
51 Str_Comp : DHRYSTONE PROGRAM , SOME STRING

52 should be : DHRYSTONE PROGRAM , SOME STRING

53 Next_Ptr_Glob−>
54 Ptr_Comp : 39088
55 should be : ( implementation−dependent ) , same as above

56 Discr : 0
57 should be : 0
58 Enum_Comp : 1
59 should be : 1
60 Int_Comp : 18
61 should be : 18
62 Str_Comp : DHRYSTONE PROGRAM , SOME STRING

63 should be : DHRYSTONE PROGRAM , SOME STRING

64 Int_1_Loc : 5
65 should be : 5
66 Int_2_Loc : 13
67 should be : 13
68 Int_3_Loc : 7
69 should be : 7
70 Enum_Loc : 1
71 should be : 1
72 Str_1_Loc : DHRYSTONE PROGRAM , 1 ’ ST STRING

73 should be : DHRYSTONE PROGRAM , 1 ’ ST STRING

74 Str_2_Loc : DHRYSTONE PROGRAM , 2 ’ ND STRING

75 should be : DHRYSTONE PROGRAM , 2 ’ ND STRING

76
77 OK !
78
79 The testbench is now finished .
80 ∗∗ Failure : FINISHED

81 Time : 1046120 ns Iteration : 0 Process : \
82 /testbench/timeout File : . . / . . / designs/core/testbench . vhd
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B.2 Coverage report of the test bench

Coverage Report Summary Data by instance

Instance : /testbench/core0/fetch0

Design Unit : mblite . fetch ( arch )
Enabled Coverage Active Hits % Covered

−−−−−−−−−−−−−−−− −−−−−− −−−− −−−−−−−−−
Stmts 11 11 100 .0
Branches 7 6 85 .7
Conditions 0 0 100 .0
Fec Conditions 0 0 100 .0
Toggle Nodes 3 1 33 .3

Instance : /testbench/core0/decode0

Design Unit : mblite . decode ( arch )
Enabled Coverage Active Hits % Covered

−−−−−−−−−−−−−−−− −−−−−− −−−− −−−−−−−−−
Stmts 160 160 100 .0
Branches 77 76 98 .7
Conditions 44 41 93 .1
Fec Conditions 64 56 87 .5
Toggle Nodes 3 1 33 .3

Instance : /testbench/core0/execute0

Design Unit : mblite . execute ( arch )
Enabled Coverage Active Hits % Covered

−−−−−−−−−−−−−−−− −−−−−− −−−− −−−−−−−−−
Stmts 72 70 97 .2
Branches 57 55 96 .4
Conditions 14 11 78 .5
Fec Conditions 18 15 83 .3
Toggle Nodes 98 97 98 .9

Instance : /testbench/core0/mem0

Design Unit : mblite . mem ( arch )
Enabled Coverage Active Hits % Covered

−−−−−−−−−−−−−−−− −−−−−− −−−− −−−−−−−−−
Stmts 21 21 100 .0
Branches 7 6 85 .7
Conditions 4 4 100 .0
Fec Conditions 6 6 100 .0
Toggle Nodes 34 33 97 .0
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Manuals and reference material C
C.1 Hardware Development Manual

C.1.1 Quick start guide

To simulate a design using ModelSim...

Go to one of the design directories in (mblite/designs/core*), and type:

%> make all

%> vsim &

Subsequently load the test bench design. It is recommended to disable optimiza-
tions and set the simulator resolution to ps to avoid warnings being generated.
From ModelSim’s command line type:

%> do start . do

to initialize the simulation, or

%> do run . do

to initialize and run the simulation.
The design core syn is a little more special since it contains templates to be

used for post place and route simulations. These can be generated using a synthesis
tool like ise. Use one of the following actions:

%> make syn

%> make par

to compile the post-synthesis and post-place and route model, respectively. The
memories are initialized already so do-scripts are not available.

To create a new design...

It is recommended to duplicate one of the design directories. If the directory is
under version control, e.g. an (svn) repository, type:

%> svn cp mblite/designs/core mblite/designs/my_design

Subsequently modify the makefile by changing the variable design name in the
name of the current directory.

To clean up compilation files...

Obviously, you can clean up your current working directory by typing

%> make clean
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Table C.1: Description of the implementation parameters

Parameter Description

CFG INTERRUPT Enable (1) or disable (0) the interrupt.
CFG USE HW MUL Enable (1) or disable (0) the hardware multiplier.
CFG USE BARREL Enable (1) or disable (0) the barrel shifter.
CFG DEBUG Enable (1) or disable (0) debugging mode. In debugging

mode more registers are cleared to enhance readability.
Disabling debug mode gives a little more performance.

CFG DMEM SIZE Data memory size in number of address bits. Maximum
addressable memory is 232 bytes (4Gb). Default: 64 Kb

CFG IMEM SIZE Instruction memory size in number of address bits. Max-
imum addressable memory is 232 bytes (4Gb). Default:
64 Kb

CFG BYTE ORDER Little endian byte order (0) or Big endian byte order (1,
default). Little endian byte ordering is not supported by
the MicroBlaze tool chain.

CFG REG FORCE ZERO Explicitly clear register R0 when it is read
CFG REG FWD WB Forward the writeback register value. Forwarding this

value reduces the requirements on the memory used to
implement the registers. Most FPGA memories require
this option to be enabled

CFG MEM FWD WB Forward the memory result internally instead of intro-
ducing additional stalls.

To synthesize a design using ISE...

Start a new project, and compile all design files in mblite/designs/core* except
config Pkg.vhd to library work. All other files, including config Pkg.vhd should be
compiled to a library called mblite. It is recommended to assign the locations by
reference instead of copying the files to the current working directory.

C.1.2 Implementation parameters

Several parameters are added to the design to control the implemented features
and components. Table C.1 lists the available parameters and contains a short
description where the parameter is used for. The parameter names are chosen in
accordance with the MicroBlaze specification.

The parameters are defined in the config Pkg.vhd file which is in the design
folder. The parameters cfg interrupt, cfg use hw mul, cfg use barrel
and cfg debug are defined generic with the default values coming from the con-
figuration file. The advantage of using generics is that different parameters can
be specified for different instantiations of that component. Within the same de-
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sign we can create a processor with a multiplier and barrel shifter while another
component on the same fabric does not have these features.
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C.2 Dependencies between VHDL packages

core_Pkg

core

decode

execute

fetch

mem

gprf

config_Pkgstd_Pkg

dsram sram sram_4en

testbench

Figure C.1: Dependencies between the MB-Lite VHDL packages
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C.3 Contents of the MB-Lite package

C.3.1 VHDL components

The directory mblite/hw contains all VHDL descriptions of the packages and
components. The contents of these files are described in Table C.2. The MB-Lite
core uses several standard generic functions which have been defined in the package
std. A description is given in Table C.3.

Table C.2: VHDL components in the package “core”

core.vhd This top level component consists of instantiation of the
pipeline modules and their connections.

core wb.vhd This top level component instantiates a core and connects
the wishbone wrapper to the data bus.

core Pkg.vhd This package contains all MB-Lite component descrip-
tions, the data types as used in the processor components
and several functions used in the modules.

core address decoder.vhd This generic address decoder splits the MB-Lite data bus
in a configurable number of sub-buses. It accepts a linear
memory map to initialize the controller.

core wb adapter.vhd This component contains the description of the MB-Lite
bus to wishbone adapter.

fetch.vhd First pipeline component which fetches the instructions.
decode.vhd Second pipeline component for decoding the instruction,

reading the registers and writing back new register con-
tents.

gprf.vhd Used within decode to abstract the memory organization
used to implement a memory with one write input and
three read outputs.

execute.vhd Contains all components necessary for computing an in-
struction result.

mem.vhd The memory stage aligns the memory read and write data
and controls the data bus of the MB-Lite processor.

Table C.3: VHDL components in the package “std”

std Pkg.vhd Description of components in the and several generic func-
tions.

dsram.vhd Dual port synchronous RAM component.
sram.vhd Synchronous RAM component.
sram 4en.vhd Synchronous RAM component with four write enable ports.

Master of Science Thesis Tamar Kranenburg



76 Manuals and reference material

C.3.2 Example software and tools

The directory mblite/sw contain the benchmark and verification software. Ta-
ble C.4 gives a short description of all software. All software packages contain
almost identical makefiles to compile software for the MB-Lite processor.

Table C.4: Software used in MB-Lite simulation and verification

dhrystone The Dhrystone benchmark Version 2.1 written in C. It has
been sanitized to obtain an ANSI C compatible version.

fibonacci Computes the fifteenth Fibonacci number using iterative
function calls. Requires a considerable stack for proper ex-
ecution.

hello world Prints hello world to the standard output.
stdio Test files for reading and writing memory. Might not be

compatible with all MB-Lite example designs due to differ-
ences in the test bench.

testbench Test bench used in verification of the MB-Lite design.
util/bin2mem This program is used to convert binary compilation images

to mem files suitable for ModelSim’s mem command.
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C.3.3 Example designs

The directory mblite/designs contains pre-assembled designs and include con-
figuration files, test benches, makefiles and ModelSim scripts for a specific design.
Four example designs are included as described in Table C.5. In Table C.6 all
files specific for these designs are described. All of the designs have a standard IO

connected at address 0xffffffc0 in order to write to the console screen.

Table C.5: Design examples

core This design instantiates a bare core and connects standard
memory components to the instruction and data buses.

core wb This design instantiates the wishbone wrapped top level core
module. The test bench connects to a wishbone compatible
memory device and to a wishbone compatible standard out-
put.

core decoder In this design an address decoder is inserted between the
MB-Lite core and the attached peripherals. The decoder
takes care of routing the control and data signals to and
from the appropriate devices.

core decoder wb Same design as core decoder, except that a wishbone com-
patible standard output interface is now connected using the
wishbone adapter and decoder to the MB-Lite core. The
memory is connected directly to the adapter.

core syn Same design as core, but both the instruction as well as
the data memories are gathered in the top level component
mblite soc. In stead of standard memories, initialized mem-
ories are used since currently there is no boot loader or any-
thing available yet.
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Table C.6: Design example files

Makefile This file can be used with ModelSim to compile or clean up
the design. Dependencies are solved automatically and all
components are compiled to the appropriate libraries.

config Pkg.vhd This file contains constants for initialization. Note that some
of these constants can be overwritten during instantiation by
using generics.

rom.mem This ascii file contains the program instructions and can be
generated using the MicroBlaze tool chain.

run.do Can be used from within ModelSim to run a design for un-
specified time.

start.do Can be used from within ModelSim to load a design without
running. The registers and memories will be loaded with the
rom.mem file.

test bench.vhd Instantiates and attaches all components within the design
like the MB-Lite core, memories and standard IO interfaces.

mblite stdio.vhd Standard IO to be connected to the MB-Lite data bus.
wb stdio.vhd Wishbone compatible standard IO core to be connected to

the wishbone adapter.
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