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Abstract

A general numerical model is described for the dissolution kinetics of spherical particles in binary systems for any combination
of first order reactions at the particle—matrix interface and long distance diffusion within the matrix. The model is applicable to
both finite and infinite media and handles both complete and partial particle dissolution. It is shown that interfacial reactions can
have a strong effect on the dissolution kinetics, the solute concentration at the particle-matrix interface and the solute

concentration profile in the matrix.
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1. Introduction

Heat treatment of metals is often necessary to opti-
mise their mechanical properties both for further pro-
cessing and for final use. During the heat treatment the
metallurgical state of the material changes. This change
can either involve the phases being present or the
morphology of the various phases. Whereas the equi-
librium phases often can be predicted quite accurately
from thermodynamic models, there are no general mod-
els for microstructural changes nor general models for
the kinetics of these changes. In the latter cases both
the initial morphology and the transformation mecha-
nisms have to be specified explicitly. One of these
processes, which is both of large industrial and scientific
interest and amenable to modelling, is the dissolution of
second phase particles in a matrix with a uniform initial
composition.

To describe this particle dissolution in rigid media
several physical models have been developed, incorpo-
rating the effects of long-distance diffusion [1-3] and
non-equilibrium conditions at the interface {4,5]. The
long-distance diffusion models imply that the processes
at the interface between particle and matrix proceed

infinitely fast. Therefore, these models provide an upper
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boundary for the dissolution rate.

Whelan [1] considered particles dissolving in an infi-
nite medium using the stationary interface approxima-
tion. He derived an analytical solution of the diffusion
equation in an infinite medium for spherical co-ordi-
nates by the use of the Laplace-transformation in time.
The accuracy of the meodel increases with increasing
interparticle distance, i.e. with increasing cell size.

Baty, Tanzilli and Heckel [2] were the first authors to
apply a numerical method using a finite difference
method to evaluate the interface position as a function
of dissolution time. Their model is also applicable to
situations in which the interparticle distance is small,
i.e. when soft impingement occurs. Their model was
based on the assumption of local equilibrium at all
stages of the dissolution process. They applied their
numerical analysis to dissolving Al,Cu-particles in alu-
minium. The poor fit with the experimental data is
probably due to the interface reactions, which were not
incorporated into their numerical model.

Tundal and Ryum [3] considered the effects of a
finite cell size as well. They too applied a numerical
method using a finite difference to predict the dissolu-
tion kinetics. Their model was based on the assumption
of local equilibrium during the entire dissolution pro-
cess. They introduced a lognormal distribution for both
the particle and cell size and showed that macroscopic
dissolution rates depend strongly on the shape of the
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particle size distribution curve and possible interactions
between the neighbouring cells.

Nolfi’s model [4] did not include the interface migra-
tion, but as far as is known it is the first model which
incorporated non-equilibrium conditions at the inter-
face. In the Nolfi model non-equilibrium conditions at
the interface were incorporated by the introduction of a
Robin-condition, which relates the concentration gradi-
ent at the interface with the concentration at the inter-
face. This semi-analytical solution consists of an infinite
series solution for the concentration profile. Their
method, however, is only accurate in the early stages of
the dissolution process.

Aaron and Kotler [5] incorporated the non-equi-
librium conditions at the interface too. However their
approach is only applicable for those situations in
which the interparticle distance is sufficiently large, i.e.
the diffusion fields do not impinge. They transformed
the Robin problem of Nolfi into a Dirichlet problem, in
which the interface concentration is fixed at all stages of
the dissolution process. Combining Whelan’s [1] analyt-
ical approach for the interface velocity as a function of
the annealing time with a relation between the interface
concentration and the interface position, they evaluated
the interface position using a zeropoint iteration
method. Aaron and Kotler also incorporated the effects
of the particle curvature into their model using the

(b)

Fig. 1. A schematic binary phase diagram for system A-B (a) and a spherical particle in a spherical cell (b).

Gibbs—Thomson equation [5]. In their model both the
interface position and the interface concentration were
taken momentarily stationary during the evaluation of
the interface position as a function of time.

The present model attempts to combine in a mathe-
matically rigid manner the effects of both the finite cell
size in which the particle can dissolve and the finite rate
of interfacial processes on the dissolution kinetics of
spherical particles. As the effect of the particle curva-
ture on the total dissolution time was shown to be small
[5], except for very small starting particles, this effect is
ignored in our model. Furthermore, as this work con-
centrates on the effects of processes occurring at or
near the particle—matrix interface, interactions between
neighbouring cells are excluded.

2. The model

The model treats a binary system with limited solu-
bility of B-atoms in the ¢« phase (see Fig. 1(a)). For
compositions corresponding to the two phase region at
the starting temperature T}, the material with average
composition ¢ is assumed to consist of equally sized
spherical f-phase particles of uniform and constant
composition ¢#* and radius R,, in a uniform matrix
consisting of an « phase of composition ¢™. Upon
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raising the temperature to the homogenisation tempera-
ture Tl the solubility of B in o increases provided T
is lower than the eutectic temperature T, and the
particle starts to dissolve. The solubility at the ho-
mogenisation temperature is denoted as ¢*#. Assuming
a uniform spatial distribution of particles the average
interparticle distance L can be used to calculate the
radius of the equivalent spherical cell in which the
particle dissolves:

3 1/3
Rc=(g> L (1)

Assuming that the total number of B-atoms in each
equivalent cell is constant, net transfer of B-atoms
between the cells can be excluded. This implies:

a8y @
or

In this model particle dissolution is assumed to pro-
ceed by the following sequential mechanisms: (i) de-
composition of the f-phase compound; (ii) crossing of
alloying elements through the interface between the
B-phase particle and the «-matrix; and (iif) diffusion of
the alloying element inside the solvent matrix (see Fig.
2). Each of these mechanisms consumes time. The
slowest mechanism controls the rate of the entire pro-
cess. The combination of the first two mechanisms is
referred to as the interface reactions or interface con-
trolled mechanisms. If during the whole dissolution
process the first two mechanisms proceed sufficiently
fast with respect to the long-distance diffusion, then the
concentration of the solute at the interface will be
maximal and equal to the solid solubility. Therefore,
long-distance diffusion controlled dissolution implies
local equilibrium at the interface. However, during the
initial stages of the dissolution process the concentra-
tion at the interface between «- and f-phase is not
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Fig. 2. A schematic overview of the steps that determine particle
dissolution. '
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Fig. 3. The grid which has been used to solve the spherical diffusion
equation with appropriate boundary conditions and moving interface.

likely to change like a step function when the material
is up-quenched. The more complex the compound of
which the particle consists and the higher the diffusion
coefficient of B in « is, the more likely the interface
reactions are to contribute to the total dissolution rate.

To incorporate the effects of the interface reactions
as well, the number of B-atoms that flow out of the
particle into the A-rich phase, dN(¢)/dz is assumed to
be finite and to depend on ¢(R(t), ¢) — c*# where R(t)
is the particle radius at time t. Generally, each of the
potential functions describing dN(#)/d¢, can be written
as an infinite series:
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dN(r)
dr

It is of little use to apply this whole infinite series
since the coefficients of this series are unknown and
therefore it would complicate the mathematical ap-
proach of the problem needlessly. To obtain a useful
boundary condition at the interface, a first order reac-
tion at the interface has been assumed. This assump-
tion, which has also been made by Nolfi et al. [4], leads
to:

dN(t)
dt

The parameter K,(t) can be regarded as an atomic
transfer coefficient of the interface. Equalling the flux
of atoms out of the particle to the flux of atoms into
the A-rich matrix, the following boundary condition at
the interface is obtained:

4R 3 ROCROD=cPy O

= 4nRA DK, (1N c(R(Q), 1) — c*) @

or

With K=(M,/p,)K,, M, and p, respectively are the
averaged molar mass in kilograms and density of phase
o in kilograms m ~3, D is the diffusion coefficient of B
in A in m? s~ ', The parameter Xin m s ~! is a measure
of the rate of the interface reactions relative to the rate
of long-distance diffusion in the alloy. So with increas-
ing values of K, the interface reactions proceed more
rapidly relative to long-distance diffusion and long-dis-
tance diffusion controls the rate of dissolution to a
larger extent. For the case that local equilibrium at the
interface exists (¢(R(2), £) = ¢*?), the parameter K has
to be infinite to have a non-zero mass flow.

K(c(R(t), t) — c*F) = D(ac(r, t)) .
rlR(s)
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Fig. 4. Values of (R/R,)? as a function of the normalised time t with
k =0.01 and 5= 0.8 for several values of the reaction rate parameter
KRo/(kD).

During dissolution B-atoms migrate away from the
interface. No diffusion inside the particle is assumed.
Application of Fick’s Second Law for a spherical ge-
ometry with axial symmetry yields:

VR<r<R,
V=0

ot or? ¥ or ©)

2

de(r, t) _ D [3 c(r, 1) +_2_3c(r, t)]’

The diffusion coefficient is taken to be independent
of composition. The initial boundary value problem,
stated by Egs. (2), (5) and (6) has a solution, if and only
if ¢(r, t) has at least continuous derivatives up to the
second derivative with respect to r, at the interval
R <r < R, and up to the first derivative with respect to
t for all t>0. Moreover, it can be proven that the
solution of Eq. (6) is unique [6]. As the number of
B-atoms in the cell is constant, it can be derived that:

dR(z) _ D P dc(r, t)
dt (s pju_ Pu M\ O Jure
(Mg ¢ . c(R(t), t)
Vi=0 o , )]

in which p, and p, are the averaged densities of phases
o and § and M, and M, are the averaged molar masses
of phases « and S.

From Eq. (7) it follows that the value of dc(R, ¢)/dr
determines the value of dR(r)/d:z. Apparently, the
amount of B-atoms present in the immediate vicinity of
the dissolving particle governs the rate of the interface
velocity dR(?)/dz. The initial boundary value problem
combined with Eq. (7) falls into the class of Stefan
problems with a free boundary [7].

3. The mumerical treatment

The mathematical problem is to solve an initial
boundary value problem in which the position of one of
the boundaries moves as a function of time. Formally
this means that when evaluating the particle radius at
each time step during the iteration process, a new initial
boundary value problem has to be solved, in which the
initial condition is given by the concentration profile at
the last iteration. The stationary interface approach
uses the initial concentration profile as the last iteration
during the whole iteration process, whereas the numeri-
cal approach indeed uses the concentration profile as a
subsequent initial condition for the evaluation of the
concentration at the next time step. To- relax the sta-
tionary interface approximation a finite difference
method has been used. A finite difference method is
secure since the concentration profile in the « phase is
continuous at least up to the second derivative to
position and the first derivative of time. The grid that
has been used has been shown in Fig. 3. The grid is
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Fig. 5. Subsequent concentration profiles for KRo/(kD)=co (a),
KR,/(kD) =50 (b) and KR,/(kD)=>5.0 (c) for k=0.01 and 5=10.3.
Curves 1, IT and III respectively are for (R%/R3)=0.9, (R¥R})=0.8
and (R?*/R%) =0.7. The parameter 7 indicates the normalised dissolu-
tion time required to reach that particular R/R, ratio. R/Ry=1 at
7=0.

adjusted after each iteration such that the zeroth grid-
surface coincides with the position of the interface (see
Fig. 3). This has been done for the following reasons:
(i) the interface can be used as a gridpoint, which can
be used in the boundary condition at the interface (see
Eq. (4)); and (ii) the grid is enlarged after each itera-
tion. One could argue that the error becomes larger due
to the larger gridspacing. This is not true, since errors
smooth out with iteration time, in other words the
errors become smaller after some iterations. To reduce
the inaccuracy the integral mass balance is used to
determine the interface position at each iteration. This
integral mass balance is given by:

4n P P R
—~R(t 2LL phlx = Ag J' r2e(r, t) dr
GRS VAl AR

¥ o
_Am py Pa
=3 Ry ®

o

Discretisation of Eq. (6) for the « phase, taking the
movement of the grid-surfaces into account, yields:

ay(B)ei+! —a(i)elt} —ai)eltl = agel ®

i and j represent the indices of position and time
respectively. Here an implicit difference scheme has
been used to guarantee numerical stability. The coeffi-
cients ay(i), a,(i), a(i) and ay are defined as follows:

1
0__ =
= DAr

a,(i)= gjij——l'
2Ar dr, \WN-—-1/ dt 2DAr
a (i) = rg + N i d_RJ 1
el 2Ar drg —1/ dt 2DAr
ap(i)=ap+aw(z)+ae(1), vie{1,2,3, ..., N—1}
(10)
The parameters 7, 1y, g, Ar, dr,, and drg are defined

in Fig. (4). At the particle/matrix interface the
boundary condition can be discretised as follows:

—¢(R7)
7Y — /B i SR w4
K(c(RY) — ¢y = D Ar/ a1
The discretisation at the cell boundary is given by:
chi—Ch _
Arl (12

As errors smooth out as the calculations proceed, the
time step is enlarged during each iteration. The concen-
tration profile and the interface position are determined
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Fig. 6. The interface concentration as a function of the normalised
time for b=2 and k =0.25 for different values of the reaction rate
parameter K.
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Fig. 7. The normalised interface concentration as a function of the
normalised particle radius.

during each iteration. After the determination of the
interface position the grid spacing is determined such
that the first grid point is fixed on the interface during
the whole calculation. This procedure is repeated until
the particle has dissolved either completely (c® < ¢*/#%)
or partially (c® > ¢%/#),

4. Resuits and discussion

To observe the influence of the interface reactions on
the total dissolution behaviour, the dissolution rate of a
spherical particle has been calculated for a number of X
values using otherwise identical starting conditions. To
describe the starting conditions in general manner, the
following dimensionless parameters have been intro-
duced:

Crx/ﬂ _ cm
= chlx _ pelf

0__ ,m
and b=—7—— (13)

The parameters &k and & represent a normalised con-
centrational difference in the vicinity of the interface
and the degree of supersaturation respectively. To-
gether these parameters fully define the normalised
system. The parameter b is used to distinguish the cases
in which a particle can dissolve either completely (b <
1) or partially (6> 1). The normalised particle area
R%(t)/R% is plotted in Fig. 4 as a function of the
normalised time 7= 2kD¢/R} for different values of K
for the starting conditions £ =0.01 and 4 =0.8. From
Egs. (5) and (7) and using the chain rule for differenti-
ation, it can be shown that the quantity d(R/R,)/dz is
proportional to the dimensionless parameter KR,/(kD).
Therefore, this normalisation factor has been used in
the figures describing the influence of the reaction rate
parameter K. These various curves correspond to differ-

ent rate-controlling dissolution processes. As can be
seen from Fig. 4 the lower the value of K, in other
words the more rate-controlling the interface reactions
are, the slower dissolution proceeds. This reduction in
dissolution kinetics is due to the extra time which is
needed for the B-atoms to leave the particle (decompo-
sition of chemical bonds and interface crossing). The
interface reactions cause a lower absolute value of the
concentration gradient in the vicinity of the interface.
Note that the slopes of the normalised dissolution
curves in Fig. 4 at the start of the dissolution process
depend on X. For particles consisting of chemical com-
pounds (for instanceé particles consisting of Al,Cu in
aluminium alloys) interface reactions are more likely to
be rate-controlling than for the simple systems in which
the precipitates consist of one element only.

To characterise the influence of the interface reac-
tions on the shape of the concentration profile, the
concentration profiles have been calculated for three
different values of X, namely K= co and KRy/(kD) =
50 and 5.0, using the same starting conditions (k= 0.01,
b =0.8). In Fig. 5 the calculated normalised concentra-
tion profiles are plotted versus the normalised position
r/R, for three fixed normalised dissolution times. To
highlight the differences in the evolution of the concen-
tration profiles for different values of the reaction rate
parameter, K, only the most relevant part (0.5 <7/Ry <
3.5) of the concentration profiles is plotted (as (Ry/
R = bkj(k + 1), the situation in Fig. 5 corresponds to
R /R, = 5.02). When local equilibrium at the interface is
maintained at all stages of the dissolution process (i.e.
K = o0), the profiles at subsequent times have to inter-
sect. This is because de(R,, t)/or=0 and 9%¢(R, 1)/
dr? > 0, the concentration at the cell edge increases with
time (see Eq. (6)) while at the interface c(R(?), 1) = c*”,
and the interface is moving in the negative direction
during the whole dissolution process (see Fig. 5(a)).
This means that c(R(t —di), ) <c(R(t—df), t—dt) =
c*® and c(R,, ) > c(R,, t — dt). Using the Intermediate
Value Theorem of Weierstrass [8] for this continuous
function, it is clear that there must be at least one
intersection. Due to the monotonous decrease of the
concentration as a function of the distance from the
particle/matrix interface, it is clear that the intersection
point for two subsequent concentration profiles is
unique (see Fig. 5(a)). For interface controlled particle
dissolution the interface concentration increases with
time while the position of the interface moves towards
the negative direction. This means that for interface
controlled dissolution ¢(R(z —d#), ) < c(R(t —d?), t —
dr) does not have to hold a priori. However, at the cell
boundary the same boundary conditions (dc(R,, )/
8r=0 and 8%(R,, t)/0r? > 0) still apply. This implies
that for subsequent times the concentration profiles do
not intersect in all cases (see Fig. 5(b) and (c)).
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To quantify the influence of the interface reactions
on the value of the interface concentration, the inter-
face concentration has been plotted as a function of the
pormalised time. At the start of the dissolution process
the interface concentration increases towards the equi-
librium concentration c¢*? (see Fig. 6) for finite X
values. Here, only the situation that the particle dis-
solves partially has been considered (starting conditions
k=0.25 and b = 2.0), since the interface concentration
then has to increase up to the equilibrium concentra-
tion. This has been done for various values of the
parameter K. It is clear that the time it takes for the
interface concentration to reach the equilibrium con-
centration strongly increases with decreasing K. In this
case dissolution is delayed considerably by the interface
reactions.

_Finally, the normalised interface concentration has
been plotted in Fig. 7 as a function of the normalised
particle radius for different values of KRy/(kD) but for
the same starting conditions k=025 and b=2.0.
While the particle dissolution proceeds the interface
concentration increases towards the solid solubility and
the particle radius decreases towards the final and
minimal particle diameter.

5. Conclusions

Tt has been shown that interface reactions can signifi-
cantly affect the dissolution kinetics for spherical parti-

cles in a uniform matrix of finite dimensions. These
interface reactions also control the interface concentra-
tion and the concentration profiles. These parameters
can be predicted quantitatively by the numerical model
for dissolution under mixed mode control presented
here.

Acknowledgements

The authors acknowledge stimulating discussions
with Dr Ir. P. van Mourik of the Laboratory of Mate-
rials Science at the Delft University of Technology. The
manuscript benefitted from valuable suggestions by one
of the referees.

References

[1] M.J. Whelan, Met. Sci. J., 3 (1969) 95-97.

[2] U.L. Baty, R.A. Tanzilli and R.W. Heckel, Metall. Trans., I
(1970) 1651.

[3] U.H. Tundal, and N. Ryum, Metall. Trans., 234 (1992) 433.

[4] F.V. Nolf, Jr., P.G. Shewmon, and J.S. Foster, Trans. Met. Soc.
AIME, 245 (1969) 1427.

[5] H.B. Aaron and G.R. Kotler, Mezall. Trans., 2 (1971) 393.

{6] D.W. Trim, Applied Partial Differential Equations, P.W.S., Kent,
1990, p. 7.

[7] J. Crank, Free and Moving Boundary Problems, Clarendon Press,
Oxford, 1984, p. 1.

[8] R. Courant and F. John, Introduction to Calculus and Analysis,
Wiley, New York, 1965, pp. 44-45.



