
Not all extensions are equal
Taxonomy of Haskell language extensions based on function and

usage

Julius Gvozdiovas1
Supervisor(s): Jesper Cockx1, Leonhard Applis1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Julius Gvozdiovas
Final project course: CSE3000 Research Project
Thesis committee: Jesper Cockx, Leonhard Applis, Koen Langendoen

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Haskell programming language has a long history of extensions which extend and
modify its syntax and semantics. They range from small quality-of-life syntax im-
provements, to complete overhauls of the type system. Such extensions are commonly
implemented directly as a part of Glasgow Haskell Compiler (GHC) or as plugins for
GHC through its plugin API. This paper looks at the present ecosystem of such lan-
guage extensions, identifying the key categories into which extensions can be separated,
based on how often and in which ways they are used, and their functionality.

We analysed which extensions are used in packages uploaded to Hackage, a central
open-source Haskell archive. We further extracted the metadata about the packages,
including the user-submitted tags and maintainer lists, to ascertain how and when are
language extensions used.

The result of our research is a combination of several proposed potential taxonomies,
that can be used by academics and practitioners alike.

1 Introduction
Haskell, named after logician Haskell Brooks Curry, has been a core programming language
for developing and expanding the functional paradigm [13]. Haskell has a rich history of
language extensions extending the original language and modifying its behaviour. Language
extensions in Haskell serve the purpose of extending the base language of Haskell with
additional optional features and constructs. Some of them provide syntactic sugar to reduce
friction when developing Haskell applications, but do not change the overall capability of the
language. Others enhance the language with a more flexible or stricter type system, meta-
programming or interfacing with other programming languages. Glasgow Haskell Compiler
(GHC) serves as the de-facto standard compiler for Haskell, implementing a wide range of
features, including language extensions 1. While other other compilers exist [7], GHC stands
out as the most prevalent and extensible.

Many language extensions have been included by default in the language editions that
GHC supports [22]. Language editions Haskell98 [14] and Haskell2010 [16] are derived
from the language standards of Haskell, whereas GHC2021 and GHC2024 serve as sets of
commonly used language extensions that the wider community uses.

Haskell remains a core programming language in academia, with many papers propos-
ing and implementing new extensions. Some extensions, have been originally proposed or
described by academic papers. For example, LinearTypes was proposed by Bernardy et al.
[1] and submitted as a proposal to GHC. Many extensions included in GHC also link the
relevant papers. These include TypeFamilyDependencies [21], TypeFamilies [6, 5, 20],
StaticPointers [8], RecursiveDo [9], QuasiQuotes [15], QuantifiedConstraints [2] and
PatternSynonyms [18].

While there is research into individual extensions for Haskell, a research gap of a com-
prehensive, big-picture analysis of the language extension climate exists. At the moment,
developers’ usage of language extension is measured informally, e.g. using informal sur-
veys [10]. Data about usage of language extensions is also a crucial part in determining the
evolution of Haskell as a programming language. One of the key factors influencing which
language extensions are enabled by default in language configurations such as GHC2021 is

1For example, https://ghcaniuse.damianfral.com/ lists the huge variety of language extensions that
different versions of GHC implement

1



popularity [4]. This work aims to fill the gap by studying existing extensions, both incor-
porated in GHC and not incorporated, through the lens of their functionality and usage. A
core contribution of this work is a taxonomy of Haskell language extensions.

The goal of this work is to classify and study not only built-in language extensions for
Haskell, but also community-built extensions. A dataset, comprised of packages, language
proposal implementations and GHC plugins is needed. Thus, RQ1 should locate such ex-
tensions:

RQ1: What are the community built language extensions for Haskell?
Informal overview of existing language extensions indicates that many of them perform

greatly different functions in a Haskell program’s code-base. We want to more formally
assess these differences, culminating in a taxonomy that can be used for future research:

RQ2: How can language extensions be classified into useful categories?
Given a classification of language extensions, We want to take a practical look at their

use in real-life Haskell libraries and programs. To this aim, We should measure the use of
language extensions in Hackage packages:

RQ3: How widespread is the use of language extensions in Haskell projects?
With the data of language extension usage, We want to further examine it for useful

patterns. We can measure and correlate what type of projects (using Hackage tags) tend to
use what kind of extensions (using classification from RQ3):

RQ4: What type of projects use which type of extensions?

2 Methodology

Table 1: Research question methods and resulting outputs
RQ Research Question Method Result

RQ1 What are the community built
language extensions for Haskell?

Exploratory survey of dependencies of
GHC and use of GHC plugins

List of Hackage packages
of community-built lan-
guage extensions

RQ2 How can language extensions be
classified into useful categories?

Examining existing categorisation,
proposing new taxonomies

Set of proposed tax-
onomies

RQ3 How widespread is the use of
language extensions in Haskell
projects?

Data mining packages from Hackage,
detecting used extensions from Cabal
files and pragmas in source code

Percentage of projects
(and their files) using
language extensions

RQ4 What type of projects use which
type of extensions?

Data mining packages and their tags
from Hackage, clustering based on k-
nearest neighbours

Tags grouped by their
similar usage of exten-
sions, extensions grouped
by their similar usage

RQ5 Do developers stick to language
extensions they have used be-
fore?

Data mining packages and their main-
tainers from Hackage, correlating
projects’ extension usage with authors’
prior extension usage

Correlation between past
usage and present usage

Table 1 shows the general overview of methods to answer each research question.
To answer RQ1, We will extract packages from Hackage which depend on ghc and extend

GHC [23].

2



RQ2 will be answered by proposing multiple possible taxonomies for classifying language
extensions, noting down how well they apply. Then, in conjunction with the results from
RQ4 and RQ5, We will propose which categorisation is most useful, especially in regards of
developer’s choosing which language extensions they wish to use.

To answer RQ3, We will download all projects on Hackage, and detect which language
extensions they use.

RQ4 will be answered using the Hackage data obtained from RQ4, and also additionally
retrieving the Hackage tags of each project.

Finally, RQ5 will be answered by analysing connections between maintainers and the
projects they maintain, and the extensions those projects have.

2.1 What is a Language Extension?
In order to properly study language extensions, we must have a concrete definition. While
GHC language extensions without a doubt count as such, more care has to be taken when
considering extensions which have not been directly incorporated into GHC.

In order to find community-built language extensions, that is, language extensions which
are not integrated into GHC, we needed a clear definition of what a language extension is.
Thus, we chose to define language extensions as any software that satisfies the following
properties:

1. It modifies syntax or semantics of Haskell code.

2. It’s implementation fundamentally requires interfacing with the compiler, e.g. as a
plugin.

By the nature that language extensions modify behaviour of Haskell, We expect them
to import and depend on behaviour of GHC, most likely through the GHC plugin API.

Our method to answer RQ1 is then to retrieve all packages in Hackage which depend on
ghc, filter for those which use the GHC plugin interface. We further validate our findings
by checking whether the GHC plugins are actually used.

2.2 Using Language Extensions
Language extensions are enabled in these ways:

1. In .cabal files, to be enabled for the entire project.

2. Using pragmas [25].

3. Using a language extension which implies an additional one.

4. Enabling a language edition, which then enables a collection of associated extensions.

For the purposes of this study, we looked only at usages where the developer explicitly
enabled a given language extension, that is, using methods 1 and 2. Our goal was to examine
how and when do developers make the decision to enable or disable an extension, thus we did
not include implicit usages. At the same time, we tracked cases where developers chose to
disable an extension which was enabled by the language edition they were using by default.

Haskell pragmas extend the usual comment syntax, and as such, usually do not impact
the semantic meaning of a program. They can either be For this study, two specific, file-level
pragmas are of note.

3



LANGUAGE pragma enables (or disables) language extensions that are directly integrated
into GHC. For example, OverloadedStrings can be enabled for a given file by having
{-# LANGUAGE OverloadedStrings #-} in its header. Multiple extensions can be enabled
in a single invocation as well: {-# LANGUAGE OverloadedStrings, CPP #-}.

OPTIONS_GHC pragma allows for manipulation of GHC flags at a per-file level. Although
not recommended by [25], GHC extensions also can be enabled by using command line
options: {-# LANGUAGE -XOverloadedStrings #-}. More importantly, community-built
extensions, implemented as GHC plugins, are usually enabled using the command line op-
tions. For example, Supermonads [3], which are implemented as a GHC plugin, can be used
in a file by having the following pragma in the file-header. Note that such usage requires
directly referencing the module where the plugin is located:
{-# OPTIONS_GHC -fplugin Control.Super.Monad.Plugin #-}.

Publicly available application extensions, developed by [19] is used to discern which
extensions a given project uses. Since the aim is to study developer behaviour, only explic-
itly included extensions is counted. This means that transitively used extensions will not
be counted. As an example, if a developer uses FunctionalDependencies, which implies
MultiParamTypeClasses, which then implies ConstrainedClassMethods, but they only
used the former explicitly, then only it will be counted. This will be then transformed into a
list of projects, each annotated with the language extensions that they use. A quantitative
analysis on this data will be performed, focusing on:

1. The portion of Haskell projects using any language extensions. This will be done by
counting the number of projects using at least one language extension, and comparing
it to the overall number of projects sampled.

2. Most popular language extensions used. To determine this, the number of projects
using each language extension will be calculated.

3. Average number of language extensions used, by number of extensions used in each
project, summing up and then dividing by the overall number of projects.

To answer RQ3, we sampled extension usage in two ways:

1. Usage in individual files. This allowed us to gain insight on whether certain extensions
are used only in one-off situations.

2. Usage anywhere in the project (either in .cabal files or in individual source code files).
This allowed us to reason about the overall, per-project usage of extensions.

2.3 Taxonomy creation and evaluation
In order to create a of Haskell language extensions, We began using the base categorisation
that GHC documentation provides in [24]. As we are also considering cases where develop-
ers explicitly disabled extensions, we included cases such as NoOverloadedStrings in the
categorisation as well. The resulting categorisation is functionality-based, as the exact
feature set and area of effect was considered to derive the categories, as seen in Table 2.

We have devised additional ways to classify Haskell language extensions, based on the
given observations:

2GHCi is GHC’s interactive read-evaluate-print-loop environment

4



Table 2: Functionality-based categorisation, based off GHC documentation
Category name Functionality #extensions

Strictness Default strictness behaviour and strictness
patterns

3

Bindings Bindings and let-generalisation behaviour 2
Nonconformance NondecreasingIndentation controls specifi-

cally how GHC default behaviour differs from
the Haskell Report

1

Constraints Additional type constraints 3
Deriving Additional derivations 8

FFI Foreign Function Interface 7
GHCi ExtendedDefaultRules is enabled by default

in GHCi 2 to not require the users to provide
types when using the REPL

1

Import and Export Behaviour of module and type imports and
exports

3

Literals Extends the allowed literals 8
Parallel and Concurrent StaticPointers adds static pointer syntax

which facilitates references which can be sent
to other machines

1

Patterns Additional pattern forms 4
Preprocessing CPP allows using C pre-processor in Haskell

files
1

Records Records, fields, and how the are accessed 15
Safe Haskell Signals that a module’s types can be trusted 3

Syntax Syntactic sugar and parsing behaviour 19
Template Haskell Meta-programming 3

Type class Type class system modifications 11
Type signatures Modifies allowed type signatures 7

Types Type system 30
Unboxed Access to additional unboxed types 4

1. Some extensions tend to be used only in a few files, while others tend to be enabled
globally or used in majority of a project’s files.

2. Many extensions implement functionality that the developer themselves could imple-
ment within the base language (such as deriving). At the same time, other extensions
enable additional features that the base language cannot achieve.

2.4 Project Sampling
In order to attain an adequate selection of Haskell projects, I chose to sample from Hackage3.
The initial research plan was to sample a small selection of projects, however, due to ease
of sampling, all available Hackage projects were sampled.

3"Hackage is the Haskell community’s central package archive of open source software." [11]

5



The package list is obtained using cabal list --simple-output CLI command, ignor-
ing all but the latest version of the packages. Hackage API was directly polled for each
package, fetching their tags by scrapping them from the HTML documents.

In order to obtain Hackage metadata about the packages, such as its tags and maintainers,
Hackage API was polled for each package. In some cases, the API did not provide a JSON
endpoint, meaning that the HTML endpoint had to be used and parsed.

3 Results
On 2024-06-23 we observed 314 packages with a direct dependency on ghc. However, we
observed 48 projects using plugins with pragma OPTIONS_GHC.

17796 packages were fetched from Hackage, including their tags and maintainers.

Figure 1: Top 50 most used extensions, by usage in all Hackage projects.

122 language extension pragmas were used in the projects. This counts not only direct
extension usages, but also instances where developers turn off language extensions that are
enabled by default by their language edition. Figure 1 illustrates most commonly used
language extensions, limited to only top 30 for legibility (3 shows the number of projects
each extension has been used in). Overall, 14399 projects (≈ 80.911% of all projects) used
at least one extension. Figure 2 shows the per-file usage of extensions. We observe that
extensions, in general, tend to be used in majority of the project, if they are used at all.

A total of 1068 unique tags were scrapped from Hackage. Of those, 224 have more than
10 usages, 49 have more than 100, and 25 have more than 300. Table 4 displays the extension
and tag usage between those 25 tags and 50 most used language extensions.

6



Figure 2: Usage of GHC extensions in individual files (thus not considering .cabal files).
Total usage indicates the average portion of files using the extension from all projects, where
as partial usage indicates the average portion of files using the extensions only in projects
where the extension is used in at least one file. Top 50, by total usage, is shown for brevity.

Figure 3 illustrates a specific subsection of data. Observe that "data" and "language"
tags tend to use similar extensions, but differ from "network".

Our analysis on whether developers tend to use language extension in-between projects
seems to show that developer extension re-use seems to correlate with the language extension
overall usage.

4 Responsible Research
There is a number of ethical considerations to be made in regards to this research.
Collecting source code data and linking it to the developers who made it can be a privacy
concern. For this reason, all maintainer names have been replaced by anonymized versions.

This research aims to be reproducible by ensuring the use of open-source data (all pack-
ages uploaded to Hackage must be under an open source license [12]), and by publishing both
the source code of this research, and the reproducibility package with the archived dataset
that was used to produce the results. The reproducability package is published at https:
//data.4tu.nl/private_datasets/XXsPSQwBkJM8aCQZFiyPwXHZdLJPQ-iDfpXQ_xtf1Ro.

I have also sought to explicitly avoid introducing undue bias (e.g. due to HARKing) by
planning out the research process and the hypotheses I sought to verify or reject. I have been
careful to only derive abundantly obvious conclusions from the data, and not to speculate
upon the results without a solid basis.

7



Figure 3: Usage of extensions, based on handpicked tags "data", "language" and "network".
Extensions are shown such that top 5 most used extensions for each tag are represented
(overlapping union).

5 Discussion
We observe a small number of packages depending on ghc, many of which are bound to
be false positives - depending on the ghc package, but not strictly being extensions to
Haskell. Even more so, with only 48 projects using GHC plugins, compared to 14399
projects using GHC built-in extensions, we see a great disparity between officially supported
and community extensions.

While development on language extensions is one of the core ways functional languages
have evolved over the years [13], it seems that the only path towards more widespread
adoption is through integrating into GHC.

A notable extension is the CPP extension, alone occupying the entire domain of pre-
processing Haskell files. With nearly 25% of projects using it, despite many C pre-processor’s
flaws criticism, Haskell developers seem to be leaning towards "love" in the love-hate rela-
tionship that developers have with it [17].

With more than 40% of Haskell packages using OverloadedStrings, we have shown that
there is great demand for it, despite it being a quality-of-life extension.

8



In our results, we observe that extensions, when used, tend to be used in the majority
of the project that they are used in. While we did not test any hypotheses regarding this,
we can infer a few possibilities to explain this result:

•

6 Conclusions and Future Work
In this work, we sought to investigate community-built language extensions and GHC built-
in language extensions, and found that, despite community building language extensions,
they are not using them.

Our core contribution is the analysis of the overall ecosystem of Haskell language exten-
sions. With our work, we sought to shed some light on how developers decide to choose
which extensions they work on, and to provide guidance for future developers.

Given that this work sampled only projects from Hackage, other open-source platforms
could be sampled in future work, such as GitHub or other forces. Our research so far has
only looked at the present-day usage of extensions, in the latest versions of packages. Further
work could expand upon this by studying the evolution of their usage, based on package
versions.

The study of how and why language extensions are used in Haskell could be studied
not only quantitatively, but also qualitatively. Future work should investigate individual
developer sentiments about the usefulness of language extensions and their pitfalls. Openly
available resources, such as Haskell Wiki, already advocate careful use of the optional lan-
guage features [26].

References
[1] Jean-Philippe Bernardy et al. “Linear Haskell: practical linearity in a higher-order

polymorphic language”. In: Proc. ACM Program. Lang. 2.POPL (Dec. 2017). doi:
10.1145/3158093.

[2] Gert-Jan Bottu et al. “Quantified class constraints”. In: Proceedings of the 10th ACM
SIGPLAN International Symposium on Haskell. Haskell 2017. Oxford, UK: Associ-
ation for Computing Machinery, 2017, pp. 148–161. isbn: 9781450351829. doi: 10.
1145/3122955.3122967.

[3] Jan Bracker and Henrik Nilsson. “Supermonads: one notion to bind them all”. In:
SIGPLAN Not. 51.12 (Sept. 2016), pp. 158–169. issn: 0362-1340. doi: 10.1145/
3241625.2976012.

[4] Joachim Breitner. GHC 2021 Proposal. https://github.com/ghc-proposals/ghc-
proposals/blob/master/proposals/0380- ghc2021.rst. [Accessed 11-06-2024].
2021.

[5] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. “Associated type
synonyms”. In: Proceedings of the Tenth ACM SIGPLAN International Conference
on Functional Programming. ICFP ’05. Tallinn, Estonia: Association for Computing
Machinery, 2005, pp. 241–253. isbn: 1595930647. doi: 10.1145/1086365.1086397.

[6] Manuel M. T. Chakravarty et al. “Associated types with class”. In: SIGPLAN Not.
40.1 (Jan. 2005), pp. 1–13. issn: 0362-1340. doi: 10.1145/1047659.1040306.

9



[7] Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. “The architecture of the
Utrecht Haskell compiler”. In: Proceedings of the 2nd ACM SIGPLAN Symposium
on Haskell. Haskell ’09. Edinburgh, Scotland: Association for Computing Machin-
ery, 2009, pp. 93–104. isbn: 9781605585086. doi: 10.1145/1596638.1596650. url:
https://doi-org.tudelft.idm.oclc.org/10.1145/1596638.1596650.

[8] Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones. “Towards Haskell in the
cloud”. In: SIGPLAN Not. 46.12 (Sept. 2011), pp. 118–129. issn: 0362-1340. doi:
10.1145/2096148.2034690.

[9] Levent Erkök and John Launchbury. “A recursive do for Haskell”. In: Proceedings of
the 2002 ACM SIGPLAN Workshop on Haskell. Haskell ’02. Pittsburgh, Pennsylvania:
Association for Computing Machinery, 2002, pp. 29–37. isbn: 1581136056. doi: 10.
1145/581690.581693.

[10] Taylor Fausak. State of Haskell Survey Results. https://taylor.fausak.me/2022/
11/18/haskell-survey-results. [Accessed 11-06-2024]. 2022.

[11] Hackage. Introduction. https://hackage.haskell.org/. [Accessed 11-06-2024].
[12] Hackage. Uploading packages and package candidates. https://hackage.haskell.

org/upload. [Accessed 11-06-2024].
[13] Paul Hudak et al. “A history of Haskell: being lazy with class”. In: Proceedings of the

third ACM SIGPLAN conference on History of programming languages. 2007, pp. 12–
1.

[14] Simon Peyton Jones. Haskell 98 language and libraries: the revised report. Cambridge
University Press, 2003.

[15] Geoffrey Mainland. “Why it’s nice to be quoted: quasiquoting for haskell”. In: Pro-
ceedings of the ACM SIGPLAN Workshop on Haskell Workshop. Haskell ’07. Freiburg,
Germany: Association for Computing Machinery, 2007, pp. 73–82. isbn: 9781595936745.
doi: 10.1145/1291201.1291211.

[16] Simon Marlow et al. “Haskell 2010 language report”. In: (2010).
[17] Flávio Medeiros et al. “The Love/Hate Relationship with the C Preprocessor: An Inter-

view Study”. In: 29th European Conference on Object-Oriented Programming (ECOOP
2015). Ed. by John Tang Boyland. Vol. 37. Leibniz International Proceedings in In-
formatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik, 2015, pp. 495–518. isbn: 978-3-939897-86-6. doi: 10.4230/LIPIcs.ECOOP.
2015.495.

[18] Matthew Pickering et al. “Pattern synonyms”. In: SIGPLAN Not. 51.12 (Sept. 2016),
pp. 80–91. issn: 0362-1340. doi: 10.1145/3241625.2976013.

[19] Veronika Romashkina and Dmitrii Kovanikov. extensions. https://hackage.haskell.
org/package/extensions. [Accessed 11-06-2024]. 2022.

[20] Tom Schrijvers et al. “Type checking with open type functions”. In: SIGPLAN Not.
43.9 (Sept. 2008), pp. 51–62. issn: 0362-1340. doi: 10.1145/1411203.1411215.

[21] Jan Stolarek, Simon Peyton Jones, and Richard A. Eisenberg. “Injective type families
for Haskell”. In: SIGPLAN Not. 50.12 (Aug. 2015), pp. 118–128. issn: 0362-1340. doi:
10.1145/2887747.2804314.

[22] GHC Team. Controlling editions and extensions. https://downloads.haskell.org/
ghc/latest/docs/users_guide/exts/control.html. [Accessed 23-06-2024]. 2023.

10



[23] GHC Team. Extending and using GHC as a Library. https://downloads.haskell.
org/ghc/latest/docs/users_guide/extending_ghc.html. [Accessed 23-06-2024].
2023.

[24] GHC Team. Language extensions. https://ghc.gitlab.haskell.org/ghc/doc/
users_guide/exts.html. [Accessed 23-06-2024]. 2023.

[25] GHC Team. Pragmas. https://ghc.gitlab.haskell.org/ghc/doc/users_guide/
exts/pragmas.html. [Accessed 23-06-2024]. 2023.

[26] Haskell Wiki. Use of language extensions. https://wiki.haskell.org/Use_of_
language_extensions. [Accessed 11-06-2024]. 2021.

11



Table 3: Usage of GHC extensions
Extension # Extension # Extension #

OverloadedStrings 7270 AllowAmbiguousTypes 886 OverloadedRecordDot 134
FlexibleInstances 6150 DuplicateRecordFields 876 RebindableSyntax 132
ScopedTypeVariables 5755 InstanceSigs 827 ExtendedDefaultRules 130
FlexibleContexts 5444 NoMonomorphismRestriction 731 ImpredicativeTypes 123
TypeFamilies 4696 StrictData 705 Strict 118
MultiParamTypeClasses 4366 UnboxedTuples 563 MonadComprehensions 110
CPP 4287 DerivingVia 541 UnliftedFFITypes 94
RankNTypes 4109 BlockArguments 474 NegativeLiterals 92
GeneralizedNewtypeDeriving 3966 DisambiguateRecordFields 459 Unsafe 89
DeriveGeneric 3708 Trustworthy 438 GADTSyntax 67
LambdaCase 3696 OverloadedLists 402 CApiFFI 67
RecordWildCards 3549 PackageImports 399 ConstrainedClassMethods 66
TemplateHaskell 3257 UnicodeSyntax 398 PostfixOperators 57
TypeOperators 3067 PartialTypeSignatures 381 NumDecimals 53
DataKinds 3057 EmptyCase 363 EmptyDataDeriving 44
DeriveDataTypeable 3040 Safe 338 UnboxedSums 38
UndecidableInstances 2857 OverlappingInstances 315 NondecreasingIndentation 37
BangPatterns 2730 ApplicativeDo 304 NamedWildCards 31
GADTs 2652 Arrows 266 GHCForeignImportPrim 26
StandaloneDeriving 2199 ParallelListComp 255 HexFloatLiterals 25
TupleSections 2191 OverloadedLabels 254 InterruptibleFFI 24
TypeApplications 2100 RoleAnnotations 253 JavaScriptFFI 23
ConstraintKinds 1853 LiberalTypeSynonyms 247 AutoDeriveTypeable 21
DeriveFunctor 1847 TypeFamilyDependencies 243 UnliftedNewtypes 19
NoImplicitPrelude 1810 DeriveLift 240 TransformListComp 16
FunctionalDependencies 1702 QuantifiedConstraints 238 StaticPointers 15
ViewPatterns 1680 ImportQualifiedPost 226 LinearTypes 12
TypeSynonymInstances 1638 RecursiveDo 222 TypeAbstractions 9
NamedFieldPuns 1586 BinaryLiterals 211 QualifiedDo 8
KindSignatures 1538 NumericUnderscores 208 NoPatternGuards 8
QuasiQuotes 1383 TypeInType 192 NoForeignFunctionInterface 6
DerivingStrategies 1322 MonoLocalBinds 185 NullaryTypeClasses 5
ExistentialQuantification 1297 ImplicitParams 180 UnliftedDatatypes 4
PatternSynonyms 1264 ExplicitForAll 177 ParallelArrays 3
PolyKinds 1245 ExplicitNamespaces 173 LexicalNegation 3
DefaultSignatures 1182 NoStarIsType 167 FieldSelectors 3
DeriveTraversable 1113 UndecidableSuperClasses 159 TypeData 2
MagicHash 949 TemplateHaskellQuotes 145 OverloadedRecordUpdate 1
MultiWayIf 928 StandaloneKindSignatures 142 NoDatatypeContexts 1
DeriveAnyClass 926 IncoherentInstances 142 NoCUSKs 1
DeriveFoldable 911 ExtendedLiterals 1

12



Table 4: Cooccurrence between project tags and used extensions. Only the 50 most com-
monly used extensions, and tags used at least 300 times, are shown.

Extension lib
ra

ry

bs
d3

pr
og

ra
m

m
it

da
ta

w
eb

ne
tw

or
k

de
pr

ec
at

ed

te
xt

gp
l

de
ve

lo
pm

en
t

co
nt

ro
l

sy
st

em

la
ng

ua
ge

m
at

h

gr
ap

hi
cs

da
ta

ba
se

ap
ac

he

m
pl

un
cl

as
si

fie
d

te
st

in
g

aw
s

cl
ou

d

da
ta

-s
tr

uc
tu

re
s

pu
bl

ic
-d

om
ai

n

OverloadedStrings 4475 2485 1321 1247 448 1118 560 260 361 275 280 70 207 138 37 98 268 240 80 138 115 16 133 43 47
FlexibleInstances 3895 2334 640 827 614 604 298 252 226 203 156 260 109 186 170 89 181 137 44 107 125 4 120 122 55
ScopedTypeVariables 3617 2215 735 831 597 591 213 188 181 190 177 182 131 140 150 98 165 166 65 105 145 6 16 104 29
FlexibleContexts 3441 2060 647 830 541 560 178 241 190 181 144 208 86 172 178 110 164 143 45 106 112 5 11 92 50
TypeFamilies 2792 1588 365 643 516 478 223 147 105 129 97 191 73 102 128 67 126 121 44 67 80 3 119 92 22
MultiParamTypeClasses 2724 1647 431 607 457 467 119 182 111 149 88 242 78 115 124 63 130 97 32 71 77 2 6 92 41
CPP 2691 1796 504 545 476 383 156 150 201 111 182 133 184 122 114 73 110 117 31 33 114 6 5 76 38
RankNTypes 2577 1566 413 575 461 372 136 151 125 121 118 222 94 91 95 56 118 114 43 78 73 6 7 84 24
GeneralizedNewtypeDeriving 2258 1320 437 556 314 369 156 140 129 115 95 119 79 92 84 50 144 101 54 71 72 5 5 53 23
DeriveGeneric 2112 1081 461 544 332 374 256 94 114 110 99 56 63 77 50 38 108 125 48 75 60 8 126 49 12
LambdaCase 2115 1013 500 569 296 268 244 129 121 120 139 90 77 73 31 50 103 161 69 90 70 6 118 40 9
RecordWildCards 1953 995 567 547 168 380 272 92 105 106 150 39 90 51 25 56 109 114 54 81 69 6 124 25 13
TemplateHaskell 1979 1142 497 516 291 364 127 121 130 133 110 78 72 111 45 48 108 93 26 51 51 10 8 35 28
TypeOperators 1947 1076 241 407 369 325 184 96 74 94 68 126 33 67 78 32 60 103 31 48 74 2 118 61 7
DataKinds 1982 1015 313 471 343 345 198 88 68 84 75 98 40 59 62 29 91 136 40 68 63 2 120 45 6
DeriveDataTypeable 1822 1052 384 440 278 255 243 141 113 100 108 66 70 110 51 28 96 50 15 44 56 4 115 41 20
UndecidableInstances 1819 1135 203 345 366 268 69 105 81 75 47 195 49 79 86 35 86 73 30 37 43 1 4 70 24
BangPatterns 1610 975 312 417 324 146 80 91 82 77 80 61 66 84 111 48 75 67 23 52 26 2 1 79 15
GADTs 1649 904 248 431 289 257 78 95 65 89 80 134 43 70 60 24 80 66 21 54 54 1 2 48 17
StandaloneDeriving 1315 711 226 347 226 153 57 96 70 64 56 79 43 65 51 18 85 66 48 61 39 2 2 45 16
TupleSections 1286 711 333 348 149 210 82 64 79 74 85 64 49 59 23 28 67 72 46 47 30 3 6 39 8
TypeApplications 1330 672 242 355 245 163 57 43 55 54 57 65 32 31 41 18 56 112 55 49 73 3 4 38 4
DeriveFunctor 1127 635 174 304 189 147 35 93 63 63 39 64 24 64 42 24 53 50 20 73 29 4 2 44 3
ConstraintKinds 1135 564 150 336 191 164 42 85 43 52 33 78 19 34 40 20 61 60 43 67 38 4 3 36 6
NoImplicitPrelude 964 401 154 314 136 95 148 80 37 39 43 48 44 51 43 7 29 55 9 29 18 8 116 15 8
FunctionalDependencies 1047 589 132 254 178 144 50 70 45 40 34 113 36 40 32 23 53 42 20 36 13 1 2 32 11
ViewPatterns 948 519 260 226 145 138 42 49 55 56 105 31 33 44 40 23 30 86 42 31 27 2 3 28 7
TypeSynonymInstances 920 610 206 187 107 157 51 73 91 50 48 35 27 63 32 30 42 16 6 11 29 2 2 26 8
NamedFieldPuns 761 411 238 164 62 132 58 51 32 61 80 21 32 25 6 9 50 71 28 36 35 3 2 12 2
KindSignatures 953 580 135 173 199 160 36 39 34 40 27 61 29 40 43 15 33 38 37 26 20 1 4 34 3
QuasiQuotes 862 427 240 335 83 243 49 48 68 35 38 23 22 39 8 14 77 35 12 29 31 2 2 10 6
DerivingStrategies 614 295 123 152 110 83 34 14 19 21 32 12 19 14 11 12 47 59 44 25 24 1 0 19 0
ExistentialQuantification 735 450 156 150 89 111 32 66 37 35 42 55 35 31 13 20 54 36 5 13 25 1 1 19 9
PatternSynonyms 545 303 80 103 122 33 22 14 26 23 44 27 14 28 20 25 15 50 17 12 11 2 1 21 1
PolyKinds 793 484 77 156 169 120 29 69 26 33 17 65 11 28 28 13 23 43 23 30 23 1 2 28 2
DefaultSignatures 741 344 80 228 161 91 26 43 35 35 18 40 17 27 29 11 46 42 13 28 20 1 0 23 2
DeriveTraversable 670 347 85 200 136 66 16 67 34 31 16 32 12 31 29 13 35 33 8 49 14 4 1 28 1
MagicHash 587 338 46 170 180 31 20 35 32 10 25 26 16 21 31 13 19 25 6 18 6 1 0 36 1
MultiWayIf 537 231 117 198 84 51 27 42 29 29 42 15 26 17 20 11 33 38 15 24 11 1 0 11 2
DeriveAnyClass 526 257 141 138 108 85 39 15 24 22 40 12 16 23 6 12 28 55 16 18 11 1 1 14 3
DeriveFoldable 552 283 66 175 109 55 14 63 27 29 12 26 8 31 24 8 25 24 9 45 11 4 1 23 0
AllowAmbiguousTypes 545 254 66 148 113 59 18 11 20 31 13 39 9 19 13 8 19 46 17 18 35 0 0 15 1
DuplicateRecordFields 320 152 76 77 67 55 21 14 5 13 31 2 6 9 1 4 11 36 4 8 3 0 1 6 1
InstanceSigs 503 254 69 108 98 76 16 54 22 26 17 24 10 9 18 7 18 37 38 34 13 1 1 15 2
NoMonomorphismRestriction 403 214 86 145 50 56 15 32 21 36 18 37 11 16 13 13 19 9 2 16 6 0 1 12 3
StrictData 209 114 53 51 27 38 19 6 11 18 9 3 4 6 2 8 20 13 9 10 4 0 1 1 0
UnboxedTuples 343 185 23 118 106 18 9 13 14 6 19 18 11 3 17 4 13 12 0 13 4 1 0 19 1
DerivingVia 320 137 39 74 64 31 11 10 13 8 10 17 12 6 9 2 22 41 14 14 13 0 0 14 0
BlockArguments 288 133 60 72 36 19 12 3 22 8 11 16 12 5 5 11 13 34 12 15 2 0 1 3 0
DisambiguateRecordFields 73 26 17 18 6 4 9 4 3 5 8 0 1 2 2 1 8 9 2 2 2 0 0 0 0

13


