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Executive Summary

Research Context
Humanitarians and global health actors come to the aid of many people every year, with the aim of
preventing disease, increasing wellbeing, and providing (medical) aid to those suffering from disease.
One of the contexts in which they operate is that of an epidemic. An epidemic is dynamic by nature and
provides a complex and evolving environment in which medical aid needs to be provided. A key aspect
in a response to an epidemic is logistics – specifically the allocation of resources such as personnel
and medical supplies. These resources are often limited, calling for a targeted and strategic response.

There is a variety of studies tackling the problem of resource allocation in the context of an epidemic,
which include sequential decisions as the epidemic evolves, as well as the choice between several lo-
cations to which resources can be sent. However, these studies often assume decision-makers have
complete information on the situation at hand and can make “perfect” choices. In reality, due to the
large number of actors involved in a response, poor (telecommunication) infrastructure, and the fact
that an epidemic is a moving target due to its dynamic nature, decision-makers often have to deal with
incomplete and uncertain information on the number of patients and the way the epidemic is evolving.

One of the goals of this thesis is to incorporate the uncertainty decision-makers face into the de-
cision problem. A key assumption connected to this goal is that the uncertainty as experienced by
the decision-maker can be reduced by sequential decisions. That is, as the response evolves and
the decision-maker places resources, they will obtain more knowledge on those regions in which they
have established a presence. Additionally, this thesis also considers multiple objectives on which the
success of a response is evaluated, reflecting the different perspective of stakeholders involved in an
epidemic. The main research question of this thesis is formulated as follows:

What is the value of explicitly incorporating uncertainty and its reduction by sequential
treatment centre placement decisions for epidemics response?

Approach
The research question is approached with Simulation Modelling and Decision-Making under Deep Un-
certainty methods. In order to develop a realistic model, the 2014 Ebola epidemic in West Africa is
used as a case study, from which epidemiological and demographic data is used. A simulation model
is developed which represents the spread of Ebola over 16 regions over a period of six months, ap-
proximating the situation in Sierra Leone from June to December 2014. The decision-maker has no or
uncertain knowledge on the state of the epidemic in each of the 16 regions. Every week, the decision-
maker can choose to take either an explorative or an exploitative action. Explorative actions are aimed
at reducing uncertainty by sending resources to a region of which the decision-maker has no or highly
uncertain knowledge. Exploitative decisions are aimed at using resources to treat known cases.

In order to identify the policies that prescribe what type of action a decision-maker should take,
Direct Policy Search (DPS) is used. DPS uses closed-loop policies: policies which base decisions on
some observation of the current state in the system. In the context of this thesis, the policy is depen-
dent on the level of uncertainty in the system as experienced by the decision-maker. The policy then
dictates whether the decision-maker should take explorative or exploitative action.

In DPS, a Many-Objective Evolutionary Algorithm (MOEA) is used to identify optimal policies based
on a reference scenario. The resulting policies are then tested on robustness by evaluating their per-
formance on a large number of different scenarios, which are created by varying model parameters.
The model parameters which are used to generate scenarios in this thesis are the transmission rate,
the initial number of cases (infections) at the start of the simulation, and the travel rate. The policies
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are evaluated on five objectives: effectiveness, efficiency, equity in met demand, equity in arrival time,
and time until the epidemic is contained.

Findings
Analysis on the performance of different policies shows that explorative policies (policies which incor-
porate a large amount of explorative action) avoid worst-case scenarios in which an epidemic would be
discovered too late or not at all by purely exploitative policies. This effect is most visible in scenarios
with epidemics that evolve slowly or if isolated regions are strongly affected. However, in scenarios
where exploitative policies are successful, explorative policies fail to reach the same level of perfor-
mance as they constantly trade-off meeting demand against spending resources on reducing uncer-
tainty. This also leads to poorer performance of explorative policies in terms of efficiency and time
until containment. Since explorative policies provide the decision-maker with a more complete situa-
tional awareness, they are also valuable when considering the equity objectives. Explorative policies
perform better in terms of equity in arrival time because they spread the placement of resources over
all regions. However, for equity in met demand the benefit of situational awareness is negated by the
trade-off between explorative and exploitative actions, as resources are not solely focussed on meeting
demand.

The main contributions of this thesis are two-fold: From the humanitarian perspective, the results
provide important insight into the risks and benefits of current practice (which is assumed to be fully
exploitative), and the value which other strategies for resource allocation during epidemics can have
for the sector. The other contribution is in the field of deep uncertainty research. By incorporating
uncertainty reduction through sequential decisions, and by linking the experienced level of uncertainty
directly to the policy function, this thesis shows the value of considering uncertainty within the simulation
model itself. This adds a new dimension to the method of Direct Policy Search.
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1
Introduction

1.1. Epidemics - Complex and Dynamic Disasters
Every year, millions of people face the reality of disasters, natural or man-made. In 2017 alone, over
11000 people worldwide lost their life or went missing, while over a million became homeless as a result
of 183 natural disasters and 118 man-made disasters (Bevere, Schwartz, Sharan, & Zimmerli, 2018).

Epidemics are disasters that cause large amounts of suffering and potentially many deaths. Re-
cent examples of outbreaks include the cholera outbreak in Haiti after the earthquake in 2010, which
resulted in 470,000 known cases and over 6000 deaths (Centers for Disease Control and Prevention,
2011) and the 2014 Ebola epidemic in West Africa, which infected over 28,000 people and killed over
11,000 (Kaner & Schaack, 2016). These examples also illustrate that epidemics occur in many con-
texts: spontaneously, or in the aftermath of another disaster. Similarly, epidemics can evolve rapidly
or take place over many years, as is the case for HIV.

Epidemics will remain a challenge in the 21st century. According to the UN (United Nations, 2017),
the world population is expected to have grown to 11 billion by 2100 with the least developed coun-
tries accounting for a large part of this growth. Population growth, along with urbanisation and climate
change increase the risk of infectious disease and epidemics (Alirol, Getaz, Stoll, Chappuis, & Loutan,
2011; Gholipour, 2013; World Health Organization, 2003).

Those who respond to (the threat of) an epidemic have to operate in complex environments with
multiple actors, who can have conflicting objectives, and face uncertainties such as the size and loca-
tion of demand for medical aid and supplies (Liberatore, Pizarro, de Blas, Ortuño, & Vitoriano, 2013;
van der Laan, van Dalen, Rohrmoser, & Simpson, 2016). Problems that arise from response in under
such conditions are exemplified by the 2014 Ebola epidemic. As no cure or vaccine was available at
the time, an important part of the response was focussed on quarantining and providing basic care to
those infected with Ebola Virus Disease (EVD) 1. Yet coordination between governments of the three
affected countries, the WHO, and NGOs was poor, and aid workers could not even get basic informa-
tion such as the number of Ebola Treatment Centres (ETC) (Gettleman, 2014). Often, ETCs were over
capacity as soon as they were opened due to the large influx of (suspected) patients (Payne, 2014).
The struggle to keep up with the spread of the epidemic was voiced by an MSF coordinator who said
“Everything we do is too small and too late […] We’re always running after the epidemic.” (Diallo &
Dilorenzo, 2014). Later in the response, the WHO claimed that on a national level enough beds were
available, but admitted that on a district level some ETCs were still over capacity, while others had
spare beds (World Health Organization, 2014c). This shows that even once enough resources were
available, their proper distribution in the face of an uncertain and dynamic environment remained a
challenge.

1A full list of all abbreviations used in this thesis can be found in Appendix A.
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2 1. Introduction

1.2. Problem Statement
In an epidemics context, decision-makers face the difficulty of choosing where to send resources in a
constantly evolving environment. Additionally, due to a lack of coordination and communication, or sim-
ply due to exogenous factors (such as the availability of telecommunication technologies) information
necessary to make these decisions can be missing or uncertain. Moreover, multiple different actors
(i.e. governments, NGOs, international community actors) can be involved in a response, each with a
different perspective and with different goals.

There is a need for decision-support in such situations, which takes into account the (un)availability
of information, conflicting objectives, and the fact that as an epidemic spreads, it essentially becomes
a “moving target.” This thesis aims to provide this decision-support by investigating resource allocation
during epidemics in the form of a facility placement problem. It will consider how information uncertainty
influences the performance of resource allocation policies, how decisions can be used strategically to
reduce uncertainty, and evaluate if such policies lead to better allocation of resources. To reflect the
multi-actor context in which an epidemic takes place, multiple objectives will be considered.

In order to gain a better understanding of the subject and to become familiar with the work already
done in this area, the next section reviews academic literature on humanitarian logistics, and resource
allocation specifically in the context of an epidemic.

1.3. Literature Review
1.3.1. Humanitarian Logistics
Two types of humanitarian disasters can be distinguished: slow onset disasters (such as an epidemic
or famine) and sudden-onset disasters (i.e. a flood or earthquacke) (Charles & Lauras, 2011). Addi-
tionally, humanitarian operations are categorised by four phases: mitigation, preparedness, response,
and recovery (Çelik et al., 2012). Within humanitarian response, humanitarian logistics is an area of
research and a branch of operations that deals with the supply, transport and allocation of goods,
people and information in disaster response. Though humanitarian logistics play a vital role in a re-
sponse, it only started to develop as an area of research in the early 2000s (Balcik & Beamon, 2008).
Humanitarian logistics differs from its commercial counterpart as its focus is on meeting the needs of
the end-receiver, rather than focussing on meeting the objectives of the supplier (Çelik et al., 2012).
When comparing humanitarian facility location problems with comparable commercial issues, specific
differences are that in the humanitarian context demand can spike suddenly and is highly unpredictable
in terms of time and location. Additionally, the stakes associated with decision-making are high and
resources are limited (Balcik & Beamon, 2008) (Holguín-Veras, Jaller, Van Wassenhove, Pérez, &
Wachtendorf, 2012).

Dasaklis, Pappis, and Rachaniotis (2012) review humanitarian logistics for epidemics control. They
describe the role of logistics in epidemics response as dealing with resource allocation, cold supply-
chain setup (for vaccines and blood samples) and managing the availability of staff en resources. The
problem studied in this thesis is a resource allocation problem during the response phase of an epi-
demic. A literature review on studies considering the same problem is carried out in the next section.

1.3.2. Resource Allocation in Epidemics Response
Ahmadi-Javid, Seyedi, and Syam (2017) review the work done on healthcare facility location problems,
which also includes non-emergency contexts. However, they identify no research on the emergency
placement of medical facilities in an epidemics context; as all four studies they place in this category
are in the context of a sudden-onset natural disaster. They do identify a study by Murali, Ordóñez, and
Dessouky (2012) which considers the placement of points-of-dispersion for vaccines after a bio-terrorist
attacks. This study will be discussed in more detail below.

Since there are few studies specifically considering medical facility placement in an epidemics re-
sponse, the literature reviewwill widen its scope to include studies whichmodel the allocation of medical
resources during epidemics. These studies will be evaluated on their incorporation of four characteris-
tics, which are partly drawn from the classification suggestions by Ahmadi-Javid et al. (2017):
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• Dynamic Epidemiological Model - Does the research incorporate a (compartmental) disease
model that evolves over time and therefore requires sequential decision-making?

• Spatial Resource Allocation - Does the research consider a spatial allocation problem, i.e. with
multiple regions or demand points (in contrast with allocation aimed at specific demographics).

• Evaluation Criteria - On how many, and which criteria the performance of the model is optimized.

• Uncertainty - Whether uncertainties in parameters or mechanisms (i.e. model structure) are con-
sidered systematically.

In order to create a state-of-the-art overview and show the most recent work, only studies pub-
lished after 2010 were considered. Twelve relevant studies were identified. The evalutation of all these
studies on their inclusion of the defined characteristics is shown in Table 1.1. Most studies frame the
resource allocation problem as an optimization problem which can be solved mathematically. Mixed-
integer and linear programming approaches are often used as a method for this.

Mbah and Gilligan (2011) study how limited resources can be assigned to several regions, each
of which is represented by a SIRS-model (Susceptible-Infected-Recovered-Susceptible, explained in
more detail in Chapter 3.) which evolves over time, meaning their problem is dynamic. They use math-
ematical analysis to identify the conditions for optimal solutions and then use numerical simulation to
test strategies with the goal to minimize the (discounted) burden of disease. They also discuss the
effect of the strategies on the trade-off between efficiency versus effectiveness. A static allocation
problem is considered by Murali et al. (2012), whose study was also identified in the literature review
by Ahmadi-Javid et al. (2017). They use an integer programming model to solve a resource allocation
problem framed as a coverage problem, in which geographically spread demand points need to be
covered by supply points. They aim to maximize demand covered, and they incorporate uncertainty by
drawing the size of demand at a demand point from a known probability distribution.

Anparasan and Lejeune (2017) also consider a static allocation problem, in the context of the cholera
outbreak that occurred after the 2011 earthquake in Haiti. They use integer linear programming to op-
timize the allocation of treatment facilities as well as ambulances over several regions with the goal to
maximize the number of patients receiving treatment.

All other studies consider dynamic allocation problems with compartmental disease models as in
Mbah and Gilligan (2011). Rachaniotis, Dasaklis, and Pappis (2012) use compartmental models to rep-
resent sub-populations to which limited medical resources must be scheduled. They aim to minimize
the total number of infections and compare the performance of their optimized strategy to that of a ran-
dom one, and incorporate uncertainty by evaluating both strategies over 1000 scenarios with randomly
sampled parameters. The same authors also study the distribution of vaccines over sub-populations
which are represented in a network structure in (Dasaklis, Rachaniotis, & Pappis, 2017). Again they
incorporate uncertainty in the form of different scenarios by varying model parameters.

Other studies that incorporate scenarios are those by He and Liu (2015), Wanying, Alain, and Angel
(2016) and Ren, Ordóñez, and Wu (2013). He and Liu (2015) use a compartmental model to forcast
demand at resource centres and aim to minimize suffering by assigning resources to centres accord-
ing to the forcast demand. Wanying et al. (2016) use linear programming to optimize the distribution
of antibiotics in the case on an anthrax attack. Ren et al. (2013) uses mixed integer programming opt-
mization to assign limited resources to several regions in the event of a bio-terrorist smallpox attack. In
all three studies, a handful of different pre-determined scenarios is considered. This is not counted as
incorporation of uncertainty, as the scenario’s are presented as being “known” beforehand, and their
small number means performance of strategies is not evaluated structurally.

The remaining studies do not incorporate uncertainty at all. Rachaniotis, Dasaklis, and Pappis
(2017) revisit the resource scheduling problem first discussed in (Rachaniotis et al., 2012) and use a
different solution strategy, but do not incorporate varying parameters. Liu and Zhang (2016) optimize
the allocation of medicine to various regions over multiple timesteps with mixed integer programming,
and use a compartmental model to forecast future demand each timestep. They aim to minimize cost
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Article Dynamic Spatial Criteria Uncertainty

Mbah and Gilligan (2011) x x
3

(minimize burden of infection,
efficiency, effectiveness)

Murali et al. (2012) x 1
(maximize demand covered)

Rachaniotis et al. (2012) x x 1
(minimize total infections) x

Ren et al. (2013) x x 1
(minimize deaths)

He and Liu (2015) x x 1
(minimize suffering)

Liu and Zhang (2016) x x 1
(minimize cost)

Wanying et al. (2016) x 1
(minimize deaths)

Anparasan and Lejeune (2017) x 1
(maximize demand covered)

Auping et al. (2017) x n/a
(no optimization) x

Dasaklis et al. (2017) x x 1
(maximize demand covered)

Rachaniotis et al. (2017) x x 1
(minimize new infections) x

Büyüktahtakın et al. (2018) x x 1
(minimize deaths)

Table 1.1: showing the categorization of the discussed literature according to the four formulated characteristics.

given a constraint on the minimum amount of demand that needs to be covered. Büyüktahtakın, des
Bordes, and Kıbış (2018) also incorporate a multi-period planning horizon and aim to minimize the
number of deaths by allocating resources in the context of the 2014 Ebola epidemic.

Though it does not involve a spatial component, and is based on different methods than the previ-
ously discussed research, a study by Auping, Pruyt, and Kwakkel (2017) is included here because of its
explicit inclusion of uncertainty. Using system dynamics modelling to study the effect of different inter-
vention methods and strategies on a population, they analyse the performance of different responses
under many different conditions using scenario discovery.

Based on the literature review, the following observations can be made: Several studies exist that
consider a spatial resource allocation problem with a dynamic disease model. Additionally, several
studies consider a handful of scenarios and/or model structures to study the effect they have on the
resource allocation optimization. Structural consideration of uncertainty, however, is not found in these
studies, with the exception of Rachaniotis et al. (2012) and Rachaniotis et al. (2017) who evaluate policy
performance by varying model parameters. Some studies consider uncertainty explicitly (i.e. Murali
et al. (2012) who considers uncertainty in demand, and Auping et al. (2017) who perform scenario
discovery) but none of these include both a dynamic disease model and a spatial component for the
allocation problem. The number of criteria on which the resource allocation problem is optimized is
almost always one: either to minimize cost (given a constraint on met demand) or to minimize deaths
or suffering given a certain amount of resources. The only exception is Mbah and Gilligan (2011) who
considers optimal strategies with regard to efficiency and effectiveness and the trade-off between the
two.
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1.4. Research Gap and Research Question
In the problem statement, it has been established that uncertainty on the spread and development of
a disease poses a problem in epidemics response. However, from the literature review it is concluded
that in resource allocation research for epidemics, uncertainty is not incorporated structurally. This may
mean that the policies identified in these studies perform sub-optimally in reality or require conditions
on information availability which cannot be met in a real-life response. It is therefore relevant to study
the effect of uncertainty on allocation strategies.

Additionally, given the long time-frame over which epidemics take place, the decisions made in the
response will be sequential. That is, not all resources will be placed at once. Instead, a decision made
earlier in the response affects the state of the epidemic and therefore all decisions made after it. It is
therefore also relevant to investigate how uncertainty evolves over time as the result of a placement
decision. In the context of treatment placement decisions, it is hypothesized that placing resources
such as a treatment centre reduces uncertainty in the spatial area surrounding it. It is important to
take into account this interaction between action and uncertainty. It was studied in a master’s thesis by
Romijn (2018) in the context of a humanitarian response after a natural disaster. This thesis proposes to
expand on this by including the level of uncertainty in the system as a variable used in decision-making.

Finally, current research does not take into account multiple objectives when evaluating proposed
solutions. When considering resource allocation over several sub-populations (as is done in spatial
resource allocation problems) in a humanitarian context, it is insufficient to only consider efficiency or
cost. Concepts such as equity and impartiality should be incorporated in order to come to policies that
are acceptable to humanitarian decision makers. Another argument for multiple objectives is the fact
that a response is often carried out by multiple stakeholders, who might prioritize different objectives.

On the basis of the literature review and the identified research gap, the following research question
is formulated:

What is the value of explicitly incorporating uncertainty and its reduction by sequential
treatment centre placement decisions for epidemics response?

The research approach that will be taken to answer this question, and the relevant sub-questions
that need to be answered in order to formulate an answer to the main research question are the subject
of the next chapter.





2
Research Approach

In the previous chapter, the problem of resource allocation during epidemics was introduced, and on the
basis of a literature review the knowledge gap was identified. The knowledge gap showed that current
research does not consider uncertainty systematically even though this is a major hurdle in actual
responses. Additionally, it was shown that most relevant research only considers a limited number of
objectives, which may not be reflective of the multi-actor effort that takes place during an epidemic. This
knowledge gap lead to the formulation of a research question that aims to study the role of uncertainty
in allocation problems and its interaction with allocation decisions:

What is the value of explicitly incorporating uncertainty and its reduction by sequential
treatment centre placement decisions for epidemics response?

The aim of this chapter is to define a a point of view and research approach with which this question
will be approached, to define the sub-questions necessary to conduct the approach, and to provide the
methods with which the sub-questions will be answered.

2.1. Deep Uncertainty
In its essence, the problem of allocation of resources during an epidemic is a problem in which a series
of sequential decisions need to be made on where (limited) resources will be sent. The position taken
in this thesis is that these sequential decisions are made under a certain level of uncertainty, which is
in turn influenced by past decisions, and the question is whether incorporating this uncertainty explicitly
in the resource allocation policy will lead to better strategies.

Decision Support under Deep Uncertainty is an area of research which aims to develop policies
or strategies while acknowledging the uncertainty present in complex systems, which fits the problem
statement of this thesis. The term “deep uncertainty” was first defined by Lempert (2003) to refer to
situations in which decision-makers cannot agree on the structure of a conceptual model, on the prob-
ability distribution of the uncertain parameters and values, and on how to evaluate various possible
outcomes. The three key approaches to deal with these uncertainties are exploratory modeling, adap-
tive planning, and decision-support (Haasnoot, Warren, & Kwakkel, 2019). Exploratory modelling uses
simulation models to generate plausible future states of the system by varying uncertain parameters
and/or model structures. By generating a large number (thousands) of scenarios, patterns in system
behaviour and its relation to input values can be used to reason about the effect of uncertainties on the
system. Adaptive planning means to design policies that can be changed over time, depending on how
the system evolves. This means that how the policy changes is dependent on observed developments,
rather than that it is planned out ahead of time. Decision support under uncertainty takes into account
that in complex systems often multiple actors need to come to a decision. Therefore, decision support
is aimed at showing the trade-offs between multiple objectives and presenting decision-makers with
alternatives, rather than suggesting one predetermined plan of action. All together, these methods aim
to find strategies or policies that are robust, meaning their performance is only impacted marginally by
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the uncertain future aspects.

It is evident that the deep uncertainty paradigm suits the problem of studying uncertainty in resource
allocation during epidemics well. With the approaches described above in mind, the sub-questions are
formulated in the next section.

2.2. Sub-questions
A few key components of the deep uncertainty approach are now clear: exploratory modelling and
adaptive planning require a simulation model in order to gain insight into the future states of the model.
In order to provide decision-support for real-life situations, the objectives used in this context also need
to be identified. Additionally, since it is assumed uncertainty can be reduced as the result of a placement
decision, the manner in which this happens needs to be developed. This results in the following sub-
questions:

1. What are the objectives on which decisions for treatment centre placement are optimized?

2. What are the main sources of uncertainty relevant for a treatment centre placement decision?

3. How can the reduction in uncertainty resulting from a treatment centre placement decision be
conceptualized?

4. How can the sequential treatment centre placement decision problem and the decision-uncertainty
reduction be represented in a simulation model?

5. Given the simulation model, what is the influence of system uncertainties on the performance of
resource allocation policies?

6. Given the simulation model, which strategies for resource allocation decisions show robust per-
formance?

2.3. Methods
2.3.1. Conceptualizing the System
In order to answer any of the sub-questions, one first needs to have an understanding of the context
in which an epidemics takes place, who is involved in the response, and what factors and decisions
determine the evolution of an epidemic. Additionally, the system in which responders operate, and what
information they have available to them (or becomes available to them over time) should be known.
This is done by reviewing academic literature on the subject and by studying reports from humanitarians
and the international community. In order to also get a first-person account of an epidemics response,
and to validate assumptions that unavoidably need to made, this desk research will be supplemented
by interviews with experts from the field (see Appendix J). With this knowledge and understanding, sub-
questions 1 to 3 can be answered, providing a basis for the remainder of the research that is grounded
in reality.

2.3.2. Approaching Uncertainty as an Exploration Vs. Exploitation Problem
Since sequential decisions need to be made in an uncertain environment, and the placement of a treat-
ment centre can reduce uncertainty in parts (districts) of the environment, the problem can be seen as
an exploitation vs. exploration problem (Memarzadeh & Pozzi, 2016), a conceptualisation that is also
widely used for online decision problems in reinforcement learning.

An explorative decision would be to place a resource such as a treatment centre in a region with
high uncertainty about the severity of the epidemic. There could be no patients at all in this region, or
many. An exploitative decision would be to place a treatment centre in a region where there is certainty
on the (minimum) number of patients. This does not mean uncertainty has to be low in these regions,
but the lower bound of the current known range gives a guarantee on the number of patients.

The main research question considers the value of incorporating uncertainty. In order to understand
what this value is, there needs to be a comparison between a policy that incorporates uncertainty and
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a policy that does not. A policy that does not incorporate uncertainty would be one that represents
current practices, i.e. that is fully exploitative. A policy that also takes explorative actions can then be
seen as one that incorporates uncertainty by aiming to reduce it.

2.3.3. Policy Search
In essence, a policy in a resource allocation problem would dictate for each point in the sequential de-
cision process, whether an explorative or an exploitative action would be taken. Sub-question 6 then
seeks to find such a policy that performs optimally (i.e. is robust) over a large scenario space.

It is proposed to use Direct Policy Search (DPS) to find such a policy. With direct policy search,
a closed loop policy is optimized for multiple objectives on a simulation model using a multi-objective
evolutionary algorithm (MOEA) (Giuliani, Castelletti, Pianosi, Mason, & Reed, 2015). A closed loop
policy is dependent on one or more observable system variables. For the current problem, the system
variable would be the overall level of uncertainty in the system as experienced by the decision maker.
The benefit of this is that there is no fixed, optimal sequence of actions (or types of actions) that need
to be taken based on the simulation model. Instead, the policy provides the optimal ratio of explorative
versus exploitative action based on the current level of uncertainty in the system. This makes it easier
to translate the results to a real-life decision-making context. Additionally, is not very computationally
heavy, which allows for larger and more complex models (i.e. a high number of regions, to represent a
large geographic area realistically). The DPS will yield a set of Pareto-optimal policies for the objectives
identified in sub-question 1. These policies are optimized over a reference scenario.

Following Quinn, Reed, and Keller (2017) these policies can then be tested for robustness using ex-
ploratory modelling (i.e. by testing their performance over a large set of scenarios), thereby answering
sub-question 6.

2.3.4. Simulation Model & Case Study
The DPS approach requires a simulation model, both for the policy search by the MOEA and for ro-
bustness testing. The simulation model will be developed as a system dynamics model. This allows
for the spatial and temporal dynamics of the epidemic to be represented in a number of compartmental
models, where each compartmental model corresponds to a geographic region. Given the availability
of data, such a region will correspond to a district. The placement of resources in a district can then
be represented by changing the parameters of the compartmental model representative of that district.
Sub-question 4 therefore represents the implementation of the simulation model.

To create a simulation model, a case study is needed. The 2014 Ebola epidemic is chosen for
several reasons. Firstly, given that main question is formulated as a facility location problem, it means
that the placement of separate medical facilities is a necessary part of the response. This is true if
a disease requires specific medical treatment (i.e. isolation) or if existing healthcare infrastructure is
insufficient. Both were the case for Ebola. Secondly, for a system dynamics approach, delays be-
tween stocks (compartments) are necessary to represent flows. This means a disease needs to have
an observable incubation period and period between symptom onset and death or recovery, which
is the case for Ebola (WHO Ebola Response Team, 2014). Finally, there needs to be data available
on various disease parameters as well as the effect of response measures in order to build a model.
The Ebola epidemic has been well-documented. In fact, several compartmental models as well as
models studying the effect of response measures have already been built (i.e. (Atkins et al., 2016;
Büyüktahtakın et al., 2018; Kucharski et al., 2015)). This means the focus of the research can be on
the decision-uncertainty interaction as an epidemiological model does not need to be constructed from
scratch.

Given the simulation model, the effect of the uncertainties as identified in sub-question 2 on the
policies can be studied using exploratory modelling to answer sub-question 5.
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2.4. Structure of this Thesis
This thesis is structured as follows: Chapter 3 provides the model conceptualization by delimiting the
problem at hand, identifying the problem owner and their objectives, and by setting up the basic model
structure and identifying the uncertain factors in this structure. Therefore, sub-questions 1 and 2 are
answered in Chapter 3. Sub-question 3 is the subject of Chapter 4, which conceptualises uncertainty
reduction and defines explorative and exploitative decisions. The design of the actual simulation model
is described in Chapter 5, thereby answering sub-question 4. The validity of the resulting model is
discussed in Chapter 6. Chapter 7 provides the exact parametrization and experiments which are
conducted with the simulation model. Chapter 8 and 9 then present the results of these experiments
and their analysis and discussion, which allows for answers to be formulated to sub-questions 5 and 6.
The final chapter, Chapter 10, provides a summary of the results, answers the main research question,
considers the contributions of this thesis and possible directions for future research.



3
Model Conceptualisation

This chapter serves to identify and define the key elements of a model that represents both an epidemic
and a facility placement problem under uncertainty. These key elements are: the delimitation of the
problem, the problem owner and their objectives, the basic model structure, and the uncertain factors
within the model.

Therefore, this chapter also serves to answer the first two research questions:

1. What are the objectives onwhich decisions for treatment centre placement are optimized?

2. What are the main sources of uncertainty relevant fo a treatment centre placement deci-
sion?

The structure of this chapter is as follows: First, the problem considered by the model is delimited.
Secondly, in order to determine the problem owner, the actors involved in the Ebola response are
discussed and one is chosen to be the problem owner. On this basis the objectives for the model are
defined. Next, the basic model structure is outlined. Given the model structure, the uncertain factors
within the model are determined.

3.1. Delimitation of the Problem
When responding to an Ebola outbreak, a broad scale of complementary measures are taken (i.e.
case isolation, contact tracing, social outreach, and vaccination1). The proposed model will only con-
sider decisions on the placement of ETCs (in terms of location and capacity) and surveillance teams,
and therefore only considers the case isolation aspect of the response. The effect of other measures
will be taken into account where relevant (i.e. contact tracing is an important factor in the reduction of
uncertainty, as will be discussed in Chapter 4) but will not be considered as separate decision variables.

Additionally, an epidemics response is carried out by a multitude of actors (which will be discussed
in detail in the section below). To model the interaction and cooperation between these actors is out
of scope for this research (this is discussed in more detail in Chapter 6). Therefore, for the purpose of
the model this process is not included and it is assumed there is one actor who makes the decisions
on ETC or surveillance team placement. This actor is considered the problem owner and is the actor
who requires the decision-support provided by the model. The problem owner is determined in the next
section.

3.2. Problem Owner and Objectives
3.2.1. Actors involved in the Ebola Response
At the height of Ebola crisis, a large number of actors were involved - crisis response maps show that
in some regions, more than 11 actors were active at one time (UNOCHA, 2014). These include govern-
1Vaccination trials were used in the latter stages of the West African Epidemic (Centers for Disease Control and Prevention,
2019) and are part of recent responses to Ebola in eastern DR Congo (World Health Organization, 2018).
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mental actors (i.e. ministries of health), organisations concerned with public health (CDC, WHO), UN
organizations (UNICEF, UNOCHA), and humanitarian organizations such as Save the Children, the
International Federation of the Red Cross and Crescent (IFRC) and Medicines sans Frontières (MSF).

On September 19 2014, the UN established a special mission, UNMEER (UN Mission for Ebola
Emergency Response) in order to scale up and coordinate the international response (United Nations,
2019). Representatives of affected countries, UN member states, international organisations such as
the African Union and the African Development Bank Group, and humanitarian organisations involved
in the response provided input or resources for the response. Within UNMEER, the WHO lead the
development of a planned response (Secretariat of the World Health Organization, 2015). As part of
the response from the international community, the African Union, the US, the UK, and France, amongst
others, also deployed military resources to aid the response (Harman & Wenham, 2018).

A stylised representation of the actors involved in the response and their relationships is shown in
Figure 3.1.

The actors involved in the response can be classified as global health actors and medical human-
itarians as described by (Harman & Wenham, 2018). Global health actors are the WHO, ministries of
health, and governmental bodies such as the CDC. Medical humanitarians are actors such as IFRC
and MSF. This distinction is important, because global health actors operate differently from medical
humanitarians and this impacts the objectives they have during an epidemics response. This will be
elaborated on in Section 3.2.

To conclude, an epidemics response as seen for the Ebola epidemic involved a huge number of
actors. In addition, the roles of and hierarchies between actors were often unclear (Harman &Wenham,
2018). Therefore, choosing one actor to be the problem owner and model-user is a simplification of
reality. However, since the focus of this research is on modelling uncertainty and its interaction with
decisions, such a simplification is necessary.

3.2.2. Problem Owner
Two actors appear as candidate problem owners: the WHO and UNMEER. Both actors had the man-
date to coordinate the response to Ebola on an international level.

During the epidemic, the national ministries of health were in charge of the response at a national
level, and it is important to recognize that in an international response, national governments still retain
sovereignty over their country. Since the research considers an epidemic that crossed borders, and
incorporating coordination between actors is out of scope for this research, the WHO and UNMEER
are considered here instead of national governments.

The WHO is the “directing and co-ordinating authority in international health work”, and within its
mandate it can support governments in times of emergency (World Health Organization, 2014a). The
WHOmonitored the response on 6 levels, including on the presence of and demand for Ebola treatment
centres and referral centres (World Health Organization, 2014). In a strategy document published in
August 2014, the WHO states it should “coordinate international teams [...] and serve as a focal point
for national and international teams” (World Health Organization, 2014).

The other possible problem owner is UNMEER, which was created with the goal to improve the
coordination of the response. However, UNMEER was a collection of organisations headed by the UN,
and consists of many different actors with different resources and interests. Within UNMEER, WHO
was the lead on case management and procurement of Ebola Treatment Centres (Secretariat of the
World Health Organization, 2015). This means that within UNMEER, theWHOwas the actor who would
benefit from decision-support of the proposed model. Additionally, after UNMEER was disbanded on
July 31 2015 the oversight of the UN response was transferred to the WHO.

Therefore, the WHO is assumed to be the problem owner. Choosing the WHO as the problem
owner is not ideal, as the organization is still largely focussed on prevention and surveillance instead
of response (Harman & Wenham, 2018). Additionally, the WHO’s reaction to the Ebola crisis has been
widely critizised (see for example (Karlsen & Kruke, 2018; Médecins Sans Frontières, 2015; Moon et al.,
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Figure 3.1: Formal Chart showing an stylised representation of the relationship between actors involved in the Ebola repsonse
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2015)). Despite this, choosing the WHO as the problem owner is seen as a necessary and acceptable
simplification in the context of this thesis.

3.2.3. Objectives
The WHO’s mission statment is “to promote health, keep the world safe and serve the vulnerable”
(World Health Organization, 2019). For the Ebola response, the WHO formulated its objective for
countries dealing with high levels of infection as having full geographic coverage of Ebola response
measures (World Health Organization, 2014b). Moreover, within UNMEER, a target was set by the
WHO to have 70% of cases isolated by 1 December 2014, and 100% by 1 January 2015 (Secretariat
of the World Health Organization, 2015). Translating this to model objectives, effectiveness is identi-
fied as the most important objective of the response. Effectiveness is defined as the extent to which
response measures succeed in reducing the number of Ebola patients and the number of patients who
die. Moreover, the WHO is dependent on its member states for funds and resources are not unlimited.
Therefore, efficiency is also established as an objective. This is defined as minimizing the cost in dol-
lars per life saved.

Apart from causing large amounts of human suffering, and epidemic can also destabilize a country
and cause large amounts of economic damage (Bloom, Cadarette, & Sevilla, 2018). It is therefore
desirable to stop an epidemic as soon as possible. Therefore, minimizing the amount of time before
an epidemic is brought under control is also an objective.

Since the WHO is dependent on humanitarian organisations to deliver (medical) aid on the ground
(Harman & Wenham, 2018), the WHO objectives must take into account the humanitarian principles
on which these organisations operate.

The fundamental humanitarian principles are humanity, impartiality, neutrality and independence
(Hilhorst, 2005). Given the scope of the proposed model, the principle of impartiality is the most im-
portant to consider. This principle dictates that the provision of aid should be based only on the need
that people have. Therefore, people with similar needs should receive the same aid regardless of their
background or location. In terms of model objectives, this can be defined as the objective of maximizing
equity. In resource allocation equity can be defined in terms of difference between the ratio of met and
unmet demand or in terms of difference between demand onset and arrival times of aid (Huang, Jiang,
Yuan, & Zhao, 2015). In this research, both definitions will be used. Minimizing the difference between
the ratio of met and unmet demand is seen as the most direct translation of the impartiality principle.
But large differences in arrival times can cause great human suffering, and should therefore also be
considered.

Summing up, the objectives that will be considered are:

• Effectiveness - Operationalised as the number of deaths prevented compared to a base scenario,
with no response.

• Efficiency - Operationalised as minimizing the cost in dollars per death prevented.

• Speed of the response - Operationalised as minimizing the number of timesteps until 70% of the
infected population is receiving treatment.

• Equity in met demand - Operationalised as minimizing the difference between the ratio of met de-
mand (patients admitted to an ETC) and unmet demand (infected persons not admitted) between
regions.

• Equity in arrival times - Operationalised as minimizing the difference between onset of demand
(the first occurrence of an infection) and the arrival of aid (an ETC becoming operational) between
regions.

Effectiveness and efficiency (or closely related formulations) are common objectives on which re-
source allocation strategies for epidemics are optimized (see Chapter 1) - the other three are introduced
here in order to represent the humanitarian perspective.
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Figure 3.2: Compartmental Model Structure (adapted from Büyüktahtakın et al. (2018))

3.3. Basic Model Structure
3.3.1. Compartmental Model
Compartmental models are widely used in epidemiology to study the dynamics of a disease. They
consist of several compartments (i.e. Susceptible, Infected, Recovered) and rates of flow between
compartments that are determined by the levels of the compartments themselves (which means it
essentially represents a system of differential equations) and epidemiological parameter such as the
transmission rate and the infectious period (Brauer, 2008).

Since epidemiological modelling is a science in itself, this research will draw on existing compart-
mental models for Ebola. As a basis, the model by Büyüktahtakın, des-Bordes, and Kıbış will be used.
They developed a deterministic Ebola model to study the impact of intervention starting dates and the
optimal spatial placement of ETCs (Büyüktahtakın et al., 2018). The model consists of six compart-
ments: Susceptible, Infected, Treated, Recovered, Deceased, and Buried (where Deceased represents
a compartment for individuals who have died but are not safely buried, and therefore serve as a source
of infection). Figure 3.2 shows the compartmental model and flows between compartments. In the
model by Büyüktahtakın et al. (2018) those who pass away while in the treated compartment first flow
into the deceased compartment before being safely buried. However, it is assumed that responders
operating ETCs highly prioritize safe burial as a way to stop the disease, and therefore all patients who
die at an ETC are immediately safely buried.

3.3.2. Decision Levers
Each time step (i.e. every week), a decision can be made to place one ETC(s) in a district. An ETC
can have a capacity of 10, 50 or a 100 beds, and will become operational after a number of time steps
depending on its size. Once the ETC is operational, the capacity of the Treated compartment is in-
creased with the number of beds of the ETC. Each time step, it is also possible to hand over one or
more existing ETCs to local staff if there are no more patients in the area.

Instead of placing an ETC, the decision-maker can also choose to send one or more surveillance
teams to regions. If Ebola is known or suspected in an area, guidelines dictate that surveillance teams
are set up to carry out active case finding (World Health Organization and others, 2014). The only
function of these surveillance teams is to reduce uncertainty on the state of the epidemic in a certain
region.
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Uncertain Factor Description or Range
Number of Patients

• MSF reported hiding of cases, and also stated “The Ministry of Health
and the partners of Kenema hospital refused to share data or lists of
contacts with us, so we were working in the dark while cases just kept
coming in” (Médecins Sans Frontières, 2015).

• Dutch NGOs reported “high levels of distrust of international organisa-
tions in many communities that led to risky behaviours such as hiding
ill relatives, and a reluctance to use health facilities.” (M’Cormack-
Hale, Lavali, & Magbity, 2016).

• Underreporting estimated at 250% by a study from August 2014
(Meltzer et al., 2014).

• Underreporting estimated at approximately 17%, 70% maximum by a
study from December 2014 (Scarpino et al., 2014).

Transmission Rate
• The WHO estimated basic reproduction numbers for the three coun-
tries in October 2014: 95% CI of 1.44 to 2.01 for Guinea, 95% CI of
1.72 to 1.94 for Liberia, and 95% CI of 1.79 to 2.26 for Sierra Leone
(WHO Ebola Response Team, 2014).

• A study from December 2014 gave a basic reproduction number of
1.29 (with a 95% CI of 1.27–1.37) (Scarpino et al., 2014).

• A 2015 study on the effect of control measures using fitted models es-
timatedmedian transmission rates varying from 0.06 to 0.6 depending
on the district, with rates as high as 1.5 within the 95% CI (Kucharski
et al., 2015).

• Superspreading events are also considered as an uncertain factor
related to transmission rates. Examples are a burial ritual in Kenema,
Sierra Leone leading to 385 secondary causes (Vetter et al., 2016),
and in another instance a single case resulting in 24 secondary cases
(WHO Ebola Response Team, 2016).

Travelling Behaviour
• A 2016 study by the WHO states that people infected with Ebola can
travel quickly and through multiple countries. They highlight an ex-
ample of a patient fleeing from an ETC and causing secondary cases
over 200km away. “...the sites where new cases would be found, or
where transmission would persist, were largely unpredictable” (WHO
Ebola Response Team, 2016).

• MSF stated that “This time, people moved around much more and
Ebola travelled with them” (Médecins Sans Frontières, 2015).

• A study from 2016 estimates that 4% to 10% of infected cases mi-
grate to another district, and that of this group, between 0% and 23%
migrate to another country (Backer & Wallinga, 2016).

Effect of an ETC
• Fatality rates at ETCs varied significantly: MSF has reported ranges
between 36% and 60% (McNiel, 2015).

• MSF has also reported that “In Ebola outbreaks, health facilities with-
out proper infection control often act as multiplying chambers for the
virus” (Médecins Sans Frontières, 2015).

Table 3.1: Table outlining the four uncertain factors.
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3.4. Uncertain Factors
The role of uncertainty in humanitarian logistics, and uncertain factors that are studied in the literature
of this field, are discussed by Liberatore et al. (Liberatore et al., 2013). They outline several uncertain
parameter categories: demand (in terms of size and type), availability of supplies, affected areas,
demand location, and the state of the transportation network.

Only uncertain parameters directly related to the facility location decisions are discussed here.
Therefore, uncertainties relating to actor roles, authorities and coordination structures, which also
played an important part in the response (see for example Karlsen and Kruke (2018)), are not dis-
cussed here.

Given the model structure as described in Section 3.3, the following categories of uncertainty are
considered to be relevant: demand size, affected areas, and demand location. Demand type is as-
sumed to be known as best practices for treating Ebola were already established. The state of the
transportation network is an important and uncertain factor ((Médecins Sans Frontières, 2015) (Inter-
view A) but out of scope for the model.

To identify the uncertain factors relevant for the case study, a variety of sources were used: reports
written or commissioned by organisations active in the response (such as MSF, Save the Children,
and the WHO), coordination documents by the WHO and UNMEER, newspaper articles, and scientific
papers published during or after the epidemic. Four key uncertain factors were identified: uncertainty
in the number of patients, uncertainty on the transmission rates, uncertainty in travelling behaviour,
and uncertainty on the effect of an ETC on key epidemiological parameters. These factors, along with
descriptions of how the uncertainty manifests itself (including variable ranges) are shown in Table 3.1

The effect of an ETC on the disease progression in a region is hard to define on a detailed level
based on the available information, and sufficient quantitative data was not available either. Therefore,
this factor is not included in the model for the remainder of the research.

3.5. Conclusion
By determining the problem owner and the basic model structure, the model objectives and uncertain
factors could be identified. The answers to the sub-questions considered in this chapter are therefore
as follows:

1. What are the objectives onwhich decisions for treatment centre placement are optimized?

The identified objectives are Effectiveness, Efficiency, Speed of the response, Equity in met de-
mand, and Equity in arrival times. These objectives ensure that a variety of perspectives are repre-
sented in the model: Affected populations benefit from an effective and speedy response, whereas a
responding organisations also consider costs as an important (limiting) variable. Humanitarian con-
cerns are addressed with the two equity objectives.

The second sub-question

2. What are the main sources of uncertainty relevant fo a treatment centre placement deci-
sion?

Was answered on the basis of academic literature, reports by responding organizations, newspa-
per articles and expert interviews. These resulted in the identification of the following uncertain factors
relevant for the placement of an ETC: The number of infected individuals in a region, the transmission
rate, the rate of travel between regions, and the effect an ETC has on the disease progression in a
region. Because the last uncertain factor could not be defined or quantified to the degree necessary
for a simulation model, this factor is not incorporated in the remainder of the research.





4
Uncertainty Reduction

An important goal of this research is to investigate how reduction of uncertainty through decisions
influences optimal policies for treatment centre placement. This chapter aims to formulate an answer
to the third sub-question:

3. How can the reduction in uncertainty resulting from a treatment centre placement deci-
sion be conceptualized?

A core assumption is that making a decision to place resources in a region where the intensity of
the epidemic is uncertain, can be valuable later in the response. A presence in the region will mean
that this uncertainty is reduced, and may lead to better decision-making in the long term. Uncertainty
is reduced as information is gathered from patients in the ETC, contact tracing takes place, and the
number of patients itself is also an indication of how the epidemic is evolving.

This chapter provides a conceptualisation of this uncertainty reduction in Section 4.1, which also
explores which factors contribute to the reduction of the uncertain variables identified in Chapter 3.4. In
order to develop policies that make strategic use of uncertainty reduction, is is necessary to distinguish
between decisions aimed primarily at uncertainty reduction and decisions aimed at exploiting current
knowledge. This is done in Section 4.3, which classifies explorative versus exploitative decisions.

4.1. Conceptualisation of Uncertainty Reduction
The increase in situational awareness, and therefore the decrease of uncertainty, can be represented
as a function over time. This function then represents the percentage with which the range of uncer-
tainty is reduced over time. This way of representing an increase in knowledge is based on information
theory, in which functional forms are used to represent how information diffuses through a network (see
for example Yang and Leskovec (2010)).

This approach requires the functional form of the uncertainty reduction to be determined. However,
no quantitative data on the level of uncertainty and its reduction over time on variables such as trans-
mission rates or the number of infected people in an epidemic exists. As a result, the functional form
cannot be derived quantitatively and instead will be approximated using qualitative data. Additionally,
the functional form of the uncertainty reduction may differ depending on which variable it represents.
Therefore, for each of the uncertain variables, the relevant factors on which the functional form depends
will be discussed below. Based on this analysis the functional form will be determined for each of the
variables.

The reduction of uncertainty as discussed in the next three sections is based on the decision to
place an ETC in a region. The effect of sending only a surveillance team to a region is discussed
separately afterwards.
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4.1.1. Number of Infected Individuals
Relevant Information Sources

Uncertainty on the number of infected individuals is reduced by the following information sources:

• Number of patients in an ETC: The number of patients at an ETC is assumed to be proportional
to the total number of infected individuals. If an ETC had no free beds, people were known to
queue outside (Nyenswah et al., 2014).

• Information gained from contact tracing: As part of the standard Ebola response to a sus-
pected, probable or confirmed case being identified (which may be done by mobile teams or at
an ETC), contact tracing will take place. In this process, all persons who may have been infected
by the case are followed for 21 days to see if they develop symptoms (World Health Organization
& Centers for Disease Control and Prevention, 2015). If they do not develop symptoms within this
timeframe, it is concluded they do not have Ebola. The incubation period for Ebola is estimated
at 11.4 days (WHO Ebola Response Team, 2014). Therefore, contact tracing results in three
moments in time in which uncertainty is decreased: within days, the number of contacts (and
therefore the maximum number of secondary cases resulting from the patient) becomes known.
After 1 tot 2 weeks, secondary cases will start to present and are immediately known. Finally,
after 3 weeks it can be said with certainty that those who have not developed symptoms do not
have Ebola.

• Information gained from (informal) contact with locals: The assumption is that over time,
responders will gain information about the local situation by talking to locals and gaining their
trust. This information could come from patients inside the ETC and their family or from local staff
or community leaders.

Functional Form
A first assumption on the function representing the reduction of uncertainty on the number of in-

fected persons in a region is that uncertainty cannot be reduced to 0%. Hiding of cases due to distrust
was a phenomenon reported by several NGOs (M’Cormack-Hale et al., 2016; Médecins Sans Fron-
tières, 2015), and estimates on the number of unreported cases range from 17% to 250% (Meltzer et
al., 2014; Scarpino et al., 2014). Case tracing was sometimes impossible due to the high number of
cases and transmission chains (Adams et al., 2016).

The next assumption is that the factors described above do not reduce uncertainty more if more
patients are seen. This is due to the fact that the number of infected individuals varies over time, and
therefore new information needs to be gathered continuously. It is useful to think of each of these
factors as an information channel that becomes available over the period of time an ETC is set up and
becomes operational.

The following assumptions are therefore made to determine a functional form. First, that once a
decision is made to open an ETC and construction begins, information will be gained from contact with
locals. Once the ETC becomes operational, the number of patients admitted (or turned away) is known.
Over the course of the next three weeks, information from contact tracing of the first patients comes in,
and this process carries on continuously as new patients are admitted. Over the course of these three
weeks, it is also assumed that the trust of the local population is won and they share whatever informa-
tion they know. As a result, three weeks after an ETC becomes operational, all available information
channels are exploited maximally.

The function representing the reduction of uncertainty on the number of infected people is therefore
only dependent on time. The proposed functional form is shown in Figure 4.1: A sigmoidal function
represents the uncertainty reduction as a result of opening an ETC.

The sigmoidal shape chosen for the opening of an ETC is argued for as follows: while an ETC is
being built, local workers as well as curious visitors provide some information on the current status in
the region, based on their own experiences. Right after the ETC becomes operational, uncertainty is
reduced at the highest rate as patients come in and contact tracing is set up. After three weeks the first
cycle of contact tracing is complete and most information channels are now exploited fully. As the local
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Figure 4.1: Functional form for the reduction of uncertainty on the number of infected individuals in a region as the result of a
50-bed ETC being placed in that region.

population gains more trust in the responders, they may start providing some additional information in
the next few weeks.

4.1.2. Transmission Rate
Uncertainty on the transmission rate in a region is reduced by the following sources:

• Rate at which patients are admitted at an ETC: As for the number of infected indivuals, it is
assumed that the number of patients at an ETC is proportional to the total number of infected
individuals in that region. The rate at which patients are admitted (or turned down) is therefore
indicative of the rate the disease is spreading.

• Information gained from contact tracing: In its basis, the transmission rate depends on the
probability of infection upon contact, and the rate of contact between infectious individuals and the
susceptible population. With contact tracing, the number of people an infectious individual has
had contact with becomes known within days. Assuming the total population of a region is known
with reasonable accuracy, the rate of contact can then be estimated with increasing accuracy for
every patient for which contact tracing is carried out.

Functional Form
For both relevant sources, it can be argued that as the number of observations increase, the transmis-
sion rate can be estimated more accurately. If it is then also assumed that the pre-admittance behaviour
of individuals who seek treatment is representative over the whole infected population, uncertainty on
the transmission rate could approach 0 over time.

It is therefore proposed that, when an ETC becomes operational, the reduction of uncertainty occurs
as an exponential function of the number of patients as shown in Figure 4.2. An exponential function is
chosen as at the beginning, gaining factual information about patient behaviour helps to obtain much
better estimates for the transmission rate, and as such uncertainty is quickly reduced. As the cumulative
number of patients increases, the impact one patient has on improving the estimate becomes smaller
and the curve flattens out.

4.1.3. Travelling Behaviour
Uncertainty on the travelling behaviour is reduced by the following sources:

• Information gained from contact tracing: In the process of contact tracing, a patient will be
asked about their contacts and movements. In this way, it will become apparent if a patient has
travelled from another district while they were infectious.
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Figure 4.2: Functional form for the reduction of uncertainty on the transmission rate.

• Information gained from (informal) contact with locals: As trust between responders and
locals and patients grows, they may share information about their regular travelling patterns to
other districts, for example for trading, work, or to visit family.

Functional Form
As for the transmission rate, it is assumed that the behaviour of admitted patients is representative of
the whole infected population. Therefore, travelling behaviour can be estimated more accurately as
the number of patients seen increases. Information from locals could theoretically become available
as soon as construction of an ETC begins, and is only dependent on time. However, it is assumed
that trust is not strong enough yet to gain this information right before or after an ETC is opened. It is
also assumed that during the time it takes to build up this necessary trust, the information gained from
informal contact does not significantly add to the obtained information from contact tracing. Therefore,
it is proposed that the reduction of uncertainty on travelling behaviour is an exponential function of the
number of patients. The functional form is therefore the same as for the transmission rate.

4.1.4. Surveillance Teams
As established in 3.3 a decision maker can also choose to send a surveillance team to a region. Since
these teams are mobile and do not establish a permanent presence in the region, many of the infor-
mation channels discussed above are not available to them. Therefore, it is assumed that the main
purpose of surveillance teams is to give a first report of the situation in the region. This is conceptualized
by assigning all regions the status of “hidden” at the start of the response, meaning the decision-maker
has no information at all (not even an uncertainty range) on the state of the epidemic. Sending a
surveillance team to a region can then remove this “hidden” state at which point information about the
region becomes available with full uncertainty (i.e. the range is at 100%). An ETC can also be placed
in a region to remove the hidden state, with the difference being that it will then continue to reduce the
range of uncertainty. Surveillance teams have no effect if they are sent to or active in a region which
is no longer hidden.

4.2. Information Delay
The sections above discussed uncertainty reduction from the perspective of someone at a single ETC.
However, as established in Chapter 3, the problem owner who is interested in this uncertainty reduc-
tion is coordinating the response at an international level. This means that the information needs to be
communicated to them from the ETC, which will introduce some time delay. The length of this delay
may vary depending on the source of information: one expert (Interview B) noted that for surveillance
and contact tracing, it may take days for word of a fatality to reach a district health manager, who then
sends this information to the national coordinator via mail, introducing another few days of delay. An-
other expert outlined that while reports from national coordination organisations would come in daily,
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they were not standardized, so extracting and preparing this data for international coordination pro-
vides another hurdle (Interview D). Delays resulting from reformatting and parsing data from a variety
of different formats were also noted by another expert (Interview F). The WHO reported an average
delay of 6 days between symptom onset and their notification (WHO Ebola Response Team, 2014).
Therefore, an information delay of at least a few days to a week should be introduced. This delay can
be represented by shifting the proposed uncertainty reduction functions to the right, thus delaying the
point in time at which uncertainty reduction is perceived.

4.3. Explorative vs. Exploitative Decisions
Given the assumption that it can be strategically beneficial to make a decision that reduces uncer-
tainty, there is a need to define what qualifies as an uncertainty-reducing decision and what does not.
Borrowing terminology from Reinforcement Learning, uncertainty-reducing decisions will be called ex-
plorative decisions, whereas decisions aimed at delivering aid to those most in need will be referred to
as exploitative decisions.

4.3.1. Defining explorative and exploitative decision
Since decisions are defined as explorative or exploitative from the perspective of the decision-maker,
this perspective first needs to be established. The information the decision-maker has available to them
at any time are:

• The values of the known variables in the model (i.e. time from infection to recovery or death).

• The total population of each region.

• Ranges (i.e. min. and max. values) on the uncertain factors for each region where Ebola is
known.

• The number of patients in an ETC in a region (with some time delay).

• Knowledge on how uncertainty will be reduced as the result of a placement decisions (i.e. the
functional forms discussed in the previous section).

of which the uncertain factors for the number of infected individuals and the transmission rate are
the most important indicators of the severity of the epidemic. In interview A, the interviewee indicated
that there would be attempts to forecast demand in order to inform placement decisions, but that this
was very difficult, which supports the assumptions made here.

It is useful to define explorative and exploitative decisions in relative terms rather than with absolute
ones. Absolute terms, such as defining a decision as explorative when the uncertainty in that region
has not been reduced by more than 𝑥%, can lead to a standstill when such a definition applies to all or
none of the regions. This could result in the distinction becoming useless at the very start and at the
later stages of a simulation run.

Instead, if the purpose of the distinction between exploration and exploitation is kept in mind, and the
regions are considered relative to each other, the definition becomes straightforward. An explorative
decision is made to learn more about regions of which very little is known. Therefore, if we want to
make an explorative decision, we should choose the region with the highest level of uncertainty. If sev-
eral regions have the same level of uncertainty, one can be picked at random. Similarly, an exploitative
decision is made to serve the humanitarian imperative: to provide aid to those most in need. Therefore,
an exploitative decision takes place in the region with the highest guaranteed number of beneficiaries
(i.e. the region with the highest lower bound on the predicted number of infected individuals).

Since the decision maker also knows the range in which the transmission rate lies, the evaluation
for an exploitative decision could be enhanced by considering the estimated number of infections at
the timestep in which an ETC would become operational, instead of the current number of infections.
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4.3.2. Choosing the type of decision
In the preceding section, explorative and exploitative decisions are defined by prescribing what region
to choose given the type of decision we want to make. So how is the type of decision to be taken in a
particular timestep determined? This will be dictated by a policy function dependent on the total level of
uncertainty in the system. The shape of the policy function is given at the start of the simulation run and
is based on the results of the direct policy search. It returns the probability 𝑝 with which an explorative
action should be taken. The type of decision taken that timestep is then an explorative decision with a
probability of 𝑝 and exploitative with a probability of 1 − 𝑝.

4.4. Conclusion
This chapter has served to answer the third sub-question:

3. How can the reduction in uncertainty resulting from a treatment centre placement deci-
sion be represented conceptualized?

The reduction in uncertainty can be represented in terms of the percentage of the original range
around the uncertain variable that remains. By studying the factors that provide information about the
uncertain variables a functional form that shows how uncertainty is reduced can be determined. This
function can depend only on time or also on factors such as the cumulative number of patients. In order
to use the idea of uncertainty reduction strategically a distinction needs to be made between decisions
made to reduce uncertainty, which are referred to as explorative decisions, and decisions made to
immediately relieve suffering, which are called exploitative decisions. For an explorative decision, a
surveillance team or treatment centre is placed in the region with the highest level of uncertainty. For
an exploitative decision, the region with the highest number of guaranteed beneficiaries is chosen. The
ratio of explorative versus exploitative decisions that performs best is determined by a policy function,
which can be found through direct policy search.
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Model Design

In this chapter, the requirements for the model resulting from the previous chapters, as well as the
relevant assumptions made for its design, are outlined. This is done with the purpose of translating
the conceptual model developed thus far into a simulation model, thereby answering the fourth sub-
question of this thesis:

4. How can the sequential treatment centre placement decision problem and the decision-
uncertainty reduction be represented in a simulation model?

First, the key components and behaviours identified as relevant for the model in the previous chap-
ters are formulated as model requirements. Because a simulation model can never be as complex in
scope or structure as the real system, the most relevant assumptions are listed in the following section.
The remainder of the chapter describes how the key model components are implemented.

5.1. Model Requirements
Based on the previous chapters, a series of requirements the simulation should adhere to can be
formulated. The most important requirements are summarized in Table 5.1 . They are separated into
three categories, one relating to the epidemiological and facility location structure which forms the basis
of the model, the second related to decision-making, and the third category concerns uncertainty in the
model.

5.2. Assumptions
In order to realize an operational simulation model, some assumptions have to be made - either to
simplify reality or in order to represent phenomena which are known to exist, but whose mechanisms
are unknown. Key assumptions are:

• Births are not considered in the model. The duration of the epidemic that is modelled is deemed
short enough for births to not have a considerable effect on the population. Deaths from other
causes than Ebola are also not included.

• Only the travelling of infected individuals is assumed to have relevant effects. Therefore, travel
behaviour of individuals in other compartments is not implemented. This means that dead bodies
being moved to different regions is also not implemented.

• The travelling behaviour of infected individuals is assumed to be constant - i.e. the rate of travel
does not change over time or due to certain effects. This also means that behavioural effects
such as migrating away from disease-ridden regions are not considered

• For simplicity, individuals can only travel to regions which are immediate neighbours of their region
- unless they travel in the context of a superspreading event in which case they will travel to a
non-neighbouring region.
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Epidemiological and Facility Allocation Model Structure
The simulation model needs to...

• be able to represent the spatial spread of the epidemic over time.
• keep track of the number of individuals in a compartment in a region.
• incorporate travel of infected individuals to neighbouring regions.
• incorporate superspreading events where an infected individual travels to a non-neighbouring
region.
• translate the impact of the placement of resources (an ETC or surveillance teams) to the model
behaviour in a specific region.

Decision-Making
The simulation model needs to...

• distinguish between explorative and exploitative decisions.
• determine what type of decision to make based on the total level of uncertainty present in the
system.
• incorporate the decision levers which have been identified in Chapter 2.
• be able to do nothing.
• be able to remove resources from an area.
• keep track of which resources are used, where they are used, and when they are used.
• constrain the number of resources available for allocation.
• keep track of the data necessary to evaluate the objectives defined in Chapter 2.

Uncertainty
The simulation model needs to...

• incorporate the uncertain factors identified in Chapter 2.
• keep track of ground truths which dictate how the epidemiological model evolves over time.
• maintain a a range of values around the ground truths of regional variables, dependent on the
level of uncertainty, which is available for decision-making.
• keep track of the overall level of uncertainty in the model as experienced by the decision maker.
• keep track of the level of uncertainty experienced by the decision maker in a region.
• distinguish between regions where no epidemiological information is available, and regions where
epidemiological information is available (with some uncertainty).
• follow the functional forms determined in Chapter 3 for the reduction of uncertainty around vari-
ables.

Table 5.1: showing the model requirements, separated into three thematic categories.
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• Each timestep, a decision can be made to place one ETC, send out a maximum of three surveil-
lance teams, or to do nothing. Allowing only one ETC to be placed per timestep is a simplying
assumption, though it is also supported by a statement from an interview subject who commented
on the difficulty of finding organisations willing to run an ETC (Interview C), which suggests oper-
ationalizing large amounts of capacity at once was difficult. The maximum of three surveillance
teams is an arbitrary assumption rationalized by the idea that it will then take 6 weeks to explore
a grid of 16 regions, equivalent to a country the size of Sierra Leone.

• Surveillance teams can only reduce uncertainty by revealing the state of a “hidden” region of
which previously no information was known at all. Therefore, surveillance teams can only be
sent to regions which are hidden, as they would have no effect otherwise.

• It is assumed that an ETC with a certain capacity can be placed anywhere for the same cost.

• It is assumed that an ETC with a capacity of 10 beds takes 1 week to construct and become
operational, an ETC with a capacity of 50 beds will take 3, and an ETC with a capacity of 100
beds will take 4 weeks, based on Sánchez Carrera (2015).

• It is assumed that all beds in an ETC are filled with infected individuals. This was not the case
during the Ebola epidemic and in fact, beds being occupied by patients who had not received
tests results was identified as a bottleneck issue by one of the interview subjects (Interview E).
However, the issue of streamlining diagnosis is seen as a separate problem from the resource
allocation problem, and is therefore ignored for the sake of simplicity.

• ETCs reduce uncertainty of variables according to the functional forms defined in Chapter 4.

• Due to travelling behaviour, if an ETC becomes operational, uncertainty in neighbouring regions
is reduced to 95%.

• The level of uncertainty is determined by whichever functional form relevant to that region provides
the most reduction, that is, uncertainty reduction is not additive.

• All infected individuals admit themselves to an ETC if beds are available.

• If there are more infected individuals than free beds in a region, the infected individuals who do
not move to the treated compartment flow to the recovered or treated compartment at the same
rate as they would if there was no treatment centre at all.

• The time that an individual has spent in the infected compartment does not influence the time
the individual spends in the treatment compartment - theoretically an individual could spend two
weeks in the infected compartment, and then spend another two and a half weeks in the treated
compartment before they have recovered. This is because a system dynamics model does not
keep track of individual cases.

• All individuals who die in an ETC are safely buried. This is not the case in the model by Büyük-
tahtakın et al. (2018). However, based on reports and literature by medical humanitarians, safe
burial was identified as having high priority for responders. Therefore, it is assumed that the
responders running an ETC will ensure safe burial of all deceased patients.

• ETCs can be handed over to local staff. The ETC must have been open for at least two weeks,
as it is assumed local staff need to be recruited and trained. Once the decision is made to close
an ETC, it takes 1 week for a small ETC (10 beds) to have handed over operations and resources
are freed again, and 2 weeks for a big ETC (50 or 100 beds).

• The transmission rate in a region is constant over time. This simplifying assumption is unreal-
istic as it does not account for changing behaviour resulting from fear or community outreach
programmes. However, it is believed that the epidemiological dynamics relevant to the problem
formulation of this thesis can still be modelled to an acceptable degree with a constant transmis-
sion rate.
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5.3. General Structure
The simulation model has three key components that work together: a compartmental model that sim-
ulates the progression and geographic spread of the disease over 16 regions which is shown in Figure
5.1, a set of objects and functions that keep track of the uncertainty related to regional variables and
update them as they are reduced, and a decision-making module that decides where to place resources
given the current state of the system. Each of these three components will be discussed in more detail
below.

Figure 5.1: In each of the 16 regions, a compartmental model keeps track of the progression of the epidemic. In this way, the
spatio-temporal development of the epidemic is modelled.

5.3.1. Compartmental Model
The regions are represented with a square grid, in which every cell represents a region. The progres-
sion of the disease in a region is simulated using a compartmental model, as discussed in Section 3.3.

Individuals move from the Susceptible (S) compartment to the Infected (I) compartment with the
rate:

𝑑𝑆
𝑑𝑡 = −(𝛽። ∗ 𝐼 + 𝛽 ∗ 𝐷) ∗ 𝑆

𝑆 + 𝐼 (5.1)

where 𝛽። represents the transmission rate of infected individuals, and 𝛽 the transmission rate of
deceased individuals and D represents the number of individuals in the Deceased compartment, who
have not been safely buried and are therefore still infectious.

Infected individuals can move to three different compartments: the Deceased compartment if they
die, the Recovered compartment (R) if they survive, and if there is free treatment capacity they move to
the Treated (Tr) compartment. Additionally, infected individuals can leave the region by travelling, and
infected individuals from neighbouring regions can travel into the region. Therefore, the rate of change
for the infected compartment is given by:
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𝑑𝐼
𝑑𝑡 =(𝛽። ∗ 𝐼 + 𝛽 ∗ 𝐷) ∗ 𝑆

𝑆 + 𝐼 (5.2)

+ 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑟𝑠
− 𝑟፭፫ፚ፯፞፥ ∗ 𝐼

− (1 − 𝑓without treatment) ∗ 𝐼
𝑡recovery without treatment

− 𝑓without treatment ∗ 𝐼
𝑡death without treatment

−𝑚𝑖𝑛(𝐸𝑇𝐶 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑇𝑟, 𝐼)

where 𝑟፭፫ፚ፯፞፥ is the rate of travel, 𝑓without treatment is the fatality ratio without treatment, 𝑡recovery without treatment
is the time to recovery without treatment in weeks, and 𝑡death without treatment is the time to death without
treatment in weeks.

Infected individuals move immediately to the treatment compartment if there is free capacity. From
there, they can either move to the recovered compartment or to the Buried (B) compartment, meaning
that if they do not survive they are immediately safely buried:

𝑑𝑇𝑟
𝑑𝑡 =𝑚𝑖𝑛(𝐸𝑇𝐶 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑇𝑟, 𝐼) (5.3)

− (1 − 𝑓with treatment) ∗ 𝑇𝑟
𝑡recovery with treatment

− 𝑓with treatment ∗ 𝑇𝑟
𝑡death with treatment

Given the inflow from the Infected and Treated compartments, the rate of change for the Recovered
compartment is as follows:

𝑑𝑅
𝑑𝑡 =

(1 − 𝑓without treatment) ∗ 𝐼
𝑡recovery without treatment

+ (1 − 𝑓with treatment) ∗ 𝑇
𝑡recovery with treatment

(5.4)

Since those who die in the Treated compartment are immediately (safely) buried, the rate of change
in the Deceased (D) compartment is only dependent on the number of infected people and the rate at
which safe burials are conducted:

𝑑𝐷
𝑑𝑡 =

𝑓without treatment ∗ 𝐼
𝑡death without treatment

− 𝐷 ∗ 𝑟safe burial (5.5)

Finally, the Buried compartment then receives inflows from the Deceased and Treated compart-
ments:

𝑑𝐵
𝑑𝑡 = 𝐷 ∗ 𝑟safe burial +

𝑓with treatment ∗ 𝑇𝑟
𝑡death with treatment

(5.6)

Random Travelling
As described in Chapter 2 and in the requirements, super-spreading events can occur in the form of
an infected individual travelling to a non-neighbouring region. This can lead to the epidemic spreading
to regions where it was previously not present.

These super-spreading events as a result of random travelling were implemented in the following
way: it is assumed that approximately 1 in 200 infected individuals travels long distance, based on
Backer and Wallinga (2016). As a logical consequence, the number of super-spreading events is
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dependent on the total number of infected individuals in the system 𝑁ፈ. Each timestep, the number of
random travellers is determined using the following function:

𝑇𝑟𝑎𝑣𝑒𝑙፫ፚ፧፝፨፦ = 𝑁ፈ ∗ 0.005 (5.7)

This formula does not provide an integer number of travellers. Therefore, the number of travellers
is determined by rounding the result down, with a probability of one additional traveller equal to the
fractional digits of the result 1. For each of the travellers, the region of origin is determined at random
under the condition that the region has at least one infected individual in it. The destination is also
chosen at random, under the condition that it is not the region of origin or one of its neighbouring
regions.

Since the removal of single individuals from regions and placing them in another is a discrete event,
this is implemented with a function after the compartmental model is run. The list that keeps track of
the states of all the regions is then updated accordingly and passed to the compartmental model in the
next iteration (timestep).

5.3.2. Implementation of Uncertainty
Uncertainty for the Decision Maker
At the start of a simulation run, all regions are “hidden”, meaning that there is no epidemiological infor-
mation available from the regions for decision-making. There are two ways in which information from a
region can bemade available. The first is to make an explorative decision to send in a surveillance team
or to place an ETC. If a surveillance team is sent in, epidemiological information becomes available but
with the maximum range of uncertainty. For an ETC, epidemiological information becomes available
and the uncertainty is reduced over time according to the functional form as described in Chapter 3.
The exact values used in the simulation model are outlined in Appendix B. The second way in which
a region can become “unhidden” is by chance. With some probability, depending on the number of
infected individuals, the epidemiological information will become available with the maximum range of
uncertainty. This represents the idea that the more severe the situation in a region is, the higher the
chance is that news about this travels to the decision-maker level. This probability is given by:

𝑝 = 1 − 1
1 + 𝑒𝑥𝑝( ፈዅ፧፳ )

(5.8)

and is referred to as the “spontaneous news” mechanism in the remainder of this thesis. The func-
tion has a sigmoidal shape, and approaches the limit of 1 at around 2𝑛 infected individuals 𝐼. The
variable 𝑧 determines the steepness of the slope. For the simulation model, 𝑛 = 40 meaning that at
40 infected individuals the chances of receiving spontaneous news from that region are 0.5. 𝑧 = 7,
reflecting that at around 20 infected individuals, the chances of receiving news start to increase more
steeply. These values are based on assumption and aim to hit a balance between densely populated
urban areas from which news travels much faster, and rural areas which are more isolated. Since no
distinction between urban and rural areas is made in the model, this function is used in all regions.

As stated in the requirements, the ground truth of uncertain variables is not available for decision
making. Instead, a range around the ground truth is known, where the width of this range is dependent
on the current level of uncertainty for that variable in a certain region. This was implemented by creating
objects for uncertain variables, which keep track of both the ground truth and the level of uncertainty.
If the variable is accessed for decision making, the appropriate range around the ground truth is given.
The distance between the ground truth and the bounds of the range is random, that is, no assumption is
made that the knowledge of the decision maker symmetrically converges to the ground truth. Instead,
each time uncertainty is decreased for a variable, the respective range is initialised randomly around
the ground truth.

1For example, if there are 243 infected individuals in the system, the result of the function above is 1.215. There is then at least
1 traveller, and with a probability of 0.215 there are 2.
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5.3.3. Decision-making Module
The decision-making module calls either the function to make an explorative decisions or the function
to make an exploitative decision. Which function is called is determined by the policy function.

Policy Function
The policy function returns the probability with which an exploitative action should be taken based on
the current total level of uncertainty in the system. The function is represented by two cubic radial basis
functions following Quinn et al. (2017). The probability of taking an exploitative action given the total
level of uncertainty 𝑈። in the system is:

𝑝። = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑤ኻ ∗ |
𝑈። − 𝑐ኻ
𝑟ኻ

ኽ
| + (1 − 𝑤ኻ) ∗ |

𝑈። − 𝑐ኼ
𝑟ኼ

ኽ
|, 0), 1) (5.9)

The type of decision taken that timestep is then an explorative decision with a probability of 𝑝። and
exploitative with a probability of 1 − 𝑝።.

The shape of the policy function is determined by the radial basis centres 𝑐ኻ, 𝑐ኼ, its radii 𝑟ኻ, 𝑟ኼ and
the weights given to each of the basis functions, determined by 𝑤ኻ. These variables are defined with
the model initialization and allow for different policies to be run.

Explorative Decisions
For an explorative decision, the algorithm first finds the regions with the highest level of uncertainty.
The level of uncertainty of a region is determined by adding up the percentages of uncertainty around
each of the uncertain variables (infected individuals and the transmission rate). If a region is hidden,
these percentages are assumed to be 150%. If there are multiple regions with the same level of uncer-
tainty, one or more (depending on the number of free resources) are chosen at random. If the region of
choise is still “hidden”, the first choice is to send a surveillance team. If there are no free surveillance
teams or if the region is not hidden, a small ETC is placed. If no resources are free, nothing is done.

Exploitative Decisions
For an exploitative decision, the algorithm finds the region with the highest estimated number of pa-
tients for the next timestep. This is a risk-adverse estimation based only on the total population of a
region and the lower bound on the current range for infected individuals. The choice was made to work
with this risk-adverse estimation since humanitarian organisations and the WHO need to justify the
spending of resources to their donors. Using the upper bound for the number of infected individuals
might result in more resources being sent than there is need for, whereas the risk adverse approach
guarantees there is at least sufficient need, if not more. If multiple regions have the same number of
predicted infections, one is chosen at random. If the projected number is higher than 50, an ETC with a
capacity of 50 is placed, and for 100 or more projected cases one with a capacity of 100. If the resources
for this are not available, or if the projected number is lower, a small ETC is placed (with a capacity
of 10). If no resources are available, or if the decision-maker is not aware of any cases, nothing is done.

5.3.4. Objectives
The exact implementation of the model objectives is provided in Appendix C. Here it is noted that in
the simulation model, and the subsequent results discussed in the following model, when referring to
specific values obtained for some of the objectives, the objectives are formulated differently. This is
done to avoid confusion when discussingmodel results, because these objectives should beminimized:
Efficiency is referred to as Cost per Death Prevented

Equity in Met Demand is referred to as Difference in Met Demand.

Equity in Arrival Time is referred to as Difference in Arrival Time.

Speed is referred to as Time until Containment.
The name of the Effectiveness objective remains the same.
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5.3.5. Implementation
The model was implemented using Python 3. The compartmental model was implemented as a set
of differential equations using ordinary differential equation solver odeint from the SciPy library. For
most other mechanisms discussed above objects or functions were created to provide the necessary
functionality. Appendix I provides an oversight of where in the code specific functionalities can be found.
All code can be found on https://github.com/edenbrok/thesis.

https://github.com/edenbrok/thesis


6
Model Validation

This chapter discusses the validity of the simulation model, as outlined in the previous chapter. It does
so from two perspectives: first, the validity of the behaviour of the epidemiological and outcomes of
the model is discussed. This is to ensure the simulation model provides a correct representation of
the epidemic and the performance of a policy is represented correctly. The next section investigates
whether the designed model is valid given the research purpose of this thesis. The chapter closes with
a short discussion on the validity of the research approach itself.

6.1. Validity of the Simulation Model
In order for the results to have relevance for an actual response, it needs to be established whether
the model parametrization and relevant assumptions lead to realistic model behaviour and outcomes.
This will discussed here on two levels of model behaviour: on the level of the epidemiological model,
and on the level of the objective scores.

6.1.1. Epidemiological Model
The parametrization of the epidemiological model was taken from Büyüktahtakın et al. (2018), who
validated their epidemiological model using case-data from the 2014 Ebola response. However, their
model is different from the one in this thesis as they used one compartmental model to represent the
entire country of Sierra Leone, while here it is used to represent a district. Using district level case
data World Health Organization (2016), the case growth in the absence of a response was checked
for 6 timesteps (equivalent to 6 weeks) and found to be accurate. However, when the model is run
for 26 timesteps (representing the full period of interest from June 2014 to December 2014) without
any response measures implemented, it produces only a fourth of the total cases seen in the actual
epidemic (which includes response measures). The reason why Büyüktahtakın et al. (2018) do realize
the right number of cases in their simulation model is because their epidemiological model represents
all of Sierra Leone, resulting in an higher absolute case growth as a result of the exponential increase
in cases.

It is however, not the mechanism in which cases are generated in reality, leaving the question of
why the regionalized model does not produce enough cases even though it follows the real-life data for
the first few weeks. This is explained when considering super-spreading events. These are included
in the model, but only in the dimension of spatial movement. However, there are many reports of one
individual causing tens of new cases (Vetter et al., 2016; WHO Ebola Response Team, 2016). This
type of superspreading is not implemented in the model, though it would likely lead to more realistic
case numbers. The motivation to not include it is that it would be a stochastic mechanism which has
a huge impact on all the objectives. That is, it would introduce high-impact stochasticity in the model,
meaning that the number of model runs necessary to detect influence from other factors was expected
to be unmanageably high. Since all outcome objectives related to the number of cases are expressed
in relative terms (i.e. percentage of deaths prevented compared to no response, the difference in cum-
mulative patients over total infections), the difference in simulated and real cases is accepted.
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6.1.2. Model Outcomes
The realism of the model outcomes will not be discussed in much detail here, given the attention that
these will receive in Chapters 8 and 9. However, one important assumption is outlined here. This
concerns the fact that the two equity objectives are calculated on relative terms. That results in the fact
that if one region has 10% unmet demand, equivalent to 50 cases, and another has 25% met demand
equivalent to only one case, this difference is “punished” equally by the objective as it would have if
the 25% had been equivalent to 75 cases. The same holds for equity in arrival times. This is a value-
based choice - even though many humanitarian logistics employ more utilitarian methods which would
make a distinction between these two cases (Huang et al., 2015). The motivation for this formulation
of the equity objectives is based on the humanitarian charter, which states “...that all people affected
by disaster or conflict have a right to receive protection and assistance to ensure the basic conditions
for life with dignity.” (Sphere Association et al., 2018). Therefore, in terms of equity, there is no reason
why a person in a region with fewer cases is less deserving of aid than a person in a region with many
cases. In other words: this formulation of the equity objectives rejects the idea that human suffering
can simply be “added up” to determine where there is the highest need. This, obviously, influences the
values seen in the model outcome. However, the simulation model is implemented in such a way that
this definition could be changed easily if so desired by a problem-owner.

6.2. Validity of the Simulation Model for the Research Question
Apart from establishing that the simulation model behaves in a realistic manner, it also needs to be
suitable for the purpose it will be used for: To discover the effect uncertain factors can have on the
performance of treatment centre placement policies, and to determine what effect the incorporation of
uncertainty-reducing decisions has on the performance of treatment centre placement policies for epi-
demics response. This section will address this issue by discussing the adequacy of the model scope
and by arguing for the validity of the uncertain factors and their reduction.

First and foremost, the simulation model should contain all the concepts and behaviours that are
relevant for the problem it studies. In this case, at the core, the problem is a spatio-temporal resource
allocation problem under incomplete and uncertain information. Therefore, the model should include
dynamic demand behaviour, a mechanism that allows for the placement of resources that fulfil demand,
and a way to represent uncertain information and its reduction. In the simulation model, the dynamic
demand is generated by the epidemiological model in the form of infected cases. The decision-module
(representing the decision-maker) can place resources (ETCs) to meet the demand and prevent future
cases from occurring. The implementation of uncertain information and the reduction of this uncertainty
have already been discussed in detail in Chapter 4 and 5. Therefore, the key components relevant to
the problem are represented in the simulation model.

However, it is necessary to question whether there are other concepts or behaviours which should
be included. In many reports, newspaper articles and expert interviews, the distrust and political un-
willingness were cited as one of the key elements hindering the response (see 9.4). This dimension
is not present in the simulation model, the foremost reason being that these dynamics are very hard
to translate into model components. What does that mean for the validity of the model itself? The
aim of the study is to show what is possible in terms of policy performance given the defined resource
allocation problem. Because the incorporation of uncertainty reduction through sequential decisions in
resource allocation has not been studied before, it is more relevant to discover what types of model
behaviour are possible without placing any exogenous constrictions on allocation decisions. Therefore
the simulation model is said to be valid in terms of scope. Of course, the social and political dimension
should be taken into consideration when translating the model results to actual policy advice. This will
be discussed in detail in Chapter 9.4.

One of the core assumptions in this thesis was that the level of overall uncertainty experienced by
the decision-maker could be used as the variable on which an adaptive policy is based. Which factors
were uncertain and which ones were relevant for decision-making was determined in Chapter 3, based
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on literature on the response, reports by organisations active in the response, and news articles pub-
lished during the crisis. Expert interviews were used to validate the relevance of these uncertain factors
to allocation decisions. The uncertainty reduction as a result of allocation decisions is an essential part
of the model behaviour, but very little academic literature is available on this issue. The assumptions
on what regional information is or becomes available at an ETC are based on WHO guidelines for
Ebola response World Health Organization and others (2014), which again were verified with expert
interviews. However, none of the experts felt they could comment on the reduction of uncertainty re-
sulting from an allocation problem, indicating that this was too complex a question. This resulted in the
uncertainty reduction conceptualization being reliant on assumptions rather than empirical evidence.
Given the model purpose this is acceptable (as the goal is to explore possible behaviours rather than
mimic reality), but it is one of the weaker elements of the model.

6.3. Validity of the Research approach
Using MOEAs to optimize the policy function is a standard method in MORDM (Giuliani et al., 2015;
Quinn et al., 2017). One limitation to the chosen radial basis function is that it cannot be parametrised
to represent an fully-exploitative function. However, since an all-exploitative policy was run and incor-
porated in all experiments separately, this is seen as an acceptable limitation. Most importantly, the
outcomes of the Borg MOEA showed that changing the type of decision made depending on the level
of uncertainty has significant effect on the outcome objectives, and different objectives perform better
under different policy functions. Further study and analysis showed that these different functions were
sensible given the simulation model, the outputs they produced, and the objective(s) on which they
were optimized. From this it can be concluded that the overall level of uncertainty as experienced by
the decision-maker is a valid input factor to base an adaptive policy on.





7
Experiments

The simulation model as described in the previous section is used to run experiments to answer the
remaining research questions:

5. Given the simulation model, what is the influence of system uncertainties on the perfor-
mance of resource allocation policies?

6. Given the simulation model, which strategies for resource allocation decisions show ro-
bust performance?

This chapter describes the exact methods used to perform these experiments, and how the model
is parametrised for each of the experiments. First, the EMA workbench, with which the majority of
experiments is conducted, is described in brief. Next, the parametrisation of the simulation model for
the experiments is outlined. The sub-question about the influence of system uncertainties is answered
using exploratory modelling analysis, and the methods used for this are outlined. Finally, to identify
candidate policies two many-objective evolutionary algorithms are discussed and the robustness mea-
sures on which the policies are evaluated are determined.

7.1. EMA workbench
In order to understand the influence of input uncertainties and different policies on the simulation model
outcomes, the subject of sub-question 5, experiments are run using the EMA Workbench 2.0.3. The
EMA Workbench is a Python library developed by Kwakkel (2017) which provides an interface to con-
duct exploratory modelling experiments, as well as analysis tools to be used on the results. The inter-
face associates uncertain input factors, policy levers and outcomes to a simulation model and provides
the functionality to run many simulations with different combinations of input factors and policies. The
uncertain inputs of the simulation model defined in Chapter 5 are the number of initial cases in three
districts: region 4 𝐼ኾ, region 14 𝐼ኻኾ, and region 15 𝐼ኻ኿, the community transmission rate 𝛽።, and the rate
of travel 𝑟፭፫ፚ፯፞፥. These factors are based on the uncertain factors identified in Chapter 3.

The type of policy inputs is dependent on which model is run - there is a model version in which
the exploration versus exploitation ratio is constant throughout the simulation, in which case the policy
is simply determined by providing the 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 as an input. In case the policy is based on
the level of uncertainty as described in Section 5.3.3, the policy inputs required by the model are the
variables of the radial basis functions: 𝑐ኻ, 𝑐ኼ, 𝑟ኻ, 𝑟ኼ, 𝑤.

The model outcomes are the scores of the five objectives (Effectiveness, Cost per Death Prevented,
Difference in Met Demand, Difference in Arrival Times, and Time until Containment), which are calcu-
lated at the end of each simulation run as described in Appendix C.

7.1.1. Exploratory Analysis
In order to investigate the influence of uncertain factors on the outcome space of the model, exploratory
modelling techniques were used. Experiments on the influence of the uncertain factors were carried
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out for two policies: a constant, fully exploitative policy, and a constant fully explorative policy. The all-
exploitation policy is considered to be the best approximation of current practice, where all resources
are allocated according to the humanitarian imperative of providing aid to those with the highest need,
and no resources are spent on reducing uncertainty. The all-exploration policy is included to study
any differences in the influence of uncertain factors that may occur on either side of the spectrum of
possible policies, and only makes decisions aimed at reducing uncertainty.

The simulation model was run 2500 for scenarios for each policy (see appendix E for a validation of
the ensemble size). In order to account for the stochastic elements within the model, replication were
performed for each scenario, and the means of the outcomes of those replications were taken as the
outcome values for that scenario. The number of necessary replications was determined by plotting the
convergence of the mean for each of the objectives. At 50 replications, the strongest oscillations in the
mean value were mostly settled, though in order to guarantee a stable outcome, up to 150 replications
are needed for some of the outcomes. However, due to limited computational power, 50 replications
were used in the experiments.

The scenarios were sampled over the uncertain input factors (using Latin Hypercube Sampling)
with the following ranges:

𝐼ኾ ∶ 1 − 8
𝐼ኻኾ ∶ 20 − 35
𝐼ኻ኿ ∶ 25 − 40
𝛽። ∶ 0.1 − 0.5
𝑟፭፫ፚ፯፞፥ ∶ 0.04 − 0.1

Where 𝐼፱ represents the initial number of patients in region 𝑥. The range for 𝛽። is based on Kucharski
et al. (2015). Since no distinction is made between rural and urban regions in the simulation model, the
range is chosen to represent all regions and extremes found by Kucharski et al. (2015) are not included.
The range on the travel rates is based on the estimates made by Backer and Wallinga (2016).

In order to study how sensitive the all-exploitation policy is to the influence of the uncertain factors,
and to see which factors have the most influence, several exploratory modelling techniques will be
used:

• Qualitative Visual Analysis: By plotting objective scores against each other, patterns in model
behaviour can be identified. This provides information of the spread of outcome values, the
distribution of outcomes and how performance of objectives is related to each other.

• Feature Scoring: Feature scoring is a linear regression method implemented in the EMA Work-
bench which shows the individual influence of each uncertain factor (regressor) (Kwakkel, 2017).
The level of correlation between the regressor and the outcome serve as a measure of sensitivity
and therefore influence (Pianosi et al., 2016).

• Dimensional Stacking: Dimensional stacking is another method implemented in the EMAWork-
bench which determines the influence of uncertain factors, using feature scoring as described
above. It visualizes the relation between the values of the most influential uncertain factors and
model outcomes by creating a pivot table which shows the density of outcomes of interest for
each combination of uncertain input factors.

• PRIM: The Patient Rule Induction Method, or PRIM, is an algorithm used to find regions in the
input space that correspond to output regions of interest (i.e. with very good objective scores, or
very bad ones that should be avoided). In this way, it provides insight into the model conditions
which lead to certain results. PRIM works by searching for a box in the input space which contains
both a high density of outcomes of interest (i.e. a large number of cases within the box are cases
of interest) and has high coverage (i.e. a large number of the total cases of interest lies in the
box) (Bryant & Lempert, 2010). PRIM creates rectangular boxes, which may lead to problems
in finding an appropriate box if the cases of interest are not distributed in such as shape. In this
case, PRIM results can be improved by applying Principal Component Analysis (PCA), which
allows the rotation of the coordinate system such that cases of interest do form a rectangular
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shape (Dalal, Han, Lempert, Jaycocks, & Hackbarth, 2013). The PCA transformation is available
in the workbench.

7.2. Base Scenario
To serve as a point of reference throughout the experiments and further analysis, a base scenario was
established. This scenario is initialized to reflect the state of the epidemic in Sierra Leone in June 2014.

For this base scenario, the uncertain factors are set to constant values. These are:

𝐼ኾ ∶ 3
𝐼ኻኾ ∶ 25
𝐼ኻ኿ ∶ 31
𝛽። ∶ 0.32
𝑟፭፫ፚ፯፞፥ ∶ 0.05

The values for the initial number of cases are based on World Health Organization (2016), with re-
gion 4 representing Porto Loko, region 14 representing Kenema, and region 15 representing Kailahun.
The community infection rate 𝛽። is taken from Büyüktahtakın et al. (2018) and the travelling rate at 0.05
from Backer and Wallinga (2016).

This parametrization of the uncertain variables results in the simulation model closely following the
real-case data (World Health Organization, 2016) for the the beginning of June 2014 to mid July 2014,
which is assumed to be representative of the epidemic evolving in the absence of any response mea-
sures. The full parameterisation of the simulation model is outlined in Appendix D.

7.3. Direct Policy Search using MOEA
For the Direct Policy Search (DPS) the Borg Many-Objective Evolutionary Algorithm was initially se-
lected to identify candidate policies. Borg uses a combination of different operators that mutate the input
population. The amount of offspring each operator is allowed to produce is based on their performance
during the run itself. Additionally, it uses a measure of progress called 𝜖-progress which guarantees
convergence and diversity of the solutions (Hadka & Reed, 2013). With this measure, the hyperspace
of the objectives is divided into boxes with length 𝜖 (where 𝜖 can be different for each objective). Only
solutions that improve performance and are not in an 𝜖-box that is already occupied by another solution
are counted as progress.

Using Borg, the parameters (𝑐ኻ, 𝑐ኼ, 𝑟ኻ, 𝑟ኼ, 𝑤) of the policy function were optimized over the five model
outcomes. Borg aims to find solutions that lie on the Pareto-optimal front. Since the policy function is
normalized, the input ranges for the variables are as follows:

𝑐ኻ, 𝑐ኼ ∶ (−1, 1)
𝑟ኻ, 𝑟ኼ ∶ [0, 1)
𝑤 ∶ (0, 1)

To set up Borg for with the simulation model, the following 𝜖-values were chosen:

Effectiveness: 0.01
Time until Containment: 1
Difference in Met Demand: 0.01
Equity in arrival times: 10
Cost per Death Prevented: 50.

The 𝜖-values for equity in arrival times and efficiency are relatively large, which in practice means
scores on these objectives need to lie further apart in order for the difference to be considered sig-
nificant. Since the values for these objectives are large (i.e. in the 1000s) this is justified, especially
considering that modelling is aimed at finding patterns of behaviour rather than predicting exact values.
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The Borg run was terminated at 36234 function evaluations after running for 92 hours on a laptop
with a Intel Core i7-3630QM CPU, 2.4 MHz, and 6 GB RAM. At this point the run was terminated due
to time constraints. The archive contained 718 solutions. The fact that Borg takes such a long time
to converge is likely due to the complexity of the model (resulting in longer simulation time) and the
stochasticity present in the model (in the “spontanteous news” function, in the random travelling mech-
anism, and in the selection of the decision type resulting from the policy function).

Since the Borg MOEA did not converge, the 𝜖-NSGA2 MOEA which is implemented in the EMA
Workbench was used, since this could be parallelized (as it is a steady-state MOEA) and run on a
more powerful server. Additionally, this allowed for the replications to be incorporated into the MOEA.
The 𝜖-values were also doubled (0.02, 2, 0.02, 20, 100) to allow for quicker convergence. The 𝜖-
NSGA2 MOEA was first initialized for 25000 nfe with 150 replications, and was run on 3 servers to
also allow for seed analysis. However, the high number of replications increased the computational
burden to an unexpected and unworkable amount for the context of this thesis (i.e. requiring weeks to
be completed). Due to limited time and access to computational resources the decision was therefore
made to run the 𝜖-NSGA2 MOEA with only 10 replications for 25000 nfe. Additionally, since the other
servers where necessary to finish the policy experiments, no seed analysis was possible.

7.4. Robustness Testing
The policies generated by Borg and 𝜖-NSGA2 were optimized on the base scenario described above.
However, their performance should be evaluated on a wide range of scenarios in order to see how
robust they are.

Robustness under deep uncertainty can be defined in a variety of ways which as a result can also
influence the score and therefore ranking of policies in terms of robustness, as described in McPhail
et al. (2018). They also provide a classification of various robustness measures, based on whether
they measure absolute or relative performance, and how risk-adverse they are. Given that the problem
owner in this context is the WHO, a global health security actor, who has to work with humanitarian
organisations in a response, it is immediately clear that this is a risk-adverse decision-maker. The
robustness measure(s) chosen to evaluate the policies generated by DPS should reflect this. Since
different robustness measures can lead to different rankings of policies, it is also worthwhile to apply
multiple definitions of robustness in order see if and why this also happens in this context.

Two robustness measures are chosen: The first is Undesirable Deviations, which is a relative regret
based method. Given a scenario, regret-based robustness measures calculate the difference between
the performance of the policy and the some reference performance, making it a relative measure of ro-
bustness. In Undesirable Deviations, the reference performance is the median value of the outcomes,
and the regret values for the worst 50% of scenarios (50% percentile) are summed. The lower this sum,
the more robust the policy. Undesirable Deviations is seen as a risk-adverse measure of robustness,
though for instance a maxmin measure is even more risk-adverse McPhail et al. (2018). The choice is
made for Undesirable Deviations since it takes into account a large amount of scenarios, which means
that it can distinguish between policies which may have the same worst case scenario performance
but different distributions for their overall performance.

The second robustness measure is Starr’s domain criterion, which is an absolute robustness mea-
sure based on satisfaction of a threshold. This allows for the decision-maker to set certain thresholds
or constraints on the objectives that should be met by a policy, and therefore also allows the decision-
maker to determine the level of risk-adversion (McPhail et al., 2018). In the context of an epidemics
response, it is for example realistic to assume that policies should have some acceptable level of ef-
fectiveness and that there is a limit to the amount of money organisations can justifiably spent on one
crisis. Additionally, it allows for the policies found by DPS to be compared to the performance current
practices. This is worthwhile as realistically, decision-makers can only be expected to change their
strategies if new policies have been shown to at least meet current practice performances.

Each of the selected policies was run over 2500 scenarios with 50 replications, over the same
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uncertain inputs as described in Section 7.1.1. This provided the policy performance data on which the
above robustness measures could be calculated.





8
Results

This chapter will describe the results obtained from the modelling experiments as described in Chap-
ter 7. First, the model behaviour under two different policies (exploitative vs. explorative) is shown in
terms of outcome distributions. The effect of the uncertain factors on the performance of these policies
is analysed using exploratory modelling techniques. The runtime behaviour of the model and variations
therein due to scenarios and policies is then outlined, providing additional insights into the model be-
haviour. The last section describes the performance of the policies that were found by the MOEA. This
is done in three ways: their outcome distributions are compared, their runtime behaviour is outlined,
and their performance on two robustness measures is calculated. The discussion and interpretation of
these results is provided in Chapter 9.

8.1. Model Behaviour
In this section, the behaviour of the simulation model will be studied on three different aspects: First,
the distribution of outcome scores for each of the objectives and any notable interaction between ob-
jectives is presented. Next, the influence of the uncertain factors on the outcomes will be studied using
exploratory modelling techniques. Finally, the runtime behaviour of the model (i.e. what occurs during
the simulation) is investigated. The analysis is carried out for two different policies: a fully exploitative
policy, as well as a fully explorative policy. This is done to create a sense of the model behaviour at
either end of the spectrum of possible policy inputs.

8.1.1. Outcome Distributions
The outcome distribution of each objective for the all-exploitation as well as the all-exploration policy
are shown in Figure 8.1. In this section, the main features as well as interesting patterns visible in the
outcomes will be discussed.

The all-exploitation policy’s performance in terms of Effectiveness covers almost all possible values,
with a peak of outcomes occurring at a score of around 80% to 85%, and another, lower peak at 30%.
In contrast, the distribution of the outcomes for the all-exploration policy is much more narrow, with
values ranging between 10% and 50%.

For Time until Containment, the majority of outcomes for the all-exploitation policy occur at 24 to
26 timesteps, with the distribution showing a tail towards lower scores which reaches outcomes just
below 10 timesteps. Again, the distribution for the all-exploration policy is more narrow, ranging from
values above 15 timesteps to the maximum of 26. Here the distribution shows two distinctive peaks,
one occuring at 20-21 timesteps, and the other at 26.

For both policies, the outcome distributions for Difference in Met Demand have a similar shape, with
one main peak, and a smaller peak to the right of it. For the all-exploration policy, this second peak is
more pronounced, and the entire distribution is shifted to the right.

The outcome distributions forDifference in Arrival Time aremost strikingly different: The all-exploitation
policies shows a wide range of values (0 to about 1250) for this outcome, whereas the outcomes of the
all-exploration policy all occur in a narrow range between 400 and 500. The fact that the all-exploration
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Figure 8.1: Scatterplot showing the objective outcome scores of the all-exploitation policy (red) and all-exploration policy (blue).
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distribution has almost no variation in outcomes is easily explained when considering that the policy
assigns resources based purely on the level of uncertainty present in each region. This will cause all
the regions to be visited in a random but sequential order (i.e. a region is not visited for a second time
until uncertainty in the other regions is reduced to a similar level) by this policy, limiting the variation in
differences in arrival time that is possible.

For Cost per Death Prevented, the all-exploitation policy’s distribution of outcomes is more narrow
than that of the all-exploration policy, which has a considerable tail towards high cost outcomes.

For the additional outcome of Final Uncertainty, the distribution of the all-exploitation policy is wide
and contains almost all possible outcomes, whereas the all-exploration policy’s distribution is narrow
and only contains low levels of final uncertainty. This is completely logical, since the latter policy is
primarily focussed on reducing uncertainty. How the level of uncertainty evolves during runtime will be
discussed in more detail in Section 8.1.3.

For the two policies, the interactions between various objectives are also noticeably different. The
most striking interactions and differences will be discussed here. When plotting Effectiveness versus
Difference in Met Demand, the all-exploitation policy relates the best outcomes in terms of Difference to
Demand to either very low or very high Effectiveness scores. The combination of low Effectiveness and
good performance in Difference in Met Demand can be understood as “equity in absence” (i.e. no one
receives aid, and therefore everyone is equal), which is of course undesirable. For the all-exploration
policy, no such interaction is visible.

Since the outcomes for Cost per Death Prevented from the all-exploration policy distort the out-
comes of the all-exploration policy, the interaction of this objective was studied in a separate plot (avail-
able in Appendix G). This showed a strong negative correlation between the Cost per Death Prevented
and Effectiveness scores, when Effectiveness scores were higher than 0.4. Below that, there is a pos-
itive, but less pronounced correlation. The all-exploitation policy also shows a clear negative linear
correlation between Effectiveness and the level of Final Uncertainty. The all-exploration policy there
is also an interaction between these two objectives, which takes an almost hyperbolic shape. The all-
exploitation policy also shows some notable behaviour when the two equity objectives Difference in Met
Demand and Difference in Arrival Time, are plotted against each other. Here the outcome distribution
forks into two directions.

8.1.2. Influence of Uncertain Factors
In the previous section, it became clear that there are major differences in the outcome distributions
of the two policies. This section will perform exploratory modelling analysis for each of the policies, in
order to better understand how the uncertain factors (the transmission rate, the initial number of patient
in three regions, and the travel rate) influence model behaviour 1.

For an initial side-by-side comparison, the outcomes of feature scoring analysis are shown side-by-
side in Figure 8.2. For both policies, the transmission rate (labelled as beta_i) is the uncertain factor
with the most impact. This is not unexpected, as the transmission rate is one of the dominant factors in
determining disease dynamics (i.e. the number of future patients is influenced much more by the trans-
mission rate than by the initial number of patients in a region). However, for the all-explorative policy,
the transmission rate seems to be the only factor with a significant impact on the policy performance,
except for the Difference in Arrival Time objective (which is expected, given the objective’s insensitivity
to input factors under an all-exploration policy, as explained earlier). For the exploitative policy, the
influence is more spread for the Time until Containment and Difference in Met Demand objectives. As
a first observation, we can establish that the fully exploitative policy is more sensitive to the uncertain
factors than the fully explorative policy.

All-exploitative policy
Feature scoring showed that for Effectiveness, the transmission rate was the most influential uncertain
factor. Visual inspection of the outcome distribution also showed two peaks - one at high (good) scores,
and another at very poor scores. Using PRIM, first the desirable outcomes (scores above 80%) are
studied. PRIM finds that these are strongly related to high transmission rates (ranging between 0.32

1The full analysis is available in a Jupyter Notebook called ANALYSIS 2 at https://github.com/edenbrok/thesis

https://github.com/edenbrok/thesis
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Figure 8.2: Feature scoring results for the all-exploitative policy (left) and the all-exploitative policy (right).

and 0.50). Similarly, poor performance (< 50%) is found to be related to low transmission rates (rang-
ing beteen 0.10 and 0.22). A possible explanation for this influence is found in the spontaneous news
mechanism. A high transmission rate will increase the number of cases quickly, increasing the chance
of spontaneous news occurring very early on in the response. Since the all-exploitative policy is reliant
on the spontaneous news mechanism in order to start its response (as otherwise it remains completely
in the dark), receiving news early improves the quality of the response. This is confirmed by the strong
correlation between Effectiveness and Final Level of Uncertainty which was identified in the previous
section.

From the visual inspection of the outcomes, it was already clear that Cost per Death Prevented
is strongly correlated with Effectiveness for the upper half of Effectiveness scores. For lower Effec-
tiveness scores, however, a wider range of values is seen. Using PRIM on the outcomes with both
low Effectiveness (< 0.4) and low Cost per Death Prevented (< 5000), three factors are found to be
associated with these outcomes. A low transmission rate (0.10 to 0.23) is identified, as expected for
the low Effectiveness score, as well as the initial number of patients in region 14 (20 to 30) and region
15 (25 to 34). For high costs (> 5000) and low Effectiveness, the association with a low transmission
rate remains (0.10 to 0.19), but here the lowest numbers for initial cases are ruled out (with a range of
28 to 40 cases for region 15, and 22 to 35 cases for region 14).

In most scenarios, the all-exploitation policy reached containment (more than 70% of the current
cases isolated) late in the response (i.e. only at timestep 25) or not at all. Therefore, we would like to
know under what conditions fast containment (within 20 timesteps) occurs, as the outcome distributions
do show it is possible. Using PRIM, the conditions for reaching good Time until Containment perfor-
mance are found to correspond to a low number of initial cases (1 to 5) in region 4 combined with the
lower half of possible transmission rate (0.10 to 0.32) values. Considering that for the objective 70%
of the cases need to be isolated rather than 100%, it is likely that in these scenarios it was possible to
reach this percentage by solely focussing on the hotspot regions 14 and 15.

Using dimensional stacking analysis, this explanation is confirmed, as the pivot plot in Figure 8.3
shows that these outcomes are also associated with a high number of initial cases in region 14 and 15.

In the previous section it was observed that for Difference in Met Demand there are two types of out-
comes that have low (desirable) scores: Those associated with low effectiveness, which are essentially
cases of ”equity in absence”, and good scores associated with high effectiveness. Since the factors
associated with low effectiveness have already been established, we are mainly interested in identify-
ing which conditions lead to the good Difference in Met Demand scores which are associated with an
effective response. PRIM analysis determines that two factors are associated with these outcomes: a
transmission rate range of 0.34 to 0.43, and values for the travel rate between 0.05 and 0.10, which is
almost its entire range. The high transmission rate has earlier been established to be a condition for
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Figure 8.3: Dimensional Stacking pivot plot demonstrating that good outcomes in terms of Time until Containment are associated
with low transmission rates, a low number of cases in region 4, and a high number of cases in region 14 and 15.
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high Effectiveness scores. However, the very highest values are excluded here, which could be a result
of the way in which the Difference in Met Demand objective is calculated. The objective score is based
on the difference in the ratio of the total number of treated patients over the total number of infected
cases. When the transmission rate is extremely high, for the hotspot regions (4, 14 and 15) this ratio
will be dominated by the high number of infected cases that arises in the first few cases. As a result the
difference between the low value of this ratio in the hotspot regions compared to the other regions is
exacerbated and the resulting equity score is poor. This fits with the observation that the lowest travel
rates are also excluded for good equity scores: when infected cases do not leave a hotspot region, this
effect is also stronger.

For the Difference in Arrival Time objective the “best” scores are also clearly a case of equity in
absence. What about the best performing half (scores below 750) that does occur with reasonable
Effectiveness (> 0.75) scores? PRIM shows that these are associated with a high transmission rate
(0.34 - 0.45) and the lowest values for the travel rate are excluded (with an associated range of 0.05 of
0.10). For poor scores in terms of Difference in Arrival Time (> 750) with high Effectiveness, the high
transmission rate is included as well (0.29 - 0.50), and the lower half of possible values for the travel
rate (0.04 - 0.08). Focussing solely on the worst outcomes in terms of Difference in Arrival Time (>
1000), by using dimensional stacking we can identify that these cases are associated with a relatively
low transmission rate (0.2-0.3) and a high number of cases in region 15. This suggests that a particular
range of transmission rate values (between 0.34 and 0.45) is a condition for good Difference in Arrival
Time scores, but some other interaction must also be involved.

The effect of the travel rate seems counter-intuitive: one would expect high travel rates to have
a negative effect on spatially defined equity since these cause the epidemic to spread faster. It is
hypothesised that the negative influence of low travel rates on equity in arrival time is an artefact of the
implementation of the simulation model: The Difference in Arrival Time objective uses the timestep at
which a region first hasmore than 0 infections as themoment at which demand first occurs. However, an
ETC is only placed when more than 1 case is observed (in order to prevent placement decisions based
on 0.001 cases in a region where the epidemic is effectively under control). If region 15 is initialized with
32 cases, and the travel rate is set at 4%, region 11 will receive ኽኼ∗ኺ.ኺኾ

ኼ = 0.64 cases, meaning it is not
eligible for a placement decision even if the decision-maker has perfect information. With higher travel
rates neighbouring regions receive enough cases to be eligible for placement decisions. Therefore,
the way the objective is calculated causes the travel rate to have an unintended effect on the policy
performance.

As for the Effectiveness objective, the policy is dependent on the spontaneous news mechanism in
order to start placing the ETCs, which explains the lower bound on the transmission rate necessary to
obtain good outcomes. Why the highest values for the transmission rate do not occur with desirable
outcomes for Difference in Arrival Time is not directly clear, so this effect will be explored in the runtime
analysis.

When comparing the relationships between objectives, it was noted that when Difference in Met
Demand and Difference in Arrival Time are plotted against each other, their distribution shows a fork
in the outcomes. In this section it has been established that the worst scores for Difference in Met
Demand are associated with extremely high values for the transmission rate, whereas for Difference in
Arrival Time the associated transmission rate range was between 0.2 and 0.3. This indicates that high
scores for both Difference in Met Demand and Difference in Arrival Time are incompatible in terms of
the scenarios in which they occur.

All-explorative policy
In terms of Effectiveness, the all-exploration policy was also most strongly influenced by the transmis-
sion rate. Again applying PRIM to the selection of best outcomes (scores higher than 40%), shows
that the middle of available range for the transmission rate (0.25 to 0.39) is associated with these out-
comes. For the poorest outcomes (scores lower than 40%), PRIM cannot identify a box, even when
PCA is applied. Using dimensional stacking it becomes clear why: these outcomes are associated with
either the lowest quadrant of values for the transmission rate, or the highest. This is unlike the clear
division seen for the fully exploitative policy, and no explanation is immediately available. Since the
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all-exploration policy is not reliant on the spontaneous news mechanism for its decisions, this can be
ruled out as a cause. The fact that low Effectiveness scores can be caused by either high or low values
in the transmission rate does explain the the hyperbolic shape seen when plotting the Final Uncertainty
level against Effectiveness: for high transmission rates, uncertainty is reduced further due to the higher
number of patients treated at ETCs. For lower transmission rates, the number of treated patients will
automatically be lower.

The all-exploration policy has a very long tail in terms of outcomes with a high Cost per Death
Prevented, which is also associated with low effectiveness. PRIM shows that the higher the cost, the
smaller the associated range of low values for the transmission rate (with a range of 0.10 to 0.21 for
costs above 50 000 dollars per life saved, which decreases to the range of 0.10 to 0.13 for costs above
100 000 dollar.) This is related to the poor scores for Effectiveness that occur at a low transmission rate.
Why the highest transmission rates do not cause high costs (even though they are also associated with
low effectiveness), will be explored in the runtime analysis.

For Time until Containment, the relationship between the input factors and the policy performance
that becomes apparent through PRIM is straightforward. Late to no containment (> 24 timesteps) is
associated with high transmission rates (0.29 to 0.50), better performance (< 24 timesteps) with low
transmission rates (0.10 to 0.29). Since the all-exploration policy only starts placing ETCs later in the
response (when no regions are hidden any more), high transmission rates will cause such a large num-
ber of patients that at this stage in the simulation run, containment is no longer possible with the random
placement of small ETCs.

PRIM and Dimensional stacking relate the better scores in terms of Difference in Met Demand (<
1.0) for the all-exploration policy to the lower half of the possible transmission rate values (0.10 to
0.30). The highest transmission rates are not seen for the same reasons as set out in the analysis
of the all-exploitation policy, but since the all-explorative policy is not dependent on the spontaneous
news mechanism, good performance is also seen at the lower transmission rates.

8.1.3. Runtime Behaviour
How the level of uncertainty evolves during a simulation run is easily tracked, and the results of this
are shown in Figure 8.12a for the all-exploration and all-exploitation policy (the third policy included in
this plot will be discussed later in this chapter). From the plot, it is clear that the all-exploration policy
manages to reduce uncertainty faster and more systematically than the all-exploitation policy, as would
be expected. The wide range of possible uncertainty levels observed for the all-exploitation policy is
caused by its dependence on the spontaneous news mechanism, as well as the uncertainty reduction
it can achieve by the number of patients treated in an ETC (which also causes the variation in uncer-
tainty seen for the all-exploration policy at higher timesteps). Notably, the all-exploitation policy also
has a considerable number of scenarios where uncertainty is barely reduced. As seen earlier, these
scenarios are associated with poor performance on almost all objectives (when taking into account the
occurrence of “equity in absence”) and show the vulnerability of the all-exploitation policy.

In order to understand the runtime behaviour in depth, more factors need to be taken into account.
Using data generated for each timestep during the simulation, the runtime behaviour of the model un-
der different policies can be studied. For this, the actual number of cases per region are tracked, as
well as the lower bound on the range of cases known by the decision maker. Additionally, the level of
uncertainty in each region, and the type of decision made plus the chosen region(s) for that decision are
kept track of. Visualizing all these aspects, the behaviour of the model during runtime can be studied
using animations which show how the data changes over time. In this thesis only screenshots can be
shown, but for each case a link and a QR code to the animation itself is also provided.

First, the all-exploitation policy is run on the base scenario . This run is shown
in Figure 8.4. The all-exploitation policy receives spontaneous news only in timestep 4, though from
both region 14 and 15 simultaneously. Here, the effect of the decision-maker only having access to an
uncertain range around the ground truth becomes visible. Region 15 actually has the highest number
of cases, but as the range known to the decision-maker is fitted randomly around the ground truth, the
lower bound for Region 14 shows them a higher number of cases than for Region 15. As a result, an ex-

https://youtu.be/ST6WaB02fr4
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Figure 8.4: State of the simulation model under the all-exploitation policy and the base scenario at timesteps 4 (a), 12 (b), 23 (c)
and 26 (d).

ploitative decision is made for Region 14. At timestep 12, a number of placement decisions have been
made and ETCs are operational. Here, typical behaviour for the all-exploitation policy becomes visible:
Through spontaneous news, uncertainty is reduced first in the hotspot-regions 14 and 15. As ETCs
become operational, uncertainty is also reduced in neighbouring regions, and the response moves
to those. This way, the situational awareness of the decision-maker unfolds over the neighbouring
regions. The way uncertainty reduction spreads away from the hotspot regions can also be seen at
timestep 23. However, this causes the response to remain centred around the initial hotspot regions,
and in this particular run Region 4, which has had cases since the beginning, is only “discovered” in
the very last timestep.

The runtime behaviour of the all-exploration policy in the base scenario is shown
in Figure 8.5. At timestep 1, by pure chance it sends surveillance teams to regions 1, 14 and 15. As
a result, the decision-maker immediately has awareness of the situation in two of the three hotspot
regions. However, since the policy only makes explorative decisions, it cannot act on this information.
By timestep 6 it has sent surveillance teams to all regions, and the policy will now start placing ETCs to
further reduce uncertainty. Because it is placing the ETCs based on the level of uncertainty, the hotspot
regions are “ignored” (see for example the plot at timestep 12), even though the decision-maker has a
good overview of which regions have the most cases. By the end of the simulation run, it has placed

https://youtu.be/R_CeT7U0Gq0
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Figure 8.5: State of the simulation model under the all-exploration policy and the base scenario at timesteps 1 (a), 6 (b), 12 (c)
and 26 (d).

ETCs in regions 4 and 15 by chance, but not in region 14.

Because the transmission rate was found to have the most influence on policy performance out of
all the uncertain factors, animations are also generated with a low transmission rate of 0.1 and a high
rate of 0.5.

Screenshots of the animation for the all-exploitation policy with a low transmission
rate are shown in Figure 8.6. For this transmission rate, two types of model behaviour are seen: in
one, the decision-maker never receives any spontaneous news and no placement decisions are made
at all. In the other type of run, which is also the one shown here, the decision-maker does receive
spontaneous news to act on. However, even in these scenarios performance in terms of Effectiveness
is poor. Studying the runtime behaviour we can see why - due to the low transmission rate the number
of cases starts to decline even before the response start. In the pictured response, an ETC is placed
in region 15 during timestep 4, but at this point, majority of deaths have already occurred. This also
explains the high Costs per Death Prevented associated with low Effectiveness scores: the ETCs that
are built will treat only a small number of patients. As was identified in the exploratory analyis, a high
number of initial cases softens this effect somewhat, which can lead to lower costs.

https://youtu.be/ffsydobeL5M
https://youtu.be/ffsydobeL5M
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Figure 8.6: State of the simulation model under the all-exploitation policy and a low transmission rate (0.10) at timesteps 0 (a),
3 (b), 15 (c) and 26 (d).
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Figure 8.7: State of the simulation model under the all-exploitation policy and a high transmission rate (0.50) at timesteps 3 (a),
9 (b), 14 (c) and 26 (d).

The behaviour of the model under the all-exploitation policy and a high trans-
mission rate is shown in Figure 8.7. Here, the decision-maker is aware of the situation in region 14
and 15 by timestep 3. Due to the placement of ETCs in those regions, the situation in the neighbouring
region then also becomes known. However, due to the high number of cases in regions 14 and 15,
the response remains focussed on the hotspot regions. This also explains the earlier observation that
good scores for Difference in Arrival Time are not seen for the highest transmission rate values: these
cause such an explosion of cases in the hotspot region that the placement of ETCs remains focussed
there, even though the decision-maker is aware of the situation in neighbouring regions. As a result,
the regions which are not hotspots have to wait longer for aid. With the high transmission rate, the
decision-maker also receives spontaneous news from region 4 in this particular run. Though a high
number of cases still remains at the end of the simulation run, the policy performs well in terms of
Effectiveness. This is because without a response, the high transmission rate would have lead to an
exponential growth of cases, a large proportion of which is prevented by the response.

For the all-exploration policy under the low transmission rate , we see the
same effect of the epidemic decreasing in severity even before the first ETC is placed, which leads
to poor Effectiveness scores. However, the all-exploration policy avoids the worst case scenario of
the all-exploitation policy that never makes any placement decisions, because after surveillance teams
have been sent to all regions (at timestep 6), it starts placing ETCs in all regions. Though these are

https://youtu.be/TXGSjbmfiig
https://youtu.be/TXGSjbmfiig
https://youtu.be/0PPHG3rlPxE
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Figure 8.8: State of the simulation model under the all-exploration policy and a low transmission rate (0.10) at timesteps 0 (a), 6
(b), 12 (c) and 26 (d).

not placed based on the number of cases, inevitably some of them are placed in the hotspot regions.

With an understanding of how this policy operates, the runtime behaviour of the model with a high
transmission rate under the all-exploration policy bears little explanation. The situa-
tion at the last timestep is shown in Figure 8.9. Note the scale of the axis indicating the number of
cases - over 7000 cases are reached in some regions. In the exploratory modelling analysis of the
all-exploration policy it was noted that high costs occur at low Effectiveness, but only for the lower
values of the transmission rate (even though low effectiveness was found to be caused by both very
high and very low transmission rates). By studying the runtime behaviour we can understand why:
Under the low transmission rate, the epidemic has declined already when the first ETC has become
operational, meaning that effectiveness is low because most deaths have already occurred. Because
there are only a small number of cases left, costs per case treated are proportionally very high. With
the high transmission rate, by the time the first ETCs become operational the epidemic has already
grown completely out of control, but given the high number of patients costs are proportionally lower.

https://youtu.be/HfeeeWGukak
https://youtu.be/HfeeeWGukak


8.1. Model Behaviour 55

Figure 8.9: State of the simulation model at timestep 26 under the all-exploration policy with a transmission rate of 0.5.
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8.2. Policy Performance
This section discusses the performance of the policies that were optimized for the base scenario using
MOEAs. A full discussion of the MOEA results can be found in Appendix F. From the solution set, five
policies were selected, each representing optimal performance over one of the objectives. They are
shown in Figure 8.10. The rest of this section is structured as follows: First, their output distribution over
a wide variety of scenarios is considered. Next, the runtime behaviour of these policies is analysed in
the same way as was done for the all-exploitation and all-exploration policy above. The last section
determines their scores for the two robustness measures 2.

For clarity, the five selected policies are classified according to the behaviour of their policy function
at high uncertainty (i.e. at the beginning of a simulation run). Policies 390 and 661 are exploitative
policies, policy 148 is a mixed policy, and policies 141 and 185 are explorative. From here on, they
will be referred to with their classification followed by their number (i.e. exploitative-390). The fully ex-
ploitative policy, the fully explorative policy and a “random” policy (which chooses between explorative
and exploitative actions with equal probability and is classified as a mixed policy) are also included in
some figures to act as a reference.

8.2.1. Policy Behaviour per Classification
Outcome distributions of the different policies are shown per groups and per objective in Figure 8.11
(full scatterplots of the outcomes for each policy can be found in Appendix G). For Effectiveness, the
exploitative policies have very similar distributions. The same general shape is also seen in the mixed
policies, although here the worst outcomes are avoided and the peaks associated with good perfor-
mance are higher. These differences become even more apparent with the explorative policies. How-
ever, for these policies, the peak with the best performance occurs at a lower Effectiveness score than
for the exploitative and mixed policies. The only policy with a truly different outcome distribution shape
is the fully explorative policy, suggesting that shifting to exploitative decisions at lower uncertainty has
a significant impact on policy performance.

For Cost per Death Prevented, all policies follow an exponential distribution, though the exploita-
tive policies show a second, much smaller peak. Given the strong correlation between effectiveness
and cost observed earlier, this second peak most likely corresponds to the slight peak the exploitative
policies show at low Effectiveness scores. It can also be observed that the more explorative a policy
is, the longer the tail towards higher costs is. Though not included in these plots, exploitation-390,
exploitation-661 and mixed-148 all had outcomes with outlier values ranging from the order of 10዁,
whereas the all-exploitation policy did not have these outliers. How these extreme outliers are caused
could not be identified.

The distributions for Time until Containment for the exploitative policies all peak around 25 timesteps,
and have a tail towards lower outcomes, down to 5 timesteps. For the exploitation-390 policy, the peak
is more narrow and to the right of that of the all-exploitation policy, whereas for exploitation-661 the ex-
act opposite is the case. The mixed policies both have wider peaks than the exploitative policies, with
more outcomes at lower values. Notably, the random policy shows two slight peaks. The all-exploration
policy, as well as the explorative-185 policy also have two distinctive peaks, which are much more pro-
nounced. However, the explorative-141 policy does not show this behaviour.

Interestingly, for Difference in Met Demand, all policies follow the same general shape of a major
peak and a minor peak to the right of it (at poorer scores). It also seems like the more explorative a
policy is, the more the entire distribution is shifted towards the right. The major peaks for the exploita-
tive policies, as well as the mixed-148 policy are also wider and their shape suggests they consist of
two peaks laying close together, whereas for the other policies this is not the case.

For the Difference in Arrival Time objective, the policy classifications clearly do not correspond to
similarity in outcomes. The cause of the narrow peak of the all-exploration policy has been discussed
in Section 8.1.1, but the exploitation-390 policy and the explorative-185 policy also have narrow distri-

2The plots used in this section were generated in the ROBUSTNESS ANALYSIS 2 jupyter notebook which is available at
https://github.com/edenbrok/thesis

https://github.com/edenbrok/thesis
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Figure 8.10: Selected policies from the Borg solutions with their associated objective scores. The objective on which the policy
had an optimal score is shown in bold. The all-exploitation policy is shown as a reference.
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Figure 8.11: Outcome distributions for all objectives, including the additional outcome of the level of uncertainty at the end of a
run. The all-exploitative policy (in red) is included in all plots for reference.
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butions with just one peak. All other policies have wider distributions, in some cases with two peaks
(exploitation-661, both of the mixed policies, and exploration-141).

For the Final Level of Uncertainty, two general observations can be made: Firstly, the more explo-
rative a policy, the more narrow its distribution. Secondly, all distributions show two peaks (in the case
of the exploitation-390 policy a distinct second peak is not visible, though it does have a pronounced
shoulder). For the explorative policies, the leftmost peak is the most pronounced (at lower uncertainty
levels), whereas for the mixed policies the two peaks are much closer in height. For the explorative
policies, no such pattern is visible, in fact, for the all-exploration policy the rightmost peak is the highest,
for the explorative-141 policy they are both the same height, and for the explorative-185 the leftmost is
the highest.

How the level of uncertainty develops during runtime, leading to these final uncertainty level distri-
butions, will be investigated in the first part of the next section.

8.2.2. Runtime Behaviour
Uncertainty Reduction over Time
The total level of uncertainty experienced by the decision maker is shown in Figure 8.12b for the ex-
ploitative policies, in Figure 8.12c for the mixed policy and in Figure 8.12d for the explorative policies.
Like the all-exploitation policy, the exploitation-390 and exploitation-661 policies demonstrate the widest
range of total uncertainty over all the scenarios. The range of the exploitation-390 policy contains a
significantly larger amount of scenarios in which uncertainty remains high throughout the simulation run
compared to exploitation-661. This can be explained by comparing their policy functions: Though the
exploitation-390 policy moves to explorative actions at higher levels of uncertainty than the exploitation-
661 policy, at full uncertainty the latter takes explorative actions with a chance of 10%, whereas the
exploitation-390 policy only does so with a chance of 1%. This makes it reliant on the spontaneous
news mechanism, and like the all-exploitation policy, increases its risk of being immobilized by a lack
of information.

Like the random policy, the mixed-148 policy’s range fans out later in simulation time. It ends up
with a wider range of possible final levels of uncertainty, which is expected as it is less “mixed” than
the random policy, starting with a 36% chance of taking explorative actions (as opposed to 50% for the
random policy), and this chance is reduced to 0% when the perceived uncertainty is at 50%.

The two explorative policies show similar progressions of uncertainty over time, with the main differ-
ence resulting from the level of uncertainty at which each policy moves to mixed/exploitative decisions.
Like the all-exploration policy, the exploration-185 policy remains fully explorative at high uncertainty
levels. This results in the small “plateau” which occurs for both these policies at an uncertainty level
66.7%. This is the level of uncertainty at which all regions are discovered (i.e. no longer hidden) but
at full uncertainty. As the explorative-141 policy is already taking exploitative decisions at this level of
uncertainty, it moves past this plateau as it is no longer basing decisions on the highest number of level
of uncertainty.

No policy reaches uncertainty levels below 30%, except the fully-exploitative policy, which lowest
reached level is 17%. Since uncertainty on the number of patients in a region cannot be reduced below
20% due to case hiding (see Chapter 4 and Appenidx B), the lowest possible value for total system
uncertainty is 6.7%.

Based on these results, it can be observed that the model behaviour in terms of uncertainty and its
reduction over time seems to be largely determined by the shape of the policy function at high values
uncertainty levels: Exploitative policy 390 becomes fully explorative at lower levels of uncertainty, yet
its behaviour in terms of uncertainty is very similar to that of the fully explorative policy. Likewise, the
mixed 148 policy is fully exploitative at lower uncertainty, but its uncertainty reduction resembles that
of the random policy, and though its final distribution is wider, the final outcomes are distributed over
two peaks of similar height, as is the case for the random policy.



60 8. Results

(a)Network 1 (b)Network 2

(c)Network 3 (d)Network 4

Figure 8.12: Plots showing the development of the total level of uncertainty as perceived by the decision maker
over time. The plot on the left shows the envelope of all outcomes in the 2500 scenarios, the plot on the right the
distribution of final uncertainty levels over all these scenarios.
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Figure 8.13: State of the simulation model under the exploitation-661 policy at timesteps 1 (a), 5 (b), 14 (c) and 26 (d).

Runtime Behaviour
The runtime behaviour of the five policies is studied in the context of the base scenario (as defined in
Chapter 7.2). For brevity, only one policy from each classification is described here. The descriptions
of the runtime behaviour of the other policies can be found in Appendix H.

The runtime behaviour of the exploitation-661 policy is shown in Figure 8.13. Its
first decision is explorative, and it makes the very lucky decision to send surveillance teams to two of
the hotspot regions. This means that by timestep 5, it has already placed three ETCs. However, due to
the uncertainty around its observations on the number of cases, the severity of the epidemic in region
14 has gone unnoticed. By timestep 14 this has been corrected, and ETCs have been placed in all
the hotspot regions as well as in some of the neighbouring regions. The overall level of uncertainty
has now decreased to a point where the policy is fully exploitative, causing the response to remain
almost entirely static until the end of the simulation run. It should be noted that, had region 4 not been
discovered by pure luck early on in the response, it would have likely gone completely unnoticed. As
it is, even at the end of the response regions 2 and 3 remain completely hidden from the decision-maker.

In Figure 8.14 the runtime behaviour of the mixed-148 policy is shown. Within the first
three timesteps, it has taken one explorative decision, and two exploitative decisions, of which only
the second resulted in a placement decision since the decision-maker had received spontaneous news
from region 14. At timestep 6, it is still alternating between decision types, and the decision-maker has
gained awareness of the situation in region 15 thanks to its presence in region 14. By timestep 14,

https://youtu.be/2ZkWT0t3sIg
https://youtu.be/M2hAQ54iqdw
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Figure 8.14: State of the simulation model under the mixed-148 policy at timesteps 3 (a), 6 (b), 14 (c) and 26 (d).

none of the regions remain hidden, either by explorative decisions or due to the presence of an ETC in
a neighbouring region. Until the end of the simulation run, the policy then takes primarily exploitative
actions. At the end of the run, 12 different regions received an ETC as a result of an exploitative
decision, which is even more than seen for the all-exploitation policy in Section 8.1.

The runtime behaviour of the exploration-141 policy is shown in Figure 8.15. At
timestep 3, the two explorative actions have reduced the overall level of uncertainty enough for the
policy to have moved to a mixed stadium. At this step, it takes an exploitative action, and since region
15 is no longer hidden, it can make a placement decision for that region. In timestep 9 we can see that
the policy has remained mixed. None of the regions are hidden any more, and three ETCs have been
placed with exploitative decisions. At timestep 18, we can see that most decisions are now exploitative
ones, but explorative decisions still occur. Between timestep 18 and 26, only exploitative decisions
are made, and in several cases the decision maker chooses to do nothing due to a lack of (observed)
cases. Though at the end of the simulation the epidemic is contained and the decision-maker has a
good situational overview, it should be noted that due to the emphasis on explorative decisions at the
beginning of the response, only a single ETC was operational before timestep 9. This illustrates the
trade-off between explorative and exploitative actions and explains why the explorative policies never
reach the high Effectiveness scores of the other policy types.

https://youtu.be/SrXsgXyWH_w
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Figure 8.15: State of the simulation model under the exploration-141 policy at timesteps 3 (a), 9 (b), 18 (c) and 26 (d).
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8.2.3. Robustness Scores
Undesirable Deviations
For all five policies, the undesirable deviations scores on each of the objectives were calculated and
then normalized. The results are shown in the parallel coordinates plot in Figure 8.16, which also
includes the all-exploitation policy which serves as a reference for current practice. The best scoring
policy on a particular objective is assigned the value of 0, the worst a score of 1.

For the Effectiveness objective, the difference in robustness is clearly determined by the type of
policy: the exploitative and mixed policies, with wider outcome distributions have high scores, and the
two explorative policies score best. The opposite is visible for the Cost per Death Prevented objective.
Even though the exploitative and mixed policies had a few outliers, the explorative policies, and in par-
ticular the explorative-185 policy score much worse because they have a much longer tail towards high
costs. This policy also scores the worst in Difference in Met Demand, where it had a wide distribution
and worse scores than the other policies in general. Here the mixed-148 policy scores best, followed by
the exploitation-661 and all exploitation policy. The exploration-141 policy and exploitation-390 policy
similar scores, with the latter performing slightly worse.

For Difference in Arrival Time the policies which have narrow distributions (see 8.2.1), unsurpris-
ingly, have the best score. Again the policy classification does not serve to predict how robust the
policy will be: the best and worst performing policies are exploitative, and the explorative and mixed
policies make up the middle scores. Classification also provides no guarantees for performance in ro-
bustness on Time until Containment. The all-exploitation policy performs best, followed closely by the
two explorative policies, then the mixed policy, and the other exploitative policies perform the worst,
particularly the exploitation-661 policy. This is a result of those policies having long tails towards good
outcomes but a peak at the worst outcomes.

Starr’s Domain Criterion
The scores of the five policies on the Starr’s Domain Criterion robustness measure are shown in Fig-
ure 8.17. Since in measure the median of the all-exploitative policy is used as a reference, the all-
exploitative policy scores exactly 50% on all objectives (as per its definition, 50% of its outcomes will
lie above the mean). Therefore, any scores above this red line indicate a better performance than that
of the all-exploitative policy.

For Effectiveness, the scores of the exploitative and mixed policies lie very close together (within
a range of 0.01 around 0.5). Unsurprisingly, the explorative policies perform much worse, which is in
line with the earlier observation that their outcome distributions had their peaks at lower Effectiveness
scores than the exploitative policies. For the Cost per Death Prevented objective, however, all policies
except the exploitation-390 policy score better than the reference reference policy. This means all these
policies perform better than the all-exploitation policy in more than half of the scenarios. A different
picture is visible for Difference in Met Demand, where none of the policies can meet the performance
of the all-exploitation policy, and the explorative policies perform particularly poorly. This is expected
given the observation that their distributions for the objective were shifted to the right considerably
when compared to the other policies. In terms of Difference in Arrival Time, the two explorative policies
do perform better than the all-exploitation policy. This also makes it notable that the mixed-148 policy
perform the worst in terms of robustness on this objective. Studying its distribution of outcomes for
Difference in Arrival Time (see Figure 8.11) we can see why: its range is more narrow than that of
the exploitative policy with a peak at poor values. For the Time until Containment objective none of
the policies score better than the all-exploitation, though for most the robustness scores lie close (with
scores between 0.43-0.48). Only the explorative-185 policy performs notably worse with a score of
0.28. Looking at its distribution, we can see that it has a relatively short tail towards good outcomes
compared to the other policies, which explains its poor performance for this robustness measure.
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Figure 8.16: Parallel coordinate plot showing the scores of the five policies on the Undesirable Deviations robustness measure.
A value of 0 indicates the best score, 1 the worst.

Figure 8.17: Parallel coordinate plot showing the scores of the five policies on the Starr’s Domain Criterion robustness measure.
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Discussion

This chapter provides the interpretation and discussion of the results presented in Chapter 8. The out-
comes of the experiments are analysed, placed in to context, and conclusions are drawn from the sub-
sequent discussion. The purpose of this chapter is to formulate answers to the last two sub-questions:

5. Given the simulation model, what is the influence of system uncertainties on the perfor-
mance of resource allocation policies?

6. Given the simulation model, which strategies for resource allocation decisions show ro-
bust performance?

First, the effect of the uncertain variables on the model behaviour and policy performance will be
discussed, and related to (epidemiological) conditions which may occur in actual responses. Next, the
different types of runtime behaviour generated by the various policies are studied and it is discussed
what consequences these have for the performance of a response strategy. The runtime behaviour
is also related to the outcome distributions and robustness scores of the different policies. The next
section discusses the limitations of the simulation model, both from a technical and humanitarian per-
spective. Finally, answers to the two sub-questions are formulated in the conclusion.

9.1. Uncertain Factors
One of the first key observations made in Chapter 8 is that the all-exploitation policy’s performance is
more sensitive to different scenarios than the all-exploration policy is. This is reflected in its outcome
distributions, which are much wider, and confirmed by the feature scoring results. To understand why
this is the case, we must consider what factors influence how exploitative and explorative decisions are
made. In choosing the region in which to place an ETC for an exploitative decision, the decision-maker
considers the epidemiological information it has available from all regions. In contrast, when choosing
regions which should be explored further, the decision-maker only considers their own experienced
level of uncertainty. Naturally, an exploitative decision is therefore more sensitive to factors that impact
the dynamics of the epidemic.

For both policies, the transmission rate had the strongest effect on their performance. Low trans-
mission rates were associated with poor performance in terms of effectiveness, and runtime analysis
shows why: regardless of the type of response, with low transmission rates the epidemic peaks at the
very start of the simulation run, before any ETCs are operational. As a result, a large proportion of
the total cases is missed by the response. For the all-exploitation policy, low transmission rates cause
another issue: due to the low case numbers, there is a significant chance that no spontaneous news
reaches the decision-maker. This results in the epidemic going completely unnoticed.

For the all-exploration policy, the highest range of transmission rate values also lead to poor per-
formance. Because the policy is insensitive towards the environment in which it operates, it always
follows the same course of action: until timestep 6, it sends out surveillance teams to explore hidden
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region. Only after that point in time it will start placing ETCs to further reduce uncertainty, but there is
no guarantee that these are placed in the hotspot regions. With high transmission rates, the epidemic
will have become so severe at this point in time that it cannot be tackled by the placement of ETCs in
random regions.

For the all-exploitation policy however, high transmission rates are associated with an effective
response. This is because the explosion of cases will ensure that the decision-maker receives spon-
taneous news early on in the course of the epidemic, and starts placing treatment centres accordingly.
Though the high transmission rate still causes a large number of cases to go untreated by the response
(see Figure 8.7), the number of cases the response is able to prevent through early intervention is larger
still.

However, these scenarios are also associated with poorer performance in the equity objectives.
Even though the decision-maker following an all-exploitation policy has, in these cases, a better situ-
ational overview thanks to spontaneous news and an early active presence, scores for equity in met
demand and equity in arrival time are low. This is the result of the response remaining concentrated
in the hotspot regions, even though the decision-maker is aware of the cases in neighbouring regions.
The behaviour seen in the model would be equivalent to a situation in which responders are so over-
whelmed by their efforts to meet demand in a certain region, that they cannot aid other areas. However,
this can lead to situations where a region with a small number of cases, which could have been easily
isolated, is ignored until the region has essentially become a new hotspot. This effect is exacerbated
when one of the initial hotspots also has a high number of initial cases.

Given the way in which the response of the all-exploitation policy remains concentrated around the
first hotspot regions it discovers, it is unsurprising that a high number of cases in region 4, which is iso-
lated from the other hotspot regions, negatively impacts its ability to contain the epidemic as a whole.
In reality, areas of demand could be isolated for a variety of regions - purely on a spatial level, such
as in the model, but also because an area has limited telecommunication infrastructure, or because of
distrust towards outsiders. Due to its passive nature, a fully exploitative policy often remains unaware
of these areas of demand or only stumbles upon them by chance. This can not only lead to the epi-
demic lasting longer, but also has serious implications in terms of equity, particularly when considering
that the reasons that make an area isolated are often related to poverty.

Summarizing, low transmission rates are associated with poor performance for both policy types
because the epidemic will have largely burnt out before the response can become properly active. For
exploitative policies, there is the additional problem that these types of epidemics can go by completely
unnoticed. This is particularly problematic when survivors still experience problems after they have
recovered and may require long-term support, as is the case for Ebola. The performance of the fully
exploitative policy is also impacted when a significant number of cases exists in an isolated region,
or when an epidemic develops quickly. In both cases, due to the passive nature of the response,
resources will remain concentrated in and around the first hotspot regions it discovers, leading to poor
performance in terms of equity and containment of the epidemic.

9.2. Behaviour and Performance of Policies
In this section, the runtime behaviour of the five policies will be related to their outcome distributions
and how the shape of their policy function causes the observed behaviour and outcomes. Based on
this discussion some conclusions are drawn on the merits of the different types of policies.

9.2.1. Exploitative Policies
The exploitative-661 policy starts out with a small chance (10%) of taking explorative actions, and in the
animated run (see Figure 8.13), this behaviour is visible. Therefore, it is dependent on a combination
of explorative actions and the reception of spontaneous news to identify regions in which to place
treatment centres. The merit of the explorative actions is based on luck - as soon as some regions
have been explored, the policy will become more exploitative, so only a handful of regions can be
targeted by these actions. However, as can also be seen in the outcome distribution for Effectiveness
(Figure 8.11) this does protect the response from scenarios in which the epidemic goes completely
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unnoticed.
Once the policy becomes fully exploitative, the response remains concentrated on the regions it has

already discovered. If isolated regions with a significant number of cases have not been discovered in
the earlier stage of the response, they response is likely to remain ignorant of them. As a result, the
exploitation-661 policy’s performance in terms of equity and containment is very similar to that of the
all-exploitation policy.

The exploitation-390 policy (see Appendix H for its runtime behaviour) is almost entirely exploita-
tive at high levels of uncertainty, and is therefore entirely dependent on spontaneous news in order to
launch a response. Therefore, this policy also comes with the risk of an epidemic occurring entirely
unnoticed, and this is reflected in its distribution of Effectiveness scores. Once a response is launched,
it remains focussed on placing treatment centres in the regions it is aware of. However, when a tipping
point in the level of uncertainty has been reached, it becomes fully explorative almost immediately, and
starts “sweeping” the remainder the regions using surveillance teams and later the placement of small
treatment centres. This provides the policy with an excellent situational overview later in the response,
but since it is now fully explorative, this information cannot be exploited effectively. However, since it
now starts placing ETCs in the remainder of the regions systematically, this does mean that the policy
performs well in terms of Equity in Arrival Time.

9.2.2. Explorative Policies
As the explorative-185 policy is fully exploitative until uncertainty is reduced to about 75%, it obtains a
good situational overview early in the simulation run. However, this knowledge is not exploited in the
first half of the simulation run due to is fully-explorative nature. Once its strategy has become mixed, it
can target the placement of treatment centres in exploitative decisions well. However, since it is also
still performing explorative actions, it is spending a lot of resources in an untargeted manner. These
resources are essentially wasted, since explorative actions at this stage of the response do not sig-
nificantly improve the existing situational awareness of the decision-maker. Additionally, every time
it performs an explorative action, it allows the epidemic to develop further in regions which have not
received (enough) treatment centres.

The explorative-141 policy also starts out fully-explorative, but moves to a mixed strategy at a much
higher level of uncertainty (about 90%). As a result, it also obtains a good situational overview, but is
able to start using this information much quicker than the explorative-185 policy. In the simulation runs
studied (see Figure 8.15), the explorative-141 policy makes it first exploitative decision to place and
ETC at timestep 3, whereas the other explorative policy only does so at timestep 6. This difference
in the effective use of situational awareness is also directly visible in the outcome distributions of the
two policies. In terms of Effectiveness, the explorative-141 policy’s optimal performance is significantly
better than that of the explorative-185 policy. This difference is even more pronounced in the Differ-
ence in Met Demand objective. However, the explorative-141 policy does have the same issue as the
explorative-185 policy in having a mixed policy for the remainder of the response, therefore wasting
resources on explorative actions which do not contribute significantly to the situational awareness.

9.2.3. Mixed Policy
Like the exploitation-661 policy, the mixed-148 policy depends on a combination of explorative actions
and the reception of spontaneous news to start its response. However, at this stage it is more explo-
rative than the exploitation-661, and as a result is even better at avoiding the worst outcomes in terms
of Effectiveness. Yet, because it switches to a fully-exploitative policy at lower levels of uncertainty, it is
able to reach almost the same optimal performance of the fully-exploitative policy in terms of Effective-
ness and Difference in Met Demand. Like the exploitative policies, it tends to remain focussed on the
hotspot regions and their neighbours as the response evolves. However, thanks to its explorative start
it has a high chance of being aware of any isolated regions. As a result, this policy is very active in its
placement of treatment centres even later in the response, which is also reflected in its performance
in terms of Time until Containment, which is better than that of the exploitative policies (i.e. fewer sce-
narios in which the epidemic is not contained at all).



70 9. Discussion

9.2.4. Value of the Different Policy Types
Overall, it can be concluded that though explorative policies have a much better situational overview
throughout the epidemic than the exploitative policies, they fail to use this knowledge to their advan-
tage as they overshoot the balance between explorative and exploitative actions. Likewise, there is no
added value in moving to an explorative strategy later in the response to find any remaining pockets
of disease, if the incoming information is not used effectively. However, explorative actions have the
important property that they protect against the absolute worst case scenario of an epidemic going
completely unnoticed.

A mixed approach, with some explorative actions at the start of the response, but an emphasis on
exploitative decisions seems to offer sufficient protection against these worst case scenarios while al-
lowing the obtained situational awareness to be used sufficiently. However, both with a fully-exploitative
strategy or one that emphasizes exploitation, the response is likely to remain mainly concentrated
around the first hotspot regions it becomes aware of. In terms of equity this has a negative effect, par-
ticularly if a disease spreads quickly. Though superspreading events have not been fully incorporated
in the simulation model (see Chapter 6), it is expected that this focus is more damaging in epidemics
in which superspreading events occur regularly. This is the case for any context in which infected indi-
viduals are still very mobile (i.e. due to a long incubation period) and in which the infectiousness of the
disease is high. In these contexts, the more exploitative policies are “blind” to what happens outside
their area of focus, which could have devastating consequences.

9.3. Robustness of the Policies
In the results section, the robustness scores of each of the five policies were presented, with the all-
exploitation policy acting as a reference for current practice. These results will be interpreted below,
including a discussion of their implications for an actual response.

Undesirable deviations is a regret-based measure - it asks: when it gets bad, how bad does it get?
Unsurprisingly, the exploitative policies score poorly in terms of effectiveness. Yet the use of resources
for uncertainty reduction, which make the explorative policies robust in terms of effectiveness, make
them vulnerable to high costs and poor performance in terms of equity in met demand. This is due to the
untargeted way in which these resources are placed. For equity in arrival time, the two policies which
are fully exploitative for longer periods of time score best, because they systematically send aid to each
region regardless of the epidemiological status of a region. The explorative and mixed policies are also
more robust in their ability to contain the epidemic, which can be ascribed to their high level of situa-
tional awareness. The all-exploitation policy is the exception here, but is likely caused by an issue in
how the Time until Containment score is calculated. This is discussed in more detail in the next section.

Overall, the most exploitative (all-exploitation) and explorative (exploration-185) policies are very
volatile, scoring well in terms of robustness on some objectives, and performing the worst for others.
The mixed policy is, in that sense, the most stable policy in terms of this robustness measure.

Starr’s Domain Criterion is a satisfying measure: it shows if the new policies meet the performance
of current practice, and how much better or worse they are. At a first glance, the results are grim: none
of the policies meet have higher median values for Effectiveness, Difference in Met Demand, or Time
until Containment. For the exploitative and mixed policies however, the difference in the robustness
score for Effectiveness is very small. Explorative policies never meet the optimal performance in terms
of Effectiveness and Difference in Met Demand because they overshoot the balance of exploring ver-
sus exploiting. Because Difference in Arrival Time is less sensitive to the proportionality of aid that is
received, the explorative policies perform well on this objective because they do establish a presence
in many regions relatively quickly. It should also be noted that the scores for Difference in Met Demand
are somewhat deceptive - the all-exploitation policy, and to a lesser extent the exploitation-661 policy
appear to score well on this objective, but these scores are skewed by cases of ‘equity in absence’,
which is not a desirable outcome. The exploitation-390 and mixed-148 policies manage to prevent
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these outcomes. If these equity in absence cases are ignored, the latter policies are likely to score
comparatively better in terms of robustness.

Perhaps the most notable outcome for Starr’s Domain Criterion is the fact that almost all policies
have a lower median in terms of cost. We already saw that the explorative policies had long tails in
terms of costs, causing them to score poorly on regret-based robustness in cost. However, Starr’s
Domain Criterion shows that in favourable scenarios, they are cheaper than the all-exploitation pol-
icy. The four policies that are more robust in terms of cost are all policies that start out with non-zero
chances of making an explorative decision. Apparently, the increase in situational awareness that this
provides means resources can be spent more efficiently later on in the response. Exploitation-390, the
only policy to score worse in terms of cost, does the exact opposite: it is fully exploitative early in the
response, and fully explorative later. However, these explorative decisions later in the response serve
no purpose, and as a result only cause costs to rise.

Starr’s domain criterion shows the trade-off between exploitative and explorative decisions well:
good situational overview can make a response more efficient and explorative decisions improve equity
in arrival times. However, spending resources on these actions in scenarios where the all-exploitative
policy performs well means that the optimal performance of that policy becomes unattainable.

In epidemics response, humanitarians and global health actors are likely to be risk-adverse, given
the devastating and far-reaching consequences of a failed response. This makes it tempting to as-
cribe more weight to the Undesirable Deviations robustness scores. However, in reality, the policies
that perform best on this measure require resources to be spent on decisions not directly related to
providing relief. This can be at odds with the humanitarian principle of humanity, and can also be hard
to explain to donors. It is more useful to consider what the two robustness measures represent when
both are taken into account: Undesirable Deviations robustness shows what policies are risk-adverse,
and the Starr’s Domain Criterion robustness shows what the trade-off is for this risk protection in terms
of what is lost in optimal performance.

With this in mind, the mixed-148 policy seems to find the balance in averting worst-case scenarios
while still maintaining an effective and efficient response. This can attributed to the situational aware-
ness it obtains by making explorative decisions early in the response, before becoming fully exploitative
in order to utilize this knowledge effectively.

9.4. Limitations
Several limitations and issues are identified in relation to the simulation model. The first is that the
epidemiological model does not make a distinction between rural and urban areas. The fact that higher
population densities can cause huge increases in transmissions is therefore not incorporated in the
model, though this was a relevant issue in the Ebola response, which saw a concentration of ETCs
near cities, a result of the fear of the epidemic becoming uncontrollable in an urban context (Interview
E, Interview C). This dimension in the spatial spread of a disease is lost in the model, though it can
have a considerable impact on the performance of a policy.

Some artefacts in the results were ascribed to a discrepancy between the definition of the simulation
model and the calculation of the objectives. For example, the exclusion of the lowest travel rates for
good performance in terms of Difference in Arrival Time, as discussed in Chapter 8.1.2. Another issue
lies with the formulation of the Time until Containment objective: once 70% of the cases are isolated,
this objective is considered to be met. However, if the isolation grade falls below this point afterwards,
this is not reflected in the model. In the simulation model, this allows for instances in which the objective
is met because all cases in region 14 and 15 are isolated early on, while the epidemic could still be
active and grow significantly in region 4. Therefore, the number of outcomes in which containment is
really achieved is likely smaller than currently represented by the model outcomes, particularly for the
explorative policies.

In terms of scope, the present study only considers the isolation and treatment dimension of the
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response. This is a necessary and reasonable delimitation of the problem given research perspective
of uncertainty reduction as a result of resource allocation as discussed in Chapter 3 and 6. However,
the focus of this scope limits the extent to which the results can be translated to a real-life epidemic,
particularly in the case of Ebola. Fear and distrust played a huge role in the spread of the epidemic in
2014 (see for example Interview B), and these same issues are arising again in the current outbreak
in the DRC (NOS, 2019). Community engangement was seen as a key component in stopping the
disease (M’Cormack-Hale et al., 2016; Médecins Sans Frontières, 2015). Perhaps most telling is that
almost all interview subjects, who had all been involved in the 2014 Ebola epidemic, brought up the
relevance of social and cultural factors in epidemics response without prompting. For example, in
interview A, the interviewee indicated “Now it seems like lots and lots of resources were assigned to
treat people, rather than preventing people from getting Ebola [...] they were looking for data in order to
set up ETUs and so on, but maybe they should instead have done more education activities”. Another
expert cited the point at which traditional burial rituals could be curbed as a turning point, saying the
extent to which community engagement played a role was a big eye-opener for them (Interview B).

The fact that these components are not incorporated in the model does not invalidate the model
outcomes on a theoretical level. It does, however, mean that strategies identified as a result of the
model can likely never be implemented optimally. In the words of one of the experts while the simu-
lation model was being discussed: “You can make models with all the possible parameters, but if a
community says no, then it’s really difficult” (Interview C). This is a major concern for the translation
between research and practice, since analysis has shown that small differences in policies can cause
large differences in outcomes (consider for example the big difference in performance between policy
185 and policy 141 in terms of Difference in Met Demand). Ensuring the limitations and assumptions
associated with the research results are communicated well to practitioners is therefore an important
aspect in bridging the gap between theory and practice (see also Interview F).

Another relevant limitation in terms of bridging the gap between research and practice is that some
policies might not be implemented on basis of principle. It is unlikely that humanitarian organisations
would be willing to participate in a fully explorative policy if it means knowingly ignoring identified de-
mand. Yet several of the identified policies require a fully explorative strategies at different moments
in time. A situation which might be acceptable on the basis of principle, is taking an explorative ap-
proach late in the response, when aid has already been provided to several regions. However, this has
been shown to be highly inefficient and resource intensive, which might make it hard to sell to national
governments, WHO Member States and humanitarian donors alike. These issues need to be carefully
considered when attempting to translate the research results to a more practical application.

9.5. Conclusion
The analysis of the results has provided the necessary information to answer the two sub-questions:

5. Given the simulation model, what is the influence of system uncertainties on the perfor-
mance of resource allocation policies?

The way in which the uncertain factors influence policy performance is dependent on the type of
policy. For both exploitative and explorative policies, the transmission rate is the most influential factor.
For the all-exploitation policy, high transmission rates are associated with good performance in terms
of effectiveness and efficiency, since the explosive nature of the epidemic means it will be discovered
quickly. However, high transmission rates have a negative effect on equity as these will cause the
response to remain concentrated on the hotspot regions. Since the all-exploration policy does not use
the information it obtains through its uncertainty-reducing actions, high transmission rates cause poor
performance since the epidemic will grow beyond control. The lowest transmission rates are associ-
ated with poor performance in terms of effectiveness and efficiency for both policies, as the epidemic
will have already peaked by the time the first ETCs become operational. For the all-exploitation pol-
icy, these conditions also bring the risk of the epidemic going completely unnoticed. Because the
all-exploitation policy often does not discover isolated hotspot regions, a high number of initial cases in
such a region negatively affects its ability to contain the epidemic quickly. Likewise, a high number of
cases in hotspot regions can cause the all-exploitation policy to perform poorly in terms of equity, as that
will cause efforts to be concentrated on those regions. These factors do not affect the all-exploration
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policy, as the policy’s resource allocation strategy does not use epidemiological information to deter-
mine where to send resources. This also explains why the all-exploration policy’s performance is less
sensitive to the uncertain factors than the all-exploitation policy.

6. Given the simulation model, which strategies for resource allocation decisions show ro-
bust performance?

The robustness of exploitative, mixed, and explorative strategies differs depending on what robust-
ness metrics are used. Generally, explorative policies are better at preventing the worst outcomes,
but this comes at the cost of lower optimal performance in the best scenarios due to the trade-off of
spending resources on exploration as well as direct treatment. Explorative policies are more robust
in their performance in terms of equity in arrival times, regardless of which measure is used. Overall,
mixed policies with an emphasis on exploitation at lower levels of uncertainty seem to be most robust.
Their explorative element prevents an epidemic from being discovered too late or not at all, while the
shift towards exploitative decisions later on in the response ensures known cases are treated.





10
Conclusion

10.1. Summary
This thesis has developed a spatial resource allocation model combined with a dynamic epidemiologi-
cal model in order to simulate sequential resource allocation decisions during an epidemic. Within this
model, deep uncertainty was incorporated in two ways: first, several uncertain input variables were
identified based on the case study of the 2014 Ebola epidemic. The effect of variation in these un-
certain factors was studied by considering multiple objectives related to the performance of allocation
strategies. Additionally, uncertainty was incorporated in-model by including uncertainty in the infor-
mation the decision-maker has available to make allocation decisions during runtime. Experienced
uncertainty can be reduced as the result of decisions.

A conceptualization of this uncertainty reduction was proposed, where a uniform range around a
ground truth is decreased based on factors relevant to the uncertain variable, i.e. time, the number of
cases, or the presence of an ETC in a neighbouring region. This conceptualization was translated into
the simulation model, in which each time step either an explorative action aimed at reducing uncertainty
can be taken, or an exploitative action aimed at isolating and treating cases. Which type of action is
taken is determined by a policy function which is dependent on the level of uncertainty experienced by
the decision-maker. By doing so it adds another dimension of deep uncertainty to the method of direct
policy search.

Exploratory modelling analysis has shown that the transmission rate is the most influential factor
in determining policy performance, as it is the dominant factor in terms of epidemiological dynamics.
High transmission rates are associated with good performance by exploitative policies, as “explosive”
epidemics have a higher chance of being discovered. Due to its passive nature, the exploitative pol-
icy is also sensitive to the initial distribution of cases over the regions. A high number of cases in an
isolated region causes the policy to fail to contain the epidemic, and if the initial situation in one of the
hotspot regions is severe, equity is lower as the response remains focussed on those regions. Since
it does not base its placement decisions on epidemiological factors, the all-exploration policy is less
sensitive to the uncertain factors. However, the transmission rate still has a considerable effect, since it
determines whether the epidemic can be contained with the untargeted placement of treatment centres
later in the response.

The different policy functions found by the MOEA used for policy search confirm that the connec-
tion between experienced uncertainty and decision strategies is relevant for epidemiological resource
allocation. Explorative policies tend to be more robust in terms of risk aversion and lead to greater situ-
ational awareness, but their optimal performance is not as high as that of the exploitative policies. This
is because they operate on a trade-off between using resources for isolation and treatment, and using
them for exploration. Explorative policies show better performance in equity in arrival times because
they distribute resources more evenly over the regions. However, despite having a better situational
overview on the location andmagnitude of demand than exploitative policies, explorative policies do not
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perform better in terms of equity in met demand because they spend too many resources on explorative
decisions rather than meeting known demand.

10.2. The value of explicitly incorporating uncertainty in resource
allocation strategies

In the previous chapters, each of the sub-questions formulated in Chapter 2 were answered. This
provides the information necessary to answer the main research question.

What is the value of explicitly incorporating uncertainty and its reduction by sequential
treatment centre placement decisions for epidemics response?

Primarily, the value of considering uncertainty and aiming to reduce it by taking explorative actions
is in reducing the risk of an epidemic being discovered too late, or not at all. This is most relevant
when epidemics develop slowly or when the regions in which the epidemic is taking place are isolated
from one another. However, since there is always a trade-off between how resources are spent, taking
explorative actions in a quickly evolving epidemic may actually lead to poorer performance, since more
lives could be saved by fully targeting the response on known cases.

Explorative strategies are also associated with higher equity in arrival times, because they distribute
resources over more regions. They also generate a better situational overview. Therefore, aiming to
reduce uncertainty is also valuable when considering the ethical principles associated with humani-
tarianism, because they provide decision-makers with a better overview of the situation to which they
are responding, allowing them to weigh different response options more carefully. Here the trade-off
between exploring and exploiting can also be problematic, as was seen for the equity in met demand
objective. Any benefit of having a better situational overview due to explorative actions is negated
because resources are not fully spent on meeting demand, causing the situation in hotspot regions to
spiral out of control while other regions are being explored. However, exploitative strategies can also
prove to be problematic for this objective, as they perform particularly poorly in contexts where some
regions are more likely to draw attention than others in the event of an epidemic, which could be the
case for richer regions, cities, or more densely populated areas.

When combining explorative and exploitative strategies in a response, the sequence in which the
types of decisions are made is important. In any case, making explorative decisions is only valuable if
they are, at some point in the future, followed by exploitative decisions. Otherwise, the (improved) sit-
uational awareness gained from uncertainty reduction is never used for targeted placement decisions.
The policies studied in this thesis suggest that a mixed strategy early in the response provides protec-
tion against the worst case scenarios, but the remainder of the response should be fully exploitative to
ensure the discovered cases are effectively treated.

10.3. Scientific Contribution
The scientific contribution of this thesis is two-fold. Its first contribution is that it applies deep uncer-
tainty methods to dynamic resource allocation for epidemics. As discussed in the literature review in
the first chapter, the effect different parametrizations of a model can have on the performance of an
allocation strategy are rarely considered systematically in resource allocation research for epidemics.
The outcomes of this thesis show that it is relevant to include them, because the performance of the
all-exploitation policy depended on the transmission rate and initial distribution of cases. Additionally,
the model developed in this thesis included multiple objectives, providing more in-depth insight in ben-
efits and drawbacks of different policies and an indication to which objectives are strongly related.

The second contribution of this thesis relates to its incorporation of uncertainty reduction as a result
of allocation decisions. This interaction was first considered for humanitarian logistics in a master thesis
by Romijn (2018), and is expanded on in this thesis by using the level of uncertainty as the variable on
which policy functions are based. By creating this “in-model” feedback mechanism, it introduces a new
dimension to the closed loop policies designed with direct policy search in deep uncertainty research.



10.4. Societal Relevance 77

As this method provided valuable insights, proving its validity, it has opened the door to a new way of
handling uncertainty within deep uncertainty research.

10.4. Societal Relevance
By exploring the strengths and vulnerabilities of an all-exploitation policy, which can be considered as an
approximation of current practice, this thesis has shown how disease and context-specific factors relate
to the performance of such an allocation strategy. This provides valuable insights to global health actors
and humanitarians alike, by showing in which types of scenarios current practice is at risk of performing
poorly in terms of effectiveness or equity. Additionally, by considering different strategies for resource
allocation, which also incorporate explorative actions to obtainmore information and reduce uncertainty,
this thesis provides the first insights in which strategies can be used to address the problems associated
with exploitative policies. Most significantly, incorporating explorative actions can prevent worst-case
scenarios in which resource allocation strategies fail to provide treatment, causing an epidemic to
spiral out of control. In light of the responsibility that the international community and humanitarian
organisations bear towards those in need, this is an important finding.

10.5. Future Research
Direct continuations of this work would be to study how the mixed policies are influenced differently
by the model uncertainties, which would lead to a deeper understanding of their performance under
varying conditions. Another model component that is worthy of more attention is the spontaneous news
mechanism. As outlined in the discussion, its impact on model outcomes is significant, which makes in-
vestigating model sensitivity to its function worthwhile. This could include different parametrisations of
the sigmoidal function which is currently used to represent this mechanism, as well as an investigation
into different function shapes or even completely different mechanisms. Additionally, the policy function
could be developed further. Currently, it is only dependent on the observed level of uncertainty, which
means that sometimes it makes choices which are obviously bad. Creating a two-dimensional policy
function which also takes into account the perceived number of cases is likely to improve the quality of
the policies significantly.

To my best knowledge, this study is the first to incorporate deep uncertainty in a spatial resource
allocation problem using a dynamic epidemiological model. The first steps made in this study have
shown the value of this approach, while throughout the research process many different aspects that
need further attention have been identified. Three perspectives for future research are outlined here.

The first avenue of future research is within the paradigm of deep uncertainty. This study showed
that explicitly incorporating system uncertainty from the perspective of the decision-maker in an adap-
tive policy is valuable. Since using the level of uncertainty as an input factor for policies is a novel idea,
there are many aspects which still require further research. One is to study how uncertainty is expe-
rienced by the decision-maker and how uncertainty is incorporated in their decisions. For example, in
this thesis the decision-maker had an estimated range with a uniform probability available for relevant
variables for decision-making, and the lower bound of this distribution was used to predict the number
of future cases. However, many different conceptualizations for the perception and use of uncertainty
by the decision-maker are possible. These can be context-dependent, though it is also worthwhile
to investigate how different conceptualizations for the same problem affect performance. Another as-
pect worth of future study is the reduction of uncertainty as a result of decisions. Clearly, if policies
are dependent on the level of uncertainty, uncertainty is expected to change over the course of the
decision-making window. However, how this uncertainty changes exactly needs to be studied further.
This thesis made a first attempt to base uncertainty reduction on factors supported by evidence, but
there is a lot of room for further improvement of this method. Additionally, in a dynamic environment it
is also possible for uncertainty to increase again after it is reduced. This adds a new dimension to the
interaction between decisions and the environment. Further study into any of these elements would
improve understanding on the interaction between decisions and changes in uncertainty. Finally, the
approach developed in this thesis can potentially be applied to many different decision problems, given
that there is an interaction between the level of uncertainty in the system and decisions made. Applying
the approach in different areas of decision making will create an understanding on which parts of the
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method can be generalized, and which parts require problem-specific tailoring. This can improve the
effectiveness of the approach and can also provide insights into the type of contexts or problems for
which it is valuable.

The second direction is in epidemiological modelling and response. This thesis has shown how a
response is affected by uncertain factors and how these relate to (un)desirable outcomes. The uncer-
tain factors used for this were chosen on the basis of the case study of the Ebola crisis, and might not
be present or relevant in other epidemics. Therefore, research aiming at identifying uncertain factors
related to different (types of) epidemics, and applying exploratory modelling techniques to study their
effect can lead to a better generalized understanding of how epidemics can evolve and what this means
for response performance.

Finally, from the perspective of humanitarian decision-makers the implications of exploitative versus
explorative strategies can be investigated further. The trade-off between these strategies as identi-
fied in this research raises value-based questions about responsibility toward affected populations in
combination with the decision-maker’s awareness of their suffering. To what extent are humanitarian
decision-makers responsible not just for providing relief to those in need, but also for finding affected
populations? Additionally, the difference in robustness for exploitative and explorative strategies also
raises questions about risk, and how much risk is acceptable when pursuing the best results. Under-
standing the implications of these different policies is a vital step in bridging the gap between theory
and practice.



References
Adams, V., Allié, M.-P., Burrier, P., Biedler, M., Bonis, E., de, Colebunder, R., … Sánchez, V.

(2016, April). OCB Ebola Review: Summary Report (Tech. Rep.). MSF - Stockholm Evalu-
ation Unit. Retrieved from https://evaluation.msf.org/sites/evaluation/files/
attachments/ocb_ebola_review_summary_report_final_3.pdf

Ahmadi-Javid, A., Seyedi, P., & Syam, S. S. (2017). A survey of healthcare facility location. Computers
& Operations Research, 79, 223–263.

Alirol, E., Getaz, L., Stoll, B., Chappuis, F., & Loutan, L. (2011). Urbanisation and infectious diseases
in a globalised world. Lancet Infect Dis, 11(2), 131-41. doi: 10.1016/s1473-3099(10)70223-1

Anparasan, A., & Lejeune, M. (2017). Resource deployment and donation allocation for epidemic
outbreaks. Annals of Operations Research, 1–24.

Atkins, K., E, Pandey, A., Wenzel, N., S, Skrip, L., Yamin, D., Nyenswah, T., G, … Altice, F., L (2016).
Retrospective analysis of the 2014–2015 Ebola epidemic in Liberia. The American journal of
tropical medicine and hygiene, 94(4), 833-839.

Auping, W. L., Pruyt, E., & Kwakkel, J. H. (2017). Simulating endogenous dynamics of intervention-
capacity deployment: Ebola outbreak in liberia. International Journal of Systems Science: Oper-
ations & Logistics, 4(1), 53–67.

Backer, J. A., & Wallinga, J. (2016, 12). Spatiotemporal analysis of the 2014 ebola epidemic in
west africa. PLOS Computational Biology, 12(12), 1-17. Retrieved from https://doi.org/
10.1371/journal.pcbi.1005210 doi: 10.1371/journal.pcbi.1005210

Balcik, B., & Beamon, B. M. (2008). Facility location in humanitarian relief. International Journal of
Logistics, 11(2), 101–121.

Bevere, L., Schwartz, M., Sharan, R., & Zimmerli, P. (2018). Natural catastrophes and man-made
disasters in 2017: a year of record-breaking losses. Sigma(1). Retrieved from https://
reliefweb.int/sites/reliefweb.int/files/resources/sigma1_2018_en.pdf

Bloom, D. E., Cadarette, D., & Sevilla, J. . (2018, June). Epidemics and Economics. Finance &
Development, 55(2). Retrieved from https://www.imf.org/external/pubs/ft/fandd/
2018/06/economic-risks-and-impacts-of-epidemics/bloom.htm

Brauer, F. (2008). Compartmental models in epidemiology. In F. Brauer, P. van den Driessche, & J. Wu
(Eds.), Mathematical epidemiology (pp. 19–79). Berlin, Heidelberg: Springer Berlin Heidelberg.
Retrieved from https://doi.org/10.1007/978-3-540-78911-6_2 doi: 10.1007/978-3
-540-78911-6_2

Bryant, B. P., & Lempert, R. J. (2010). Thinking inside the box: a participatory, computer-assisted
approach to scenario discovery. Technological Forecasting and Social Change, 77(1), 34–49.

Büyüktahtakın, . E., des Bordes, E., & Kıbış, E. Y. (2018). A new epidemics–logistics model: Insights
into controlling the Ebola virus disease in West Africa. European Journal of Operational Re-
search, 265(3), 1046 - 1063. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0377221717307683 doi: https://doi.org/10.1016/j.ejor.2017.08.037

Çelik, M., Ergun, Ö., Johnson, B., Keskinocak, P., Lorca, Á., Pekgün, P., & Swann, J. (2012). Hu-
manitarian logistics. In New directions in informatics, optimization, logistics, and production (pp.
18–49). INFORMS.

Centers for Disease Control and Prevention. (2011). Cholera in Haiti: One Year Later (Vol. 2019) (Web
Page No. 29 January). Website. Retrieved from https://www.cdc.gov/cholera/haiti/
haiti-one-year-later.html

Centers for Disease Control and Prevention. (2019, January). Ebola (Ebola Virus Disease) - Preven-
tion. Retrieved from https://www.cdc.gov/vhf/ebola/prevention/index.html (Ac-
cessed on 15 April 2019)

Charles, A., & Lauras, M. (2011). An enterprise modelling approach for better optimisation modelling:
application to the humanitarian relief chain coordination problem. OR spectrum, 33(3), 815–841.

Dalal, S., Han, B., Lempert, R., Jaycocks, A., & Hackbarth, A. (2013). Improving scenario discovery
using orthogonal rotations. Environmental modelling & software, 48, 49–64.

79

https://evaluation.msf.org/sites/evaluation/files/attachments/ocb_ebola_review_summary_report_final_3.pdf
https://evaluation.msf.org/sites/evaluation/files/attachments/ocb_ebola_review_summary_report_final_3.pdf
https://doi.org/10.1371/journal.pcbi.1005210
https://doi.org/10.1371/journal.pcbi.1005210
https://reliefweb.int/sites/reliefweb.int/files/resources/sigma1_2018_en.pdf
https://reliefweb.int/sites/reliefweb.int/files/resources/sigma1_2018_en.pdf
https://www.imf.org/external/pubs/ft/fandd/2018/06/economic-risks-and-impacts-of-epidemics/bloom.htm
https://www.imf.org/external/pubs/ft/fandd/2018/06/economic-risks-and-impacts-of-epidemics/bloom.htm
https://doi.org/10.1007/978-3-540-78911-6_2
http://www.sciencedirect.com/science/article/pii/S0377221717307683
http://www.sciencedirect.com/science/article/pii/S0377221717307683
https://www.cdc.gov/cholera/haiti/haiti-one-year-later.html
https://www.cdc.gov/cholera/haiti/haiti-one-year-later.html
https://www.cdc.gov/vhf/ebola/prevention/index.html


80 References

Dasaklis, T. K., Pappis, C. P., & Rachaniotis, N. P. (2012). Epidemics control and logistics operations:
A review. International Journal of Production Economics, 139(2), 393–410.

Dasaklis, T. K., Rachaniotis, N., & Pappis, C. (2017). Emergency supply chain management for con-
trolling a smallpox outbreak: the case for regional mass vaccination. International Journal of
Systems Science: Operations & Logistics, 4(1), 27–40.

Diallo, B., & Dilorenzo, S. (2014, September 8 2014). Ebola virus is surging in places where
it was beaten back: experts (Vol. 2019) (Web Page No. 18 Febuary). Retrieved from
https://www.ctvnews.ca/health/ebola-virus-is-surging-in-places-where
-it-was-beaten-back-experts-1.1996179

Gettleman, J. (2014, Dec. 7). As ebola rages, poor planning thwarts efforts [Newspaper Ar-
ticle]. Retrieved from https://www.nytimes.com/2014/12/07/world/africa/
as-ebola-rages-in-sierra-leone-poor-planning-thwarts-efforts.html
?action=click&module=RelatedCoverage&pgtype=Article&region=Footer

Gholipour, B. (2013, 26 November). What 11 Billion People Mean for Disease Outbreaks [Newspa-
per Article]. Retrieved from https://www.scientificamerican.com/article/what-11
-billion-people-mean-disease-outbreaks/

Giuliani, M., Castelletti, A., Pianosi, F., Mason, E., & Reed, P., M. (2015). Curses, tradeoffs, and scal-
able management: Advancing evolutionary multiobjective direct policy search to improve water
reservoir operations. Journal of Water Resources Planning and Management, 142(2).

Haasnoot, M., Warren, A., & Kwakkel, J. H. (2019). Dynamic adaptive policy pathways (dapp). In
V. A. W. J. Marchau, W. E. Walker, P. J. T. M. Bloemen, & S. W. Popper (Eds.), Decision
making under deep uncertainty: From theory to practice (pp. 71–92). Cham: Springer Inter-
national Publishing. Retrieved from https://doi.org/10.1007/978-3-030-05252-2_4
doi: 10.1007/978-3-030-05252-2_4

Hadka, D., & Reed, P. (2013). Borg: An auto-adaptive many-objective evolutionary computing frame-
work. Evolutionary computation, 21(2), 231–259.

Harman, S., & Wenham, C. (2018). Governing ebola: between global health and medical human-
itarianism. Globalizations, 15(3), 362-376. Retrieved from https://doi.org/10.1080/
14747731.2017.1414410 doi: 10.1080/14747731.2017.1414410

He, Y., & Liu, N. (2015). Methodology of emergency medical logistics for public health emergencies.
Transportation Research Part E: Logistics and Transportation Review, 79, 178–200.

Hilhorst, D. (2005). Dead letter or living document? Ten years of the Code of Conduct for disaster
relief. Disasters, 29(4), 351–369. Retrieved 2019-03-20TZ, from https://onlinelibrary
.wiley.com/doi/abs/10.1111/j.0361-3666.2005.00297.x doi: 10.1111/j.0361-3666
.2005.00297.x

Holguín-Veras, J., Jaller, M., Van Wassenhove, L. N., Pérez, N., & Wachtendorf, T. (2012). On the
unique features of post-disaster humanitarian logistics. Journal of OperationsManagement, 30(7-
8), 494–506.

Huang, K., Jiang, Y., Yuan, Y., & Zhao, L. (2015, March). Modeling multiple humanitarian objec-
tives in emergency response to large-scale disasters. Transportation Research Part E: Lo-
gistics and Transportation Review, 75, 1–17. Retrieved 2019-03-24TZ, from http://www
.sciencedirect.com/science/article/pii/S136655451400204X doi: 10.1016/j.tre
.2014.11.007

Kaner, J., & Schaack, S. (2016). Understanding Ebola: The 2014 Epidemic. Globalization and health,
12(1), 53.

Karlsen, A., & Kruke, B. I. (2018). The role of uncertainty during the ebola pandemic in western africa
(2014–2016). Journal of Extreme Events, 05(01), 1850009. Retrieved from https://doi.org/
10.1142/S2345737618500094 doi: 10.1142/S2345737618500094

Kucharski, A. J., Camacho, A., Flasche, S., Glover, R. E., Edmunds, J. W., & Funk, S. (2015). Measur-
ing the impact of Ebola control measures in Sierra Leone. Proceedings of the National Academy
of Sciences, 112(46), 14366-14371.

Kwakkel, J. H. (2017). The exploratory modeling workbench: An open source toolkit for exploratory
modeling, scenario discovery, and (multi-objective) robust decision making. Environmental mod-
elling & software, 96, 239–250.

Lempert, R. J. (2003). Shaping the next one hundred years: new methods for quantitative, long-term
policy analysis. Rand Corporation.

https://www.ctvnews.ca/health/ebola-virus-is-surging-in-places-where-it-was-beaten-back-experts-1.1996179
https://www.ctvnews.ca/health/ebola-virus-is-surging-in-places-where-it-was-beaten-back-experts-1.1996179
https://www.nytimes.com/2014/12/07/world/africa/as-ebola-rages-in-sierra-leone-poor-planning-thwarts-efforts.html?action=click&module=RelatedCoverage&pgtype=Article&region=Footer
https://www.nytimes.com/2014/12/07/world/africa/as-ebola-rages-in-sierra-leone-poor-planning-thwarts-efforts.html?action=click&module=RelatedCoverage&pgtype=Article&region=Footer
https://www.nytimes.com/2014/12/07/world/africa/as-ebola-rages-in-sierra-leone-poor-planning-thwarts-efforts.html?action=click&module=RelatedCoverage&pgtype=Article&region=Footer
https://www.scientificamerican.com/article/what-11-billion-people-mean-disease-outbreaks/
https://www.scientificamerican.com/article/what-11-billion-people-mean-disease-outbreaks/
https://doi.org/10.1007/978-3-030-05252-2_4
https://doi.org/10.1080/14747731.2017.1414410
https://doi.org/10.1080/14747731.2017.1414410
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0361-3666.2005.00297.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0361-3666.2005.00297.x
http://www.sciencedirect.com/science/article/pii/S136655451400204X
http://www.sciencedirect.com/science/article/pii/S136655451400204X
https://doi.org/10.1142/S2345737618500094
https://doi.org/10.1142/S2345737618500094


References 81

Liberatore, F., Pizarro, C., de Blas, C. S., Ortuño, M. T., & Vitoriano, B. (2013). Uncertainty in Hu-
manitarian Logistics for Disaster Management. A Review. In B. Vitoriano, J. Montero, & D. Ruan
(Eds.), Decision aid models for disaster management and emergencies (pp. 45–74). Paris: At-
lantis Press. Retrieved from https://doi.org/10.2991/978-94-91216-74-9_3 doi:
10.2991/978-94-91216-74-9_3

Liu, M., & Zhang, D. (2016). A dynamic logistics model for medical resources allocation in an epidemic
control with demand forecast updating. Journal of the Operational Research Society, 67(6), 841–
852.

Mbah, M. L. N., & Gilligan, C. A. (2011). Resource allocation for epidemic control in metapopulations.
PLoS One, 6(9), e24577.

McNiel, D. G., Jr. (2015, January). Ebola Doctors Are Divided on IV Therapy in Africa. On-
line Newspaper Article. Retrieved from https://www.nytimes.com/2015/01/02/health/
ebola-doctors-are-divided-on-iv-therapy-in-africa.html (Accessed 19 April
2019)

M’Cormack-Hale, F., Lavali, A., & Magbity, E. (2016, March). Dutch Relief Assistance to Ebola in West
Africa: An Independent Evaluation (Tech. Rep.). Institute for Governance Reform (IGR), Sierra
Leone. Retrieved from https://www.terredeshommes.nl/sites/tdh/files/visual
_select_file/copy_of_nl_2017_05_15_jre_final_evaluation_report.pdf

McPhail, C., Maier, H., Kwakkel, J., Giuliani, M., Castelletti, A., & Westra, S. (2018). Robustness
metrics: How are they calculated, when should they be used and why do they give different
results? Earth’s Future, 6(2), 169–191.

Médecins Sans Frontières. (2015). Ebola: Pushed to the limit and beyond. Retrieved from https://
www.msf.org/ebola-pushed-limit-and-beyond (Accessed April 5 2019)

Meltzer, M. I., Atkins, C. Y., Santibanez, S., Knust, B., Petersen, B. W., Ervin, E. D., … Washington,
M. L. (2014). Estimating the future number of cases in the Ebola epidemic–Liberia and Sierra
Leone, 2014–2015. MMWR. Morbidity and Mortality Weekly Report, 63(3).

Memarzadeh, M., & Pozzi, M. (2016). Value of information in sequential decision making: Component
inspection, permanent monitoring and system-level scheduling. Reliability Engineering & System
Safety, 154, 137-151.

Moon, S., Sridhar, D., Pate, M. A., Jha, A. K., Clinton, C., Delaunay, S., … Piot, P. (2015, Novem-
ber). Will Ebola change the game? Ten essential reforms before the next pandemic. The re-
port of the Harvard-LSHTM Independent Panel on the Global Response to Ebola. The Lancet,
386(10009), 2204–2221. Retrieved CURRENT_TIMESTAMP, from https://www.thelancet
.com/journals/lancet/article/PIIS0140-6736(15)00946-0/abstract doi: 10
.1016/S0140-6736(15)00946-0

Murali, P., Ordóñez, F., & Dessouky, M. M. (2012). Facility location under demand uncertainty: Re-
sponse to a large-scale bio-terror attack. Socio-Economic Planning Sciences, 46(1), 78–87.

NOS. (2019). Ebola in Congo: waarom is het wantrouwen zo groot? [Ebola in Congo: why is distrust so
severe?]. Online News Article. Retrieved from https://nos.nl/artikel/2288916-ebola
-in-congo-waarom-is-het-wantrouwen-zo-groot.html

Nyenswah, T., Fahnbulleh, M., Massaquoi, M., Nagbe, T., Bawo, L., Falla, J. D., … others (2014).
Ebola epidemic—Liberia, March–October 2014. MMWR. Morbidity and Mortality Weekly Report,
63(46), 1082.

Payne, E. (2014, September 12 2014). West African health centres can’t keep up with Ebola oubeak,
WHO says (Vol. 2019) (Web Page No. 19 Febuary). Retrieved from https://edition.cnn
.com/2014/09/12/health/ebola-outbreak/index.html

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016).
Sensitivity analysis of environmental models: A systematic review with practical workflow. Envi-
ronmental Modelling & Software, 79, 214–232.

Quinn, J., D, Reed, P., M, & Keller, K. (2017). Direct policy search for robust multi-objective manage-
ment of deeply uncertain socio-ecological tipping points. Environmental Modelling & Software,
92, 125-141.

Rachaniotis, N. P., Dasaklis, T. K., & Pappis, C. (2017). Controlling infectious disease outbreaks: A
deterministic allocation-scheduling model with multiple discrete resources. Journal of Systems
Science and Systems Engineering, 26(2), 219–239.

Rachaniotis, N. P., Dasaklis, T. K., & Pappis, C. P. (2012). A deterministic resource scheduling model

https://doi.org/10.2991/978-94-91216-74-9_3
https://www.nytimes.com/2015/01/02/health/ebola-doctors-are-divided-on-iv-therapy-in-africa.html
https://www.nytimes.com/2015/01/02/health/ebola-doctors-are-divided-on-iv-therapy-in-africa.html
https://www.terredeshommes.nl/sites/tdh/files/visual_select_file/copy_of_nl_2017_05_15_jre_final_evaluation_report.pdf
https://www.terredeshommes.nl/sites/tdh/files/visual_select_file/copy_of_nl_2017_05_15_jre_final_evaluation_report.pdf
https://www.msf.org/ebola-pushed-limit-and-beyond
https://www.msf.org/ebola-pushed-limit-and-beyond
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(15)00946-0/abstract
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(15)00946-0/abstract
https://nos.nl/artikel/2288916-ebola-in-congo-waarom-is-het-wantrouwen-zo-groot.html
https://nos.nl/artikel/2288916-ebola-in-congo-waarom-is-het-wantrouwen-zo-groot.html
https://edition.cnn.com/2014/09/12/health/ebola-outbreak/index.html
https://edition.cnn.com/2014/09/12/health/ebola-outbreak/index.html


82 References

in epidemic control: A case study. European Journal of Operational Research, 216(1), 225–231.
Ren, Y., Ordóñez, F., & Wu, S. (2013). Optimal resource allocation response to a smallpox outbreak.

Computers & Industrial Engineering, 66(2), 325–337.
Rivers, C. M., Lofgren, E. T., Marathe, M., Eubank, S., & Lewis, B. L. (2014). Modeling the impact of

interventions on an epidemic of ebola in sierra leone and liberia. PLoS currents, 6.
Romijn, T. (2018). Deep Uncertainty in Humanitarian Logistics: Simulation and Analysis of the Interplay

between Decisions and Uncertainty for Post-Disaster Facility Location Decisions (Unpublished
master’s thesis). Delft University of Technology.

Scarpino, S. V., Iamarino, A., Wells, C., Yamin, D., Ndeffo-Mbah, M., Wenzel, N. S., … others (2014).
Epidemiological and viral genomic sequence analysis of the 2014 Ebola outbreak reveals clus-
tered transmission. Clinical Infectious Diseases, 60(7), 1079–1082.

Secretariat of the World Health Organization. (2015). The role of who in the united nations mis-
sion for ebola emergency response. WHO. Retrieved from https://www.who.int/csr/
resources/publications/ebola/who-unmeer.pdf (Accessed on 20 May 2019)

Sánchez Carrera, V. (2015). EBOLA REVIEW Ebola Treatment Centres: design and
construction PART I –Evaluation outcomes (Tech. Rep.). MSF. Retrieved from
http://evaluation.msf.org/sites/evaluation/files/attachments/seu_ebola
_report_etc_design_and_construction_part_i_final_0.pdf

Sphere Association, et al. (2018). Sphere handbook: Humanitarian charter and minimum standards in
humanitarian response. PRACTICAL ACTION.

Statistics Sierra Leone. (n.d.). 2015 population and housing census summary of final results [Online
PDF].

United Nations. (2017, 21 June 2017). World population projected to reach 9.8 billion in 2050,
and 11.2 billion in 2100 [Press Release]. Webpage. Retrieved from https://www.un.org/
development/desa/en/news/population/world-population-prospects-2017
.html

United Nations. (2019). UN Mission for Ebola Emergency Response (UNMEER). Retrieved
from https://ebolaresponse.un.org/un-mission-ebola-emergency-response
-unmeer (Accessed on 20 March 2019)

UNOCHA. (2014, September). Sierra leone: Humanitarian operational presence against the ebola epi-
demic (as of 1 sep 2014). Retrieved from https://reliefweb.int/map/sierra-leone/
sierra-leone-humanitarian-operational-presence-against-ebola-epidemic
-3-sep-2014 (Accessed on 17 June 2019)

van der Laan, E., van Dalen, J., Rohrmoser, M., & Simpson, R. (2016). Demand forecasting and order
planning for humanitarian logistics: An empirical assessment. Journal of Operations Manage-
ment, 45, 114–122.

Vetter, P., Dayer, J.-A., Schibler, M., Allegranzi, B., Brown, D., Calmy, A., … Pittet, D. (2016, May 05).
The 2014–2015 ebola outbreak in west africa: Hands on. Antimicrobial Resistance & Infection
Control, 5(1), 17. Retrieved from https://doi.org/10.1186/s13756-016-0112-9 doi:
10.1186/s13756-016-0112-9

Wanying, C., Alain, G., & Angel, R. (2016). Modeling the logistics response to a bioterrorist anthrax
attack. European Journal of Operational Research, 254(2), 458–471.

WHO Ebola Response Team. (2014). Ebola virus disease in West Africa—the first 9 months of the
epidemic and forward projections. New England Journal of Medicine, 371(16), 1481–1495.

WHO Ebola Response Team. (2016). After ebola in west africa — unpredictable risks, preventable
epidemics. New England Journal of Medicine, 375(6), 587-596. Retrieved from https://doi
.org/10.1056/NEJMsr1513109 (PMID: 27509108) doi: 10.1056/NEJMsr1513109

World Health Organization. (2003). Climate change and human health (Report). Author. Retrieved
from http://www.who.int/globalchange/climate/summary/en/index5.html

World Health Organization. (2014a). Basic documents (48th ed.). WHO,. Retrieved
from http://apps.who.int/gb/bd/PDF/bd48/basic-documents-48th-edition-en
.pdf#page=1 (Accessed on April 5 2019)

World Health Organization. (2014b). Ebola Responde Roadmap (August 28 2014). World Health
Organization. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/
131596/EbolaResponseRoadmap.pdf?sequence=1 (Accessed April 5 2019)

World Health Organization. (2014c, 10 December). Ebola Response Roadmap Situation

https://www.who.int/csr/resources/publications/ebola/who-unmeer.pdf
https://www.who.int/csr/resources/publications/ebola/who-unmeer.pdf
http://evaluation.msf.org/sites/evaluation/files/attachments/seu_ebola_report_etc_design_and_construction_part_i_final_0.pdf
http://evaluation.msf.org/sites/evaluation/files/attachments/seu_ebola_report_etc_design_and_construction_part_i_final_0.pdf
https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html
https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html
https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html
https://ebolaresponse.un.org/un-mission-ebola-emergency-response-unmeer
https://ebolaresponse.un.org/un-mission-ebola-emergency-response-unmeer
https://reliefweb.int/map/sierra-leone/sierra-leone-humanitarian-operational-presence-against-ebola-epidemic-3-sep-2014
https://reliefweb.int/map/sierra-leone/sierra-leone-humanitarian-operational-presence-against-ebola-epidemic-3-sep-2014
https://reliefweb.int/map/sierra-leone/sierra-leone-humanitarian-operational-presence-against-ebola-epidemic-3-sep-2014
https://doi.org/10.1186/s13756-016-0112-9
https://doi.org/10.1056/NEJMsr1513109
https://doi.org/10.1056/NEJMsr1513109
http://www.who.int/globalchange/climate/summary/en/index5.html
http://apps.who.int/gb/bd/PDF/bd48/basic-documents-48th-edition-en.pdf#page=1
http://apps.who.int/gb/bd/PDF/bd48/basic-documents-48th-edition-en.pdf#page=1
https://apps.who.int/iris/bitstream/handle/10665/131596/EbolaResponseRoadmap.pdf?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/131596/EbolaResponseRoadmap.pdf?sequence=1


References 83

Report (December 10) (Report). Author. Retrieved from https://apps.who.int/
iris/bitstream/handle/10665/145198/roadmapsitrep_10Dec2014_eng.pdf;
jsessionid=6C37FB855BD0CD36412097F3BE49302B?sequence=1

World Health Organization. (2014, August). Ebola Strategy - Ebola and Marburg virus disease epi-
demics: preparedness, alert, control and evaluation (techreport). World Health Organization,.
Retrieved from https://apps.who.int/iris/bitstream/handle/10665/130160/WHO
_HSE_PED_CED_2014.05_eng.pdf?sequence=1 (Accessed 10 April 2019)

World Health Organization. (2014, September). WHO: Ebola response roadmap update 26 septem-
ber 2014. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/
135029/roadmapupdate26sept14_eng.pdf (Accessed on 21 March 2019)

World Health Organization. (2016). Ebola data and statistics - Latest Sierra Leone data in CSV, as
of May 11 2016. CSV-file. Retrieved from http://apps.who.int/gho/data/view.ebola
-sitrep.ebola-country-GIN-latest-download

World Health Organization. (2018, October). Ebola virus disease - Frequently Asked Questions. Re-
trieved from https://www.who.int/ebola/drc-2018/faq-vaccine/en/ (Accessed on
15 April 2019)

World Health Organization. (2019). What We Do. Web page. Retrieved from https://www.who
.int/about/what-we-do (Accessed April 5 2019)

World Health Organization, & Centers for Disease Control and Prevention. (2015). Implementation and
management of contact tracing for Ebola virus disease (Tech. Rep.). World Health Organization.
Retrieved from https://apps.who.int/iris/bitstream/handle/10665/185258/WHO
_EVD_Guidance_Contact_15.1_eng.pdf?sequence=1 (Accessed 10 April 2019)

World Health Organization and others. (2014). Ebola and Marburg virus disease epidemics:
preparedness, alert, control, and evaluation (Tech. Rep.). World Health Organization.
Retrieved from https://apps.who.int/iris/bitstream/handle/10665/130160/WHO
_HSE_PED_CED_2014.05_eng.pdf?sequence=1 (Accessed 10 April 2019)

Yang, J., & Leskovec, J. (2010, December). Modeling Information Diffusion in Implicit Networks. In
2010 IEEE International Conference on Data Mining (p. 599-608). doi: {10.1109/ICDM.2010.22}

https://apps.who.int/iris/bitstream/handle/10665/145198/roadmapsitrep_10Dec2014_eng.pdf;jsessionid=6C37FB855BD0CD36412097F3BE49302B?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/145198/roadmapsitrep_10Dec2014_eng.pdf;jsessionid=6C37FB855BD0CD36412097F3BE49302B?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/145198/roadmapsitrep_10Dec2014_eng.pdf;jsessionid=6C37FB855BD0CD36412097F3BE49302B?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/130160/WHO_HSE_PED_CED_2014.05_eng.pdf?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/130160/WHO_HSE_PED_CED_2014.05_eng.pdf?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/135029/roadmapupdate26sept14_eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/135029/roadmapupdate26sept14_eng.pdf
http://apps.who.int/gho/data/view.ebola-sitrep.ebola-country-GIN-latest-download
http://apps.who.int/gho/data/view.ebola-sitrep.ebola-country-GIN-latest-download
https://www.who.int/ebola/drc-2018/faq-vaccine/en/
https://www.who.int/about/what-we-do
https://www.who.int/about/what-we-do
https://apps.who.int/iris/bitstream/handle/10665/185258/WHO_EVD_Guidance_Contact_15.1_eng.pdf?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/185258/WHO_EVD_Guidance_Contact_15.1_eng.pdf?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/130160/WHO_HSE_PED_CED_2014.05_eng.pdf?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/130160/WHO_HSE_PED_CED_2014.05_eng.pdf?sequence=1




A
List of Abbreviations used in this Thesis

CDC Centre for Disease Control

CI Confidence Interval

ETC Ebola Treatment Centre (equivalent to ETU, an Ebola Treatment Unit)

EVD Ebola Virus Disease

DPS Direct Policy Search

IFRC International Federation of Red Cross and Red Crescent Societies

MOEA Many-Objective Evolutionary Algorithm

MORDM Many-Objective Robust Decision-Making

NGO Non-Governmental Organisation

MSF Médecines sans Frontières

PCA Principal Component Analysis

PRIM Patient Rule Induction Method

UN United Nations

UNMEER United Nations Mission for Ebola Emergency Response

UNOCHA United Nations Office for the Coordination of Humanitarian Affairs

WHO World Health Organization

85





B
Uncertainty Reduction - Lookup Tables
and Functions used in the Simulation

Model
Lookup Tables for the reduction in uncertainty on the number of infections in a region:

Uncertainty reduction for a 100-bed ETC:

Timsteps after

placement decision
1 2 3 4 5 6 7 8 9 10 11 12

% of uncertainty remaining 100 95 90 85 75 70 50 32.5 25 22.5 21 20

Uncertainty reduction for 50-bed ETC:

Timsteps after

placement decision
1 2 3 4 5 6 7 8 9 10

% of uncertainty remaining 100 95 85 70 50 32.5 25 22.5 21 20

Uncertainty reduction for 10-bed ETC:

Timsteps after

placement decision
1 2 3 4 5 6 7 8

% of uncertainty remaining 100 95 70 55 45 37.5 32.5 30

Function for the reduction in uncertainty of the transmission rate:

% 𝑜𝑓 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = 𝑒ዅ፧/ኻ኿ × 100

where 𝑛 is the cumulative number of patients. If 𝑛 > 100, uncertainty is reduced to 0%.
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C
Simulation Model Objectives

In order to calculate the Effectiveness objective, the epidemiological model is run a second time to gen-
erate the number of deaths that would have existed with no response. The number of deaths observed
in the simulation of the actual response is then simply divided by this number, producing the percent-
age of people saved by the response. The efficiency ratio is also calculated with this percentage, by
dividing it by the total costs accumulated over the response.

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 𝑑𝑒𝑎𝑡ℎ𝑠፨፛፬፞፫፯፞፝
𝑑𝑒𝑎𝑡ℎ𝑠፧፨ ፫፞፬፩፨፧፬፞

𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝐷𝑒𝑎𝑡ℎ 𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑒𝑑 = 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡

The speed objective is implemented in the exact way it was formulated in Chapter 3 and requires
not further explanation.

The two equity objectives are calculated as follows:
For Equity in Met Demand, the cummulative number of patients 𝑛፩ is divided by the total number of
cases 𝑛፜ for each region 𝑖.

𝑚። =
𝑛፩
𝑛፜

The average value of this ratio is then calculated, and the objective score is the sum over all regions
𝑅 of the square differences between this average and the regional value for all regions. The lower the
value of this sum, the better.

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑀𝑒𝑡 𝐷𝑒𝑚𝑎𝑛𝑑 =
ፑ

∑
።዆ኺ
(𝑚ፚ፯፠ −𝑚።)ኼ

For Equity in Arrival Times, the onset of demand 𝑡፨፧፬፞፭ for each region 𝑖 is taken as the first timestep
at which more than 0 infections exist in that region. The difference between onset of demand and
the time at which an ETC first becomes operational (𝑡፦፞፭) is calculated for each region. If no ETC
is operational before the end of the simulation the difference between onset of demand and the last
timestep is taken. As for Equity in Met Demand, the average value over all regions is then calculated
and the square differences are summed to produce the objective outcome value.
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𝑎። = 𝑡፦፞፭ − 𝑡፨፧፬፞፭

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 =
ፑ

∑
።዆ኺ

= (𝑎ፚ፯፠ − 𝑎።)ኼ



D
Simulation Model Parametrization

The values of the model constants (taken from Büyüktahtakın et al. (2018) unless otherwise indicated)
are:
𝑓፰።፭፡፨፮፭ ፭፫፞ፚ፭፦፞፧፭ ∶ 0.31
𝑓፰።፭፡ ፭፫፞ፚ፭፦፞፧፭ ∶ 0.24
𝑡፝፞ፚ፭፡ ፰።፭፡፨፮፭ ፭፫፞ፚ፭፦፞፧፭ ∶ 2.5(𝑤𝑒𝑒𝑘𝑠)
𝑡፫፞፜፨፯፞፫፲ ፰።፭፡፨፮፭ ፭፫፞ፚ፭፦፞፧፭ ∶ 2.85
𝑡፝፞ፚ፭፡ ፰።፭፡ ፭፫፞ፚ፭፦፞፧፭ ∶ 2.5
𝑡፫፞፜፨፯፞፫፲ ፰።፭፡ ፭፫፞ፚ፭፦፞፧፭ ∶ 2.37
𝑟፬ፚ፟፞ ፛፮፫።ፚ፥ ∶ 0.64(Estimated from Rivers et al. (2014))
𝛽 ∶ 0.73

Where 𝑓 are the fatalitiy rates, 𝑡 is the time in weeks until recovery or death, 𝑟፬ፚ፟፞ ፛፮፫።ፚ፥ is the safe
burial rate and 𝛽 is the transmission rate at a traditional funeral.

All regions except region 4, 14, and 15 start with 0 initial cases. For the number of susceptible
people in each region, population data of Sierra Leone from 2015 is used (Statistics Sierra Leone,
n.d.). The 4-by-4 grid is initialized with this data, with each grid cell corresponding to a district. During
the 2014 epidemic, Sierra Leone had 14 districts, so two larger districts are split. This is purely done
due to the practical requirement of having a square grid. The population data are shown in Table D.1.
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No. Region Name Population

0 Kambia 345.474

1 Bombali #1 303.272

2 Koinadugu #1 204.686

3 Koinadugu #2 204.686

4 Porto Loko 615.376

5 Bombali #2 303.272

6 Tonkolili 531.435

7 Kono 506.100

8
Western Area

(Urban)
1.055.964

9
Western Area

(Rural)
444.270

10 Moyamba 318.588

11 Bo 575.478

12 Bonthe 200.781

13 Pujehun 346.461

14 Kenema 609.893

15 Kailahun 526.379

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Table D.1: Table showing the initial number of susceptible individuals in each region.



E
Validation of the Ensemble Size

All simulations were run with 2500 scenarios and 50 replications per scenario. In order to confirm that
this ensemble of scenarios is large enough to draw valid results from in terms of model behaviour, con-
vergence of a sensitivity analysis test was tested as suggested by Pianosi et al. (2016). As Difference
in Arrival Time was found to be sensitive to several factors, and given that it showed a wide distribution
of results, this objective was chosen for the test. The motivation for this choice is that if convergence is
shown for this objective, it will also be present in objectives which are strongly influenced by only one
or a few factors, which should lead to quicker convergence.

Feature scoring was carried out with the outcomes of the all-exploitation policy for arrival times be-
low 850, the results of which are shown in Figure E.1. Between 500 and 2000 scenarios the results
seem stable, though variation in the feature scores occurs again after 2000 scenarios. Still, the order-
ing of the of the factor influence is stable, which is considered essential Though full convergence would
be ideal, it is concluded that an ensemble size of 2500 scenarios leads to acceptable results, especially
considering that a more volatile objective was chosen as a test.

The all-exploitation policy is deterministic, but the policies defined by the RBFs have a stochastic
element as they provide the probability with which an explorative action should be taken. This could
result in more variation in outcomes and therefore ensemble size should be checked for these policies
as well.The 141-policy was chosen for testing as the shape of its policy function would result in high
levels of stochastic behaviour early in runtime, at which point it is believed to have the most impact
on objective scores. Using the results of the 141-policy, convergence and stability of the ordering of
factors were confirmed using the same conditions as for the all-exploitation policy.
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Figure E.1: Plot showing the convergence of feature scoring values for each of the objectives for the all-exploitation policy



F
MOEA Outcomes

As described in Chapter 7, two different Many-objective Evolutionary Algorithms (MOEAs) By com-
paring the Pareto fronts of the outcome objectives generated by both algorithms, and by comparing
the policy shapes of the policies, we can get an indication of the quality of optimizations, considering
neither were run until convergence.

The objective scores of the policies found by the Borg MOEA as well as the 𝜖-NSGA2 algorithm are
plotted in Figure F.1 1. At first glance, the outcomes from the Borg MOEA seem of higher quality - they
lie closer to the bottom-left corner. However, it should be kept in mind that the 𝜖-NSGA2 algorithm was
run using 10 replications per scenario. For the Borg solutions, a policy may have received a higher
score by chance due to the stochasticity of the model, but this is less likely to be the case for the 𝜖-
NSGA2 solutions as a result of the replications. Additionally, the 𝜖-NSGA MOEA was run with larger 𝜖
values, which may result in better solutions not registering as improvements. Therefore, this difference
in position can have two causes: a lower objective score due to the averaging over replications, as well
as the actual quality of the solution.

For judging the quality of the solutions, it is also relevant to look at the shape of the Pareto fronts
rather than their exact value when comparing the two results. Doing so, we can see that for most ob-
jectives, the Pareto Fronts have similar shapes, though they are more complete for the Borg solutions
(i.e. more extensive and/or with fewer gaps). Only for the objective Time until Containment the solu-
tions score notably different, which shows the effect of the replications. The outcome distribution of the
Borg solutions shows two distinctive peaks, whereas the distribution of the 𝜖-NSGA2 shows one peak,
lying between those two peaks. This difference in distributions is caused by the averaging of outcome
scores over the replications for the 𝜖-NSGA2 solutions.

In comparing the results of the two MOEAs, it is also helpful to compare the policy functions associ-
ated with it solutions. For each objective, the policy functions associated with the best performance for
that particular objective are shown side by side in Figure F.2. For the Effectiveness, Time until Contain-
ment, and Cost per Death Prevented the policy functions found by Borg and 𝜖-NSGA2 are very similar,
and the same variation in policies for a single objective is also seen. However, for the two objectives
related to equity there are differences in the policy shapes provided by the two MOEAs. For Difference
in Met Demand the same general bowl-like shape is visible, but in the policies functions of the 𝜖-NSGA2
solutions the shape is more narrow. For Difference in Arrival Time, the 𝜖-NSGA2 solutions all have a
very distinctive dip towards exploitative actions near an uncertainty level just under 70%. In the Borg
policy functions, this shape is only visible in one solution.

Several possible explanations exists for these differences: As a result of the lack of replications,
some of the solutions found by the Borg MOEA may be “lucky” cases that resulted from fortunate

1These plots were generated in a Jupyter notebook called MOEA Results which is available at https://github.com/
edenbrok/thesis
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Figure F.1: Scatterplot showing the objective scores of the policies found by the Borg MOEA (blue) and the Ꭸ-NSGA2 algorithm
(orange).
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stochastic behaviour. However, these different policy shapes could also represent a family of solutions
that had not been discovered by the 𝜖-NSGA2 MOEA. Or, in the case of the policies for Difference in
Met Demand, the policies found by 𝜖-NSGA2 may not have been fully optimized yet, and would have
resembled the Borg policies more closely given a higher number of nfe. Regardless, without further
experimentation it is impossible to determine what the cause is and which policies are of higher quality.

Due to limited access to the compuational power necessary to run the 𝜖-NSGA2 MOEA with replica-
tions, combined with time constraints, policy selections had to be made before the 𝜖-NSGA2 outcomes
were available and as a result were only based on the Borg outcomes. One policy representing the
best performance on an objective was chosen - if scores were very similar, a policy with good scores
on the other objectives was picked. The selected policies are shown in Figure 8.10.



98 F. MOEA Outcomes

Figure F.2: Best performing policy functions for each objective as found by the Borg MOEA (left) and the Ꭸ-NSGA2 MOEA
(right). Note that the selection criteria for the Ꭸ-NSGA2 outcomes are more lenient than those of the Borg outcomes, due to the
differences in outcome scores discussed in the section above.



G
Scatterplots of All Policies

The following pages contain all the scatterplots of the policies discussed in this thesis.
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Figure G.1: Scatterplot showing the results of the all-exploitation policy for each objective plotted against all other objectives.
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Figure G.2: Scatterplot showing the results of the all-exploration policy for each objective plotted against all other objectives.
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Figure G.3: Scatterplot showing the results of the exploitation-390 policy for each objective plotted against all other objectives.
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Figure G.4: Scatterplot showing the results of the exploitation-661 policy for each objective plotted against all other objectives.
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Figure G.5: Scatterplot showing the results of the exploration-141 policy for each objective plotted against all other objectives.
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Figure G.6: Scatterplot showing the results of the exploration-185 policy for each objective plotted against all other objectives.



106 G. Scatterplots of All Policies

Figure G.7: Scatterplot showing the results of the random policy for each objective plotted against all other objectives.



H
Runtime Behaviour

H.1. Exploitation-390 Policy
The exploitation-390 policy starts out fully exploitative, but moves to a fully explorative policy
at lower uncertainty levels. During the run pictured in Figure H.1, it receives spontaneous news from
region 15 at timestep 2. By timestep 4, an ETC in that region is operational and the situation in the
neighbouring regions is revealed. As uncertainty remains high, the response remains focussed on
the hotspot regions (and their neighbours) for quite some time. However, after timestep 11 the policy
starts exploring. By timestep 14 the decision-maker has a accurate picture of the situation, but as the
policy is now fully explorative, this information is not used efficiently. However, since the main hotspot
regions have been addressed early on in the response, it is still possible to contain the epidemic with
the random placement of ETCs for explorative policies.

H.2. Exploration-185 Policy
Like exploration-141, the exploration-185 policy starts out fully explorative, before moving to a
mixed and then fully exploitative state. However, the exploration-185 policy remains fully explorative
longer and only starts to move to mixed decisions at a lower level of observed uncertainty. Figure H.2
shows snapshots of the runtime behaviour of the exploration-185 policy. Due to its explorative nature,
it obtains a good situational overview early on (at timestep 3 it has already discovered all the hotspot
regions (as spontaneous news from region 15 also came in)). However, it takes until timestep 6, when
all regions have been discovered, for the level of uncertainty to be low enough for the policy to make
an exploitative decision. For the remainder of the simulation run, the policy continues to take decisions
of both types. The exploitative decisions can be targeted well due to the low levels of uncertainty, but
because resources are also spent in a much more random manner by the explorative decisions, the
policy fails to fully eradicate the epidemic.
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Figure H.1: State of the simulation model under the exploitation-390 policy and the base scenario at timesteps 4 (a), 11 (b), 14
(c) and 26 (d).
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Figure H.2: State of the simulation model under the exploration-185 policy and the base scenario at timesteps 3 (a), 6 (b), 14 (c)
and 26 (d).





I
Code - Overview

All code is available on github at https://github.com/edenbrok/thesis.

model_with_policy.py This is the main file with the model function borg_ebola, which runs the
simulation model based on the policy function parametrisation provided.

model.py Also allows for the simulation model to be run but with a constant exploration ratio using
the function ebola_model.

compartmental_model.py Includes the calc_population function which is called every timestep
by the simulation model to run the epidemiological model for 1 timestep. Also contains several
helper functions for the compartmental model itself.

decision_making.py This file contains all the major functions used in decision making. pol-
icy_exploration_ratio calculates the exploration ratio using the policy function as described
in 5.3.3. explorative_decision and exploitative_decision handle making their re-
spective decision types. This file also includes functions for checking the number of resources in
use, as well as functions that check if resources can be removed.

uncertainty_reduction.py Contains the functions unc_infected and unc_transmission
that handle uncertainty reduction for each region as described in Appendix B. Also includes the
function total_uncertainty that calculates the total level of uncertainty as experienced by
the decision-maker.

objective_functions.py Provides the functions that calculate the model objectives at the end of
each simulation run as described in Appendix C.

objects.py Contains all the objects used in the simulation model. Uncertain_Constant deals
with the uncertainty experienced by the decision-maker for a constant factor (in this case the
transmission rate). It keeps track of the ground truth as well as the range that is available for the
decision-maker. Uncertain_Variable does the same but can handle variables whose ground
truth changes during the simulation run, as is the case for the number of infected individuals in
each region.
The Region class keeps track of all the data of each individual region; the values of each of the
compartments over time, the uncertainty level, whether the region is hidden, the ETC capacity
etc. It has functions to update itself after the compartmental model is run or after resources have
been placed in a region. It also contains the “spontaneous news” function.
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The ETC and Surveillance_Team classes are used to keep track of the timesteps in which
the resources are used, operational and/or closed so that the uncertainty reduction and region
updating functions can be used easily.

utility.py Contains two functions: The first is get_neighbours which returns a list of neighbour-
ing regions when it is fed a square grid and a region index for which the neighbours need to be
found. This function is used by the compartmental model to determine the influx of infected people
from neighbouring regions. It is also used by the other function in this file, random_travelling,
to ensure that the superspreading travelling events go from one region to a non-neighbouring re-
gion.



J
Interviews

All interviews were conducted over Skype, recorded, and transcribed. Transcripts were sent to inter-
viewees for approval. Anonymised transcripts for each interview can be found at https://github
.com/edenbrok/thesis/tree/master/Interviews.
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