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V R Vibration rectification factor

v Velocity component in Y-direction

w Velocity component in Z-direction
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Z Set of all integers

Subscripts

A Accelerometer variable

am Axis misalignment

B Quantity in a body-fixed reference frame

E Quantity in an Earth reference frame

GPS GPS variable

m Measurement quantity

rw Random walk

sm Sensor-to-sensor misalignment

T True value

u User

ω Gyroscopic variable

Superscripts
T Transpose operator

∧ Estimation of a variable

∼ Error of a variable
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Summary

Today, there is an increase in the use of Unmanned Aerial Vehicles (UAV’s), for applications
that can be considered dull, dirty or dangerous when compared to those applications of con-
ventional aircraft or helicopters. To further increase the use of UAV’s, their navigation filters
must be robust and reliable. The trend in current autopilot development is defined by the ever
decreasing size of vehicles leading to the creation of miniature Inertial Navigation Systems
(INS) with low cost, low grade sensors. Small flying vehicles have fast dynamics requiring
higher control rates and higher dynamic ranges with minimal available onboard computational
capacities. Sensor and processing limitations have consequences for the achievable navigation
performance. This in turn poses limits on the minimal vehicle stability, weather conditions
and trajectory smoothness. The most important aspect and thesis goal is to guarantee the
navigation filter solution robustness during all flight maneuvers. A navigation filter is an
integration algorithm that provides a navigation solution on the vehicle’s state vector from
sensor data. This thesis focuses on one UAV platform in particular, namely small fixed-wing
UAV’s. One of the main challenges with designed navigation filters is that they can be theo-
retically stable but the outcome can sometimes not be used. In practice, the navigation filter
outcome can give a diverging solution while theoretically stable. The goal of this thesis is
to define the minimal requirements of sensors and other hardware for an INS such that the
stabilization requirements posed by the vehicle dynamics and size can be satisfied. With the
requirements stated, smaller and more dynamic fixed-wing UAV’s can be stabilized based on
the integrated navigation solution.

The developed observability analysis tool is able to provide a quantitative analysis on the
state observability that can be used to analyze different systems or sensor configurations.
The observability matrix is composed of the system and observer dynamics. The system
dynamics is based on the Inertial Measuring Unit (IMU) prediction of the system states,
the observer equations correspond to the observer dynamics. A non-linear local observability
analysis has been performed to calculate the observability matrix. The traditional Singular-
Values Decomposition (SVD) algorithm provides the singular values of an observability matrix
in a decreasing order and indicates the rank of the system. The rank of the observability
matrix corresponds to the number of observable system states, the SVD can however not
directly link the singular values to the system states. To overcome this problem a different
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matrix decomposition is used that is able to directly couple the singular values to the system
states. This developed matrix decomposition algorithm is based on the QR factorization,
called QRsvd. With this algorithm it is possible to quantitatively indicate the observability
(degree) of each system state.

An analysis into the physical properties of fixed-wing aircraft kinematics resulted in new in-
sight into the movement of flying vehicles. Based on the derived kinematics together with
the coupling of an IMU, GPS receiver and fixed-wing aircraft kinematics this resulted in new
physical insight. This resulted in three angle correction (AC) equations that can be used as
additional attitude/heading angle observers to the conventional IMU/GPS integration. With
these three additional observers, the three orientation angles become instantaneously observ-
able. Without the AC equations, a rotational rate constraint is always present to integrate
the IMU with GPS. GPS receivers and IMU are separate, self-contained subsystems with
different updating frequencies and processing times. Resulting clock differences are called
time synchronization errors and result in filter estimation problems. A time synchronization
requirement is derived, which is a function of changes in vehicle accelerations and filter inno-
vation. The time synchronization requirement is proportional to the magnitude of the change
in vehicle accelerations |a′| and negatively proportional to the magnitude of the identification
filter innovation. Vehicles with fast dynamics, like fixed-wing UAV’s, can have larger changes
in vehicle accelerations magnitude, resulting in a more stringent time synchronization require-
ment.
Based on performed simulations and verification with flight test data, it can be concluded that
the improved IMU/GPS filter with AC equations can provide a stable long-term navigation
solution with accurate short-term performance, by using (Iterated) Extended Kalman filters.
During the performed simulations the position states give the largest source of error, due to
the large GPS position uncertainty. For the three orientation angles, the heading angle has
a larger identification error compared to the pitch and roll angle. For the orientation angles,
the influence of atmospheric wind on the identification performance is minimal except for the
heading angle due to the presence of a side-slip angle β.

Coordinate transformations between the Earth, North-East-Down (NED) reference frame FE
and the body-fixed reference frame FB can be performed using a rotational transformation
matrix RBE . The antisymmetric matrix RBE holds special properties that can be utilized and
fits in the category of Special Orthogonal Lie groups with a dimension of three, called SO(3).
Based on SO(3) group properties, a non-linear complementary filter can be constructed that
uses this matrix as a single state. The non-linear complementary filter on the SO(3) group,
can be used as an alternative to conventional Kalman state identification filters. For (I)EKF
the heading angle is the largest source of error of the attitude/heading angles, this is also the
case for the SO(3) filter. Differences between the SO(3) filter and (I)EKF are due to two
aspects. The SO(3) filter uses constant proportional and integrator gains, where Kalman gain
matrices include process and observer uncertainties. The other source of differences can be
found in the strong coupling between the individual attitude/heading angles for the non-linear
SO(3) filter compared to (I)EKF.

Keywords: UAV sensor configurations, Kalman filtering, Lie derivatives, non-linear comple-
mentary filters on SO(3), state identification, observability (degree) analysis, IMU sensor
modeling, GPS receiver modeling
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Chapter 1

Introduction

This MSc thesis report is called: Fixed-wing UAV integrated navigation with low-cost
IMU/GPS. The following sections provide the framework for this report and underlying re-
search. Section 1-1 provides the reports background and problem statement in section 1-2.
Last section 1-3 gives the outline of the report.

1-1 Thesis Background

Navigation is an ancient skill that is mainly used for steering and following directions. Nav-
igation is the determination of a vehicles position and velocity which is performed onboard.
In the past, when people were sailing around the world, they needed to know their position to
steer in the right direction and follow the route on a map. During those days the navigation
of a ship was a difficult job and required special skills. Landmarks, the Sun and other stars
and later self made maps were the only tools used by navigators to steer around the World.
Today navigation is still as important as in the past with the difference that nowadays it has
become much more accurate with diverse platforms and digital systems. The special naviga-
tor skills have been replaced by sensors, digital maps and other systems to navigate as safe
and economically efficient as possible. Nowadays, with the increase in computer power, most
calculations are done onboard by computers. With the use of computers the navigational data
can also be used for other systems, for instance to improve vehicle stabilization performance.
The ancient navigator has now been replaced by today’s engineers who are responsible for
the Guidance, Navigation and Control (GN&C) design and are more and more applied to
other vehicles like airplanes, cars and missiles. One special type of navigation and vehicle
stabilization application that is becoming important, is the use of Unmanned Aerial Vehicle
(UAV) and in particular Micro Aerial Vehicle (MAV).

The trend in current autopilot development is determined by the decreasing size of vehicles
leading to the creation of miniature Inertial Navigation System (INS) systems with affordable
sensors. Smaller vehicles with increasing dynamics requiring higher control rates and higher
dynamic ranges with minimal computational capacities. Sensor and computational capacities
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limit the control performance and update rate. This has consequences for the minimal vehicle
stability, maximal weather toughness and trajectory smoothness. The most important aspect
is the robustness of the navigation filter solution. Without a well designed filter, the minimal
vehicle navigation filter requirements cannot be met and the vehicle cannot be controlled.
An important aspect in the design of a robust filter, is the problem of divergence. The
designed filter is theoretically stable, but the outcome cannot be used to stabilize the vehicle,
as the filter solution is diverging. This phenomenon of divergence is called filter saturation.
Filter saturation usually occurs for badly designed filters with unobservable states. However,
saturation can also occur for properly designed filters with theoretically fully observable states.
The problem of filter saturation when the system is fully observable in theory, makes it a real
challenge to predict onboard filter performance for flying applications under the constraint of
minimal computational power and low grade sensors.

Figure 1-1: Overview on strapdown sensor development

Sources of error in INS are for instance due to gyroscopic and accelerometer sensor imper-
fections, wrong navigation system initialization and imperfections in the used online Earth
gravity model. In most cases the largest sources of error come from the gyroscopic and ac-
celerometer sensor imperfections. This can have many causes like mechanical imperfections,
electronics, Analog to Digital (A/D) conversion or external factors like vibrations and tem-
perature fluctuations. For gyroscopic sensors, the errors are in measuring the angular rate
and integration to obtain angle information. The accelerometers have errors in measuring
acceleration and are used for velocity and position estimation by means of integration. For
both type of sensors the largest sources of error can usually be found in bias instability and
scale-factor error. The required navigation performance will determine the selection of the
specific inertial instruments in order to meet the mission requirements. For MAV applica-
tions the vehicles size and computational requirements limits this selection to MEMS sensor
technology. Figure 1-1 gives an historic overview strapdown on sensor development with
corresponding applications from (Titterton & Weston, 2009).

Figure 1-1 shows the accuracy required from the gyroscopes. From this figure can be seen
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that the range of applications in which inertial navigation is used is extensive. In addition
current application in the upcoming field of robots should be mentioned.
Figure 1-2 gives an overview of the predicted near term advantages in gyroscopic and ac-
celerometer sensor performance in terms of bias instability. Micro-Electro-Mechanical Sys-
tems (MEMS) and Interferometric Fiber-Optical Gyroscope (IFOG) sensor technologies have
the potential to replace the current systems that use Ring Laser Gyroscopes (RLG) and
mechanical gyroscopes. The performance of MEMS is constantly improving, but is however
pending on MEMS gyro development. The advantage of MEMS over other technologies is that
MEMS technologies are low cost, small size, lightweight and have low power requirements.
MEMS based sensor technology is expected to continuously improve in the near future. Al-
though the basic principles of inertial navigation remain the same for most applications, the
accuracy and associated computation effort varies widely.

(a) Gyroscopic performance (b) Accelerometer performance

Figure 1-2: Expected near term sensor performance

1-2 Problem Statement

To make way for continuation of further INS development, the problems occurring from low
grade sensors, minimal available computation power and fast dynamics need to be solved. A
standalone Inertial Measuring Unit (IMU), with gyroscopes and accelerometers, will drift over
time due to bias instability. The sensor’s output drifts over time and has as a consequence an
upper bound on stabilization accuracy using inertial navigation alone. Various sensors have
been used over the years to improve inertial navigation. For example, satellite navigation sys-
tems like Global Position System (GPS) or Global Navigation Satellite System (GLONASS),
velocity meters, star trackers, magnetometers, radar, lidar and vision based systems. The
use of GPS aiding has greatly improved the role of traditional navigation systems. GPS can
constrain the long term bias error of inertial sensors. The scope of this research is limited to
vehicle stabilization requirements using INS by means of MEMS technology applied to small
fixed-wing UAV. Optical flow sensors or other vision-based systems that have high power and
computational requirement are not treated in this report.

To be able to successfully continue the trend in miniaturizing INS, the problems faced with
low grade sensors and fast vehicle dynamics must be solved. This development must be
able to continue under the constrain of limited available onboard computational power.
The navigation solution must be able to stabilize a typical small fixed-wing UAV, under
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the constraints that are imposed by INS and UAV hardware and software. The navigation
solution should perform as a stable and robust filter. Based on this, the following research
goal is defined:

Define the minimal requirements of sensors and other hardware for an Inertial
Navigation System (INS) such that the navigation filter requirements imposed
by small fixed-wing Unmanned Aerial Vehicle (UAV) dynamics and size can be
satisfied.

Based on this research goal several objectives are defined:

• Definition of the problems restricting the development of INS for smaller size vehicles
with high dynamics and/or miniaturizing INS.

• Investigation of the minimal stabilization requirements related to vehicle dynamics and
size and their influence on state estimation requirements.

• Definition of the lower bounds on hardware performance for INS such that stabilization
requirements are met, linked to vehicle dynamics and size.

• Development/adjustment of (Kalman) filter implementation and testing these adjust-
ments via simulations. Standard (Kalman) filter implementations are not applicable
due to computational and saturation issues.

• Testing of the developed filter(s) at Aerospace Software and Technologies Institute
(ASTI) using existing hardware.

The final objective houses the contest that the developed filter solutions are able to optimize
the overall performance of the INS and are able to control an aircraft. The used aircraft will
be a fixed-wing MAV, which is small and has fast dynamics.
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1-3 Thesis Outline

This report consists of six parts. Part I provides a theoretical background on the relevant
subjects used in this report. Chapter 2 gives a background on navigation in general, followed
by chapter 3 about observability theory for different types of systems. Chapter 4 provides
background on the topic of Kalman filtering. Chapters 2, 4 and most of chapter 3 provide
an introduction on the different topics that are used in the later chapters, the experienced
reader can choose to skip these chapters and start with part II on modeling.

Part II is about modeling and contains the used modeling tools. Chapter 5 contains theory
and corresponding modeling about Inertial Measuring Unit (IMU). The same is done for GPS
receivers in chapter 6. Chapter 7 describes an UAV modeling library that is used for building
a Matlab/Simulink model of a dynamic non-linear 6-DOF fixed-wing UAV.

Part III contains different modeling tools and starts with the equations of motion for a stan-
dard loosely coupled IMU/GPS integration derived in chapter 8. Different sensor configura-
tions are given in chapter 9. Chapter 10 gives new insight into aircraft kinematics resulting
in a set of three angle corrections (AC) equations. The observability of different sensor con-
figurations is analyzed in chapter 11 on a simulated trajectory by using the model of chapter
7. The results on different observers of chapter 11 are linked to the physical background of
chapter 10 into chapter 12 leading to the creation of the optimal sensor configuration that
forms a basis for the angle state identification filter.

Part IV gives the result of different identifications by means of simulations, the use of real
UAV flight data and testing the developed IMU/GPS algorithm. Chapter 13 gives the result
on the improved IMU/GPS with AC navigation filter simulation results, by using (Iterated)
Extended Kalman filtering. Chapter 14 gives a different approach into identification filters,
by means of the complementary non-linear filter on the Special Orthogonal Lie Group, SO(3).

The conclusions and steps for future research in can be found in part V. Chapter 15 houses
the conclusions of this thesis report and chapter 16 contains future research topics.

The appendices can be found in part VI and contain the underlying Jacobians of the observ-
ability studies and singular values corresponding to the observability analysis. The Aerosonde
UAV simulation results and use of flight test data of part IV are also included in the appen-
dices.
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Chapter 2

Navigation Theory

This chapter provides a background into the subject of navigation. Section 2-1 gives an
overview of different navigation systems and navigation in general. Section 2-2 is about the
principle of the Global Positioning System (GPS). The last section 2-3 is about different types
of integration between inertial and satellite navigation systems.

2-1 Navigation

The French physicist Foucault, mostly active in the field of optics, became famous for his
understanding of the gyroscopic effect. In 1852 he measured the rotation of the Earth using
nothing more than a spinning disk. He labeled it gyroscope from two Greek words: Gyros
meaning rotation and skopein meaning to view. Nowadays, most gyroscopes still use this kind
of spinning rotor principle. Figure 2-1(a) gives an illustration of one of the first built gyro-
scopes from the National Conservatory of Arts and Crafts museum in Paris. The gyroscope
wheel is mounted in a double-axed gimbal, such that the gravity force acts on the wheel’s
center of mass with no torque acting on the wheel itself. With no torque applied to the wheel,
the spinning wheel will always point in the same direction. As can be seen in figure 2-1(a), a
second device is used to spin up the gyroscope wheel before it can be placed in the mounting.
With magnification is was possible to measure Earth’s rotation very accurately for that time.

One of the first developments in inertial navigation was performed by the Massachusetts Insti-
tute of Technology (MIT) Instrumentation Laboratory. They were asked by the US Air Force
to develop inertial systems for the Thor and Titan missiles. In 1953 the lab demonstrated the
feasibility of an autonomous inertial navigation for aircraft with a system called Space Inertial
Reference Equipment (SPIRE). Professor Charles Stark Draper and his colleagues reduced
the angular rate from 15◦/hour to about 0.01◦/hour, (Draper, Wrigley, & Hovorka, 1960).
The system has a height of 5 feet with a weight of 2.700 pounds and used gimbals to obtain
navigation information. Figure 2-1(b) gives an impression of how big such early navigational
devices were. The success led to further application in aircraft, missiles, spacecraft and ships.
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Before the 1950’s the world already saw a demonstration of inertial guidance trough the Ger-
man V1 and V2. A step forward in guidance was taken by improving the system with sensor
feedback.

(a) Foucault’s free spinning gyroscope (b) SPIRE system

Figure 2-1: Early type of gyroscopes

Navigation is defined as the determination of one’s vehicle position and velocity. According
to Newton, the motion of a rigid body will continue in a straight line when not exposed to
external forces. Newtons 2nd law also tells that external forces will result in accelerations. If
somehow these forces could be measured, information about the vehicle accelerations can be
obtained. If these accelerations are integrated, the velocities and positions are also known.
The position, velocity and acceleration components along a precisely known set of axes make
a nine-component vector, called the state vector. Accelerations can be measured by devices
called accelerometers, usually three accelerometers are used to measure all three orthogonal
components. Rotations are measured by gyroscopic sensors, called gyroscopes. Gyroscopes
are used to determine the orientation of the acceleration vector. These sensors provide con-
tinues measurements of the current state of the vehicle. This principle is known as “dead
reckoning”, where the state vector is derived from a continuous series of measurements rela-
tive to an initial position. Due to the fact that dead reckoning systems give updates relative
to an initial position, sensor errors will result in an increasing error over time, also known
as “random walk.” It is essential for inertial navigation systems to have an accurate initial
position as the error will increase over time. The system must be reinitialized as the error
will further increase and becomes too big for navigation purposes. The reinitialization can
be done in many ways, for instance by using radio navigation systems, satellite navigation
adding or magnetic sensors. Besides reinitialization different sensors can be integrated to
compensate each other.

Gyroscopes and accelerometers provide the vehicles position, velocity and angle information,
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however still no navigation information is provided. The different states of the state vector can
be used to determine the position and orientation of the moving vehicle. However, different
calculation steps are required which depend on the platform and sensors. For example a
coordinate transformation can be required to integrate different measurements. Also the
measured accelerations need to be compensated for gravity forces, since the accelerometers
measure the total specific force in inertial space.

The state vector maps the translational and rotational motion of the vehicle. If the determi-
nation of the state vector is done on-board, it is called navigation. When calculated outside
the vehicle, it is called surveillance or position location. Which is for instance used by Air
Traffic Control (ATC) to monitor air traffic. Different platforms can be used for inertial
navigation depending on the vehicles hardware and software requirements.

Different types of navigation systems exist. Besides “dead reckoning systems”, systems that
measure the state vector without regard to the path traveled by the vehicle in the past are
called positioning systems. Examples of positioning systems are radio navigation systems,
where ground stations send out radio signals which can be received by airborne vehicles to
determine their position. Other examples are mapping navigation systems, by using visual
images of the Earth’s surface and celestial navigation based on the stars position. Figure 2-2
gives an overview of the different navigation systems.

navigation systems

positioning systems
dead reckoning

systems

celestial navigation mapping navigation radio navigation inertial navigation
classical

dead reckoning

stable platform
inertial navigation

strapdown
inertial navigation

Figure 2-2: Overview of different navigation systems

Unlike positioning systems, dead reckoning systems use the information from the traveled
path. The state vector is derived from a continuous series of measurements relative to an
initial position. Position is calculated in the absence of direct position measurements. Position
information is obtained by integrating estimated or measured ground speeds. The navigation
information is usually given in discrete steps. In it most basic form, the position of a vehicle
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is calculated from measuring the ground speed Vg and the true heading ψT , equation 2-1 from
(Kayton & Fried, 1997).

VNORTH = Vg cosψT , y − y0 =
∫ t
0 VNORTH dt

VEAST = Vg sinψT , x− x0 =
∫ t
0 VEAST dt

(2-1)

In equation 2-1, wind is neglected and y−y0, x−x0 are the east and north traveled distances
during a discrete measurement interval. Note that this example is the most elementary form
of dead reckoning navigation calculations, however even the more advanced navigation and
stabilization algorithms still use this principle.

Due to the integration of measurement data, a disadvantage of dead reckoning systems is
that they need to be re-initialized as small errors accumulate in time and result in increasing
errors over time due to the integration of measurement data. The integration of measurement
data causes the measurement noise to be accumulated. The most used type of dead reckoning
systems, is the Inertial Navigation System or simply INS. Two types of INS exist: stable
platform and Strapdown Inertial Navigation System (sINS). Classical dead reckoning systems
are systems using solely air data sensors, compass or wind velocities. sINS are systems where
the sensors are directly placed onto the vehicle to provide an analytical navigation platform.
The sINS type of navigation system is used throughout the report and research.
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2-2 Global Position System

Today two navigation satellite systems are operational namely the US Global Positioning
System (GPS) and Russian GLONASS. The European system Galileo will be fully operational
in the near future. Today the most used system is GPS by the US department of defense
and is also called NAVigation by Satellite Time And Range (NAVSTAR). Originally designed
to provide the US military with accurate information about position and velocity. In the
1990’s when the system was fully operational, only certified military users were able to use
the full extend of the system. Users that were not certified were not able to use the system
to its full accuracy, up to a few years ago. Nowadays, this difference has been lifted which
made the GPS a system that can now be used by both military and civilian users. Since this
event, GPS has played an important role in many research topics regarding positioning. This
interest and further development also leads to significant decrease in size and cost of GPS
receivers. Today GPS receivers can be as small and cheap as a microchip of $20 instead of
the early receivers that were in the range of $100.000.

Figure 2-3: GPS system overview: Space, control and user segment

2-2-1 Principle of the Global Positioning System

The GPS consists of three main segments: Space, control and a user segment as can be seen
in figure 2-3. The space segment consists of orbiting satellites that are sending out signals.
These signals are received by both the user and the control segment. What distinguishes the
control segment from the user segment is that the control segment can also upload information
to the satellites.

The GPS space segment consists of 24 satellites in six orbital planes, plus a few extra satellites,
which can take over damaged satellites if needed. The orbits are located at orbital planes
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at 55 degrees to the equator in a near circular orbit at about 20.180 kilometer altitude. An
impression of the satellite constellation is given in figure 2-4(a) from (Titterton & Weston,
2009). The spacing of the satellites is made as such that at least six satellites are visible to
the user at all times. Each satellite transmits two signals using a carrier wave in the L band.
The two carrier frequencies are equal to: L1 = 1575.42 MHz and L2 = 1227.6 MHz.

The control segment is made out of several stations all over the world to continuously track
the GPS satellites and upload information if needed. The tracking task consists of monitoring
and predicting satellite orbits, checking onboard atomic clocks and system integrity. Recently
the National Geospatial Agency (NGA) has been adding monitoring sites in two phases to
existing stations of the US Air Force sites in the Operational Control Segment (OCS). The
additional sites give an improvement in combined clock and satellite monitoring. The master
control station is located at Colorado Spring in the USA and three uploading station are
located worldwide. Figure 2-4(b) gives an overview of the different monitor stations from
(Schmidt, 2009). If needed, the clock correction parameters are uploaded when each satellite
goes overhead of an uplink.

(a) GPS satellite constellation (b) GPS control segment

Figure 2-4: GPS space and control segment

The user segment consists of a passive GPS receiver. A wide variety of light weight and
compact GPS receivers are nowadays available for both civilian and military users. The
information that is sent by the satellites contains two codes and the standard positioning
service signal. One of the codes is the Coarse/ Acquisition signal (C/A), which is now
available to all users. Until May 2000, this signal was deliberately degraded, which is still
possible by the US government. When the signal is degraded, the positioning accuracy drops
to the order of 100m. This code is only transmitted onto the L1 carrier wave. The other
code is the Y-code for the Precise Positioning Service (PPS) or simply precision P-code at
10.23 MHz that modulates both L1 and L2 carries waves. The Y-code gives access to the
PPS and is restricted for military purposes. The PPS is the most precise and timing service.
Whether the P-code and/ or Y-code are used, the principle of positioning remains the same
for all satellite navigation systems which are based on timing.
Electro-magnetic signals are broadcasted by satellites which are received by a user. The
difference in sending and receiving time can be used to determine the pseudo-range (PR)
between the satellite and user. The pseudo-range is the basis for the user’s location on Earth.
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In theory three satellites are needed to obtain an unambiguous position fix as can be seen in
figure 2-5.

position fix

Figure 2-5: Principle of satellite navigation

In practice, a fourth satellite is added to obtain a good position fix. Due to the quality of the
receiver clock. The system depends on very precise time measurements, the receiver clock
isn’t as accurate as the satellite’s atomic clock. A time difference of only 10 ns will result in
a distance error of 3 m due to the fact that the signals are traveling at the speed of light.
The fourth satellite is used to correct for the receivers clock error. Equation 2-2 is used to
calculate the pseudo-range (PR), where R stands for the distance between each satellite i and
the user u. The user’s clock error is denoted by the symbol Δtu, where c stands for the speed
of light. The sum of various errors is indicated by εPRi . More about different error sources
be found in subsection 2-2-2.

PRi = Ri + cΔtu + εPRi
with:

Ri =
√

(xsi − xu)2 + (ysi − yu)2 + (zsi − zu)2
(2-2)

Using the Doppler shift, the frequency shift of the satellite signal due to the satellites relative
velocity to the user, given in equation 2-3. The moving observers are the orbiting satellites
fs and GPS receiver fr, causing a change in frequency Δf . The change in frequency can be
rewritten as the time derivative of the pseudo-range ˙PR as defined in equation 2-2, also called
pseudo-range rate or simply range rate. The range rate, can be calculated by using equation
2-4. The range rate allows the user velocity to be calculated with a higher accuracy compared
to the user position, which is usually one order of magnitude better. The term cΔtu indicates
the drift of the user receiver clock.

Δf = fr − fs =
˙PRifs
c

(2-3)
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˙PRi =
xsi − xu
Ri

(vsi − vu) + cΔtu (2-4)

2-2-2 Sources of Error

As mentioned in the previous section, the user receiver clock is the largest source of error and
is the reason that not three, but four satellites are used for satellite navigation. The second
clock used for satellite navigation are the atom clocks of the satellites. Despite that these
clocks are very accurate, they are not perfect and may still show small errors over a long period
of time. The monitoring stations, part of the control segment described in subsection 2-2-1,
have many functions. Their functions are to detect and correct possible satellite clock errors
and to predict future satellite orbits. Wrong orbit estimations and differences in theoretical
and real satellite orbits are called ephemeris error.

In case a satellite signal partially bounces against buildings or other large objects, the GPS
receiver receives mixed signals, called multipath effects. The result is that the received signal
is not the shortest distance to the sending satellite. A solution is to use a receiver with a cutoff
angle such that the reflected signals are not received. Other solutions may consist of a receiver
placement which is out of range of any reflected signals. Besides reflected signals, electro-
magnetic signals can also be affected by objects between the users receiver and satellites. The
affected signals tend to be delayed due to the traveling through objects. This phenomenon is
called signal attenuation and may lead to errors in satellite navigation.

When a satellite signal travels through the Earth’s ionosphere, the signal may be influenced by
free ions. The free ions will cause the signal to delay, where the amount of delay is dependent
on the density of the ionic particles and orbit elevation. The ionosphere delay can be compen-
sated by using the Y-code which gives access to the PPS. The PPS is transmitted onto the
satellite signal and only available for restricted military users. Besides the free ions located in
the ionosphere, the troposphere can also be a source of signal delay depending on density and
elevation. The troposphere houses different temperatures and water vapor concentrations.
When summarizing, the main factors contributing to errors in satellite navigation are the
following:

• User receiver clock error.

• Satellite clock error.

• Satellite ephemeris.

• Multipath effects.

• Signal attenuation.

• Ionosphere delays.

• Troposphere delays.
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2-3 INS/GPS Integration

Over the years, the integration of inertial and satellite navigation systems has shown to
have a positive influence on the overall navigational performance. INS take advantage of
complementary properties of the individual components to create a system that provides a
better navigational solution. The integration of inertial navigation with satellite data from
for instance GPS or GLONASS, or in the future Galileo when fully operational, has been
researched for many years. This report only considers GPS. Different integrations of inertial
and satellite navigation have been explored over many years, which all have in common
that the individual components are aiding one another. Inertial navigation tends to have
low noise, but shows large drift over time due to the accumulating error. Satellite systems
on the other hand are not effected by long term drift problems, however they tend to have
larger short term noise and bias properties. The error characteristics of both type of systems
are totally different. INS shows low noise and long-term drift divergence, figure 2-6 gives an
example of the position estimation for a coupled or uncoupled INS/GPS. From figure 2-7 can
be seen that the 3D position error shows a 2nd order trend. When the INS is coupled with
a GPS receiver, the position update resets the accumulated position error. Satellite systems
show large noise and very little drift. Satellite navigation systems provide pseudo-range and
pseudo-range rate measurements to calculate position and velocity, as can be found in section
2-2 for GPS. INS measures specific force acceleration, which needs to be compensated for
gravity and resolved in a predefined known frame of reference. Besides these constraints, the
accelerometer measurement data needs to be integrated twice to obtain position data. By
integrating INS with satellite navigation, different measurement data are combined into a
single algorithm to provide a navigational solution. Table 2-1 gives the general comparison
of inertial and satellite navigation systems.

Table 2-1: Comparison of inertial and satellite navigation systems

Advantages Disadvantages

Inertial navigation Measurement at high frequency. Unbounded errors (long term drift).

systems Provides both translational Required knowledge of gravity.

and rotational data.

Autonomous system.

Satellite navigation Errors are bounded. Signals at low frequency

systems No (easy) attitude information.

Many sources of error; satellite orbit,

ionic decay, receiver time delay, etc.

Different inertial and satellite integrating architectures are possible, depending on the required
navigational data, available computational power and whether or not the GPS updates are
added to an existing system. In the coming sections, the most important systems architectures
are explained. In general four different system architectures for INS/GPS integration are
distinguished:

• Uncoupled, the GPS data is used to reset the INS position estimation at fixed intervals,
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subsection 2-3-1.

• Loosely coupled, the INS and GPS position and velocity estimations are compared, the
result is corrected with a (Kalman) filter, subsection 2-3-2.

• Tightly coupled, the GPS pseudo-range and pseudo-range rate measurements are com-
pared with their INS estimates, the result is corrected with a (Kalman) filter, subsection
2-3-3.

• Deep integration, the GPS signal tracking function is integrated together with INS
measurements into a single algorithm, subsection 2-3-4.

It should be noted that a good integration is important between inertial and satellite navi-
gation to obtain an accurate and stable navigation solution. Enhancement of the navigation
solution is strongly dependent on the integration, and is not mainly dependent on the quality
and properties of one of the two elements.
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Figure 2-6: INS/GPS integration, 3D position

2-3-1 Uncoupled

The most elementary integration between inertial and satellite navigational measurements is
when both systems remain uncoupled. The estimated position (and velocity) measurements
from satellite navigation are used to reset the estimated values from inertial navigation. Due
to the fact that inertial navigation drifts over time due to accumulation of small errors,
this long term drift is compensated by the satellite navigation system that doesn’t have this
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Figure 2-7: 3D position error propagation

long term divergence property. The two systems operate independently and provide system
redundancy. If one of the systems fails to operate, the other system can provide the necessary
measurements. The advantage of this type of integration is that one of the two can easily
be added to an existing system, because their is no interaction between the two. Another
advantage is that the integration asks for little or no extra computational power. The added
signal simply replaces the other signal at a predefined interval.

2-3-2 Loosely Coupled

For uncoupled inertial and satellite systems, both systems operate separately. This same
principle holds for loosely coupled INS/GPS systems. The GPS receiver continues to work
autonomously, while aiding the INS. The two systems function in cascade, where the GPS
provides position and velocity measurements to correct the INS estimations. The redundant
system can function as an integrity monitor of the integrated navigation solution and report
filter failures, for instance during filter saturation. This is possible due to the fact that the
GPS receiver has its own Kalman filter to provide position and velocity information. Next to
monitoring, the combined filter can overrule the existing navigation solution to provide filter
recovery.

The advantages of a loosely coupled architecture next to integrity monitoring are redundancy
and a relative easy implementation. One of the two systems can take over in case of failure of
the other. Like for the uncoupled case, a system can be added to an existing system, however
the integration of the two systems asks for more effort when compared to uncoupled integra-
tion. The filter, responsible for the sensor fusion, needs to be designed properly depending
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on the two separate navigation systems and vehicle properties.

The integration is usually performed by using a Kalman filter. A qualitative overview of
the different aspects can be found in figure 2-8 from (Schmidt, 2009). In the overview the
integration provides estimates of the INS error which are used to correct the estimated position
and velocity. Other derived states from the position and velocity can also be corrected in
the same manner. The GPS receiver on the other hand can use the INS to provide a faster
acquisition.

One of the disadvantages of using this type of integration is the difference in processing time of
inertial and satellite navigational systems. When comparing a GPS receiver to a gyroscope or
accelerometer, the processing time of the GPS receiver is much larger. This difference causes
the GPS receiver output to be delayed, which makes it difficult to integrate the two outputs
into one integration filter. Besides the difference in processing time, the sensors provide their
output data at different time steps. The GPS receiver needs more time to calculate the
position and velocity and is dependent on the number of available satellites. For instance
when a different satellite is used for the first time to obtain a position fix using at least four
satellites, this is a so called “difficult solution” and takes more processing time. This makes
the sensor integration more difficult to design and as a result the filter measurement update
interval becomes important.

Figure 2-8: Loosely coupled INS/GPS integration architecture

2-3-3 Tightly Coupled

Tightly coupled, or closely coupled, INS/GPS integrations use a more integrated approach
when compared to uncoupled or loosely couped architectures. The independent GPS Kalman
filter becomes part of the INS/GPS integration Kalman filter as can be seen in figure 2-9 from
(Schmidt, 2009) when comparing to figure 2-8 for the loosely coupled case. The pseudo-range
and pseudo-range rate measurements from the GPS receiver are now directly used to estimate
or correct the INS solution.

Like for the loosely coupled concept, timing is important when integrating the individual
measurements. Either the pseudo-range or the pseudo-range rate measurements can be used
for the INS correction. In practice it is best to use both since the two measurement are
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complimentary. Pseudo-range comes from the GPS code-tracking loop, the pseudo-range
rate comes from the more accurate carrier-tracking loop. It should be noted that while the
pseudo-range rate is more accurate, it is also less robust. The benefits of tightly coupled
integration comes mostly from the fact that the two Kalman filters, one for the GPS receiver
and one for the integration, are replaced by a singular INS/GPS integration filter. Statistical
problems due to the structure of two Kalman filters are eliminated. The big advantage is
also that no longer a minimum of four visible satellites is required to obtain a position fix.
GPS measurements can be used with less information, however the accuracy will be less when
compared to using four or more satellites.
Tight coupling is also better when compared to loosely coupled integrations in jamming
environments. The single satellite lock is more robust, compared to the minimum requirement
of four satellites to calculate a position fix. However, during long term loss of GPS satellites
it will be INS that becomes the dominant factor in navigation solution accuracy.

Figure 2-9: Tightly coupled INS/GPS integration architecture

2-3-4 Deep Integration

Deep integration, also called ultra-tight integration uses the GPS signal tracking. Deep
integration methods are still under development, although papers have been published on
this topic that show a lot of promise, their is no fully working hardware implementation
available. A theoretical example can be found in (Li & Wang, 2005). Figure 2-10 shows a
diagram of a deep integration architecture from (Titterton & Weston, 2009). Like the tightly
coupled integration, deep integration does not need a minimum of four visible satellites.
However more satellites improve the navigation solution. By using the GPS signals together,
the tracking of each individual signal is aided by the others, besides the INS data. This type
of integration uses a single algorithm, which has some advantages when compared to other
types of integration.

Less independent quantities are tracked when using the same data, which results in an im-
provement of the effective signal to noise ratio. When more satellites are tracked, the improve-
ment becomes greater. Next to this, the reacquisition of a signal due to a (short) interruption
becomes much faster. Also a change in visible satellites, causing a “difficult solution” fix,
becomes less of a problem due to the fact that each satellite signal is tracked individually.
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These potential improvements will probably come at the expense of increasing complexity.
Deep integration needs more computational power and tight time synchronization. Also
accurate INS data is required to maintain a tracking loop lock, as is indicated in figure 2-10
by the arrows connecting the integrated Kalman filter with a (code) correlator.

Figure 2-10: Deep integration INS/GPS architecture
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Chapter 3

Observability Theory

This chapter provides a background about observability, which can be used to analyze different
types of systems and sensor configurations as can be found in chapter 11. Section 3-1 gives
observability theory for a Linear-time Invariant System (LTI), section 3-2 does the same
for a Linear-time Varying System (LTV). Next to linear systems, also non-linear systems
are addressed in section 3-3. Section 3-4 gives matrix algebra about matrix decompositions
that can assist in analyzing observability matrices or matrices in general. Leading to the
derived singular-value matrix decomposition algorithm where the singular values are given
in state structured order. Last section 3-5 is about observability degree, used for measuring
observability in a quantitative way and can be used to analyze different observers.

3-1 Observability of LTI Systems

Observability is a measure to how many states of a system can be seen by looking at
the system output. Expression 3-1 gives the definition of a standard LTI system from
(Olsder & van der Woude, 2005).

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(3-1)

The observability matrix O for the pair (C,A) can be obtained by using equation 3-2. The
number of observable states is equal to the rank n of the observability matrix, or shortly
rank(O).

O =

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAn−1

⎤
⎥⎥⎥⎥⎥⎦ (3-2)
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All states of the state vector x are observable when: rank(O) = n, with n equal to the number
of states of state vector x. This is given in definition 3.1 from (Olsder & van der Woude,
2005).

Definition 3.1
The LTI system (A,B,C,D) is observable if a finite time t1 > 0 exists such that for each
admissible input function u, it follows from y(t, x0, u) = y(t, x1, u) for all t ∈ [0, t1], with
x0 = x1.

From a practical point of view, definition 3.1 can be interpreted as: A LTI system (A,B,C,D)
is observable if x0 can be constructed from u and y for t1 > 0. When a system is found to
be fully observable, theorem 3.1 holds some properties for the pair (A,C). This theorem is
found in (Olsder & van der Woude, 2005) and houses properties about the system eigenvalues.

Theorem 3.1
If the pair (A,C) is observable then:

• rank

(
sI −A
C

)
= n, for all s in C.

• rank

(
sI −A
C

)
= n, for all eigenvalues of matrix A.

If the initial state x0 cannot be determined, the system is called unobservable. When only
part of the system can be determined, this means the rank of the system is smaller then the
number of states, this part of the system is observable. The unobservable part corresponds
to the kernel (null-space) of pair (A,C), which is built of unobservable modes. Next to the
system property of observability, a somewhat weaker system property can be applied to
unobservable modes, called detectability. Definition 3.2 gives the definition on detectability
for a LTI. If a system contains unobservable modes, these modes might still be detectable
and the system is stable.

Definition 3.2
Detectability: The LTI system (A,B,C,D) is detectable if there exists a real matrix K such
that the real(λ) < 0, ∀λ of A−KC.
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3-2 Observability of LTV Systems

In practice systems are time-invariant by approximation. Due to modeling errors or particular
systems properties, the system dynamics change over time. In LTI systems, the system
matrices A,B,C,D are assumed to be time invariant. If the matrices change over time, a
different system description exists namely Linear-time Varying Systems (LTV). Expression
3-3 gives a standard LTV system in continuous-time, from (Olsder & van der Woude, 2005).

ẋ(t) = A(t)x(t) +B(t)u(t)
y(t) = C(t)x(t) +D(t)u(t)

(3-3)

When considering a continuous-time LTV as defined in 3-3 on an interval [t0, t1] the observ-
ability matrix O(t) can be determined with equation 3-4.

O(t) =

⎡
⎢⎢⎢⎢⎢⎣

N0(t)
N1(t)
N2(t)

...
Nn−1(t)

⎤
⎥⎥⎥⎥⎥⎦ (3-4)

Where:

N0(t) = C(t)

Nk+1 = Nk(t)A(t) +
d
dtNk(t), with k = 0, 1, 2, . . . , n− 2

Continuous-time systems like LTV propagate through time, however in practice this is not
always the case. Systems might be sample based and can best be described in discrete-
time. Continuous-time LTV differ from discrete-time LTV and their corresponding ob-
servability properties. Expression 3-5, gives a standard discrete-time LTV system, from
(Olsder & van der Woude, 2005).

x(k + 1) = A(k)x(k) +B(k)u(k)
y(k) = C(k)x(k) +D(k)u(k)

(3-5)

When considering a discrete-time LTV as defined in expression 3-5, on an interval [t0, t1],
the observability matrix differs from the continuous-time observability matrix O(t). The
discrete-time observability matrix O[t0, t1] is defined by expression 3-6 on interval [t0, t1].
The observability matrix is built on the number of samples k used on the applicable interval.

If a discrete-time system used turns out to be a LTI instead of LTV, the A and C matrices
are no longer varying and equation 3-6 reduces to the a LTI system, as given in equation 3-2.
It should be noted that for both continuous- and discrete-time LTI systems that use equation
3-2 to determine their global observability, the system matrices A and C will in most cases
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be different. The latter is due to the fact that the system and observer dynamics are modeled
differently when using continuous- or discrete-time.

⎡
⎢⎢⎢⎢⎢⎣

y(t0)
y(t0 + 1)
y(t0 + 2)

...
y(t1 − 1)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

C(t0)
C(t0)A(t0)

C(t0 + 1)A(t0 + 1)A(t0)
...

C(t1 − 1)A(t1 − 2) · · ·A(t0)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
·(t0)

O[t0, t1]

(3-6)

When comparing LTV to LTI systems, different types of observability can be considered
due to the fact that the system matrices A and C are continuous- or discrete-time. Three
different types of observability can be defined from (Rhee, Abdel-Hafez, & Speyer, 2004):
Instantaneous observability as is defined in definition 3.3, complete observability as is defined
in definition 3.4 and differential observability as defined in definition 3.5.

Definition 3.3
The LTV system (A(t), B(t), C(t), D(t)) is instantaneous observable on an interval [t0, t1]
if the state x(t) can be determined instantaneously from observation of the system output
y(t).

Definition 3.4
The LTV system (A(t), B(t), C(t), D(t)) is complete observable on an interval [t0, t1] if any
initial state x0 at t0 can be determined from knowledge of the system output y(t) over
interval [t0, t1].

Definition 3.5
The LTV system (A(t), B(t), C(t), D(t)) is differentially observable on an interval [t0, t1] if
it is completely observable on every subinterval on [t0, t1].

Definitions 3.3, 3.4 and 3.5 are given in continuous-time as can be found in (Rhee et al.,
2004). The distinction on different local observability, as described in these definitions, also
holds for discrete-time LTV. Instantaneous observability is the strongest property when
compared to complete and differential observability. If a LTV is instantaneously observable,
the state x(t) can always be determined instantaneously from observing the system output
and its derivatives. Complete and differential observability only requires the system state
to be observable during a finite time interval. This is an important property as the system
observability may change during a finite time interval. The distinction between complete and
differential observability disappears when the matrices A and C are analytic, as is described
in (Silverman & Meadows, 1967). Definitions 3.3, 3.4 and 3.5 can be rephrased in terms of
their rank properties into lemma 3.1, 3.2 and 3.3 which can be found in (Rhee et al., 2004).

Lemma 3.1
The LTV system (A(t), B(t), C(t), D(t)) is instantaneously observable on an interval [t0, t1]
if O(t) has rank n for all t ε[t0, t1].

Lemma 3.2
The LTV system (A(t), B(t), C(t), D(t)) is complete observable on an interval [t0, t1] if and
only if O(t) has rank n for some t ε[t0, t1].
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Lemma 3.3
The LTV system (A(t), B(t), C(t), D(t)) is differentially observable on an interval [t0, t1] if
and only if O(t) does not have rank less than n on any subinterval of [t0, t1].

3-3 Observability of Non-Linear Systems

Linear systems are a linear approximation of real systems. Nonetheless in practice most
physical processes are non-linear by nature. Besides linear systems, as described in section
3-1 and 3-2, also non-linear system descriptions exist. Equation 3-7 gives a standard non-linear
system, where f corresponds to the non-linear state equation which is similar to the matrix A
and B of a linear system. The linear matrix C is replaced by the non-linear observer equation
h. When using linear systems, the system matrices are the result of partial derivatives, when
linearizing around a certain point.

ẋ(t) = f (x(t), u(t), t)

y(t) = h (x(t), t)
(3-7)

When using non-linear systems, the observability analysis differs from linear systems. The
local observability of non-linear systems can be analyzed used Lie derivatives. Lie derivatives
represent the derivative of a scalar function along a vector field. Like for LTV systems, observ-
ability is a local system property for non-linear systems depending on the system and observer
dynamics. To analyze local observability, first the definition of distinguishability is required.
Distinguishability is defined in definition 3.6, which can be found in (Hedrick & Girard, 2005).

Definition 3.6
For the non-linear system

(
f (x(t), u(t), t) h (x(t), t)

)
two states x0 and x1 are distinguishable

if there exists an input function u∗ such that: h(x0) �= h(x1).

When two states x0 and x1 are found to be distinguishable in accordance with definition 3.6,
the local system observability at local state x0 and input u∗ can be analyzed by using the
following definition, definition 3.7 from (Hedrick & Girard, 2005). The definition can also by
interpreted from a more practical perspective: “If the sensor readings are different, the states
are different.”

Definition 3.7
The non-linear system

(
f (x(t), u(t), t) h (x(t), t)

)
is locally observable at x0 if there exists a

neighborhood of x0 such that every x in that neighborhood is other than x0, such that:

x0 �= x1 ⇒ y
0
�= y

1

Local observability for non-linear systems can best be analyzed by using Lie derivatives.
Equation 3-8 gives the Lie derivative definition from (Hedrick & Girard, 2005) of a scalar
function h with respect to vector field f .

Lfh = ∇h · f =
∂h

∂x
f =

n∑
i=1

∂h

∂xi
fi (3-8)
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Where:

f : R
n → R

n be a vector field in R
n

h : R
n → R be a smooth scalar function

Equation 3-8 can be worked out in equation 3-9 to calculate the first-order Lie derivatives.

L1
f (h) =

[
∂h

∂x1
, . . . ,

∂h

∂xn

]⎡
⎢⎢⎢⎣
f1(x)
f2(x)

...
fn(x)

⎤
⎥⎥⎥⎦ (3-9)

By definition holds that the zero-order Lie derivative is equal to the function itself: L0
f (h) = h.

Also higher-order Lie derivatives can be derived, equation 3-10 gives a second-order derivative
of h with respect to vector field f .

L2
f (h) =

∂

∂x

[
L1
f (h)

]
f =

∂

∂x

[
∂h

∂x
f

]
f (3-10)

Equation 3-10 can be generalized into the following expression 3-11.

Lnf (h) =
∂

∂x

[
Ln−1
f (h)

]
f (3-11)

Equation 3-12 gives the expression to calculate the local observability of (x0,u
∗) using up to

4th order Lie derivatives, by using equation 3-11.

O (x0, u
∗) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H (x)
H (x)F (x, u)

H (x) [F (x, u)]2

H (x) [F (x, u)]3

H (x) [F (x, u)]4

...

H (x) [F (x, u)]n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x0,u

∗

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Øp×n

E (x, u)
E (x, u)F (x, u)

E (x, u) [F (x, u)]2

E (x, u) [F (x, u)]3

...

E (x, u) [F (x, u)]n−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x0,u

∗

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Øp×n

Øp×n

D (x, u)
D (x, u)F (x, u)

D (x, u) [F (x, u)]2

...

D (x, u) [F (x, u)]n−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x0,u

∗

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Øp×n

Øp×n

Øp×n

C (x, u)
C (x, u)F (x, u)

...

C (x, u) [F (x, u)]n−4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x0,u

∗

(3-12)
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Where:

f : R
n → R

n be a vector field in R
n

h : R
n → R be a smooth scalar function

H (x) = ∂h(x)
∂x

F (x, u) =
∂f(x,u)

∂x

E (x, u) =

⎡
⎢⎢⎢⎢⎢⎣
fT ∂(dh1)

T

∂x

...

fT ∂(dhn)
T

∂x

⎤
⎥⎥⎥⎥⎥⎦

D (x, u) =

⎡
⎢⎢⎢⎢⎢⎣

(
fT ∂(dh1)

T

∂x

)T
f

...(
fT ∂(dhn)

T

∂x

)T
f

⎤
⎥⎥⎥⎥⎥⎦

C (x, u) =

⎡
⎢⎢⎢⎢⎢⎢⎣

{(
fT ∂(dh1)

T

∂x

)T
f

}
f

...{(
fT ∂(dhn)

T

∂x

)T
f

}
f

⎤
⎥⎥⎥⎥⎥⎥⎦

The first term of the second order Lie derivatives E (x, u), represents the second order deriva-
tive of smooth scaler function h, which is equal to 0. The same holds for the first and second
term of the third order Lie derivatives D (x, u). Also the first up to the third terms for the
fourth order Lie derivatives C (x, u) are equal to 0.
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3-4 Matrix Decompositions

To analyze observability of different systems, as described in the previous sections for different
type of systems, it is useful to include matrix decompositions. The different observability
matrices O for the different types of systems are: Equation 3-2 for LTI systems, equation 3-4
for LTV systems or equation 3-12 for non-linear systems. Matrix decompositions can assist
in the analysis of observability matrices. A basic matrix decomposition is the eigenvalue
decomposition. For instance when taking a eigenvalue decomposition of a matrix A ε Rm×n

with n linearly independent eigenvectors. When these eigenvectors are put together into a
matrix V , expression 3-13 holds, where Λ contains the eigenvalues of matrix A along its
diagonal.

AV = V Λ (3-13)

When the eigenvalues of matrix A are assumed to be linearly independent, the following
theorem 3.2 holds from (Verhaegen & Verdult, 2007).

Theorem 3.2
Eigenvalue decomposition: Any matrix A ε Rm×n, with n linearly independent eigenvalues
can be decomposed as:

A = V ΛV −1

Where: Λ ε Rn×n is a diagonal matrix containing the eigenvalues of the matrix A and the
columns of the matrix V ε Rn×n are the corresponding eigenvectors.

It is important to note that theorem 3.2 only holds when matrix A has n linearly independent
eigenvectors. An other matrix decomposition is the Singular-Value Decomposition (SVD),
described in theorem 3.3 from (Verhaegen & Verdult, 2007).

Theorem 3.3
Singular-value decomposition: Any matrix matrix A ε Rm×n can be decomposed as:

A = UΣV T

Where: U ε Rm×m and V ε Rn×n are orthogonal matrices and Σ ε Rm×n has its only
non-zero elements along the diagonal. These elements σi are ordered such that:

σ1 � σ2 � . . . � σr > σr+1 = σk = 0

Where: r = rank(A) and k = min(m,n).

The matrix Σ contains non-zero values σi along its diagonal, these values are called singular
values of matrix A. The orthogonal matrices U and V contain the left and right singular
vectors of A. The transpose of matrix V can be replaced with V H if the matrix contains
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complex numbers, where V H represent the conjugate transpose of V . The singular-value
decomposition of a matrix can be performed in different ways. When a matrix A ε Rm×n has
rank r, such that r < m and r < n the SVD can be calculated by using equation 3-14, from
(Verhaegen & Verdult, 2007).

A = [U1 U2]

[
Σ1 0
0 0

] [
V1
T

V2
T

]
(3-14)

Where:
U1 ε R

m×r

U2 ε R
m×(m−r)

Σ1 ε R
r×r

V1 ε R
n×r

V2 ε R
n×(n−r)

From equation 3-14 four different subspaces can be identified, these subspaces relate to the
kernel (null-space) and range (column-space) of matrix A ε Rm×n with rank r:

range(A) = range(U1)
ker(AT ) = range(U2)
range(AT ) = range(V1)
ker(A) = range(V2)

Next to the four different subspaces the number of singular values of matrix A, put together
in Σ1, corresponds to the rank r. Each non-zero value on the diagonal of Σ1 corresponds
to an eigenvalue of A. When a matrix has rank r that is smaller to the number of columns
m or rows n, this corresponds to zero diagonal elements of Σ1. The SVD is a numerically
robust factorization, the computations are not sensitive to rounding errors.
Next to the singular-value and eigenvalue decomposition, there is one other important matrix
decomposition namely the QR factorization given in theorem 3.4, from (Verhaegen & Verdult,
2007).

Theorem 3.4
QR factorization: Any matrix matrix A ε Rm×n can be decomposed as:

A = QR

Where: Q ε Rm×m is an orthogonal matrix and R ε Rm×n is upper-triangular, augmented
with columns on the right for n > m or augmented with zero rows at the bottom for m > n.

When a matrix A ε Rm×n has rank r, such that r < m and r < n. The QR factorization can
be performed by using equation 3-15, from (Verhaegen & Verdult, 2007).

A = [Q1 Q2]

[
R1 R2

0 0

]
(3-15)
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Where:
Q1 ε R

m×r

Q2 ε R
m×(m−r)

R1 ε R
r×r

R2 ε R
r×(n−r)

The bottom zero rows below R1 and R2 in expression 3-15 account for the number of rows
m − r of matrix A. Like for the SVD, different subspaces can be identified for the QR
factorization, each with its relation to the kernel and column space of matrix A ε Rm×n with
rank r:

range(A) = range(Q1)
ker(AT ) = range(Q2)
range(AT ) = range(RT1 )

The SVD and QR factorizations can be used to determine the column space and kernel of
a matrix by decomposition. The corresponding rank of a matrix is equal to the number of
independent columns and rows. These particular properties can be utilized when analyzing
observability matrices. In both theorems a matrix A ε Rm×n is used, matrix A can be replaced
by an observability matrix O for a LTI system, O(t) for a continuous-time LTV, O[t0, t1] for
a discrete-time LTV or O (x0, u

∗) for a non-linear system. The number of singular values σi
corresponds to which states are observable based on the used observability matrix. Theorem
3.3 can be used to decompose O into a SVD, resulting in equation 3-16 when O has rank r
such that r < m and r < n.

O = UΣV T = [U1 U2]

[
Σ1 0
0 0

] [
V1
T

V2
T

]
(3-16)

Like for the SVD, the same can be done for a QR decomposition. Using theorem 3.4, an
observability matrix O can be decomposed into a QR factorization, resulting in equation 3-17
when O has rank r such that r < m and r < n.

O = QR = [Q1 Q2]

[
R1 R2

0 0

]
(3-17)

When performing a SVD, the corresponding singular values σi are given in structured de-
creasing order, starting with the highest value. This decreasing order has the disadvantage
that it is no longer possible to directly link a singular value to its corresponding state. When
analyzing different observers, corresponding to different sensor configurations, this makes it
difficult to analyze observer performance for individual states. The decreasing order of the
SVD is usually not the same as compared to the numbering order of the system states. To
avoid this problem a QR factorization can be used to determine the singular values of an
observability matrix O. Expression 3-16 and 3-17 can be set equal when the same O is used.
The orthogonal matrix U ε Rm×m with the left hand-side eigenvectors is equal to Q ε Rm×m

as defined in equation 3-18. The product Σ1V ε R
m×n is equal to R ε R

m×n as defined in
equation 3-19.

U = Q (3-18)
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[
Σ1 0
0 0

] [
V1
T

V2
T

]
=

[
R1 R2

0 0

]
(3-19)

From expression 3-19 it can be seen that the singular values matrix Σ1 together with the right
hand-side singular vectors V form the matrix R from the QR factorization. Both Σ1 and R are
R
m×n, the singular values σi are the only non-zero elements along the diagonal of Σ1, equal

to the rank r and observable states of O. The non-zero elements correspond to the non-zero
eigenvalues of O and the zero elements correspond to the zero eigenvalues. Figure 3-1 gives an
overview of a singular-value decomposition algorithm by using QR. The R matrix is upper-
triangular, augmented with columns on the right for n > m or augmented with zero rows at
the bottom if m > n. The algorithm uses “s” as QR input and snew as the QR factorization
output matrix R. The upper-triangular part of s with possible non-zero eigenvalues can be
extracted with the “triu.m” Matlab-function. The extracted upper-triangular part, denoted
by e is used to calculate the error. When the error is below a threshold “errortol”, the last
step is to sign correct the diagonal terms of snew by taking the absolute value. The complete
algorithm “QRsvd.m” can be found in appendix C, listing C-1.

A disadvantage of QR factorization is that it is more sensitive to numerical instability
compared to SVD. The SVD can best be used to determine the rank since it is not sensitive
to rounding errors. After the rank has been determined with SVD, the singular values
can be linked to the corresponding states by using the QRsvd algorithm. When using real
or simulated sensor data usually no discontinuities or sharp edges are present due to the
presents of noise, the QRsvd algorithm will not run into numerical problems. It is advised
that after the rank is determined by SVD, the QRsvd algorithm is used to quantitatively
analyze the observability of the known observable states.

Fixed-Wing UAV Integrated Navigation with Low-Cost IMU/GPS B. A. Hummelink



34 Observability Theory

O (x0, u
∗)

OT

s

s

QR(sT )

snew

triu(snew, 1)

e

‖e‖
‖diag(s)‖

error

error < errortol
AND

loopCounter > loopMax

abs(s)

σi

yes
no

Figure 3-1: QRsvd Algorithm
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3-5 Observability Degree

The observability degree is a measure to quantify the observability of individual system states.
The observable degree ηk of different system states can be analyzed based on the matrix
decompositions of the observability matrix O, as described section 3-4. The observability
degree acts as a ratio between the observability of individual system states. Furthermore,
this ratio can be used to determine which states are “good” or “bad” observable. This
ratio can be used to measure the performance of different observers, and to determine if
an observer is ill-conditioned to observe particular states. Ill-conditioned observers usually
results in high observability degree. Definition 3.8 gives the definition of observability degree.
Besides measuring observer performance, the observability degree can be used to predict
potential estimation filter problems for particular system states, an example can be found in
(Long, Yong-yuan, & Ji-chao, 2008). A higher observability degree is likely to give a higher
Kalman filter error for that particular state as the observer has difficulty to observe that
specific part of the system. Likewise, a low observability degree will give good Kalman filter
performance as those states are well observed. When designing a Kalman filter is it advised
to take an appropriate value as maximum allowable degree of observability γ as defined in
definition 3.8 when performing the observability analysis to know a-priory which states are
likely to give high errors and filtering problems.

Definition 3.8
The observability degree is defined as the ratio between singular values:

ηk = σmax

σi
, for i = 1, 2, . . . , n

Where: ηk is the observability degree of the kth state, σi are the singular values with σmax

as the maximum singular value. The maximum degree of observability is defined as:

γ = max{ηk}

Where: γ is the maximum allowable degree of observability, which can be used as an initial
condition.
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Chapter 4

Kalman Filtering

This chapter gives a background on Kalman Filtering, that is used for state identification of
chapter 13. Section 4-1 gives an introduction into the subject of Kalman filtering. Section
4-2 gives the conventional Kalman filter framework for state estimation. Section 4-3 gives an
extension on Kalman filtering when using non-linear systems, Extended Kalman Filter (EKF).
The last section 4-4 gives an improvement to the EKF, the Iterated Extended Kalman Filter
(IEKF).

4-1 Introduction

Kalman filtering has its origin in the 1960’s when published by Rudolf E. Kalman. This new
approach into linear filtering can be found in (Kalman, 1960) and has its application in many
scientific fields. In essence, Kalman filtering produces estimations of measurement values by
predicting its values using a set of mathematical equations. The estimation is performed by
predicting its value together with its uncertainty, by computing an average of the predicted
and measured value. The measured values are given by observers and are used to correct the
predicted values. Kalman filtering is powerful in many aspects; it supports state estimation
of past, present and future measurements. Besides states it can estimate system parameters
when part of the modeled system is unknown or even both, called dual estimation. This
report mainly focuses on state estimation using MEMS sensors applied to fixed-wing UAVs.
Figure 4-1 gives the principle of state and parameter identification.

4-2 State Identification Kalman Filters

Different types of systems can be used when applying Kalman filter theory. The conventional
Kalman filter uses linear filter theory and can only be applied to linear systems. Section 4-3
gives an extension for non-linear systems, using Jacobians.
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input
system

output

state estimation and
parameter identification

estimated states and
identified parameters

Figure 4-1: Principle of state and parameter identification

A description on the standard discrete linear time-varying (LTV) system can be found in
section 3-2, expression 3-3, which is used to describe the observability of linear time-varying
systems. The standard LTV systems does not include the system’s noise properties, for
Kalman filtering the system and input noise properties are essential and should be included.
Expression 4-1 form (Simon, 2006) gives a more general form of linear discrete-time varying
systems.

x(k + 1) = Φ(k)x(k) + Ψ(k)u(k) + w(k)
z(k + 1) = H(k + 1)x(k + 1) +D(k + 1)u(k) + v(k + 1)

(4-1)

The matrix Φ(k) is the system transition matrix, the input distribution matrix Ψ(k) with time
varying parameters. The output observer dynamics H(k+1) represents the sensor dynamics
between the state vector x and measured quantities z. The factor D(k + 1)u(k) represents
sensor feedback with the observer. When assumed that the input and observer are decoupled,
D(k + 1)u(k) can be left out. The process noise w(k) and measurement noise v(k + 1) are
assumed to be white mean Gaussian, uncorrelated with known constant covariance matrices
Q and R as defined in expressions 4-2 and 4-3. In practice sensors usually have biases,
are correlated and have time varying noise properties. If this is the case, sensor biases can
be added as additional states or parameters to the state vector. With added bias states, the
estimation performance increases. A disadvantage of a larger state vector, is that the required
computational power also increases.

w ∼ N(0, Q) (4-2)

v ∼ N(0, R) (4-3)
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The goal is to estimate the state vector x ε Rn based on predefined knowledge of the system
and observer dynamics and availability of measurements z. The error between the true state
x and the estimate x̂ is defined in expression 4-4.

e = x− x̂ (4-4)

The mean of the state vector is defined as follows: E {x(k + 1)} = x̂ (k + 1 | k). The notation
“k+1 | k” is to indicate an a priori estimate and “k+1 | k+1” is to indicate an a posteriori
estimate. These two notations are used to indicate different Kalman filter steps. The two
corresponding error covariances are in expressions 4-5 and 4-6.

P (k + 1 | k) = E
{
[x(k + 1)− x̂ (k + 1 | k)][x(k + 1)− x̂ (k + 1 | k)]T}

(4-5)

P (k + 1 | k + 1) = E
{
[x(k + 1)− x̂ (k + 1 | k + 1)][x(k + 1)− x̂ (k + 1 | k + 1)]T

}
(4-6)

The goal of the Kalman filter is to find the state estimate x̂ (k + 1 | k + 1). The estimated
state vector is a linear combination of the a priori estimate x̂ (k + 1 | k) and measurement
correction ẑ (k + 1 | k + 1). To perform the linear combination, the state estimate x̂ (k + 1 | k)
is multiplied by the measurement dynamics H(k + 1), as can be seen in expression 4-7.

The difference between the measurement ˆz (k + 1 | k + 1) and predicted measurement H(k+
1)x̂ (k + 1 | k) is multiplied with a Kalman gain matrix K(k+1) and added to the predicted
state x̂ (k + 1 | k). The difference between ẑ (k + 1 | k + 1) and H(k+1)x̂ (k + 1 | k) is called
the residual of the measurement innovation.

x̂ (k + 1 | k + 1) = x̂ (k + 1 | k) +K(k + 1) [ẑ (k + 1 | k + 1)−H(k + 1)x̂ (k + 1 | k)] (4-7)

The equations of expression 4-1 must be combined with expression 4-7 to construct a Kalman
filter. The first equation of 4-1 represents the prediction step, the second equation the inno-
vation equation where observer measurements correct the prediction step. First the state is
predicted called one step ahead prediction, expression 4-8 together with the covariance matrix
results in equation 4-9 from (Simon, 2006). The initial state x̂0 and covariance P0 are applied
when first performing a step update.

x̂ (k + 1 | k) = Φ(k)x̂ (k | k) + Ψ(k)u(k), x̂ (0 | 0) = x̂0 (4-8)

P (k + 1 | k) = Φ(k)P (k | k)ΦT (k) +Q(k), P (0 | 0) = P0 (4-9)

As previously mentioned, the Kalman filter uses a prediction step together with a correction.
These two steps form a type of Feedback control, where the Kalman gain is the gain onto the

Fixed-Wing UAV Integrated Navigation with Low-Cost IMU/GPS B. A. Hummelink



40 Kalman Filtering

residual. The Kalman gain is given in expression 4-10. The Kalman gain uses the covariance
estimation during the prediction, expression 4-9.

K(k + 1) = P (k + 1 | k)HT (k + 1)
[
H(k + 1)P (k + 1 | k)HT (k + 1) +R(k + 1)

]−1
(4-10)

A measurement update step can be performed by working out expression 4-7 by using ex-
pression 4-10 together with expression 4-7, resulting in expression 4-11.

x̂ (k + 1 | k + 1) = x̂ (k + 1 | k) + P (k + 1 | k)HT (k + 1)[H(k + 1)

P (k + 1 | k)HT (k + 1) +R(k + 1)]−1 [z(k + 1 | k + 1) −H(k + 1)x̂ (k + 1 | k)] (4-11)

Together with the measurement update of expression 4-11, the covariance matrix
P (k + 1 | k + 1) of the state estimation error vector can use the information obtained during
the correction step, expression 4-12.

P (k + 1 | k + 1) = [I −K(k + 1)H(k + 1)]P (k + 1 | k) (4-12)

To implement the Kalman filter, the measurement covariance noise R is required and is usually
obtained prior to implementation. This is usually done by taking off-line measurements, where
the process is observed during filter operation. Knowing the variance of the measurement
noise before operation, will improve the filter performance and stability. The process noise
covariance matrix Q is more difficult to determine as usually no direct process state observers
are available. A simple or uncertain process model can best be used by selecting high Q values
to account for process uncertainty. The individual process states, which are usually influenced
by input noise, can be tuned individually by selecting higher or lower values on the diagonal of
Q. Off diagonal terms of matrix Q represent process noise coupling effects between individual
states. When a process model is very uncertain or caused by noisy measurements, it can
still produce reliable filter output as high uncertainties are included in the calculation of the
covariance matrix P and Kalman gain K. The disadvantage of selecting high process noise
covariances is that the filter performance and convergence decreases. The filter parameters R
and Q should be tuned properly to improve the filter performance. The R matrix can best be
selected based on the noise level of observer noises. Under the constraint that the matrices R
and Q are kept constant, the estimation covariance P and Kalman gain K will stabilize and
converge to constant values. When the latter is the case, these parameters can be determined
by using off-line filtering when looking at their steady-state values.

In practice, equation 4-12 can lead to numerical round-off errors and results in a updated
covariance matrix P (k + 1 | k + 1) that is not symmetrical and positive-semi definite. As an
alternative, equation 4-13 can be used which is the result of multiplying expression 4-12 with
P (k + 1 | k + 1) at the left and P (k + 1 | k) at the right.

P (k + 1 | k + 1) = [I −K(k + 1)H(k + 1)]P (k + 1 | k) ·
[I −K(k + 1)H(k + 1)]T +K(k + 1)R(k + 1)KT (k + 1)

(4-13)
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If the covariance matrix of the state estimation error P (k + 1 | k + 1), expression 4-12 leads
to numerical instability, the covariance matrix can be forced to be symmetric. This can be
done by taking the transpose of the covariance matrix and divide this the sum by 2, expression
4-14 from (Simon, 2006). This expression does usually not result in better filter convergence,
but increases the filters numerical robustness. Also square root forms may compensate for
instability during calculations, which are usually the result of inverting singular matrices.
More about square root and alternate forms of Kalman filtering can be found in (Simon,
2006). The Kalman filter assumes that the process and measurements noise are Gaussian
bases. This may however not be the case in practice, if so a particle or Bayesian filter
framework should be chosen. More about different attitude filtering methods can be found in
(Markley, Crassidis, & Cheng, 2005).

P =
P + P T

2
(4-14)

4-3 Extended Kalman Filter

In the previous section 4-2, the traditional Kalman filter was used to estimate the state vector
x, by using a linear discrete stochastic time-varying system description. In practice, the pro-
cess and measurements equations are usually non-linear. The linear Kalman filter theorem
can be extended for non-linear systems by linearizing around the mean and covariance, which
is referred to as the Extended Kalman Filter (EKF). The EKF uses first order partial deriva-
tives to linearize non-linear dynamical systems at each time step to estimate the state vector
x. Expression 4-15 gives a general non-linear system. In expression 4-15 f represents the
aircraft kinematics, G the system noise input matrix with w the input noise. Together this
gives the non-linear state equation, the first row of expression 4-15 indicated by ẋ(t). The
non-linear observer equation h, together with the measurement noise v and measurement
noise dynamics D this gives the measurement equation z.

Linearizing and discretization of the state equation ẋ(t) around a point [x(t), u(t)] is required,
since the state equation has time-varying non-linear parameters, the linearized state equation
needs to be recalculated during each step x = x̂(k|k).

ẋ(t) = f [x(t), u(t), t] +G [x(t), t]w(t) x(0) = x0
zm(t) = h [x(t), u(t), t]
z(t) = zm(t) +D [x(t), t] v(t) k = 1, 2, . . .

(4-15)

To use EKF, some of the expressions of the previous section 4-2 needs to be rewritten. The
one step ahead prediction for non-linear systems can be obtained by integrating the non-
linear state equation of expression 4-15 with the one step earlier estimate of the state vector,
expression 4-16.

x̂ (k + 1 | k) = x̂ (k | k) +
∫ tk+1

tk

f (x(t), u(t), t) dt (4-16)

The covariance matrix is calculated in the same way as for the linear Kalman filter, expression
4-9 with the difference of a linearization step. Expression 4-17 and 4-18 gives the linearization
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of the non-linear state equation f [x(t), u(t), t] and system noise matrix G [x(t), t], by using
Jacobians.

F (k) =
∂f (x(t), u(t), t)

∂x(t)

∣∣∣
x=x̂(k|k)

(4-17)

G(k) =
∂G (x(t), t)

∂x(t)

∣∣∣
x=x̂(k|k)

(4-18)

Expression 4-19 gives the error covariance matrix P (k + 1 | k) of the prediction step by using
discrete time linearized system dynamics Φ(k) and input dynamics Γ(k).

P (k + 1 | k) = Φ(k)P (k | k)ΦT (k) + Γ(k)Q(k)ΓT (k) (4-19)

The same linearization should be done of the observer equation h [x(t), u(t), t], of expression
4-15 at sample k. Expressions 4-20 and 4-21 give the observer and observer noise linearization.

H(k) =
∂h (x(t), u(t), t)

∂x(t)

∣∣∣
x=x̂(k|k)

(4-20)

D(k) =
∂D (x, (t))

∂x(t)

∣∣∣
x=x̂(k|k)

(4-21)

Resulting in the Kalman gain matrix, expression 4-22.

K(k + 1) = P (k + 1 | k)HT (k + 1)[
H(k + 1)P (k + 1 | k)HT (k + 1) +D(k + 1)R(k + 1)D(k + 1)T

]−1
(4-22)

Measurement update equation, expression 4-23.

x̂ (k + 1 | k + 1) = x̂ (k + 1 | k) +K(k + 1) [z(k + 1)−H(k + 1)x̂ (k + 1 | k)] (4-23)

Covariance matrix update, expression 4-24.

P (k + 1 | k + 1) = [I −K(k + 1)H(k + 1)]P (k + 1 | k)
[I −K(k + 1)H(k + 1)]T +K(k + 1)

(
D(k + 1)R(k + 1)D(k + 1)T

)
KT (k + 1) (4-24)

When there is no measurement observer noise, captured in D(k + 1) the term “K(k +
1)

[
D(k + 1)R(k + 1)D(k + 1)T

]
KT (k+1)” becomes: K(k+1)R(k+1)KT (k+1). Expression

4-24 can be rewritten into expression 4-25.

P (k + 1 | k + 1) = [I −K(k + 1)H(k + 1)]P (k + 1 | k)
[I −K(k + 1)H(k + 1)]T +K(k + 1)R(k + 1)KT (k + 1) (4-25)
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4-4 Iterated Extended Kalman Filter

The extended Kalman filter described in the previous section 4-3, contains linearization
around the observer dynamics

h [x(t), u(t), t]

. This linearization, equation 4-20, can be extended to obtain a better state estimate of the
observer dynamics. For many observers the non-linearities present cannot be neglected and
need to be included in dynamics models. To ensure stability, the perturbed state vector must
be small, meaning the initial condition of the EKF should be close to the optimal solution. By
recalculating the Kalman gain and measurement update steps of equations 4-22 and 4-23, a
better state estimate around the linearized observer dynamics can be obtained by reiteration.

The one stage ahead estimation remains the same and is now reiterated around x̂ (k + 1 | k) =
η1 from the prediction step, to partially compensate for non-linearities. The prediction is
calculated the same as for the EKF, expression 4-16. Kalman gainK(k+1) is now recalculated
at each iteration together with the measurement update, resulting in equation 4-26 and 4-27.
During every iteration the linearization of the observer dynamics H(k + 1) is repeated to
obtain a better observer linearization.

K(k + 1) = P (k + 1 | k)HT (k + 1)
[
H(k + 1)P (k + 1 | k)HT (k + 1) +R(k + 1)

]−1
(4-26)

Measurement update equation 4-23 is rewritten into equation 4-27. The measurement state
update x̂ (k + 1 | k + 1), has been replaced with a dummy variable η2.

η2 = x̂ (k + 1 | k) +K(k + 1) [z(k + 1) − h(η1)−H(k + 1)x̂ (k + 1 | k)− η1] (4-27)

Last two equations 4-26 and 4-27 can be repeated for a maximum number of iterations or
until the error is below a tolerance |εcrit|, equation 4-28.

ε =
η2 − η1
η2

, repeated while|ε| > |εcrit| (4-28)

When the iteration stopping criteria is reached of equation 4-28 or after a finite number of
steps, the variable η2 becomes the final state estimation x̂ (k + 1 | k + 1). After the measure-
ment update has been performed, the covariance matrix of state estimation error vector of
equation 4-13 can be calculated, expression 4-29.

P (k + 1 | k + 1) = [I −K(k + 1)H(k + 1)]P (k + 1 | k)
[I −K(k + 1)H(k + 1)]T +K(k + 1)

(
D(k + 1)R(k + 1)D(k + 1)T

)
KT (k + 1)

(4-29)
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Chapter 5

Inertial Measuring Unit Modeling

This chapter is about the modeling of Inertial Measuring Unit (IMU) gyroscopes and ac-
celerometers sensors. The developed sensor simulation tool in this chapter can be used to
convert the UAV output states of chapter 7 to MEMS based IMU sensor output signals. Sec-
tion 5-1 gives a short background about a Micro-Electro-Mechanical Systems (MEMS) based
IMU. Sections 5-2 up to 5-7 describe the individual sensor properties as can be found in
(Abdel-Hafez, 2009). Last section 5-8 summarizes the individual IMU characteristics.

5-1 Introduction

Throughout this chapter IMU sensors consist of three gyroscopic and accelerations sensors
to sense angular rates and accelerometers in all three directions. Furthermore it is assumed
that the IMU is based on MEMS technology. MEMS can best be seen as a system-on-
a-chip. Such a system is the complete integration of electronic, mechanical, sensors and
actuator elements by means of micro fabrication technology. The electronic components are
made using conventional integrated circuit technology, the micromechanical components using
micromachining technology. The combination of these two technologies makes it possible
to create complete systems on a single chip. MEMS devices can be used for navigational
purposes, the microsensors function as the systems eyes with the microelectronics as the brains
of the system. These devices are used more and more on smaller and cheaper platforms. When
compared to conventional inertial instruments, MEMS improves many features that constrain
the use of inertial instruments on smaller platforms, like cost, size and power consumption.
The reduction in size brings other challenges to obtain good measurements when compared
to conventional instruments. A decrease in sensitivity together with an increase in thermal
sensitivity and noise. With changing temperature, the mechanical properties of the system
are expected to change resulting in lower accuracy and sensitivity. One other aspect is the
effect of time delays, it is assumed that no time delays are present. For the final signal
modeling of chapter 7, a GPS receiver is also included. For the GPS receiver modeling of
chapter 6, time delays are considered between IMU and GPS receivers. GPS receivers usually
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need more processing time, when compared to MEMS based IMU and result in time delay
between IMU and GPS signals. For this reason time delays are only applied to GPS receiver
modeling as they are larger. The following sections 5-2 to 5-8 will go into more detail about
MEMS based IMU sensor properties and how they can properly be modeled.

5-2 Random Walk

A described in chapter 2 most dead-reckoning navigation systems experience an accumulation
of error. This increase in error over time, due to a continuous series of measurements relative
to an initial position is called drift. This increase in error is called a random walk, meaning the
calculated position is going to “walk away” in a random fashion from the true value. A random
walk can best be seen as an integrated zero mean Gaussian. The change in individual noise
samples will cause fluctuations around a zero mean. If these individual samples are summed
up over time, the accumulated signal will show an increase/ decrease result around zero, figure
5-1 shows the integration step. The noise e ε N (0, 1) has a standard normal distribution with
a mean around zero and a standard deviation σ = 1, the magnitude of the random walk b
can be increased by multiplication for modeling purposes.

e 1
s

b

Figure 5-1: Random walk

Figure 5-2 gives an example of a random walk by using a Gaussian around zero with a
standard deviation of 1. Subfigure 5-2(a) gives the Gaussian noise, with the resulting random
walk in subfigure 5-2(b).
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Figure 5-2: Example of random walk bias by integrating a Gaussian around zero
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5-3 Axis Misalignment

A placed sensor package onto a platform never coincides completely with the vehicle axes of
orientation. The axis misalignment between the sensor axis of sensitivity and the body axis
can be described by looking at the angle in between. Figure 5-3 gives an example of a single
axis misalignment, resulting in a rotation angle θ around the z-axis. When using an IMU
with 3 orthogonal sensors, a Direction Cosine Matrix (DCM) can best be used as is explained
in more detail in 8-2. With the DCM the sensor package orientation can be transformed to
the virtual misaligned frame of reference, corresponding to the axis misalignment.

X

Y

Z

X’

Y’

θ

Figure 5-3: Rotation around z-axis with an angle θ

Equation 5-1 gives the axis misalignment rotational matrix Ram using three misalignment
angles φam, θam and ψam. Equation 5-2 gives the simulated acceleration measurements Am
including axis misalignment by multiplying the true values with the misalignment DCM
matrix. Equations 5-1 and 5-2 also hold for gyroscopic sensor axis misalignment, as can be
found in (Abdel-Hafez, 2009).

Ram (φam, θam, ψam) =

⎡
⎢⎢⎢⎢⎣

cos θam cosψam sinφam sin θam cosψam− cosφam sin θam cosψam+
cosφam sinψam sinφam sinψam

cos θam sinψam sinφam sin θam sinψam+ cosφam sin θam sinψam−
cosφam cosψam sinφam cosψam

− sin θam sinφam cos θam cosφam cos θam

⎤
⎥⎥⎥⎥⎦

(5-1)

Am = Ram (φam, θam, ψam)Atrue (5-2)
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5-4 Sensor-to-Sensor Misalignment

IMU consists of three separate gyroscopic and three accelerometer sensors. Both sets have
three orthogonal placed sensors to measure in all three directions. The sensors are manu-
factured in an orthogonal fashion, however in practice small deviations are usually present.
These small deviation causes (small) measurement errors by sensors orthogonal to the axis
of orientation, called sensor-to-sensor misalignment. Like for the axis misalignment errors of
section 5-3, sensor-to-sensor misalignment errors can be included by using a DCM matrix for
transforming the true values to a virtual frame of reference. The virtual frame of reference
represents the misaligned frame of reference. The rotational matrix Rsm uses three angles
φsm, θsm and ψsm to calculate the non-orthogonal influence on the sensor performance. Equa-
tion 5-3 represents the corresponding DCM matrix as is described in section 8-2. Equation
5-4 gives the acceleration Am computation to include sensor-to-sensor misalignment. Both
equations 5-3 and 5-4 also hold for gyroscopic sensors.

Rsm (φsm, θsm, ψsm) =

⎡
⎢⎢⎢⎢⎣

cos θsm cosψsm sinφsm sin θsm cosψsm− cos φsm sin θsm cosψsm+
cosφsm sinψsm sinφsm sinψsm

cos θsm sinψsm sinφsm sin θsm sinψsm+ cos φsm sin θsm sinψsm−
cosφsm cosψsm sinφsm cosψsm

− sin θsm sinφsm cos θsm cos φsm cos θsm

⎤
⎥⎥⎥⎥⎦

(5-3)

Am = Rsm (φsm, θsm, ψsm)Atrue (5-4)

5-5 Temperature Influence

A change in temperature over time, called temperate flux, influences the performance of a
MEMS based IMU. It causes two kinds of performance degradation, a linear scale factor S
and a bias term b. Linear scale factor errors as defined in expression 5-5 are in the range
of 200 ppm to 1400 ppm according to (Geiger & Bartholomeyczik, 2008). The temperature
influence on the sensor bias is the same as for the random walk of section 5-2 with the
addition of a multiplication factor to include the linear scale factor. Both effects are modeled
as a factor times a temperature difference ΔT . It is assumed for simulation purposes that
both gyroscopes and accelerometers are calibrated when there is no temperature difference
ΔT = 0.

ST = lsfΔT (5-5)

bΔT = bTΔT. (5-6)

Besides a linear scale factor and bias, additional higher order terms can be added to simu-
late the influence of temperature more accurately, for instance non-linear scale factors and
axis misalignment of a function of temperature changes. An example about temperature
polynomial fitting and IMU sensor calibration can be found in (De Wagter, 2004).
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5-6 External Vibration Source

MEMS based IMU’s are very sensitive to external factors. Besides temperature influences
as described in the previous section, also vibrations have an influence on the sensor output.
MEMS based sensors are influenced by internal or external vibrational sources. An example
of a vibrational source usually present is the UAV’s engine. This is usually a fixed-propeller
rotating at a high frequency. The engine vibrations are passed through to the vehicles body
and are sensed by the IMU. Due to the vehicles body, engine and other components, the vi-
brations are changed. While the IMU can always be placed on vibrations dampers, the sensors
will always sense some kind of vibration due to their high sensitivity. The influence of vibra-
tions on the sensor performance can best be modeled as Gaussian noise. For accelerometers,
the vibrations will be sensed as a source of acceleration and are combined in the measurement
noise. The gyroscopes are influenced by vibrations in a different way due to the fact that
gyroscopes measure angular rates instead of accelerations. This can be modeled by using a vi-
bration rectification factor VRω, as defined in equation 5-7 from (Geiger & Bartholomeyczik,
2008). Typical values are about 0.02 o/h/g2 according to (Geiger & Bartholomeyczik, 2008),
usually some information is included in the manufacturing datasheet.

ωm = ωtrue +VRωFvibrations (5-7)

5-7 Measurement Noise

The total measurement noise e is a combination of white noise eω, correlated noise ec, random
walk erw, quantization error eq and dither noise ed as summarized in equation 5-8. When
a sensor signal is passed through a low-pass filter, it becomes correlated to the properties
of the low-pass filter, which is used to filter out high frequency white noise. The random
walk is due to integration of the white noise. Quantization errors are due to analog-digital
(AD) converters. The input signal is analog and basically a continuous set of values, which
is digitalized to a discrete set. Dither is an intentionally added noise term to randomize
quantization errors and noise at discrete frequencies. To include the effect of an external
vibration source on the accelerometers, this can best be modeled as white noise eω with a
Gaussian deviation σ equal to 0.25 - 0.5g to model the engine vibration source.

e = eω + ec + erw + eq + ed (5-8)

Additional sources could be added to equation 5-8 like acoustic rectification error which
usually starts to occur above sound levels of 140 dB. During normal operations such sound
levels are not reached and these effects can be neglected.
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5-8 IMU Modeling

The individual IMU properties, described in sections 5-2 to 5-7, can be summarized to give
an accurate description of how accelerometer and gyroscopic sensor data is being sensed by
MEMS based sensors. It is assumed that MEMS IMU are used, the true sensor signal is
multiplied and added by different properties to obtain a realistic IMU measurement. The
term bRW is a 3D vector, to simulate a random walk in all three orthogonal sensitivity axes.
Equations 5-9 and 5-10 give the accelerometer and gyroscopic output. Some terms have an
added subscript

A
or ω to indicate differences between accelerometer and gyroscopic sensors.

These two equations are used in this report when simulating IMU output signals. As can be
found in chapter 13 about different identification simulations.

Am = [1−RamARsmA ]Atrue + bRWA
+ΔT (lsfA + bTA) + eA (5-9)

ωm = [1−RamωRsmω ]ωtrue + bRWω
+ΔT (lsfω + bTω) + VRωFvibrations + eω (5-10)

Accelerometers equation 5-9, with Atrue being the true vehicle accelerations, subscript m being
the measured value, b being a sensor bias value and e being sensor noise. The accelerometer
equation 5-9 is split up into the three orthogonal directions: A = [AxAyAz]

T resulting in
equation 5-11.

Axtrue = Axm − bAx − eAx
Aytrue = Axm − bAy − eAy
Aztrue = Aym − bAz − eAz

(5-11)

The bias terms [bAx ,bAy ,bAz ] are a function of the axis and sensor-to-sensor misalignment
properties, random walk and temperature. The sensor noise terms [eAx ,eAy ,eAz ] are a function
of external vibration sources and measurement noise. The gyroscopic equation 5-10, with ωtrue
being the true value, m being the measured value, b being a sensor bias value and e being
sensor noise. The gyroscopic equation 5-10 is split up into the three orthogonal directions:
ω = [p q r]T resulting in equation 5-12.

ptrue = pm − bp − ep
qtrue = qm − bq − eq
rtrue = rm − br − er

(5-12)

The bias terms [bp,bq,br] are a function of the axis and sensor-to-sensor misalignment prop-
erties, random walk and temperature. The sensor noise terms [ep,eq,er] are a function of
external vibrations sources and measurement noise.
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Chapter 6

GPS Receiver Modeling

This chapter is about the modeling of GPS receivers. Section 6-1 is about the processing time
that is usually present with GPS receivers. The sections 6-2 and 6-3 are about position and
velocity modeling. More about GPS itself and satellite navigation in general can be found in
section 2-2.

6-1 GPS Receiver Processing Time

GPS satellite signals can be received by GPS receivers. The data received from a minimum
of four satellites is processed and transmitted to other systems. Processing of received GPS
satellite signals takes time called processing time. This processing time is about 0.25−0.40[s]
for most GPS receivers with an integrated Kalman filter for signal processing. The receivers
output provides the user with its position and velocity. The total time is dependent on the
fact that the position calculation is an “easy” or a “difficult” position fix. For instance, when
a new satellite is flying over, its takes more calculation time. It is assumed that position
and velocity calculation needs the same processing time for each update. For the modeling
of processing time, it is assumed that the receivers processing time is Gaussian based with
a mean at 0.25[s] and a standard deviation of 10%. This can be implemented by taking a
data sample which occurred at 0.25± 0.025[s] in the past. Figure 6-1 displays an example on
processing time delay by using a signal time step of dt = 0.01[s]. The processing time delay
array index is rounded off to the nearest array index. The rounded sample is to simulate a
GPS receiver output. Figure 6-1(a) shows the raw processing time estimation, figure 6-1(b)
gives the sample rounded time delay.

6-2 GPS Position Modeling

The received GPS position is modeled as the original position signal with the addition of a
noise term and a processing time delay as described in section 6-1. The noise term combines
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Figure 6-1: GPS processing time, using a time step of 0.01 [s]

several satellite navigation sources of error as described in section 2-2. The noise terms
are modeled as a white Gaussian, with a standard deviation σ. Besides noise terms, some
sources of error show a bias effect. The absolute satellite navigation error is dependent
on many factors. Table 6-1 gives a typical example on GPS position error budget, from
(Schmidt, 2009). Based on this table the total error is about 10.3 meters, this is consistent
with normal operation where the Circular Error of Probability (CEP) is about 10 meter in
horizontal direction and about 15 meter in vertical direction. The error is usually higher in
vertical direction due to satellite ephemeris 6.4 instead of 1.4 meter, performed by the control
segment. The vertical direction has a higher uncertainty due to differences in theoretical and
real satellite orbit height estimation.

Table 6-1: GPS position error budget

GPS noise-like range errors 1σ values [m]

Multipath 0.6

receiver noise 0.3

RMS noise 0.7

Total noise 1.6

GPS bias-like range errors 1σ values [m]

Satellite ephemeris 1.4 - 6.4

Satellite clock 3.4

Atmospheric residual 0.2

RMS bias-like error 3.7

Total bias 8.7 - 13.7

The modeling of a GPS position is performed in two parts. The total bias term is modeled
as a sphere around the real position, by using cylindrical coordinates. Two angles θb and φb,
are randomly varied between 0 and 2π [rad], the three radius terms [bxbybz] can be chosen
separately to represent different bias errors. Figure 6-2 gives an impression of the 3D position
bias error. Besides bias, noise [exGPSeyGPSezGPS ] must be added to include the error noise of
table 6-1. Equation 6-1 gives the equations to model GPS position, including bias and noise.
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The second part to accurately model GPS receiver position output is to include processing
time. This can be done by taking a position value at an earlier time step, as explained in
section 6-1.

xGPS = xreal + bx cos θb sinφb + exGPS
yGPS = yreal + by sin θb sinφb + eyGPS
zGPS = zreal + bz sin θb + ezGPS

(6-1)
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Figure 6-2: GPS position error modeling

6-3 GPS Velocity Modeling

The GPS velocity components are a result of measuring the Doppler shift between the satel-
lites and user receiver as described in section 2-2. The accuracy of the GPS velocity is usually
much higher when compared to GPS position, about one order of magnitude. For modeling
purposes, it is assumed that the clock drift of the users receiver and satellites can be neglected.
The satellite clock drift is measured and corrected by the GPS control segment at regular
intervals. The users clock drift is in practice relatively small compared to the user receiver
noise. Equation 6-2 expresses the GPS velocity modeling in all three directions, the noise has
values in the order of 0.01 [m/s].

uGPSm = uGPS + euGPS
vGPSm = vGPS + evGPS
wGPSm = wGPS + ewGPS

(6-2)
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Chapter 7

Aeronautical Simulation Library

The fixed-wing UAV model that is used in this report is based on the Aeronautical Simulation
(AeroSim) Matlab/Simulink library from Unmanned Dynamics, LLC. The AeroSim blockset
is a Simulink block library that can be used for development of non-linear 6-DOF UAV models.
It is commercial software that can be downloaded free of charge for academic purposes. Section
7-1 is about the library itself and section 7-2 describes the Simulink model that is used in
chapter 13 when performing simulations.

7-1 AeroSim Library Block Reference

The AeroSim library includes different blocks that are required to build 6-DOF aircraft
Matlab/Simulink models, for instance for a UAV model. This section gives an overview
of the different elements used for building theUAV model. The main library can be found
in figure 7-1 which includes subfolders for different variants of the model elements with a
total of 103 blocks. This section gives a quick overview of the different blocks and how
they interact with each other. A more extensive description including all mathematical
equations can be found the AeroSim Blockset user’s guide, which can be downloaded from
http://www.u-dynamics.com/aerosim/.

The actuator block contains generic models of electro-mechanical actuators. These models
are very useful for conducting stability and performance analysis of autopilots and closed loop
systems. The library provides simple actuators with 1st order dynamics to more complicated
2nd order dynamics. Both type of actuator models use a transfer function combined with a user
defined range on input signal and actuator deflections together with a maximum actuation
rate. The latter being the maximum speed at which the actuator can move. Next to actuator
dynamics, a digital-to-analog converter block can be implemented to model realistic signal
processing.

The aerodynamics block consists of the required blocks to create a full non-linear 6-DOF
aerodynamic model aerodynamic derivatives. The aerodynamic force block computes the
total aerodynamic force on the airframe by using the aerodynamic force coefficients and
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Figure 7-1: AeroSim library 1.2

dynamic pressure. These coefficients come from other aerodynamic sub-blocks, that compute
aerodynamic coefficients, dynamic pressure and wind-axes velocities. The output from the
aerodynamic force block should go into the total acceleration and total moment block to
obtain the total force and moment, an example is given in figure 7-2(a). The same holds for
the aerodynamic moment block, which is also depending on other elements to calculate the
final aerodynamic moments as is illustrated in figure 7-3. The wind-axes block computes the
wind-axes velocities based on the wind speed and ground speed. The wind-axes velocities are
outputted by the total airspeed VT , the angle of attack α, the side-slip angle β and the Mach
number.

(a) Aerodynamic sub-block (b) Atmosphere sub-block (c) Earth coordinate frame
sub-block

Figure 7-2: Subblocks of the complete aircraft model

The atmosphere library simulates the local air using air parameters and wind effects. Figure
7-2(b) gives an example of a complete atmospheric block. The atmosphere block calculates
the altitude together with the static pressure, outside air temperature, air density and speed
of sound. The background wind velocity components are calculated in a body-fixed frame of
reference by the wind block. This block can be used as wind input for the atmosphere model
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for turbulence, wind shear or the aerodynamics.

The block called “Earth” contains blocks to model the Earth’s shape, gravity and magnetic
field. The WGS-84 block computes the local Earth radius and gravity using WGS-84 Earth
coefficients, the World Geodetic System, 1984 (WGS-84) coordinate system is the reference
coordinate system used by the GPS systems to calculate positions. The Earth is modeled as
an ellipsoid, where the 84 stands for the systems last revision in 1984. The EGM-96 block
can compute the sea level with respect to the Earth elliptical WGS-84 model. The Earth
Gravitational Model, 1996 (EGM-96) block uses an geoid undulation model of the Earth.
Geoid undulation includes the difference in altitude between the theoretical ellipsoid shape
and actual mean sea level caused by the non-uniformity of the Earth’s gravitational potential.
The output from the EGM-96 block is used by the ground detection block to compute the
aircraft altitude above the ground level. If flying below ground level, a boolean flag is used to
stop the simulation. The World Magnetic Model 2000 (WMM) block can be used to calculate
the Earth magnetic field components according to the WMM-2000. This can for instance be
used when simulating a three axis magnetometer sensor.

Various types of propulsion are included in the propulsion library, that can virtually be
mounted onto the model. Propulsion can also be left out in case of modeling a glider. The
fixed-pitch propeller uses a look-up table for obtaining the current advance ratio which is
defined as the ratio between the forward flight speed and the speed of the rotor tip. The
block also provides the propulsion force and other propulsion dynamics. Besides the propeller
engine a piston engine is also included in the library. The piston engine also uses a look-up
table, including tables for fuel flow and engine power at sea-level, both are a function of the
number of rotations and manifold pressure. The fixed-pitch propeller and the piston engine
are included in the General Aviation (GA) propulsion block to provide the engine torque by
using the current engine shaft rotation speed, atmospheric conditions and airspeed. Next to
the engine torque, also the propulsion forces and moments are calculated that act onto the
aircraft.

The library also contains extensions to include sensor properties and some predefined mathe-
matical operations. Also flight gear compatible software to interface the Simulink model with
flight gear software is available. Together with pilot interface blocks which allow the user
to interact with the aircraft model including a joystick connection and visual instruments.
These additions can be used to include a pilot in the loop, to use for instance for experiments.
Besides the individual element, complete 6-DOF aircraft models which already contain all of
the sub-models as described above can be selected. Figure 7-3(a) gives an example of such
a complete non-linear 6-DOF UAV model, figure 7-3(b) gives a simplified overview of the
different elements that are used in the Simulink model. The next section 7-2 gives a more
detailed explanation about the final UAV model that is used for simulations, chapter 13.

7-2 Fixed-Wing AeroSim UAV Model

The developed UAV model, will be used to simulate different trajectories. This section gives
a general overview of the used Simulink model to simulate a small fixed-wing UAV. Figure 7-4
gives an overview of the UAV model. The block UAV dynamics houses the dynamics, figure
7-3 gives the complete Simulink model and model structure. Behind the Simulink model a
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(a) Complete Simulink aircraft model (b) Simplified internal structure diagram

Figure 7-3: Complete aircraft model

parameter file defines the aerodynamic properties, see appendix B-1. Besides aerodynamics,
also engine properties and inertia can be defined. The used model has a single propeller
introducing an unbalanced roll moment. This roll moment is stabilized by a lateral autopilot,
called a wing leveler. The bank angle φ is multiplied with a proportional-integral (PI) and
then feed back to the ailerons δa. Besides lateral control, a longitudinal control law is im-
plemented to control the UAV’s forward airspeed. It uses a proportional-integral-derivative
control law (PID) times the error between the forward airspeed and desired forward airspeed
ucommand. The output signal of the PID is feed back to control the UAV elevator δe. This
longitudinal control law is needed, to obtain stable simulations. Without it the aircraft can
become unstable in longitudinal direction and can flip over during fast dynamic maneuvers.
The lateral and longitudinal controllers are implemented to control the UAV model during
simulations, otherwise the UAV model might become unstable because of its fast dynamics.
While these controllers have a stabilizing effect on the UAV dynamics, it can still perform
fast dynamic maneuvers and represent a small fixed-wing UAV. The engine inputs that can
be given to model are the mixture and ignition. These two parameters are best set constant,
as a small fixed-wing UAV uses a single propeller. The engine thrust can be changed by using
a different throttle setting. The model also has the option to include a flap setting and to
trim the model. The output states of the UAV dynamics block are saved before they are
send to an IMU/GPS sensor simulation tool as described in chapters 5 and 6. The sensor
simulation tool block also includes the addition of simulated atmospheric gust to the output
velocity states. An impression of the Simulink model is given in figure 7-5. The simulations
of appendices B to F use the UAV model described in this chapter.
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Figure 7-4: Schematic overview Aerosonde UAV model

Figure 7-5: Simulink UAV model
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Chapter 8

Equations of Motion

This chapter houses the Equations of Motion (EOM) derived for a loosely coupled INS/GPS
sensor integration. Section 8-1 contains a description of the two used reference frames, with
the coordinate transformation in section 8-2. Section 8-3 gives the rational rate of a general 3D
rotational vector. The equations of motion are derived in section 8-4 with some assumption
in section 8-5, with the final result in section 8-6.

8-1 Introduction

When analyzing the motion of a flying object, several reference frames can be used. In this
report two reference frames are used to describe the motion of an UAV, namely the body-fixed
reference frame FB and Earth-fixed frame of reference FE . The Earth-fixed reference frame
is a local North-East-Down (NED) frame of reference, placed at a specific height above the
Earth surface. These two reference frames are used throughout this chapter when deriving
the EOM.

The body-fixed frame of reference (GXBYBZB) is defined as an orthogonal right-handed axis
system with the origin at the vehicle center of gravity G. The XB-axis is the symmetry plane
of orientation and points into the direction of flight. The vertical ZB-axis points downwards
to the ground and also lies in the symmetry plane. The YB-axis coincides with the right
wing, perpendicular to the symmetry plane. Figure 8-1(a) gives an illustration of FB from
(Mulder, van Staveren, van der Vaart, & de Weerdt, 2007).

The Earth-fixed frame of reference (OXEYEZE) is like FB defined as an orthogonal right-
handed axis system, but with a different origin. The origin O can be chosen at an arbitrary
height or at ground level. The XE-axis is directed to the North, the YE-axis directed to the
East. Perpendicular to the Earth’s surface lies the ZE-axis. For an Earth-fixed reference
frame FE it is assumed that the Earth is flat and non-rotating, as illustrated in figure 8-1(b).
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(a) Body-fixed reference frame FB

XE

YE

ZE

North

Earth surface

(b) Earth-fixed reference frame FE

Figure 8-1: FB and FE reference frames

8-2 Transformations between Reference Frames

The two reference frames of section 8-1 are most commonly used when describing the move-
ment of a flying vehicle. The transformation from a body-fixed reference frame to an Earth-
fixed reference frame is performed by using three consecutive rotations, called Euler angles.
Rotation with a roll angle φ about the X-axis, can be calculated by using expression 8-1.

RBE (φ) =

⎡
⎣ 1 0 0

0 cosφ sinφ
0 − sinφ cosφ

⎤
⎦ (8-1)

Rotation with a pitch angle θ about the Y-axis, can be calculated by using expression 8-2.

RBE (θ) =

⎡
⎣ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦ (8-2)

Rotation with a heading angle ψ about the Z-axis, can be calculated by using expression 8-3.

RBE (ψ) =

⎡
⎣ cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎤
⎦ (8-3)

The Euler angles of expressions 8-1, 8-2 and 8-3 can be combined for a complete coordinate
transformation. The transformation, transforms a given set of coordinates from a body-
fixed reference frame FB to an Earth-fixed reference frame FE using the three angles. The
coordinate transformation is defined as follows: FE = RBE (φ, θ, ψ)FB , where RBE (φ, θ, ψ)
is the transformation matrix. This particular transformation matrix is also called a Direction
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Cosine Matrix (DCM) as is given in expression 8-4, which can for instance be found in
(Mulder et al., 2007).

RBE (φ, θ, ψ) =

⎡
⎢⎢⎢⎢⎣

cos θ cosψ sinφ sin θ cosψ− cosφ sin θ cosψ+
cosφ sinψ sinφ sinψ

cos θ sinψ sinφ sin θ sinψ+ cosφ sin θ sinψ−
cosφ cosψ sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

⎤
⎥⎥⎥⎥⎦ (8-4)

8-3 Rotational Rate of a Vector

The rotational rate of an object can be described by using a 3-dimensional rotational vector

as: ω(t) =

⎡
⎣ ω1(t)
ω2(t)
ω3(t)

⎤
⎦. When the rotational rate is measured with three orthogonal gyroscopes

in FB it can be converted to FE by taking the crossproduct of the eigenvectors in FB with
the rotational vector ω, as given with expression 8-5.

Ω [ω(t)] =

⎧⎨
⎩

⎡
⎣ ω1(t)
ω2(t)
ω3(t)

⎤
⎦×

⎡
⎣ 1

0
0

⎤
⎦

⎫⎬
⎭ ,

⎧⎨
⎩

⎡
⎣ ω1(t)
ω2(t)
ω3(t)

⎤
⎦×

⎡
⎣ 0

1
0

⎤
⎦

⎫⎬
⎭ ,

⎧⎨
⎩

⎡
⎣ ω1(t)
ω2(t)
ω3(t)

⎤
⎦×

⎡
⎣ 0

0
1

⎤
⎦

⎫⎬
⎭ (8-5)

Equation 8-5 can be worked out into expression 8-6.

Ω [ω(t)] =

⎡
⎣ 0 −ω3(t) ω2(t)

ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0

⎤
⎦ (8-6)

In expression 8-6, Ω [ω(t)] is the result of the crossproduct of the rotational vector ω(t) with
the FB unit vectors, resulting in the skewsymmetric matrix Ω. Figure 8-2 gives a graphical
representation of the rotational vector. The rotational matrix Ω can be used to obtain the
body rotational rate, or time derivative of the transformation matrix ṘBE , to indicate the
rate of change of RBE (φ, θ, ψ) between FB and FE as given in expression 8-7.

ṘBE (φ, θ, ψ) = RBE (φ, θ, ψ) Ω [ω(t)] (8-7)

When taking ω(t)=[p,q,r]T as indicated in figure 8-2, the resulting crossproduct is Ω =
[q − r, r − p, p− q]T . The vector v = [1, 1, 1]T is a linear combination of the eigenvectors
[1, 0, 0], [0, 1, 0] and [0, 0, 1].
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X
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q
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p-q

r-p

q-r
v =

⎡
⎣ 1

1
1

⎤
⎦

Figure 8-2: Crossproduct of a rotational vector [p,q,r]T

8-4 Equations of Motion

The position of an aircraft’s center of gravity (cg) relative to an Earth-fixed frame of refer-
ence FE can be calculated by using the DCM of expression 8-4. When including the wind
components W = [WxWyWz]

T , this results in expression 8-8.

⎡
⎣ ẋ
ẏ
ż

⎤
⎦
E

= RBE (φ, θ, ψ)

⎡
⎣ u
v
w

⎤
⎦
B

+

⎡
⎣ Wx

Wy

Wz

⎤
⎦
E

(8-8)

When the IMU is not placed at the vehicle’s center of gravity (cg), but at a distance
d=[dx,dy,dz ]

T relative to the true cg, this results in extra acceleration terms, lateral and
rotational. Equation 8-9 gives the additional accelerations measured together with the spe-
cific forces.

⎡
⎣ AIMUx

AIMUy

AIMUz

⎤
⎦ =

⎡
⎣ Ax
Ay
Az

⎤
⎦ +

⎡
⎣ ṗ
q̇
ṙ

⎤
⎦×

⎡
⎣ dx
dy
dy

⎤
⎦ +

⎡
⎣ p
q
r

⎤
⎦×

⎛
⎝

⎡
⎣ p
q
r

⎤
⎦×

⎡
⎣ dx
dy
dy

⎤
⎦
⎞
⎠ (8-9)

During flight is it possible that the center of gravity changes and as a consequence also
the distance d between the aircraft center of gravity and the origin of sensitivity of the
accelerometers. During flight it is assumed that the vehicle is a rigid body and can be
described by using a single rotational matrix Ω. The three orthogonal gyroscopes measure Ω
into its three rotational components. When assuming a rigid body, the rotation is the same
for the entire vehicle and the gyroscopes can be placed at every point onto the vehicle. When
compared to accelerometers, the sensors location is important as described in expression 8-9,
gyroscopes do not have this problem. However in practice an aircraft is never a perfect rigid
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body. Therefore when placing rotational sensors, the sensors should be placed at positions
without the presence of large bending modes.

The forces that act onto an aircraft can be seen as three body forces X, Y and Z. The body
forces consists of aerodynamic forces together with engine forces and possible atmospheric
forces. Equation 8-10 describes the three body forces onto an aircraft.

⎡
⎣ X
Y
Z

⎤
⎦ = ma+mΩ [ω(t)] v +mg (8-10)

In expression 8-10, a contains the acceleration components or time derivatives of the vehicles
velocity components, [u̇,v̇,ẇ]T . The mass is indicated with m and the gravity vector g. The
term mΩ [ω(t)] v is worked out in expression 8-11, by using expression 8-6.

mΩ [ω(t)] =

⎡
⎣ m [qw − rv]
m [ru− pw]
m [pv − qu]

⎤
⎦ (8-11)

When gravity is unknown in local body-fixed coordinates FB , it can be calculated by multiply-
ing the gravity vector in Earth reference coordinates g

E
(t) with the skewsymmetric matrix as

a function of the rotational vector Ω[ω(t)], as can be found in (Batista, Silvestre, & Oliveira,
2009). The same skewsymmetric matrix Ω[ω(t)] of expression 8-6 is used, resulting in expres-
sion 8-12 where the rate of change of the local gravity vector ġ

B
(t) in can be FB determined.

ġ
B
(t) = Ω[ω(t)]g

E
(t) (8-12)

When assuming that gravity is constant with factor g0 and is pointing downwards in FE , the
gravity vector becomes g

E
(t) = [0 0 − g0]T . Expression 8-12 can be rewritten in expression

8-13.

⎡
⎣ ġx
ġy
ġz

⎤
⎦
B

=

⎡
⎣ 0 −ω3(t) ω2(t)

ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0

⎤
⎦

⎡
⎣ 0

0
−g0

⎤
⎦
E

(8-13)

Expression 8-13 can be worked out in expression 8-14.

⎡
⎣ ġx
ġy
ġz

⎤
⎦
B

=

⎡
⎣ −ω2(t)g0
ω1(t)g0
0

⎤
⎦
B

(8-14)

To obtain the change in attitude and heading angles [φ̇,θ̇,ψ̇], a 3-2-1 rotational sequence can
be used as is given in (Mulder et al., 2007). The rotational sequence uses expressions 8-1, 8-2
and 8-3 resulting in expression 8-15.

⎡
⎣ p
q
r

⎤
⎦ =

⎡
⎣ φ̇

0
0

⎤
⎦ +RBE(φ)

⎡
⎣ 0

θ̇
0

⎤
⎦ +RBE(φ, θ)

⎡
⎣ 0

0

ψ̇

⎤
⎦ (8-15)
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When filling in the rotational matrices RBE(φ) and RBE(θ) into expression 8-15 this results
in expression 8-16.

⎡
⎣ p
q
r

⎤
⎦ =

⎡
⎣ φ̇

0
0

⎤
⎦ +

⎡
⎣ 1 0 0

0 cosφ sinφ
0 − sinφ cosφ

⎤
⎦

⎡
⎣ 0

θ̇
0

⎤
⎦+

⎡
⎣ 1 0 0

0 cosφ sinφ
0 − sinφ cosφ

⎤
⎦

⎡
⎣ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦

⎡
⎣ 0

0

ψ̇

⎤
⎦

(8-16)

Expression 8-16 can be workout into expression 8-17.

⎡
⎣ p
q
r

⎤
⎦ =

⎡
⎣ φ̇

0
0

⎤
⎦ +

⎡
⎣ 0 0 0

0 θ̇ cosφ 0

0 −θ̇ sinφ 0

⎤
⎦ +

⎡
⎣ 0 0 −ψ̇ sin θ

0 0 ψ̇ sinφ cos θ

0 0 ψ̇ cosφ cos θ

⎤
⎦ (8-17)

Expression 8-17 can be rewritten into expression 8-18.

⎡
⎣ p
q
r

⎤
⎦ =

⎡
⎣ 1 0 − sin θ

0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ

⎤
⎦

⎡
⎣ φ̇

θ̇

ψ̇

⎤
⎦ (8-18)

To obtain the time derivatives of the Euler angles [φ̇,θ̇,ψ̇]T , expression 8-18 needs to be
inverted resulting in expression 8-19.

⎡
⎣ φ̇

θ̇

ψ̇

⎤
⎦ =

⎡
⎣ 1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ
cos θ

cos φ
cos θ

⎤
⎦

⎡
⎣ p
q
r

⎤
⎦ (8-19)
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8-5 Assumptions

An IMU usually contains three accelerometers and three gyroscopic sensors, as described in
chapter 5. Which are modeled with expressions 5-11 and 5-12 as the true specific force is
equal to the measured value m, minus a bias b and noise term e. This is summarized for the
accelerometers in expression 8-20 regarding specific forces and for the gyroscopes in expression
8-21 for the angular rates. More about MEMS based IMU modeling can be found in chapter
5.

A =

⎡
⎣ Ax
Ay
Az

⎤
⎦ =

⎡
⎣ Axm − bAx − eAx
Axm − bAy − eAy
Aym − bAz − eAz

⎤
⎦ (8-20)

ω =

⎡
⎣ p
q
r

⎤
⎦ =

⎡
⎣ pm − bp − ep
qm − bq − eq
rm − br − er

⎤
⎦ (8-21)

Gravity is assumed known and modeled as a 3D-vector, using three vector components
[gx, gy , gz]

T . When using an Earth-fixed navigation frame FE , this can be seen as a constant
vector pointing downwards to the Earth’s center of gravity. This vector can be converted
from FE to FB using the transpose of rotational transformation matrix RTBE , as described in
section 8-2 resulting in expression 8-22.

⎡
⎣ gx
gy
gz

⎤
⎦
B

= RTBE (φ, θ, ψ)

⎡
⎣ 0

0
gz

⎤
⎦
E

(8-22)

Equation 8-22 can be worked out in expression 8-23.

⎡
⎣
gx
gy
gz

⎤
⎦
B

=

⎡
⎣

cos θ cosψ cos θ sinψ − sin θ
sinφ sin θ cosψ − cos φ sinψ sinφ sin θ sinψ + cos φ cosψ sinφ cos θ
cos φ sin θ cosψ + sinφ sinψ cos φ sin θ sinψ − sinφ cosψ cos φ cos θ

⎤
⎦
⎡
⎣

0
0
gz

⎤
⎦
E

(8-23)

Expression 8-23 is workout in expression 8-24, where the assumed gravity constant gz in FE
has been replaced by g0.

⎡
⎣ gx
gy
gz

⎤
⎦
B

=

⎡
⎣ −g0 sin θg0 sinφ cos θ
g0 cosφ cos θ

⎤
⎦
B

(8-24)

When gravity is assumed to be a constant vector the time derivative is zero, ġ = 0 and
constantly pointing downwards, only two angles φ and θ are required. This can be concluded
from expression 8-24 where the third angle, the heading angle ψ is perpendicular to the
direction of the gravity vector.

Fixed-Wing UAV Integrated Navigation with Low-Cost IMU/GPS B. A. Hummelink



72 Equations of Motion

8-6 Final Equations of Motion

The individual equations of motion of the previous sections can be summarized into one set
of equations. Equation 8-8 is used to describe the position update, expressions 8-10, 8-11
and 8-24 for velocity update and expression 8-19 for updating the Euler angles. It is assumed
that a calibrated IMU is used, such that the measured accelerometer values are compensated
by using expression 8-9. The IMU biases b and noise e are included, the time derivatives are
assumed to be zero and the same holds for the wind components W = [Wx,Wy,Wz]

T . The
total kinematic aircraft expressions results in expression 8-25.

ẋ = [u cos θ + (v sinφ+ w cosφ) sin θ] cosψ − (v cosφ− w sinφ) sinψ +Wx

ẏ = [u cos θ + (v sinφ+ w cosφ) sin θ] sinψ + (v cosφ− w sinφ) cosψ +Wy

ż = −u sin θ + (v sinφ+ w cosφ) cos θ +Wz

u̇ = Axm − bAx − eAx + (rm − br − er)v − (qm − bq − eq)w − g0 sin θ
v̇ = Aym − bAy − eAy + (pm − bp − ep)w − (rm − br − er)u+ g0 sinφ cos θ
ẇ = Azm − bAz − eAz + (qm − bq − eq)u− (pm − bp − ep)v + g0 cosφ cos θ

φ̇ = pm − bp − ep + (qm − bq − eq) sinφ tan θ + (rm − br − er) cosφ tan θ
θ̇ = (qm − bq − eq) cos φ− (rm − br − er) sin φ
ψ̇ = (qm − bq − eq) sinφcos θ + (rm − br − er) cosφcos θ

ḃAx = 0

ḃAy = 0

ḃAz = 0

ḃp = 0

ḃq = 0

ḃr = 0

Ẇx = 0

Ẇy = 0

Ẇz = 0

(8-25)
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Chapter 9

Sensor Configurations

This chapter discusses different sensor configurations that can be mounted onto a MAV. The
different sensor configurations are described in section 9-1. Four sensor configurations are se-
lected in section 9-2 that focuses on attitude/ heading stabilization. These four configurations
are used in chapter 11 for observability analysis, next chapter 10 gives possible improvements
by means of physical analysis.

9-1 Different Sensor Configurations

This chapter describes different sensor configurations applicable for a small fixed-wing UAV.
The most elementary configuration, sensor configuration 1, described in subsection 9-1-1, uses
only an IMU. This configuration forms the basis for the other sensor configurations. As a
general rule, it can be said that when more sensors are added, more information of the UAV
becomes available. The following subsections describe possible sensor configurations, with a
goal to stabilize a fixed-wing UAV. The latter is translated into the requirement of having full
knowledge of all three orientation angles of a UAV during all flight conditions. Because the
IMU can only provide noisy biased estimations, additional sensors are added. For each sensor
configuration one additional sensor is added to the IMU. Each of the following 8 subsections
describe a sensor configuration with the corresponding properties.

9-1-1 1: Solely IMU

The use of an IMU, using three orthogonal gyroscopic sensors and three orthogonal accelerom-
eters, provides information on the vehicles 6-DOF. As mentioned in chapter 8, the gyroscopes
can be integrated to obtain all three orientation angles. The accelerometers give the vehicle
accelerations, together with an onboard gravity model the vehicles specific forces, or non-
gravitational forces can be determined. Integration of the accelerations gives velocities, twice
integration gives the vehicles position. When properly calibrated, an IMU has low short term
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noise and biases, measured at a high frequency. The integration steps will cause noise am-
plification and result in increasing bias errors with respect to the real velocity, position and
orientation angles. For a long period of time, the increasing bias will result in an increasing
estimation error, as each new estimation is based on the previous estimation step plus the
current measurement.

The sole use of an IMU for navigation purposes is valid for a short period of time and is
dependent on the sensor technology, calibration and temperature sensitivity. For a long
period of time additional sensors are needed to compensate accumulated errors. The sensor
configurations of the following subsections use the IMU as a basis with additional sensors to
cope with the long-term stabilization problem. To summarize, sensor configuration 1 solely
using an IMU uses the following sensors:

• 3 gyroscopes, output quantities: rotational rates p, q and r.

• 3 accelerometers, output quantities: specific forces Ax, Ay and Az.

9-1-2 2: IMU + GPS

An IMU as described in sensor configuration 1 can be used to predict all basic nine states;
position (3), velocity (3) and angles (3). These states should provide all necessary information
to stabilize and navigate a flying vehicle. However, over period of time the increasing bias error
will result in divergence. When implemented into a Kalman filter, the IMU information can be
used for the prediction step. Due to sensor noise, biases and integration errors other sensors
are added to aid the IMU. A combined navigation solution becomes more accurate when
the prediction errors are compensated. The first sensor configuration, sensor configuration
config 1, uses an IMU that consists of three orthogonal gyroscopes and three orthogonal
accelerometers to measure the rotational rates and accelerations in all three directions. The
sensor data can be fused together to obtain the vehicles’ orientation angles, velocity and
position in a reference frame. The used reference frame can for example be an Earth-Centered-
Earth-Fixed (ECEF) or a local North-East-Down (NED) frame of reference.

Equation 9-1 gives the definition of a GPS position observer in an Earth-fixed reference frame
FE , which can be ECEF or NED. Beside the 3D-position, the GPS receiver can also provide
the vehicles’ velocity components uE , vE and wE . The GPS receiver information can be
used to correct long-term IMU errors as shown in section 2-3, about integrating inertial and
satellite navigation systems. The IMU position estimate is the result of two times integration
of acceleration signals and is likely to contain some errors. Both position and velocity IMU
prediction are measured in a body-fixed frame of reference FB . The position and velocity
information needs to be transformed to an Earth-fixed reference frame FE to fuse them
together with the GPS receiver output.

y =

⎡
⎣ xGPS
yGPS
zGPS

⎤
⎦
E

=

⎡
⎣ x
y
z

⎤
⎦
B

(9-1)

The GPS position measurements does not need to be transformed as the aircraft’s position
is measured as a point, with the exception of a reference position or altitude above the
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Earths’ surface. Equation 9-2 gives the GPS velocity observer equations with the coordinate
transformation FE = RBEFB . Where the used transformation matrix RBE transforms the
body-fixed velocities to FE using the three orientation angles. The GPS velocities are the
total velocity and contain wind components W = [Wx Wy Wz], if present.

y
E
=

⎡
⎣ [u cos θ + (v sinφ+ w cosφ) sin θ] cosψ − (v cosφ− w sinφ) sinψ +Wx

[u cos θ + (v sinφ+ w cosφ) sin θ] sinψ + (v cosφ− w sinφ) cosψ +Wy

−u sin θ + (v sinφ+ w cosφ) cos θ +Wz

⎤
⎦
B

(9-2)

To summarize, sensor configuration 2 uses the following sensors and receivers:

• 3 gyroscopes, output quantities: rotational rates p, q and r.

• 3 accelerometers, output quantities: specific forces Ax, Ay and Az.

• GPS receiver, output quantities: 3D position x, y and z, velocity u, v and w.

9-1-3 3: IMU + GPS + Magnetometer

Sensor configuration 3 is the same as configuration 2, with three additional magnetometers.
The magnetometers are added to measure the Earth magnetic field and use this informa-
tion to give an estimate of the aircrafts heading angle with respect to the Earth magnetic
North direction. The obtained magnetic heading information can be used to correct the IMU
heading estimation and complement the GPS velocity based gyroscopes bias estimation. The
difference in gyroscopic angle estimation and magnetometer angles holds information about
the gyroscopic biases. The output of the magnetometer is used as an observer of the vehi-
cle heading angle by using the Earth magnetic field M , as is defined in equations 9-3. The
difference between the true north and the magnetic north, is called the magnetic declination.

⎡
⎣ Mx

My

Mz

⎤
⎦ = Rbe (φ, θ, ψ)

⎡
⎣ cos γ 0 − sin γ

0 1 0
sin γ 0 cos γ

⎤
⎦

⎡
⎣ M

0
0

⎤
⎦ (9-3)

The magnetometer measurements give angle information based on the Earth magnetic field
in body-fixed reference frame FB . With the rotational matrix RBE this can be transformed
to FE , where γ is the tilt angle of the local magnetic field as is given in expression 9-3. If
three magnetometers are mounted perpendicular to each other, the magnetic vector can be
reconstructed. From the magnetic vector, the heading angle can be estimated. This results
in observer equation 9-4, where the heading angle is calculated by using expression 9-3. The
factor Dm represents the magnetic declination angle between true and magnetic North, which
is nowadays about 11.5◦. The triad of magnetometers allows for the construction of a three
dimensional magnetic vector, two angles and magnitude. Besides the heading angle, also
the pitch angle can be estimated. During normal flight conditions, the downward magnetic
component is very small, resulting in bad pitch angle estimations. For very large pitch
angles the downward components becomes larger and a better estimation can be obtained. It
should however be noted that in practice a three directional magnetometer can always provide
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heading information as long as the Earth magnetic field is measured. Onboard electronics
and systems can degrade the sensor data, resulting in a bad estimation.

yψ = Dm

[
ψm

]
(9-4)

To summarize, sensor configuration 3 uses the following sensors and receivers:

• 3 gyroscopes, output quantities: rotational rates p, q and r.

• 3 accelerometers, output quantities: specific forces Ax, Ay and Az.

• GPS receiver, output quantities: 3D position x, y and z, velocity u, v and w.

• 3 directional magnetometer, output quantities: heading angle ψ.

9-1-4 4: IMU + GPS + Barometer

The previously described IMU/GPS sensor configuration 2 can be extended with a barom-
eter, that measures the static atmospheric pressure. As mentioned in section 2-2, the GPS
satellite ephemeris source of error results in less accurate vertical position estimation when
compared to horizontal estimations. With the use of an additional sensor for the altitude,
the vertical position estimation can be improved. The barometer altitude is based on the
relative atmospheric pressure between the measured and reference pressure altitude. The
measured atmospheric pressure needs to be converted to a reference pressure altitude setting,
usually International Standard Atmosphere (ISA). The pressure measurements are affected
by weather, as the barometric pressure can suddenly change during rough weather conditions.
As a consequence, the barometric pressure sensor can only be used for low frequency correc-
tions. The main source of error is usually the conversion between pressure and altitude. To
summarize, sensor configuration 4 uses the following sensors and receivers:

• 3 gyroscopes, output quantities: rotational rates p, q and r.

• 3 accelerometers, output quantities: specific forces Ax, Ay and Az.

• GPS receiver, output quantities: 3D position x, y and z, velocity u, v and w.

• Barometer pressure altitude, output quantity: barometric pressure P .

9-1-5 5: IMU + GPS + Airspeed Aiding

The previously described IMU/GPS sensor configuration 2 can be extended with airspeed
aiding. Airspeed aiding is a type of air data sensor that measures the dynamic pressure
of a moving vehicle together with the static atmospheric pressure. The difference between
the measured pressures holds the true airspeed VT . This can be interpreted as the aircrafts
velocity seen from a moving air particle. The true airspeed is equal to vectorial sum of the
individual velocity components u, v and w as defined in observer expression 9-5.

y = VT =
√
u2 + v2 + w2 (9-5)
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Airspeed aiding will especially improve the velocity estimation during conditions with much
wind and turning maneuvers. The GPS velocity update frequency is usually lower when
compared to airspeed aiding sensors. During situations with low atmospheric winds, airspeed
aiding will usually outperform GPS velocity corrections. To summarize, sensor configuration
5 uses the following sensors and receivers:

• 3 gyroscopes, output quantities: rotational rates p, q and r.

• 3 accelerometers, output quantities: specific forces Ax, Ay and Az.

• GPS receiver, output quantities: 3D position x, y and z, velocity u, v and w.

• Total velocity air data sensor, output quantity: true airspeed VT .

9-1-6 6: IMU + GPS + VT , α, β Sensors

Sensor configuration 6 is the same as configuration 5, with two additional air data sensors.
The air data sensors measure the angle of attack α, side-slip angle β and true airspeed VT .
Figure 9-1 gives the definition of the two angles together with the true airspeed. These three
sensors provide additional measurements which can be used as additional observers. Equation
9-6 gives the corresponding equations, derived from figure 9-1.

YB
YB

ZB

u v

w

VT

α β

cg

Figure 9-1: Definition of angle of attack α, side-slip angle β and true airspeed VT

y =

⎡
⎣ α

β
VT

⎤
⎦ =

⎡
⎢⎣ arctan(wu )

arctan
(

v√
u2+w2

)
√
u2 + v2 + w2

⎤
⎥⎦ (9-6)
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The true airspeed as described in sensor configuration 5, provides adequate airspeed aiding
to GPS velocities during windy or high turning situations. With the angle of attack and
side-slip angle sensors, the direction of the true airspeed vector is known. From this all three
body-fixed velocity components can be derived.

The air data sensors measure the true velocity of the vehicle as seen from a moving air
particle, including any possible wind components. Together with the velocity output from
the GPS receiver, the wind components become observable. The IMU velocity prediction can
be corrected by using either the GPS velocities or the three air data sensors. When using both
type of sensors also the wind components can be estimated, as the redundant velocity observer
can be used to indicate the difference in IMU velocity prediction error and atmospheric wind.
To summarize, sensor configuration 6 uses the following sensors and receivers:

• 3 gyroscopes, output quantities: rotational rates p, q and r.

• 3 accelerometers, output quantities: specific forces Ax, Ay and Az.

• GPS receiver, output quantities: 3D position x, y and z, velocity u, v and w.

• Air data sensors, output quantities: α, β and VT .

9-1-7 7: IMU + Multiple GPS with Carrier Phase

This sensor configuration is the same as configuration 2, with the addition of multiple GPS
receivers. When four GPS receivers are placed onto a vehicle, all receive GPS satellite signals.
By using the geometry between the receivers, information about the vehicle attitude can be
derived. Usually the measurements from all receivers are fused together, where a single
algorithm calculates the attitude. Expression 9-7 gives the observer equation.

y =

⎡
⎣ φGPS
θGPS
ψGPS

⎤
⎦ (9-7)

Different algorithms and procedures exist to obtain the orientation angles by using multiple
GPS receivers, an example can be found in (Wendel, Meister, Mönikes, & Trommer, 2006)
using time-differenced carrier phase measurements. Most algorithms need a minimal baseline
length between the receivers, determined by the carrier phase signal, to be able to calculate
the orientation angles. Sensor configuration 7 uses the following sensors and receivers:

• 3 gyroscopes, output quantities: rotational rates p, q and r.

• 3 accelerometers, output quantities: specific forces Ax, Ay and Az.

• GPS receiver, output quantities: 3D position x, y and z, velocity u, v and w.

• GPS phase measurements, output quantities: 3 orientation angles φ, θ and ψ.

Possible extensions to the orientation angles estimation can be the receiver clock error and
receiver clock error drift. The GPS receiver outputted position and velocity are based on the
pseudo-range and pseudo-range rate. With a correct estimation of user clock error and drift,
the pseudo-range and pseudo-range rate can be calculated more accurately.
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9-1-8 8: IMU + Multiple GPS with Carrier Phase + VT , α, β Sensors

Sensor configuration 8 is a combination of the configurations 6 and 7. By using GPS carrier
phase measurements, a correction on the IMU predicted orientation angles and an estimation
of the gyroscopic biases can be made. The combined use of the GPS velocities output together
with three air data sensors, the true airspeed, angle of attack and side-slip, can be used to
correct the IMU velocity predictions and estimate atmospheric wind velocities. Also all six
IMU biases can be estimated. To summarize, sensor configuration 8 uses the following sensors
and receivers:

• 3 gyroscopes, output quantities: rotational rates p, q and r.

• 3 accelerometers, output quantities: specific forces Ax, Ay and Az.

• GPS receiver, output quantities: 3D position x, y and z, velocity u, v and w.

• GPS phase measurements, output quantities: 3 orientation angles φ, θ and ψ.

• Air data sensors, output quantities: α, β and VT .
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9-2 Selection

The goal of this report is to describe sensor configurations that can stabilize a fixed-wing
UAV during all phases of flight. To be able to stabilize a flying vehicle, information on all
three orientation angles, roll angle φ, pitch angle θ and heading angle ψ is required. The
traditional integration between inertial and satellite navigation systems is represented by
sensor configuration 2, IMU/GPS integration. Sensor configuration 2 forms the basis, as the
biased IMU predictions can be corrected by a different set of unbiased measurements. The
other sensor configurations are all extensions to sensor configuration 2.

Sensor configuration 3, 4 and 5 all have a sensor extension for one particular state. Configu-
ration 3 improves the heading angle estimation by means of magnetometers, configuration 4
the vertical position estimation by using a barometer and configuration 5 velocity estimation
with the use of airspeed aiding. With the exception of sensor configuration 3, these three
configurations give no additional information about the vehicles orientation. The magnetic
heading angle can be used as an additional heading angle observer to the GPS velocity based
heading angle estimation. The focus of this report is on the stabilization of flying vehicles,
sensor configuration 4 and 5 can be used for navigation purposes.

Sensor configuration 6 can be used to correct all velocity estimations and holds information
about the vehicles orientation. It should however be further investigated how accurate the
derived orientation angles and atmospheric wind estimations are. The same holds for sensor
configuration 7, where the quality of the calculated orientation angles is mainly dependent
on the integration algorithm. Sensor configuration 8 will provide most information as the
most sensors are used. Chapter 10 analyzes the physical properties of flying vehicles together
with the coupling of individual sensors such that additional information of the vehicle can
be obtained. The following sensor configuration are used in the following two chapters. The
physical analysis of chapter 10 into additional kinematic relations between flying vehicles to-
gether with the coupling of individual sensors such that additional information of the vehicle’s
orientation angles can be obtained. Together with the observability analysis of chapter 11,
the following sensor configurations are investigated:

• Sensor configuration 2, IMU + GPS

• Sensor configuration 6, IMU + GPS + VT , α, β

• Sensor configuration 7, IMU + multiple GPS with Carrier Phase

• Sensor configuration 8, IMU + VT , α, β + multiple GPS with Carrier Phase

B. A. Hummelink Fixed-Wing UAV Integrated Navigation with Low-Cost IMU/GPS



Chapter 10

Physical Properties of Aircraft
Kinematics

This chapter is about improving the sensor fusion of a loosely coupled IMU/GPS integration
by adding kinematic observers, starting with the derivation of the motion of a particle in iner-
tial space seen from a local reference frame in section 10-1. The derived kinematic equations
are applied to rigid bodies in section 10-2. Based on the derived kinematics together with the
coupling of IMU, GPS receiver and fixed-wing aircraft kinematics this results in new physical
insight. Section 10-3 gives the possible use of additional attitude/heading expressions to im-
prove navigation filter performance, resulting in three angle correction (AC) equations. The
last section 10-4 is about specific forces estimation with the use of GPS velocity derivatives.

10-1 Kinematics in Non-Inertial Reference Frames

Newton’s laws of motion can be applied to the domain of reference frames. Different reference
frames can be used to describe the motion of a flying vehicle. This section describes the general
kinematic formulation and movement of a particle within the context of moving reference
frames.

Figure 10-1 describes the relative motion of a reference frame with origin B and coordinate
axes xyz to an inertial frame with coordinate axes XY Z and origin O. The unit vectors î, ĵ, k̂

represent the moving axes, and the unit vectors Î, Ĵ , K̂ the moving axes of the inertial frame
of reference O. An inertial reference frame is fixed in space, any reference frame attached
to the Earth, for instance the Earth reference frame FE of chapter 8, is strictly speaking
not an inertial reference frame. Nevertheless, during short times and small disturbances the
assumption of a coordinate system attached to the Earth being an inertial coordinate system
is valid. The linear velocity and acceleration of the xyz coordinate system are given by vB
and aB. The angular velocity of xyz coordinate frame is denoted by ω.

Consider the particle P with respect to the inertial system given by vector rP , as given in
figure 10-2. The particle P is seen by an observer in the local moving xyz coordinate system.
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Figure 10-1: Relative motion of the local coordinate frame B with respect to inertial frame of
reference O

Position rrel is the position of particle P relative to the moving coordinate system xyz. The
position of P with respect to the XY Z inertial coordinate system is represented by the vector
rP . The position vector rP can be obtained by combining the position vectors rB and rrel.
The position vector rrel of particle P as seen from the xyz coordinate system, is defined by
expression 10-1.

rrel = x(t)̂i+ y(t)ĵ + z(t)k̂ (10-1)

The time derivative of the position of particle P :
drrel
dt with respect to the coordinate system

xyz is defined with expression 10-2.

vrel = ẋî+ ẏĵ + żk̂ (10-2)

The same can be done for the acceleration of particle P with respect to the xyz coordinate
system, resulting in expression 10-3.

arel = ẍî+ ÿĵ + z̈k̂ (10-3)

The position of particle P with respect to the inertial frame O is given in expression 10-4 as
can be seen in figure 10-2 from the two position vectors rB and rrel connecting the particle
P to the inertial frame via the local moving frame of reference B.

rP (t) = rB(t) + rrel(t) (10-4)
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Figure 10-2: Motion of a particle P in an inertial frame, as seen by the local and moving
coordinate frame B

The velocity of P defined in inertial space, vP , can be obtained by taking the time derivative
of the position vector of P , as defined in expression 10-4. This results in expression 10-5.

vP =
drP
dt

=
drB
dt

+
drrel
dt

(10-5)

The first term of expression 10-5 is given in expression 10-6, as the time derivative of the
absolute position between local frame of reference B and inertial frame O.

drB
dt

= vB (10-6)

The second term of expression 10-5 can be obtained by applying the chain rule, expression
10-7.

drrel(t)

dt
=
dx

dt
î+

dy

dt
ĵ +

dz

dt
k̂ +

d̂i

dt
x+

dĵ

dt
y +

dk̂

dt
z (10-7)

Expression 10-7 holds 2 sets of terms, the first three terms represent the translation of the
xyz coordinate frame with respect to the inertial frame O. During pure translation, when
ω = 0 with respect to the XY Z inertial coordinate system, the orientation of xyz does not
change with respect to XY Z. This results in constant unit vectors î, ĵ and k̂, with zero time
derivatives. During pure translation, expression 10-7 results in expression 10-8 by using the
first three terms of expression 10-7.

drrel(t)

dt
=
dx

dt
î+

dy

dt
ĵ +

dz

dt
k̂ = vrel (10-8)
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During rotation of the xyz coordinate system with angular velocity ω, the orientation of the
local coordinate frame xyz changes resulting in different local unit vectors î, ĵ and k̂. The
resulting time derivatives of the unit vectors are the result of the crossproduct between the
angular velocity ω and the local unit vectors. Expression 10-9 gives the time derivatives of
all three unit vectors.

˙̂i = ω × î
˙̂j = ω × ĵ
˙̂
k = ω × k̂

(10-9)

The last three terms of expression 10-7 result in expression 10-10, by using the result of
expression 10-9. The scalar coordinates x, y and z are combined in one vector relative
position vector rrel between particle P and local frame of reference B.

drrel(t)

dt
= ω × rrel (10-10)

Expressions 10-8 and 10-10 can be combined into one expression for describing the combined
translation and rotation of a particle P with respect to the inertial frame O, resulting in
final velocity vP expression 10-11. This expression also includes the velocity of the local xyz
coordinate frame vB with respect to the inertial reference O as given in expression 10-6.

vP = vB + vrel + ω × rrel (10-11)

Expression 10-11 can be interpreted as the velocity corresponding to the movement of the
xyz coordinate system together with the translation and rotation of particle P as seen from
the local xyz coordinate system with respect to the XY Z coordinate system. The vectors
rrel and vrel are relative vectors between the local moving xyz coordinate system and particle
P . The vectors vB and ω are absolute vectors in inertial space.

The acceleration aP of particle P with respect to both reference frames can be obtained by
differentiating expression 10-11, resulting in expression 10-12.

aP =
dvP
dt

=
dvB
dt

+
dvrel
dt

+
d (ω × rrel)

dt
(10-12)

Three terms are present in expression 10-12, the first one is the acceleration of the local xyz
coordinate system with respect to the inertial reference system O, resulting in expression
10-13. This acceleration is the absolute acceleration of moving reference frame B in inertial
space. The second term is the time derivative of the relative velocity between particle P and
local reference frame B. This quantity can be obtained by using the same procedure as for
the time derivative of the relative motion

drrel
dt of expression 10-7 by applying superposition.

Superposition is applied by looking at the translation and rotation between particle P and
local reference frame B, resulting in expression 10-14.

dvB
dt

= aB (10-13)
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dvrel
dt

= ω × vrel + arel (10-14)

The third term of expression 10-12 can be expanded by using the chain rule, resulting in
expression 10-15.

d (ω × rrel)
dt

=

(
dω

dt

)
× rrel + ω ×

(
drrel
dt

)
(10-15)

The first term expression 10-15 corresponds to the crossproduct of the time derivative of the
angular velocity vector of the local frame of reference B with the position vector rrel between
the particle P and local reference frame B, denoted by ω̇. The second term can be obtained by
using superposition and with the result of expressions 10-8 and 10-10, resulting in expression
10-16.

ω ×
(
drrel
dt

)
= ω × (vrel + ω × rrel) (10-16)

With expression 10-16 the third time derivative of expression 10-12 can be obtained, resulting
in expression 10-17.

ω ×
(
drrel
dt

)
= ω̇ × rrel + ω × vrel + ω × (ω × rrel) (10-17)

Together with the derived expressions 10-13, 10-14 and 10-17, the total acceleration of a
particle P seen from a moving local frame of reference B with respect to an inertial frame of
reference O can be made, resulting in expression 10-18.

aP = aB + 2 (ω × vrel) + arel + ω̇ × rrel + ω × (ω × rrel) (10-18)

The quantity arel, was previously defined in expression 10-3 as the acceleration between
particle P and moving frame of reference B. Expression 10-18 gives the kinematic expression
of the acceleration of a particle P from a moving frame of reference B with respect to the
inertial frame of reference O. It must be emphasized that both frames of reference observe
the same particle, however by using different descriptions. Up till now there has been no
mentioning of what causes the motion or what forces act on the particle P . Following section
10-2 explains the motion of rigid bodies under external forces by using the derived kinematic
expression 10-18.
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10-2 Motion of Rigid Bodies

The derived kinematic expressions 10-11 for velocity and 10-18 for acceleration describe the
general motion of a particle P with respect to a moving reference frame B in inertial space.
The particle P with mass m is now placed in the origin of the moving frame of reference B
with coordinate system xyz attached to it, called a rigid body. At any instant the angular
velocity of the rigid body is specified as ω and its corresponding angular acceleration α. The
motion of P is relative to an inertial coordinate system, denoted by origin O and coordinate
system XY Z. Figure 10-3 displays the two frames of reference with the rigid body.

X

Y

Z

x

y

z

O

B
P

Figure 10-3: Motion of a rigid body with the center of gravity at the center of the local frame
of reference B with respect to inertial frame of reference O

Expressions 10-19 and 10-20 are repeated below of section 10-1, which describe the velocity
and acceleration of P . Point P is now located somewhere on the rigid body, relative to a
constant position to the frame of reference B.

vP = vB + vrel + ω × rrel (10-19)

aP = aB + 2 (ω × vrel) + arel + α× rrel + ω × (ω × rrel) (10-20)

Expressions 10-19 and 10-20 describe the general motion of a particle in inertial space as
seen from a moving frame of reference B. When using these expression to describe the
absolute motion of origin B, only the absolute kinematic quantities should be considered.
The kinematic quantities in inertial space are the following:

• vB, absolute velocity of local reference frame with origin B.

• aB , absolute acceleration of local reference frame with origin B.

• ω, angular velocity of xyz coordinate system of local reference frame with origin B.
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• α, angular acceleration of xyz coordinate system of local reference frame with origin B.

The mentioned absolute quantities result in the following two expressions 10-21 and 10-22,
from (Török, 2000) to describe the velocity and acceleration of any point P with position
vector r located on the body. The position of point P is fixed on the body and the relative
velocity becomes vrel = 0. The last term of expression 10-20, ω× (ω × rrel), can be rewritten
when rrel remains constant into ω × vB . This results in expression 10-22.

vP = vB + ω × r (10-21)

aP = aB + α× rB + ω × vB (10-22)

When assumed that a force F is acting on point P of the rigid body with mass m, Newton’s
second law holds in inertial space, expression 10-23.

F = maP (10-23)

When substituting the derived acceleration of expression 10-22 into expression 10-23, this
results in expression 10-24.

F = maB +m (α× rB) +m [ω × (ω × rB)] (10-24)

Expression 10-24 can be rewritten into 10-25 when dividing all terms by the mass m. The
final expression 10-25 will be used in the next section 10-3 when deriving kinematic relations,
applied to flying vehicles.

F

m
= aB + α× rB + ω × vB (10-25)
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10-3 Kinematics Applied to Flying Vehicles

The derived expression 10-25 of section 10-2 can be applied to aircraft, where the resulting
force F is composed of resulting body forces and gravitational forces. The two forces are
given in expression 10-26 with respect to inertial frame of reference O as defined in figure
10-3. There are two forces acting on the aircraft, the body forces F body = [X,Y,Z] holding
the aerodynamic, atmospheric and engine forces and the gravity force F g representing the
gravitational forces between the aircrafts and Earth’s masses.

F = F body + F g (10-26)

Expression 10-26 can be substituted into expression 10-25. This results in expression 10-27,
where the gravitational acceleration ag is replacing the gravitational force F g when divided
by mass m.

F body
m

+ ag = aB + α× rB + ω × vB (10-27)

The change in gravity vector orientation between local FB and Earth frame of reference FE
as derived in chapter 8, the equations of motions. When assuming that gravity is a constant
vector pointing downwards in FE , three angles are required θ = [φ, θ, ψ] to describe the
gravity vector orientation in FB , expression 8-24. Expression 10-27 can be worked out in
expression 10-28 together with expression 8-24.

⎡
⎢⎢⎣

X
m
Y
m
Z
m

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
g0 sin θ

−g0 sinφ cos θ
−g0 cosφ cos θ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
aBx

aBy

aBz

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
αyrz − αzry
αzrx − αxrz
αxry − αyrx

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
ωyvBz − ωzvBy
ωzvBx − ωxvBz
ωxvBy − ωyvBx

⎤
⎥⎥⎦ (10-28)

The following subsections give the derivations of additional Angle Correction (AC) expres-
sions as kinematic observers, by using the force equilibrium equation 10-28.

10-3-1 Pitch Angle Estimation

During the prediction step of a state identification filter, the pitch angle θ is predicted by
using the pitch angle derivative θ̇ as derived in chapter 8, expression 8-25. The pitch angle
kinematic equation of 8-25, is repeated in expression 10-29. From this expression can be seen
that the pitch angle time derivative calculation uses angular rates q and r together with the
roll angle φ. The angular rates are assumed to be measured by gyroscopes together with
sensor noises e and biases b.

θ̇ = (qm − bq − eq) cosφ− (rm − br − er) sinφ (10-29)
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Besides the pitch angle kinematic equation, the pitch angle is found in more kinematic equa-
tions. The force equilibrium equation 10-28 will be used in this section to find additional
expressions to estimate θ. The first row of expression 10-28 is repeated below in expression
10-30 is used in the following part to find relations to describe θ.

X

m
+ g0 sin θ = aBx + (αyrz − αzry) +

(
ωyvBz − ωzvBy

)
(10-30)

When assuming that accelerometers can measure specific forces, the force terms of expression
10-30 can be grouped together into one specific force equation. Expression 10-31 gives the
specific force equation, where the resulting specific force in forward direction Ax can be
measured with an accelerometer.

Ax =
X

m
− (αyrz − αzry) (10-31)

The measured acceleration contains the specific force together with the gravitational acceler-
ation. Knowledge about the gravitational field is required to extract the specific forces. The
mechanical terms that are used in expression 10-30 can be renamed to a more conventional
flight dynamics notation. The term aBx is equal to the time derivative of the velocity in
forward direction and is usually denoted by u̇. The velocity components vBy and vBz , can be
replaced by vB and wB . When rewriting, expression 10-30 results in 10-32.

u̇B = Ax − g0 sin θ + rvB − qwB (10-32)

Equation 10-32 shows the expression that is used to predict the derivative of the forward
velocity u̇ in a body-fixed reference frame, coming from the equations of motion, from expres-
sion 8-25 where the angular rates are measured by the onboard gyroscopic sensors and the
specific forces by the accelerometers.

u̇ = Axm − bAx − eAx + (rm − br − er)v − (qm − bq − eq)w − g0 sin θ (10-33)

Equation 10-33 can be used to obtain an additional expression of the pitch angle. The phys-
ical interpretation about the relation between of the forward velocity derivative u̇ and the
term “g0 sin(θ)” of expression 10-33 can be seen as follows: A change in pitch angle results
in different specific forces acting onto an aircraft in FB , as a result of different gravitational
orientation on the aircraft as the orientation between FB and FE changes. The difference
in specific forces due to a different gravitational orientation, as sensed by the onboard ac-
celerometers, can be used to calculate changes in pitch angle orientation. The gravity vector
is assumed to be pointing downwards in FE, with a constant factor g0. The first step to ob-
tain a relation between the pitch angle and change in gravitational orientation, is to rewrite
expression 10-33 into 10-34 by putting sin θ at the left hand side of the equal sign.

sin θ =
Axm − bAx − eAx

g0
+

(rm − br − er)v
g0

− (qm − bq − eq)w
g0

− u̇

g0
(10-34)
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Equation 10-34 can be rewritten into 10-35 to obtain θ.

θ = arcsin

(
Axm − bAx − eAx

g0
+

(rm − br − er)v
g0

− (qm − bq − eq)w
g0

− u̇

g0

)
(10-35)

From expression 10-35 can be seen that four terms determine the pitch angle. The first
term includes the specific force in X-direction in FB , the second and third term are Coriolis
accelerations which are the result of ω × v. The fourth term relates to changes in forward
velocity in FB . To investigate the influence of the individual terms of expression 10-35 with
respect to θ, the simulation of appendix D has been used. For the simulation a generic flight
maneuver is simulated, where a 360◦ left turn is simulated followed by a 360◦ right turn and
a 10◦ doublet input on the rudder combined with different throttle settings. The simulation
results together with all output states can be found in appendix D. For each of the following
cases kinematic terms of expression 10-35 are used. During the simulation, only the true
states are considered, the sensor biases and noises have been left out. This has been done
to qualitatively indicate the kinematic properties of each individual term, when including
realistic sensor signals the kinematic relations become overshadowed by noise and biases.
Expression 10-35 can be rewritten into expression 10-36 when leaving out the IMU biases and
noise.

θ = arcsin

(
Ax
g0

+
r · v
g0
− q · w

g0
− u̇

g0

)
(10-36)

Besides looking at kinematic terms, cases can be investigated where terms are put together.
Combining the first and fourth term of expression 10-36, results in expression 10-37. By
combining the specific force in X-direction in FB , Ax, with the change in forward velocity u̇,
it is expected that the detection in change of gravity vector orientation with respect to FE
improves.

θ = arcsin

(
Ax − u̇
g0

)
(10-37)

From expression 10-36 and 10-37, different cases on pitch angle estimation can be investigated:

1. θ1 = arcsin
(
Ax
g0

)
2. θ2 = arcsin

(
r·v
g0

)
3. θ3 = arcsin

(
− q·w

g0

)
4. θ4 = arcsin

(
− u̇
g0

)
5. θ5 = arcsin

(
Ax−u̇
g0

)
Each case is plotted during the simulation of appendix D together with the true pitch angle
θtrue, in the figures 10-4 to 10-8. Besides the pitch angle estimation, the estimation error is
also included.
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Figure 10-4: Pitch angle estimation, simulation results on case 1
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Figure 10-5: Pitch angle estimation, simulation results on case 2
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Figure 10-6: Pitch angle estimation, simulation results on case 3
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Figure 10-7: Pitch angle estimation, simulation results on case 4
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Figure 10-8: Pitch angle estimation, simulation results on case 5

From the figures 10-4 to 10-8 can be seen that θ1 and θ5 follow the general trend of the true
pitch angle during the simulation. During the turning and change of throttle setting, the
estimate follows the true pitch angle. When a sudden change in rudder setting is applied,
doublet at 400 seconds, the direction of the gravity vector suddenly changes during a short
period. To capture the dynamic changes solely using the direction of the gravity vector is
inadequate. From the figures can be seen that the error increases during the doublet input.
It can be concluded that case 1 and 5 give a good estimation of the pitch angle, solely acting
on the change in orientation of the gravity vector. Cases 2 and 3 include Coriolis acceleration
terms, which only include rotational changes and show large amplitudes during the rudder
doublet input at 400 seconds. They do however not follow the change in throttle setting. Case
4 captures dynamic changes, based on changes in forward velocity. This result is a static error
during a change in throttle setting, as can be seen from figure 10-7.

Case 1 and case 5 do not differ much from each other. Caused by the fact that the specific
force Ax and derivative of the forward velocity u̇ in FB are strongly correlated. By includ-
ing the change in forward velocity, case 5 gives a better pitch angle estimation compared to
case 1. The improvement comes from including longitudinal changes, resulting in a different
forward velocity, captured by the time derivative of the forward velocity u̇ as can be seen in
figure 10-8. Case 5 has however still difficulties when coping with fast dynamic changes as no
Coriolis terms are included. A disadvantage of using cases 2 and 3 is that the body velocities
v and w are obtained by integrating the specific forces obtained by the accelerometers, the
velocity estimations contain a lot of noise due to the integration step and will result in a bad
estimate. The obtained GPS velocities have a time delay with the IMU and cannot be used
to correct these fast dynamic changes as the velocities are obtained later when compared to
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the angular rates p and r.
Besides the previous described cases, the pitch angle can be derived by looking at the air-
craft as a pendulum, where the gravity vector is pointing downwards with small deviations.
This results in expression 10-38. This expression is based on the difference in gravitational
orientation between FB and FE , assuming a constant 3D vector that is pointing downwards
in FE .

θpen = arctan

(
gxB√

gyB
2 + gzB

2

)
(10-38)

When an aircraft is moving at a constant speed, assuming a difference in gravity orientation
is the only change of the aircraft. The change in gravity orientation in FB is the only force
acting onto the aircraft. When assumed that gravity is the only force acting on the aircraft
besides the aircraft body forces, it is the only source of change in specific forces sensed by the
accelerometers in FB . Under this assumption, equation 10-38 can be rewritten into expression
10-39 from (Lai, Jan, & Hsiao, 2010).

θpen = arctan

⎛
⎝ Ax√

Ay
2 +Az

2

⎞
⎠ (10-39)

During maneuvers, the assumption that changes in gravitational orientation are the only
source of changes in specific forces acting on the aircraft in FB , no longer holds and expression
10-39 is no longer valid. During the performed simulation of appendix D, the pitch angle
estimation results are given in figure 10-9, estimation errors are due to the presence of other
forces then gravity. The errors come from the fact that other forces are not included and
the accelerometers sense only total accelerations. Extreme maneuvers are not included in
the performed simulation of figures 10-4 to 10-9, maximum turning accelerations are about
±1m/s2, so the influence of specific forces is limited and figure 10-9 gives the same pitch
angle estimation compared to case 1 or 5. During small changes and slow maneuvers the
pendulum based expression 10-38 can be used as an alternative of case 1 or 5. The simulation
shows the same estimation results. However, if fast dynamic turning maneuvers with higher
accelerations are present, which are not uncommon for a small fixed-wing UAV, expression
10-39 cannot be used or constraints should be added.
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Figure 10-9: Pitch angle estimation, simulation results on pendulum case

Pitch angle estimation based on velocity components

The total velocity vector of a flying vehicle, contains the magnitude and direction of the
aircrafts velocity. Information about the vehicles orientation can be obtained by utilizing the
properties of vectors. Velocity in FE can be obtained by using the GPS receiver velocity
measurements. The pitch angle θ can be estimated by using the forward uB and vertical
wB speed components. Estimations using only u and w, assume that the pitch angle is a
function of the flight path angle γ and angle of attack α, as defined in equation 10-40 from
basic airplane performance (Ruijgrok, 1996). Equation 10-40 is based on the physics of figure
10-10.

θ = γ + α (10-40)

An aircraft with forward speed u follows a flight path, denoted by flight path angle γ. The
flight path is the movement of an aircraft as seen from a moving air particle. The actual
trajectory can be obtained with a GPS receiver, the GPS velocity components uGPS and
wGPS can be used to make an estimation of γ as can be seen from figure 10-10 by using a
North-East-Down (NED) frame of reference in FE as described in chapter 8. This results in
expression 10-41 for a GPS measured flight path angle γGPS.

γGPS = arctan

(−wGPS
uGPS

)
(10-41)
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Figure 10-10: Pitch angle dynamics

Expression 10-41 can be used to perform an estimation of θ when neglecting the angle the
attack α, resulting in expression 10-42. Expression 10-42 is the first GPS based pitch angle
estimation case θGPS1.

θGPS1 = arctan

(−wGPS
uGPS

)
(10-42)

Expression 10-42 can be extended into expression 10-43, when adding an angle of attack air
data sensor, called an α sensor.

θGPS2 = arctan

(−wGPS
uGPS

)
+ α (10-43)

Besides using an angle of attack sensor, α can also be estimated with the body-fixed velocity
components uB and wB as indicated in figure 10-10. The angle of attack is equal to: α =

arctan
(
wB
uB

)
. This results in the third theta estimation θGPS3 by using velocity components,

expression 10-44.

θGPS3 = arctan

(−wGPS
uGPS

)
+ arctan

(
wB
uB

)
(10-44)

Based on expressions 10-42, 10-43 and 10-44 three GPS velocity based pitch angle estimations
can be made:

• θGPS1 = arctan
(
−wGPS
uGPS

)
• θGPS2 = arctan

(
−wGPS
uGPS

)
+ α
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• θGPS3 = arctan
(
−wGPS
uGPS

)
+ arctan

(
wB
uB

)

Figures 10-11, 10-12 and 10-13 give the results of the three velocity based pitch angle estima-
tion cases using the simulation of appendix D. The estimation error angles are not included,
instead a zoomed figure on the estimation is added.
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Figure 10-11: Pitch angle estimation, simulation results on GPS case 1

From figures 10-11 to 10-13 can be seen that GPS cases 2 and 3 give the same estimation
results. From this can be concluded that there is no need of an extra α sensor, when there
is a good velocity estimation. For some angles the estimation error becomes really large, as
the angle between the two velocity components approaches ±90◦. These high peaks needs
to be filtered out, for instance using a low-pass filter or posing constraints. The forward
velocity component uGPS in FE can go to zero during turning maneuvers, resulting in a small
denominator of −wGPS

uGPS
. The closer uGPS goes to zero, the larger the resulting outcome of

−wGPS
uGPS

becomes and the closer arctan
(
−wGPS
uGPS

)
reaches ±π

2 , as the angle approaches ±90◦.
The problem of uGPS going to zero can also be solved by taking the forward body-fixed velocity
component uB instead of uGPS. From figure 10-10 can be seen that these two velocities are
not the same, the difference is a function of the flight path angle in between. Estimation
errors as a result of the flight path angle are to be expected. Expression 10-45 gives the
modified expression 10-44, by using both GPS and body-fixed velocity components.

θ = arctan

(−wGPS
uB

)
+ arctan

(
wB
uB

)
(10-45)
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Figure 10-12: Pitch angle estimation, simulation results on GPS case 2
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Figure 10-13: Pitch angle estimation, simulation results on GPS case 3
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Expression 10-45 has the same denominator and can be rewritten into expression 10-46. Figure
10-14 gives the fourth velocity based theta estimation θGPS4 during simulation together with
the estimation error. From figure 10-14 can be seen that case 4 is about the same compared
to GPS cases 2 and 3 where the former does not have large peaks, as long as uB does not go
to zero. The main advantage of using uB instead of uGPS, is that the denominator no longer
reaches zero and no peaks are present. From figure 10-14 can also be seen that the error due
to the difference in flight path angle, results in small estimation errors. The error becomes
larger during dynamic maneuvers, for example the rudder doublet input at 400 seconds, as
can be seen in figure 10-14. From this can be concluded that changing uGPS to uB shows big
improvement.

θGPS4 = arctan

(
wB − wGPS

uB

)
(10-46)
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Figure 10-14: Pitch angle estimation, simulation results on GPS case 4
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10-3-2 Roll Angle Estimation

Like the pitch angle of the previous subsection 10-3-1, the roll angle is predicted by using an
angular kinematic equation of chapter 8, the time derivative of the roll angle φ̇. Equation
8-25 uses gyroscopic sensor measurements together with the pitch and roll angle, as repeated
in expression 10-47 below.

φ̇ = pm − bp − ep + (qm − bq − eq) sinφ tan θ + (rm − br − er) cosφ tan θ (10-47)

From expression 10-47 can be seen that the roll angle derivative is calculated by using an-
gular rates p, q and r. Besides the roll angle kinematic equation, the roll angle is found in
more kinematic equations. The derived force equilibrium equation 10-28 can be used to find
additional roll angle expressions. The second and third row both contain a term φ and are
repeated below, expression 10-48.

[
Y
m
Z
m

]
+

[
−g0 sinφ cos θ
−g0 cosφ cos θ

]
=

[
aBy

aBz

]
+

[
αzrx − αxrz
αxry − αyrx

]
+

[
ωzvBx − ωxvBz
ωxvBy − ωyvBx

]
(10-48)

Like for the pitch angle of subsection 10-3-1 it is assumed that the accelerometer can measure
specific forces. Expression 10-49 gives the specific force equations, by using expression 10-48
where the resulting specific forces Ay and Az can be measured by accelerometers.

[
Ay

Az

]
=

[
Y
m
Z
m

]
−

[
αzrx − αxrz
αxry − αyrx

]
(10-49)

The measured accelerations contain besides specific forces also gravitational forces. Knowl-
edge about the gravitational field is required to extract the specific forces. The kinematic
terms that are used in expression 10-49 can be renamed to a more conventional flight dy-
namics notation. The terms aBy and aBz are equal to the time derivatives of the velocity in
lateral and downward direction, v̇B and ẇB . The same holds for the velocity components:
vBx , vBy and vBz and can replaced by u, v and w. Expression 10-48 can rewritten into 10-50,
by using expression 10-49.

[
v̇B
ẇB

]
=

[
Ay
Az

]
−

[ −g0 sinφ cos θ
−g0 cosφ cos θ

]
+

[
ωzvBx − ωxvBz
ωxvBy − ωyvBx

]
(10-50)

Equation 10-50 is used to predict the lateral and downward velocity, by using their time
derivatives v̇ and ẇ and can be rewritten in equations 10-51 and 10-52. These equations are
used to predict the derivative of the lateral and downward velocity in a body-fixed reference
frame, coming from the equations of motion, expression 8-25, where the angular rates ωx, ωy,
ωz are assumed to be measured by the onboard gyroscopic sensors p, q, r.

v̇ = Aym − bAy − eAy + (pm − bp − ep)w − (rm − br − er)u+ g0 cos θ sinφ (10-51)
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ẇ = Azm − bAz − eAz + (qm − bq − eq)u− (pm − bp − ep)v + g0 cos θ cosφ (10-52)

Both equations 10-51 and 10-52 include a term with φ and can be rewritten to construct
additional roll angle estimations. Expressions 10-51 and 10-52 can be rewritten into 10-53
and 10-54 to get φ at the left-hand side of the equal sign.

sinφ = −Aym − bAy − eAy
g0 cos θ

− (pm − bp − ep)w
g0 cos θ

+
(rm − br − er)u

g0 cos θ
+

v̇

g0 cos θ
(10-53)

cosφ = −Azm − bAz − eAz
g0 cos θ

− (qm − bq − eq)u
g0 cos θ

+
(pm − bp − ep)v

g0 cos θ
+

ẇ

g0 cos θ
(10-54)

From expression 10-53, φ can be obtained resulting in expression 10-55.

φ = arcsin

(
−Aym − bAy − eAy

g0 cos θ
− (pm − bp − ep)w

g0 cos θ
+

(rm − br − er)u
g0 cos θ

+
v̇

g0 cos θ

)
(10-55)

The roll angle can also be obtained from expression 10-54, resulting in expression 10-56.

φ = arccos

(
−Azm − bAz − eAz

g0 cos θ
− (qm − bq − eq)u

g0 cos θ
+

(pm − bp − ep)v
g0 cos θ

+
ẇ

g0 cos θ

)
(10-56)

For both expressions 10-55 and 10-56, holds that four kinematic terms determine the roll
angle. Both expressions use the same kind of kinematic terms and are very similar, except for
the “arcsin” and “arccos” functions. The first terms are accelerations, corresponding to lateral
and downward direction in FB : Ay corresponds to v and Az corresponds to w. The second
and third terms relate to Coriolis acceleration, as a result of ω× v. The fourth and last term
relate to changes in velocity components. To investigate the influence of the individual terms
for both expressions, a simulation has been performed. The same simulation of appendix
D as for the pitch angle expressions of section 10-3-1 is used. A generic flight maneuver is
performed, where a 360◦ left turn is followed by a 360◦ right turn and a 10◦ rudder doublet
together with different throttle settings. The simulation results together with all individual
states can be found in appendix D. During the simulation, the sensor noise and biases have
been left out and the true accelerations and angular rates are used. Only the true values are
considered to qualitatively indicate the kinematic properties with realistic sensor signals the
kinematic relations are overshadowed by noise and biases. Expressions 10-55 and 10-56 can
be rewritten into 10-57 and 10-58 when leaving out biases and noise.

φ = arcsin

(
− Ay
g0 cos θ

− p · w
g0 cos θ

+
r · u

g0 cos θ
+

v̇

g0 cos θ

)
(10-57)

φ = arccos

(
− Az
g0 cos θ

− q · u
g0 cos θ

+
p · v

g0 cos θ
+

ẇ

g0 cos θ

)
(10-58)

From expression 10-57 and 10-58, 8 cases are investigated as follows:
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1. φ1 = arcsin
(
− Ay
g0 cos θ

)
2. φ2 = arcsin

(
− p·w
g0 cos θ

)
3. φ3 = arcsin

(
r·u

g0 cos θ

)
4. φ4 = arcsin

(
v̇

g0 cos θ

)
5. φ5 = arccos

(
− Az
g0 cos θ

)
6. φ6 = arccos

(
− q·u
g0 cos θ

)
7. φ7 = arccos

(
p·v

g0 cos θ

)
8. φ8 = arccos

(
ẇ

g0 cos θ

)

Each case is plotted during the simulation in figure 10-15 to 10-22 with the true roll angle.
The estimation error is calculated for each case with respect to the true roll angle.
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Figure 10-15: Roll angle estimation, simulation results on case 1
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Figure 10-16: Roll angle estimation, simulation results on case 2

Fixed-Wing UAV Integrated Navigation with Low-Cost IMU/GPS B. A. Hummelink



104 Physical Properties of Aircraft Kinematics

φ
[r
a
d
]

time[s]

φ3
φtrue

er
ro
r[
ra
d
]

time[s]

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

-2

-1

0

1

2

-2

-1

0

1

2

Figure 10-17: Roll angle estimation, simulation results on case 3
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Figure 10-18: Roll angle estimation, simulation results on case 4
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Figure 10-19: Roll angle estimation, simulation results on case 5
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Figure 10-20: Roll angle estimation, simulation results on case 6
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Figure 10-21: Roll angle estimation, simulation results on case 7
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Figure 10-22: Roll angle estimation, simulation results on case 8
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From figures 10-19 to 10-22 can be concluded that by using arccos can give numerical prob-
lems, coming from the fact that arccos(0) = π

2 . The roll angle of a fixed-wing aircraft is
usually around zero for a stable flying aircraft, this may lead to numerical difficulties when
implementing observers that make use of arccos. For large roll angles, this is however not a
problem if the π

2 error is compensated. Arcsin properties hold that arcsin(0) = 0 and goes
to ±∞ when going to ±1. When arcsin reaches ±1, this means that the numerator becomes
equal to the term “g0 cos θ”. From a more physical perspective this means that the aircraft
has a roll angle close to ±90◦.
Case 1 and 5 corresponds to lateral and downward velocity derivatives, where only high peaks
are present due to sudden changes. Case 4 and 8 show similar results as Ay, v̇ and Az, ẇ
are closely related. Coriolis acceleration terms, present in the cases 2, 3, 6 and 7, follow the
general direction of the roll angle during the simulation and have difficulties when coping
with sudden dynamic changes. The use of arccos gives problems and arcsin can only be used
for small angles. For the final roll angle estimation none of the cases are explicitly used, the
Coriolis terms are however strongly present. Cases 1 and 5 hold the specific forces, as sensed
by the onboard accelerometers, in YB and ZB direction together with the expressions that
hold the Coriolis terms. Expressions 10-57 and 10-58 can be rewritten such that both arcsin
and arccos are removed and the dominant kinematic terms are present.
Estimating the roll angle can also be done by combining the properties of the individual cases.
Figure 10-23 displays an aircraft making a coordinated roll turn. The force equilibrium is
given in equation 10-59 by using the geometry of figure 10-23.

L sinφ = mV ω (10-59)

Assuming that the roll angle is constant with a constant turning rate ω together with small
angles, sinφ ≈ φ and L ≈ mg0, expression 10-59 can be rewritten into expression 10-60.

mg0φ = mV ω (10-60)

Expression 10-60 can be rewritten in expression 10-61.

φ =
mV

mg0
ω (10-61)

The magnitude of the total velocity V can be estimated by using the magnitude of the total

GPS velocity vector in FE : V GPS =
√
u2GPS + v2GPS + w2

GPS. When assuming that the

turning rate ω can be measured with the yaw gyroscope r, this leads to expression 10-62.

φ =

√
u2GPS + v2GPS + w2

GPS

g0
r (10-62)

Expression 10-62 assumes a constant turn rate, without accelerations. In practice, aircraft
usually experience coupled maneuvers where both angular rates and accelerations are present.
The specific forces in YB- and ZB-direction, present in case 1 and 5, can be added to expression
10-62. The angle between Ay and Az represents forces due to turning, which are usually
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L
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Figure 10-23: Roll angle during a constant turn

present during combined turning and rolling. With the addition of the specific forces, the
dynamic part can be added to the static roll angle estimation of expression 10-62. This results
in roll angle estimation case 9, φ9 of expression 10-63.

φ9 =

√
u2GPS + v2GPS + w2

GPS

g0
r + arctan

(
Ay
Az

)
(10-63)

Figure 10-24 gives the result of expression 10-63 the during generic simulation of appendix D.
From the figure can be concluded that the roll angle estimation follows the true roll angle and
gives the best roll angle estimation when looking at case 1 to 9. Some peaks are still present
during fast changes, which can be filtered out by using a low-pass filter. Estimation case 9
includes the turning accelerations present in case 1 and 5 together with the static turning
relation of expression 10-63.
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Figure 10-24: Roll angle estimation, simulation results on case 9
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10-3-3 Heading Angle Estimation

Like the pitch and roll angles of the previous subsections, the heading angle ψ is also calcu-
lated by using angular rates of the gyroscopic sensors, as derived in chapter 8 equation 8-25.
Additional heading angle expressions should be performed in a different manner as ψ is not
present in the derived kinematic expression in the beginning of this section, equation 10-28.
The heading angle can be estimated by calculating the angle between the forward and lateral
velocity components uE and vE . With the use of additional sensors to an IMU, the heading
angle can be estimated differently as by using gyroscopes. Expression 10-64 uses the velocity
components in FE , obtained from a GPS receiver. This expression follows the vehicle in FE
as can be seen from a non-moving observer on the ground, called ground track.

ψ1 = arctan

(
vGPS
uGPS

)
(10-64)

Figure 10-25 gives the heading angle estimation of expression 10-64 by using the same generic
fixed-wing UAV simulation of appendix D as for the pitch and roll angle of the previous
subsections. The error between the true and estimated heading angle comes from the fact
that the side-slip angle β is not included in expression 10-64. The difference in real and
estimated heading angle is small as can be seen in figure 10-25. From the error between
the real and estimated heading angle from figure 10-25 can be concluded that side-slip is a
function of the rudder magnitude. Meaning there is an influence of the rudder deflection on
the side-slip. The side-slip angle is the angle between the heading angle and true ground
track, which is provided by the GPS receiver. Expression 10-65 gives the definition on true
ground track and heading angle from (Mulder et al., 2007).

ψ − β = ψground track (10-65)

The GPS velocity heading angle estimation can be improved by including the electronic
rudder input signal Eδr . Expression 10-66 includes a linear relation between the rudder input
signal and the side-slip angle, where the factor “-1.15” is a 1st order model dependent fit.
The first order approximation can be extended to a higher order linearization, to improve
accuracy. From figure 10-26 can be seen that the modified heading angle estimation denoted
with heading angle case 2 ψ2, results in expression 10-66.

ψ2 = arctan

(
vGPS
uGPS

)
− 1.15Eδr (10-66)

Expression 10-66 only holds when there is no wind present. In practice side-slip is usually
present and can result in large angles and differences between the heading and ground track
angle. Expression 10-67 gives the definition of the side-slip angle from (Mulder et al., 2007).
This problem can be solved with the addition of a slide slip angle sensor or β-sensor. The
sensor can also compensate for the change in heading due to atmospheric wind.

β = arcsin

(
vB
V

)
(10-67)
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Figure 10-25: Heading estimation, simulation results on case 1
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Figure 10-26: Heading estimation, simulation results on case 2
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The velocity vector V =
√(

u2GPS + v2GPS + w2
GPS

)
in expression 10-67 can be measured with

a GPS receiver, like for the roll angle. This results in the third heading estimation ψ3 of
expression 10-68. This estimation is simulated in figure 10-27 by using the generic simulation
of appendix D together with the true heading angle.

ψ3 = arctan

(
vGPS
uGPS

)
− arcsin

⎛
⎝ vB√

u2GPS + v2GPS + w2
GPS

⎞
⎠ (10-68)

From the simulation results of figure 10-27 can be seen that the side-slip error of estimation
case 1 is not present. The estimation error peaks which are present in case 2, as the result of a
change in rudder setting are also not present. The side-slip estimation provides a better esti-
mation as compared to linking the rudder signal to the side-slip. With estimation case 3, the
side-slip is estimated using body-fixed velocity components resulting in an better estimation.
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Figure 10-27: Heading estimation, simulation results on case 3
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10-3-4 Conclusion

The different investigated cases of the previous subsections use the derived kinematic ex-
pressions of the first 2 sections to derive additional orientation angle relations. The physical
relations combine kinematic properties of fixed-wing aircraft kinematics with onboard IMU
sensors and GPS receivers.

For the developed pitch angle approximation of subsection 10-3-1, two cases can best be
considered as additional observers. These cases are defined as case 5 and GPS case 4, repeated
below in expressions 10-69 and 10-70 as the two final pitch angle estimations. GPS case 4
is dependent on GPS velocity measurements with estimated body-fixed velocity components.
The body-fixed velocities are the result of accelerometer integration or can be obtained by
transforming GPS velocity measurements from FE to FB by using a rotational matrix that
uses all three orientation angles as described in chapter 8.

Some additional situations should be mentioned that are not part of the simulation of ap-
pendix D, used for deriving the pitch angle observers. Situations where the longitudinal flight
dynamics as displayed in figure 10-10 are different. When an aircraft stalls, the pitch angle
is usually very large together with the angle of attack, while the flight path angle is pointing
downwards. The same holds during landing, the throttle setting is very low and as a result
the altitude is decreasing while having a positive pitch angle. The velocity components are
still in the same direction and it is expected that expression 10-70 still holds, however larger
estimation errors are expected. When there is a large wind coming to the front of the aircraft,
the aircraft might move in backwards direction seen in FE resulting in a negative uGPS . The
forward velocity component uB is still in forward direction as the aircraft is moving in forward
direction, seen from a moving air particle that is part of the wind coming towards the aircraft.
This is also the reason that the aircraft still has a positive lift vector and can stay in the air.
When this is the case, the pitch angle estimation will differ from the real angle. Beforehand
knowledge of the wind direction and magnitude is required to avoid this problem.

The second pitch angle estimation uses GPS velocity components. When strong wind is
present, expression 10-70 will have some estimation errors. Figure 10-29 and 10-28 give the
pitch angle estimation simulation results, using the generic simulation of appendix D. The
simulation is the same as used for subsection 10-3-1 when deriving the correction angles, only
this time with realistic sensor signals including biases, noises and the presence of wind. From
figure 10-29 can be concluded that expression 10-69 gives the same estimation as in figure
10-8 when using realistic sensor signals. Expression 10-70 gives however different estimation
result as can be seen in figure 10-28 when compared to figure 10-14. Due to the presence
of atmospheric wind, the flight path angle estimation using body-fixed and Earth reference
velocity components γ = −wGPS

uB
is no longer correct as the angle is different as a result of

wind. It can be concluded that θ̂2 is a less practical estimation when compared to θ̂1 during
windy conditions. The first pitch angle estimation θ̂1 is the final pitch angle observer equation.

θ̂1 = arcsin

(
Ax − u̇
g0

)
(10-69)

θ̂2 = arctan

(
wB − wGPS

uB

)
(10-70)
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Figure 10-28: Final pitch angle estimation case 1, using realistic sensors and atmospheric wind

The roll angle estimation case 9 derived in subsection 10-3-2, is composed of the turning
accelerations Ay and Az together with the static roll angle estimation of expression 10-63.

Case 9 is repeated in expression 10-71 as the final roll angle estimation φ̂. Figure 10-30
gives the simulation results using the generic simulation of appendix D, using realistic sensor
signals together with the presents of atmospheric wind. From figure 10-30 can be seen that
the influence of noise and biases are limited as the mean of the estimation corresponds with
the true roll angle. The influence of wind is present in the estimation as the total GPS
velocity magnitude changes. The magnitude is multiplied with the angular yaw rate r and
the influence of changes in velocity magnitude becomes smaller. From a physical point of
view the influence of wind on the roll angle is limited as the corresponding turning axis origin
changes and not the roll angle itself, as displayed in figure 10-23. This physical aspect is
shown in figure 10-30 due to the fact that no bias errors are present for the angle estimation.
From this can be concluded that the influence of atmospheric wind is very limited to the roll
angle estimation and that the estimation can be used as an additional angle observer.

φ̂ =

√
u2GPS + v2GPS +w2

GPS

g0
r + arctan

(
Ay
Az

)
(10-71)

The heading angle expression of subsection 10-3-3 uses a GPS receiver to determine the
velocity components to estimate the heading angle. The third heading angle estimation case
ψ3, is repeated in expression 10-72 as the final heading angle estimation. From figure 10-31
can be seen that the presence of wind influences the angle estimation performance, when
compared to figure 10-27.

The difference in ground track and heading angle ψ increases due to the presence of atmo-
spheric wind. The GPS velocity components in FE include the influence of the wind velocities
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Figure 10-29: Final pitch angle estimation case 2, using realistic sensors and atmospheric wind

since the total velocity vector is measured. The side-slip angle β estimation, the second term
of expression 10-72, is insufficient during the presence of wind. While despite that the esti-
mation is not perfect, the heading angle estimation can still be used as an additional angle
observer as the estimation errors are bounded. Different sensors like a magnetometer, side-
slip β sensor or thermopile sensors can also be added to increase the accuracy during windy
conditions.

The disadvantage of adding more sensors is the time synchronization between individual com-
ponents, which will be explained in more detail in section 13-1. Time synchronization errors
will be present as each individual component has its own update frequency and processing
time. There is a constraint, under which expression 10-72 must be used, which is maintaining
a minimum velocity. An example of simulating responses during minimum flying velocities
together with wind is not present in the used simulation and doesn’t show up in figure 10-31,
it can however not be ignored. If the aircrafts’ velocity becomes very small, the angle between
the lateral and forward velocity components become overshadowed by the GPS receiver noise
and becomes difficult to estimate. The estimated heading angle can suddenly turn out to
be in opposite direction. If a minimum velocity constraint is applied to expression 10-72 to
avoid these situations, a robust and long-term stable angle correction is be made. When the
lateral body-fixed velocity vB is badly estimated or when the side-slip can be assumed small,
the second term of expression 10-72 can be left out.

ψ̂ = arctan

(
vGPS
uGPS

)
− arcsin

⎛
⎝ vB√

u2GPS + v2GPS + w2
GPS

⎞
⎠ (10-72)
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Figure 10-30: Final roll angle estimation, using realistic sensors and atmospheric wind

ψ
[r
a
d
]

time[s]

ψ̂
ψtrue

er
ro
r[
ra
d
]

time[s]

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

-0.2

-0.1

0

0.1

0.2

-4

-2

0

2

4

Figure 10-31: Final heading angle estimation, using realistic sensors and atmospheric wind

B. A. Hummelink Fixed-Wing UAV Integrated Navigation with Low-Cost IMU/GPS



10-4 GPS Accelerations 117

10-4 GPS Accelerations

The previous sections focused on deriving kinematic expressions by combining fixed-wing
aircraft kinematics with an IMU and GPS receiver. The expressions started by deriving the
kinematics of a particle in inertial space seen from a local moving frame of reference. This
has led to the derivation of the final AC equations of subsection 10-3-4. This section uses
a different approach to derive additional expressions to complement the IMU/GPS sensor
integration.

The provided GPS receiver velocities can be considered as an accurate unbiased measurement.
As was previously mentioned in section 2-2 about GPS satellite navigation, the frequency shift
of the satellite signals due to the satellite’s relative velocity to the user receiver, called Doppler
shift. The GPS velocities are unbiased with low signal noise and some processing time due
to onboard signal integration of the individual satellite signals.

10-4-1 ECEF to NED Coordinate Transformation

The GPS receiver velocities are in the Earth-Centered-Earth-Fixed (ECEF) Cartesian coordi-
nate frame of reference. The origin of the ECEF frame of reference (0,0,0) is the Earth’s center
of gravity. The X−, Y− and Z−axis remain fixed, the Earth is considered to be non-rotating.
The Z-axis points to the North pole, and the XY-plane coincides with the equatorial plane,
as indicated in figure 10-32. When neglecting the Earth’s rotations, it can be assumed that
ECEF is an inertial frame of reference with coordinate system XYZ attached to the Earth’s
center of gravity (0,0,0). When this assumption holds, the GPS velocities are assumed to be
in inertial space. When differentiating the GPS velocities, the resulting GPS accelerations
can provide the vehicles accelerations. Under the assumption that the GPS velocities are
obtained in inertial space, the obtained accelerations provide the vehicle’s specific forces in
inertial space.

Figure 10-32 shows the ECEF together with the local North-East-Down (NED) frame of
reference. By obtaining the GPS velocity derivatives in ECEF, the obtained accelerations
should be transformed to local body-fixed coordinates in a local body-fixed frame of reference
FB to integrate them with the IMU accelerations. To derive the required transformation,
between ECEF and FB , the derived expression 10-28 from section 10-3 is taken as a starting
point. This expression is repeated below, expression 10-73. The specific forces Ax, Ay and Az
consist of the body forces divided by the vehicle’s mass m and are assumed to be in inertial
space.

⎡
⎣ Ax
Ay
Az

⎤
⎦
B

+ ag =

⎡
⎣ u̇GPS
v̇GPS
ẇGPS

⎤
⎦
ECEF

(10-73)

The three acceleration components aECEF = [u̇GPS, v̇GPS , ẇGPS ] in expression 10-73 are the
assumed accelerations in inertial space. When assuming that the ECEF is an inertial frame of
reference, the accelerations are the absolute accelerations of the local reference frame. When
this assumption holds, fictitious forces can be left out. An example of fictitious forces that can
be left out are the Coriolis forces, as a result of ω × vrel, where vrel are the relative velocities
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Figure 10-32: Earth-Centered-Earth-Fixed (ECEF) and North-East-Down (NED) frame of
reference

between the vehicle and local frame of reference. To apply expression 10-73, the gravity vector
needs to be converted to FB together with the accelerations obtained by differentiating the
GPS velocities. The GPS accelerations v̇GPS need to be converted to the local NED frame
of reference before transformed to FB . This means two transformations are required, namely
a transformation between ECEF and NED, RECEF,NED and a transformation from NED
to FB , RNED,B. Expression 10-73 can be rewritten into 10-74 when including the required
transformation matrices.

AB = RNED,B RECEF,NED v̇GPS −RNED,BgNED (10-74)

To transform the GPS accelerations from ECEF to body-fixed coordinates and to use expres-
sion 10-74, the required transformation matrices RECEF,NED and RNED,B need to be derived.
From figure 10-32 can be seen that three angles are required to make the transformation be-
tween ECEF and NED. The two latitude φ and longitude λ angles can be calculated by using
expressions 10-75 and 10-76.

φ = arctan

⎛
⎝ ZECEF√

X2
ECEF + Y 2

ECEF

⎞
⎠ (10-75)
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λ = arctan

(
YECEF
XECEF

)
(10-76)

The third required angle is to correct the differences in Z-axis orientation in ECEF and NED.
This angle is assumed to be constant, resulting in the matrix transformation definition of
expression 10-77.

v̇GPS,NED = RECEF,NED(φ, λ,−90◦)v̇GPS,ECEF (10-77)

In ECEF the Z-axis ZECEF is pointing in upward direction, while in NED ZNED is pointing
downwards as can be seen in figure 10-32. The difference in Z-axis orientation in ECEF and
NED is a fixed angle of 90 degrees. Expression 10-78 defines the required transformation
matrix.

RECEF,NED(−90◦) =
⎡
⎣ cos 90◦ 0 sin 90◦

0 1 0
− sin 90◦ 0 cos 90◦

⎤
⎦ (10-78)

Rotational matrix using latitude angle φ, expression 10-79.

RECEF,NED(φ) =

⎡
⎣ cosφ 0 sinφ

0 1 0
− sinφ 0 cosφ

⎤
⎦ (10-79)

Rotational matrix using longitude angle λ, expression 10-80.

RECEF,NED(λ) =

⎡
⎣ cos λ sinλ 0
− sinλ cos λ 0

0 0 1

⎤
⎦ (10-80)

By combining expressions 10-78, 10-79 and 10-80, the ECEF to NED transformation matrix
RECEF,NED(φ, λ,−90◦) of expression 10-77 can be worked out. The result is the final trans-
formation matrix of expression 10-81, that can directly transform GPS acceleration in ECEF
to NED.

⎡
⎣ u̇GPS
v̇GPS
ẇGPS

⎤
⎦
NED

=

⎡
⎣ − sinφ cos λ − sinφ sin λ cosφ

− sinλ cos λ 0
− cosφ cos λ − cosφ sinλ − sinφ

⎤
⎦

⎡
⎣ u̇GPS
v̇GPS
ẇGPS

⎤
⎦
ECEF

(10-81)

Expression 10-81 can also be written out, resulting in expression 10-82.

u̇N = −u̇ECEF sinφ cos λ− v̇ECEF sinφ sinλ+ ẇECEF cosφ
v̇E = −u̇ECEF sinλ+ v̇ECEF cos λ
ẇD = −u̇ECEF cosφ cos λ− v̇ECEF cosφ sinλ− ẇECEF sinφ

(10-82)
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The second rotational matrix, RNED,B(φ, θ, ψ) transforms the accelerations from local NED
coordinates to body-fixed frame of reference FB . This transformation is equal to the used
transformation of chapter 8, expression 8-23. It is assumed that gravity is constant and point-
ing downwards in NED. Together with the coordinate transformation RNED,B, the vehicles
specific forces can finally be obtained. The result is expression 10-83, by working out ex-
pression 10-74. It should however be noted, that expression 10-83 can only transform GPS
velocities and its time derivatives. Expressions 10-83 and 10-82 cannot be used to transform
GPS positions from ECEF to NED. The Earth surface is not a perfect ellipsoid as indicated
in figure 10-32, the surface is a complex surface and accurate knowledge of the Earth’s gravity
is required to define its shape. To transform GPS positions from ECEF to NED, a geodetic
coordinate transformation is required. The geodetic coordinate transformation will compen-
sate for the differences in height in the Earth’s reference ellipsoid and real geoid. The Earth
radius of curvature and height above the ellipsoid should be included, for instance by using
the WGS84 reference ellipsoid to make this transformation.

⎡
⎣ Ax
Ay
Az

⎤
⎦
B

=

⎡
⎣ cos θ cosψ cos θ sinψ − sin θ

sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ

⎤
⎦ ·

⎡
⎣ u̇N
v̇E
ẇD

⎤
⎦−

⎡
⎣ −g0 sin θg0 sinφ cos θ
g0 cosφ cos θ

⎤
⎦
B

(10-83)

With the derived expressions 10-82 and 10-83, it is possible to transform GPS velocity deriva-
tives from ECEF to FB . Before this coordinate transformation can be made, first the GPS
accelerations need to calculated from GPS velocities. These can be calculated by differenti-
ating the GPS velocity signals. While the GPS velocities provide good measurements on the
vehicles velocity, the receiver signals still contain noise. When differentiating a noisy signal,
the noise is amplified. To overcome the problem of differentiating signals with noise, different
solutions exist.

By using a moving average over a finite number of samples, high frequency errors can be
filtered out. The simulation of appendix E, small turns Aerosonde UAV, is used to simulate
the estimation of specific forces by using GPS accelerations. This simulation simulates a
series of left and right turns with a small turning radius. This simulation is different form
the generic simulation, used in the previous sections. Due to the larger specific forces, this
simulation is preferred from the generic simulation. Figures 10-33 and 10-34 give the results
on differentiating the GPS velocity signals over a moving average of 10 and 50 samples. The
blue line represents the simulated GPS accelerations by differentiating the simulated received
GPS velocities. The red lines are the real specific forces. From the figures can be seen, that
the more samples are used, the lower the signal noise becomes. Using more samples to average
out the differentiated signal, means that less high frequency noise is present. A disadvantage
of using more samples is that more phase is introduced, resulting in a larger time delay.

Figures 10-35 and 10-36 use the results of signal differentiation of figures 10-33 and 10-34.
In these two figures, the real specific forces are added to show the differences between the
estimated and real specific forces. Depending on the desired accuracy on specific force esti-
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mation, more samples to average the signal can be chosen. From figure 10-36 can be seen that
by using 50 samples gives a good specific force estimation, with little high frequency noise.

Besides the moving average method, the signal can also be modified by using a low pass filter.
A type of digital filter is used to perform the low pass filtering of the differentiated signal,
called a butterworth filter. The applied filter is a 2nd order low pass butterworth filter. Two
different cutoff frequencies are used, 0.2 and 0.01 [rad/s]. The simulation of appendix E is
used to simulate the working of a butterworth filter. Figures 10-37 and 10-38 give the results
on low pass filtering the obtained GPS accelerations, where the red lines represent the real
specific forces. From the two figures can be seen that using a lower cutoff frequency results in
less high frequency noise. Like for the moving average method, also for a butterworth filter
holds that using a lower cutoff frequency results in larger phase and time delay.

Figures 10-39 and 10-40 use the results of low pass filtering the GPS accelerations of figures
10-37 and 10-38 by means of a butterworth filter. From figure 10-40 can be seen that the
specific force estimation by using a cutoff frequency of 0.01 [rad/s] gives a good estimation
with very little high frequency noise. Figure 10-40 also shows the presence of time delay,
which is particularly visible for the Ax and Ay specific force estimation.
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Figure 10-33: GPS velocity derivatives using a moving average over 10 samples
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Figure 10-34: GPS velocity derivatives using a moving average over 50 samples
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Figure 10-35: Estimated specific forces by GPS velocity derivatives using a moving average
over 10 samples
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Figure 10-36: Estimated specific forces by GPS velocity derivatives using a moving average
over 50 samples
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Figure 10-37: GPS velocity derivatives using a 2nd order butterworth filter with a cutoff
frequency of 0.2 [rad/s]
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Figure 10-38: GPS velocity derivatives using a 2nd order butterworth filter with a cutoff
frequency of 0.01 [rad/s]
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Figure 10-39: Estimated specific forces by GPS velocity derivatives using a 2nd order
butterworth filter with a cutoff frequency of 0.2 [rad/s]
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Figure 10-40: Estimated specific forces by GPS velocity derivatives using a 2nd order
butterworth filter with a cutoff frequency of 0.01 [rad/s]
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10-4-2 Conclusion

The derived expression of the previous subsection 10-4-1 can convert GPS accelerations from
ECEF to local body-fixed coordinates. This conversion can be used to estimate the vehicle’s
specific forces. Expression 10-84 below gives the transformation for converting GPS velocity
derivatives to specific forces.

⎡
⎣ Ax
Ay
Az

⎤
⎦
B

=

⎡
⎣ cos θ cosψ cos θ sinψ − sin θ

sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ

⎤
⎦ ·

⎡
⎣ u̇N
v̇E
ẇD

⎤
⎦−

⎡
⎣ −g0 sin θg0 sinφ cos θ
g0 cosφ cos θ

⎤
⎦
B

(10-84)

The GPS velocity derivatives are calculated using expression 10-85.

u̇N = −u̇ECEF sinφ cos λ− v̇ECEF sinφ sinλ+ ẇECEF cosφ
v̇E = −u̇ECEF sinλ+ v̇ECEF cos λ
ẇD = −u̇ECEF cosφ cos λ− v̇ECEF cosφ sinλ− ẇECEF sinφ

(10-85)

The advantage of using expression 10-84 with respect to the derived equations of motion of
chapter 8, is that no fictitious forces are required. When assuming that the GPS velocity
derivatives are obtained in inertial space, the Coriolis forces as a result of ω× vrel can be left
out. The GPS accelerations give an unbiased estimation of the aircrafts specific forces. Next
to estimating the vehicle’s specific forces, this estimation can also used to correct the IMU
accelerometer biases, or the attitude/ heading angles.

Figures 10-33 to 10-40 show that the accuracy of the specific force estimation is mainly
dependent on the applied differentiating technique of the GPS velocities. Two methods were
discussed, the moving average and the 2nd order low pass butterworth filter. The use of
a butterworth filter results in better filtering out of high frequency noise, while having a
lower phase delay. From this can be concluded that the 2nd order butterworth filter should
be chosen over the moving average method. When the described method is implemented
into a navigation filter, the time delay due to GPS receiver processing time and filtering
should be compensated for. The butterworth cutoff frequency should be chosen as such that
a compromise between high frequency noise cancellation and time delay is reached.
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Chapter 11

Observability Analysis of Different
Sensor Configurations

This chapter shows the results of a theoretical study on the observability of different sensor
configurations. The used four sensor configurations are described in chapter 9. Theory on
observability as described in chapter 3 together with the QRsvd-algorithm, is used to perform
the corresponding analysis. The sensor configurations are analyzed in section 11-2. The angle
correction improvements of chapter 10 to an IMU/GPS integration is analyzed in section 11-3.
Observability conclusions can be found in section 11-4 based on the results of sections 11-2
and 11-3.

11-1 Introduction

Before Kalman filtering can be used to perform a state estimation on a UAV or navigation
algorithms in general, it is necessary to analyze the underlying sensor configuration and
properties. The sensor configuration and designed filter must be able to observe the states
that are to be estimated by means of an identification filter. If not, the filter will not function
properly and give a diverging outcome. Observability of system states determines if a Kalman
filter will converge or diverge, because unobservable states cannot be corrected and may give
unbounded errors. The corresponding observability degree, as defined in section 3-5, is a
measure to quantify the observability of individual system states and indicates if a state is
“easy” or “difficult” to observe. A high observability degree indicates that a state is difficult to
observe, the lower the value the easier to observe and a converging filter is usually guaranteed.
The observability degree can be used to quantitatively analyze the performance of different
observers and provides a measure of convergence when a state estimate is reached. High
observability degrees means little state information is available and more filter cycles are
required to obtain an adequate state estimation. It is advised that before using a Kalman
filter or any other type of filter, the observability (degree) of the system states is investigated.
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The focus of the following sections is on the observability analysis regarding the attitude/
heading angles, as the main goal of this report is to stabilize fixed-wing UAVs. As mentioned
in chapter 9 not all sensor configurations will be used for the observability analysis. Section
11-3 will analyze the influence on state observability by using the three angle correction
equations, as derived in chapter 10. To summarize, the different sensor configurations of
chapter 9 that will be analyzed in the following sections:

• Sensor configuration 2, subsection 9-1-2.

• Sensor configuration 6, subsection 9-1-6.

• Sensor configuration 7, subsection 9-1-7.

• Sensor configuration 8, subsection 9-1-8.

11-2 Observability Analysis on Different Sensor Configurations

This section contains the results of an analytical observability analysis on the different sen-
sor configurations that were described in section 9-2. The analytical analysis of this section
provides qualitative observability results on individual states for the different sensor configu-
rations using SVD. Table 11-1 summarizes the individual sensor configurations.

Table 11-1: Sensor configurations used for the observability analysis

Sensor type Quantity Config 2 Config 6 Config 7 Config 8

Accelerometers Ax
√ √ √ √

Ay
√ √ √ √

Az
√ √ √ √

Gyroscopes p
√ √ √ √

q
√ √ √ √

r
√ √ √ √

GPS position xGPS
√ √ √ √

yGPS
√ √ √ √

zGPS
√ √ √ √

GPS velocity uGPS
√ √ √ √

vGPS
√ √ √ √

wGPS
√ √ √ √

Air data senors α
√ √

β
√ √

VT
√ √

GPS angles GPSφ
√ √

GPSθ
√ √

GPSψ
√ √

The observability analysis is performed by using the fixed-wing UAV model of chapter 7,
the model simulation parameters can be found in appendix B. The simulation results can
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be found in appendix D. The simulated trajectory consists of three parts, a 360◦ left turn,
followed by a 360◦ right turn and ended with two rudder doublets of 10◦ and 5◦. The analytical
observability analysis is performed by using non-linear system observability theory for non-
linear systems as described in section 3-3. The required state and observer Jacobians for
the observability matrix O can be found in appendix A, which are based on the equations
of motion expression 8-25 of chapter 8. The observer equations 9-1, 9-2, 9-6 and 9-7 for the
different sensor configurations are used as observers. The local observability matrix O (x0, u

∗)
for non-linear systems is calculated by using equation 3-12, which can be found in section 3-3,
up to 4th order Lie derivatives are used. Including higher order terms results in an increase of
required computational power, with no increase in observability accuracy. Appendix C gives
the observability values for all four configurations during the simulation.

For the observability analysis three cases are analyzed. A normal flight condition where
all sensors receive measurement data. Secondly, a situation where the vehicle’s rotational
rates are zero, ω = 0, and as a consequence the attitude/ heading angles remain constant.
Thirdly no vehicle accelerations, A = 0, where as a consequence the vehicle velocities remain
constant. These last two cases can be used to see which states become unobservable if the
gyroscopes or accelerometers do not provide measurements during such maneuvers. The two
additional cases are implemented by changing the appropriate state values after the performed
simulation to zero or a constant value. Table 11-2 gives the observability results for each sensor
configuration for the three described cases.

Table 11-2: Observable states of different sensor configurations, based on the simulation
results of appendix D

states Config 2 Config 6 Config 7 Config 8

ω = 0 A = 0 ω = 0 A = 0 ω = 0 A = 0 ω = 0 A = 0

x
√ √ √ √ √ √ √ √ √ √ √ √

y
√ √ √ √ √ √ √ √ √ √ √ √

z
√ √ √ √ √ √ √ √ √ √ √ √

u
√ √ √ √ √ √ √ √ √ √ √ √

v
√ √ √ √ √ √ √ √ √ √ √ √

w
√ √ √ √ √ √ √ √ √ √ √ √

φ
√ √ √ √ √ √ √ √ √ √ √ √

θ
√ √ √ √ √ √ √ √ √ √ √ √

ψ
√ √ √ √ √ √ √ √ √ √ √ √

bAx

√ √ √ √ √ √ √ √ √ √ √ √
bAy

√ √ √ √ √ √ √ √ √ √ √ √
bAz

√ √ √ √ √ √ √ √ √ √ √
bp

√ √ √ √ √ √ √ √ √
bq

√ √ √ √ √ √ √ √ √
br

√ √ √ √ √ √ √ √ √
Wx

√ √ √
Wy

√ √ √
Wz

√ √ √

rank 12 11 12 15 15 15 15 15 15 18 18 18

The observability result of table 11-2 indicate whether or not a state is observable. Observ-
able states are indicated by “

√
”, unobservable states are left blank. The results differ for

the individual sensor configurations. By adding more sensors more and more information
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becomes available, which results in more observable states. For sensor configuration 2 it can
be concluded from the table that the position (3), velocity (3), angles (3) together with two
accelerometer biases bAx and bAy angle are always observable. These states are not maneuver
dependent when there is zero rotation rate ω = 0 or acceleration A = 0, the states remain
observable.

Sensor configuration 1 shows changing observability results for bAz with different vehicle
maneuvers. From table 11-2 can be concluded that sensor configuration 2 and 3 do not
have this property. The position (3), velocity (3), angles (3) and IMU biases (6) states are
always observable, independent on vehicle rotations or accelerations. These 15 states are
called instantaneously observable as defined in lemma 3.1 for configuration 6 and 7. With the
additional air data sensors, additional information about the vehicle’s orientation is obtained.
This information can be used to estimate all IMU biases. As a result, the third accelerometer
bias bAz becomes instantaneously observable. The same result is obtained by measuring the
attitude/ heading angles with the use of multiple GPS receivers. Obtaining attitude/heading
information using multiple GPS receivers is not treated in this report. From an observability
point of view, it results in the same observability as using three air data sensors. While
the number of observable states is the same, the quality and filter performance of sensor
configuration 6 and 7 may differ. This is depends on the sensor hardware and software
properties. The state identification and filter results will differ for the two configurations and
further investigation is required to make a distinction between the two.

Sensor configuration 8 uses both air data sensors and multiple GPS receiveers as additions
to sensor configurations 2. With the addition of these sensors to the IMU sensor and GPS
receiver, also the wind components W become observable. These three states are not ma-
neuver dependent and are instantaneously observable since the rank is always 18, as defined
in lemma 3.1. The information from the set of GPS receivers can be combined with the
gyroscope output to estimate the gyroscope biases. The same can be done with the air data
sensors as is shown with sensor configuration 2. This extra velocity information can also
be used together with the velocity estimations from the accelerometers and GPS velocity to
provide information on the individual wind components.

11-3 Observability Analysis on Improved IMU/GPS Sensor Config-
uration

Sensor configuration 2, as described in subsection 9-1-2, can be improved by using additional
equations instead of adding more sensors to increase its observability rank. The three angle
correction (AC) expressions derived in chapter 10 can increase the observability by utilizing
fixed-wing aircraft kinematics together with sensor properties. The increase in observabil-
ity is artificially, since no additional sensor are used. To summarize, the modified sensor
configuration 2 with three AC equations as defined as follows:

• 3 gyroscopes, output quantities: rotational rates p, q and r.

• 3 accelerometers, output quantities: specific forces Ax, Ay and Az.

• GPS receiver, output quantities: 3D position x, y and z, velocity u, v and w.
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• Three AC observers, output quantities: 3 orientation angles φAC , θAC and ψAC .

The analyzed state observability is performed in a quantitative manner. The observability
degree as described in section 3-5, can be used to indicate differences between “good” and
“bad” observable states. The expression to calculate the observability degree is repeated
below, expression 11-1. The largest singular value during the simulated trajectory is the
forward velocity component u, which is taken as σmax. The other states observability degree
ηk are relative to u. Larger observability degrees mean these individual states are more
difficult to observe compared to u.

ηk =
σmax
σi

, for i = 1, 2, . . . , n (11-1)

Table 11-3 gives the observability degree of the sensor configuration 2. Table 11-4 gives the
observability degree of the improved sensor configuration 2, including the angle correction
equations. The same simulation is used as in the previous observability analysis, the Generic
Aerosonde UAV simulation of appendix D. A normal flight condition case where all sensors
receive measurement data. Secondly, a situation where the vehicles rotational rates are zero,
ω = 0, and as a consequence the attitude/ heading angles remain constant. Thirdly, no
vehicle accelerations, A = 0, where as a consequence the vehicle velocities remain constant.
These two cases can be used to see which states become unobservable if the gyroscopes
or accelerometers do not receive measurements. The observability results for both sensor
configurations can be found in appendix C-6 for all three cases. Large observability degree
values mean unobservable states and have been left out, indicated by “> 1015.”

From table 11-3 can be seen that some states can be become “badly” observable during zero
rotations, because of a high observability degree. These states are the heading angle and two
of the accelerometer biases bAx and bAy . These three states are likely to diverge during zero
rotational rates ω = 0 maneuvers. In section 11-2 was concluded that one of the accelerometer
biases bAz becomes unobservable during zero rotational rates and as a result the corresponding
observability degree is higher then 1015. States having relatively high observability degrees
are observable, however are still difficult to estimate when implemented into an identification
filter as very little information is available. High observability degrees, values of η larger then
1010, are present for the heading angle and accelerometer biases. This means that these states
become practically unobservable during zero rotational rate maneuvers.

The zero acceleration case A = 0, has no significant influence on the state observability degree.
The previous section 11-2 showed that the number of observable states doesn’t change. This
holds for both sensor configurations. For the improved sensor configuration 2 + AC, the zero
rotational rate constraint is no longer present. The additional angle observers have the same
results as adding three air data sensor or a three GPS receiver angle configuration, of previous
section 11-2. The heading angle and accelerometer biases are now instantaneously observable
according to lemma 3.1. The corresponding observability degrees have lower values, meaning
that the observability of these states has been improved.
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Table 11-3: Observability degree ηk results of different states for sensor configuration 2

states ω = 0 A = 0
x 2.07E+002 ± 1.41E+003 1.77E+002 ± 2.28E+000 2.07E+002 ± 1.41E+003
y 2.07E+002 ± 1.41E+003 1.77E+002 ± 2.28E+000 2.07E+002 ± 1.41E+003
z 2.07E+002 ± 1.41E+003 1.77E+002 ± 2.28E+000 2.07E+002 ± 1.41E+003
u1 1.00E+000 ± 0.00E+000 1.00E+000 ± 0.00E+000 1.00E+000 ± 0.00E+000
v 2.72E+000 ± 9.97E-002 2.75E+000 ± 2.59E-002 2.72E+000 ± 9.97E-002
w 3.37E+000 ± 4.08E+000 3.28E+000 ± 3.20E-002 3.37E+000 ± 4.08E+000
φ 3.74E+000 ± 7.81E+000 3.63E+000 ± 2.29E-001 3.74E+000 ± 7.81E+000
θ 4.29E+000 ± 2.63E+001 3.62E+000 ± 2.07E-001 4.29E+000 ± 2.63E+001
ψ 3.66E+001 ± 2.95E+001 6.89E+012 ± 1.54E+015 3.66E+001 ± 2.95E+001
bAx 5.52E+001 ± 1.97E+002 1.58E+013 ± 3.54E+015 5.52E+001 ± 1.97E+002
bAy 6.30E+001 ± 3.27E+002 5.12E+011 ± 1.14E+014 6.30E+001 ± 3.27E+002

bAz 1.49E+003 ± 7.25E+003 > 1015 1.49E+003 ± 7.25E+003
bp > 1015 > 1015 > 1015

bq > 1015 > 1015 > 1015

br > 1015 > 1015 > 1015

Wx > 1015 > 1015 > 1015

Wy > 1015 > 1015 > 1015

Wz > 1015 > 1015 > 1015

rank 12 11 12

Table 11-4: Observability degree ηk results of different states for sensor configuration 2 plus
angle correction equations

states ω = 0 A = 0
x 1.88E+002 ± 4.55E+002 1.77E+002 ± 2.28E+000 1.88E+002 ± 4.55E+002
y 1.88E+002 ± 4.55E+002 1.77E+002 ± 2.28E+000 1.88E+002 ± 4.55E+002
z 1.88E+002 ± 4.55E+002 1.77E+002 ± 2.28E+000 1.88E+002 ± 4.55E+002
u2 1.00E+000 ± 0.00E+000 1.00E+000 ± 0.00E+000 1.00E+000 ± 0.00E+000
v 2.72E+000 ± 9.97E-002 2.75E+000 ± 2.58E-002 2.72E+000 ± 9.97E-002
w 3.31E+000 ± 1.42E+000 3.28E+000 ± 3.19E-002 3.31E+000 ± 1.42E+000
φ 3.62E+000 ± 2.72E+000 3.62E+000 ± 2.29E-001 3.62E+000 ± 2.72E+000
θ 3.92E+000 ± 8.48E+000 3.62E+000 ± 2.08E-001 3.92E+000 ± 8.48E+000
ψ 3.60E+001 ± 1.35E+001 5.09E+001 ± 8.06E-001 3.60E+001 ± 1.35E+001
bAx 5.24E+001 ± 6.46E+001 4.92E+001 ± 1.42E+001 5.24E+001 ± 6.46E+001
bAy 5.85E+001 ± 1.05E+002 5.60E+001 ± 1.21E+001 5.85E+001 ± 1.05E+002

bAz 2.25E+002 ± 1.65E+002 1.68E+002 ± 2.19E+000 2.25E+002 ± 1.65E+002
bp 3.11E+003 ± 8.16E+003 3.02E+003 ± 7.26E+001 3.11E+003 ± 8.16E+003
bq 3.55E+003 ± 9.24E+003 3.48E+003 ± 7.47E+001 3.55E+003 ± 9.24E+003
br 4.14E+003 ± 1.12E+004 4.62E+003 ± 1.44E+002 4.14E+003 ± 1.12E+004
Wx > 1015 > 1015 > 1015

Wy > 1015 > 1015 > 1015

Wz > 1015 > 1015 > 1015

rank 15 15 15

1u is taken as σmax, as a consequence the observability degree is 1.00± 0.00
2u is taken as σmax, as a consequence the observability degree is 1.00± 0.00

B. A. Hummelink Fixed-Wing UAV Integrated Navigation with Low-Cost IMU/GPS



11-4 Conclusion 133

11-4 Conclusion

From the analytical observability study performed in section 11-2, can be concluded that the
observability of observable states is not dependent on whether the vehicle has acceleration.
From table 11-2 can be seen that the observable states of each sensor configuration remain
observable during case 3, zero accelerations A = 0 maneuvers. When a vehicle is not accel-
erating, the IMU accelerometers do not receive acceleration information and no estimation
of the vehicles’ velocity and position using the IMU can be made. When an IMU is coupled
with a GPS receiver, the GPS position and velocity information can assist the accelerometer
during zero acceleration maneuvers such that the states remain observable. From table 11-2
can be concluded that this conclusion holds for all the investigated sensor configurations, as
they are all based on a IMU/GPS integration.

From the observability analysis of section 11-2 can also be concluded that next to the assisting
function of the GPS receiver to the IMU, the obtained GPS receiver information can be used
to correct the accelerometer biases, as can be seen from table 11-2. The time derivatives of
the GPS position and velocity can be used to make an estimation of the vehicle accelerations.
The derived vehicle accelerations are in the GPS receiver NED frame of reference FE . The
IMU accelerometer signals are in the body-fixed reference frame FB . The conversion between
FE and FB can be performed by a rotational matrix, using all three orientation angles. When
converting the GPS velocity derivatives from FE to FB , by using a rotational matrix the GPS
velocities can be used to correct the IMU accelerometer biases.

During maneuvers with zero angular rates, the accelerometer bias bAz becomes unobservable
for sensor configuration 2 as the state is no longer observable. This can be seen from table 11-2
for case 2 where ω = 0. From section 11-3 can be concluded that the other two accelerometer
biases bAx and bAy , together with the heading angle ψ, also become unobservable as the
corresponding observability degrees have very high values. The observability degrees for case
2 have values that are larger then 1010, as can be seen in table 11-3. The reason why the
accelerometer biases together with the heading angle become unobservable is due to the
rotational matrix, used for transforming the position and velocity states between FB and FE .
All three orientation angles are required for the rotational matrix RBE(φ, θ, ψ) to fuse the
GPS velocities and positions with the accelerometer based predictions. During maneuvers
with zero rotational rates, no knowledge of the three orientation angles is available and the
conversion between reference frames cannot be made.

For the sensor configurations 6, 7 and 8 can be concluded from table 11-2 that the observable
states are instantaneously observable as defined by lemma 3.1 in section 3-2. The observable
states remain observable for case 2 during zero rotational rates ω = 0 and for case 3 for zero
accelerations A = 0.

From table 11-4 in section 11-3, can be concluded that the observability improvement due
to the use of three AC equations has the same effect as adding three air data sensors or
using multiple GPS receivers for attitude/ heading estimation. Sensor configuration 2 with
the addition of three AC equations has an observability rank of 15, which is the same as for
configuration 6 and 7. With the three AC equations, the rank of sensor configuration 2 has
increased from 12 to 15, meaning all IMU biases are observable. Together with the increase in
observability rank the observable states have become instantaneously observable, as defined
in lemma 3.1 of section 3-2. The latter means that the zero rotational rate constraint is no
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longer present. This can be concluded from table 11-4 as the observability degree does not
change for case 2 when ω = 0.
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Chapter 12

Combining Physical and Observability
Analyses Results

The last two chapters, chapters 10 and 11, provided insight into improving the sensor fu-
sion of an IMU/GPS sensor configuration from different perspectives. Chapter 10 focused
on improvement by means of adding kinematic observers by combining fixed-wing aircraft
kinematics together with an onboard IMU and GPS receiver. Chapter 11 performed a math-
ematical observability analysis of different sensor configurations. This chapter combines the
results of the obtained physical insight and observability analyses. Section 12-1 provides con-
clusions as a result of combining the observability analysis with the obtained physical insight.
The second and last section 12-2 gives the final angle correction (AC) equations, which are
used in the next chapter 13 for different state identification simulations.

12-1 Results

Chapter 10 provided insight into the kinematics of fixed-wing flying vehicles. The derived
kinematic expression explains the motion of a particle P in inertial space, as seen from a local
moving frame of reference. This expression is used to describe the motion of a rigid body
in inertial space. With the derived kinematic expression, different physical relations on the
three orientation angles were investigated. This led to the design of different expressions to
estimate the attitude/heading angles. The goal of chapter 10 was to find additional kinematic
relations that could provide information on the three orientation angles to improve the IMU
predictions. With a better and more robust estimation of the orientation angles, the vehicle
can be stabilized better. The IMU predictions use the angular rates p, q and r provided by
the gyroscopes, to make an estimation by means of integrating the angular rates as described
in chapter 8. To be able to correct the increasing error in gyroscopic estimations, the AC
equations need to be independent from the gyroscopic estimations. In the perfect case, none of
the gyroscopes provided angular rates are present in the AC equations. For the AC equations
design, the influence of different kinematic terms was examined by means of simulation. By
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using the generic UAV simulation of appendix D, the influence of different kinematic elements
was determined.

For the pitch angle estimation the physical analysis has led to the fact that a change in
local orientation in FB of the gravity vector can be used to make a pitch angle estimation.
This estimation is valid over a long period of time. The absence of Coriolis terms, results
in less accurate pitch angle estimations during the presence of fast dynamics. The only fast
dynamic component that can be included is the time derivative of the body-fixed velocity
in forward direction u̇B. The absence of Coriolis forces in the pitch angle AC equation is
the largest source of error. Besides the change in local gravity vector orientation, the pitch
angle can also be estimated using velocity components. The total velocity vector can be
used to obtain information on the vehicle’s pitch angle. This estimation is however more
sensitive to windy conditions, because the obtained GPS velocities include wind components
while the estimation based on the local gravity vector orientation does not. Also the use of
GPS velocities means that the estimation will have a time delay with respect to the IMU
prediction.

For the roll angle this has led to an estimation that includes both static and dynamic roll
angle components. When making a constant turn without accelerations, the roll angle is equal
to the total velocity vector times the angular rate around the Z-axis. During a real flight,
this is however not the case and turning accelerations are present. The angle between the
specific force in lateral Ay and downward Az direction provides the resulting turning forces.
By adding the dynamic part to the static estimation, an adequate roll angle estimation can
be made. It should be noted that the angular rate r, provided by an IMU gyroscope, is used
twice. This is however not a problem, since the roll angle is estimated by directly using the
gyroscope and not by integration.

The heading angle can be estimated by taking the angle between the lateral and forward GPS
velocity components. This angle is the absolute angle, as seen from a non-moving observer
on the ground, called ground track. This means that the side-slip angle β is also part of the
estimated heading angle, as the ground track is defined as the heading angle plus the side-slip
angle. In the presence of large wind velocities, the side-slip angle can become very large and
may result in bad heading estimations. When the latter is the case, this is the largest source
of estimation error. Since this estimation uses GPS velocities, time latency is present between
the IMU and GPS signals.

The goal of the observability analysis was to quantitatively indicate the relative difference be-
tween observers, in terms of “good” or “bad” state observers. The observability analysis uses
the developed singular values tool of chapter 3, where the singular values of the observability
matrix are directly linked to each particular state. From the observability analysis was con-
cluded that the traditional IMU/GPS configuration can have unobservable states during zero
rotational rates maneuvers. This sensor configuration requires the aircraft to rotate, because
the received GPS velocities need to be transformed to the body-fixed frame of reference. From
the physical analyses it was concluded that with the additional AC equations, this rotational
rate constraint no longer holds as the predicted gyroscopic angle predictions can always be
corrected. Due to the three AC equations, all six IMU biases become instantaneously ob-
servable. During zero rotation rates ω = 0 and zero acceleration A = 0 maneuvers with the
extension of the three AC equations, the singular values remain of the same order of magni-
tude. The IMU biases together with the heading angle are now instantaneously observable in
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a quantitative way, as the observability degrees remain of the same order of magnitude.

While all six IMU biases are observable, it will still be difficult to estimate the gyroscopic
biases. To make an accurate estimation on the gyroscopic biases, unbiased measurements
are required. The AC equations are not unbiased as was concluded from chapter 10 and the
bias estimation will not be accurate. The derived AC expressions give a long-term stable
estimation, however may contain a short-term bias. The short-term bias estimation will most
likely be time-varying as a result of errors in the AC expressions together with the gyroscopic
bias and possible some time latency between the IMU and GPS receiver.

The observability results show that the improvement due to the AC equations has the same
result as adding three air data sensors or the use of multiple GPS receivers for attitude/
heading estimations. It should be noted that from an observability point of view this gives
the same results in terms of state observability based on the singular values. The actual
performance during state identification will probably differ, as will be investigated in more
detail in chapter 13 when performing different simulations.

Next to the improvement of the AC equations on the three orientation angles, it was also
concluded that the IMU accelerometer biases are observable. Section 10-4 derived a pos-
sible method to make an estimation on the vehicle’s specific forces by using GPS velocity
measurements. This section showed the required transformation matrices to transform the
GPS velocities from the assumed inertial frame of reference ECEF to the local NED frame
of reference. Next step is to transform the velocities from NED to body-fixed velocities by
using all three orientation angles.

When neglecting the Earth’s rotation the GPS velocity derivatives can be assumed measured
in inertial space, the specific forces can be calculated directly without any fictitious forces.
The improvement of the three AC equations results in the fact that the orientation angles are
instantaneously observable, which is required to make one of the two coordinate transforma-
tions. The rotational rate constraint is in accordance with the physics derived in section 10-4.
This section shows that all three orientation angles, roll, pitch and heading angle are required
to make the transformation between NED and the body-fixed frame of reference. This means
that the zero rotational rate constraint is no longer present and that the developed method
can always be used, as long as there is a GPS fix. From section 10-4 was concluded that
when using this method, the largest source of error is due to the GPS accelerations. The GPS
velocity signals need to be differentiated to obtain the GPS accelerations, which will contain
high frequency noise. The best method is the use of a low pass butterworth filter. A 2nd

order filter with two different cutoff frequencies has been used in section 10-4. From this was
concluded that the butterworth cutoff frequency should be chosen as a compromise between
the allowable time delay and required cancellation of high frequency noise.
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12-2 Final Sensor Configuration

The previous section 12-1 combined the results from the physical and observability analy-
ses. Both analyses showed that the derived AC equations have a positive influence on the
attitude/ heading angle estimations and vehicle stabilization. Based on this result it can be
concluded that adding the three AC equations improves the loosely coupled IMU/GPS sensor
configuration. This sensor configurations can be summarized as follows:

• 3 gyroscopes, output quantities: rotational rates p, q and r.

• 3 accelerometers, output quantities: specific forces Ax, Ay and Az.

• GPS receiver, output quantities: 3D position x, y and z, velocity u, v and w.

• Three AC observers, output quantities: 3 orientation angles φAC , θAC and ψAC .

Bases on the derived equations of motion of chapter 8, expression 12-1 below can be used
for the state prediction step. Expression 12-2 provides observers for all nine IMU prediction
residuals, based on sensor configuration 2 of chapter 9 together with the three derived AC
equations.

The derived AC equations are based on the generic UAV simulation of appendix D. This
simulation is based on a generic flight maneuvers, left and right turns together with doublet
rudder inputs. Different situations may however occur during real flight, the following chapter
13 includes different simulations. The small turns simulation of appendix E simulates more
dynamic turning where the derived AC equations are expected to have difficulties observing
the orientation angles. The large turns simulation of appendix F is a test for long-term
stability and lasts for about 40 minutes. A slow 360◦ left turn is followed by a slow 360◦

right turn. During the two turns the lateral specific force Ax is almost non-existent. With
an almost zero specific force in lateral direction, the provided gyroscopic estimation on the
orientation angles will slowly drift away.

The second part of the simulations of chapter 13 will be about the usage of real flight data.
This real flight data will be used to validate the conclusions made on the result of the per-
formed simulations. The flight data can also be used to see if the developed UAV, IMU sensor
and GPS receiver simulation tools give realistic simulations.

Besides the Kalman filter technique on state identification as described in chapter 4, also
the use of non-linear complementary filters is investigated. Chapter 14 describes the work-
ing of one particular non-linear complementary filter. This non-linear filter is based on the
transformation matrix RBE between a local body-fixed and Earth frame of reference. This
transformation matrix contains all three orientations angles, required to stabilize a flying ve-
hicle. The principle is the same as for the Kalman filter, first a prediction is made where
the residuals are corrected using observers. Difference with respect to Kalman filters are in
the observer gain calculation. Also the complementary filter does not require linearization at
each step. The same simulations of appendices D to F and flight data of appendix G are used
to analyze the stability and performance of the non-linear complementary filter.
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ẋB = [uB cos θ + (vB sinφ+ wB cosφ) sin θ] cosψ − (vB cosφ− wB sinφ) sinψ

ẏB = [uB cos θ + (vB sinφ+ wB cosφ) sin θ] sinψ + (vB cosφ− wB sinφ) cosψ

żB = −uB sin θ + (vB sinφ+ wB cosφ) cos θ

u̇B = Axm + rmvB − qmwB − g0 sin θ
v̇B = Aym + pmwB − rmuB + g0 sinφ cos θ

ẇB = Azm + qmuB − pmvB + g0 cosφ cos θ

φ̇ = pm + qm sinφ tan θ + rm cosφ tan θ

θ̇ = qm cosφ− rm sinφ

ψ̇ = qm
sinφ
cos θ + rm

cosφ
cos θ

(12-1)

xGPS = xB

yGPS = yB

zGPS = zB

uGPS = [uB cos θ + (vB sinφ+ wB cosφ) sin θ] cosψ − (vB cosφ− wB sinφ) sinψ

vGPS = [uB cos θ + (vB sinφ+ wB cosφ) sin θ] sinψ + (vB cosφ− wB sinφ) cosψ

wGPS = −uB sin θ + (vB sinφ+ wB cosφ) cos θ

φAC =

√
u2GPS+v

2
GPS+w

2
GPS

g0
rm + arctan

(
Aym
Azm

)
θAC = arcsin

(
Axm
g0

)
ψAC = arctan

(
vGPS
uGPS

)
(12-2)
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Simulation
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Chapter 13

State Identification Simulations

The sensor configuration of previous chapter 12 is the result of a physical and observability
analysis. This chapter simulates the working of this sensor configuration to see if it can
stabilize a fixed-wing aerial vehicle. Section 13-1 addresses one particular aspect, namely
time synchronization errors that can occur during sensor integration. The simulation results
of appendix D to F are given in section 13-2. Simulations using real flight data of appendix
G are given in section 13-3.

13-1 Time Latency Compensation and Implementation

As mentioned, in chapter 6 a GPS receiver has a relatively large processing time, due to the
internal processing filter. The received satellite data needs to be processed into position and
velocity information. This processing time is usually more compared to an IMU or other sen-
sors. When using data from individual sensors with different processing data, the sensor fusion
algorithm must be properly designed, as described in (Ding, Wang, Li, Mumford, & Rizos,
2008). Figure 13-1 gives an example of time delay on a GPS receiver velocity, from appendix
D. The output data from the receiver is delayed by a time step dt with respect to the true
velocity component in FE.
Time synchronization between GPS and INS measurements, is a problem when using an
integrated INS/GPS sensor fusion algorithm. The GPS receiver and INS are separate, self-
contained subsystems with different frequencies and processing times. The resulting clock
difference could result in discrepancies during the sensor fusion. Dependent on the amount
of information available from the sensors, different time synchronization techniques can be
used. Next to the processed position and velocity data, also the 1 Pulse-Per-Second (PPS)
is available for some GPS receivers. The 1PPS electrical signal indicates the turnover time
of each second. The 1PPS can be used as a timing reference to synchronize the GPS signals
with the IMU. External clock references or separate hardware timers can also be used, since
the 1PPS signal is not available for all GPS receivers.
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Figure 13-1: Example on sensor time delay, zoom of figure D-9

The sensor output usually goes through internal pre-processing components before there are
used by the fusion algorithm. The pre-processing includes A/D convention, raw data sampling
manipulation and possible some low- or high-pass filtering. Timing synchronization, which
for instance uses the 1PPS signal, can be used to time-tag individual signals. The 1PPS signal
can define the beginning of each second, which can be used to synchronize the GPS receiver
signals to the other IMU signals. Time synchronization can also be improved by adding an
additional state to the integration filter, as can be found in (Skog & Händel, 2010).

Before any sensor time delay compensation technique is used, data buffers are needed. The
data buffers are required to interpolate the IMU data, to make it coincide with GPS data.
The asynchronous measurement sampling of the IMU and GPS comes from the fact that
both signals are running at different frequencies. Interpolation is needed to reduce the mis-
alignment, due to fact that the IMU usually runs at higher frequencies. Especially with
high grade IMU, the innovation magnitude is smaller, time synchronization becomes more
important to adequately calibrate IMU with GPS data. Easy solutions, without using data
interpolation, make use of down sampling IMU signals such that it coincides with the GPS
receiver frequency. This reduces the total system accuracy as a lower sampling frequency
is used. However, lower time synchronization accuracy is usually sufficient when applied to
low grade INS/GPS systems. When dealing with platforms having fast dynamics, the time
synchronization requirement becomes more important as the innovation may take place too
late with respect to the prediction step. Example of timing modules, both for analogue and
digital interfaces can be found in (Ding et al., 2008).

The influence of time synchronization errors on the total system accuracy can vary. To
determine the influence of the propagation of a time latency error, an expression can be
derived by looking at the observer equations. Starting with the output observer z(t) equation,
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as given in expression 13-1, defined in continuous time.

z(t) = rGPS(t)−
(
rIMU (0) +

∫
vIMU(0) +

∫∫
a(t)

)
(13-1)

In expression 13-1, rGPS(t) represents the GPS receiver update measurement and rIMU (0),
vIMU (0) as the IMU initial position and velocity. The measured acceleration is assumed to
be time-varying and is denoted by a(t). It is assumed that the initial IMU based position
and velocity are known and a time synchronization error Δt exits between the GPS receiver
and IMU sensor. The time synchronization error can be implemented into expression 13-1,
resulting in the baltered observer equation z̃(t) of expression 13-2.

z̃(t) = rGPS(t)−
(
rIMU (0) +

∫
vIMU(0) +

∫∫
a(t+Δt)

)
(13-2)

The time synchronization error Δt can both be positive or negative, as such it is treated as a
constant at time t. By taking the Taylor expansion of the IMU measurements of expression
13-2, the altered observer equation z̃(t) can be rewritten into expression 13-3.

z̃(t) = rGPS(t)−
(
rIMU (0) +

∫
vIMU(0) +

∫∫
a(t) +

∫∫ (
a′(t)Δt

))
(13-3)

Expression 13-3 can be rewritten into 13-4, using expression 13-1.

z̃(t) = z(t)−
∫∫ (

a′(t)Δt
)

(13-4)

The last term
∫∫

(a′(t)Δt) can be seen as a constant time synchronization observer error,
from now on denoted by ζ. The magnitude of ζ is a function of the change in vehicle
accelerations or “jerk.” The jerk term a′(t) represents the vehicle dynamics, which can be
seen as a constant during one innovation update assuming that the time synchronization error
during one measurement update is constant. The combined influence of the change in vehicle
acceleration and time delay, represented by ζ, can be implemented into the measurement
update equation. When using the Kalman filter framework of chapter 4, the measurement
update equation 4-7 becomes expression 13-5.

x̂ (k + 1 | k + 1) = x̂ (k + 1 | k) +K(k + 1)[ẑ (k + 1 | k + 1)

− ζ (k + 1) −H(k + 1)x̂ (k + 1 | k)] (13-5)

From expression 13-5, the state estimation error vector ε can be extracted. The error ε is a
result of the time synchronization observer error, ζ(k + 1) during one measurement update.
Expression 13-6 gives the state estimation error vector of each innovation.

ε = x̂ (k + 1 | k + 1)− x(k | k) (13-6)
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Expression 13-6 can be rewritten into expression 13-7, by using the result of expression 13-5.

ε = −K(k + 1)ζ(k + 1) (13-7)

From expression 13-7 can be concluded that the Kalman gain matrix K(k + 1) distributes
the time synchronization error to the individual system states x, according to the covari-
ance estimation and observer dynamics. The required time synchronization accuracy can
be calculated with expression 13-5 as long as the following constraint is met: |ζ(k + 1)| �
|ẑ (k + 1 | k + 1)−H(k+1)x̂ (k + 1 | k) |. This constraint means that the Kalman filter inno-
vation should be much smaller then the defined constant time synchronization observer error
ζ(k + 1). If this constraint is met together with the assumption that the time estimation
error due to the internal IMU data processing latency can be neglected, expression 13-8 can
be used to estimate the required magnitude of the time synchronization observer error |Δt|.
This expression comes from expression 13-4, requiring a small time synchronization error
compared to the change in vehicle dynamics.

|Δt| � |ẑ (k + 1 | k + 1)−H(k + 1)x̂ (k + 1 | k) |
| ∫∫

a′(t)| (13-8)

From expression 13-8 can be seen that the sensor fusion requirement on time synchroniza-
tion accuracy is dependent on the Kalman filter innovation. This dependency is negative
proportional, a smaller magnitude in filter innovation will result in a more stringent time syn-
chronization requirement. This dependency is largely influenced by the IMU accuracy. From
a practical point of view this can be interpreted as: The time latency requirement becomes
more stringent with an increase in IMU accuracy and calibration. It can be concluded that
when using low grade IMU, MEMS based sensors, this requirement becomes more flexible.
This conclusion does however not hold when there is a large change in vehicle dynamics as
the time synchronization accuracy is proportional to the vehicle dynamics. Represented by
the jerk a′(t) in the denominator of expression 13-8.

When applied to fixed-wing UAV’s or other vehicles with fast dynamics, the time synchroniza-
tion requirement is proportional to the magnitude of the jerk a′ and negatively proportional
to the filter innovation. From this can be concluded that the time synchronization accuracy
is dependent on both the filter innovation magnitude and change in vehicle accelerations.
Exact calculations on sensor fusion time synchronization accuracy requirements is usually
difficult due to errors in gyroscopic and accelerometer measurements together with errors in
the used gravity model. To obtain the general influence of time synchronization errors on the
IMU/GPS sensor integration, the small turns simulation op appendix E is used together with
expression 13-8. To use expression 13-8, the exact accelerometer signals are used without
signal noise and biases. Figure 13-2(a), shows the sum of absolute magnitudes of the jerk
vector during the small turns simulation. These are calculated by taking the sum of the time
derivatives of the accelerations at each time step. The large peaks in figure 13-2(a) are due
to exact jerk calculations, which are not realistic values. The absence of accurate actuator
dynamics in the used UAV model results in these large peaks, as no actuator time delays are
included. Figure 13-2(b) shows a detail on the change in acceleration during the beginning of
the first turn, this part will be used to estimate the time synchronization requirement. From
figure 13-2(b) can be seen that a change in acceleration of 20 [m/s3] can be present. Assuming
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that the GPS receiver runs a 5 Hz, double integration of a value of 20 [m/s3] at 0.2 [s] gives
a speed error of 2.0 [m/s]. When the innovation error is assumed to be 0.20 [m], assuming
a perfect GPS receiver and IMU with no signal noise or biases. These two values can be di-
vided by each other as explained in expression 13-8, resulting in a time synchronization error
of Δt = 0.2[s]. Based on the research of (Ding et al., 2008) a factor of 10 should be applied
to the right hand side of expression 13-8. This results in a time synchronization requirement
of 0.02 seconds. This requirement is based on the small turns simulation of appendix E and
an innovation magnitude of 20 centimeters using a GPS receiver with an update rate of 5 Hz.

During the simulations of the next section 13-2 the IMU signals are placed into a buffer before
the IMU/GPS sensor integration is made. The buffer time is dependent on the GPS receiver
time latency, as explained based on the 1PPS signal. During the simulations, the GPS receiver
time delay has been set to 0.25 ± 0.025[s], as explained in chapter 6. The IMU signals and
rest of the simulation runs at 100 Hz, the derived time synchronization requirement of 0.02
[s] corresponds to 2 IMU samples. The latter means that the simulated GPS receiver and
IMU signals should be synchronized within this requirement of 2 samples. The IMU signals
are assumed to have no time delays, however in practice usually some small delay is present
due to onboard IMU signal processing. If in practice the time synchronization requirement
becomes so stringent that it is smaller than one sample time, this requires the IMU data to
be interpolated to ensure that the IMU/GPS measurements coincide at each epoch.
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Figure 13-2: Sum of change in vehicle accelerations, small turns simulation of appendix E
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13-2 Identification Results of Simulations

The improved sensor configuration of section 12-2 is tested by using three simulations. The
generic simulation of appendix D has already been used throughout the report. The second
simulation is a test for short-term performance by means of small turns with a fast turning
rate, appendix E. The third and last simulation is a test for long-term stability where little
dynamics are present for a long period of time, as can be seen in appendix F. All three
simulations are performed and analyzed with and without the presence of gust. Two state
identification algorithms are applied, the Extended Kalman Filter (EKF) and Iterated Ex-
tended Kalman Filter (IEKF). This brings a total of 12 simulation cases, three simulations,
each is performed by using two identification algorithms, each with and without the presence
of gust. The simulation results on the use of the non-linear complementary identification filter
on the SO(3) group is treated in chapter 14, by using the same simulations as in this chapter.
The simulation results of appendix D to F are summarized in tables 13-1, 13-2 and 13-3 for
all 12 cases. For each case, the identification errors are calculated by taking the absolute
difference between the simulated outcome and the real states. Each table entry contains the
average error and standard deviation. Figures 13-3 to 13-11 give a statistical graph on the
mean and variance of the simulation results. The time history of each state can be found in
appendix D to F together with the identification error.

From the state identification results in table 13-1 to 13-3, can be seen that the differences
between EKF and IEKF results are small. The IEKF algorithm can partially compensate for
non-linearities in the observer dynamics by reiteration. Linearization errors are present due
to errors in the first order derivatives. The first order derivatives or Jacobians are required
for the Kalman filter, as explained in chapter 4. The improvement in state identification
using the IEKF compared to EKF is not significant, as the observer dynamics non-linearities
are not the largest source of error. The general trend in the simulation results is that the
IEKF shows lower identification errors, this is however not a significant improvement. The
improvement in IEKF over EKF is the largest during the presence of fast dynamics. This
can be seen during the doublet input of the generic simulation at 400 seconds and during the
small turns simulation. Without the presence of highly dynamic maneuvers, the difference
is almost zero. During the large turns simulation of appendix F the difference in EKF and
IEKF identification algorithms is almost non-existent.

As a general observation, the presence of gust has a negative influence on state identification.
From the observability analysis of chapter 11 was concluded that the wind velocities remain
unobservable for the improved IMU/GPS sensor configuration. The position and velocity
estimations are affected the most as the wind velocities are not part of the specific forces
sensed by the onboard IMU. From the EKF identification results on the generic simulation in
figure D-13 and D-19 can be seen that the presence of gust results in a constant position error.
This position error due to gust is present for all three position states, as can be seen in table
13-1 and figures 13-3 to 13-5. The gust effect is present for both EKF and IEKF, while the
IEKF performs slightly better. The reason why IEKF performs slightly better, is because the
IEKF is able to partially correct the non-linearity errors in the observer dynamics by means
of reiterating the observer equations. These errors are smaller compared to the presence of
gust, as can be seen in table 13-1 where the state estimation errors are larger when gust is
present. From this can be concluded that the presence of gust influences the identification
performance, resulting in larger position and velocity estimation errors.
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For the orientation angles, the influence of gust on the identification performance is minimal.
The largest difference in the presence of gust on the orientation angles, is the heading angle.
The heading angle is also the largest source of error of the orientation angles. The presents
of gust on the heading angle results in the presence of a side-slip angle β. The side-slip
angle is defined as the difference between the ground track and heading angle. The difference
is compensated by the AC heading angle equation, based on the GPS velocities uGPS and
vGPS, explained in more detail in section 10-3-3. The influence of gust is the largest for
dynamic maneuvers, as can be seen from table 13-2 and figures 13-6 to 13-8 on the small
turns simulation. The error in the heading angle estimation increases the most during the
presence of gust, compared to the generic and large turns simulation.
The roll angle is less influenced by the presence of gust, as can be seen in the identification
result tables below. The difference in identification error between the situation with gust and
without gust is for the roll angle less then 1 degree. This means that the influence of gust on
the roll angle identification can be neglected. The pitch angle is partly influenced by gust,
as a result of the flight path angle γ, as was previously concluded from 10-10. The gust in
downward direction wE is about 1 [m/s]. While the influence of gust is larger on the pitch
angle when compared to the roll angle, it is still within 1 degree difference for the small turns
simulation.

The small turns simulation, of appendix E results are displayed below in table 13-2 and fig-
ures 13-6 to 13-8. This simulation is a test for short-term performance with high turning
dynamics. It was already concluded that IEKF results in slightly better results, compared
to EKF. Also the presence of gust influences the results negatively. The state identification
errors are the largest for this simulation as the simulated maneuver is the most dynamic of
the three simulations. The position and velocity errors are of the same order of magnitude,
compared to the generic and large turns simulation. For all simulations holds that the head-
ing angle is the largest source of error for the orientation angles, also for the small turns
simulation. Next the presence of gust has a large influence on the heading angle. The error
in attitude angles, pitch and roll angle is smaller when compared to the heading angle, due
to the better correcting function of the derived AC equations. From this can be concluded
that the improved IMU/GPS configuration with the AC equations can provide an accurate
short-term navigation solution during a small turns simulation.

The results of the large turn simulation of appendix F are displayed in table 13-3 and figures
13-9 to 13-11. This simulation takes about 40 minutes of simulated flight and is a test on
long-term filter stability during very slow turning dynamics. From appendix F can be seen
that the identification filter is able to remain stable over a long period of time. From table
13-3 can be seen that IEKF shows no significant improvement compared to EKF. Like for
the generic and small turns simulation, the heading angle is the largest source of error for
the three orientation angles. From a performance point of view, this simulation should result
in the lowest identification errors. From the identification results of table 13-3 can be seen
that this statement holds for the orientation angles. The difference in position and velocity
identification results are small compared to the other two simulations. This is due to the fact
that the identification performance on position and velocity states is mainly determined by
the IMU and GPS receiver performance. From the results on the large turns simulation can
be concluded that the improved IMU/GPS with AC equations sensor configuration is able to
provide a stable and long-term navigation solution.
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Table 13-1: Identification results generic simulation of appendix D

EKF IEKF

states gust no gust gust no gust

x [m] 28.74 ± 4.85 4.30 ± 1.90 28.15 ± 5.76 4.37 ± 1.86

y [m] 8.70 ± 3.78 3.24 ± 1.98 8.57 ± 3.62 3.23 ± 1.96

z [m] 17.60 ± 3.78 2.31 ± 1.55 17.84 ± 4.65 2.34 ± 1.53

u [m/s] 2.28 ± 0.90 0.11 ± 0.15 2.33 ± 0.91 0.11 ± 0.13

v [m/s] 2.10 ± 1.08 1.69 ± 0.90 2.09 ± 1.41 1.80 ± 0.92

w [m/s] 1.32 ± 0.56 0.31 ± 0.23 1.38 ± 0.58 0.32 ± 0.20

φ [deg] 0.71 ± 0.73 0.48 ± 0.72 0.70 ± 0.76 0.49 ± 0.73

θ [deg] 1.49 ± 0.87 0.67 ± 0.58 1.55 ± 0.89 0.69 ± 0.57

ψ [deg] 6.14 ± 3.25 4.19 ± 2.38 6.39 ± 3.99 4.46 ± 2.44

Table 13-2: Identification results small turns simulation of appendix E

EKF IEKF

states gust no gust gust no gust

x [m] 28.28 ± 5.14 5.11 ± 3.32 27.85 ± 6.05 5.29 ± 3.30

y [m] 10.25 ± 3.78 2.98 ± 2.26 10.15 ± 3.90 2.99 ± 2.26

z [m] 14.55 ± 3.54 6.10 ± 3.10 14.23 ± 3.47 5.67 ± 2.95

u [m/s] 2.32 ± 0.84 0.47 ± 0.52 2.36 ± 0.84 0.48 ± 0.55

v [m/s] 2.43 ± 2.79 1.53 ± 1.90 2.22 ± 2.25 1.56 ± 1.93

w [m/s] 2.08 ± 1.43 0.62 ± 0.96 1.85 ± 1.22 0.61 ± 0.97

φ [deg] 1.60 ± 1.79 1.55 ± 1.62 1.34 ± 1.69 1.49 ± 1.60

θ [deg] 2.60 ± 2.80 1.99 ± 1.97 2.09 ± 2.37 1.93 ± 2.00

ψ [deg] 8.53 ± 6.38 4.50 ± 5.49 8.50 ± 5.46 4.34 ± 5.50

Table 13-3: Identification results large turns simulation of appendix F

EKF IEKF

states gust no gust gust no gust

x [m] 24.05 ± 5.16 6.24 ± 4.22 24.03 ± 5.20 6.25 ± 4.21

y [m] 5.02 ± 4.02 9.44 ± 7.01 5.02 ± 4.02 9.44 ± 7.01

z [m] 20.92 ± 12.64 11.14 ± 10.06 20.96 ± 12.66 11.17 ± 10.08

u [m/s] 1.84 ± 0.84 0.70 ± 0.59 1.84 ± 0.84 0.70 ± 0.59

v [m/s] 0.43 ± 0.25 0.41 ± 0.25 0.43 ± 0.25 0.41 ± 0.25

w [m/s] 1.73 ± 1.07 0.92 ± 0.84 1.72 ± 1.08 0.92 ± 0.85

φ [deg] 0.90 ± 0.60 0.65 ± 0.48 0.90 ± 0.60 0.65 ± 0.48

θ [deg] 1.00 ± 0.63 0.65 ± 0.49 1.03 ± 0.65 0.65 ± 0.49

ψ [deg] 4.02 ± 1.99 2.13 ± 1.54 4.01 ± 2.00 2.13 ± 1.54
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Figure 13-3: Error statistics for the position states, generic simulations
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Figure 13-4: Error statistics for the velocity states, generic simulations
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Figure 13-5: Error statistics for the attitude/heading states, generic simulations
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Figure 13-6: Error statistics for the position states, small turns simulations
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Figure 13-7: Error statistics for the velocity states, small turns simulations
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Figure 13-8: Error statistics for the attitude/heading states, small turns simulations
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Figure 13-9: Error statistics for the position states, large turns simulations
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Figure 13-10: Error statistics for the velocity states, large turns simulations
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Figure 13-11: Error statistics for the attitude/heading states, large turns simulations
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13-3 Identification Results of Flight Data

From the simulations of the previous section 13-2 was concluded that the improved IMU/GPS
sensor configuration can provide an accurate and stable navigation filter. Based on the small
turns simulation, an accurate short-term navigation solution can be provided during dynamic
maneuvers. From the large turns simulation was concluded that the algorithm gives a long-
term stable filter solution. The results of previous section are based on simulation, where the
identification filter together with the IMU and GPS receiver are based on simulated signals.
The advantage of using simulations is that all information is available, and the performance of
the identification algorithms can easily be determined. This section uses real flight test data to
determine the IMU/GPS sensor configuration performance. The flight test data can be found
in appendix G together with the identification results, using EKF and IEKF. The results
on the SO(3) identification filter are treated in chapter 14. The performance of the (I)EKF
identification is analyzed together with the Xsens’ onboard algorithm output. The difference
between the Xsens output is a measure for performance, it is not the absolute performance
as the Xsens is not a perfect sensor package. The difference is a function of errors in the
Xsens output and identification errors of the improved IMU/GPS algorithm. Besides the
difference in performance, the used flight data sets do not contain all the recorded data. The
data was recorded at 100Hz, however during the post processing it turned out that not every
recorded line could be used. During the post processing a “checksum” of each recorded line
is performed, where each line is scanned to see if all recorded bites are correct and accounted
for. The post processing resulted in about 25% of useful recorded data lines.

Differences in flight maneuvers between the simulation of section 13-2 and the recorded flight
logs are visible. During the test flight, the roll angle can become larger or smaller then 90
degrees. During such maneuvers the derived expression for the roll angle no longer holds, as
the assumption that the specific force in ZB-direction including the gravity force is pointing
downwards, is no longer valid. When the measured specific force Az by the accelerometers has
a positive value meaning the specific force is in upward direction. As a result the roll angle

centripetal force, calculated by arctan
(
Ay
Az

)
, lays in a quadrant above the aircraft. Expression

13-9 gives the AC equation for roll angles larger then 90 degrees. The same can be done for roll
angles smaller then -90 degrees, resulting in expression 13-10. The specific force measurement
in downward direction Az, provided by the onboard IMU acts as the trigger together with the
specific force in lateral direction Ay. A positive Az with a positive Ay should use expression
13-10. During maneuvers with positive Az with negative Ay expression 13-9 should be used.

φ̂>90◦ =

√
u2GPS + v2GPS + w2

GPS

g0
r + arctan

(
Ay
Az

)
+ π (13-9)

φ̂<−90◦ =

√
u2GPS + v2GPS + w2

GPS

g0
r + arctan

(
Ay
Az

)
− π (13-10)

Like for the roll angle, the pitch angle AC expression is also based on Euler angles and also
has the ±90◦ singularity. During one of the performed test flights, LOG00042 of appendix
section G-2 the pitch angle reaches ±90◦, due to fast climbing and descending. The same
quadrant correction as for the roll angle is required. If the magnitude of the specific force in
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forward direction Ax becomes equal to the gravitational constant, the pitch angle becomes
larger then 90 degrees.

From the results of table 13-4 and figure 13-12 can be seen that the difference between the
Xsens and IEKF is smaller, compared to Xsens and EKF. It was concluded in the previous
section 13-2 that the IEKF performs better due to the partially compensation of non-linearities
in the observer dynamics. Based on the smaller difference between IEKF and Xsens, it can be
concluded that this is also the case for the performed simulation of the log files of appendix
G. The identification results of the orientation angles can be analyzed with the output of the
Xsens onboard identification filter. This does not hold for the estimated position and velocity
states, with one exception being the height. From the figures in appendix G can be seen that
the predicted height zB is equal to the barometer height during all phases of flight. From the
simulations of the previous section 13-2 was concluded that the heading angle is the largest
source of error of the three orientation angles. From table 13-4 can be seen that this is also
the case for the used flight test log files. The larger error in orientation angles compared
to the simulation of the previous chapter comes from the fact that no innovation is present
during the first 400 to 600 samples. This is due to the lack of a GPS fix, this aspect is not
included during the simulation of previous section. If is the first simulation part is not taken
into account, the result would be closer to the simulation results of the previous section 13-2.

As a general remark it should be mentioned that the identification differences between Xsens
and (I)EKF results is also due to the fact that the (I)EKF simulations could only use 25% of
the measurement data. If more data points would be used, the performance would probably
improve.

Table 13-4: Identification results, indicated values are the differences between the simulation
and onboard Xsens of appendix G

LOG00039 LOG00042 LOG00050

states EKF IEKF EKF IEKF EKF IEKF

φ [deg] 6.49 ± 7.12 5.26 ± 6.26 8.91 ± 9.90 6.99 ± 8.31 6.65 ± 6.70 4.81 ± 5.91

θ [deg] 3.82 ± 4.07 2.47 ± 3.03 6.50 ± 9.29 4.24 ± 5.31 3.42 ± 3.66 2.40 ± 3.30

ψ [deg] 19.06 ± 15.27 18.48 ± 14.87 25.02 ± 30.39 28.33 ± 33.04 33.45 ± 33.95 31.92 ± 34.36
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Figure 13-12: Error statistics for the attitude/heading states, flight data files
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Chapter 14

Complementary Filter on the Special
Orthogonal Group

Previous chapter 13 showed the results on the improved IMU/GPS sensor configuration by
using conventional (I)EKF identification algorithms. This chapter does the same, only with a
different type of identification filter. The applied filter is the non-linear complementary filter
on the special orthogonal group. The special orthogonal group with dimension three is called
SO(3). The SO(3) group is the transformation matrix RBE between a body-fixed FB and
Earth frame of reference FE. Section 14-1 describes the background of the filter framework
and unique properties of the SO(3) group. The simulation results of appendix D to F can
be found in section 14-2. The last section 14-3 contains the identification results using real
flight data of appendix G.

14-1 Non-linear Complementary Filter on the SO(3) Group

Traditional filtering makes use of (Extended) Kalman filters although they perform well, it is
proposed to apply a different approach into identification filters, namely by using non-linear
complementary filtering. Non-linear filters retain the non-linear system dynamics, compared
to Kalman filters that require Jacobians for linearization. Non-linear observers are especially
useful since they keep non-linear observer dynamics. The complementary filters that are
described in the work of Mahony, exploit the use of deterministic observer kinematics posed
on a special Lie group, called Special Orthogonal Group or SO(3). Recent work of Mahony
can be found in (Mahony & Hamel, 2008) and (Mahony, Hamel, & Pflimlin, 2005). This
SO(3) group represents the rotational transformation matrix RBE between a body-fixed FB
and an Earth reference frame FE . This rotational matrix equals the Direction Cosine Matrix
(DCM) of chapter 8 and contains relative vehicle attitude and heading information between
the two reference frames that can be used for navigational purposes.

Three types of complementary filters can be used, figure 14-1 gives an impression of a general
non-linear observer on SO(3). The factor k represents a proportional controller gain which
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Figure 14-1: General form of a complementary filter on SO(3)

can be extended to a PID to include an integrator and differentiator. Passive and direct
complementary filters uses the reconstructed measurement matrix R directly on the SO(3)
geometry from sensor outputs to express the estimation error matrix R̃. Differences between
passive and direct complementary filtering are in the reconstruction steps. The third type of
filter is the explicit complementary filter which uses the direct and untreated sensor measure-
ments, where the relative contribution of individual sensors can be adjusted by using different
weights of the proportional gain vector k. All three mentioned types of complementary filters
are based on figure 14-1. Equation 14-1 gives the kinematic equation, where R ε R3×3 is the
DCM matrix and Ṙ is the time derivative, to calculate the next estimate. The anti-symmetric
matrix Ω ε R3×3 denotes the rotational matrix containing the measured angular rates [p, q, r]
from gyroscopic sensors.

Ṙ = RΩ (14-1)

The SO(3) group has some special properties, the associated Lie-algebra is a set of anti-
symmetric matrices. To explain the Lie-algebra, the matrix A ε R3×3 is taken as an example.
One special property is that the negative of the matrix transpose is equal to A, as given in
equation 14-2.

SO(3) =
{
A ε R3x3|A = −AT}

(14-2)

Two special matrix operators are included in the complementary filter of figure 14-1, which
are also present when using passive, direct or explicit complementary filters. The operator
vex: SO(3)→ R

3 represent the inverse of the Ωx operator. For any three dimensional vector
v ε R holds Ωxv = Ω × v, is the vector crossproduct as defined in equation 14-3.

vex (Ωx) = Ω, Ω ε R3

vex (A)x = A, A ε SO(3)
(14-3)
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The following expression 14-4 gives the vex operator on the skew-symmetric matrix Ω
that holds the vehicle’s rotational rates. This operator can be used to extract the off-
diagonal terms, in this case representing the rotational angles of rotational vector ω =
[ω1(t)ω2(t)ω3(t)]

T .

Ω [ω(t)] =

⎡
⎣ 0 −ω3(t) ω2(t)

ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0

⎤
⎦ , vex (Ω [ω(t)]) =

⎡
⎣ ω1(t)
ω2(t)
ω3(t)

⎤
⎦ (14-4)

The second matrix operator Pa(R̃), the skew-symmetric projection operator in matrix space,
is defined in equation 14-5. This projection matrix operator, projects the skew-symmetric
error matrix R̂ into square matrix space. This operation is required to obtain the individual
rotational error elements using the vex operator of expression 14-3. The obtained results
of these two expression 14-3 and 14-5: vex

[
1
2

(
H −HT

)]
gives the three rotational errors

element of expression 14-4: [ωe1(t), ωe2(t), ωe3(t)]
T , written out in expression 14-6.

Pa(H) =
1

2

(
H −HT

)
(14-5)

Pa(H) =
1

2

⎛
⎝

⎡
⎣ 0 ωe3(t) −ωe2(t)
−ωe3(t) 0 ωe1(t)
ωe2(t) −ωe1(t) 0

⎤
⎦−

⎡
⎣ 0 −ωe3(t) ωe2(t)

ωe3(t) 0 −ωe1(t)
−ωe2(t) ωe1(t) 0

⎤
⎦

⎞
⎠ (14-6)

Expression 14-6 results in expression 14-7.

Pa(H) =

⎡
⎣ 0 0 ωe2(t)
ωe3(t) 0 0

0 ωe1(t) 0

⎤
⎦ (14-7)

Next step after the Pa(R̃) operator, is to multiply the error elements time a proportional
gain vector KP where each element can tuned individually. The obtained error can also be
integrated to make a bias estimation. The goal of the estimated attitude matrix R̂ ε SO(3)
is to be equal or as close to the real rotational matrix R. The estimation can be multiplied
with the transpose, equal to its inverse according to equation 14-2, which should approach
an identity matrix I3. This multiplication provides the estimation error matrix R̃ as given in
expression 14-8.

R̃ = R̂TR → I3 (14-8)

The matrix operator Pa is performed on the error matrix R̃, the off-diagonal terms should
converge to zero and the matrix should approach the identify matrix I3 when the difference
between the estimated attitude R̂ and true value of matrix R becomes smaller. Expression
14-8 can be reformulated into equation 14-9 to clearly indicate that the estimation error matrix
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R̃ converges to the identity matrix I3, when the estimated attitude matrix R̂ approaches the
true value of matrix R.

R̂ → R⇔ R̃ → I3 (14-9)

As a result of expression 14-9, the complementary non-linear filter design can be simplified to
find the correct kinematics of R̂ such that R̃ → I3. The non-linear Passive Complementary
Filter (PCF) can be summarized in expression 14-10, from (Mahony & Hamel, 2008). The
matrix RAC indicates the innovation rotational matrix, based on the derived AC equations
of chapter 10.

˙̂
R = R̂

[
Ω+ b̂+ ωe

]
ωe = KPvex

[
Pa(R̃)

]
b̂ = KI

∫
ωe

R̃ = R̂TRAC

(14-10)

The bias estimation b̂ is a function of the IMU gyroscopes together with the observer error, in
this case based on the AC equations. The gain vectors KP and KI can be tuned individually.
High gains means large corrections on the gyroscopes input matrix Ω, low gains means less
innovation or influence of the RAC matrix. Figure 14-2 shows the block diagram of the passive
complementary filter on SO(3).

RAC
R̂TRAC

R̃
vex

[
Pa(R̃)

] ωe

KP

∫
KI

b̂
++

+ −
ωe + b̂

Ω

A
˙̂
R = R̂A

R̂

R̂T

Figure 14-2: Block diagram of the passive complementary filter on SO(3)
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14-2 Simulation Results Filter on the SO(3) Group

This section uses the non-linear complementary filter on the Special Orthogonal group SO(3).
This identification filter differs from the 9 state (I)EKF of previous chapter 13. Instead of
having 9 state equations and 9 observers, the SO(3) utilizes special matrix properties and
associated Lie-algebra. Based on special matrix properties, the transformation matrix RBE
that holds all vehicle attitude and heading information between a body-fixed FB and an Earth
frame of reference FE , is used as a single matrix state. In principle this is the only required
navigation information to stabilize an aircraft as all three orientation angles are available.
While other filters, like for instance the 9 state filter of section 12-2, provide additional
position and velocity information, only the three orientation angles are required to stabilize a
fixed-wing UAV. Expression 14-11 gives the input matrix Ω, containing the three rotational
rates p, q and r which are provided by the gyroscopes.

Ω =

⎡
⎣ 0 −r q

r 0 −p
−q p 0

⎤
⎦ (14-11)

The residual matrix R̃, as displayed in figure 14-2, is calculated by multiplying the estimation
matrix R̂ with a correction matrix RAC . Where RAC is based on the three AC equations.
Expression 14-12 gives the definition of the RAC matrix, based on the three AC observers.

RAC (φAC , θAC , ψAC) =

⎡
⎢⎢⎢⎢⎣

cos θAC cosψAC sinφAC sin θAC cosψAC− cosφAC sin θAC cosψAC+
cos φAC sinψAC sinφAC sinψAC

cos θAC sinψAC sinφAC sin θAC sinψAC+ cosφAC sin θAC sinψAC−
cos φAC cosψAC sinφAC cosψAC

− sin θAC sinφAC cos θAC cosφAC cos θAC

⎤
⎥⎥⎥⎥⎦

(14-12)

The sensor configuration of expressions 14-11 and 14-12 uses the angular rates of the gyro-
scopes to provide an estimate. The AC equations provide the innovation matrix to correct any
errors by the gyroscopic prediction. Like for the conventional (I)EKF filters, the simulations
of appendix D to F are used to analyze the performance and stability of the SO(3) filter. The
time history for all simulations can be found in the appendices, the results are summarized
in table 14-1 and figures 14-3 to 14-5 below.

Due to the multiplication and (co)sine operators on the attitude/ heading angles in the
estimation matrix R̂, the three individual angles have a strong correlation. This strong
correlation is also present in the simulation results. The small turns simulation contains
maneuvers that are the most dynamic. From table 14-1 and figure 14-4 can be seen that
the difference in identification result is smaller for each individual orientation angle. From
the simulation results of chapter 13 was concluded that the heading has the largest error
when compared to the pitch and roll angle. This also holds for the SO(3) filter, however the
difference between the heading and attitude angles is smaller. The strong correlation between
the three angles has a positive influence on the heading angle. The latter is also partly the
reason that the identification results on the pitch and roll angles are different compared to
the Kalman filter. The most important reason for the difference in identification results with
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respect to Kalman filters are the gains. The SO(3) filter uses constant gains KP and KI ,
compared to the Kalman gain K(k) where process and observer uncertainties are taken into
account. Uncertainties in position and velocity states, result in larger entries of the covariance
matrix P (k|k). The larger position and velocity uncertainties result in lower Kalman gains.
The position and velocity Kalman gains are a function of their process uncertainties in the
covariance matrix calculation. Also the influence of gust is larger on the position and velocity
states, compared to the attitude/heading angles. Since the SO(3) filter does not need the
position and velocity states, the influence of gust is less on the pitch and roll angle. The
influence of gust remains strongly present on the heading angle. The presence of gust results
in a side-slip angle β, as the gyroscopic prediction differs form the real ground track. The
small turns simulation together with the generic simulation provides accurate identification
results. This holds during and without the presence of gust. Based from this can be concluded
that the SO(3) filter can provide an accurate short-term solution during dynamic maneuvers.

From the large turns simulation of appendix F can be seen that the SO(3) filter remains stable
over a long period of time. The maneuver of a very slow left and right turn can be estimated
by the SO(3) filter and remains stable during the simulation. Like for the generic and small
turns simulations, the heading angle is also the largest source of error during the large turns
simulation. The identification performance of the pitch and roll angle is comparable to that
of the generic simulation, the heading angle is slightly better estimated. Based on this can
be concluded that the SO(3) filter can provide a stable long-term identification filter. Also
the influence of gust on the heading angle is smaller compared to the (I)EKF identification
results of table 13-3 due to the strong coupling of the three orientation angles.

Table 14-1: Identification results non-linear SO(3) filter

Generic Small turns Large turns

states gust no gust gust no gust gust no gust

φ [deg] 1.29 ± 0.98 1.25 ± 0.87 3.79 ± 3.34 3.55 ± 3.33 1.31 ± 0.85 1.29 ± 0.84

θ [deg] 1.21 ± 0.82 1.16 ± 0.77 5.37 ± 4.07 5.71 ± 4.24 0.92 ± 0.59 0.89 ± 0.55

ψ [deg] 6.42 ± 5.36 5.00 ± 2.76 8.53 ± 7.05 7.90 ± 7.47 3.95 ± 1.85 2.50 ± 1.89
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Figure 14-3: Error statistics for the attitude/heading states, generic simulations
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Figure 14-4: Error statistics for the attitude/heading states, small turns simulations
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Figure 14-5: Error statistics for the attitude/heading states, large turns simulations
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14-3 Flight Data Results Filter on the SO(3) Group

From the simulations of the previous section 14-2 was concluded that the improved IMU/GPS
sensor configuration can provide an accurate and stable identification by using a non-linear
SO(3) filter. Based on the results of the small turns simulation, it was concluded that an
accurate short-term solution during the presence of high vehicle dynamics can be provided.
The large turns simulation showed that the SO(3) filter does not only provide an accurate,
but also a long-term stable solution. The results of the previous section 14-2 are based on
simulations, using simulated IMU and GPS receiver signals, which were fed into the SO(3)
identification filter. This section will analyze the SO(3) filter performance on the improved
IMU/GPS sensor configuration by using real flight data. The flight data can be found in
appendix G with the identification results using SO(3) together with the (I)EKF results. The
performance of the SO(3) filter is analyzed together with the Xsens’ onboard algorithm and
the (I)EKF results of previous chapter 13. As explained in chapter 13, during the performed
test flight the pitch and roll angles can become larger and smaller than 90 degrees. The same
±90◦ Euler angle singularity compensation as in expressions 13-9 and 13-10 is applied. The
difference between the identification output of the SO(3) and the onboard Xsens filter is not
the exact identification error, as the onboard Xsens algorithm also contains errors. Besides
any differences in performance, it should be noted that only 25% of the recorded data lines
can be used. The performed post processing “sumcheck” routine called on the flight data files
resulted in 25% of complete recorded lines.

The identification results can be found in appendix G and summarized in table 14-2 and figure
14-5 below. As a general result it can be concluded that the SO(3) identification results differ
more with the Xsens output compared to the (I)EKF results. From this can be concluded
that the SO(3) filter gives less accurate results when compared the (I)EKF identifications.
From the simulations of previous section 14-2 was already concluded that the heading angle
is the least accurate orientation angle. The strong coupling between the three angles can
lead to less accurate pitch and roll angle estimations due to a larger heading angle estimation
error. As a result of this strong coupling the pitch and roll angle are estimated less accurate,
due to the heading angle.

The estimation differences are the largest for logfile LOG00042, which is also the case for the
(I)EKF simulations. The larger difference in SO(3) estimation results and Xsens are due to
the larger presence of gust. From the trajectories flown in figure G-1 for LOG00039, figure
G-15 for LOG00042 and figure G-29 for LOG00050 can be seen that the flown circles are
drifting away for LOG00042. The movement of the circles’ middle points of the flown circular
trajectory indicates the strong presence of gust. The strong presence of gust results in a
large side-slip angle β. This angle has a negative influence on the heading angle estimation.
This explains the larger error, also present for the (I)EKF identifications. Due to the strong
coupling of the attitude angles with the heading angles via the estimation matrix R, the bad
heading angle estimation also results in worse pitch and roll angle estimations. From this can
be concluded that due to the strong internal coupling of the SO(3) filter, the least accurate
angle estimation influences the other angles. During maneuvers with fast vehicle dynamics
or presence of gust, the badly estimated heading angle results in less accurate pitch and roll
attitude angles.
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Table 14-2: Identification results non-linear SO(3) filter, indicated values are the differences
between the simulation and onboard Xsens

states LOG00039 LOG00042 LOG00050

φ [deg] 8.88 ± 7.23 12.23 ± 14.39 7.51 ± 8.31

θ [deg] 6.04 ± 6.10 6.56 ± 6.72 5.61 ± 8.33

ψ [deg] 22.55 ± 18.36 30.36 ± 27.21 23.99 ± 28.13
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Figure 14-6: Error statistics for the attitude/heading states, flight data files
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Chapter 15

Conclusions

From the performed theoretical observability and physical analyses, the following conclusions
can be drawn:

• From the analytical observability analysis can be concluded that the observability of
observable system states is not influenced during zero acceleration maneuvers A = 0, as
long as the GPS receiver remains to have a fix. When a flying vehicle is equiped with an
integrated IMU/GPS configuration, the IMU receives no acceleration information from
the accelerometers during zero acceleration maneuvers. The GPS position and velocity
can be used to identify the position and velocity states.

• During zero rotational rate maneuvers ω = 0, the heading angle ψ together with all
three accelerometer biases (bAx , bAy , bAz) become unobservable due to zero entries in
the transformation matrix RBE , needed to transform states from an Earth reference
frame to a body-fixed frame of reference. The required attitude/ heading angles for the
RBE matrix to integrate the GPS velocity and position with IMU measurements are
zero. This is concluded from the observability analysis where the input signals of IMU
gyroscopes have been put to zero. In practice the input signals never become exactly
zero and these states become badly observable depending on the closeness to zero and
sensor noise.

• The derived angle correction (AC) equations from the physical analysis can improve
a loosely coupled IMU/GPS configuration significantly in terms of state observability.
The zero rotational rate maneuver constraint ω = 0, is no longer present and the
heading angle becomes instantaneously observable. The AC equations utilize fixed-wing
kinematics together with an onboard IMU and GPS receiver.
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The performed studies have led to the development of three AC equations, resulting in in-
stantaneously observable orientation angles and looseness of the zero rotation rate maneuver
ω = 0 constraint. The theoretical results can be used as a starting point, based on the per-
formed simulations and analysis of different state identification filters the following conclusion
can be made:

• The influence of a time synchronization error Δt between individual sensors during sen-
sor fusion, is a function of the change in vehicle acceleration a′ and filter innovation. The
time synchronization requirement is proportional to the magnitude of |a′| and negatively
proportional to the magnitude of the filter innovation. Vehicles with fast dynamics, like
fixed-wing UAV’s, require a more stringent time synchronization requirement as the ve-
hicle’s acceleration can suddenly change with large magnitudes. When using low-cost,
low-grade sensors with low frequency GPS receiver corrections, the innovation magni-
tude can increase. Larger innovation magnitudes are due to the low-update frequency
of the GPS receiver, required for the innovation part. Larger innovation magnitudes
can result in a less stringent time synchronization requirement, as they are negatively
proportional. From this can be concluded that the time synchronization requirement
becomes less important with low-cost sensors and is a compromise between changes in
vehicle acceleration and filter innovation.

• Different simulations were performed to test the improved IMU/GPS sensor integration
with AC equations. Based on the performed simulations, it can be concluded that the
improved IMU/GPS sensor integration with AC equations can provide a stable long-
term navigation solution with accurate short-term performance. During all simulations
the position states give the largest source of estimation error, due to the large GPS
position uncertainty. From the observability analysis was concluded that the wind
components are unobservable and the position and velocities states are influenced during
the presence of wind. The position and velocity estimations are effected the most by the
wind components as the wind velocities are not part of the specific forces measured by
the onboard IMU accelerometers. The largest source of error of the orientation angles, is
the heading angle. For the orientation angles, the influence of wind on the identification
performance is minimal except for the heading angle due to the presence of a side-slip
angle β.

• The performed simulations show that the convergence of the Iterated Extended Kalman
Filter (IEKF) identification algorithm is slightly better compared to the Extended
Kalman Filter (EKF). The improvement is however not significant because the ob-
server non-linearities are not the largest source of error, both algorithms show stable
and accurate results. From this can be concluded that their is no need to reiterate
the observer dynamics and the EKF identification algorithm should be chosen over the
IEKF as it requires less computational power.

• The non-linear complementary filter on the Special Orthogonal group, SO(3) filter,
can be used as an alternative to conventional Kalman state identification filters. The
special orthogonal group uses the transformation matrix RBE between the body-fixed
FB and Earth reference frame FE . The transformation matrix is used as a single filter
state. For (I)EKF filters, the heading angle is the largest source of error, which is also
the case for the SO(3) filter. This filter can be used as an alternative, any differences
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in filter results are due to two aspects. The SO(3) filter uses constant proportional
and integrator gains, where the Kalman gain matrix K(k) is based on process and
observer uncertainties. The other source of differences is due to the strong coupling of
the individual attitude/heading angles for the SO(3) filter compared to (I)EKF.

• The developed Aerosonde UAV model is able to provide adequate fixed-wing UAV sim-
ulations with fast dynamics. Together with the IMU and GPS receiver simulations,
realistic sensor simulations can be made. The developed sensor simulation tools can
be used to analyze different sensor configurations and identification algorithms. The
thesis report aims to link the navigation requirements of fixed-wing UAV’s to minimal
INS/GPS sensor requirements. The observability analysis together with the simulation
of a fixed-wing UAV, IMU and GPS receiver simulation tools provide powerful insight in
the performance of different sensor configurations and state identification algorithms.
With these developed tools, new configurations can be tested on short-term perfor-
mance, long-term stability and time synchronization errors. These tools can be useful
for future research into new implementations and sensor configurations.
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Chapter 16

Recommendations

Research into integrated navigation applied to fixed-wing Unmanned Aerial Vehicles (UAVs)
with fast dynamics, with low-cost sensors can be improved by addressing the following topics:

• Research into different INS/GPS integrations. The sensor integration that has been
used throughout this report is the loosely coupled integration between inertial and
satellite navigation systems. This integration is mostly used in applications, however
are known to have time latencies between the GPS receiver and IMU signals. The
GPS receiver has an internal processing filter to obtain a position fix, resulting in a
position and velocity update. The IMU doesn’t need such a processing step resulting in
a different processing time. Other integrations like tightly coupled or deep integration
use a single integration filter between a GPS receiver and IMU. Investigation into these
integrations with a focus on time synchronization errors between the individual sensors
and receivers should be performed. The use of a single integration filter can provide new
insight and improvement on time synchronization errors. Another advantage of tight or
deep integration over the loosely coupled integration is that it can also work when the
number of visible GPS satellites drops below four or during jamming environments.

• Using other UAV platforms. The angle correction (AC) equations have been developed
for fixed-wing UAV, utilizing fixed-wing aircraft kinematics. This concept could also be
applied to other platforms like quadrotor, helicopter, flapping wing, VTOL, etc. If the
vehicle kinematics differ however a lot, the derived set a kinematic AC equations should
also be changed accordingly.

• Controller design on the non-linear complementary SO(3) filter. The output of the
complementary non-linear filter on the Special Orthogonal group or SO(3), differs from
traditional Kalman filters. The SO(3) filter uses the rotational transformation matrix
RBE between a body-fixed FB and an Earth reference frame FE , where the Kalman
filter directly provides the attitude/ heading angles together with additional states.
The controller design for a SO(3) filter differs, an initial implementation with existing
controllers can be performed by extracting the angles from the RBE matrix. This trans-
formation can however be replaced by a controller that directly uses the transformation
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matrix RBE . A coupled matrix controller and SO(3) filter should be able to provide
better closed loop performance.

• Implementation using real hardware. Before the IMU/GPS sensor configuration with de-
rived AC equations can be implemented in an onboard environment, an autopilot must
be designed that can cope with uncertainties from the state estimation. Also the Di-
rection Cosine Matrix (DCM) angle representation should be converted to quaternions.
The physical meaning of Euler angles vanishes when using a quaternions representa-
tion, the advantage is that less calculation is required during each update. The DCM
representation contains 9 matrix entries, when using quaternions only 4 elements are
updated at each epoch.

• Unobservable gust states. To solve the large position and velocity estimation error
problem, additional sensors are required to make the distinction between IMU prediction
errors and wind velocities. The sole use of GPS velocities can correct the IMU velocity
prediction, but these corrections are however insufficient to see any differences between
IMU errors or wind velocities. When three air data sensors are added to measure the
angle of attack α, side-slip angle β and total velocity VT , a redundant set of all three
velocity components is present. This set of additional velocity measurements can be
used to identify any differences in velocity estimation errors between IMU accelerometer
biases and wind velocities.

• GPS velocity derivatives. Besides the assisting and correcting function of the GPS
receiver to the IMU position and velocity prediction, the GPS velocities can also be
used to correct the accelerometer biases or orientation angles. The GPS velocities can
be differentiated to accelerations in an Earth-Centered-Earth-Fixed (ECEF) reference
frame. The GPS accelerations in ECEF can be compared to the IMU accelerations in
a body-fixed reference frame FB , when using the required transformation matrices.
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Appendix B

Aerosonde UAV Simulation
Parameters

B-1 Aerosonde Configuration Parameters

Listing B.1: Aerosonde configuration aerosondeConfig.m
1% A I R C R A F T C O N F I G U R A T I O N S C R I P T

% A e r o s o n d e UAV - s a m p l e m od e l from A e r o S i m L i b r a r y

% C o p y r i g h t 2002 U n m a n n e d Dynamics , LLC

% R e v i s i o n : 1.0 Date : 0 5 / 1 3 / 2 0 0 2

6
% C l e a r w o r k s p a c e

c l e a r all ;

% Name of the MAT - file that will be g e n e r a t e d

11c f g m a t f i l e = ’ a e r o s o n d e c f g ’ ;

% %% A E R O D Y N A M I C S %%%

% A e r o d y n a m i c f o rc e a p p l i c a t i o n p o i n t ( u s u a l l y the a e r o d y n a m i c c e n t e r ) [ x y z ]

rAC = [0 . 1425 0 0 ] ; % m

16
% %% A e r o d y n a m i c p a r a m e t e r b o u n d s %%%

% A i r s p e e d b o u n d s

V a B n d = [15 5 0 ] ; % m / s

% S i d e s l i p a n g l e b o u n d s

21B e t a B n d = [−0.05 0 . 0 5 ] ; % rad

% A n g l e of a t t a c k b o u n d s

A l p h a B n d = [−0.05 0 . 0 5 ] ; % rad

% %% A e r o d y n a m i c r e f e r e n c e p a r a m e t e r s %%%

26% Mean a e r o d y n a m i c c h o r d

MAC = 0.189941 ; % m

% Wind span

b = 2 .8956 ; % m

% Wing area

31S = 0 . 5 5 ; % m ^2

% ALL a e r o d y n a m i c s d e r i v a t i v e s are per r a d i a n :

% %% Lift c o e f f i c i e n t %%%

% Zero - a l p h a lift

36CL0 = 0 . 2 3 ;
% a l p h a d e r i v a t i v e

CLa = 5 .6106 ;
% Lift c o n t r o l ( flap ) d e r i v a t i v e

CLdf = 0 . 7 4 ;
41% P i t c h c o n t r o l ( e l e v a t o r ) d e r i v a t i v e

CLde = 0 . 1 3 ;
% alpha - dot d e r i v a t i v e

C L a l p h a d o t = 1 . 9724 ;
% P i t c h rate d e r i v a t i v e

Fixed-Wing UAV Integrated Navigation with Low-Cost IMU/GPS B. A. Hummelink



182 Aerosonde UAV Simulation Parameters

46CLq = 7 .9543 ;
% Mach n u m b e r d e r i v a t i v e

CLM = 0;

% %% Drag c o e f f i c i e n t %%%

51% Lift at m i n i m u m drag

C L m i n d = 0 . 2 3 ;
% M i n i m u m drag

C D m i n = 0 .0434 ;
% Lift c o n t r o l ( flap ) d e r i v a t i v e

56CDdf = 0 .1467 ;
% P i t c h c o n t r o l ( e l e v a t o r ) d e r i v a t i v e

CDde = 0 .0135 ;
% Roll c o n t r o l ( a i l e r o n ) d e r i v a t i v e

CDda = 0 .0302 ;
61% Yaw c o n t r o l ( r u d d e r ) d e r i v a t i v e

CDdr = 0 .0303 ;
% Mach n u m b e r d e r i v a t i v e

CDM = 0;
% Oswald ’ s c o e f f i c i e n t

66osw = 0 . 7 5 ;

% %% Side f o r c e c o e f f i c i e n t %%%

% S i d e s l i p d e r i v a t i v e

C Y b e t a = −0.83;
71% Roll c o n t r o l d e r i v a t i v e

CYda = −0.075;
% Yaw c o n t r o l d e r i v a t i v e

CYdr = 0 .1914 ;
% Roll rate d e r i v a t i v e

76CYp = 0;
% Yaw rate d e r i v a t i v e

CYr = 0;

% %% Pi t c h m o m e n t c o e f f i c i e n t %%%

81% Zero - a l p h a p i t c h

Cm0 = 0 . 13 5 ;
% a l p h a d e r i v a t i v e

Cma = −2.7397;
% Lift c o n t r o l d e r i v a t i v e

86Cmdf = 0 .0467 ;
% P i t c h c o n t r o l d e r i v a t i v e

Cmde = −0.9918;
% a l p h a _ d o t d e r i v a t i v e

C m a l p h a d o t = −10.3796;
91% P i t c h rate d e r i v a t i v e

Cmq = −38.2067;
% Mach n u m b e r d e r i v a t i v e

CmM = 0;

96% %% Roll m o m e n t c o e f f i c i e n t %%%

% S i d e s l i p d e r i v a t i v e

C l b e t a = −0.13;
% Roll c o n t r o l d e r i v a t i v e

Clda = −0.1695;
101% Yaw c o n t r o l d e r i v a t i v e

Cldr = 0 .0024 ;
% Roll rate d e r i v a t i v e

Clp = −0.5051;
% Yaw rate d e r i v a t i v e

106Clr = 0 .2519 ;

% %% Yaw m o m e n t c o e f f i c i e n t %%%

% S i d e s l i p d e r i v a t i v e

C n b e t a = 0 .0726 ;
111% Roll c o n t r o l d e r i v a t i v e

Cnda = 0 .0108 ;
% Yaw c o n t r o l d e r i v a t i v e

Cndr = −0.0693;
% Roll rate d e r i v a t i v e

116Cnp = −0.069;
% Yaw rate d e r i v a t i v e

Cnr = −0.0946;

121% %% P R O P E L L E R %%%

% P r o p u l s i o n f or c e a p p l i c a t i o n p o i n t ( u s u a l l y p r o p e l l e r hub ) [ x y z ]

rHub = [0 0 0 ] ; % m

% A d v a n c e r at i o v e c t o r

J = [−1 0 0 . 1 0 . 2 0 . 3 0.35 0 . 4 0.45 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 2 2 ] ;
126% C o e f f i c i e n t of t h r u s t look - up t a b l e CT = CT ( J )

CT = [0 . 0492 0.0286 0.0266 0.0232 0.0343 0.034 0.0372 0.0314 0.0254 0.0117 −0.005 −0.0156 −0.0203
−0.0295 −0.04 −0.1115] ;

% C o e f f i c i e n t of p o w e r look - up t a bl e CP = CP ( J )

CP = [0 . 0199 0.0207 0.0191 0.0169 0.0217 0.0223 0.0254 0.0235 0.0212 0.0146 0.0038 −0.005 −0.0097
−0.018 −0.0273 −0.0737] ;

% P r o p e l l e r r a d i u s

131R p r o p = 0 . 25 4 ; % m

% P r o p e l l e r m o m e n t of i n e r t i a

J p r o p = 0 . 00 2 ; % kg * m ^2
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136% %% E N G I N E %%%

% E n g i n e rpm v e c t o r

RPM = [1500 2100 2800 3500 4500 5100 5500 6000 70 00 ] ; % rot per min

% M a n i f o l d p r e s s u r e v e c t o r

MAP = [60 70 80 90 92 94 96 98 1 00 ] ; % kPa

141
% Sea - le v e l fuel flow look - up t a b l e f f l o w = f fl o w ( RPM , MAP )

% RPM -> rows , MAP -> c o l u m n s

F u e l F l o w = [
31 32 46 53 55 57 65 73 82

14640 44 54 69 74 80 92 103 111
50 63 69 92 95 98 126 145 153
66 75 87 110 117 127 150 175 190
83 98 115 143 148 162 191 232 246
93 102 130 159 167 182 208 260 310

151100 118 137 169 178 190 232 287 313
104 126 151 184 191 206 253 326 337
123 144 174 210 217 244 321 400 408

] ; % g / hr

% Sea - le v e l p ow e r look - up t a b l e P = P ( RPM , MAP )

156% RPM -> rows , MAP -> c o l u m n s

P o w e r = [
18.85 47.12 65.97 67.54 69.12 67.54 67.54 69.12 86.39
59.38 98.96 127.55 149.54 151.74 160.54 178.13 200.12 224.31
93.83 149.54 187.66 237.5 249.23 255.1 307.88 366.52 398.77

161109.96 161.27 245.57 307.88 326.2 351.86 421.5 491.14 531.45
164.93 245.04 339.29 438.25 447.68 494.8 565.49 673.87 772.83
181.58 245.67 389.87 496.69 528.73 571.46 662.25 822.47 993.37
184.31 293.74 403.17 535.64 570.2 622.04 748.75 956.09 1059.76
163.36 276.46 420.97 565.49 609.47 691.15 860.8 1130.97 1193.81

166124.62 249.23 417.83 586.43 645.07 762.36 996.93 1246.17 1429.42
] ; % W

% Sea - le v e l p r e s s u r e and t e m p e r a t u r e at wh i c h the data ab o v e is g i v e n

pSL = 102300; % Pa

TSL = 291 . 15 ; % deg K

171% E n g i n e s h a f t m o m e n t of i n e r t i a

Jeng = 0 .0001 ; % kg * m ^2

% %% I N E R T I A %%%

176% E m p t y a i r c r a f t mass ( zero - fuel )

m e m p t y = 8 . 5 ; % kg

% G r o s s a i r c r a f t mass ( full fuel tank )

m g r o s s = 13 . 5 ; % kg

% E m p t y CG l o c a t i o n [ x y z ]

181C G e m p t y = [ 0 . 1 56 0 0 . 0 7 9 ] ; % m

% G r o s s CG l o c a t i o n [ x y z ]

C G g r o s s = [ 0 . 1 59 0 0 . 0 9 0 ] ; % m

% E m p t y m o m e n t s of i n e r t i a [ Jx Jy Jz Jxz ]

J e m p t y = [0 . 7795 1.122 1.752 0 . 1 2 1 1 ] ; % kg * m ^2

186% G r o s s m o m e n t s of i n e r t i a [ Jx Jy Jz Jxz ]

J g r o s s = [0 . 8244 1.135 1.759 0 . 1 2 0 4 ] ; % kg * m ^2

% %% OT H E R S I M U L A T I O N P A R A M E T E R S %%%

191% WMM - 2 0 00 date [ day mo n t h year ]

dmy = [13 05 200 2 ] ;

% Save w o r k s p a c e v a r i a b l e s to MAT file

save ( c f g m a t f i l e ) ;
196

% O u t p u t a m e s s a g e to the s c r e e n

f p r i n t f ( s t r c a t ( ’\ n A i r c r a f t c o n f i g u r a t i o n sa v e d as :\ t ’ , s t r c a t ( c f g m a t f i l e ) , ’. mat ’ ) ) ;
f p r i n t f ( ’ \ n ’ ) ;
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B-2 IMU, GPS Receiver and Environmental Properties

Table B-1: IMU sensor performance parameters

quantity accelerometers gyroscopes

scale factor over temperature, 1 σ 400-1400 [ppm] 200-1200 [ppm]

bias over temperature, 1 σ 0.5 - 2.0 [mg] 1.0 - 5.0 [◦/h]
random walk bias, ◦/

√
h 0.2 [◦/

√
h] 0.2 [◦/

√
h]

axis misalignment, per axis 1 [◦] 1 [◦]
sensor-to-senor misalignment, per axis 0.1 [◦] 0.1 [◦]
vibration rectification error, 1 σ - 0.02 [◦/h/g2]
white noise (external source), 1 σ 0.25 [g] 1 [◦/s]

Table B-2: GPS receiver performance parameters

quantity GPS position

constraint position bias 8.7-13.71 [m]

position noise, 1 σ 1.6 [m]

receiver time lag 0.25 [s] ±0.025[s]
quantity GPS velocity

velocity noise, 1 σ 0.01 [m/s]

receiver time lag 0.25 [s] ±0.025[s]

Table B-3: Environmental properties during simulations

quantity magnitude

ΔT 10◦

Wind X-direction2 3 [m/s] + 0.05 [m/s/s]
Wind Y-direction 1 [m/s] + 0.05 [m/s/s]
Wind Z-direction 1 [m/s] + 0.05 [m/s/s]

1Due to a difference in satellite ephemeris the position bias is usually higher in Z-direction
2The wind is modeled as a constant speed [m/s] plus a random walk [m/s/s]
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Appendix C

Observability Values

C-1 QRsvd.m

Listing C.1: QRsvd.m
1f u n c t i o n [ s ] = Q R s v d ( A , tol , l o o p M a x )

% c a l c u l a t i n g the s i n g u l a r v a l u e s in a s t a te o r d e r e d way

% Si -> xi , each s i n g u l a r v a l u e c o r r e s p o n d s to each s t at e as d e f i n e d

% in the o b s e r v a b i l i t y m a t r i x A

%

6%

% s y n t a x : S = Q R sv d ( A , tol , l o o p M a x )

%

% s i n g u l a r v a l u e s S are c a l c u l a t e d for m a t r i x A , with t o l e r a n c e

% tol that is used w h i l e i t e r a t i n g

11%

%

% 1 8 / 0 3 / 2 0 1 0

% last u p d a t e d : 1 8 / 0 8 / 2 0 1 0

% Bart Hummelink , MSc t h e s i s

16

% i n i t i a l i z e

if ˜ ex i s t ( ’ tol ’ , ’ var ’ ) % if no t o l l e r a n c e is g i v e n

21tol = 10ˆ−15;
end

if ˜ ex i s t ( ’ ’ , ’ var ’ ) % if no max # l o o p s is g i v e n

s i z eA=size ( A ) ;
26l o o p M a x=10∗ max ( s i z e A ) ;

end

l o o p C o u n t e r =0;
31

u=eye ( si z e A (1) ) ;
s=A ’ ;
v=eye ( si z e A (2) ) ;

36
E r r o r = 10ˆ300;
% r u n n i n g

w h i l e Er r o r > tol & l o o p C o u n t e r < l o o p M a x ;
[ q , s ] = qr ( s ’ ) ;

41
e=triu ( s , 1 ) ; % e x t r a c t i n g v a l u e s a b o v e d i a g o n a l

E=norm ( e ( : ) ) ;
F=norm ( diag ( s ) ) ; % sum of s i n g u l a r v a l u e s

if F==0, F=1; end
46Er r o r=E/F ;

l o o p C o u n t e r=l o o p C o u n t e r+1;
end

% c o r r e c t i n g s i g n s of s i n g u l a r v a l u e s
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51ss = diag ( s ) ;
s = ze r o s ( s iz e A (2) ) ;

for i = 1: l e n g t h ( ss )
ssi = ss ( i ) ;

56s ( i , i ) = abs ( ssi ) ;
if ssi<0

u ( : , i ) = −u ( : , i ) ;
end

end

61
s = diag ( s ) ;
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Figure C-1: Singular values states x, y and z sensor configuration 2
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Figure C-2: Singular values states u, v and w sensor configuration 2
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Figure C-3: Singular values states φ, θ and ψ sensor configuration 2
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Figure C-4: Singular values states bAx , bAy and bAz sensor configuration 2
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Figure C-5: Singular values states bp, bq and br sensor configuration 2
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Figure C-6: Singular values states Wx, Wy and Wz sensor configuration 2
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C-3 Singular Values Sensor Configuration 6
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Figure C-7: Singular values states x, y and z sensor configuration 6
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Figure C-8: Singular values states u, v and w sensor configuration 6
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Figure C-9: Singular values states φ, θ and ψ sensor configuration 6
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Figure C-10: Singular values states bAx , bAy and bAz sensor configuration 6
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Figure C-11: Singular values states bp, bq and br sensor configuration 6
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Figure C-12: Singular values states Wx, Wy and Wz sensor configuration 6
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Figure C-13: Singular values states x, y and z sensor configuration 7
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Figure C-14: Singular values states u, v and w sensor configuration 7
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Figure C-15: Singular values states φ, θ and ψ sensor configuration 7
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Figure C-16: Singular values states bAx , bAy and bAz sensor configuration 7

B. A. Hummelink Fixed-Wing UAV Integrated Navigation with Low-Cost IMU/GPS



C-4 Singular Values Sensor Configuration 7 195

 

 

A = 0
ω = 0

time[s]

σ
1
5
[−

]

time[s]

σ
1
4
[−

]

time[s]

σ
1
3
[−

]

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

0.025
0.03
0.035
0.04
0.045
0.05
0.055

0

10

20

30

40

50

0

10

20

30

40

50

Figure C-17: Singular values states bp, bq and br sensor configuration 7
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Figure C-18: Singular values states Wx, Wy and Wz sensor configuration 7
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C-5 Singular Values Sensor Configuration 8
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Figure C-19: Singular values states x, y and z sensor configuration 8
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Figure C-20: Singular values states u, v and w sensor configuration 8
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Figure C-21: Singular values states φ, θ and ψ sensor configuration 8
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Figure C-22: Singular values states bAx , bAy and bAz sensor configuration 8
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Figure C-23: Singular values states bp, bq and br sensor configuration 8
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Figure C-24: Singular values states Wx, Wy and Wz sensor configuration 8
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Figure C-25: Singular values states x, y and z sensor configuration 2 + AC
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Figure C-26: Singular values states u, v and w sensor configuration 2 + AC
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Figure C-27: Singular values states φ, θ and ψ sensor configuration 2 + AC
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Figure C-28: Singular values states bAx , bAy and bAz sensor configuration 2 + AC
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Figure C-29: Singular values states bp, bq and br sensor configuration 2 + AC
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Figure C-30: Singular values states Wx, Wy and Wz sensor configuration 2 + AC
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Appendix D

Generic Aerosonde UAV Simulations
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Figure D-1: 3D position, generic Aerosonde UAV simulation
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Figure D-2: Angle of attack α, side-slip angle β and true airspeed VT
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Figure D-3: Environmental properties, temperature and gust velocities in an Earth reference
frame FE
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Figure D-4: Throttle and electric rudder input signal
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Figure D-6: Position in body-fixed reference frame FB
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Figure D-7: Velocity in body-fixed reference frame FB
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Figure D-8: GPS position in Earth reference frame FE
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Figure D-12: Estimated position states EKF, generic Aerosonde UAV simulation

x
B
[m

]
y B

[m
]

z B
[m

]

time[s]

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

-30

-20

-10

0

0

5

10

15

20

0

10

20

30

40

Figure D-13: Error position states EKF, generic Aerosonde UAV simulation

Fixed-Wing UAV Integrated Navigation with Low-Cost IMU/GPS B. A. Hummelink



210 Generic Aerosonde UAV Simulations

u
B
[m
/s
] estimated

true

v B
[m
/s
]

w
B
[m
/s
]

time[s]

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

0

2

4

6

-10

-5

0

5

20

25

30

Figure D-14: Estimated velocity states EKF, generic Aerosonde UAV simulation
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Figure D-16: Estimated Euler angle states EKF, generic Aerosonde UAV simulation

φ
[d
eg
]

θ
[d
eg
]

ψ
[d
eg
]

time[s]

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

-20

-10

0

10

20

-10

-5

0

5

10

-20

-10

0

10
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D-2 Results EKF Identification no Gust
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Figure D-18: Estimated position states EKF, generic Aerosonde UAV simulation
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Figure D-19: Error position states EKF, generic Aerosonde UAV simulation
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Figure D-20: Estimated velocity states EKF, generic Aerosonde UAV simulation
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Figure D-21: Error velocity states EKF, generic Aerosonde UAV simulation
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Figure D-22: Estimated Euler angle states EKF, generic Aerosonde UAV simulation
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Figure D-23: Error Euler angle states EKF, generic Aerosonde UAV simulation
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Figure D-24: Estimated position states IEKF, generic Aerosonde UAV simulation
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Figure D-25: Error position states IEKF, generic Aerosonde UAV simulation
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Figure D-26: Estimated velocity states IEKF, generic Aerosonde UAV simulation
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Figure D-27: Error velocity states IEKF, generic Aerosonde UAV simulation
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Figure D-28: Estimated Euler angle states IEKF, generic Aerosonde UAV simulation

φ
[d
eg
]

θ
[d
eg
]

ψ
[d
eg
]

time[s]

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

-20

-10

0

10

20

-10

-5

0

5

10

-20

-10

0

10

Figure D-29: Error Euler angle states IEKF, generic Aerosonde UAV simulation
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D-4 Results IEKF Identification no Gust
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Figure D-30: Estimated position states IEKF, generic Aerosonde UAV simulation
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Figure D-31: Error position states IEKF, generic Aerosonde UAV simulation
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Figure D-32: Estimated velocity states IEKF, generic Aerosonde UAV simulation
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Figure D-33: Error velocity states IEKF, generic Aerosonde UAV simulation
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Figure D-34: Estimated Euler angle states IEKF, generic Aerosonde UAV simulation
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Figure D-35: Error Euler angle states IEKF, generic Aerosonde UAV simulation
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Figure D-36: Estimated Euler angles SO(3), generic Aerosonde UAV simulation
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Figure D-37: Error Euler angles SO(3), generic Aerosonde UAV simulation
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D-6 Results Non-Linear SO(3) Identification no Gust
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Figure D-38: Estimated Euler angles SO(3), generic Aerosonde UAV simulation
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Figure D-39: Error Euler angles SO(3), generic Aerosonde UAV simulation
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Small Turns Aerosonde UAV
Simulations
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Figure E-1: 3D position, small turns Aerosonde UAV simulation
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Figure E-3: Environmental properties, temperature and gust velocities in an Earth reference
frame FE
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Figure E-7: Velocity in body-fixed reference frame FB
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Figure E-8: GPS position in Earth reference frame FE

u
G
P
S
[m
/s
]

GPS velocity
true velocity

v G
P
S
[m
/s
]

time[s]

w
G
P
S
[m
/s
]

0 100 200 300 400 500 600 700

0 100 200 300 400 500 600 700

0 100 200 300 400 500 600 700

-5

0

5

10

15

-40

-20

0

20

40

-40

-20

0

20

40

Figure E-9: GPS velocity in Earth reference frame FE
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Figure E-10: Accelerometer
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Figure E-12: Estimated position states EKF, small turns Aerosonde UAV simulation
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Figure E-13: Error position states EKF, small turns Aerosonde UAV simulation
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Figure E-14: Estimated velocity states EKF, small turns Aerosonde UAV simulation
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Figure E-15: Error velocity states EKF, small turns Aerosonde UAV simulation
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Figure E-16: Estimated Euler angle states EKF, small turns Aerosonde UAV simulation

φ
[d
eg
]

θ
[d
eg
]

ψ
[d
eg
]

time[s]

0 100 200 300 400 500 600 700

0 100 200 300 400 500 600 700

0 100 200 300 400 500 600 700

-40

-20

0

20

-5

0

5

10

15

-20

-10

0

10

Figure E-17: Error Euler angle states EKF, small turns Aerosonde UAV simulation
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E-2 Results EKF Identification no Gust
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Figure E-18: Estimated position states EKF, small turns Aerosonde UAV simulation
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Figure E-19: Error position states EKF, small turns Aerosonde UAV simulation
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Figure E-20: Estimated velocity states EKF, small turns Aerosonde UAV simulation
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Figure E-22: Estimated Euler angle states EKF, small turns Aerosonde UAV simulation
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Figure E-23: Error Euler angle states EKF, small turns Aerosonde UAV simulation
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Figure E-24: Estimated position states IEKF, small turns Aerosonde UAV simulation
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Figure E-26: Estimated velocity states IEKF, small turns Aerosonde UAV simulation
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Figure E-28: Estimated Euler angle states IEKF, small turns Aerosonde UAV simulation
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Figure E-29: Error Euler angle states IEKF, small turns Aerosonde UAV simulation
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E-4 Results IEKF Identification no Gust
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Figure E-30: Estimated position states IEKF, small turns Aerosonde UAV simulation
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Figure E-31: Error position states IEKF, small turns Aerosonde UAV simulation
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Figure E-32: Estimated velocity states IEKF, small turns Aerosonde UAV simulation
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Figure E-33: Error velocity states IEKF, small turns Aerosonde UAV simulation
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Figure E-34: Estimated Euler angle states IEKF, small turns Aerosonde UAV simulation
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Figure E-35: Error Euler angle states IEKF, small turns Aerosonde UAV simulation
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Figure E-36: Estimated Euler angles SO(3), small turns Aerosonde UAV simulation
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E-6 Results Non-Linear SO(3) Identification no Gust
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Figure E-38: Estimated Euler angles SO(3), small turns Aerosonde UAV simulation
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Figure E-39: Error Euler angles SO(3), small turns Aerosonde UAV simulation
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Large Turns Aerosonde UAV
Simulations
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Figure F-3: Environmental properties, temperature and gust velocities in an Earth reference
frame FE
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Figure F-6: Position in body-fixed reference frame FB
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Figure F-7: Velocity in body-fixed reference frame FB
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Figure F-11: Gyroscopes
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Figure F-12: Estimated position states EKF, large turns Aerosonde UAV simulation

x
B
[m

]
y B

[m
]

z B
[m

]

time[s]

0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500

-60

-40

-20

0

-20

-10

0

10

-20

0

20

40

Figure F-13: Error position states EKF, large turns Aerosonde UAV simulation
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Figure F-14: Estimated velocity states EKF, large turns Aerosonde UAV simulation
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Figure F-15: Error velocity states EKF, large turns Aerosonde UAV simulation
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Figure F-16: Estimated Euler angle states EKF, large turns Aerosonde UAV simulation
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Figure F-17: Error Euler angle states EKF, large turns Aerosonde UAV simulation
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F-2 Results EKF Identification no Gust
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Figure F-18: Estimated position states EKF, large turns Aerosonde UAV simulation
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Figure F-19: Error position states EKF, large turns Aerosonde UAV simulation
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Figure F-20: Estimated velocity states EKF, large turns Aerosonde UAV simulation
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Figure F-21: Error velocity states EKF, large turns Aerosonde UAV simulation
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Figure F-22: Estimated Euler angle states EKF, large turns Aerosonde UAV simulation
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Figure F-23: Error Euler angle states EKF, large turns Aerosonde UAV simulation
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Figure F-24: Estimated position states IEKF, large turns Aerosonde UAV simulation
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Figure F-25: Error position states IEKF, large turns Aerosonde UAV simulation
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Figure F-26: Estimated velocity states IEKF, large turns Aerosonde UAV simulation
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Figure F-27: Error velocity states IEKF, large turns Aerosonde UAV simulation
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Figure F-28: Estimated Euler angle states IEKF, large turns Aerosonde UAV simulation
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Figure F-29: Error Euler angle states IEKF, large turns Aerosonde UAV simulation
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F-4 Results IEKF Identification no Gust
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Figure F-30: Estimated position states IEKF, large turns Aerosonde UAV simulation
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Figure F-31: Error position states IEKF, large turns Aerosonde UAV simulation
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Figure F-32: Estimated velocity states IEKF, large turns Aerosonde UAV simulation
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Figure F-33: Error velocity states IEKF, large turns Aerosonde UAV simulation
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Figure F-34: Estimated Euler angle states IEKF, large turns Aerosonde UAV simulation
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Figure F-35: Error Euler angle states IEKF, large turns Aerosonde UAV simulation
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Figure F-36: Estimated Euler angles SO(3), large turns Aerosonde UAV simulation
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Figure F-37: Error Euler angles SO(3), large turns Aerosonde UAV simulation
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F-6 Results Non-Linear SO(3) Identification no Gust
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Figure F-38: Estimated Euler angles SO(3), large turns Aerosonde UAV simulation
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Figure F-39: Error Euler angles SO(3), large turns Aerosonde UAV simulation
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Flight Test Data

G-1 Log-file 2010-10-05/LOG00039

X
N
E
D
[m

]

YNED[m]

-500 -400 -300 -200 -100 0 100 200

-300

-250

-200

-150

-100

-50

0

50

100

150

Figure G-1: Flight trajectory, LOG00039
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Figure G-2: GPS positions in NED, LOG00039
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Figure G-3: GPS and barometer height in NED and GPS processing time, LOG00039
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Figure G-5: Accelerometer signals in FB, LOG00039
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Figure G-6: Gyroscope signals in FB, LOG00039
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Figure G-7: Magnetometer signals, converted to unit amplitude in FB, LOG00039
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G-1-1 Results EKF Identification
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Figure G-8: Estimated position states EKF, LOG00039
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Figure G-9: Estimated velocity states EKF, LOG00039
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Figure G-10: Estimated Euler angle states EKF, LOG00039
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G-1-2 Results IEKF Identification
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Figure G-11: Estimated position states IEKF, LOG00039
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Figure G-12: Estimated velocity states IEKF, LOG00039
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Figure G-13: Estimated Euler angle states IEKF, LOG00039

G-1-3 Results Non-Linear SO(3) Identification
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Figure G-14: Estimated Euler angle states SO(3), LOG00039
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G-2 Log-file 2010-10-05/LOG00042
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Figure G-15: Flight trajectory, LOG00042
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Figure G-16: GPS positions in NED, LOG00042
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Figure G-17: GPS and barometer height in NED and GPS processing time, LOG00042

B. A. Hummelink Fixed-Wing UAV Integrated Navigation with Low-Cost IMU/GPS



G-2 Log-file 2010-10-05/LOG00042 273

V
N
[m
/s
]

V
E
[m
/s
]

V
D
[m
/s
]

time [samples]

0 5000 10000 15000

0 5000 10000 15000

0 5000 10000 15000

-10

-5

0

5

10

-40

-20

0

20

40

-20

0

20

40

Figure G-18: GPS velocities in NED, LOG00042
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Figure G-19: Accelerometer signals in FB, LOG00042
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Figure G-20: Gyroscope signals in FB, LOG00042
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Figure G-21: Magnetometer signals, converted to unit amplitude in FB, LOG00042
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G-2-1 Results EKF Identification
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Figure G-22: Estimated position states EKF, LOG00042
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Figure G-23: Estimated velocity states EKF, LOG00042
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Figure G-24: Estimated Euler angle states EKF, LOG00042
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G-2-2 Results IEKF Identification
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Figure G-25: Estimated position states IEKF, LOG00042
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Figure G-26: Estimated velocity states IEKF, LOG00042
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Figure G-27: Estimated Euler angle states IEKF, LOG00042

G-2-3 Results Non-Linear SO(3) Identification
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Figure G-28: Estimated Euler angle states SO(3), LOG00042
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G-3 Log-file 2010-10-13/LOG00050
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Figure G-29: Flight trajectory, LOG00050
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Figure G-30: GPS positions in NED, LOG00050
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Figure G-31: GPS and barometer height in NED and GPS processing time, LOG00050
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Figure G-32: GPS velocities in NED, LOG00050
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Figure G-33: Accelerometer signals in FB, LOG00050
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Figure G-34: Gyroscope signals in FB, LOG00050
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Figure G-35: Magnetometer signals, converted to unit amplitude in FB, LOG00050
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G-3-1 Results EKF Identification
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Figure G-36: Estimated position states EKF, LOG00050
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Figure G-37: Estimated velocity states EKF, LOG00050
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Figure G-38: Estimated Euler angle states EKF, LOG00050
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G-3-2 Results IEKF Identification
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Figure G-39: Estimated position states IEKF, LOG00050

u
B
[m

]
v B

[m
]

w
B
[m

]

time [samples]

0 2000 4000 6000 8000 10000 12000 14000 16000

0 2000 4000 6000 8000 10000 12000 14000 16000

0 2000 4000 6000 8000 10000 12000 14000 16000

-10

-5

0

5

10

-10

-5

0

5

10

-10

0

10

20

30

Figure G-40: Estimated velocity states IEKF, LOG00050
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Figure G-41: Estimated Euler angle states IEKF, LOG00050
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Figure G-42: Estimated Euler angle states SO(3), LOG00050
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