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Abstract

Mangroves are forest ecosystems growing in (sub)tropical saline coastal environments. With their unique
root structure they serve as important natural coastal protection and provide habitats with excellent condi-
tions for cultivating fish, shrimp and crab species. Despite all benefits mangrove forests are disappearing at
alarming rates around the world but especially in Asia such as the Mekong Delta coast. Therefore, this re-
search focusses on the Ca Mau Province in Vietnam. The Ca Mau province is the southernmost province of
Vietnam with mangroves present along the coastlines, the Mui Ca Mau National Park and in mixed mangrove
aquaculture farms. Remote sensing has been widely proven to be essential in mapping mangrove ecosys-
tems. Previous research used either expensive optical and radar data sources or free but lower resolution
systems. This study is the first that uses the new Copernicus Sentinel-1 radar and Sentinel-2 multispectral
satellite missions that provide free available data with high spatial (10-20 meter) and temporal (10-12 days)
resolution. Since optical data is prone to cloud effects and radar data is hard to interpret, both data sets are
combined to investigate improvements for classifying mangroves. The data is processed in the new online
Google Earth Engine platform providing a powerful tool for big data applications such as land cover classifi-
cation. Optical data is found to separate mangroves by their spectral reflectance mainly in the near-infrared
wavelength domain. The dominant mangrove species in the Ca Mau province, Rhizophora Apiculata and
Avicennia Alba, are found to be separable from comparing unsupervised clustering results with ground truth
locations. The C-band radar signal is dominated by volume scattering, indicating the density of the canopy.
Especially VV-polarization has good correlation with canopy parameters. To improve information from the
radar signal a temporal analysis is executed. Seasonal variations are quantified and show an increase ac-
cording to the spatial succession of mangroves. Pioneer species, such as Avicennia genus, show less seasonal
variations than mature species, such as Rhizophora genus. With the previous information five classes are
defined: urban area, water and three mangrove classes: Rhizophora Apiculata species in extensive shrimps,
Rhizophora Apiculata species in natural environment and Avicennia Alba species. A classification method is
set-up in the Google Earth Engine with a Random Forest classifier using the satellite data inputs and ground
truth training input of the five classes. A combination of the optical data with the temporal information of
the radar data is found to be the best data input for separating those five classes. Classification results are
obtained for discriminating mangrove types up to an overall accuracy of 87%. The classification gets less reli-
able when mangrove species are mixed or at locations where the ground truth training input was scarce. With
the resulting yearly land cover maps land cover changes can be detected. Comparing the land cover map of
2017 with a mangrove cover product of 2000 shows a regression along the southern coastline. No significant
changes inside the shrimp farms are found between 2016 and 2017 but with the future availability of a long
time series of Sentinel-1 and 2 data those can be detected with the method that is resulted from this study.
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1
Introduction

Mangroves are forest ecocystems that occur in saline coastal environments where a tropical or subtropical
climate is present. With their salt tolerant roots mangrove ecosystems are able to survive in intertidal areas
where a combination of salt sea water and fresh river water is present. Mangroves are valuable ecological and
economic resource and they serve as a very important factor in coastal protection. However, mangroves are
under big threat and many is already been lost in the last decades [2]. Remote sensing has been proven to
be a valuable tool in analysing and monitoring mangroves. Many different methods have been used and this
research will focus in using the new radar Sentinel-1 and optical Sentinel-2 missions for a better knowledge
in mangrove mapping [32].

This first chapter includes some general background information. The research area will be described,
some general information about mangrove ecosystems and the Sentinel satellite missions. In the end of this
chapter the research objective is given by means of the problem statement and project subscription, followed
by the research questions and a report outline.

1.1. Vietnamese Mekong Delta and Ca Mau province
The Mekong river is one of the world’s greatest rivers, with a length of 4800 km and a basin area of 795 000
km2 [47]. The Mekong river origins on the Tibetan plateau in China and flows through 5 other countries;
Myanmar, Laos, Thailand, Cambodia and finally Vietnam.

The Mekong Delta is the region in south-western Vietnam where the Mekong river flows through a net-
work of distributaries finally ending in the South China sea. The Mekong Delta region covers an area of 39
000 km2 and is home to more than 17 million inhabitants. The delta is the principal rice-producing region
in Vietnam and is therefore also called the ’rice bowl’ of Vietnam. But, also fruit and vegetables are produced
as well as a lot of aquaculture is present. During the wet season, from July to December, a large part of the
Delta is flooded due to both the high discharges of the Mekong river and local precipitation. On the contrary,
during the dry season there’s a water shortage and salinity intrusion forms a serious threat. The Mekong Delta
is the region with the smallest percentage forest area in Vietnam. The only provinces with large forests are Ca
Mau Province and Kien Giang Province, together accounting for two thirds of the region’s forest area.

Ca Mau Province is the most southern province of the 63 provinces in Vietnam. Because of the big coast
line the area is most vulnerable for coastal erosion. An extensive network of canals provides a popular means
of transport but since 1-2 years a new road to Dat Mui increases the accessibility of the area. The Mui Ca Mau
National park serves as a important tourism destination in the Ca Mau province together with the U Minh
biosphere reserve.

Ca Mau Province has the largest total area of mangrove forest in the Mekong Delta. However, the area of
mangrove forest has declined 50% over the past few decaded, primarily due to increasing population pres-
sure and the expansion of shrimp farming [39, 53]. In the Mekong Delta there are multiple ways of shrimp
farming: intensive, semi extensive, shrimp-rice and shrimp-mangrove. Intensive systems rely completely on
concentrated feed and fertilizers. Intensive ponds do not have any mangrove and are recognizable by the
paddle wheels (figure 1.3a). Semi extensive shrimp farms consist of natural feed with additional feed and
fertilizer. In 2008 70% of Ca Mau’s total land was occupied by semi-extensive shrimp farms. According to
provincal regulations farmers must have 60% of their total area to be mangroves and 40% aquaculture [7, 21].
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Shrimp ponds in mixed farms are often incorporated into the mangroves as long thin channels within the
mangrove themselves (figure 1.3b).

Figure 1.1: Map of the Mekong Delta in Vietnam [33] Figure 1.2: Map of the Ca Mau province [9]

(a) Intensive shrimp farming (b) Extensive shrimp-mangrove farming

Figure 1.3: Different types of shrimp farming in Ca Mau province

1.2. Mangrove ecosystems
Mangroves refer to tree structures typically found in saline coastal environments in the tropics and subtrop-
ics, primarily between 25 degrees north and 25 degrees south. Mangrove forests are home to a large variety
of fish, crab and shrimp species. The mangrove ecosystem has developed specialized adaptations to live in
this tidal environment. The dense roots of mangrove forests help stabilize the coastline and prevents ero-
sion from waves and storms. In Vietnam are 27 different mangrove species. Huge afforestation activities in
Vietnam began in 1975, after the unification of the country. Many mangroves are lost due to the construc-
tion of shrimp farming. Since 2000 the government is trying to rehabilitate the mangroves [20]. Also climate
change has a big effect on the mangrove area due to increasing sea-level, increasing CO2 and higher air and
water temperature. The average rate of mangrove area loss worldwide due to climate change is 1-2 % total
area per year [3].
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1.3. Sentinel missions
The European Commission in cooperation with the European Space Agency (ESA) direct world’s largest sin-
gle earth observation programme Copernicus. In the space component of the programme ESA develops a
family of five different Sentinel missions. The goal of the Sentinel program is to replace the current older
Earth observation missions. Many current missions are or will soon be nearing the end of the operational
life time. The Sentinel program ensures continuation of ongoing studies with new and better equipment.
Each mission will focus on a different aspect of Earth observation; Atmospheric, Oceanic, and Land mon-
itoring. This study will focus on the Sentinel-1 and Sentinel-2 missions. The Sentinel-1A and 1B satellites
carry a Synthetic Aperture Radar (SAR) in C-band that provides all weather, day and night imagery. The first
imagery of Sentinel-1A became available on 6 October 2014 and his twin Sentinel-1B was launched 25 April
2016. Together they provide an image interval of every 6 days. The Sentinel-2A and 2B satellites carry a mul-
tispectral imager (MSI) with 13 spectral channels in the visible/near infrared(NIR) and short wave infrared
(SWIR) spectral range with spatial resolutions of 10, 20 and 60 meters. The Sentinel-2A satellite delivers data
since October 2015 and Sentinel-2B is launched in March 2017. Together they will reach an image interval of
every 5 days.

1.4. Problem statement and project description
Mangrove ecosystems have been a widely studied subject around the globe for the last years. Remote sensing
has been proven to be essential in monitoring and mapping this ecosystem. Many different remote sensing
sensors have been used in research to monitor mangroves: from aerial photography to hyperspectral imagery
and different radar data sources [32].

Medium-resolution optical data studies show promising results for multiple applications in different re-
gions of interest. There has been studies on Vietnam specifically, most of them on change detection of the
mangrove area. However, a investigation of the unique properties of different mangroves types in southern
Vietnam hasn’t been found. Also, the medium-resolution imagery that has been used (ASTER, IRS, SPOT,
Landsat) have some drawbacks. Some of them have good resolution but are not freely available (e.g. SPOT),
others are free but the resolution of 30 meter is not optimal (e.g. Landsat). The new Sentinel-2 mission is
better on both sides: it is free available and has resolution of 10 and 20 meters, depending on the used band
combinations.

Radar data has a big advantage to optical data by not being affected to clouds, which are abundant in
tropical regions. Different effects and relationships of canopy, stand structures etc have been examined. The
different wavelengths of radar, L-, C- or X-band have their own benefits but each of them can give informa-
tion on mangrove structures. However, most of the former radar missions are already ended (e.g. Envisat,
Radarsat) so an investigation for present day mangrove properties discrimination is not possible with those.
Sentinel-1 is scheduled to stay active for at least the next 4 years. Still, using radar data is more challeng-
ing than optical data. Therefore, in this study the possibilities to fuse both data to increase information of
mangrove discrimination is investigated.

1.5. Research questions
The above mentioned objectives are transferred to the following research questions:

• What is the best method for discriminating mangrove types in Vietnam using radar and optical satelite
remote sensing?

1. Why do we need to study mangroves in Vietnam?

2. What are the unique properties to discriminate mangroves?

3. Can we extract those unique properties from satellite imagery? How?

4. What differences in mangrove types can be extracted from satellite imagery?

5. How can space-borne optical and radar data be used for the classification of mangroves?

6. How to validate the accuracy of the classification results?

7. How can the quality of the classification result be improved by combining optical and radar data?

8. Can this method be used to reach nationwide or even worldwide coverage? How?
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1.6. Report outline
This report consists of seven chapters. Chapter 2 gives an introduction of how remote sensing can be used
for mangrove monitoring. This chapter will give answers to research questions 1 till 4. Chapter 3 will go into
detail on how Sentinel-1 and Sentinel-2 are processed to serve as input for the classification methods, also the
area of interest is explained. Chapter 4 introduces the different methods for the classification of mangroves
and is subdivided into unsupervised and supervised classification. This chapter gives answers to research
questions 5 till 7. Chapter 5 describes the results from those methods in detail. The results are discussed in
chapter 6 and a final conclusion with an answer on the primary research question is given in chapter 7.



2
Remote sensing of mangroves

This chapter describes the needs to monitor mangroves and the ability of remote sensing for performing this
task. Section 2.1 goes in detail about different applications where mangroves have unique and essential prop-
erties such as coastal protection and the conservation of flora and fauna. Section 2.2 describes the different
species and properties of the mangroves that are present in the Ca Mau province. From section 2.3 the focus
lies on remote sensing systems that will be used in this research. Specific mangrove properties that can be
extracted from those systems are explained in section 2.4.

2.1. Mangroves in Vietnam
In 1.2 a small introduction is given in mangrove ecosystems. However, at first we need to state the reasons
why there is a need to monitor mangroves along the Vietnamese Mekong Delta coast. Many reasons are stated
in literature and are summarized in this section.

2.1.1. Coastal protection
The main reason why mangroves in southern Vietnam need to be studied is their potential for coastal pro-
tection. Mangroves can significantly contribute to coastal protection through wave attenuation, storm surge
reduction, erosion protection and sediment collection and stabilisation. The role of mangrove ecosystems
are investigated for different coastal phenomena: waves, storm surges and sea level rise. Waves entering
the mangrove forest lose energy as they pass through the network of trunks, branches and aerial roots. Wave
height can be reduced 13% to 66% over 100 meter of mangroves. The highest rate of wave height reduction per
unit distance occurs near the mangrove edge and when they pass a greater density of obstacles. Mangroves
with aerial roots attenuate waves the most. Measured rates of storm surge reduction through mangroves
range from 5 to 50 centimetres water level reduction per kilometre of mangrove width. Although mangrove
belts of one kilometre are rare, a smaller reduction of water level also can have a great impact on the extent
of flooding [35, 36]. Mangrove also has a role of keeping suspended sediments in order to protection erosion.
For this, there is a need of supply of sediments from the rivers. If there are insufficient nutrients from this
sediment source the mangroves can die. Therefore monitoring mangroves is important for integrated delta
management.

Despite all these benefits at many locations along the Mekong Delta coast (and other mangrove coasts
over the entire world) mangrove forests are disappearing at alarming rates. Therefore, there is a big need
of maintaining existing mangrove forests and planting new mangrove where possible. In many cases the
mangrove forest first needs to be brought back to the system, before the coast can rely on its protection ser-
vices [50]. For this reason mangrove rehabilitation programmes are set up by, amongh others, the Deutsche
Gesellschaft für Internationale Zusammenarbeit (GIZ). Stefan Groenewold is the Technical Adviser of this
Integrated Coastal Management Programme (ICMP) and explained me about their mangrove rehabilitation
programme. The objective of this programme is to protect and strengthen the coast in the Mekong Delta
area. One of the methods is improving the stability of the mangrove belt along the coast [51]. Many steps are
involved in those rehabilitation programmes: decision making for mangrove conservation and planting, site
assessment, planting techniques and finally monitoring [49]. Mangrove monitoring contains different phases
from data collection, storage, analysis to reporting. With this information the forest health and development,
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the survival rate of newly planted seedlings, erosion and forest cover are needed to be found. Many methods
are used for this monitoring and remote sensing is a very useful tool.

2.1.2. Fauna and aquaculture
As mentioned in section 1.2 mangroves are ecosystems unique in the tropics and subtropics which contain
many special species. They provide habitats for species which are adapted to a saline tidal environment,
for example aquatic organisms such as algae, crabs, worms, decapods (shrimps, squids, lobsters etc) and
many kinds of fish [40]. Studies on fish indicate that the mangrove ecosystem in Vietnam consist of 258
different species belonging to 70 families. The mangrove ecosystem with many nutrients is also an excellent
environment for cultivating fish and crab species. This generates the income of many people in Mekong
Delta.

However, there is an enormous decrease of mangroves for the construction of those shrimp and fish ponds
[6, 39, 52, 53, 55]. There have been set rules by the Vietnamese government to protect the mangroves. Fol-
lowing the law on rules for land use and natural resource utilisation for reforestation of mangrove forests
(1999) shrimp farming-forestry enterprises (SFFEs) needs to have 60% of the farm area to be protected man-
grove. The mangroves provide useful help to the cultivation of shrimps in integrated farming systems [21].
The farmers don’t see the added value of the mangroves, while having a higher percentage of mangrove is
proven to be beneficial [58]. To monitor the 60/40 rule the mangroves need to be discriminated from other
vegetation to monitor the (changes in) mangrove area.

2.1.3. History
During the Vietnam war (1955-1975) many mangrove forests have been destroyed due to toxic chemicals.
This chemical, also known as Agent Orange, eroded the tree cover and seedling stock, making reforestation
more difficult. Huge afforestation activities in Vietnam began in 1975, after the unification of the country.
Since 2000 the government is trying to rehabilitate the mangroves [20]. The Can Gio biosphere reserve, for
example, was almost completely destroyed after the war and is now still being restored. An area of 20.000
ha of mangroves is already been replanted. We need to study the mangroves to see how the rehabilitation
programmes are functioning and how different species are developing.

2.1.4. Climate change
The average rate of mangrove area loss worldwide due to climate change is 1-2 % total area per year [3].
Climate change has a big effect on the mangrove area due to increasing sea-level, increasing CO2 and higher
air and water temperature. As mentioned in section 2.1.1 mangroves adapt to the sea level rise by increasing
the soil surface elevation. By measuring this increase we can get an idea of how much sea level rise occurs
along the coastal areas. Due to climate change the tropical regions can be expanding which means mangrove
is able to grow on new locations. Monitoring (new) mangrove can indicate those locations.

2.1.5. Carbon storage
A final reason for studying mangrove is its potential for carbon storage. Mangrove forests are the most im-
portant sink of carbon (C) in the tropics. Conservation of mangrove forest is needed to increase ecosystem C
storage and to offset carbon emmission at the regional scale [54].

2.2. Mangrove properties
In the next section the properties of mangrove are described. There are many different species with different
unique properties that are introduced first.

There are many different numbers available on the amount of different species of mangrove in the Mekong
Delta, Vietnam. It differs from 27 species in whole Vietnam to 69 different species in only southern Vietnam
[20, 40]. The correct number isn’t really of most importance rather than the properties of the different species.
We can subdivide mangroves in different categories associated with their location relative to the shore. The
most important species in the Indonesian and West Pacific region belong to the genera Rhizophora (red
mangroves), Avicennia (black/grey mangroves), Sonneratia, and Laguncularia (white mangroves). The most
common species in Ca Mau Province are shown in figure 2.1. Rhizophora apiculata is the dominant species
and is also the mangrove that is cultivated in the extensive shrimp farms. In this research the main focus is
on differentiating the Rhizophora apiculata and Avicennia alba. This is because Avicennia Alba is a pioneer
species which occurs mainly on the coastline and is important for coastal protection. Rhizophora Apiculata
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is the dominant mature species. Figure 2.1 shows that the structure of the two mangrove types are quite dif-
ferent which makes it easier to differentiate them. More details on these two species are discussed in the next
sections.

Figure 2.1: Succession of mangrove in Ca Mau cape, showing differences typical of each zone [40]

2.2.1. Rhizophora genus
The Rhizophora genus is called the ’true mangrove’ due to its distinctive stilt roots. The most common Rhi-
zophora in Vietnam is the Rhizophora Apiculata, Đước in Vietnamese. During low tide the stilt roots are
often above the water and during high tide they are mostly covered with water. These aerial roots have a
very strong function in wave attenuation, as described in section 2.1.1. Rhizophora apiculata can be distin-
guished by its colour and the shape of the plants generally. The leaves are large, dark-green and glossy. The
developed stands of Rhizophora apiculata are mostly strong monotypic as observed typically in the middle
estuarine reaches with muddy sediments [11]. Measures of Rhizophora Apiculata at different ages show that
their growth rate is highest between the ages of 10-15. The mean height growth/year is the first ten years 0.99
meter per year. The maximum height in Ca Mau province is around 30 meter. Tidal flooding and duration are
equally important factors which regulate growth and distribution of mangrove species. Experiments includ-
ing Rhizophora Apiculata conducted in different coastal areas of Vietnam showed that it is unusual for those
mangroves to grow in places lacking fresh water [40].

2.2.2. Avicennia genus
The Avicennia genus is known as the pioneer of the mangroves. They occupy a diversity of habitats within
the tidal range and across salinity extremes of (sub)tropical sheltered areas. Avicennia genus is dominated
by small trees or shrubs. The Avicennia Alba, Mấm trắng in Vietnamese, is the main pioneer in Vietnam
together with the Avicennia Officinalis. The species is found along tidal river banks, on entrances of tidal
inlets and extending along shoreline mudflats. It is the most common species in new formed mud banks, for
example the accrediting areas of Ca Mau Cape. Alluvium is accumulated here due to the shallow seabed and
weak waves that die down before reaching the shore. There is no other place in Vietnam where mangroves so
quickly and strongly occupy accreted land [40]. Avicennia Alba can be distinguished by its lighter green, pale,
greyish color of the leaves.

2.2.3. Others
Other common species occuring in the Mekong Delta are Sonneratia Alba, Bruguiera Parviflora, Nypa fru-
ticans and Ceriops Tagal. Those species are often present in mixed areas. Therefore it’s hard to distinguish
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them as separate species [40].
The Bruguiera genus is known as Orange mangroves and can be recognized from its distinctive ’knee

roots’. The Sonneratia genus is known as the Apple mangroves and is thus recognizable from the growing
fruits that look like apples. Sonneratia species have cone shaped roots which can grow in a radius of more
than 10 meters around the trunk. Nypa fruticans is known as the Mangrove Palm and is easily recognizable
from other mangroves. It is also known as the underwater coconut with its very big fruits on the stalk.

(a) Avicennia Alba (b) Rhizophora Apiculata

(c) Nypa Fruticans (d) Sonneratia Alba

Figure 2.2: Different mangrove species in Mekong Delta
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2.3. Remote sensing data
The data used in this research is optical and radar satellite remote sensing data. Properties of this data will be
explained in detail in sections 2.3.1 and 2.3.2. The next section, 2.4, goes in detail on how remote sensing can
be used to extract mangrove properties. The last section, 2.5, discusses the issues that still remain in the field
of mangrove remote sensing.

2.3.1. Optical remote sensing
Optical remote sensing is so-called passive remote sensing and makes images of the earth’s surface detecting
the solar radiation reflected by targets on the ground. The solar radiation is measured as electromagnetic
waves in different wavelengths in the visible light, near infrared and short-wave infrared (fig 2.5). The inten-
sity of the reflectance is dependent on the reflectivity of the material in the different wavelength domains.
This reflectivity is dependent on many different factors of which colour, structure and surface texture are
the most important. The differences in reflectance are well identified in a spectral signature plot with the
reflectance as a function of wavelength. Different earth surfaces leads to unique spectral signature plots, as
can be seen in figure 2.3.

Green vegetation is easily recognizable by low reflectance in the visible domain and high reflectance in the
Near Infrared. The steep transition around 0.7 µm is called the red edge. Chlorophyll strongly absorbs light
at wavelengths around 0.45 (blue) and 0.67 µm (red) and reflects strongly in green light (0.51 µm), therefore
our eyes perceive healthy vegetation as green. The high reflectance between 0.7 and 1.3 µm results primarily
from the internal structure of plant leaves (fig 2.4). As this internal structure varies amongst different plant
species, this wavelength range allows the distinction between plant species. Absorption minima found at
longer wavelengths are caused by the water content of the leaves.

The spectral signature of bare soil is less variable. The brown color gives a higher reflectance in the visible
domain and the absence of water increases the reflectance in the shortwave infrared. Other factors affecting
the reflectance are soil texture, surface roughness and the presence of minerals and organic matter.

Clear water is recognisable due to the high absorption of wavelengths longer than 0.8µm. Therefore water
is easily detected with optical remote sensing. Clear water has a lower reflectance in the visible domain than
water with sediments or high chlorophyll concentrations due to algae for example.

2.3.2. Radar remote sensing
RADAR is an acryonym that stands for Radio Detection and Ranging. Radar remote sensing are active remote
sensing systems operating at microwave frequency. Active remote sensing means that the antenna actively
transmit a signal/pulse, electromagnetic waves in the microwave domain, towards a target; in this case the
earth’s surface. The receiving antenna (often the same antenna for transmitting and receiving) measures
the strength of the backscattered signal and the time delay between the transmitted and reflected signal to
determine the distance to the target. The strength of the backscattered signal is dependent on many system
parameters and on properties of the target.

One of those parameters is the wavelength of the radar. The most commonly used wavelengths in radar
remote sensing are L-band λ = 235mm(1.3 GHz), C-band λ = 56mm(5.4GHz) and X-band λ = 30 mm (10GHz).
Microwaves are able to penetrate clouds, canopies and even the upper layer of the soil. How far the waves
penetrate depends on the exact frequencies. The longer the wavelength the further it can penetrate the
canopy. X-band radar only detects the top of the canopy. The L-band radar is able to penetrate an entire
canopy and can detect soil properties or water surface. This radar is often used to measure the soil moisture
content. C-band does not penetrate the entire canopy (only during the emerging stages of the crops) and is
during the mature stage affected by volume scattering in the canopy.

Another system parameter is the polarization of the wave signal. A wave is emitted in either a horizon-
tal or vertical polarization. With a dual-receiver radar the received wave can be measured into a (relative)
horizontal or vertical component, providing information on the target. In single polarization mode HH, hor-
izontal emitted, horizontal received, and VV, vertical emitted, vertical received, are measured. For a dual-
polarized mode a combination of either HH and HV or VV and VH is available. This polarisation scheme is
dependent on the mode of the satellite and will be discussed later. Also the incidence angle influences the
backscatter intensity. A bigger incidence angle causes a lower backscatter intensity. To make meaningful
comparisons between images with a different look angle, the difference in angles should be as small as possi-
ble. In this research this objective is met with incidence angles varying between 35 and 40 degrees at the area
of interest.
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Figure 2.3: Spectral signature plot. Examples of typical spectral
signatures of green vegetation, water and soil are shown

Figure 2.4: Cellular leaf structure and its interaction with electro-
magnetic energy. The top layer with most chlorophyll absorbs most
visible light except for green light. The lower layers, consisting of
irregularly shaped cells, highly reflect the near infrared wavelengths

Figure 2.5: The electromagnetic spectrum showing the parts that
are important in remote sensing. The Shortwave Infrared (SWIR)
belongs in between the Near IR and Thermal IR ranging from 1 to
3 µm [45]

Figure 2.6: Influence of roughness on radar backscatter

Figure 2.7: Influence of incidence angle on radar backscatter Figure 2.8: Surface and volume scattering of a radar beam for trees [19]
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Important target properties that influence the radar’s backscattered signal are geometry, roughness of the
surface and dielectric constant. According to the geometry of the target, targets can be horizontal, vertical
and random scatterers. Horizontal and vertical oriented scatterers have a dominantly horizontal or vertical
structure which strongly reflects horizontal or vertical waves respectively (HH or VV). Cross-polarisations
(VH and HV) are sensitive to both orientations and therefore are indicators of random scatterers. In case of
trees many sorts of scattering are possible, for example direct canopy scattering, double-bounce scattering
and volume. Eight different sources of scattering related to vegetation are shown in figure 2.8. The roughness
of a surface influences the direction of the reflection. Smooth surfaces, with variations much smaller than
the wavelength size, cause a reflection away from the incident wave and give no backscatter at all. Rough
surfaces, variations much bigger than the wavelength size, reflect diffusively and therefore cause a big amount
of backscatter. The dielectric constant is a ratio between electric permittivity of the material of the target and
the permittivity of free space. The dielectric constant is dependent on water and a higher moisture content
leads to a stronger reflection of electromagnetic waves because they penetrate less deep in the target. For
example, also water in leaves makes the amount of reflection bigger and therefore causes a higher backscatter
value.

2.4. Remote sensing of mangrove properties
Now the basics of optical and radar remote sensing are explained (sections 2.3.1 and 2.3.2) and the biological
properties of mangroves are investigated (section 2.2), the next section investigates how those properties
of mangroves can be extracted. Many research has been done on mangroves using remote sensing and a
detailed review about this has been done by Kuenzer et al. [32] in 2011. However, a detailed description of the
properties is not easily to be found. Therefore an overview is made for both spectral properties in optical data
and properties in radar data. Also discriminating between different mangrove species using those properties
is investigated.

2.4.1. Spectral properties of mangrove
Various kinds of green vegetation, including mangroves, produce a high peak in the NIR band and low in the
red and green region of spectrum, as explained in section 2.3.1. A good indicator for vegetation is therefore the
Normalized Difference Vegetation Index (NDVI) which is given by N DV I = N I R−RED

N I R+RED . In this index vegetation
pixels will get a value close to 1 since the values of RED are low and the values for NIR are high. Other pixels
such as bare land, urban area and water will get a value closer to 0.

Many studies use NDVI values for monitoring and mapping mangrove changes. Also false color com-
posites are used to distinguish between very high NIR and lower NIR response. Smooth textures indicate
mangrove from other land cover if they are densely distributed. Dense mangrove forests give higher NIR re-
sponse than sparsely distributed and mixed mangrove areas [31, 42, 44]. Also visual interpretation is still a
highly used method for mangrove mapping. However, confusion between mangroves and other vegetation is
the most commonly reported source of classification error. Though, these traditional methods already give
classification accuracies of mangrove classes ranging from 75% to 95% for producer’s and user’s accuracies
[27]. More specific information on spectral properties of mangrove are based on the differences within the
different species.

2.4.2. Spectral discrimination of mangrove species
Already in 1986 remote sensing studies on mangroves using photographic sensors were executed. Leaf optical
signatures and canopy structures were used to classify mangrove communities and identify changes. Ramsey
(1996) found that black leaf reflectance is higher than red leaf reflectance. Canopy height is correlated to
canopy NIR reflectance, which is mainly dependent on the LAI. Also he found the complexity in describing
the spectral and structural difference of mangroves [43]. Since then a lot of research has been done finding
the origins of those differences in mangrove reflectances. Spectrometer data of those two mangrove species
in Ca Mau, Vietnam (2010) as a stack of mangrove leaves showed that species differ because of the principal
biophysical and chemical properties, such as water, cellulose, leaf pigments as chlorophyll and many more
[32] .

Figure 2.9 shows that discrimination in the 380-750 (visible) wavelength domain is weaker than in the
near-infrared region. The near-infrared signal can better facilitate mangrove discrimination. However, other
studies also have used the region of 400-800 nm to discriminate between different mangrove species. Those
shorter wavelengths in the visible region are influenced by the pigments and chlorophyll content of the leafs



12 2. Remote sensing of mangroves

and therefore influence the color and thus reflectance in this wavelength range. Since the leafs of Avicennia
are brighter green than Rhizophora the reflectance is slightly higher around 550 nm (green light). Longer
wavelengths (800-1050nm) contain noise due to cloud cover, light source fluctuations etc. Differences be-
tween Rhizophora Apiculata and Avicennia Alba reflectance were biggest among 5 different mangrove species
[29]. Some studies mention the near-infrared plateau at 750-800 nm together with the red edge, 690-750 nm,
as important spectral regions for discrimination of vegetation species. With in-situ spectral measurements
mean spectra of six studied mangroves in Ca Mau Province, Vietnam are obtained. In those spectra the near-
infrared plateau and the red edge show the biggest differences [25]. Features that are also used to distinguish
among mangrove communities with medium-resolution satellite data are textural and spectral characteris-
tics of the canopy. The spectral characteristics within a species are defined by age, vitality, phenological and
physiological parameters.

Figure 2.9: Spectral characteristics and their influencing parameters of mangrove species Avicennia marina and Rhizophora Conjugata
(synonym of Rhizophora Apiculata) as measured with an field spectrometer in Ca Mau province, Vietnam [32]

2.4.3. Mangrove properties in radar data
Radar imagery from SAR systems are less intuitive to the common human perception than optical imagery.
It is more challenging to make an interpretation than a natural color composite, for example. The intensity
of the microwave signal that is measured back at the radar satellite is called the radar backscatter coefficient.
This intensity is depending on a lot of different factors. Each system has a wavelength of the transmitted
signal, the polarization of transmitted and received signals and the incidence angle of the signal. Finally, the
specific received backscatter signal is dependent on the interactions with the received surface. For vegetation
the factors that influence the backscatter are internal properties; moisture content, cell structure etc. and ex-
ternal properties; size, geometry, trunks, branches roots and leaves etc [32]. The different backscatter mech-
anisms due to the different wavelength of the radar system can be seen in figure 2.10. Shorter wavelengths
are influenced mainly by the canopy because the signal does not penetrate trough the leaves and trunks etc.
When the wavelength increases there is more penetration and the backscatter can even reach the water or
soil below the canopy. The presence of water results in a significant increase in ground-trunk/two-bounce
scattering and thus in an increase in radar backscatter. This ground-trunk scattering is typically detected by
the longer wavelenght radar, L- and P-band. At shorter wavelengths, C- and X-band, this will only occur if few
leaves are present since the forest canopy dominates the signal [30].

Measurements from simultaneous P-, L- and C-band (AIRSAR) show that at C-band volume scattering is
dominated by the branches for all different polarizations HH, VV and HV. The penetration depth of C-band
is in the order of a few meters within the crown. The radar wave interacts with the upper part of the canopy,
mainly with leaves and twigs. This makes C-band sensitive to crown characteristics like the density, size, per-
mittivity, and orientation of leaves, but also to canopy structure, crown architecture (leaves and branches)
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Figure 2.10: Dominating backscatter mechanisms at different stages of mangrove growth depending on bandwith of radar beam [32].

and canopy heterogeneity. The Leaf Area Index (LAI) plays a dominant role in the observed backscatter since
LAI is a measure of density of forest canopy. Dense canopies, high LAI, are expected to have more backscat-
ter than sparser mangrove areas which contain fewer or no leaves (L AI ≈ 0). As leaf biomass increases, the
backscatter coefficient usually saturates rapidly for the C-band SAR. This saturation in C-band is mainly the
case for HV-polarization, which is the result of multiple scattering in the crown of the mangrove tree. HH-
and VV-polarizations behave differently and continue to increase to a higher biomass saturation threshold.
This increase in backscatter coefficient may be caused by the variations in the canopy structure due to the dif-
ferent growth stages (Fig 2.11). More mature stages have in general a higher leaf biomass. Overall, at C-band,
the best correlations with canopy parameters are obtained with VV-polarization [37]. Another application of
C-band SAR is DEM generation by using interferometry. Assuming the ground is flat the DEM provides infor-
mation of the height of the vegetation. This can be valuable input for classification algorithms or in decision
tree [26].

Figure 2.11: Schematic representation of the successive growth stages of the mangrove forests [37].
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L-band penetrates deeper and can pass through the total canopy in pioneer stages. Scattering is influ-
enced by the trunk and/or ground surface. Multiple scattering can occur between trunk and ground surface.
More mature stages cause volume scattering and for increasing biomass VV and HH show similar values and
stay constant. Cross-polarization HV shows increasing values with increasing biomass. High correlations at
HV-polarization are found with basal area and tree height [37].

Finally, P-band has the longest wavelength (∼ 74 cm) and penetrates most to the underlying surface. At
VV polarization the increasing backscatter is clearly visible for water surfaces. A high sensitivity to biomass is
found with the HV-polarization [37].

During this research The Vietnam Southern Satellite Technology Application Center (STAC), part of the
Vietnam National Satellite Center (VNSC), was visited. This institute has projects about coastal zone envi-
ronment management, impacts of climate change on environment in the Mekong Delta, rice & mangrove
monitoring in Southern Vietnam and about applying active microwave remote sensing for estimating man-
grove forest biomass. Although they used Envisat ASAR C-band radar for rice and mangrove classification
they suggested the PALSAR L-band radar is better for discriminating mangrove properties. With classifica-
tions of 6 classes (>70%, 50-70%, 30-50% canopy cover, mixed shrimp-mangrove, urban and water) and 4
classes (>60%, 30-60% canopy cover, urban and water) the global accuracies for L-band were around 60% for
classification with 6 classes and around 80% with 4 classes. The global accuracies for C-band were around
40% with 6 classes and around 55% for 4 classes.

(a) 4 classes (b) 6 classes

Figure 2.12: Overall accuracy’s for mangrove classification using PALSAR L-band and SPOT5 using two different classification schemes:
Support Vector Machine (SVM) and Maximum Likelihood (MLC)

2.4.4. Discrimination of mangrove species using radar
Discriminating mangrove from non-mangrove has proven to be possible with most different radar systems.
However, discriminating different mangrove species using radar is hard. In this research, the main discrim-
ination in mangrove species is between Rhizophora Apiculata and Avicennia Alba. Since those two species
have a different canopy cover and C-band SAR is dominated by volume scattering of the canopy it can be ex-
pected that the backscatter coefficient of those two species differ. Rhizophora genus consists of dense closed
canopy while Avicennia genus occurs in more open areas with shrubs and less dense canopy. They are found
in different growth stages as can be seen in figure 2.11. However, the best results are obtained when using a
combination of optical and radar input [26]. Extra knowledge, based on local surveys, additional optical data,
maps of zonation patterns and species communities are essential for good discrimation [32].
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2.5. Issues with mangrove remote sensing
As can be noticed in the prior sections there has been lots of research on mangrove ecosystems using remote
sensing. During this project there has also been some investigation with other researchers in the field on the
issues still remaining with mangrove remote sensing.

2.5.1. Data
As can be noticed in section 1.4 and in the previous sections the used data is of big impact on the research
outcomes. Not only the technical specifications as well as the availability of unpaid data. Many research
has been done using expensive high (1 to 4m) resolution optical data like SPOT, Quickbird, IKONOS etc. For
example by Dr. Tuan Quoc Vo, one of the authors of Kuenzer et al. [32], Vo et al. [57, 58] who has done a PhD
research in the field of economic evaluation of mangrove ecosystem services using combined approaches of
remote sensing data and socioeconomic data. The same holds for the paid data of the Vietnamese VNRedSat-
1 images of 10m resolution. On the other hand many research has been done using the free Landsat optical
data that has 30m resolution data with a 16 day revisit time. The same holds for radar imagery which is
often expensive to obtain. Especially long wavelength SAR which are the only waves penetrating through the
mangroves, like PALSAR with L-band is only available as a paid service. But also RADARSAT-1 and 2 with
C-band and Cosmo-Skymed with X-band are expensive data sources. Some free available data, like ASAR on
Envisat, is not operational any more so a new free alternative is highly recommended to use.

As already mentioned in the introduction sections the Sentinel-1 and Sentinel-2 missions are both good
improvements for monitoring mangrove ecosystems. They are both free to use data with good spatial (10-20
meter) and temporal resolution (10-12 days). All details about the Sentinel missions will be covered in the
next chapter.

2.5.2. Data fusion
Another issue that is still largely missing in the field of mangrove remote sensing is the use of data fusion to
improve mangrove monitoring. Some research has already been done, for example by the Vietnam National
Satellite Center (VNSC). They fused PALSAR L-band together with SPOT5 data, the results can be found in fig-
ure 2.12. Optical data showed better results but the combination with radar can improve the overall accuracy,
especially using Maximum Likelihood Classification (MLC). However, both of these data sources are still paid
services. Combining satellite data for better forest monitoring has high potential [26], also with free avail-
able data [46]. The potential of Sentinel-1’s dense SAR time-series is noted in combination with the global
available optical Landsat-8 and/or Sentinel-2 data. Many earth observation research groups either optical or
SAR remote sensing instead of both. Multi-sensor development are helped by the use of large storage and
processing capabilities like the Google Earth Engine. This is already used by Hansen et al but also here only
Landsat optical data is used [24]. In this research the data fusion between C-band SAR (Sentinel-1) and optical
(Sentinel-2) is investigated.

2.5.3. Temporal analysis
The last issue is the use of temporal analysis for mangrove properties extraction. Mangrove properties are
now mainly characterized by certain patterns in wavelength reflectance for example the high peak in the Near
Infrared but the behaviour of this pattern over time has not been discussed. The fruit and flowering of the
mangrove, the propagule maturation but also the seasonality of the weather can influence those patterns. The
same holds for radar backscatter which is known to be dependent on water, roughness and volume scattering
that can differ through time. A temporal analysis will be done to investigate mangrove characteristics in time
series applications.

2.5.4. Cloud-based processing and classification
As mentioned in previous section 2.5.2 Google Earth Engine is a powerful tool for storage of big data sets
but also has big processing capabilities. This makes it possible to execute classifications algorithm on a big
scale or on multiple images at the same time. Google Earth Engine is equipped with different classifiers for
different classification algorithms most of them in the machine learning category, for example support vector
machine (SVM), classification and regression tree (CART) and random forest (RF). The latter two are found to
generate good classification results with spectral imagery from Landsat-8 in the Google Earth Engine [48].
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2.6. Conclusions
This chapter investigates the functions of mangroves and the main types of mangroves in Ca Mau province
in Vietnam. The basics of remote sensing are described and how this data can be used to extract mangrove
properties. Conclusions from this chapter bring some answers to the research questions described in section
1.5.

• The main reason for studying mangroves in the Mekong Delta is the need for coastal protection in this
highly vulnerable area where mangroves contribute by reducing wave height and storm surges and
holding sediments to protect erosion. Also conservation of flora and fauna is an important driver in
monitoring mangroves. Finally, a big part of Ca Mau province’s area is covered with extensive shrimp
farms which consists of water ponds where fish and shrimps are cultivated surrounded by mangroves.
Monitoring these mangroves is important to check governmental regulations and changes towards in-
tensive shrimp farming where no mangrove are present.

• Mangroves are found in saline coastal environments and are recognized by its unique roots, which are
stilt, pencil or knee roots depending on the species. The two main species in the Ca Mau Province are
Avicennia and Rhizophora genus. Close to the shoreline pioneer species with pencil roots are common,
such as Avicennia with its light green and greyish color of the leaves. More inland grows the Rhizophora
genus that has darker green leafs, can grow much taller and has distinctive stilt roots.

• In optical satellite imagery vegetation is easily discriminated from other land covers by its high re-
flectance in the near infrared (NIR) and its low reflectance in the red and blue wavelengths. Dense
mangrove forests give higher NIR reflectance than sparse forests. Within different mangrove species
Rhizophora and Avicennia genus are easiest to discriminate by their spectral signatures.

• In radar imagery the signal wavelength determines the penetration depth in the canopy. Shorter wave-
lengths are dominated by volume scattering while longer wavelength are dominated by the trunk or
even the ground surface. At C-band the best correlations with canopy parameters are obtained with VV-
polarization. Denser mangrove forests cause more backscatter than sparse forests. Mangrove species
are not yet discriminated using radar backscatter and therefore a temporal analysis will be investigated
to improve in extracting mangrove properties from radar data.

• This research focuses on investigating mangrove properties using Sentinel-1 and Sentinel-2 imagery
since this data is free to use and has both a good spatial and temporal resolution. Methods for com-
bining those data are investigated and temporal analysis to improve in mangrove classification. Google
Earth Engine is used for cloud-based processing with online available remote sensing data.
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Data and site description

This study uses the data of the Sentinel-1 radar mission and the Sentinel-2 optical mission. They are chosen
because they are free to use, still have long future operation time and both the temporal and spatial resolution
are good for the function of mangrove monitoring. Both missions will be explained in full detail in sections 3.2
and 3.3. In section 3.1 a site description is given on the Region of Interest (ROI). It gives a detailed explanation
of the area inside the Ca Mau province in Vietnam. A field campaign is executed to obtain ground truth data in
this ROI. Information is gathered from which training classes are described. A first exploratory data analysis
is done using the data from both Sentinel-1 as Sentinel-2 mission, giving information about those ground
truth places. In the last section 3.5 a description is given on the software that is used during this research.
Concluding, this chapter gives all information about the data and how it is used in this research.

3.1. Region of interest
Figure 3.1 shows the Region Of Interest (ROI). It ranges from the southern lobe of Phu Tan District in the north
to the city of Nam Can in the north-east, the city of Rach Goc in the south-east and to the end of the cape of
Mui Ca Mau National park. The Google Earth image shows that the ROI is an area consisting of many green
areas and few urban development except for some small villages. The polygons inside the red bounding box
show the locations on which ground truth data is obtained. The area is chosen because Ca Mau province is the
province with the highest percentage of mangrove left. Inside the red bounding box both natural mangroves
are present in the Mui Ca Mau National Park and a small strip along the southern coastline and also cultivated
mangrove in extensive shrimp farms.

Figure 3.1: Region of interest bounding box with locations of fieldwork campaign on Google Earth imagery.

17



18 3. Data and site description

3.1.1. Fieldwork campaign
To get insight on the different land cover, different mangrove types and surroundings of the region of interest
a fieldwork campaign is executed. During a two-day fieldwork many locations are observed within the Re-
gion of Interest. During those days representative sample sites of known land cover type are studied. Those
sample sites are called training sites or areas and are used for the supervised classification algorithm to serve
as ground truth training data. It is noticeable that most locations follow the pattern of the main road, which
was just completed. However, it is tried to spatially divide the observation locations but since special ad-
mission is needed to access the inland areas, especially the Mui Ca Mau National Park, this was not always
possible. Mangroves are poorly accessible areas so sometimes a boat is the only means of transportation.
For the Mui Ca Mau National Park a boat trip is used to get insight in the mangrove type. This was the only
place where access into the National Park was allowed for non-Vietnamese researchers. During the fieldwork
GPS locations are taken from 140 different locations. On these locations the surroundings and landcover are
observed, pictures taken, the distribution of water and vegetation estimated, species of mangrove observed
and the height measured or estimated. Sometimes also the stem diameter is measured or a fish eye view of
the forest canopy is made.

3.1.2. Training classes
During the fieldwork many insight is gained in the land cover inside the ROI. With the GPS locations and
corresponding photos training polygons are created using Google Earth to be able to cover the mangrove
canopy pixels instead of the GPS locations that are often taken from the side. Those training polygons are
divided into 5 different classes:

1. Mangrove vegetation: Avicennia Alba species

2. Mangrove vegetation: Rhizophora Apiculata species in natural environment

3. Mangrove vegetation: Rhizophora Apiculata species in extensive shrimp farms

4. Water (rivers, sea and shrimp ponds)

5. Urban area and barren land

Since this research focusses on monitoring mangrove types the majority of classes are mangrove vege-
tation. The other two classes are useful since water covers a big part of the area in the sea and rivers and
between the mangrove vegetation and in intensive shrimp ponds. Urban area is very distinctive and different
than water and vegetation and also includes parts with barren land and roads. Within the mangrove vegeta-
tion it is chosen to make classes for the two main species that are found within the region of interest. Those
Avicennia Alba and Rhizophora Apiculata are easy to separate as found in the literature [32]. The Rhizophora
Apiculata species is separated into two classes. The mangrove that is located in the National Park is very old
and tall and very different from the Rhizophora mangrove that is cultivated in the extensive shrimp farms.
Inside this cultivated mangrove class the difference in size is big because the cultivated mangrove do not get
older than 18 years, after that they are cut down and replanted.

The differences in the training classes in the field are shown in figure 3.2. The Avicennia has clearly lighter
leafs and is more a shrub than a tree. The natural Rhizophora in the park differs from the cultivated Rhi-
zophora by the size and height and the surroundings. The cultivated Rhizophora is planted in straight lines
with always a lot of water around. Water and urban areas are easy distinguishable.
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Figure 3.2: Overview of training data classes in the ROI. The yellow numbers represent class 1: Mangrove vegetation: Avicennia Alba
species. Bright green is class 2: Mangrove vegetation: Rhizophora Apiculata species in natural environment. Dark green is class 3:
Mangrove vegetation: Rhizophora Apiculata in extensive shrimp farms. Blue is class 4: Water areas and red is class 5: Urban area and
barren land
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3.2. Sentinel-1 mission
The Sentinel-1 mission consists of a constellation of two satellites, Sentinel-1A and Sentinel-1B. Sentinel-1A
was launched on 3 April 2014 and Sentinel-1B on 23 April 2016. The first data was available in October 2014
and 2016 respectively. Both satellites carry a C-band Synthetic Aperture Radar (SAR) that provides all-weather,
day and night imagery. C-band SAR are antennas of a wavelength between 3.75 to 7.5 cm (4.0 to 8.0 gigahertz
(GHz))(figure 2.5). As the constellation orbits 180 ◦ apart, the mission images Europe every six days and every
twelve days the rest of the world (figure 3.3).

Sentinel-1’s radar can operate in four modes: Interferometric Wide Swath (IW), Extra Wide Swath (EW),
Wave (WV) and Stripmap (SM) as shown in figure 3.4. These modes can operate in several polarization
schemes. By varying the polarization of the transmitted signal, SAR systems provides information on the
polarimetric properties of the observed surface.

Figure 3.3: Observation scenario of Sentinel-1 [16]. Figure 3.4: Different modes of Sentinel-1 [16].

3.2.1. Radar data processing
The primary mode over land is Interferometric Wide Swath (IW) with VV+VH polarization which will be used
in this study [16]. In IW mode the radar acquires data with a 250 km swath at 5m by 20m spatial resolution
for a single look. The data is processed from Level-1 Single Look Complex (SLC) to Level-1 Ground Range
Detected (GRD) scenes. For each scene 5x1 looks are needed and are averaged over a grid with a pixel size
of ten by ten meters. Those GRD scenes are available in the repository of the Google Earth Engine. This
collection of images is updated weekly. Each available scene is pre-processed with the Sentinel-1 Toolbox
using the following steps:

1. Apply orbit file (using restituted orbits)
2. Thermal noise removal
3. Radiometric calibration
4. Terrain correction (orthorectification)

During thermal noise removal dark strips near scene edges with invalid data are removed. This operation
cannot be applied to some earlier images and causes error strips along the scene edges for data from 2015
until the beginning of 2016. To make time series comparable, radiometric calibration computes backscatter
intensity using sensor calibration parameters in the GRD metadata. Orthorectification is applied to account
for the terrain differences in the image. The height data of the SRTM 30 meter DEM is used for this.

The pixel values represent the backscatter coefficient which is the target backscattering area (radar cross-
section) per unit ground area. The backscatter coefficient can vary by several orders of magnitude and is
therefore converted to decibels (dB) as 10∗ log(10)σ0. Values are clipped to the 1st and 99th percentile to
preserve the dynamic range against anomalous outliers, and quantized to 16 bits.

All of the above mentioned methodology is pre-processed in the Google Earth Engine. With the available
GRD scenes the users can enhance the data further with other filters and averaging methods. For Sentinel-1
data there has been discussion to apply a speckle filter. In the end, no speckle filter is used since it reduces
the spatial resolution of the images. To reduce other outliers and noise a temporal averaging is done for
every full month of images. This is done by selecting the available imagery from the first to the last day of
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a specific month and calculating a pixel-based mean. From October 2014 until October 2016 there is a new
image available every 12 days in Vietnam. From October 2016 onwards there is a new image every 6 days.
This means that the data is averaged over ±3 images until October 16 and ± 5 or 6 images after this time.
The result of this temporal averaging is shown in figure 3.5. Noise is reduced when averaging over multiple
images. This effect is largest when averaging over a complete year but is already useful for a monthly average.
The final pre-processing step for Sentinel-1 imagery is clipping the monthly average images to the Region of
Interest. The data is now ready to execute the methods described in the next chapter.

(a) Single image 18 December 2016 (b) Monthly average December 2016 (c) Yearly average 2016

Figure 3.5: Sentinel-1 color composite of bands of polarizations VV, VH and V V
V H with the visible effect of temporal averaging

3.3. Sentinel-2 mission
Sentinel-2 is an earth observation mission consisting of two satellites carrying a multi-spectral imager (MSI)
with 13 spectral channels in the visible/near infrared (NIR) and short wave infrared spectral range (SWIR) with
different resolutions, shown in figure 3.6. Those channels are strictly chosen in the atmospheric windows with
enough transmission to observe earth’s surface. The bands with 60 meter resolution will not be used in this
research since they are less detailed and the wavelengths are of lower interest. Sentinel-2A was launched 23
June 2015 and Sentinel-2B on 7 March 2017. The first data data of Sentinel-2A was available in January 2016
and the data of Sentinel-2B in September 2017. Together they will have a revisiting time of 5 days for Europe,
Africa and Greenland and some other locations. The rest of the world has a revisiting time of 10 days when
both satellites are operating together (figure 3.7). It can be seen that Vietnam is also a special location with a
higher revisit time. However, the most southern point is just missing out on this, probably because of an early
switch off over sea, and therefore the Ca Mau province is having only 20 days revisit time within the time span
of this research since data from the Sentinel-2B satellite was not available yet.

Figure 3.6: Different bands of Sentinel-2 [12].
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Figure 3.7: Observation scenario of Sentinel-2 [17].

3.3.1. Optical data processing
The multi-spectral imager on board of the Sentinel-2 satellites undertakes systematic acquisitions in a single
observation mode, from which different levels of data are available. Level-1 consists of the Top of Atmosphere
radiances (TOA), Level-1B being in sensor geometry and Level-1C being in fixed cartography geometry (UTM
projection and WGS84 ellipsoid). The Level-2A product is Bottom of Atmosphere (BOA) reflectance in car-
tographic geometry. Sentinel-2 Level-1C data is downloaded from the Copernicus repository because the
atmospheric correction which is needed to convert to Level-2A Bottom of Atmosphere (BOA) reflectance is
not (yet) available in the Google Earth Engine. This correction is executed using the Sen2Cor processor that
will be explained in more detail in section 3.5.2. After this correction a subset is made of the bands that were
recorded with 10 or 20 meter resolution, see figure 3.6. Those bands are upsampled to the same pixel size
of 10 meter. Extra bands of the cloud confidence and the scene classification are included in the file that is
uploaded to Google Earth Engine for the next steps. An example of this scene classification is shown in fig-
ure 3.8. In Google Earth Engine the pixels with a cloud confidence value of more than 5% are masked. Also
pixels that are classified as shadow, high or medium probability cloud in the scene classification are masked.
Sometimes masking causes loss of data of interest but the amount of error caused by cloudy pixels is worse
than the loss of some data pixels. Just like Sentinel-1 data the final pre-processing step is to clip the data to
the Region of Interest. The data is now ready to execute the methods described in the next chapter.

Figure 3.8: Automatic ccene classification made during atmospheric correction for the Sentinel-2 image of 26-04-2016
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3.4. Exploratory data analysis
To get a first insight in the information that is available from the above mentioned sources of data, an ex-
ploratory data analysis is done. In figure 3.9 Sentinel-2 images are shown, figure 3.11 shows images from
Sentinel-1.

(a) 26-04-2016 (b) 31-05-2017

Figure 3.9: Sentinel-2 images visualized in natural color composite. The yellow markers indicate the GPS locations of the fieldwork data.

3.4.1. Places of interest
There are different features visible in the ROI which are of interest. The first is the Mui Ca Mau National Park
on the south-western tip which is an area totally covered by mangrove forest and is a highly restricted area.
In the area there are also some urban areas from the villages of Dat Mui, Rach Goc and Nam Can. Along the
southern coast also mangrove appears but this area is less restricted than the National Park. Finally, the most
abundant feature represents the area where mangrove and fish/shrimp farms are mixed. This is the main part
of the area but also the hardest since there’s a lot of mixed pixels on water and vegetation. The different places
are marked on figure 3.10 and will be discussed in more detail using natural and false color composites. When
zooming into those areas with false color images this can improve on the visibility of (healthy) vegetation.
Using the vegetation false color composite, consisting of bands of near-infrared, red and green, vegetation
appears bright red and water areas appear grey.

Figure 3.10: Different POI in the natural color Sentinel-2 image of 26-04-2016. The green box contains the area inside the Mui Ca Mau
National Park. The red boxes contains the urban communes of Dat Mui, Rach Goc and Nam Can. In the yellow box are the coastal areas
with mangroves. The blue box contains area which consists of mixed mangrove and fish/shrimp farms.
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Also radar data gives some first information on the places of interest. Figure 3.11 is a false color composite
with bands VV, VH and V V

V H from the radar backscatter. It can be seen that inside the National Park there’s a
more homogeneous signal than in the surroundings. The mixed area of mangrove/shrimp farms consists of
more yellow together with purple which indicates more mixed pixels with water.

Figure 3.11: Sentinel-1 color composite of bands of polarizations VV, VH and V V
V H of temporal averaged April 2016. Zoomed into an area

with extensive shrimp farms (up) and the Mui Ca Mau area (down).

3.4.1.1. Mui Ca Mau National Park
The Mui Ca Mau National Park, or National Park of Cape Ca Mau, is the most southern point of Vietnam. The
National Park is listed on Unesco’s list of biosphere reserve and consists of three different zones. The core
area, a strictly protected ecosystem that contributes to the conservation of landscapes, ecosystems, species
and genetic variation. The buffer zone surrounds the core areas, is slightly less strict and is used for scientific
research, monitoring etc. In the transition area the greatest activity is allowed, fostering economic and human
development that is socio-culturally and ecologically sustainable.

Figure 3.12: Different zones in the Mui Ca Mau National Park

An optical natural and false color composite shows the distinction between vegetation and non-vegetation,
water and houses more clearly in figure 3.13. The western coast shows the dyke that is been built from North
to South. Behind this dyke is some vegetation in different tones of green. Along the canal are small houses
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with mixed mangrove and shrimp/fish farms in clear straight lines. The second picture zoomed into Mui Ca
Mau National park shows the village of Dat Mui with the boundary of the core zone at the northern side and
the restoration zone on the southern side. Here the brightest red and most green reflection is seen.

(a) Natural color composite at western coast (b) False color composite at western coast

(c) Natural color composite near Dat Mui (d) False color composite near Dat Mui

Figure 3.13: Sentinel-2 images of 26th april 2016 zoomed into Mui Ca Mau National park

Cloud-free pixels are selected in the National Park and a time series is made of the available Sentinel-2
imagery, which runs from January 2016 to August 2017. In figure 3.14 reflectance values of the different spec-
tral bands are visible as well as the NDVI that is calculated using band 8 (NIR) and band 3 (Red). It can be seen
that Bands 6,7,8 and 8A, all in the near infrared, have much higher reflectance than the other bands, around
0.35. NDVI values inside the National Park are mostly around 0.9 except for August 2016 and since June 2017.
Figure 3.15 shows that the rainy season starts in April which is indicated in the time series. Within one season
a small curved shape can be seen for the bands in near infrared (B6,7,8 and 8A). Reflectance is higher when
there is more rainfall. Since the near-infrared are influenced by the leaf and canopy structure (figure 2.9) it
might be related that during wet season the canopy is more closed, more leafs are present causing the higher
reflectance.

A time series of available Sentinel-1 imagery has a longer time interval from January 2015. This time series
shows a sinusoidal trend for all the places of interest consisting of mangrove. The trough of the wave is from
December until April which happens to be the dry season in Southern Vietnam (figure 3.15). The crest of the
wave is similar to the wet season. During a dry period there is less backscatter than average while during a
wet period there is more. The National Park has the highest radar backscatter coefficient compared to the
other places with mangrove vegetation, indicating highest amount of biomass in this area (section 2.4.3).
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Figure 3.14: Timeseries of Sentinel-2 imagery in Mui Ca Mau National Park

Figure 3.15: Average precipitation (rain/snow) in Ho Chi Minh City, Vietnam [28]

Figure 3.16: Time series of VV radar data on different mangrove places of interest
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3.4.1.2. Southern mangrove coast
Along the southern coast mangroves grow without being cultivated in the extensive shrimp farms. The area
is marked by the new road which runs from Rach Goc village (east of the ROI) to Dat Mui village (west of the
ROI). On the northern side the area consists of many shrimp and fish farms with partly mangroves and on the
southern side mangrove vegetation dominates until the sea starts. This is exactly the area where mangrove
has its function to protect the coastal areas and the farms located behind, as described in section 2.1.1. Con-
form the succession of mangroves from the sea shore to more land inward locations (figure 2.1) the species of
mangroves is slightly different here compared to the national park. The Avicennia Alba, a pioneer species, is
more common here especially directly at the coastline. Further inland also Rhizophora Apiculata grows but is
expected younger than inside the National Park. An investigation of the natural and false color Sentinel-2 im-
agery here shows similar vegetation/non-vegetation patterns. The natural color along the southern coastline
looks lighter green than the very dark green around Dat Mui (figure 3.13c).

(a) Natural color composite (b) False color composite

Figure 3.17: Sentinel-2 images of 26th april 2016 zoomed in on the southern coast

A time series of the spectral bands and the NDVI shows that the reflectance in the NIR bands is quite sim-
ilar but the red band (as well as the green and blue bands) is higher. This causes the NDVI values along the
southern coast being lower on average than in the National Park. This differences in the visible wavelengths
can be caused by the different species of Avicennia Alba that has lighter color leaves than the Rhizophora
Apiculata. Another option is that the older mangroves inside the National Park result in a darker forest com-
pared to the same species mangroves that are younger along this southern coastline. Again, in the time series
the values of August 2016 and especially June 2017 are not in line with the other dates. The high reflectance
in the wet season is again seen in the bands of the infrared (B6,7,8,8A) but the differences are smaller than
inside the National Park. It might be that younger or more pioneer mangroves show smaller increase in leaf
of canopy closure in the wet season.

The time series of the Sentinel-1 radar imagery (fig 3.16) shows exactly the same seasonal pattern as
the National park, with high backscatter in the wet season and low in the dry season, but than with lower
backscatter in general.

Figure 3.18: Time series of Sentinel-2 imagery along southern coast
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3.4.1.3. Mangrove plantations and shrimp farms
The figures in 3.19 are located in the blue box of figure 3.10. This place of interest consists of farmers that grow
mangrove trees in water ponds where fish and shrimps are cultivated. As mentioned in section 2.1.2 those
shrimp farming-forestry enterprises (SFEEs) need to have at least 60% of the area within their farm to consist
of mangrove. To monitor this 60/40 rule the mangroves need to be recognized. A problem with those locations
is the pattern of the mangroves in combination with the surroundings of all the water. Often the reflectance
within a pixel of 10 by 10 meter is not only influenced by the mangrove but also by the surrounding waters.

(a) Natural color composite (b) False color composite

Figure 3.19: Sentinel-2 images of 26th April 2016 zoomed in on location of mangrove plantations

In the time series of locations inside extensive shrimp farms (figure 3.20) the mixing of mangrove vegeta-
tion with water causes the bands in the NIR range to have much lower reflectance. However, the curved shape
of the near-infrared bands (bands 6,7,8 and 8A) is again visible within one season that begins when the rainy
season starts, from April to April. The NDVI values are much lower than the other mangrove vegetation areas,
around 0.55 compared to 0.9 for the National Park and 0.8 for the Southern Coast. The same effect holds for
the time series of the VV radar backscatter (figure 3.16). Also here the backscatter coefficient is lower than for
the other two places of interest but the seasonal pattern is still visible.

Figure 3.20: Time series of Sentinel-2 imagery in extensive shrimp farms

3.4.2. Spectral signatures
In the previous section some interesting places of interest with mangrove vegetation are discussed. The time
series already showed differences in NDVI values and in specific wavelengths. A spectral signature is the
variation of reflectance or emittance with respect to wavelength for a specific material. In figure 2.9 spec-
tral characteristics of a former study were shown where parameters of two different mangrove species are
measured with a field spectrometer. With the bands that are available on Sentinel-2 (figure 3.6) such spec-
tral signature plot is created. A spectral signature plot is often a single record of one image on a certain time
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stamp but can also be made from a mean or median of a certain time period. In this case a spectral signature
plot is made for the mean of the reflectances over the whole available time series: figure 3.21. Together with
the three places of interest with mangrove vegetation also urban area and water areas are included.

Figure 3.21: Spectral signatures for different places of interest

3.4.2.1. Different classes
The spectral signature plot of figure 3.21 shows that both urban and water area are very different than the
vegetated areas. Urban area can easily be distinguished by the very high reflectance in the shortwave infrared
domain and water area by the very low reflectance in the near infrared. Both urban and water have a much
higher reflectance in the visible wavelength range than the vegetated areas.

For the three different places of interest with mangrove vegetation, that were already discussed in the
previous section, the differences are smaller. The shapes of the points on the national park and the southern
coast are very similar to the shape of the reference spectral characteristics of figure 2.9. The mangroves inside
the extensive shrimp farms have a much lower reflectance in the near infrared, which might be caused by the
mixing with the water pixels. Comparing the signature of the points in the National Park and the southern
coast shows biggest differences in the visible wavelengths. The mangrove type at the southern coast show
higher reflectance on those wavelengths. According to figure 2.9 the southern coast is likely to be dominated
by Avicennia mangrove types and the National Park by Rhizophora mangrove types. This coincides with the
training data (section 3.1.2).

The time series show also differences inside the classes. The bands in the infrared show more variability
in the reflectance between wet and dry season inside the National Park than at the southern coastline. This
might be related to the different phenological properties of the mangrove species. Also the time series of the
radar backscatter will be further investigated as a measure of seasonal variability of the different classes.

3.4.2.2. Wavelength ranges
Figure 2.9 showed that the visible wavelength range is most influenced by leaf pigments, e.g. chlorophyll. The
Near-Infrared range is most influenced by the cell structure of the observed vegetation, e.g. leaf and canopy
structure. The shortwave Infrared range is influenced by the water content.

Differences in the visible wavelengths occur between mangrove and non-mangroves and within the mangroves.
Water and urban areas reflect much more than vegetated areas. Between the types of mangrove in the Na-
tional park and along the coast also differences occur. This means that the chlorophyll content of those two
mangrove types are different. This is related to the different colors of the Rhizophora and Avicennia species.

Differences in the near infrared wavelengths for vegetation are influenced by cell structure such as leaf
and canopy structure as well as water content. For the mangrove types different reflectance is expected. Sig-
nificant differences are visible between the pure mangroves and the water areas. Areas of extensive shrimp
farms have a value between those two. The spectral reflectance in the NIR range within the farms are signif-
icantly lower than both the NP and the coastline. Urban areas are similar to the farms in the NIR range but
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the water areas are clearly less reflective and thus easy to distinguish. In the time series it was seen that the
near infrared wavelengths also significantly change according to the seasonality. Phenological properties of
the different mangroves might become visible in those wavelengths.

The last range, the shortwave infrared wavelengths, highly influenced by water content in vegetated ar-
eas, shows bigger differences between the mangrove species. The Avicennia along the southern coast might
consist of higher water content than the Rhizophora species that is present in both the National Park as the
shrimp/fish farms. The behaviour of water areas are similar to mangrove areas in this wavelength regime. Ur-
ban areas show very different patterns in the shortwave infrared compared to all other classes and is therefore
easy to discriminate.

3.4.3. NDVI
As mentioned in section 2.4.1 the Normalized Difference Vegetation Index (NDVI) is the best indicator for
vegetation detection. Figure 3.22 shows the NDVI for a cloud free composite of the ROI using a median of
the complete Sentinel-2 imagery collection. The western side of the area and the southern coastline appears
to be the most green and consist of the highest amount of vegetation. Low NDVI values, coloured blue, are
visible in the water canals from the river and sea together with houses along those canals. Those houses are
located next to the farms with mixed water and mangroves, mostly coloured white and light green.

Figure 3.22: NDVI values of a cloud free mosaic (the median) of all Sentinel-2 images. Color ranges from Blue (value 0) to White to Green
(value 1)

A combination of the time series of NDVI values along the places of interest including urban and water
areas is shown in figure 3.23. The differences in NDVI values for the mangrove places are clearly visible. The
National Park has highest values, followed by the southern coast and finally the shrimp farms. Urban area
has a NDVI value of around 0.2 and water areas often have a negative NDVI. The value in the image from June
2017 is an outlier because of the much lower NDVI values except for urban area that is extraordinary high.
The most likely reason for this is the high cloud cover in this acquisition, especially vague clouds which are
hard for the cloud detection algorithm to find. The clouds do not only cause masked pixels but also shadows
which provide unreliable data.



3.5. Software 31

Figure 3.23: Time series of NDVI on different places of interest

3.5. Software
All the processing of those data cannot be done without the use of different software. The first is the Epicol-
lect+ mobile application and website. This has been used for acquiring the GPS locations and information
during the fieldwork campaign. Image processing of Sentinel-2 data is done using the Sen2Cor and SNAP
software. Most of the work in this thesis has been executed in the Google Earth Engine. The processing of
Sentinel-1 data, the generation of time series and the complete classification is done using the Google Earth
Engine Javascript API. Finally, some extra calculations are done in Matlab for the Fourier coefficients extrac-
tion using HANTS (Harmonic Analysis of Time Series) algorithm, which will be discussed in more detail in
section 4.4.

3.5.1. Epicollect+
Epicollect+ is a free software developed by Imperial College London created for mobile data gathering. Users
can make their own project using the web server app (figure 3.24). Using this web server app a form can
be created which is used in the field to fill in the data that needs to be collected. Therefore it also consists
of a mobile app that provides an interface for users to gather the data that is specified in the form (figure
3.24). This can be media fields like GPS, photos, videos as well as plain text, checkboxes, dropdown lists etc.
After collecting the data in the field the web server app visualizes the data in tables and maps and it can be
downloaded for further analysis (figure 3.25).

Figure 3.24: Epicollect+ project and question form on web server app and on mobile application
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Figure 3.25: Epicollect+ project and result table on web server app

3.5.2. Sen2Cor and SNAP
As mentioned in section 3.3.1 the correction that is needed for Sentinel-2 data from Top of Atmosphere (TOA)
reflectance to Bottom of Atmosphere (BOA) reflectance, known as atmospheric correction, is not yet avail-
able in Google Earth Engine. Therefore this is done with the Sen2Cor processor, a third party plug-in for
SNAP. SNAP, the Sentinel Application Platform, is software from ESA with a very fast image display and nav-
igation even of giga-pixel images [18]. The Sen2Cor processor can be integrated in SNAP but can also run
in an Anaconda command line editor from which version 2.3.1. is used for this research. Sen2Cor converts
Sentinel-2 Level 1C products to Level 2A. This includes atmospheric correction to Bottom of Atmosphere
(BOA) reflectance but also automatic scene classification. Sen2Cor creates also additional Aerosol Optical
Thickness-, Water Vapor-, Scene Classification Maps and Quality Indicators for cloud and snow probabilities.
Its output product format is equivalent to the TOA input: JPEG 2000 images with bands of three different
resolutions, 60, 20 and 10 m [15]. In the SNAP software the resampling and subsetting as described in 3.3.1 is
executed.

3.5.3. Matlab
Matlab is used for the extraction of Fourier coefficients from harmonic time series. A Matlab implementation
for the HANTS algorithm is provided by Mohammad Abouali [1].

3.5.4. Google Earth Engine
Google Earth Engine is an online geospatial processing platform with a very big catalogue of satellite imagery
including Sentinel-1, but also multi year archive data from Landsat and MODIS. The functionality of Earth
Engine is exposed through an API available in both JavaScript and Python. For the javascript API tutorials are
available and a web-based IDE is available known as the Earth Engine code-editor on code.earthengine.

google.com. An example of this code-editor, used in this research, is shown in figure 3.26. Figure 3.26 shows
that on the left side of the code-editor a script manager ("scripts"), documentation of the complete javascript
API algorithm ("docs") and asset manager ("assets") is available. In the script manager some example scripts
are available to show some of the available operations. In the middle is the javascript API that is created by
the user. On the right side is a click tool that gives values from the maps below ("inspector"), the "console"
where the print commands are shown and a task manager ("task"). A ’Get Started Guide’ is available on
https://developers.google.com/earth-engine/getstarted covering basic operations as importing
data, filtering, sorting, masking and visualizing image collections.

code.earthengine.google.com
code.earthengine.google.com
https://developers.google.com/earth-engine/getstarted
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Figure 3.26: Screenshot of Google Earth Engine Javascript API

3.6. Conclusions
This chapter extensively described the area of interest and the data that is used in this research.

• The region of interest (ROI) is located in the most southern part of Vietnam, Ca Mau province which
consists of the highest percentage of mangroves left in the Vietnamese Mekong Delta. Inside this ROI
locations are visited during a fieldwork campaign where ground truth data is gathered. This data is
divided into 5 training classes: Mangrove vegetation of Avicennia Alba species, Mangrove vegetation of
Rhizophora Apiculata species in natural environment, Mangrove vegetation of Rhizophora Apiculata
species in extensive shrimp farms, Water (rivers, sea and intensive shrimp ponds) and Urban area and
barren land (figure 3.2).

• Radar data is used from Sentinel-1 satellite mission satellites, that carry a C-band Synthetic Aperture
Radar. Acquired data is processed to Ground Range Detected (GRD) scenes that represent the backscat-
ter coefficient σ0. C-band backscatter is dominated by volume scattering in forest canopies and there-
fore useful for mangrove discrimination.

• Optical data is used from Sentinel-2 mission satellites, that carry a multi-spectral imager (MSI) with
13 spectral channels. The selected channels have 10/20m pixel resolution and represent the surface
reflectance in different wavelength domains, from visible, near infrared to shortwave infrared.

• An exploratory data analysis investigated places of interest (POI) consisting of mangrove vegetation.
The Mui Ca Mau National Park shows highest NDVI values compared to the mangroves along the south-
ern coast and the mangroves inside shrimp farms. Mangroves along the southern coast have a higher
reflectance in the red band, causing a lower NDVI value. Mangroves inside the extensive shrimp farms
have a much lower reflectance in the NIR, causing a lower NDVI value. The latter is the effect of mixing
of the pixel reflectance with the water surrounding the mangroves.

• All of the POI with mangrove vegetation show a seasonal pattern for the VV-polarized backscatter co-
efficient which seems to be related to the variations between the wet and dry season. This temporal
variability is also seen in the optical data and most significant in the near infrared wavelengths. Vari-
ations between wet and dry season are larger inside the National Park compared to the southern coast
line. This might be caused by the different phenological properties of the mangrove species that are
present at the different locations. Rhizophora Apiculata species shows more variation than the Avicen-
nia Alba. Mature mangroves inside the National Park increase more in canopy structure or leaf water
content in the wet season compared to the younger trees and shrubs along the southern coastline.





4
Methods for mangrove classification

An exploratory data analysis (section 3.4) investigated the information that can be extracted from the Sentinel-
1 and 2 satellite imagery. With this satellite imagery clustering algorithms are used to find properties of ho-
mogeneous pixels. Analysing those clusters and comparing them with information of the exploratory data
analysis gives insight on the meaning of the clusters. Adding ground truth training classes as input, super-
vised classification methods will be used for making land cover maps. This supervised classification has many
options and different classifiers and data inputs will be investigated. Verification and validation is needed to
see which gives the most accurate result.

4.1. Data input
In chapter 3 different data sources and the region of interest are extensively described. After all the processing
steps from the different satellite sensors (sections 3.2.1 and 3.3.1) the final available images are summarized
in figure 4.1. Those available images will be used as input for the following unsupervised and supervised
classification methods. Sentinel-1A and 1B images together are averaged into monthly average radar images.
For each available Sentinel-2 image the corresponding monthly average from Sentinel-1 data is merged into
a combined image.

Figure 4.1: Available images serving as input for the classification methods. The grey dots represent the available images from the
Sentinel-2A satellite with the exact dates indicated. The blue and red dots represent images from the Sentinel-1A and 1B satellite respec-
tively.

35
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4.2. Unsupervised clustering
Unsupervised classification, commonly referred to as clustering, is an effective method of partitioning re-
motely sensed data in groups of pixels (clusters) [45]. Without any prior knowledge on the area of interest the
computer calculates clusters that have similar characteristics. To create a representative image that covers
the whole area of interest the median of the available images is calculated. With this averaging the temporal
properties vanish but this way one clustering event covers the whole area of interest without having too much
effect of outliers by clouds, error strips etc. The median is calculated for the available time series of Sentinel-1
radar imagery, for the Sentinel-2 optical imagery time series and the combined time series (figure 4.1).

4.2.1. K-means algorithm
In this research the K-means clustering algorithm is used. K-means clustering aims to partition n observa-
tions into k number of clusters S in which each observation belongs to the cluster with the nearest mean.
This also means the variance within the cluster S is minimized:

min
k∑

i=1

∑
x∈Si

‖x −µi‖ = min
k∑

i=1
|Si |VarSi (4.1)

where µi is the mean of the points in Si .
The algorithm is an iterative procedure where each observation x1..n is assigned to the cluster which mean has
the least squared Euclidean distance. With these new clusters the new mean of those clusters is calculated.
The algorithm is finished when the observations no longer change cluster [4].

The name K-means indicates the k number of clusters which have to be specified by the user. Since no
preliminary information about the data is available, also no information about the best number of clusters
is available. For the time-averaged image collections the K-means clustering is executed for k=4 and k=10. It
is expected that there are at least two different species of mangrove and also different compositions of water
and mangrove. The clustering algorithm is executed for three data inputs: the median image of the Sentinel-
1 time series, the median of the Sentinel-2 times series and a combination of those two images. The data
output is an image consisting of k different clusters.

4.2.2. Spectral signatures of clusters
To explore the information that is in the resulting clusters the mean value of all the pixels within a cluster is
calculated for each input band. This gives an average reflectance per wavelength and/or an average backscat-
ter for VV and VH polarization for every cluster. Those average reflectance values per wavelength regime are
compared with the spectral signatures from the exploratory data analysis (section 3.4.2) to see what the clus-
ters are representing in terms of classes and land cover.

4.2.3. Clustering of vegetated areas
K-means clustering divides the input data such that the input pixels are closest to the mean of cluster k.
The bigger the differences in input pixels, the further away the values of pixels are from the mean while still
belonging to that cluster k. Since variations between mangrove species are small compared to variations
between mangrove and water the K-means clustering algorithm will not give information between different
mangroves. Therefore, first the K-means algorithm for k=4 is executed over the whole Region of Interest (ROI).
Secondly, the cluster which is most likely to completely consist of vegetation (according to reference signature
such as 2.3) is used as a new input for the clustering algorithm. Within this ’vegetation cluster’ the algorithm
is more likely to find differences within the (mangrove) vegetation. Again, those cluster properties can be
compared with the spectral signatures from the exploratory data analysis (section 3.4.2).
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4.3. Supervised classification
In supervised classification the user ’supervises’ the pixel classification process. The user specifies the various
pixels values or spectral signatures that should be associated with each class. This is done by selecting repre-
sentative sample sites of known land cover type and are called training sites or areas. The training classes of
the ROI are described in detail in section 3.1.2. The result of such a supervised classification is a map of the
land covers which represent the different classes of the input data. A land cover map indicates the different
land covers at a specific moment in time or over longer period of time. From these land covers the total area
of the different classes can be estimated. Multiple land cover maps can detect changes in land cover and
area. There are many things that influence the supervised classification process. Those include the classifi-
cation inputs as well as the the classification algorithm. Some factors will be discussed separately in the next
sections.

4.3.1. Classification inputs
Executing the supervised classification algorithm is done with many different data inputs. This means that
different amount of information is put in the classification schema, also known as different features. The
ground truth data and resulting training classes are discussed in section 3.1.2. This ground truth data is ran-
domly subdivided in a set of training (70%) and validation (30%) polygons. Since this separation is random,
this division slightly changes every time the algorithm is executed but never more than 1%. The polygons
contain the locations properties with the assigned class. For the training polygons to serve as input for the
classification algorithm they are needed to be sampled from a training image. This way the training polygons
get properties that are specific for the class and a feature space is created. The training image in this research
is the median of all images from 2017 since the data is gathered in 2017. Using only the image from april 2017,
when the fieldwork is exactly executed, is not possible since a lot of input polygons cannot be used because
they are contaminated by clouds. The resulting spectral signatures from the training polygons are visible in
figure 4.2. Compared to figure 2.9 the differences in the near infrared regime are slightly smaller between the
three mangrove types. The training polygons will be used to learn the classifier what is the corresponding
class for a specific pixel with the properties of the satellite data. The validation polygons will be used after the
classification to check if they coincide with the resulting classes after the classification procedure.

Figure 4.2: Spectral signatures for different places of interest

The training polygons contain properties per class for every feature that is available. However, classifica-
tions are executed for five different set of features. Both Sentinel-1 radar data and Sentinel-2 optical data as
well as the data fusion are already discussed in section 4.1. Later, also the temporal information is added as
classification feature. This will be discussed in detail the next section. The five different input sets are:

1. Sentinel-2 optical data: Bands 2,3,4,5,6,7,8,8A,11,12 (figure 3.6) and NDVI
2. Sentinel-1 radar data: VV and VH backscatter
3. Sentinel-1& Sentinel-2 fusion: all bands 1. and 2.
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4. Sentinel-1 temporal information: Mean a0 and yearly harmonics term A2 for VV and VH backscatter at
10m pixel resolution and 50m pixel resolution (8 bands total)

5. Sentinel-2& Sentinel-1 temporal information: all bands 1. and 4. (total 19 features)

The classification is executed for every month that an image from Sentinel-2 is available, which was shown
in figure 4.1. Yearly land cover maps are obtained by calculating the most common classification result for all
available satellite images within the year. This way the complete Region of Interest (ROI) is covered and the
effect of the outliers, such as clouds, is reduced.

4.3.2. Random forest algorithm
The supervised classification is executed in the Google Earth Engine (section 3.5.4) where some built-in clas-
sifications algorithms are available. Some of them require a manual input decision tree or classifier schema
but others are more straightforward to use. The four most simple examples are the Minimum Distance, Clas-
sification and Regression Trees (CART), Support Vector Machine (SVM) and Random Forest classifiers. Those
four classifiers are tested with the first input set, only Sentinel-2 optical data. The results for overall accuracy’s
calculated at the training sites and at the validation sites for the four different classifiers are shown in figure
4.3. It is shown that the Random Forest and CART classifier show the best results. Random Forest has the
highest overall accuracy values of arond 99% using the training data and around 85% for the validation data.
The Random Forest classifier is an ensemble classifier that uses a set of CARTs to make a prediction and that
makes it a little bit better than CART. Therefore, the Random Forest is the chosen classifier in this research.

Figure 4.3: Overall accuracy’s for different classifiers in Sentinel-2 classification

The Random Forest algorithm operates by executing a multitude of decision trees. The trees are created by
drawing a subset of training samples through replacement. This means that the same sample can be selected
several times, while others may not be selected at all. Each decision tree is independently produced and
each node is split using a chosen number of features. In this case the number of features per split defaults to
the square root of the total number of features available, depending on the data input set between 2 and 19
features. Using all variables for splitting the nodes causes a big increase in computation time and is therefore
not desirable. The user also defines the number of trees within the forest. The majority of studies use 500
trees since this is the default setting in the R package which is often used for Random Forest applications [5].
An investigation on the sensitivity of the number of trees has shown that a much smaller number also gives
good results with much shorter computation times [5]. In this research 50 trees are chosen because this gives
good results with a computation time that can be handled by the Google Earth Engine. Each decision tree
gives a class result from which the majority is chosen as the final class.
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Figure 4.4: Random forest model. A represents the training process, where decision trees are built from random samples of the original
data, which contains positive (green labels) and negative (red labels) examples. B represents the classification process where the majority
of class from the individual trees is chosen. For each data in each tree the algorithm starts at the root node of a decision tree and traverses
down the tree testing the variables values in each of the visited split nodes (pale pink nodes) until a leaf node is reached: green nodes
predict for the positive class, red nodes predict for the negative class [34]

4.4. Temporal information
In section 2.5.3 temporal analysis has already been noted as possible improvement for mangrove properties
extraction. In section 3.4 the first time series gave insight in the periodic changes. Especially the Sentinel-1 VV
backscatter (figure 3.16) showed a clear periodic pattern interfering with the wet and dry season in southern
Vietnam. Including this information in the classification algorithm is done by using harmonic analysis using
Fourier series which appears to be an ideal way to facilitate multitemporal analyses using remote sensing
data, particularly for phenological studies, health and land development [8]. Fourier series is a way to repre-
sent a time-series as the sum of a set of oscillating functions, namely sines and cosines (figure 4.5):

f (x) ≈ a0 +a1cos(x)+a2cos(2x)+a3cos(3x)+ ...

+b1si n(x)+b2si n(2x)+b3si n(3x)+ ...

= a0 +
∞∑

n=1
(ancos(nx)+bn si n(nx)) (4.2)

Figure 4.5: Basics of Fourier analysis [8]
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The constant term a0 is called the mean of the series and the pairings of the cosines (a1,a2,a3) and sines
(b1,b2,b3) are the harmonics of the series. The amplitude of the pairings is calculated by:

An =
√

a2
n +b2

n (4.3)

In this research the HANTS (Harmonic Analysis of Time Series) procedure is used which decomposes a
periodic time-dependent data set into sinusoidal functions but also smooths the data, removes outlier and
fills the gaps of missing data [59]. The result is a smoothed dataset and the phases and amplitudes of the
sinusoidal functions, which serves as temporal information for each pixel [1]. The HANTS procedure is exe-
cuted for a two-year time series of Sentinel-1 VV and VH backscatter and for the total available time-series of
Sentinel-2 NDVI values. The fitted datasets at the location of the National Park are shown in figure 4.6. The VV
time series shows a more clear pattern than the NDVI and the Fourier fit is much better. The NDVI time series
is not as long as the backscatter and also contains outliers, making the time series even sparser since those
are left out. With fewer data points it is harder to obtain a proper fit to the data and the Fourier coefficients
provide no reliable temporal information. The resulting amplitudes from the VV and VH backscatter time
series are calculated for each pixel on both 10m resolution scale as well as 50m resolution. This is done to
reduce the spatial variability in time. Especially with radar backscatter values those can be slightly different
over time for example due to a slightly different viewing angle on the GRD scenes. Using superpixels is a way
of reducing noise effects of the radar signal differences.

(a) VV Backscatter time series

(b) NDVI time series

Figure 4.6: HANTS Fourier fit at National Park
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4.5. Validation
Accuracy assessment is an important part of image classification. In this study, a total of 195 reference areas
were surveyed in the field to serve as input samples for both training and validation. 70 percent of those areas
are used in the training procedure and the remaining 30 percent is for validation. The most common accuracy
assessment method for supervised learning algorithm is using an error matrix, also confusion matrix [45]. A
confusion matrix compares two columns within an image collection: one containing the actual values, and
one containing predicted values. The rows of the matrix correspond to the actual values, and the columns
to the predicted values. Descriptive statistics (user’s accuracy, producer’s accuracy and overall accuracy) are
computed from the confusion matrix.

Another way of validating the classification is by quantifying the stability of the classification outcome. As
mentioned in the previous section 5.2 the yearly classification is calculated as the most used class outcome
from the available classified images. The stability of the classification is calculated by a ratio between the
number that the final class is chosen and the total number of available classification.

The last validation method is comparing the classification result with an existing mangrove cover prod-
uct. In Google Earth Engine the Mangrove Forest of the World (2000) is a globally available raster dataset,
visualized in figure 4.7. This database is made using Landsat satellite data from the year 2000. More than
1,000 Landsat scenes were classified using hybrid supervised and unsupervised digital image classification
techniques [22]. The database is being used for identifying priority areas for mangrove conservation, study-
ing the role of mangrove forests in saving lives and properties from natural disasters, carbon accounting and
biodiversity conservation. The database serves as a baseline for mangrove monitoring.

Figure 4.7: Mangrove Forest of the World from 2000 [22]
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4.6. Conclusions
This chapter describes the different methods used in this study to find the best classification discriminating
mangrove types in Vietnam.

• A simple, fast and unbiased method that provides information on similar pixels within an image is
K-means clustering. Users need to specify the amount of the clusters made. By calculating spectral
signatures from the resulting clusters the corresponding land covers can be estimated from literature
or ground-truth information.

• Random Forest supervised classification is an machine learning method where ground-truth data is
used as training input for assigning each pixel to a class. The Random Forest algorithm operates by
executing multiple decision trees. Each class represents a land cover assigned from the training input
data. For each (monthly) available image of Sentinel-1 or 2 the classification is executed for five differ-
ent data input combinations. Yearly land cover maps are obtained by calculating for the pixel class that
occurs most in all classified images in a year.

• To improve the classification extra features are introduced. Classic features such as NDVI is calculated
using the Sentinel-2 optical data. Novel features are introduced by executing a Fourier analysis on two
year time series to extract the mean and the amplitudes of the seasonal variation. Results are significant
for the Sentinel-1 radar backscatter time series but not for the NDVI time series. The temporal radar
information is calculated for both 10 and 50 meter resolution to serve as extra input features for the
supervised classification.

• Validation is done by calculating the confusion matrix for both training as well as validation data. Over-
all accuracy’s are compared for the different classification input data: Sentinel-2 (S2) optical data,
Sentinel-1 (S1) radar data, S1 and S2 combined, Sentinel-1 temporal information and finally S2 and
S1 temporal information. Also the consistency of the classification outcome is validated by a confi-
dence map showing the stability of the classification for the different images within a year. Finally, the
resulting land cover map will be compared with existing mangrove cover dataset to detect outliers and
land cover changes.
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The results of the different methods are presented in this chapter. First, the results of the supervised clas-
sification are shown. This includes the resulting land cover maps and the land cover changes that can be
conducted from the land cover maps from 2016 and 2017. Sections 5.1.2 to 5.1.5go deeper into the classifica-
tion results with an accuracy assessment, the classifications confidence, validation with external mangrove
cover map and case studies that examine the reliability of the classification results at different locations. An-
other result of this study is the workflow that is set-up for the best mangrove classification, shown in section
5.2. The classification results are obtained by first executing the methods described in sections 4.2 and 4.4,
the unsupervised clustering and temporal analysis. A more technical approach to those results are shown in
sections 5.3 and 5.4.

5.1. Classification results
The method of Random Forest supervised classification is explained in section 4.3. According to the input
training data (section 3.1.2) the resulting classes are subdivided into urban area and barren land, water areas
(sea, rivers and shrimp ponds) and three different mangrove vegetation: Avicennia Alba species, Rhizophora
Apiculata species in natural environment and Rhizophora Apiculata in extensive shrimp farms. Those classes
result in a land cover map representing the different physical coverage of the Earth’s surface.

5.1.1. Yearly land cover map
The final yearly land cover maps are shown in figure 5.1. This result is obtained by using the data input of
the available images of Sentinel-2 optical data combined with the temporal information of the Sentinel-1
temporal analysis. An overview of the final data inputs per method is shown in table 5.1.

XXXXXXXXXXInput
Method Unsupervised

Clustering
Temporal
Analysis

Yearly
Land Cover Map

Sentinel-2 (optical)
Median of all

available (11x) images
x

2016 S2 bands of 4 images
2017 S2 bands of 7 images

Sentinel-1 (radar)
Median of all

monthly (32x) images
2 year

monthly images
S1temporal result a0’s and A2’s

Table 5.1: Overview of data input per method

The two maps of figure 5.1 show an almost completely filled ROI. The map of 2016 has some empty pixels
since there were only four images of Sentinel-2 available in 2016 and the input is masked according to the
Sentinel-2 images. Some pixels are masked in all four images and don’t have any value and remain empty.
Since the 2017 input consists of seven images the amount of empty pixels is much smaller.

43
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(a) Land cover map of 2016

(b) Land cover map of 2017

(c) Difference map between 2017 and 2016 image. Colors correspond to 2017 classes.

Figure 5.1: Yearly land cover maps of 2016 and 2017 and difference map.
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Land cover changes By comparing the two maps of 2016 and 2017 land cover changes are observed. The
changes in class are covered in the difference map of figure 5.1. In this map the colors represent the ’new’
class of 2017 that has changed from the class in 2016. In table 5.2 the percentage of pixels that have changes
from 2016 to 2017 are shown.

PPPPPPPP2016
2017

Rhizophora Farms Avicennia Water Urban Rhizophora Natural

Rhizophora Farms 76% 4% 12% 3% 5%
Avicennia 29% 57% 2% 2% 10%
Water 12% 1% 87% 1% 0%
Urban 46% 10% 8% 35% 1%
Rhizophora Natural 31% 8% 0% 0% 60%

Table 5.2: Land cover changes from 2016 to 2017. Percentages with respect to class in 2016.

Vegetation loss The most important changes are where vegetation has changed into water or urban area.
For example the resort which is located on the most southern location of Vietnam, Khai Long, is rapidly
expanding, indicated with number 1 in the difference map of figure 5.1. At this location a 100MW wind power
plant will be developed on earth and in the sea between 2016 and 2018 [56]. Changes from vegetation into
water might be caused by the harvesting of the mangrove but can also be a change from extensive shrimp
farming (including mangroves) to intensive shrimp farming (no mangroves present). In the first scenario the
mangroves should change back in later years but in the second scenario the area changed land use. Table 5.2
shows that the amount of change from vegetation to water and urban is relatively small, only the class farms
in 2016 has changed for 12% to the water class in 2017 and 3% to the urban class in 2017.
Vegetation changes Table 5.2 shows that most land cover changes occur within the vegetation class. The
Natural Rhizophora class has changed 31% from 2016 to Rhizophora Farms in 2017. This is most likely caused
by the differences in the National Park that are visible in the difference map (indicated with number 2). Here,
most changes from Rhizophora Farms to Rhizophora Natural and vice versa are found. Many changes are
also found from Avicennia (2016) to Rhizophora Farms (2017). This is related to coastal Avicennia areas that
are in 2017 sometimes classified as Rhizophora Farms. The case studies will show that Avicennia in 2016
was sometimes misclassified as ’other vegetation’ that was not mangrove at all. Finally, the variation of the
2016 land cover map along the southern coast line is classified as Rhizophora Natural in 2017 (indicated
with number 3 in the difference map). The latter coincides with the ground-truth data from the fieldwork
campaign, which will be discussed in the case studies.
False differences Some less important differences seem to occur which are the result of a bad classification
result: something seems to have changed but in fact there was no change but the yearly classification itself
was not accurate. In figure 5.1 can be seen that the 2016 land cover map has much more urban area compared
to 2017, while it is expected that urban areas grow instead of shrink. Table 5.2 shows 46% of the Urban pixels
in 2016 that has changed to Rhizophora Farms. Clouds had a big effect on the 2016 land cover map and both
clouds as urban land cover have a distinctive high amount of reflectance in the short wave infrared that other
classes do not have. Therefore, the amount of urban class was much overestimated. The classification of 2017
had a smaller effect of these clouds and thus also less falsely classified Urban pixels.

5.1.2. Accuracy and confusion matrix
The Random Forest classification is executed for five different data input combinations. They were set up in
section 4.3.1 and are:

1. Sentinel-2 optical data: Bands 2,3,4,5,6,7,8,8A,11,12 (figure 3.6) and NDVI
2. Sentinel-1 radar data: VV and VH backscatter
3. Sentinel-1& Sentinel-2 fusion: all bands 1. and 2.
4. Sentinel-1 temporal information: Mean a0 and yearly harmonics term A2 for VV and VH backscatter at

10m pixel resolution and 50m pixel resolution (8 bands total)
5. Sentinel-2& Sentinel-1 temporal information: all bands 1. and 4., in total 19 features

The overall accuracy’s of the different scenarios are visible in figure 5.2. The accuracy’s are calculated with the
training data input and with a separate set of ground truth validation data. The training accuracy’s are very
high since the Random Forest is fit to those data inputs. The validation accuracy’s are more representative. It
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is shown that a combination of optical Sentinel-2 data fused with radar backscatter Sentinel-1 temporal in-
formation shows highest accuracy. Therefore, this data input scenario is used for the processing of land cover
maps and investigating land cover changes. Resulting land cover maps of 2017 from data input combinations
1-4 are visible in Appendix A.1.

Figure 5.2: Overall accuracy’s for Random Forest classification

The full confusion matrix for the Sentinel-2 and Sentinel-1 temporal input from the validation data is
shown in table 5.3. The confusion matrix includes values for the producer’s and user’s accuracy. The pro-
ducer’s accuracy is the fraction of correctly classified pixels with regard to all pixels of that input training
class. The user’s accuracy is the fraction of correctly classified pixels with regard to all pixels classified as this
class in the classified image. Both of these accuracy’s are corrected for the available amount of validation
pixels that is different per class. This ensures that classes with much more available pixels in the confusion
matrix automatically get higher accuracy values.

Water and urban class both score highest in the user’s and producer’s accuracy. This was expected because
those classes are very different from the vegetation. Biggest confusion of the water class is with the class
Rhizophora Farms. This is caused by the fact that the water ground-truth input is sometimes small and very
close to the neighbouring mangroves. From the different mangrove vegetation classes the Rhizophora Natural
scores highest user’s accuracy and Avicennia highest producer’s accuracy. Rhizophora Farms scores worst in
both accuracy’s. Most confusions are between Rhizophora Farms and Natural Rhizophora. This is likely to
occur if the Rhizophora in the farms is very old and almost ready to harvest or if the water ponds are relatively
small and don’t mix the pixel reflectance. Rhizophora Natural has only one confusion with a non-vegetation
class, making it the best distinguishable mangrove class.

XXXXXXXXXXInput
Predicted Rhizophora

Farms
Avicennia Water Urban

Rhizophora
Natural

Producer’s
Accuracy

Rhizophora
Farms

194 12 7 1 19 83,3%

Avicennia 6 118 3 8 3 85,5%
Water 19 1 195 2 1 89,4%
Urban 6 4 6 210 0 92,9%
Rhizophora
Natural

24 11 0 0 189 84,4%

User’s
Accuracy

75,9% 87,4% 91,9% 92,9% 88,7%

Table 5.3: Confusion matrix from Sentinel-2 and Sentinel-1 temporal data input classification results compared to validation ground
truth data
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5.1.3. Classification confidence
The yearly land cover map is the result of selecting, for each pixel, the class that came out most of the separate
classifications per image within one year. This most common class is calculated by counting the total num-
ber of available classifications (cloud masked pixels are not classified) and the class which is chosen most is
the winning class. The ratio between the total number of available classifications and the number of times
the winning class came out is called the classification stability. This process is visualized in figures 5.3a to
5.3d. Figure 5.3a indicates the total available separate classifications in the year 2017 for each pixel. Figure
5.3b is the amount of times the final class came out of those separate classifications. Figure 5.3c shows the
ratio between the two, indicating the stability of the classification. Figure 5.3d shows the same classification
stability but coloured per class.

(a) Total number of available classifications (b) Number of times the winning class came out

(c) Ratio of winning class number divided by total number (d) Ratio of winning class number by total number
coloured with the corresponding class

Figure 5.3: Classification confidence for Sentinel-2 & Sentinel-1temporal input classification of 2017. The images are coloured from
white to the specific color corresponding to the minimum and maximum value.

From the figures above the National Park shows lowest classification stability. This is not caused by the
available classifications but by the low number of the winning class. In other words, the classification result is
here less reliable. On the other hand, the ratio of classification confidence is very high in the area with many
extensive shrimp farms. This is caused by the low total available classifications. Some locations only have
one or two available classifications within the year 2017 and if these one or two show the same class outcome
the ratio is very high. From figure 5.3d, coloured per class, can be seen that water and urban show high
confidence which is in line with the low amount of confusions that were present in the confusion matrix.
The high amount of confusions between Rhizophora Natural and Rhizophora Farms is related to the low
confidence in the National Park area where the classification result is not very reliable.
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5.1.4. External validation
The previous validation methods looked into the accuracy and confidence of the classification made in this
research. External validation is done with the Mangroves of the World (2000) map from Giri et al [22]. The
resulting yearly land cover map of 2017 is compared with this mangrove cover map. The result is visualized
in figure 5.4.

It can be seen that almost all mangrove cover from 2000 is covered in the classification of 2017 from this
research. Some differences occur at the north-western lobe where in 2017 farms are present with water in
between and in 2000 there was still only mangroves. This is a shift from mangrove cover to aquaculture. The
clearest difference is the regression in mangrove cover at the southern coastline. At the eastern side a strip of
about 500 meter shows the loss of mangrove cover between 2000 and 2017. More towards the western cape
this strip is about 100 meters wide.

Figure 5.4: Comparison of land cover map of 2017 with Mangrove Cover from 2000. Bright green, dark green and yellow pixels indicate
the mangroves classified in this research and coincide with the Mangrove Cover from 2000. Black pixels indicate mangrove cover in 2000
that is not classified in 2017 as mangrove vegetation
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5.1.5. Case studies
All previous results were visualized for the entire Region of Interest (ROI). Figure 5.5 shows locations that have
been visited during the fieldwork campaign and are investigated in more detail in a case studies. The case
studies compare the classification results of both 2016 and 2017 with Google Earth Imagery including ground
truth information. The reliability of the classification results and the land cover changes will be described.

Figure 5.5: Different locations of the case studies

1. Extensive shrimp farms near Nam Can bridge Figure 5.6 shows the land cover zoomed into location one
from figure 5.5. The result of 2016 shows some masked pixels caused by the clouds in the input images. Num-
ber one of the ground truth locations shows a dirt road with vegetation around. This vegetation is dry grass
and bushes but it is classified as urban & barren land pixels together with Avicennia. There is no class where
other vegetation than mangrove is covered. Apparently Avicennia is most similar to grass and bushes. This is
explicable since Avicennia is the mangrove vegetation class which looks most like shrubs. Small rivers with
the houses alongside are well classified just as the extensive shrimp farms. This class, Rhizophora Apiculata
mangrove species in extensive shrimp farms, is dominant in this area. Also Rhizophora in natural environ-
ment is classified at some pixels but this is not likely in those surroundings. These pixels can be mangroves
inside farms that are relatively old, causing the reflectance to be higher and more similar to Rhizophora in
natural environment. The 2017 land cover maps shows less false classifications of Avicennia and natural Rhi-
zophora but besides that no significant changes are detected from 2016 to 2017.
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Figure 5.6: Yearly 2016 and 2017 land cover maps with ground truth examples at farms near Nam Can bridge

2. Extensive shrimp farms near southern coast line The second case study is located close to the southern
coast line with also many farms (figure 5.8). This area has a wide strip of Natural Rhizophora along the coast
and a very small strip of Avicennia closest to the sea. Also some pixels are classified as urban close to the
sea but those are not correct. During the fieldwork campaign at the locations indicated at number 2 and 3
the mangrove trees were just cut down and water ponds were left. In the image of 2016 Rhizophora Farms
is classified here and in 2017 water is classified, indicated with the black circles. Furthermore, there are less
alternations in the 2017 result and the separation between the two Rhizophora classes is more clear than
2016. Again some Avicennia is classified between the farms but in this case ground truth location number
four showed that this was indeed Avicennia present on a very small scale.

Figure 5.7: Yearly 2016 and 2017 land cover maps with ground truth examples at farms along southern coast
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3. North-west cape in Mui Ca Mau National Park The last case study is located at the most western tip
of the Vietnamese mainland. The Mui Ca Mau National Park’s strict protection zone (figure 3.12) consists
completely of Natural Rhizophora as well as Avicennia Alba. Separating those two classes is found to be chal-
lenging because there are a lot of confusions along the transition between those species. On this transition
the data of 2016 makes a better distinction, but there are some other confusions visible, for example some
pixels inside the Rhizophora Natural that are classified as Urban& Barren Land. As explained before this is re-
lated to the similar reflectance of urban land cover and clouds. Obtaining ground truth data around this area
inside the National Park’s protection zone was not possible. Only some locations of Avicennia Alba on the
edges were observed by using a boat. Avicennia Alba mangroves were present in different sizes and ages but
are all merged in one class. The closer to the northern coastline the smaller the shrubs, as visible in ground
truth locations three, two and one. The transition between the two species is in reality more smooth than
the classification results with a combination of both species growing. It is hard to find the best resulting class
in the classification algorithm. As mentioned in section 5.1.3, this area also has the lowest confidence of the
classification result.

The ecological restoration zone (figure 3.12) is where Rhizophora mangroves are cultivated around shrimp
ponds. The mangroves look more ’natural’ than the rest of the ROI but still consists of straight rows of
mangroves alternated with water, as can be seen in the number four ground truth location. When 2016 is
compared to 2017 there seem to be no significant changes here.

Figure 5.8: Yearly 2016 and 2017 land cover maps with ground truth examples at north coast National Park location
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5.2. Workflow
In the previous section it has been described how Sentinel-1 and Sentinel-2 are used for the classification
of mangroves. Sentinel-2’s optical bands, including an extra NDVI band, gives a highly accurate land cover
classification of mangroves, as seen in figure 5.2. The highest accuracy is obtained when fusing optical data
with the temporal information obtained from the radar backscatter from Sentinel-1 satellite mission. Since
this research investigates the best method for discriminating mangroves using remote sensing one of the
results is a workflow describing such method. The workflow for classifying mangroves using Sentinel-1 and
Sentinel-2 satellite imagery is shown in figure 5.9. A more detailed workflow, including the many different
(pre-)processing steps involved, can be found in the appendix (figure A.6).

Figure 5.9: Workflow for classifying mangroves using Sentinel-1 & 2 satellite data
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5.3. Temporal analysis
In the previous sections it has been shown that adding temporal information from the Sentinel-1 radar backscat-
ter data to Sentinel-2 optical data increases the accuracy of the classification results. In this section the results
of the temporal analysis, as described in section 4.4, are discussed in more detail.

The temporal analysis is executed for both 2 year time series of VV and VH backscatter. Also both 10 and 50
meter pixel size are used as input because with the extra 50 meter input the noise effect is reduced and more
spatial information is gathered. A pixel based three-term Fourier Fit is made resulting in a representation of
the mean, a0, the first, A1, second, A2, and third, A3, amplitude over the whole Region of Interest (ROI). The
second term A2 shows the most variation, especially for the VV time series and is visible in figure 5.10. All
other resulting maps can be found in Appendix A.3. All results show a straight line which is an error strip
caused by the stitching of multiple GRD scenes.

In figure 5.10 the canals are visible just as the north-western coastline that consists of high amplitude
values along the shore (square 3). Biggest differences in mangrove vegetation are visible within the National
Park’s inner core (square 2) and the coastline (square 1). Within the National Park the temporal variation
is high and decreases towards the coastline. This coincides with the succession of mangroves in Ca Mau
Cape that has been found in figure 2.1. Mangroves that are located more inland are more mature and are
dominated by Rhizophora Apiculata species. Inside the National Park those Rhizophora Apiculata mangroves
are very old and thus very tall and cause a lot of variation in backscatter between the wet and dry season.
One reason might be caused by the water intake of the leaves that is influenced by the amount of rainfall.
Vegetation that has a greater moisture content will return more energy than drier vegetation because of the
increased dielectric constant (section 2.3.2). Also, mangroves that are located inland are only influenced
by high tide levels and thus not always covered with sea water. Therefore those mangroves might be more
dependent on the availability of rain water. The difference in water content is larger between dry and wet
season than mangroves which have abundant water supply. Along the shorelines where Avicennia Alba is
the dominant mangrove species the roots are covered in water most of the time. This pioneer mangrove
species is much smaller, especially towards the northern shoreline where new mangroves are growing on the
accrediting mudflats.

Figure 5.10: Second amplitude term for VV backscatter time series. Black rectangles indicate POI
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In figure 5.10 some Places of Interest (POI) are indicated. The time series of both VV and VH backscatter
on those places are shown in figures 5.11 and 5.12. The time series, made from the 50 meter pixels data, show
the peaks that occur in the sea in yellow and purple. At the POI Sea South the peaks are quite random. Along
the northern shore the time series follows a more sinusoidal pattern. The peaks in this time series, visible
in both VV and VH, are caused by a high outflow of sediment from the canals towards the sea which is also
influenced by the seasonality. Since the backscatter coefficient over sea is much higher than over vegetation
the sinusoidal fit causes a very high second amplitude term A2. The more random peaks along the southern
sea shore are likely to be caused by the roughness of the sea surface waves, causing more or less backscatter
(figure 2.6). The time series of the mangrove locations show less variation along the coastline and much more
variation in the National Park and the farms, especially for the VV backscatter. From figures 5.10 and A.7, both
VV and VH backscatter look to contain the same land cover information. However, figure 5.13 shows that the
correlation between the two different polarizations is not very high for the different classes. Therefore, both
VV and VH backscatter are used as input for the classification.

Figure 5.11: VV backscatter time series at different POI

Figure 5.12: VH backscatter time series at different POI
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Figure 5.13: Correlation of VV and VH backscatter for each different land cover class

The temporal behaviour on mangrove locations 1 and 2 are shown separately in figures 5.14 and 5.15 in-
cluding the different Fourier fit results. The other three locations are shown in appendix A.3. The second
amplitude term is dominant since the one term Fourier Fit does not cover the pattern yet and the two and
tree term Fourier Fit are so similar indicating that the third term does not add any extra information. The
seasonal pattern inside the farms and the National Park looks very similar. The seasonal pattern along the
coastline looks to decrease in amplitude over the years and is much smaller.

The amplitude of the second term of the Fourier fit contains most information about the different mangrove
classes. The differences in amplitude are related to the succession of the mangrove species from the coast
towards more inland areas. More mature species show greater differences in backscatter between wet and dry
season than pioneer species. This is related to the canopy structure of the mangroves and/or the availability
of water during the dry season.
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Figure 5.14: VV backscatter time series at POI 1 including different Fourier fits

Figure 5.15: VV backscatter time series at POI 2 including different Fourier fits
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5.4. Unsupervised clustering
The results of the unsupervised clustering indicate the separability of the different classes that were chosen
as input for the supervised classification. The clustering algorithm, as described in section 4.2, is executed
on the median image of the available Sentinel-2 images and on the median image of both Sentinel-1 and
2 images, as visualized in table 5.1. Both k=4 different clusters and k=10 different clusters are made. The
resulting maps can be found in appendix A.4.

The results for four clusters (k=4) show a clear distinction between water and densely vegetated area and
two mixed classes in between as can be seen in figure 5.17. When comparing the spectral signatures of those
clusters to the spectral signatures of the places of interest (POI) from the exploratory data analysis (figure 3.21)
and with the spectral signatures of the training classes (figure 4.2) similarities are found. Cluster 0 is exactly
the same as the training class water. Cluster 3 is very much similar to the training class of the Rhizophora
mangrove in natural environment and thus the POI from the National Park. The other two clusters are not
exactly the same as one of the training classes. Cluster 1 looks most similar to Rhizophora mangroves in
the extensive shrimp farms but has less reflectance in the near infrared and more reflectance in the visible
wavelength range compared to figure 4.2. The same holds for cluster 2 which has relatively high reflectance
in the visible wavelength and low reflectance in the near infrared compared to the training classes and the
POI. It seems that the clustering algorithm is dominated by the bands in near infrared wavelengths because
here the biggest differences occur compared to other wavelengths. To improve the differentiation between
the mangrove vegetation a new clustering is made. This is done by selecting the pixels within cluster 3, the
most likely to be mangrove vegetation, from the initial clustering result and cluster those pixels again, see
figure 5.16 This way, more detailed variability can be found.

Figure 5.16: Clustering scheme showing the first step making four seperate clusters. The second step clusters only the (vegetation) pixels
from cluster 3 into four new clusters to better differentiate vegetation

The results of the clustering scheme are visible in figure 5.17 (spectral signatures) and 5.18 (cluster map).
Within cluster 3 three very different clusters are found in the near infrared wavelengths. Cluster 3c, brown,
has highest reflectance and occurs in the cluster map as random separate patches inside the ROI. It is not
well known why those locations have such higher reflectance in the near infrared. Cluster 3a, turquoise, has
highest reflectance in the other wavelengths, the visible and the shortwave infrared wavelengths. This coin-
cides with the Avicennia mangrove signature from the training input data in figure 4.2. The clustering map
shows that cluster 3a is often located along the coastlines. Mostly along the north-western coastline but also
along the coastline in the south-east part of the ROI. Cluster 3b covers a very big part of the core zone of the
National Park which is found to be similar as some parts of the southern coastline since they are in the same
cluster. This coastline is less homogeneous as has been thought, since the variability inside cluster 3 here is
quite large. Cluster 3d covers a negligible small area of pixels.

The unsupervised clustering showed that vegetation can easily be separated from other land covers. From
step 2 in the clustering scheme, vegetation clustering, it is found that three main differences are separable. At
least two are related to species and the third might be related to water content, age or canopy structure.
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Figure 5.17: Spectral signatures from cluster analysis for Sentinel-2 median image

Figure 5.18: Cluster map from cluster analysis for Sentinel-2 median image
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5.5. Conclusions
This chapter shows the results of the methods that were described in the previous chapter. The results give
different insights to obtain the best classification for monitoring mangroves using Sentinel optical and radar
satellite data.

• Unsupervised clustering results show that vegetation can easily be separated from other land covers.
Specific vegetation clustering results show that three main differences are separable: two related to
species and the third to water content, age or canopy structure.

• The temporal analysis results found that the amplitude of the second term of the Fourier fit contains
most information about the different mangrove classes. Differences in amplitude are related to the
succession of the mangrove species from the coast towards more inland areas. Mature species show
greater differences in backscatter between wet and dry season than pioneer species. This is related to
the canopy structure of the mangroves and/or the availability of water during the dry season.

• The final classification results consist of yearly land cover maps made from the most common classi-
fication result for all single image classifications within one year.

• Using Sentinel-2 optical data combined with temporal properties from Sentinel-1 radar data obtains
the highest accuracy for the classification results. An overall accuracy of 87% is reached compared to
validation ground-truth data.

• Validation with mangrove cover from 2000 shows a regression of mangrove along the southern coastline
of Ca Mau province from 2000 to 2017.

• Different case studies show that the classification works well in areas with extensive shrimp farms. Dif-
ferences inside shrimp farms between mangroves and water are detected. Since there is no class of
other vegetation than the three mangrove types, Avicennia is often misclassified as other non-mangrove
vegetation. The classification is less reliable inside the National Park when mangrove species are mixed
and when there is no ground truth training input available.

• The land cover map of 2017 shows more precise results than 2016. It is expected that this trend contin-
ues to improve with the availability of more reliable data from the Sentinel-2 mission.

• A workflow is set up for the classification of mangroves using Sentinel-1 & 2 satellite data and is visual-
ized in figure 5.9.





6
Discussion

In this discussion the different findings of this research are reviewed. This includes difficulties and improve-
ments with data processing and explanations that led to the classification results of the previous chapter. This
results will be compared with external mangrove maps and future applications will be discussed.

6.1. Data processing
Satellite data processing has been an important part of this research. Several aspects that are addressed
during this processing will be discussed.

6.1.1. Cloud masking
From the different methodology and classification results it is concluded that clouds have a big effect on
optical satellite imagery. Clouds cause outliers, misclassifications and decrease the availability of data. In
this research the automatic Sen2Cor software (section 3.5.2) is used to detect clouds and shadows. Although
this is one of the best fully automatic cloud detection techniques [41], the distortive effect of clouds is still not
fully removed. Improving cloud detection techniques will also improve the classification results when using
optical data. Since radar data is not affected by clouds, processing techniques to obtain reliable land cover
information from the backscatter signal are very useful. The temporal analysis results from section 5.3 can
serve as a start in this process showing significant differences in mangrove species from radar data.

6.1.2. Google Earth Engine
Google Earth Engine is found to be a fast online platform with increasing amount of functionalities. Also the
availability of a catalog with satellite imagery and other geospatial datasets makes that you do not need to
download a lot of separate data. Planetary-scale analysis capabilities can be used for a world-wide coverage
of land cover classification [23]. However, there are also some drawbacks of using this online platform.

In the beginning of this research the atmospheric correction for Sentinel-2 optical imagery was not yet
available in the Google Earth Engine. Therefore this is executed seperately via the Sen2Cor software and
afterwards imported to the Google Earth Engine. From June 2017 a Python application is published that can
be used in the Google Earth Engine API executing atmospheric correction [38].

Executing a classification procedure is possible with a limited amount of classifiers. Some simple, but
often used, classifiers such as Maximum Likelihood and Nearest Neigbours are missing. Also, new state-
of-the-art classification algorithms such as convolutional neural networks would be a great addition to the
available classifiers.

Besides the classification algorithms many other algorithms are available in the Google Earth Engine but
the code of those algorithms are hidden. This makes it hard to understand what the exact procedure has
been. The classifiers, for example, are not explained with any code except for the corresponding literature
from which they are derived. In this research, when using the Random Forest Classifier, the confidence of
the classification result was not available, indicating how often the resulting class is noted by the different
decision trees. Those hidden algorithms make it hard to investigate what is really happening in the process,
to quantify the reliability of the results, to find error sources and make adaptations in the processes.
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6.1.3. Fieldwork campaign
In figure 3.2 was seen that the available ground-truth data that is used as training input and for validation
was not equally displaced over the ROI. This has caused the classification to perform well on locations with
available training input (case study 2) and worse on locations with few training input (case study 3). Also the
distribution of ground truth locations was not equal over the different classes. Therefore the confusion matrix
needed to be corrected for the amount of available validation pixels. In this confusion matrix was seen that
especially Avicennia Alba mangrove species had the least ground-truth. For a new fieldwork campaign in this
area this species should be investigated more and also a better spatial distribution must be obtained.

6.2. Classification results
To obtain the best classification results that were shown in section 5.1 many decisions and some assumptions
are made. Single images that are used for the yearly land cover maps are discussed and the different data input
combinations.

6.2.1. Single images
As described in the methodology section the classification algorithm is executed for each available monthly
image. To get insight on the result of these ’single image classifications’ some examples are shown in figure
6.1. The input of these classifications is one Sentinel-2 image of the specified date.

(a) 26-04-2016 (b) 31-05-2017

(c) 14-08-2016 (d) 12-03-2017

Figure 6.1: Single Sentinel-2 image classification results

It can be seen that the clouds, although they are mostly masked, have a very big effect on the result. Along
the edges of the cloud mask often pixels are classified as Urban class. This is caused by the fact that spectral
properties of urban land cover are similar to those of clouds. The image of August 2016 has so much masked
pixels that the few pixels left are very unlikely to be correct. The class of natural Rhizophora mangrove in the
area of the National Park is totally absent. This kind of images, just as the image of June 2017 which is very
similar to August 2016, have caused the outliers that were visible in the time series, for example in figure 3.23.

Sometimes the results of the single images are very good. For example the southern part of the image
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from May 2017. Here, the Rhizophora Natural class is clearly visible along the southern coast and also in the
National Park. There are no weird alternations between the different Rhizophora classes inside this National
Park. This single image would give a good monthly land cover product in this part of the ROI. Nevertheless,
the ROI is not completely covered and those images are very scarce with this date being the only one between
April 2016 to September 2017. Although single images are able to give good classification results it is chosen
to look into yearly land cover maps. With this method it is assumed that phenology of the different man-
grove species does not influence the land cover results. Phenology is proven to give useful information about
the different mangrove species from the Temporal Analysis in section 5.3. Still, mangroves do not change
in species within a year so therefore yearly land cover maps are still useful to detect mangrove changes in
general.

6.2.2. Different data input
From the results was found that the accuracy is highest for a classification that used Sentinel-2 optical data
fused with the temporal information of Sentinel-1 radar data. To get insight in the differences that occur
for the five different data input combinations a comparison is made. All yearly land cover maps from 2017
from the different data input combinations can be found in appendix A.1. Table 6.1 shows the percentages
of pixels assigned to the five different classes for each data input. The table shows that the five different data
input scenarios result in big differences in classification results, as is also visible in the land cover maps. Radar
and optical satellite data input are very different in assigning pixels to different classes.

XXXXXXXXXXClass
Data input

Sentinel-2 Sentinel-1 Sentinel-1 & 2 S1temporal
Sentinel-2 &
S1temporal

Rhizophora Farms 47.17% 23.69% 49.40% 28.45% 44.85%
Avicennia 12.41% 1.95% 11.32% 8.62% 10.72%
Water 29.00% 34.89% 28.09% 34.44% 33.02%
Urban & Barren Land 4.51% 21.09% 4.47% 5.81% 4.38%
Rhizophora Natural 6.91% 18.39% 6.72% 22.68% 7.03%

Table 6.1: Overview of percentage of total pixels per class

6.2.2.1. Radar input
Table 6.1 shows that both the Sentinel-1 raw radar input as the Sentinel-1 temporal information overestimate
the Natural Rhizophora class. The percentage pixels in this class is much higher compared to the data input
scenarios that include Sentinel-2. This is at the expense of the other mangrove classes Rhizophora Farms
and Avicennia. Especially the raw Sentinel-1 data input scenario shows only Natural Rhizophora, Water and
Urban & Barren Land. Clearly, there’s no possibility discriminating the different mangrove species using raw
radar data and all mangrove pixels are assigned to Natural Rhizophora. Avicennia even has only 2% of the
pixel percentage. The result of Sentinel-1 temporal is already better able to discriminate Avicennia versus
Rhizophora mangrove species. For example the difference between pure Rhizophora and pure Avicennia
is found in the northern coast of the National Park. This was already explained in the temporal analysis
results in section 5.3. Still, the Natural Rhizophora class is much overestimated at the expense of Rhizophora
Farms. This is especially visible if we zoom into an area with mostly extensive shrimp mangroves, see figure
6.2. This is the same location as case study 1. showing the land cover result of 2017 for the different data
input combinations. The Sentinel-1 input shows the combination of only Natural Rhizophora, Water and
Urban & Barren Land. The Sentinel-1 temporal input shows some Rhizophora Farms but still overestimates
the Natural Rhizophora compared to the Sentinel-2 input result. Also the effect of the combination of 10m
resolution and 50m resolution pixels is visible. This causes a more ’blocky’ classification output.



64 6. Discussion

Figure 6.2: Land cover result in 2017 from different data combinations zoomed into location with extensive shrimp farms

6.2.2.2. Optical input

From figure 6.2 it can be seen that all classification results including Sentinel-2 optical data are very similar.
Table 6.1 shows the similarities in percentage per class for all data inputs including Sentinel-2. The unsuper-
vised clustering results (section 5.4) already showed that optical data is dominant in differentiating clusters
compared to radar data. The only drawback of optical data is the presence of clouds, which is visible by the
variation inside the National Park for all land cover maps that include Sentinel-2 optical data input. From
the overall classification accuracy’s (figure 5.2) it is found that adding raw radar data to optical data does not
improve the classification accuracy at all. The best data fusion is with the temporal information of the radar
with optical input which improves the overall accuracy to 87%.

6.3. Comparison with external research results
From the overall accuracy results is found that the final classification is able to separate the pre-defined
classes with 87% accuracy. This is a high value compared to other research in monitoring mangrove ecosys-
tems using remote sensing data [32], especially when incorporating differences within the mangroves. Sep-
arating mangrove from non-mangrove can reach accuracy’s above 90% but when including different species
such high accuracies have not been reported before [32, 57]. Therefore, it might be questioned if the differ-
ences found within the mangrove vegetation are indeed related to the different species. The spectral signa-
tures of the pre-defined classes coincide with the spectral characteristics found from a field spectrometer for
the same mangrove genus, namely Rhizophora and Avicennia (figure 2.9). The radar backscatter coefficient
from C-band radar increases with different growth stages (figure 2.11), especially VV-polarization continues
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to increase to a higher biomass saturation threshold, in other words, to more mature stage of the mangrove
forest. Those properties in the classification ensure that the different classes are indeed caused by the differ-
ent species of mangroves.

Furthermore, a distinction it is made between mangroves from Rhizophora species in different environ-
ments: the protected forest called natural environment and the extensive shrimp farms. This separation has
been done before in many other researches, where classes are assigned to the percentage of mangrove in re-
lation to water [32, 57]. Examples of some of those results are found in figures 2.12 and 6.3. The classification
result below shows the same class of ’pure mangrove’ at the locations of our Rhizophora Natural and Avi-
cennia classification results. Mixed mangroves (31-69% mangrove) and most aquaculture(<=30% mangrove)
locations coincide with the class Rhizophora Farms. Also both our classification results and figure 6.3 show
the settlement/urban area along the canals.

Figure 6.3: Classification results from Vo et al [58]

Another external classification result which includes both different mangrove species classes and mixed
mangrove/water and aquaculture classes. The classification of Kuenzer et al [32] is made from a fusion of
optical (SPOT) and radar (TerraSAR) data. The land cover ’mixed mangroves’ occurs at a location where the
classification results in case study 5.8 showed that discriminating the two mangroves species was very bad.
This is thus caused by a mixing of the two different species which makes it hard to choose the best result from
the available pre-defined classes in our classification algorithm.

Overall, the classification results from Sentinel satellite imagery are found to be reliable in extracting man-
grove properties from a combination of optical and radar data. The two most common mangrove species in
this district are well separated and also the separation of ’pure’ mangroves versus ’mixed’ mangroves is suc-
cessful. Those two separation are reached with high accuracy (87%) which is a new achievement in the field
of mangrove remote sensing. Other research results never mentioned the species in the mixed mangrove and
aquaculture areas. Our fieldwork campaign showed that the majority of mangroves in those fish and shrimp
farms are Rhizophora Apiculata species, since they are growing fast and thus easily cultivated. It is assumed
that all ’mixed’ mangroves from external classification results is thus Rhizophora mangrove species.
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Figure 6.4: Classification results from Kuenzer et al [32]

6.4. Future applications
Section 2.1 extensively described the different reasons why we need to study mangroves in the Vietnamese
Mekong Delta. The main reason why mangroves need to be monitored was its need for coastal protection.
Mangroves are found to be a natural protector of erosion with attenuating waves, collecting and stabilizing
sediment supply and reducing storm surges. Figure 5.4 showed the ability of the classification result to detect
areas of coastal erosion. Between the reference mangrove cover from 2000 erosion is visible towards our 2017
resulting land cover product. With future yearly land cover products a more timely investigation of areas
affected by erosion can be obtained.

Another application of the results is a governmental approach. In 2008 ∼70% of Ca Mau’s total land
was occupied by semi-extensive shrimp farms. In the Introduction was already mentioned that according
to provincal regulations farmers must have 60% of their total area to be mangroves and 40% aquaculture
[7, 21]. An object-based classification approach by Vo et al already tried to make a quantitative estimation of
mangrove fractions within the aquatic shrimp farming systems [57]. A quantitative estimation of mangrove
fractions is not feasible with the results from this research but changes within shrimp farms are possible to
detect. The classification results show clear land cover changes in areas with shrimp farms, as discussed in
the different case studies in section 5.1.5).

A more broad future application of the method from this research is classifying areas outside the ROI.
Not only other areas but also nationwide coverage or even worldwide coverage. With the use of Google Earth
Engine a global processing tool is available. As soon as a reliable atmospheric correction will be available for
Sentinel-2 data, the Google Earth Engine consists of nationwide and even worldwide coverage of optical and
radar data from Sentinel. The processing skills of Google Earth Engine are big enough for world wide analysis.
Examples are the Global Forest Change map or the Aquamonitor [10, 24]. Still, it is not very likely that the
method is directly applicable to obtain reliable world wide land cover maps. First of all, the used ground
truth data covers only a tiny amount of global area. Ground truth data of mangroves should be obtained for
a much bigger area. Also, the classes in this research are chosen according to the most common land covers
in the ROI, especially the two dominant mangrove species: Rhizophora Apiculata and Avicennia Alba. For
nationwide and worldwide coverage much more mangrove species are present. Rhizophora and Avicennia
were relatively easy to separate but for other mangrove species the differences are less significant [29]. Global
separation of mangroves species seems very hard. However, monitoring mangroves in general is feasible.
In the section (4.5) the Mangrove Forest of the World (2000) was already mentioned. This database is made
from Landsat images with supervised classification techniques and shows the global coverage of mangroves
in 2000.
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Although many improvements are needed it is possible to create such mangrove cover map using Sen-
tinel imagery in the future. Both Sentinel-1 as Sentinel-2 mission consists of satellites that are designed to
stay active for at least seven years. The future radar satellites Sentinel-1/2 C& D will extend the operational
monitoring component of Copernicus at least until the end of 2030 [13, 14]. With this continuous flow of
data much larger time series can be created than used in this research. This makes the extraction of tempo-
ral information more reliable. Also, changes in time series are easier to detect. With more available optical
images also temporal information from NDVI time series can be used as an input feature in the classifica-
tion. More simple, the availability of both Sentinel-2A and 2B makes the revisit time much shorter and the
chance of cloud-free data much larger. This improvement can be incorporated very soon. The first images of
Sentinel-2B are available since September 2017.

6.5. Conclusions
This chapter discusses the different results that were described in the previous chapter . Not only the classi-
fication results but also the data processing, a comparison with external results and future applications were
discussed.

• During the data processing some problems are addressed. Improving cloud detection techniques and
a better distribution of the ground truth training data from the fieldwork campaign are simple ways to
improve final classification results.

Google Earth Engine has great potential but some drawbacks were found. The atmospheric correction
for Sentinel-2 data must be further implemented, just as new classification algorithms such as convo-
lutional neural networks. The codes of the Google Earth Engine algorithms are hidden which makes it
hard to qualify the outcomes, to find error sources and make adaptations.

• The yearly land cover maps of the final classification results are made by single image classifications.
Those single images results are not covering the whole ROI due to clouds but at the locations without
clouds the transition between the two mangroves species along the edges of the National Park is much
clearer. Unfortunately cloud free images are very scarce.

It is not possible to separate different vegetation types using only raw radar backscatter. The radar tem-
poral data is performing better in differentiation the two mangrove genus, Rhizophora and Avicennia,
but not at detecting the mixed farms with mangroves. The temporal data is a valuable addition to raw
optical data by increasing the classification accuracy from 83% to 87%.

• Compared to external mangrove classification results the reached accuracy of 87% is high since it
includes both a mixed mangrove/aquaculture class and is able to separate two different mangrove
species. The class ’Rhizophora in extensive shrimp farms’ coincides with mixed mangrove (31-69%
mangrove) and mangrove/aquaculture classes of external results where the mangrove species is not
mentioned. External research results included a class where Rhizophora and Avicennia genus are
mixed, solving the problem of confusions that occur in this research.

• Future applications include monitoring longer yearly land cover maps to investigate the areas affected
by coastal erosion. Changes inside shrimp farms can be detected with the availability of yearly land
cover maps. A wider application is making this method feasible for classifying mangroves on nation-
wide or global scale. For this, a better investigation of global mangrove species together with global
ground truth information is needed. The processing capabilities of Google Earth Engine are present
just as future denser time series of Sentinel-1 & 2 when all satellites are fully operational.
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Conclusions and recommendations

From the results and discussion of the previous chapters, conclusions and recommendations are made. Con-
clusions are given in section 7.1, answering the different research questions. Recommendations for further
research are found in section 7.2.

7.1. Conclusions

The most important conclusion from this research is that combining radar and optical satellite data from
Sentinel-1 and 2 satellite missions gives classification results for discriminating mangrove types with 87%
accuracy compared to ground-truth data.

Recalling the main research question:

What is the best method for discriminating mangrove types in Vietnam using radar and optical satellite
remote sensing?

Sentinel-1 radar and Sentinel-2 optical satellite missions are chosen as remote sensing data since they are
free to use and they have both good spatial and temporal resolution. Unsupervised clustering showed the
separability of different mangrove densities and also between the mangrove species Rhizophora Apiculata
and Avicennia Alba with different reflectance properties. Temporal analysis of radar backscatter showed that
yearly variation is different according to the spatial succession of mangroves. A fusion of optical data with
the temporal information of the radar data is found to be the best input for discriminating mangrove and its
properties in the area of Ca Mau cape in Vietnam. Classification results of 87% overall accuracy are obtained
with this method compared to validation ground-truth data. Case studies show that the classification results
can discriminate mangroves in areas with extensive shrimp farms. The classification is less reliable when
mangrove species are mixed and when there is less ground truth data available.

7.1.1. Research questions
Many different steps are taken towards this best method that is set-up for discriminating mangrove and its
properties. Therefore subquestions of the research question were made and answers can now be provided.

1. Why do we need to study mangroves in Vietnam?
The main reason for studying mangroves in the Mekong Delta is the need for coastal protection in this
highly vulnerable area where mangroves contribute by reducing wave height and storm surges and holding
sediments to protect erosion. Conservation of flora and fauna is a also an important driver to monitor
mangrove. Finally, ∼70% of Ca Mau province’s total land was occupied with extensive shrimp farms in 2008,
where 60% of the area need to consist of mangroves. Monitoring these mangroves is important to check the
regulations and check changes towards intensive shrimp farming.
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2. What are the unique properties to discriminate mangroves?
Mangroves are found in saline coastal environments and can be recognized by its unique roots and the
canopy structure of the different species. Close to the shoreline are shrubs with small leaves that are pioneer
species such as Avicennia Alba. More inland grows the more mature Rhizophora genus that grows much
taller with a denser canopy of thick and dark leaves, having the distinctive stilt roots (figure 2.1).

3. Can we extract those unique properties from satellite imagery? How?
4. What differences in mangrove types can be extracted from satellite imagery?

In optical satellite imagery mangrove vegetation is easily discriminated from other land covers by its high
reflectance in the near infrared (NIR) and its low reflectance in the red and green wavelengths (figure 2.3).
Dense mangrove forest give higher NIR response than sparse forests. Different mangrove species Rhizophora
Apiculata and Avicennia Alba are easiest to discriminate among different mangrove species (section 2.4.2).
In C-band radar imagery the signal is dominated by volume scattering. Dense canopies reflect more
backscatter than sparser canopies. Due to multiple scattering in the canopy the signal can easily get sat-
urated. VV-polarization continues to increase to a higher biomass saturation threshold and contains good
correlations with canopy parameters (section 2.4.3).

5. How can space-borne optical and radar data be used for the classification of mangroves?
Supervised classification is the machine learning task of assigning classes to (satellite) data input where
ground-truth data is used as training input for assigning the different classes. From the fieldwork campaign
executed in the ROI five different classes are chosen. To investigate the separability of those classes an
unsupervised clustering is executed. Unsupervised clustering showed the separability of different mangrove
density and also between the mangrove species Rhizophora Apiculata and Avicennia Alba with different
reflectance properties. Temporal analysis of radar backscatter showed that yearly variation is different ac-
cording to the spatial succession of mangroves. With this data input a workflow is set-up towards classifying
mangroves that is visualized in figure 5.9.

6. How to validate the accuracy of the classification results?
Validation is done by calculating the confusion matrix for both training as well as validation data. From these
confusion matrices overall accuracy’s are compared for the different classification input: Sentinel-2 (S2)
optical data, Sentinel-1 (S1) radar data, S1 and S2 combined, Sentinel-1 temporal information and finally
S2 and S1 temporal information. A fusion of optical data with the temporal information of the radar data
is found to be the best data input for classifying mangrove. The classification outcome is also validated by
a confidence map showing the stability of the classification for different images within a year. Finally, the
resulting land cover map is compared with existing mangrove cover dataset to detect discrepancies and land
cover changes (section 4.5).

7. How can the quality of the classification result be improved by combining the optical and radar data?
Raw Sentinel-1 radar was not able to separate different mangrove vegetation. This resulted in an overall
accuracy of 50% compared with validation data. Calculating extra features as input for the classification is
a way of improving the quality of the classification results. For Sentinel-1 radar data a temporal analysis
is done at a two year time series to extract the mean and the amplitude of the temporal variations. The
differences in amplitude of those variations coincide with the spatial succession of mangrove species from
the coastline towards more inland areas. Making a classification with these temporal information form the
radar signal improved the classification already to 78%. Single Sentinel-2 raw optical bands, with extra NDVI
feature, already showed 83% overall accuracy. The quality of the results does not improve by adding raw radar
bands, since this does not add any information. Combining the optical bands with the temporal information
of radar does improve the classification accuracy towards 87% (figure 5.2).

8. Can this method be used to reach nationwide or even worldwide coverage? How?
The method is implemented in Google Earth Engine which is proven to be an online platform able to perform
nation and worldwide analysis. Also the future denser time series of Sentinel-1 & 2, when all satellites are
fully operational, are promising for reaching wider coverage. However, the defined method is not expected
to directly perform well on global scale since the supervised classification demands ground truth data. In
this study a small Region of Interest in Ca Mau province in Vietnam showed good the results because the
variability in different mangrove types was relatively small. Obtaining reliable results for bigger coverage
demands much more ground truth data and a better investigation on the different mangrove species world
wide (section 6.4).



7.2. Recommendations 71

7.2. Recommendations
During this research possible topics are addressed that could improve the remote sensing of mangrove prop-
erties. They were beyond the scope of this research but are recommended for further research. Section 7.2.1
discusses improvements on the use of the data and the different methods from this research. Section 7.2.2
states topics to continue further research in the field of mangrove remote sensing.

7.2.1. Improvements
Some recommendations on the data processing have already been discussed in section 6.1 of the discussion.
Those were better cloud detection techniques for Sentinel-2 optical data, better distribution of ground truth
data to obtain more reliable training input and future improvements that could be implemented in the Google
Earth Engine. This sections recommends more general improvements for both radar and optical data, using
also data outside the Sentinel satellite missions and for improvements regarding the methods that are used.

7.2.1.1. Radar data
The radar data from Sentinel-1 in the Google Earth Engine is available in Level-1 GRD scenes. Those scenes
are pre-processed with the Sentinel-1 Toolbox including averaging of multiple scenes to create approximately
square resolution pixels with reduced speckle. This is at the cost of reduced geometric resolution. A higher
resolution can be useful for a better differentiation between the vegetation and water in the shrimp farms.
Therefore the investigation of using Level-1C Single Look Complex data instead of GRD scenes is recom-
mended.

The temporal information that is found from radar time series in section 5.3 showed very interesting re-
sults regarding mangrove types but also along the coastlines. However, it is not fully understand how those re-
sults are explained. Improvements of this understanding can be obtained by using longer wavelengths radar,
that are described in section 2.4.3, giving different information on the canopy, trunk and ground conditions
of the mangrove types.

7.2.1.2. Optical data
This research has chosen to only use Sentinel-1 and 2 data as input source. Reason for this was the good tem-
poral and spatial resolution but most of all that it was free available. Of course there are more free available
such as Landsat and MODIS. Their spatial resolution is worse than Sentinel, especially MODIS data with only
250m pixel size. However, when adding those satellite data to the Sentinel-2 optical data the time series can
be very much expanded. This way also temporal information of optical time series can be implemented in
the classification workflow.

The seasonal differences of mangroves are mentioned only short in section 3.4. In this research it is chosen
to make yearly land cover map that are assumed independent of seasonal differences since the availability
of data was too scarce to make a monthly land cover map. Better optical time series together with a more
detailed investigation on the phenology of mangroves can help to get a better differentiation between the
mangrove species.

7.2.1.3. Methods
From the workflow that is set-up in this study, visualized in figure 5.9, two methods were implemented. The
time series analysis is done using HANTS algorithm (section 4.4) executed in Matlab (section 3.5.3). In the
discussion section 6.1.2 is already mentioned that implementing the Sen2Cor algorithm for atmospheric cor-
rection into the Google Earth Engine (GEE) would be good addition to GEE. The same holds for a time series
analysis. This can be the HANTS algorithm that fits the function according to Fourier series but also smooths
the data, removes outliers and fills the gaps of missing data. However, a time series analysis that only does
the Fourier fit might be already enough to obtain the same information on the seasonal variations. It is rec-
ommended that those two additions are investigated to improve the temporal analysis method.

Improvements on the supervised classification are also mentioned in the discussion. Those are the use of
new state-of-the-art classifications algorithms such as neural networks and the extension of available ground
truth training data input to better train the classifier.

7.2.2. Further research for future applications
In section 2.1.1 the mangrove’s potential for coastal protection was described. Also the mangrove rehabili-
tation programmes from GIZ were mentioned, where the different steps of the programme include planting
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the mangroves, a site assessment and finally monitoring [49]. It is recommended to further develop man-
grove classification remote sensing methods to fully be implemented in such programmes. The resulting
method from this research can serve as a starting point with more and more data from Sentinel satellites be-
ing available in the future. With this data hopefully regular, yearly, seasonally or even monthly, land cover
classifications can be made that are able to monitor the effect of the mangrove rehabilitation programmes.

As mentioned in the discussion section 6.4 a future application is implementing the method for nation-
wide or even global scale. More research is needed for this on mangrove species worldwide and available
ground truth information for those different species. It might not be possible to separate all global mangrove
species but maybe mangroves can be sorted by its maturity, pioneer mangroves versus mature mangroves.
An investigation of those possibilities is recommended for any further research.
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A.1. Land cover maps using different data input
Figures A.1 to A.5 show the different yearly land cover maps from 2017 made by the five different data input
combinations:

1. Sentinel-2 optical data: Bands 2,3,4,5,6,7,8,8A,11,12 (figure 3.6) and NDVI
2. Sentinel-1 radar data: VV and VH backscatter
3. Sentinel-1& Sentinel-2 fusion: all bands 1. and 2.
4. Sentinel-1 temporal information: Mean a0 and yearly harmonics term A2 for VV and VH backscatter at

10m pixel resolution and 50m pixel resolution (8 bands total)
5. Sentinel-2& Sentinel-1 temporal information: all bands 1. and 4., in total 19 features

Figure A.1: Land cover map of 2017 using Sentinel-2 data
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Figure A.2: Land cover map of 2017 using Sentinel-1 data

Figure A.3: Land cover map of 2017 using Sentinel-1 & 2 data
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Figure A.4: Land cover map of 2017 using Sentinel-1 temporal data

Figure A.5: Land cover map of 2017 using Sentinel-1 temporal and Sentinel-2 data
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A.2. Detailed workflow

Figure A.6: Detailed workflow for classifying mangroves using Sentinel-1 and Sentinel-2 satellite imagery
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A.3. Temporal analysis
Figures A.7 to A.11 show the spatial results of the terms resulting from the temporal analysis. Only the mean
and the second amplitude term were finally implemented in the supervised classification. The first and third
amplitude (figures A.10 and A.11) did not show very significant differences between the classes.
Figures A.12 to A.12 show the time series at the locations 3, 4 and 5 indicated in the maps.

Figure A.7: Second amplitude term for VH cackscatter time series. Black rectangles indicate POI.

Figure A.8: Mean for VH backscatter time series. Black rectangles indicate POI



82 A. Results

Figure A.9: Mean for VV backscatter time series. Black rectangles indicate POI

Figure A.10: First amplitude term for VV backscatter time series. Black rectangles indicate POI
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Figure A.11: Third amplitude term for VV backscatter time series. Black rectangles indicate POI

Figure A.12: VV backscatter time series at POI 3
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Figure A.13: VV backscatter time series at POI 4

Figure A.14: VV backscatter time series at POI 5
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A.4. Clustering
Figures A.15 to A.17 show the maps resulting from the unsupervised clustering.

Figure A.15: Cluster analysis for Sentinel-2 median image for k=4

Figure A.16: Cluster analysis for combined Sentinel-1 & 2 median image for k=4
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Figure A.17: Cluster analysis for combined Sentinel-1 & 2 median image for k=10 in random colors
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