
Proposal and Validation of an
Immersed Interface Method ap-
plied to the Lattice Boltzmann
Method

S.J. van Elsloo

Proposal and Validation of an
Immersed Interface Method

applied to the Lattice
Boltzmann Method

by

S.J. van Elsloo

to obtain the degree of Master of Science

at the Delft University of Technology,

Student number: 4487060
Project duration: June 22, 2021 - June 27, 2022
Thesis committee: Dr. ir. M.I. Gerritsma Chair

Dr. ir. F. Avallone Examiner
Dr. ing. S.G.P. Castro Daily Supervisor
Dr. Ir. A.H. Van Zuijlen Daily Supervisor

Abstract

The aerodynamic analysis of flapping wing micro-aerial vehicles has gathered notable attraction throughout
the last two decades [1]. The lattice Boltzmann method (LBM) has a number of characteristics that suit the
simulation of low Reynolds number, high Strouhal number flow particularly well, whilst being known to be
computationally efficient [2, 3]. The immersed boundary method (IBM) [4] is a popular method in the LBM
[5], due to the fact that it can be used for non-boundary-fitted grids. A derivative of the IBM is the immersed
interface method (IIM), originally proposed by Leveque and Li [6], in which jumps in the solution are directly
incorporated in the discretisation.

The IIM has yet to be successfully applied to the LBM. Qin et al. [7] recently made an attempt to do so,
but as is shown in this thesis, their derivation appears flawed. It is therefore of interest to investigate how a
correct application of the immersed interface method to the LBM looks like, and how it compares against a
conventional IBM.

In the derivation and validation of the IIM in the LBM, a number of important results has been achieved.

First of all, an IIM applied to the framework of the LBM is proposed. The immersed interface method was
initially proposed by Leveque and Li [6], and an attempt was made by Qin et al. [7] to apply the IIM to the
LBM, but it was shown in Chapter 5 that their derivation was fundamentally flawed. It has been shown that
correcting the erroneous steps in their derivation does result in an equivalent expression as the one proposed
in this thesis, however.

The basis concept of the IIM applied to the LBM is that instead of interpolating the macroscopic flow quan-
tities are interpolated at the pre-collision phase, such that the applied boundary forcing must be transmitted
to the populations through the collision phase, the post-populations are directly interpolated at an arbitrary
time within the current timestep. The boundary forcing is then not applied during the collision phase, but
via jump conditions during the streaming phase.

It is shown that the default IIM is nearly identical to the IBM, if the same forcing discretisation is used. How-
ever, contrary to the IBM, the IIM allows for more precise control over at which point within a timestep the
algorithm is evaluated. It is therefore proposed to apply a midpoint immersed interface method (MIIM),
where the populations are evaluated at their mid-streaming positions.

Secondly, to validate the MIIM, and to explore its benefits with regards to the IBM, a custom-built LBM-based
solver was written, called LaBIB-FSI1. This solver is written in C++ and is capable of handling fluid-structure
interaction (FSI) by coupling with the pyfe3d-solver. Amongst others, the LaBIB-FSI solver is written to be
able to handle different collision operators, a multigrid for the fluid solver, and iterative FSI operations.

The LaBIB-FSI solver has been validated on the basis of numerous validation cases in Chapter 7 and 8, consis-
tently showing the ability to achieve results that converge to analytical values when available, or reasonably
close to reference values when no analytical solution exists. The tested validation cases ranged from a sim-
ple lid-driven cavity flow to the well-known benchmark cases by Turek and Hron [8], confirming the correct
functioning of the software.

Thirdly, from its implementation in the LaBIB-FSI solver, it has become evident that the MIIM has noteworthy
benefits compared to the IBM, as has been shown throughout Chapter 7 and 8. In particular, results produced
by the MIIM appear to suffer from less spurious oscillations in the solution field than the IBM.

For example, when used for a cylinder embedded in a Taylor-Green vortex flow, the boundary force density
(which should ideally be 0) was orders of magnitude lower for the MIIM than for the IBM. When applied to the
CFD1 and CFD2 cases from Turek and Hron [8], significantly weaker oscillations are encountered when eval-
uating the boundary force density around the cylinder and flag. When evaluating the FSI3 benchmark, it is

1Lattice Boltzmann Immersed Boundary Fluid Structure Interaction.

i

ii 0. Abstract

evident that less spurious oscillations are present in the time history of the drag and lift coefficient, appearing
to dampen out those more quickly, too.

Furthermore, the MIIM appears to consistently approximate the reference values of the drag and lift values
from the Turek and Hron benchmarks slightly better at the same level of grid refinement. Similarly, at the
same level of grid refinement, the discretisation error appeared smaller in the benchmark case of an oscillat-
ing cylinder in a fluid at rest. This lends further credit to the MIIM being an improvement over the IBM.

In short, three major results are presented in this work:

• A proposal for the application of the immersed interface method to the lattice Boltzmann method is
made.

• A custom-written, C++-based solver, capable of solving fluid-structure interaction problems by cou-
pling with the pyfe3d-library, has been developed and thoroughly validated.

• The midpoint immersed interface method is shown to bear notable advantages compared to the IBM,
in particular with regards to reducing the presence of spurious oscillations in the solution field.

List of Symbols

Upper-case Roman

C Damping matrix

D/Dt Material derivative (∂/∂t +∂/∂xxx)

D(xxx) Multi-dimensional Discrete delta function

E Total energy density

E E-modulus

Exx Material stiffness in x-direction

FFF Eulerian force at Lagrangian point

FFF Body force

FFF in Internal fluid force

FFF tot Total force

FFF (sss, t) Boundary force distribution

HHH n Hermite polynomial tensor

III Identity tensor

K Stiffness matrix

M Mass matrix

Q(uuu,θ,ξξξ) Composite polynomial containing terms related to f eq(xxx,ξξξ, t) (Equation (3.19))

Si (xxx, t) Source term corresponding to population fi

T Temperature

UUU Eulerian velocity vector of a Lagrangian point

W Work

XXX Eulerian position vector of a Lagrangian point

XXX (sss, t) Parametric description of a surface

Lower-case Roman

a Acceleration

aaan Hermite coefficient tensor

ccc i Lattice velocity

cs Lattice speed of sound

d Displacement

e Internal energy density

iii

iv 0. Abstract

fff External force density

f (xxx,ξξξ, t) Particle distribution function

f eq(xxx,ξξξ, t) Equilibrium particle distribution function

f neq(xxx,ξξξ, t) Non-equilibrium part of the particle distribution (f neq = f − f eq)

fi (xxx, t) Population

f eq
i (xxx, t) Equilibrium population function

f neq
i (xxx, t) Non-equilibrium part of the population (f neq

i = fi − f eq
i)

f̂i (xxx, t) Post-collision population

p Pressure

r Euclidean distance between two points

sss Parametric coordinates of boundary surface

t Time

uuu Velocity vector

vvv Relative velocity vector

w Compact support width

wi Lattice weight

xxx Position vector

Upper-case Greek

Γ Boundary

∆s Lagrangian spacing

∆t Time-step

∆x Eulerian spacing

Π(n) Tensor containing the nth-order macroscopic velocity moments

Ω Domain

Ω(f) Particle distribution collision operator

Ω(fi) Population collision operator (abbreviated asΩi)

Lower-case Greek

αd Mass damping factor

β Newmark-method parameter

βd Stiffness damping factor

γ Newmark-method parameter

δ(xxx) Dirac-delta located at xxx

θ Non-dimensional velocity

ξξξ Velocity space vector

µ Dynamic viscosity

v

ν Kinematic viscosity

ν Poisson’s ratio

ρ Density

φ(r) One-dimensional discrete Delta function

τ Relaxation rate

ω Vorticity

ω(xxx) Hermite moment generating function

Superscripts

AT Transpose of AAA

Subscripts

a f Quantity a corresponding to a fluid

as Quantity a corresponding to a structure

al Quantity a evaluated in lattice units

ap Quantity a evaluated in physical units

a f Quantity a corresponding to a fine grid

ac Quantity a corresponding to a coarse grid

Superscript indices

(n), (p), (r), ... Iteration index

(k) Time-step index

Subscript indices

i , j , k, ... Component in velocity space (fn denotes the nth population)

κ, λ, µ, ... Lagrangian node (FFFκ denotes the position of κ Lagrangian node)

n, p, r , ... Grid node (xxxi denotes the position of i th grid node)

n, p, r , ... Index of component in sequence (HHH n denotes the tensor containing Hermite polyno-
mials of order n)

α, β, γ, ... Component in physical space (xxxα denotes the α-component of the vector xxx)

Symbols

∇ Nabla operator

J f Kx Jump in quantity f at position x

vi 0. Abstract

Abbreviations

CFD Computational Fluid Dynamics

CSM Computational Structure Mechanics

FSI Fluid-Structure Interaction

IBM Immersed Boundary Method

IIM Immersed Interface Method

LaBIB-FSI Lattice Boltzmann Immersed Boundary - Fluid-Structure Interaction

LBM Lattice Boltzmann Method

LES Large Eddy Simulation

MAV Micro-aerial vehicle

MIIM Midpoint Immersed Interface Method

Acknowledgements

This thesis closes the chapter on my MSc. in Aerodynamics, the start of which feels like a life-time ago by
now. By extension, my seven-year journey here in Delft comes to an end too, or at least the ‘being a student’
part of it. The past two years have obviously not been what I signed up for originally, and wondering how it
could have been is still a saddening thought to this day. Nonetheless, it is easy to glance over the positives
that would not have happened if it wasn’t for the pandemic, and I’m glad to be graduating in a time where the
worst of times seems behind us.

One thing that has intrigued me during this thesis is that for most of my MSc., I thought the MSc. thesis would
be the least enjoyable part of this MSc, and whenever people asked me what I’d like to do after I’d graduate, the
only thing I knew for sure was that I wouldn’t want to do a PhD. Yet after approximately a year of working on
this thesis, I find myself having had an immensely enjoyable time, so much that I even ended up accepting a
PhD-position that I look forward to starting very soon. Writing my own CFD-code that is capable of handling
fluid-structure interaction from scratch has been remarkably enjoying, and allowed me to develop my skill
set in ways that were not possible during regular coursework. In general I look back very fondly on working
on this thesis (apart from the entire work-from-home every single day of the week ordeal, I surely won’t miss
that).

There is a number of people to whom I owe my sincere gratitude.

First of all, to my parents, for taking me back in during the pandemic and unconditionally supporting me
throughout everything.

Of course to my dear friend Sara, who always provided a listening ear for my 5 a.m. complaints/rants/exis-
tential crises, motivated me when I was feeling down, and has always been an inspiration in perseverance
and hard work, motivating me to do the same.

Finally, to Sander and Saullo, for being exemplary supervisors during this thesis. Even though, we have unfor-
tunately not yet had the pleasure of meeting in person due to the pandemic, I am incredibly grateful for your
supervision throughout this thesis. You calmed me down when I was panicking about making slow progress,
provided valuable technical help in implementing the structural solver, and gave important advice in help-
ing me understand the results that I obtained throughout this thesis. If I end up supervising MSc. students
during my PhD, I now have two excellent examples of what kind of supervisor I would strive to be.

Sam van Elsloo

Baarn, June 2022

vii

Contents

Abstract i

List of Symbols iii

Acknowledgements vii

1 Introduction 1

I Theoretical Background 3

2 Motivation 5
2.1 Introduction to aerodynamic modelling of flapping wing unmanned-aerial-vehicles . . . 5
2.2 Use of the lattice Boltzmann method in simulating flapping wing UAVs 6
2.3 Review of the Immersed Boundary Method . 7
2.4 Possible improvements to the immersed boundary method 9
2.5 Research questions . 11

3 The lattice Boltzmann method 13
3.1 Continuous Boltzmann equation . 13

3.1.1 Equilibrium distribution . 13
3.1.2 Boltzmann equation . 14
3.1.3 Bhatnagar, Gross and Krook collision operator. 14

3.2 Discretised Boltzmann equation . 14
3.2.1 Discretisation in velocity space . 14
3.2.2 Discretisation of forcing term . 16
3.2.3 Discretisation in space and time . 16
3.2.4 Velocity moments . 17

3.3 Chapman-Eskogg analysis . 17
3.4 Application of the lattice Boltzmann equation . 19

3.4.1 Initial conditions. 19
3.4.2 Boundary conditions. 19
3.4.3 External forces . 19
3.4.4 Dimensionalisation . 20
3.4.5 Overview of operations taken in an LBM simulation 21

3.5 Advanced collision models . 21
3.5.1 Multiple-relaxation-time models. 22
3.5.2 Two-relaxation-time models . 25
3.5.3 Cascaded lattice Boltzmann method . 26
3.5.4 Cumulant lattice Boltzmann method . 27

4 Non-grid-conforming boundary methods 29
4.1 Immersed boundary method . 29
4.2 Implementation of the IBM in the LBM . 31

II Implementation of the LaBIB-FSI solver 33

5 Proposed Immersed Interface Method into the lattice Boltzmann framework 35
5.1 Proposal of an immersed interface method . 35

5.1.1 Derivation of the jump condition for populations across a stationary boundary . . 35
5.2 Implementation of the immersed interface method in the lattice Botlzmann method . . 36

5.2.1 Description of the algorithm . 37
5.2.2 Elaboration . 37

ix

x Contents

5.3 Midpoint immersed interface method . 39
5.4 Treatment of moving boundaries . 40
5.5 Additional considerations. 40

5.5.1 Implicit formulation . 40
5.5.2 Computational cost . 40

5.6 Reflection on the immersed interface method . 41
5.6.1 Comparison with the immersed boundary method 41
5.6.2 Contribution to research gap. 41

5.7 Immersed interface method proposed by Qin et al. 42
5.7.1 Derivation proposed by Qin et al. 42
5.7.2 Incorrect interpretation of the dot product. 43
5.7.3 Incorrect interpretation of the jump condition. 44
5.7.4 Additional remarks. 46
5.7.5 Comparison with the presented immersed interface method 46

5.8 Alternative formulations of the immersed interface method 47
5.8.1 Modification I - multi-stage immersed interface method 47
5.8.2 Modification II - filtered immersed interface method 48
5.8.3 Modification III - sharp immersed interface method 49

5.9 Conclusion . 49

6 Implementation details 51
6.1 Structural solver . 51

6.1.1 Spatial discretisation . 51
6.1.2 Temporal integration . 52

6.2 Fluid-structure-interaction . 53
6.2.1 Spatial interpolation . 53
6.2.2 Temporal communication . 54

6.3 Multigrid approach . 54
6.3.1 Time stepping scheme . 55
6.3.2 Multigrid communication . 55
6.3.3 Multigrid correction . 56
6.3.4 Summary of algorithm . 57

6.4 Edge treatment . 57
6.4.1 Modified regularised boundary condition . 57
6.4.2 Comparison with other boundary conditions 58

III Validation 61

7 Validation of 2D fluid solver 63
7.1 Lid-driven cavity flow . 63

7.1.1 Comparison of horizontal velocity along vertical center line 64
7.1.2 Comparison of vorticity at center point . 64

7.2 Cylinder immersed in Taylor-Green vortex flow . 65
7.2.1 Evaluation of order of accuracy . 66
7.2.2 Evaluation of the boundary force density error. 66
7.2.3 Evaluation of iterative solvers . 68

7.3 Cylinder and rigid flag immersed in horizontal cylinder flow 69
7.3.1 Evaluation of CFD1 & CFD2 benchmark - comparison of force coefficients 70
7.3.2 Evaluation of CFD1 & CFD2 benchmark - comparison of force distributions along cylin-

der . 70
7.3.3 Evaluation of CFD1 & CFD2 benchmark - comparison of force distributions along flag

72
7.3.4 Evaluation of CFD1 & CFD2 benchmark - comparison of velocity profiles 73
7.3.5 Evaluation of CFD3 benchmark - comparison of force history 74

8 Validation of 2D fluid-structure solver 77
8.1 Rigid cylinder oscillating in a fluid at rest . 77

8.1.1 Added mass effect . 78

Contents xi

8.1.2 Evaluation of force coefficient . 79
8.2 Cylinder and deformable flag subject to gravity . 80

8.2.1 Evaluation of CSM3 benchmark - effect of spatial discretisation 80
8.2.2 Evaluation of CSM3 benchmark - effect of temporal discretisation. 81

8.3 Cylinder and deformable flag immersed in horizontal flow 82
8.3.1 Evaluation of FSI1 benchmark - comparison of body force and displacement . . . 82
8.3.2 Evaluation of FSI3 benchmark - comparison of force history. 84
8.3.3 Evaluation of FSI3 benchmark - evaluation of added mass effect. 85
8.3.4 Evaluation of FSI3 benchmark - temporal variation of numerical noise 86
8.3.5 Evaluation of FSI3 benchmark - consistency of FSI procedure 87

9 Sensitivity Analysis 91
9.1 Effect of mesh refinement on oscillations in boundary force variation 91
9.2 Effect of Mach number on oscillations on the boundary force variation. 92
9.3 Effect of discrete delta function width on the boundary force variation 93

10 Conclusion 95

11 Recommendations 97
11.1 Recommendations regarding boundary treatment . 97
11.2 Recommendations regarding lattice Boltzmann method 98
11.3 Recommendations regarding LaBIB-FSI . 99
11.4 Summary of recommendations . 99

IV Appendices 101

A Supplementary derivations 103
A.1 Example of immersed interface method to an elliptic differential equation 103

Bibliography 105

1
Introduction

The aerodynamic analysis of flapping wing micro-aerial vehicles has gathered notable attraction throughout
the last two decades [1]. The flow around such vehicles exhibits several complex flow phenomena, such as
dynamic stall, wing interaction via the clap-and-fling effect, and high-frequency flow phenomena due to the
high Strouhal number [9]. Up until recently, numerical aerodynamic analysis has been mostly limited to the
traditional, Navier-Stokes based methods [1], but in recent years, the use of the lattice Boltzmann method
has attracted attention [10–12]. The lattice Boltzmann method has a number of characteristics that suit the
simulation of low Reynolds number, high Strouhal number flow particularly well, whilst being known to be
computationally efficient [2, 3].

The immersed boundary method [4] is a boundary treatment that can be used for non-conforming Carte-
sian grids with moving boundaries, in which the boundary is treated by placing a distributed force on the
boundary that ensures the local fluid velocity matches the velocity of the boundary. As a result, it is a pop-
ular method in the lattice Boltzmann method [5], for which it is impractical to have a boundary-fitted grid.
A derivative of the immersed boundary method is the immersed interface method, originally proposed by
Leveque and Li [6], in which jumps in the solution are directly incorporated in the discretisation.

The immersed interface method has yet to be successfully applied to the lattice Boltzmann method. Qin
et al. [7] recently made an attempt to do so, but as will be shown in this thesis, their derivation appears
flawed. It is therefore of interest to investigate how a correct application of the immersed interface method
to the lattice Boltzmann method looks like, and how it compares against a conventional immersed boundary
method scheme.

The objective of this thesis is therefore two-fold. The primary objective is to derive, implement and validate
an immersed interface method in conjunction in the lattice Boltzmann method, comparing its performance
and characteristics against an immersed boundary method applied to the same solver. Furthermore, a critical
look at the derivation by Qin et al. [7] is taken, in order to understand the flaws in their method.

In order to be able to validate the immersed interface method, the secondary objective is to develop and
validate a lattice Boltzmann fluid solver that is coupled to the structural solver pyfe3d [13]. Both the solver
and the implementation of the immersed interface method are then validated on a number of benchmarks of
varying complexity, with the most complex validation case being the well-known FSI3 benchmark by Turek
and Hron [8], in which vortex shedding behind a cylinder results in a complex fluid-structure interaction
problem.

Consequently, this report is structured as follows. Chapter 2 provides a brief background on the motivation
for the research performed in this thesis, ending with a list of research questions. Chapter 3 describes the
theoretical basis of the lattice Boltzmann method, and Chapter 4 briefly covers the implementation of the
conventional immersed boundary method in the lattice Boltzmann method. Chapter 5 shows the derivation
of the proposed immersed interface method, goes into detail on the differences between the immersed in-
terface method and the immersed boundary method, and examines the differences with the proposal by Qin
et al. [7]. Chapter 6 details the remaining major parts of the LaBIB-FSI solver that has been written as part

1

2 1. Introduction

of this thesis. Chapter 7 describes the validation cases used to validate the LaBIB-FSI solver for problems
involving stationary boundaries, and Chapter 8 does so for problems involving moving boundaries. Chapter
9 details the sensitivity of the solution to some numerical input parameters. Finally, Chapter 10 and 11 an-
swer the research questions posed in Chapter 2 and provide a list of recommendations for future research,
respectively.

I
Theoretical Background

In Chapter 2-4, background is given to the work performed for this thesis. In particular, Chapter 2 gives a brief
overview on the available literature on (numerical) aerodynamic research involving flapping wing micro-
aerial vehicles. Furthermore, the benefits of the lattice Boltzmann method as fluid solver and the immersed
boundary method as boundary treatment are discussed. Finally, a number of research questions is outlined.
In Chapter 3, a brief overview of the lattice Boltzmann method, covering its mathematical derivation, its
implementation and an overview of multi-relaxation time collision operators. In Chapter 4, the immersed
Boundary method is discussed.

3

2
Motivation

In this chapter a brief overview of aerodynamic research regarding the flapping wing micro-aerial vehicles will
be provided. Section 2.1 will briefly cover some and outline the main challenges faced in the aerodynamic
analysis of flapping wing micro-aerial vehicles. Section 2.2 will discuss some examples of the lattice Boltzmann
method applied to the analysis of flapping wing unmanned-aerial vehicles, and Section 2.3 will introduce
the immersed boundary method, a popular boundary treatment in the lattice Boltzmann method. Section
2.4 will discuss a small sample of modifications to the immersed boundary method, including the immersed
interface method. Finally, Section 2.5 will pose the research questions that will be answered throughout this
thesis.

2.1. Introduction to aerodynamic modelling of flapping wing unmanned-
aerial-vehicles

Recently, Bin Abas et al. [1] performed an extensive review on the research performed on flapping wing
unmanned-aerial-vehicles (UAVs), compiling the experimental results discussed in more than a dozen ar-
ticles, and almost the numerical results found in almost a score of additional articles, providing a compre-
hensive overview of the challenges facing the development of flapping wing UAVs.

Bin Abas et al. identified two main types of wing kinematics: those based on ornithopter flight, and those
based on insect flight. Ornithopter flight is characterised by two degrees of freedom, namely the main flap-
ping motion, and the adjustment of the pitch of the wing. Insect flight is characterised by an additional degree
of freedom, namely to rotate the wing about the vertical axis. Lighthall [14] described how this latter degree
of freedom can be used to generate a clap-and-fling effect, where the wings initially ‘clapped’ together at the
leading edge until the whole wings touch each other, and subsequently ‘flung’ from each other at the leading
edge to start the regular flapping motion, as shown in Figure 2.1 and 2.2 and analysed in detail by Miller and
Peskin [15]. Other characteristic kinematics are those of a dragonfly, having two sets of wings that can flap
independently from each other, or a bee, where the wings follow an inclined figure-of-eight. Furthermore,
Bin Abas et al. [1] noted that for large insects and small birds, the chord-wise Reynolds number is typically in
the range of 1000 - 15,000, a region where flow can be expected to be dominated by transition from laminar
to turbulent flow.

Figure 2.1: Sketch of the ‘fling’ effect. Taken from [15, p. 3077]. Figure 2.2: Sketch of the ‘clap’. Taken from [15, p. 3077].

Bin Abas et al. find that there’s a number of areas where additional research is needed. These include that
most numerical research neglects the mass of the wings which may affect stability significantly; limited
research regarding the effect of particle-dominated weather such as rain and snow; research where fluid-

5

6 2. Motivation

structure interaction (FSI) is accounted for; and computational efficiency is still an issue, with Liu and Aono
[16] showing that it took them approximately ten hour of CPU time to simulate four seconds of flight. How-
ever, it should be noted that Liu and Aono performed their research in 2009, and thus, on a modern-day
computer architecture, the required CPU time can be expected to be significantly lower already.

Bin Abas et al. [1] showed that the vast majority of numerical research of flapping UAVs so far has been
performed using traditional CFD methods, based on directly solving the Navier-Stokes equations using e.g.
a finite volume or finite element scheme (all of the numerical research results included by Bin Abas et al.
in their literature review were Navier-Stokes based methods). Similarly, the Delfly (shown in Figure 2.3) is
a flapping wing UAV for which the TU Delft has performed a significant amount of research in a variety of
domains, as exhaustively compiled by De Croon et al. [17]. Numerical aerodynamic research on the Delfly has
so far, however, been completely focussed on finite volume formulations of the Navier-Stokes equations. For
example, Gillebaart [18] used an arbitrary Lagrangian-Eulerian approach to include a moving mesh around
the DelFly to examine the influence of flexibility on flapping wings performing the clap-and-fling motion; Tay
et al. [19–21] used an immersed boundary method applied to a Navier-Stokes based solver, to model the flow
around the DelFly II.

Figure 2.3: The DelFly I, DelFly II and DelFly Micro. The DelFly II is the most established model of the family, according to Tay et al. [20].
Taken from [19, p. 3].

Motivated by the need for a computationally efficient method and a wish for the implementation of FSI in the
simulation of flapping wing UAVs, it is interesting to explore the possibility of using alternative, non-Navier-
Stokes-based solvers that may prove advantageous over the conventional Navier-Stokes-based ones.

2.2. Use of the lattice Boltzmann method in simulating flapping wing UAVs
Motivated by the need for a computationally efficient method and a wish for the implementation of FSI in the
simulation of flapping wing UAVs, it is interesting to explore the possibility of using alternative, non-Navier-
Stokes-based solvers that may prove advantageous over the conventional Navier-Stokes-based ones. One
such class of solvers are those based on the lattice Boltzmann method (LBM), a relatively novel approach to
modelling aerodynamics, gaining popularity in the 1990s as natural extension of lattice gas automata devel-
oped in the 1970s [2, 3, 22].

The lattice Boltzmann method models the mesoscopic particle distribution function over a fixed, Eulerian
lattice. The particle distribution function is discretised in velocity space into a set of populations, and subse-
quently discretised in space and time. At each time step, the populations undergo a collision process, letting
them approach some equilibrium value dependent on the local macroscopic flow quantities. Then, the pop-
ulations are streamed to adjacent nodes (depending on which discretised velocity they belong to). The next
time step then collides and streams the populations again. The lattice Boltzmann method is explained in
more detail in Chapter 3.

From a theoretical point of view, the use of LBM seems particularly alluring for the modelling of flapping wing
UAVs:

• Lattice Boltzmann methods are well studied for laminar flows, but, due to instabilities in the ‘basic’ ver-
sion of the LBM, applications to high Reynolds number flows are less common. Although the Reynolds
number for flapping wing UAV is in the order of 104 and thus transition and turbulence can be ex-
pected1, its Reynolds number range has already been studied in the context of the LBM, and mod-
ifications to the LBM that improve the accuracy under turbulence have already been proposed and

1For example, for the DelFly II, Gillebaart [18] simulated the flapping motion for a Reynolds number of 9641, using a chord length of 7.4
cm and a characteristic velocity of 1.76 m/s.

2.3. Review of the Immersed Boundary Method 7

validated. For example, Hou et al. [23] proposed two approaches to apply an LES-framework to the
LBM; by either directly modifying the relaxation rate based on an eddy viscosity model or by filter-
ing the equilibrium populations. Krafzcyk et al. [24] demonstrated the applicability of the Smagorin-
sky model for a multiple-relaxation-time (MRT) model (described in Section 3.4). Uphoff [25] imple-
mented the original Smagorinsky model [26], the Smagorinsky model with Van Driest damping [27],
the wall-adopting local eddy-viscosity (WALE) model [28] and the Vreman model [29], and compared
their accuracy for various validation cases to a cascaded LBM (described in Section 3.4.3) without an
eddy-viscosity model present. It was found that only the Smagorinsky model was notably less accurate
for a turbulent channel flow than the other models. These results mean that higher Reynolds number
flow should also be feasible to simulate moderate to high Reynolds number flow without requiring an
explosive increase in computational effort.

• Lattice Boltzmann methods normally suffer from the fact that they are inherently unsteady, and thus
require significantly more computational effort than required for steady-state simulations. However,
flow around a flapping wing UAV will naturally be unsteady, thus this is actually a welcome character-
istic of the LBM.

• Lattice Boltzmann methods generally struggle with compressible and high Mach number flow. For
flapping wing UAVs, the Mach number is very small2, so this should not be an issue.

• Lattice Boltzmann methods scale extraordinarily well with a parallelised computational architecture,
due to the fact that all calculations can be performed locally, contrary to Navier-Stokes-based methods,
where a system of equations for the entire domain needs to be solved simultaneously. This can help
considerably in decreasing the required CPU time for simulations.

Evidently, some of the conventional disadvantages of the LBM do not directly apply to the simulation of
flapping wing UAVs, making an exploration of their applicability to flapping wing UAVs worthwhile. Indeed,
several authors have applied the LBM to model the flow around flapping wing UAVs.

Several authors already have explored the applicability of LBM to flapping UAVs. Pradeep Kumar et al. [30]
investigated the clap and fling motion using an LBM with an immersed boundary method, and found that the
results of the LBM compared well with those obtained from experiments and other numerical simulations at
a Reynolds number of 75-150. It should be noted that their model treated the structure as rigid, even though
the flexibility of the wings will likely have a great affect on the clap-and-fling effect.

De Rosis et al. [31] performed an FSI analysis of a flexible flapping wing, using an LBM with an immersed
boundary method for the fluid, and a finite element model for the wing. They modelled the wing in a 2D do-
main as a set of flat plates, hovering in the air by flapping its wings, at a Reynolds number of 200. Their model
was previously verified and validated in a previous work [32], demonstrating its accuracy for a longitudinally
oscillating cylinder and a deformable cantilever beam in a viscous channel flow.

Hino and Inamuro [11] demonstrated the use of LBM with an immersed boundary method, simulating a
dragonfly wing-body model over time, using two rotational degrees of control per wing. They showed that
the LBM was able to simulate a path that the dragonfly would cover in three-dimensional space over time,
given a set of control inputs, around a Reynolds number of approximately 200. Unfortunately, they did not
compare their results with those obtained by experiments or other numerical studies, so it is hard to judge
the accuracy of their model.

2.3. Review of the Immersed Boundary Method
The immersed boundary method (IBM) was originally proposed by Peskin [4] in 1977 and Feng and Michaelides
[5] introduced the immersed boundary method to the LBM framework. The fundamental concept behind it
is that solid boundaries are not directly imposed on the solution through boundary conditions, but a forcing
field is added to the domain that ensures that the flow matches the velocity of the solid boundaries. This force
field is applied at the solid boundary by introducing a number of marker points on the boundary and forces
are then diffused towards nearby grid elements. The problem is then two-fold: how can such a force field be
determined, and how can this force field be diffused towards nearby grid elements.

In a more mathematical sense, this can be formulated as follows: for the incompressible Navier-Stokes equa-

2For example, the Mach number of the DelFly II, Gillebaart [18], based on its characteristic velocity, was equal to 0.005.

8 2. Motivation

tions, the governing equations become

∇·uuu = 0 (2.1)

ρ

(
∂uuu

∂t
+uuu ·∇uuu

)
=µ∇2uuu −∇p + fff (2.2)

fff (xxx, t) =
∫
Γ

FFF (sss, t)δ (xxx −XXX (sss, t))dsss (2.3)

where FFF is the immersed boundary force, and XXX (sss, t) is the parametric surface at which FFF is applied. The
question is clearly how to determine a suitable model for FFF , and how to discretise the integral (and its delta
function).

Two major variations of the IBM exist in the diffuse-interface IBM and the sharp-interface IBM. For the
diffuse-interface IBM, consider Figure 2.4, where a cylinder in a typical LBM mesh is depicted. The white
nodes correspond to the Eulerian grid on which the flow is solved (and remains stationary); the black nodes
correspond to the Lagrangian grid at which the forcing is applied (and moves along with the cylinder). Let xxxi

denote the nodes on the Eulerian mesh, and XXX k the nodes on the Lagrangian mesh. A more detailed analysis
of the LBM is included in Chapter 4, but the general approach consists of interpolating the velocity at the lo-
cation of a boundary marker from nearby fluid nodes, applying a constitutive model to calculate a feedback
force at the Lagrangian marker, and then diffusing this feedback force back to the fluid nodes. A variety of
methodologies then exist based on differences between how the velocity is interpolated, what constitutive
model is used and how this force is diffused back into the fluid domain.

Figure 2.4: Sketch of a cylinder discretised by an Lagrangian mesh, embedded in an Eulerian mesh. Taken from Krüger et al. [2, p. 466].

On the other hand, for a sharp-interface IBM, typically an image point is constructed as a reflection of a
ghost node (a node in the solid domain that is directly adjacent to a fluid node) around the boundary marker
into the fluid domain. The flow properties at this image point are interpolated from nearby fluid nodes, and
with the boundary condition known at the boundary marker, the flow properties at the ghost node may be
constructed. This generally allows for the numerical solution to proceed (e.g. in a finite-difference scheme,
boundary conditions can now be directly imposed on the ghost nodes, allowing for the system of equations
at that time-step to be solved).

Figure 2.5: Interpolation stencils for two types of boundary intersections. In (a), the image point is reflected into a square cell. In (b), the
image point is reflected into a cell that is cut by the boundary. Taken from [33, p. 487].

2.4. Possible improvements to the immersed boundary method 9

It is noted that a vast array of variations exist however, and the reader is referred to an exhaustive review of
the IBM by Huang and Tian [34] for a more in-depth review of the differences between them. The diffuse-
interface is generally less challenging to apply, as it for example neither requires identification of which fluid
nodes are inside/outside the solid boundary, nor does it require an projection of an image point into the fluid
domain.

As discussed in Section 2.2, the IBM has been used by several authors in combination with the LBM, with
all of the listed authors using the diffuse-interface LBM. Due to the apparent popularity of these methods
(confirmed by e.g. Krüger et al. [2]) and the increased complexity of the sharp-interface IBM over the diffuse-
interface IBM, it was chosen to limit the scope of this thesis to the diffuse-interface IBM. As such, in all
other chapters of this thesis, the term ‘immersed boundary method’ shall strictly refer to the diffuse-interface
IBM.

Huang and Tian [34] recently conducted an extensive literature review on the immersed boundary method,
across a variety of fluid solver frameworks. In addition to some of the drawbacks already mentioned for some
of the algorithms outlined above, they raise the following points:

a) It has been shown that the number of iterations in the multi-direct forcing algorithm to reduce the
iteration error to a satisfactorily small value (i.e., smaller than the discretisation error from the IBM
itself) is relatively small; in the order of 5-10 iterations should generally be sufficient (see e.g. Kang et al.
[35]). However, for flow over a thin filament or membrane that is not aligned with the flow (and more
generally, flow where the velocity near the immersed boundary has a notable effect on the interface
dynamics), the iterations do significantly improve the performance, a result also observed by Kang et
al. [35] for the LBM.

b) For closed volumes, the volume leakage is a problem, particularly for problems with large deformations
and long-time behaviour. For the multi-direct forcing (and implicit) immersed boundary method, this
should be less of a problem than for the penalty IBM, as the latter does not explicitly ensure that UUU k

equals the specified boundary velocity.
c) The IBM has been found to be first-order accurate, due to its use of a smoothed delta function.
d) The IBM is typically characterised by spurious oscillations when the body moves, due to the discon-

tinuities introduced by a solid object crossing Eulerian nodes. These are particularly troublesome for
sharp-interface methods, as diffused-interface methods naturally stabilise the solution by smoothing
out the boundary in the first place.

e) Using IBM for turbulent flow is challenging, due to its use of a Cartesian grid. The grid should be
sufficiently refined to resolve the viscous sublayer (requiring a grid spacing of around y+). However,
as the grid spacing is isotropic and rectilinear, this leads to a very large number of required grid points.
This problem is exacerbated when the solid body moves throughout time, as either a large region of
the domain needs to be very refined, or an adaptive mesh should be implemented, that automatically
refines the mesh in the vicinity of the body. One solution to this would be the use of a wall model, which
models the inner layer of the boundary layer and simulates the outer layer.

f) In general, the Lagrangian mesh spacing should be at least twice as fine as the Eulerian grid spacing.

2.4. Possible improvements to the immersed boundary method
As reviewed by Huang and Tian [34], there exists a wide variety of variations on the IBM that are relevant.
For this thesis, two modifications to the ‘default’ IBM, as proposed by Peskin [4], will be treated in more
detail.

First, a more sweeping variation on the IBM is the immersed interface method (IIM), originally proposed by
LeVeque and Li [6] for elliptic differential equations, later applied to the Navier-Stokes equations by Lee et al.
[36] and extended to moving boundaries by [37]. Immersed interface methods are characterised by including
singular attributes, such as a singular force field arising from an immersed boundary, as jumps in the solution
space. An example of an application of the IIM to a simple, one-dimensional elliptic differential equation is
provided in Appendix A.

As shown by Vaughan et al. [38], the IIM (applied to a FEM-based solver) appears to obtain a smaller error at
the same level of grid refinement when evaluated for a steady, elliptic heat equation in square domain with
a sourcing function that is only nonzero on the circular interface Γ1 shown in Figure 2.6. Here, the error was
defined as the maximum deviation from the analytical solution for any node in the fluid domain.

10 2. Motivation

Figure 2.6: Square domain with boundary Γ1. Taken from [38, p. 218].

Similar results for the same validation case were obtained previously by LeVeque and Li [6] previously. How-
ever, it should be noted that comprehensive reviews for how the IIM compares to the IBM for unsteady and
FSI-related problems appears to be lacking in current literature, which makes it difficult to evaluate how pro-
nounced the differences would be. From a theoretical perspective, as the boundary is not diffused in the IIM,
it appears promising that the IIM may be more accurate in representing e.g. a velocity or density jump across
a surface and it therefore appears worth exploring in more detail.

The IIM has only been applied to the LBM in a very limited fashion. Recently, Qin et al. [7] proposed an
implementation of the IIM into the LBM, but it is shown in Chapter 5 that their derivation is flawed in several
steps. It is therefore deemed an open question on how to correctly derive jump conditions on the populations
in the LBM, and how to implement these successfully.

Secondly, Yang et al. [39] investigated the cause of the oscillations by investigating the numerical truncation
error of the general diffusion process. By imposing additional conditions on the derivative of the interpolation
functions, they were able to obtain smoothed discrete delta functions which have an increased order of the
leading term of the truncation error.

Yang et al. found that this notably suppressed the oscillations in the solution. Figure 2.7 shows the variation
in the drag coefficient over time for a cylinder oscillating horizontally in a horizontal channel, at a Reynolds
number based on the diameter of Red = 185. It is clear that the smoothed delta function damps the oscilla-
tions significantly whilst not impacting the accuracy; the average drag coefficient was found to differ by only
0.23%.

Figure 2.7: Variation over time of the drag coefficient of an oscillating cylinder, at Re = 185, using a ‘bare’ interpolating function (left) and
its smoothed variant (right). Taken from [39, p. 7833].

However, although their interpolation functions are simple to construct and appear to smoothen the oscilla-
tions notably, they do result in a boundary that is diffused over an even wider part of the fluid domain (due
to an increased width of the interpolation zone), fuzzing the actual solid boundary. This both decreases the
accuracy and increases the computational cost compared to using the non-smoothed interpolating func-
tion.

In addition to these methodological modifications to the IBM-scheme, within the framework of the LBM
specifically, two straightforward solutions to reduce the presence of oscillations in the solution field caused

2.5. Research questions 11

by the IBM also exist. As discussed in Chapter 9, a solution is to increase the Mach number at which the
simulation is run (assuming it stays low enough for the flow to be quasi-incompressible) as this naturally
dampens oscillations in the flow [2]. A similarly simple remedy is to reduce the number of Lagrangian markers
across the boundary. These solutions are straightforward to implement (as it merely requires the modification
of an input parameter), but may negatively impact the accuracy of the solution. The effectiveness of both
these solutions is investigated in more detail in Chapter 9 of this report.

2.5. Research questions
In this Chapter, it has become clear that the LBM appears to be a suitable and appealing fluid solver to solve
FSI-problems related to the flow around flapping wing MAVs. Existing LBM applications to these problems
typically use the IBM, which has been the subject of extensive research already. Nonetheless, advancements
are still possible, for example regarding the reduction of numerical noise in the solution field when using the
IBM, and the development of an IIM, a method similar to the IBM, in the LBM.

Consequently, a number of research questions may be posed, which shall be answered in Chapter 10 of this
report, the conclusions of which shall based on the supporting work to be presented in Chapter 3-9. In par-
ticular, the following questions are presented:

1. How suitable is the lattice Boltzmann method for the fluid-structure-interaction of flapping wing
MAVs, such as the DelFly II, in light of the the challenges posed by the highly deformable wings, low
Reynolds number and high Strouhal number characteristics of such vehicles?

To be able to answer the research questions following this, it was necessary to have an lattice Boltzmann-
based fluid-structure interaction solver available that would allow for low-level implementation of the im-
mersed interface method. Although existing commercial (e.g. XFlow or PowerFLOW) and open-source (e.g.
Palabos) already exist, it was chosen to write a custom solver, due to the need for low-level access to the
solver (which may not be trivial when using external solvers), the apparent simplicity of the LBM making
writing such a software feasible within the scope of this thesis and the author’s personal development goals
for this thesis.

Naturally, it was therefore also necessary to validate this solver for several benchmarks that share character-
istics with the motion of flapping wing MAVs, in order to assess whether the custom-built solver would be
suitable for full-scale numerical experiments of such MAVs.

The implementation of the custom-built solver and its most important components is described in Chapter
5 and 6, and its validation is described in Chapter 7 and 8, with the most complex benchmark case that the
solver has been validated for being the FSI3-benchmark case by Turek and Hron [8], a widely recognised
benchmark case for the validation of fluid-structure interaction solvers.

2. How can the immersed interface method be applied to the lattice Boltzmann method?

As shown in Chapter 5, an attempt at applying the immersed interface method was previously made by Qin
et al. [7]. However, their derivation appears to be several flawed in two aspects. It is therefore of interest how
the immersed interface method can be correctly applied to the lattice Boltzmann method, and a proposal
thereof is therefore provided in Chapter 5.

3. How does the computational effort of the immersed interface method compare to that of the im-
mersed boundary method, when applied to the Lattice Boltzmann method?

A comparison between the immersed boundary and immersed interface method is interesting in several as-
pects, one of them being the difference in computational effort for both methods. This is addressed in Section
5.5.2.

4. Does the implementation of the immersed interface method provide a tangible benefit over using
the immersed boundary method in terms of numerical noise reduction and overall accuracy?

12 2. Motivation

Apart from the computational effort, the performance of both the immersed boundary and immersed inter-
face method are of great interest. This is assessed in detail in Chapter 7 and 8, where the developed solver has
been validated against several well-known benchmark cases.

5. How effective is the immersed interface method in damping out numerical noise compared to ad-
justing the numerical parameters of the simulations, such as the Mach number of the flow and the
width of the discrete delta functions?

As shown in Chapter 7 and 8, the immersed interface method proposed in Chapter 5 appears to greatly reduce
the numerical noise in the boundary forcing solution compared to the immersed boundary method when
using identical input parameters. However, as previously mentioned, there are also easier ways of reducing
this noise, such as increasing the Mach number or using smoothed discrete delta-functions as described by
Yang et al. [39], although these would generally reduce the actual accuracy of the solution. It is therefore of
interest to compare the benefits and disadvantages immersed interface method compared to those simpler
solutions. This is addressed in Chapter 9, where several validation cases are reassessed for these different
input parameters.

3
The lattice Boltzmann method

This chapter elaborates on the LBM introduced in Chapter 2. Section 3.1 describes the continuous form of the
Boltzmann equation. Section 3.2 derives how the discretised Boltzmann equation can be obtained by discretis-
ing in velocity space and subsequently discretising in physical space and time. Section 3.3 discusses the main
steps that need to be taken to show that the Navier-Stokes equations can be recovered from the discretised Boltz-
mann equation. Section 3.4 discusses some implementation details related to the initial conditions, boundary
conditions, external forces and dimensionalisation. Section 3.5 explores various advanced collision models
that are helpful in stabilising the LBM, particularly at higher Reynolds numbers.

3.1. Continuous Boltzmann equation
Let the particle distribution function be given by f (xxx,ξξξ, t), where xxx denotes the position, ξξξ the velocity space
and t the time. That is, f describes the density of a particle with a certain velocity ξξξ at a position xxx, at a time t .
Macroscopic variables such as density, velocity and energy can be obtained by taking moments of the particle
distribution. That is,

• The mass density ρ is given by

ρ (xxx, t) =
∫

f
(
xxx,ξξξ, t

)
dξξξ. (3.1)

• The momentum density ρuuu is given by

ρ (xxx, t)uuu (xxx, t) =
∫
ξξξ f

(
xxx,ξξξ, t

)
dξξξ. (3.2)

• The total energy density ρE is given by

ρ (xxx, t)E (xxx, t) =
∫

|ξξξ|2 f
(
xxx,ξξξ, t

)
dxxxi . (3.3)

• The internal energy density ρe is given by

ρ (xxx, t)e (xxx, t) =
∫

|vvv |2 f
(
xxx,ξξξ, t

)
dxxxi , (3.4)

where vvv =ξξξ−uuu is the relative velocity between the particle velocity and the local mean velocity.

3.1.1. Equilibrium distribution
The distribution function naturally tends to an equilibrium over time. The equilibrium distribution of the
particle distribution functions naturally follows a Maxwell distribution, i.e. the equilibrium distribution is
proportional to [2]

f eq (|vvv |) = e3aeb|vvv2|. (3.5)

13

14 3. The lattice Boltzmann method

By requiring that the equilibrium distribution satisfies the moments of density (Equation (3.1)) and energy
(Equation (3.3)), it can be shown that the equilibrium distribution equals

f eq (xxx, |vvv |,T, t) = ρ
(

1

2πRT

)3/2

e−|vvv |
2/(2RT). (3.6)

Appropriate non-dimensionalisation of the parameters by some characteristic length, velocity, density and
temperature [2] results in

f eq (
ρ,uuu,θ,ξξξ

)= ρ

(2πθ)d/2
e−(ξξξ−uuu)2/(2θ), (3.7)

where ρ, uuu, θ andξξξ are the non-dimensional density, fluid velocity, temperature and particle velocity, and d is
the dimensionality of the problem. In section 3.4.4 it is discussed how to recover the dimensional parameters
from the non-dimensional parameters.

3.1.2. Boltzmann equation
The distribution function tends to the equilibrium distribution due to the particle collisions that occur con-
stantly. Correspondingly, the total derivative of the distribution function equals

D f

Dt
= ∂ f

∂t
+ ∂ f

∂xxx

∂xxx

∂t
+ ∂ f

∂ξξξ

∂ξξξ

∂t
. (3.8)

Note that ∂xxx/∂t =ξξξ, and ∂ξξξ/∂t = fff /ρ, where fff is a body force density. Letting the total derivative be equal to
a collision operatorΩ(f), the Boltzmann equation is obtained:

∂ f

∂t
+ ∂ f

∂xxx
ξξξ+ ∂ f

∂ξξξ

fff

ρ
=Ω(f). (3.9)

The general form of the collision operator is generally complex and involves an integral over velocity space
and the impact plane of two colliding particles, as well as the pre- and post-collision distributions of two
colliding particles; the reader is referred to [40, 41] for a more detailed discussion of the general form of the
Boltzmann operator.

3.1.3. Bhatnagar, Gross and Krook collision operator
Due to this complicated nature of the collision operator, simplified models for this operator are needed.
In 1954, Bhatnagar, Gross and Krook [42] proposed a very simple collision operator, namely that the non-
equilibrium part of distribution function exponentially decays (in a homogeneous distribution field), i.e.

Ω(f) =−1

τ
f neq =−1

τ

(
f − f eq)

, (3.10)

where the parameter τ is known as the relaxation time. Note that this collision operator satisfies conserva-
tion of mass, momentum and energy, as expected since these quantities are conserved in perfectly elastic
collisions. Due to its simplicity, it has been used widely ever since [43].

Examples of more sophisticated collision operators are discussed in Section 3.5.

3.2. Discretised Boltzmann equation
Discretising the continuous Boltzmann equation requires three discretisations. First, the velocity space should
be discretised; secondly, the physical space should be discretised; and finally, the temporal space should be
discretised.

3.2.1. Discretisation in velocity space
The discretisation in velocity space involves finding a set of velocities that allow for sufficient fulfilment of
conservation laws. A detailed description of this is provided in e.g. [2, 44], but an overview of the main steps
is provided here. The first step is to write the equilirium distribution function (Equation (3.7)) as a Hermite
polynomial series expansion, i.e. as

f eq (
ρ,uuu,θ,ξξξ

)= ρ

(2πθ)d/2
e−(ξξξ−uuu)2/(2θ) =ω(

ξξξ
) ∞∑

n=0

1

n!
aaaeq

n
(
ρ,uuu,θ

) ·HHH n
(
ξξξ
)

, (3.11)

3.2. Discretised Boltzmann equation 15

where ω
(
ξξξ
)

and Hn
(
ξξξ
)

are the generating function and Hermite polynomial, respectively, given by

ω (xxx) = 1p
2π

e−xxx2/2 (3.12)

HHH n
(
ξξξ
)= (−1)n 1

ω (xxx)
∇nω (xxx) , (3.13)

where ∇n is the nth order gradient1. aaan is the tensor of rank n and length in each dimension d .

Using the orthogonality of the Hermite polynomials, i.e.

aaan =
∫

f eq (
ρ,uuu,θ,ξξξ

)
HHH n

(
ξξξ
)

dξξξ, (3.14)

and noting the similarity between the equilibrium distribution function itself and the generating function, by
substituting ηηη= (ξξξ−uuu)/

p
θ, one can simply obtain

aaaeq
n = ρ

∫
ω

(
ηηη
)

HHH n

(p
θηηη+uuu

)
dηηη. (3.15)

Evaluation of these expressions results in (for the first three coefficients)

aeq
0 = ρ (3.16)

aaaeq
1 = ρuuu (3.17)

aaaeq
2 = ρ (

uuuuuu⊤+ (θ−1)III
)

. (3.18)

From comparison with Equation (3.1)-(3.3), it can be noted that these coefficients are directly related to the
conserved moments of density, momentum and energy.

Combining (3.16)-(3.18) with Equation (3.11), including terms up until n = 2, we obtain

f eq (
ρ,uuu,θ,ξξξ

)≈ω(
ξξξ
)
ρ

[
1+ξ ·uuu + (

uuuuuu⊤+ (θ−1)III
)(
ξξξξξξ⊤− III

)]=ω(
ξξξ
)
ρQ

(
uuu,θ,ξξξ

)
, (3.19)

where Q(uuu,θ,ξξξ) is evidently a polynomial of order 2.

Now that a truncated equilibrium distribution is obtained, a discretisation in velocity space can be per-
formed; i.e., a set of weights wi and discrete velocities ξξξi should be obtained such that the coefficients aaan

(up to n = 2) can be computed exactly from the corresponding f eq
i when using a Gauss-Hermite quadrature

(as these coefficients related directly to the conserved moments), i.e.

aaaeq
n = ρ

∫
ω

(
ξξξ
)

Q
(
ξξξ
)

HHH n
(
ξξξ
)

dξξξ= ρ
md∑
i=1

wi Q
(
ξξξi

)
HHH n

(
ξξξi

)
. (3.20)

Note that the energy is related to the second-order Hermite polynomial H2, and thus that the product Q
(
ξξξi

)
HHH 2

(
ξξξi

)
contains polynomial terms of order 4 (as Q

(
ξξξi

)
contains polynomial terms of order 2). Since a Gauss-Hermite

quadrature of order m integrates polynomials of order 2m−1 exactly [45], we thus require m = 3 nodes in each
spatial dimension. The corresponding weights wi and abscissae ξξξi are then known from e.g. [46]. The veloc-
ity is usually scaled by a factor cs (known as the speed of sound). Subsequently, the discretised equilibrium
distribution for isothermal flow (θ = 1) becomes (using Equation (3.19)):

f eq
i = wiρ

(
1+ ccc i ·ūuu

c2
s

+ ūuuūuu⊤ :
(
ccc i ccc⊤i − c2

s III
)

2c4
s

)
, (3.21)

where ccc i = csξξξi and ūuu = csuuu (henceforth, the bar above the uuu will be omitted). The most popular velocity sets
are the D2Q9, D3Q15, D3Q19 and D3Q27 lattices.

1E.g. ∇n
i j k = ∂

∂xi

∂
∂x j

∂
∂xk

where xα is a coordinate direction.

16 3. The lattice Boltzmann method

3.2.2. Discretisation of forcing term
The particle distribution function has now been discretised into a discrete set of populations fi , each with
their own weight wi and velocity ccc i . However, the forcing term in Equation (3.9), (∂ f /∂ξξξ)(fff /ρ) still needs
to be discretised as well. This can be done as follows [44]. The Hermite expansion of ∂ f /∂ξξξ may be written
as

∂ f

∂ξξξ
=

∞∑
n=0

1

n!
aaan∇

(
ω

(
ξξξ
)

HHH n
(
ξξξ
))

. (3.22)

However, from Equation (3.13), we have

ω
(
ξξξ
)

HHH n
(
ξξξ
)= (−1)n ∇nω

(
ξξξ
)

, (3.23)

and substituting this into Equation (3.22) results in

∂ f

∂ξξξ
=

∞∑
n=0

(−1)n

n!
aaan∇n+1ω

(
ξξξ
)

. (3.24)

Applying Equation (3.23) once more results in

∂ f

∂ξξξ
=−ω(

ξξξ
) ∞∑

n=0

1

n!
aaanHHH n+1

(
ξξξ
)=−ω(

ξξξ
) ∞∑

n=1

1

n!
aaan−1HHH n

(
ξξξ
)

. (3.25)

Here, the aaan−1 are already known from Equation (3.16)-(3.18), and the sameξξξi and wi =ω(ξξξi) as before can be
used (including the scaling of ξi with cs). Therefore, including terms up until second order, we obtain

Fi = ∂ fi

∂ξξξi

F

ρ
≈ wi

(
ccc i

c2
s
+

(
ccc i ccc⊤i − c2

s III
)

uuu

c4
s

)⊤
fff . (3.26)

3.2.3. Discretisation in space and time
We have now discretised the populations, the forcing term and the collision term in velocity space, i.e. the
Boltmzann equation now reads

∂ fi

∂t
+ ∂ fi

∂xxx
ccc i =Ω(fi)+Fi =Ωi +Fi . (3.27)

However, this equation is still continuous in both space and time. However, as it is a simple linear advec-
tion equation, the method of characteristics can be applied; defining the parametric variable η(xxx, t), we can
write

d fi

dη
= ∂ fi

∂t

d t

dη
+ ∂ fi

∂xxxi
=Ωi +Fi . (3.28)

From comparison with Equation (3.27), we obtain

t = η+ t0 (3.29)

xxx = ηccc i +xxx0. (3.30)

Thus, integrating Equation (3.28) between η= 0 and η=∆t , we obtain

fi (xxx0 +ccc i∆t , t0 +∆t)− fi (xxx0, t0) =
∆t∫

0

Ωi
(
xxx0 +ccc iη, t0 +η

)
dη+

∆t∫
0

Fi
(
xxx0 +ccc iη, t0 +η

)
dη. (3.31)

Applying the BGK collision operator, letting xxx = xxx0 and t = t0, we can subsequently approximating the inte-
grals on the right as

∆t∫
0

Ωi
(
xxx +ccc iη, t +η)

dη+
∆t∫

0

Fi
(
xxx +ccc iη, t +η)

dη≈−∆t

τ

(
fi − f eq

i

)+(
1− ∆t

2τ

)
Fi , (3.32)

3.3. Chapman-Eskogg analysis 17

where τ takes the value

ν= c2
s

(
τ− ∆t

2

)
, (3.33)

instead of the expected ν= c2
s τ, where ν is the viscosity, as shown by [47]. The reason for this shift in τ is that

the leading order error term in the stress tensor is proportional to the ‘true’ stress tensor. Thus, by shifting the
value of the viscosity, this leading order error term can be captured to result in the correct stress tensor. In
similar fashion the coefficient in front of Fi is not equal to simply ∆t ; by scaling this coefficient, the leading
order error term in the contribution of the forcing term is cancelled out, as shown by Guo et al. [48], increasing
the order of accuracy of the method to two.

Note that this discretisation implies that collision and application of external forces occurs simultaneously at
the beginning of a time-step, and therefore before streaming, which occurs during the remainder of a time-
step. This also implies that output quantities should be measured after streaming, and one cannot simply
interchange the order of collision and streaming.

Combining Equation (3.32) with Equation (3.31) results in the lattice Boltzmann equation (LBE)

fi (xxx +ccc i∆t , t +∆t)− fi (xxx, t) = ∆t

τ

(
fi − f eq

i

)+(
1− ∆t

2τ

)
Fi . (3.34)

This can be distinguished into two separate steps: first, the populations collide locally on their own nodes,
via

f̂i (xxx, t) = fi (xxx, t)− ∆t

τ

(
fi (xxx, t)− f eq

i (xxx, t)
)+(

1− ∆t

2τ

)
Fi (xxx, t) , (3.35)

and subsequently stream via

fi (xxx +ccc i∆t , t +∆t) = f̂i (xxx, t) . (3.36)

3.2.4. Velocity moments
Corresponding to the chosen relaxation parameter τ, the macroscopic velocity moments become

ρ =ΠΠΠ0 =
∑

i
fi + ∆t

2

∑
i

Fi (3.37)

ρuuu =ΠΠΠ1 =
∑

i
fi ccc i + ∆t

2

∑
i

Fi ccc i (3.38)

ΠΠΠ2 =
(
1− ∆t

2τ

)∑
i

fi ccc i ccc⊤i + ∆t

2τ

∑
i

f eq
i ccc i ccc⊤i + ∆t

2τ

(
1− ∆t

2τ

)∑
i

Fi ccc i ccc⊤i , (3.39)

whereΠi denotes the i th velocity moment.

3.3. Chapman-Eskogg analysis
Consider again the discretised Boltzmann equation discretised in velocity space, Equation (3.34). It remains
to be shown that this equation corresponds to the Navier-Stokes equations. For sake of generalisation, as-
sume the forcing function Equation (3.26) to be of the form

Fi = wi

(
Bccc i

c2
s

+
(
ccc i ccc⊤i − c2

s III
)

:CCC

2c4
s

)
FFF . (3.40)

A Taylor expansion of Equation (3.34) results in

∆t

(
∂

∂t
+ ∂

∂xxx
ccc i

)
fi + ∆t 2

2

(
∂

∂t
+ ∂

∂xxx
ccc i

)2

fi +O
(
∆t 3)=−∆t

τ
f neq

i +
(
1− ∆t

2τ

)
Fi . (3.41)

To show that the connection to the Navier-Stokes equation, we apply a Chapman-Enskog analysis [49]. To do
so, we perform a multi-scale expansion of the populations and the time-derivative, i.e.

fi = f eq
i +ϵ f (1)

i +ϵ2 f (2)
i + ... (3.42)

∂

∂t
= ϵ ∂

∂t

(1)

+ϵ2 ∂
2

∂t 2

(2)

+ ... (3.43)

18 3. The lattice Boltzmann method

In similar fashion, we write the spatial derivative and the forcing term as

∂

∂xxx
ccc i = ϵ ∂

∂xxx
ccc i (3.44)

Fi = ϵF (1)
i (3.45)

B = ϵB (1) (3.46)

CCC = ϵCCC (1). (3.47)

In the above equations, ϵ is a term of the order the Knudsen number (Kn); consequently the time-derivative
is written as the sum of various components of different orders in Kn, and e.g. (∂/∂t)(i) is the part of the time-
derivative associated with order ϵi . Substituting Equation (3.42)-(3.44) into Equation (3.41), and collecting all
terms of order ϵ and ϵ2 separately results in

O (ϵ) :

(
∂

∂t

(1)

+ ∂

∂xxx

(1)

c

)
f eq

i −
(
1− ∆t

2τ

)
F (1)

i =−1

τ
f (1)

i (3.48)

O
(
ϵ2) :

∂

∂t

(2)

f eq
i +

(
∂

∂t

(1)

+ ∂

∂xxx

(1)
)(

1− ∆t

2τ

)(
f (1)

i + ∆t

2
F (1)

i

)
=−1

τ
f (2)

i . (3.49)

The non-equilibrium populations should satisfy conservation of mass and momentum. Furthermore, as we
assumed Fi to only consist of a term involving O (ϵ), we require from Equation (3.37)-(3.38) that

∑
i

f (n)
i =

−∆t
2

∑
i

F (1)
i , if n = 1

0, if n ≥ 2
(3.50)

∑
i

ccc i f (n)
i =

−∆t
2

∑
i

ccc i F (1)
i , if n = 1

0, if n ≥ 2.
(3.51)

Using these conditions, taking zeroth and first moments of Equation (3.44) results in

∂

∂t

(1)

ρ+ ∂

∂xxx

(1) (
ρuuu

)= 0 (3.52)

∂

∂t

(1) (
ρuuu

)+ ∂

∂xxx

(1)

Π(0)
2 = B (1)FFF (1). (3.53)

To obtain the Euler equations, we obtain B = 1. Similarly, taking zeroth and first moments of Equation (3.45)
results in

∂

∂t

(2)

ρ = 0 (3.54)

∂

∂t

(2) (
ρuuu

)= ∂

∂xxx

(1)

Π(1)
2 , (3.55)

whereΠ(1)
2 is the stress tensor, given by

Π(1)
2 =σσσ=

(
τ− 1

2

)
c2

s∆tρ

((
∂

∂xxx

(1)

uuu⊤
)
+

(
∂

∂xxx

(1)

uuu⊤
)⊤)

+ (3.56)

∆t

[(
τ− 1

2

)((
uuu

(
FFF (1))⊤+

(
uuu

(
FFF (1))⊤)⊤)

−
(
τ

2
− 1

4

)(
CCC

(
FFF (1))⊤+CCC

(
FFF (1))⊤)⊤)]

. (3.57)

Clearly, by setting τ such that ν= (
τ− 1

2

)
c2

s∆t and CCC = 2uuu we eliminate the leading errors in the stress tensor,
justifying the choice in discretisation of the integral in Equation (3.31) and form of the force discretisation in
Equation (3.26). Combining Equations (3.52) with (3.54) and (3.53) with (3.55) and reversing the multi-scale
expansion results in

∂

∂t
ρ+ ∂

∂xxx

(
ρuuu

)= 0 (3.58)

∂

∂t

(
ρuuu

)+ ∂

∂xxx

(
ρuuuuuu⊤)=− ∂

∂xxx
p +ν ∂

∂xxx

[(
∂

∂xxx

⊤
uuu⊤

)
+

(
∂

∂xxx

⊤
uuu⊤

)⊤]
+FFF , (3.59)

3.4. Application of the lattice Boltzmann equation 19

where p = c2
s ρ is the pressure, which is why cs is called the speed of sound in the lattice Boltzmann method. As

is apparent, Equations (3.58) and (3.59) correspond to the Navier-Stokes equations. For a detailed derivation
of these relations, the reader is referred to e.g. [48], which shows the errors introduced by various other forcing
schemes.

3.4. Application of the lattice Boltzmann equation
Now that the discretised lattice Boltzmann equation has been obtained and its connection to the Navier-
Stokes equation has been demonstrated, a brief discussion of the practical implementation of the lattice
Boltzmann method (LBM) is provided. For an extensive discussion the practical implementation of the LBM,
the reader is referred to e.g. Kruger, and Guo and Shu [2, 3], and only the fundamentals of the various com-
ponents of a typical LBM implementation are discussed.

3.4.1. Initial conditions
An initial condition needs to be imposed on the populations. A naive way to do so would be to set

fi (xxx, t)
∣∣

t=0 = f eq
i

(
ρ0,uuu0

)
, (3.60)

where ρ0 is some constant initial density and uuu0 is the initial velocity field. However, in case uuu0 is not constant
(or in case of an external forcing), then the density cannot be assumed constant as the pressure Poisson
equation needs to be satisfied, i.e.

∆p0 =− ∂

∂xxx

(
∂

∂xxx

(
uuu0uuu⊤

0

))⊤+ ∂

∂xxx
FFF , (3.61)

and this is not satisfied when uuu0 varies in space, but ρ0 is assumed to be constant (since p = c2
s ρ). Therefore,

Caiazzo, and Mei et al. [50, 51] propose the following initialisation algorithm:

1. Set an initial density distribution ρ0(xxx, t), e.g. ρ0(xxx, t) = 1.
2. Calculate the associated equilibrium distribution and forcing from Equation (3.21) and (3.26), using

uuu =uuu0(xxx, t) and ρ = ρ0(xxx, t).
3. Perform the collision according to Equation (3.35).
4. Perform the streaming according to Equation (3.36).
5. Calculate the new density ρ′ according to Equation (3.37).
6. Compare the new density with the previous density ρ. If the difference is smaller than a certain toler-

ance, the algorithm is terminated. If not, set ρ = ρ′, recompute the equilibrium distribution and forcing
term with uuu =uuu0(xxx, t) and the updated density, and go back to step 3.

This results in populations that relax towards the desired velocity field, whilst conserving mass in the com-
plete system. Furthermore, it means that no Poisson solver is necessary for the pressure, avoiding the need
to implement such a solver.

It should be noted that the initial pressure distribution only needs to be solved once, so the computational
effort of the procedure to determine the initial pressure distribution is relatively unimportant. Furthermore,
any unphysical artefacts that are present in the initial solution are inevitably smoothed out due to the un-
steady nature of the LBM. Therefore, assuming the simulation is run for a long enough time to allow the
solution to properly reach a steady-state simulation, the way the initial condition is imposed is not of utmost
importance.

3.4.2. Boundary conditions
Imposing boundary conditions in the LBM is inherently different from how they can be imposed in tradi-
tional CFD solvers, such as finite volume methods. Whereas in traditional CFD solvers, boundary conditions
may be directly imposed on the macroscopic quantities, in LB methods, boundary conditions can only be ap-
plied to the mesoscopic populations. Chapter 4 and 5 discuss two ways of applying boundary conditions to
moving boundaries inside the fluid domain, namely the immersed boundary method and immersed interface
method. Chapter 6 discusses a way of applying boundary conditions to the outer edges of the domain.

3.4.3. External forces
The inclusion of external forces has already been discussed in Section 3.2.2 and 3.2.3 in which the Guo forcing
has been discussed, developed by Guo et al. in [48], which is a small variation on the forcing scheme devel-

20 3. The lattice Boltzmann method

oped by He et al. [49]. However, in literature, a wealth of forcing schemes exist, such as those by Wagner [52],
Ladd and Verberg [53] and Luo [54].

All of these forcing schemes can be generalised as follows. First, we write the collision step of Equation (3.35)
as

f̂i (xxx, t) = fi (xxx, t)− ∆t

τ

(
fi (xxx, t)− f eq

i (xxx, t)
)+Si (xxx, t) , (3.62)

with Si of the form

Si = wi

(
BBB ·eee i

c2
s

+ CCC :
(
eee i eee⊤i − c2

s III
)

2c4
s

)
. (3.63)

Secondly, the first velocity moment of the physical velocity (Equation (3.38)) is written as

ρuuu =ΠΠΠ1 =
∑

i
fi ccc i +k

∑
i

Fi ccc i , (3.64)

and the first velocity moment of the velocity used to compute equilibrium populations is written as

ρuuueq =ΠΠΠ1 =
∑

i
f eq

i ccc i +m
∑

i
Fi ccc i . (3.65)

The differences between forcing schemes are then in what parameters are used for k, m, BBB and CCC . A compre-
hensive review of various forcing methods is provided in Bawazeer et al. [55], where twelve different forcing
methods are compared using a benchmark case of natural convection in a differentially heated square cavity,
where the differential heating causes a buoyancy force. The results were evaluated for different Rayleigh num-
bers and showed no significant difference between the forcing schemes, with e.g. the maximum horizontal
component of the velocity differing by at most around 1% between different forcing schemes. Meanwhile,
the difference w.r.t. a benchmark solution based on a semi-implicit spectral method presented by Quere and
De Roquefortt was in the order of 10% for large Rayleigh numbers, showing deviations in the results are likely
caused by other factors than the choice of forcing scheme.

It should be noted that this was performed for a steady simulation, whereas for example Guo et al. [48]
showed that their choice for CCC was necessary to eliminate non-physical effects occurring due to temporal
variations in the force that were present in the forcing schemes of e.g. Ladd and Verberg [53]. Thus, although
Bawazeer et al. [55] shows that the differences between forcing schemes are generally negligible for a steady-
state simulation, they are likely to become more notable for transient simulations. Therefore, the Guo forcing
seems superior from a theoretical point of view for transient simulations.

3.4.4. Dimensionalisation
As mentioned in Section 3.1.1, all parameters in the LBM are non-dimensionalised and therefore in lattice
units. The conversion between lattice and physical units is very simple, fortunately [56]. Consider a lattice
node spacing ∆xl , lattice time step ∆tl and lattice speed of sound of cs,l . The viscosity in lattice units, νl , is
given by Equation (3.33). The relation between the physical and lattice viscosity is given by

νp = νl
∆x2

∆t
= c2

s,1

(
τ− 1

2

)
∆x2

∆t
, (3.66)

where

∆x = ∆xp

∆xl
(3.67)

∆t = ∆tp

∆tl
, (3.68)

where ∆xp is the physical node spacing and ∆tp the physical time step. Thus, we have

∆x = νp

cs,1cs,p
(
τ− 1

2

) (3.69)

∆t = νp

c2
s,p

(
τ− 1

2

) , (3.70)

3.5. Advanced collision models 21

where cs,p is the physical speed of sound. ∆xp and ∆tp can then be computed from Equation (3.67) and
(3.68), respectively.

It is evident that there is only a single free parameter. The physical speed of sound is a fixed value that follows
from the atmospheric conditions; the physical viscosity similarly is a flow parameter; the lattice speed of
sound is a fixed value belonging to the lattice chosen; the lattice node spacing and time step are usually
taken to be unity2. Therefore, choosing a certain time step ∆tp determines the value of τ, which in turn
constrains the value of ∆xp , and vice versa. This means that the refinement of the time discretisation cannot
be chosen independently from the spatial discretisation, which is a disadvantage compared to traditional
CFD methods, where both the spatial and time step size can be altered independently. To aggravate this,
the value of τ directly affects the stability of the simulation, as extensively discussed in Section 3.5, as the
simulation may become unstable if τ becomes too small. Consequently, tuning the input parameters may
prove a challenge; Krüger et al. [2] details a number of strategies one can use to obtain a satisfactory set of
input parameters.

3.4.5. Overview of operations taken in an LBM simulation
The main steps undertaken in a typical LBM simulation have now been discussed, and a summary of the
sequencing of the steps is provided in Figure 3.1. It should be noted that certain applications of the LBM may
require additional steps that are not listed here; for example, fluid-structure-interaction utilising the LBM as
fluid solver requires additional steps that are explained in more detail in Chapter 6.

Figure 3.1: Generic sequencing of operations in an LBM simulation.

3.5. Advanced collision models
The BGK operator, although attractive due to its simplicity, suffers from some issues. First of all, as is apparent
from Equation (3.33), τ has to be greater than 1

2 , as τ= 1/2 would lead to zero viscosity. However, even in the
limit of τ→ 1/2, use of the BGK operator leads to stability issues in the solution, as shown by for example Luo
et al. [57]. These stability issues can be alleviated by using a finer mesh discretisation, but this is naturally
accompanied with an increase in computational cost.

Secondly, the BGK operator is not Galilean invariant. Considering the equilibrium distribution in Equation
(3.21), for a given ∆uuu, if we let f̂ eq

i (uuu) = f eq
i (uuu +∆uuu), then f̂ eq

i (uuu −∆uuu) ̸= f eq
i (uuu).

Thirdly, for certain applications, the relaxation parameter directly influences the accuracy of the simulations.
Clearly, the relaxation parameter apparently both influences the physics of the flow (as it directly influences
the Reynolds number) and the accuracy of the simulation itself.

2For multigrid methods, where different parts of the domain have different levels of grid refinement, one may choose to e.g. define
∆xl = 1 and ∆tl = 1 for the finest mesh, use ∆xl = 2 and ∆tl = 2 for a grid that is twice as coarse as the finest mesh, ∆xl = 4 and ∆tl = 4
for the next grid, and so on. However, also in this case it is clear that the values of ∆xl and ∆tl are fixed.

22 3. The lattice Boltzmann method

Fourthly, on a more fundamental level, using a single relaxation time3 means that all velocity moments are
relaxed at the same rate. However, in reality, the velocity moments are independent from each other, and thus
it seems attractive to be able to relax them independently.

To mitigate these issues, various, more advanced collision models have been developed. This section dis-
cusses a number of them.

3.5.1. Multiple-relaxation-time models
Multiple-relaxation-times (MRT) models deal particularly well with the issue of having only a single relaxation
time, and in the process, improve the accuracy and stability as well. The fundamental basis of these types
of models is to transform the populations into a moment space, relax the individual moments, and then
transform back to population space. In other words, the collision operation in Equation (3.35) is written
as

f̂i (xxx, t) = fi (xxx, t)−∆tMMM−1SSS
(
MMM fi (xxx, t)−MMM f eq(xxx,t)

i

)
+

(
1− ∆t

2τ

)
Fi (xxx, t) , (3.71)

where the product MMM fi =mmmi are the contributions of the populations fi to each of the moments and MMM f eq
i =

mmmi are the contributions of each population’s equilibrium distribution to the equilibrium moments.

The question is now how to construct the matrices MMM and SSS. The objective of MMM is to transform the popula-
tions fi to a set of moments. In a DdQq model, MMM clearly needs to be of size q ×q . Thus, a set of q moments
needs to be chosen that will form the basis of the moment space.

Multiple-relaxation-time (MRT) models can be constructed in a variety of ways. Two notable methods will
be described in this section. The first method is to use Hermite polynomials to construct the moment space,
as proposed by Dellar [58]. The second method is to construct polynomials based on the components of the
link velocities and orthogonalise these, as proposed by Lallemand and Luo [59]. It should be noted that the
second method has several advantages over the former, was developed earlier and is the conventionally used
model. However, the Hermite-based MRT can be argued to be more physically intuitive, which is why it will
be discussed first.

Hermite-based MRT It was previously seen in Section 3.2.1 that there was an intimate connection between
a Hermite expansion and the velocity moments, which makes the use of Hermite generating function a nat-
ural candidate to construct more moments. Dellar [58] therefore proposed to construct a basis of moments
based on Hermite polynomials. To do so, we can use a Hermite moment generating function of the form
[60]

H (XXX) =
∫

eξξξ
⊤XXX−c2

s XXX ⊤XXX /2 f
(
ξξξ
)

dξ. (3.72)

The contribution of population fi with velocity ccc i to the moment generating function is therefore

H i (XXX) =
∫

eξξξ
⊤XXX−c2

s XXX ⊤XXX /2 fi
(
ξξξ−ccc i

)
dξ= eccc⊤i XXX−c2

s XXX ⊤XXX /2, (3.73)

which can be written as a power series as

H i (XXX) =
∞∑

n=0

(
ccc⊤i XXX − c2

s XXX ⊤XXX /2
)n

n!
. (3.74)

Therefore, since the contribution to the kth moment is given by mmm(k)
i = ∂kH i /∂XXX k evaluated at XXX = 000, we

obtain for the first three moments:

mmm(0)
i = 1 (3.75)

mmm(1)
i = ccc i (3.76)

mmm(2)
i = ccc i ccc⊤i − c2

s III . (3.77)

(3.78)

3The use of a single relaxation time is why these models are also referred to as single-relaxation-time SRT models.

3.5. Advanced collision models 23

As a practical example, consider a D2Q9 lattice. The zeroeth moment will be

mmm(0) =
q=8∑
i=0

m(0)
i fi =

q=8∑
i=0

fi . (3.79)

The x-component of the first moment will be

mmm(1)
x =

q=8∑
i=0

m(1)
i ,x fi =

q=8∑
i=0

ci ,x fi , (3.80)

and e.g. the x y-component of the second moment will be

mmm(2)
x y =

q=8∑
i=0

m(2)
i ,x y fi =

q=8∑
i=0

ci ,x ci ,y fi . (3.81)

We can now make a choice in which moments to include. For a D2Q9 lattice, the natural candidates would
be the following:

• mmm(0), which corresponds to the density moment.
• mmm(1)

x and mmm(1)
y , which correspond to the momentum.

• mmm(2)
xx , mmm(2)

x y and mmm(2)
y y , which correspond to the components of the stress tensor.

• mmm(3)
xx y , mmm(3)

x y y and mmm(4)
xx y y , a higher-order moment. The choice for mmm(4)

xx y y instead of e.g. mmm(3)
xxx is due to

the fact that mmm(3)
xxx equals mmm(3)

x , as shown at the end of this section.

Subsequently, the matrix MMM is constructed as follows:

MMM =
[(

m̂mm(0))⊤ (
m̂mm(1)

x

)⊤ (
m̂mm(1)

y

)⊤ (
m̂mm(2)

xx

)⊤ (
m̂mm(2)

y y

)⊤ (
m̂mm(2)

x y

)⊤ (
m̂mm(3)

xx y

)⊤ (
m̂mm(3)

x y y

)⊤ (
m̂mm(4)

xx y y

)⊤]⊤
,

(3.82)

where m̂mm(k)
ααα is the vector consisting consisting of the elements mmm(k)

ααα,i , where ααα is a permutation of x and y of
appropriate size. Using the velocity set of a D2Q9 lattice, this results in

MMM =

MMM⊤
1

MMM⊤
2

MMM⊤
3

MMM⊤
4

MMM⊤
5

MMM⊤
6

MMM⊤
7

MMM⊤
8

MMM⊤
9

=

1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

− 1
3

2
3 − 1

3
2
3 − 1

3
2
3

2
3

2
3

2
3

− 1
3 − 1

3
2
3 − 1

3
2
3

2
3

2
3

2
3

2
3

0 0 0 0 0 1 −1 1 −1

0 − 1
3 0 1

3 0 2
3 − 2

3 − 2
3

2
3

0 0 − 1
3 0 1

3
2
3

2
3 − 2

3 − 2
3

1
9 − 2

9 − 2
9 − 2

9 − 2
9

4
9

4
9

4
9

4
9

. (3.83)

It should be noted that not all rows in this are orthogonal to each other. However, it is preferable to have all
moments be orthogonal to each other, such that they can be relaxed independently from each other.

Gramm-Schmidt-based MRT To solve this, Lallemand and Luo [59] proposed a different approach. They
construct the row vectors in MMM as polynomials in the x- and y-components of the velocities ccc i , and orthog-
onalise each vector using the Gramm-Schmidt procedure [61]. The first three orthogonal vectors still corre-
spond to the density (ρ), momentum in x (jx) and momentum in y (jy). In other words, the entries in the
row MMM 1 are given by MMM 1,i = 1; the entries in the row MMM 4 are given by MMM 4,i = ccc i ,x ; the entries in the row MMM 6 are
given by MMM 6,i = ccc i ,y

4.

The remaining rows are constructed as follows:

4The row vectors are ordered based on the order of the tensor they correspond to; as will be seen soon, MMM2 and MMM3 will correspond to
scalars, whereas the momentum in x and y correspond to vector components.

24 3. The lattice Boltzmann method

• MMM 2 is based on the polynomial ccc2
i ,x +ccc2

i ,y = ||ccc i ||2. This row corresponds to the kinetic energy e. Orthog-

onalising it with respect to MMM 1, MMM 4 and MMM 6 results in

MMM 2,i = 3||ccc i ||2 −4. (3.84)

• MMM 3 is based on the polynomial
(
ccc2

i ,x +ccc2
i ,y

)2 = ||ccc i ||4. This row corresponds to the square of the energy.

Orthogonalisation results in

MMM 2,i = 4− 21

2
||ccc i ||2 + 9

2
||ccc i ||4. (3.85)

• MMM 5 and MMM 7 are based on the x- and y-components of the polynomial ccc i ||ccc i ||2, which corresponds to
the energy flux qx and qy , respectively. Orthogonalisation results in

MMM 5,i = ccc i ,x
(−5+3||ccc i ||2

)
(3.86)

MMM 7,i = ccc i ,y
(−5+3||ccc i ||2

)
. (3.87)

• MMM 8 is based on the polynomial ccc2
i ,x −ccc2

i ,y , which corresponds to the diagonal component of the stress

tensor. As this expression is already orthogonal to the previous ones, we simply obtain

MMM 8,i = ccc2
i ,x −ccc2

i ,y . (3.88)

• MMM 9 is based on the polynomial ccc i ,xccc i ,y , which corresponds to the off-diagonal component of the stress
tensor. This expression is already orthogonal, and thus

MMM 9,i = ccc i ,xccc i ,y . (3.89)

Note that some of the row vectors have been scaled such that the entries are integers. There is no explicit
need to do so, but it simplifies computations when necessary [62].

In conclusion, we obtain

MMM =

1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1

. (3.90)

Subsequently, the relaxation matrix SSS is diagonal, of the form

SSS = diag
(
ωρ ,ωe ,ωϵ,ω j ,ωq ,ω j ,ωq ,ων,ων

)
. (3.91)

Similar models can be proposed for 3D lattices. d’Humières et al. [63] developed MRT models for the D3Q15
and D3Q19 lattices.

Note that to preserve isotropy, some moments share the same relaxation rate. It can be shown via a Chapman-
Enskog analysis [2] that ων and ωϵ should satisfy the following relations:

η= ρc2
s

(
1

ων
− ∆t

2

)
(3.92)

ηB = ρc2
s

(
1

ωe
− ∆t

2

)
− η

3
(3.93)

3.5. Advanced collision models 25

where ν is the shear viscosity and ηB the bulk viscosity. The relaxation ratesωρ andω j may be set to 0 as those
moments will always equal the equilibrium moments regardless, as the collision operator satisfies conserva-
tion of mass and momentum. The relaxation parameters ωϵ and ωq are arbitrary, however, and no single,
universal approach to determinate appropriate relaxation values this exists. Particularly for D3Q15, D3Q19
and D3Q27 models, where the number of relevant moments (and therefore relaxation rates) is increased sig-
nificantly, this commonly poses a problem.

There are two main advantages to the Gramm-Schmidt approach compared to the Hermite approach. First,
it is clear that the moments are orthogonal to each other, which is not the case for the Hermite approach.
Secondly, the moments obtained from the Hermite approach suffers from degeneracy due to the discretised
velocity space. For example, consider the contributions of fi to the third-order velocity moment,

m(3)
i = ccc i ⊗ccc i ⊗ccc i . (3.94)

Consequently,

mmm(3)
i ,xxx =

q=8∑
i=0

m(3)
i ,xxx fi =

q=8∑
i=0

ci ,x ci ,x ci ,x fi . (3.95)

However, since ci ,x can only take values from [−1,0,1], this means that this simply reduces to

mmm(3)
i ,xxx = ci ,x fi , (3.96)

which would coincide with mmm(1)
i ,x . This particularly leads to problems for the D3Q15 and D3Q19 velocity sets

[2]. These advantages are the main reasons why the Gramm-Schmidt approach is usually preferred over the
Hermite approach.

One note should be made regarding the use of the term of multiple-relaxation-time models. So far, we have
seen the raw moments being used to form a basis of a moment space. However, since the introduction of
MRT models, as we shall see in Section 3.5.3 and 3.5.4, other models have been developed that also transform
the populations to a moment space, but use a different moment basis, e.g. central moments or cumulants.
Although these methods also use multiple relaxation times, the term MRT is usually restricted to raw moment
based methods using multiple relaxation times.

3.5.2. Two-relaxation-time models
As mentioned previously, there is a large number of arbitrary relaxation parameters that need to be tuned
in the MRT approach. The two-relaxation-time (TRT) model, introduced by Ginzburg [64], simplifies this
significantly, by using the same relaxation time (ω+) for all the even-order moments (ρ, e, ϵ, pxx , px y) and a
different relaxation time (ω−) for all the odd-order moments (jx , jy , qx , qy). The viscosity is then related to
the relaxation parameter ω+ via

ν= c2
s

(
1

ω+∆t
− 1

2

)
, (3.97)

and ω− is the only free parameter. The choice for ω− affects both the stability and the accuracy, through the
so-called ‘magic’ parameter

Λ=Λ+Λ− =
(

1

ω+∆t
− 1

2

)(
1

ω−∆t
− 1

2

)
. (3.98)

Different choices for Λ (by altering ω−) lead to different results for accuracy and stability. For example,
Ginzburg [65] shows that the following values ofΛ have specific benefits:

• SettingΛ= 3/16 results in a wall being placed at the midpoint between nodes in a bounce-back scheme,
a commonly used boundary condition in LBM.

• The choice of Λ= 1/6 removes a fourth-order error from the density in a straight Poiseuille flow, bene-
ficial for diffusion dominated problems.

• The choice of Λ= 1/12 removes a third-order error from the density in a straight Poiseuille flow, bene-
ficial for advection dominated problems.

26 3. The lattice Boltzmann method

Ginzburg [66] also showed that the choice ofΛ= 1/4 is optimal in terms of stability; that is, the specific values
of ω+ and ω− do not affect the stability limits.

It should be noted that in TRT models, the populations are not typically transferred to moment space using
the moment matrix MMM and relaxation matrix SSS [2]. Instead, the populations are decomposed into symmet-
ric and asymmetric contributions, and the collision step is formulated as (excluding the contribution of the
force)

f̂i (xxx, t) = fi (xxx, t)−ω+∆t
(

f +
i (xxx, t)− f eq,+

i (xxx, t)
)−ω−∆t

(
f −

i (xxx, t)− f eq,−
i (xxx, t)

)
, (3.99)

with

f +
i = fi + f ī

2
(3.100)

f −
i = fi − f ī

2
(3.101)

fi = f +
i + f −

i (3.102)

f ī = f +
i − f −

i , (3.103)

where ī is the link opposite to link i . The symmetric components are denoted by a plus sign, the asym-
metric components by a minus sign. The symmetric and asymmetric equilibrium populations are similarly
defined.

3.5.3. Cascaded lattice Boltzmann method
Geier et al. [67] observed that although MRT operators perform better than SRT operators, they still suffer
from instability issues. They point to the fact that MRT operators do not adequately satisfy Galilean invari-
ance. There are three reasons for this:

• The equilibrium distribution, Equation (3.21), is not Galilean invariant due to its truncation of higher
order terms. These higher order terms are related to small-wavelength phenomena in the flow, whereas
instabilities often arise from these small-wavelengths.

• For 3D applications, the D3Q13, D3Q15 and D3Q19 are usually chosen over the D3Q27 model, due to
the increased memory requirement for the D3Q27 model, with generally little additional accuracy for
small Reynolds numbers. However, consider e.g. the D3Q19 model, where no velocity component in
the x y z-direction exists. Consequently, the moment µx y z is not independent from the other moments
in the flow. This is important for flow with short wavelength features; µx y z can be seen as the advection
ofµx y (corresponding to the shear rate of the flow) in the z-direction. Ignoring this moment means that
advection of the shear rate is neglected, which is invalid for flow with small-wavelength phenomena.

• It is natural to assume that central moments5 are the moments that should be relaxed, as these mo-
ments are Galilean invariant. A central moment of a given order is a linear combinations of raw mo-
ments up to the same order. This means that if the raw moments are relaxed, higher order central mo-
ments are inadvertently relaxed simultaneously. It is therefore preferable to relax the central moments
directly.

Geier et al. therefore proposed the cascaded lattice Boltzmann method (CLBM) to mitigate with these issues.
The collision operation is replaced with a scattering step

f̂ff = fff +KKK kkk, (3.104)

where fff is the vector containing the populations, KKK is a scattering matrix for which each column corresponds
to a raw moment (essentially, it is the transpose of the MMM matrix in the Gramm-Schmidt MRT approach). The
vector kkk controls the relaxations of each of those moments; the components of kkk are found by solving

m̄eq
xm yn =∑

i

(
fi +

(
KKK kkk

)
i

)(
ccc i ,x −uuux

)(
ccc i ,y −uuuy

)
/ρ, (3.105)

for m,n = 0,1,2, and where m̄xm yn represents a central moment. Note that the values of m̄eq
xm yn can be found

analytically by taking central moments from the equilibrium distribution, i.e.

m̄eq
xm yn =∑

i
f eq

i

(
ccc i ,x −uuux

)m (
ccc i ,y −uuuy

)n , (3.106)

5That is, moments with respect to the flow velocity, contrary to the raw moments that were utilised for the derivation of the MRT method.

3.5. Advanced collision models 27

and expressions for the components of kkk can be found symbolically. The components of kkk are then multiplied
with a relaxation parameter, accounting for crosstalk between the central moments6. In Geier’s PhD thesis
[68], an elaborate derivation and corresponding expressions for the vector kkk can be found for the D2Q9 lattice.
An overview of the equations necessary for the D3Q27 lattice is provided in [67].

Lycett-Brown and Luo [69] proposed an alternative, arguably more intuitive, derivation based on the same
principles as Geier’s work. First, the populations are written as a linear combination of several raw moments,
which can be transformed straightforwardly to a set of central moments, as shown thoroughly by e.g. Coreixas
et al. [60]. The contribution of each central moment to the populations is then individually relaxed.

To demonstrate the stability of the CLBM for higher Reynolds number flow, Geier [68] showed that the model
is able to simulate the wake behind a rectangular plate, for a Reynolds number of 1.4×106 based on the height
of the plate. They also show the capability to simulate the free decay of turbulence in a periodic domain,
induced by initially having two layers of fluid moving in opposite directions. The obtained turbulent energy
spectrum showed good agreement with the Kolmogorov spectrum.

3.5.4. Cumulant lattice Boltzmann method
So far, we have seen raw moments being used to construct the ‘default’ MRT, as detailed in Section 3.5.1, and
central moments being used to construct the CLBM, as detailed in Section 3.5.3. Geier et al. [70] developed
a lattice Boltzmann method based on relaxing cumulants instead of raw or central moments. Cumulants are
the natural generated by using the natural logarithm of the moment generating function. In other words, the
cumulant generating function is given by as

C (XXX) = ln

(∫
eξξξ

⊤XXX f
(
ξξξ
)

dξξξ

)
= ln

(∫
eξξξ

⊤XXX
∑

i
fi

(
ξξξ−ccc i

)
dξξξ

)
(3.107)

= ln

(∑
i

fi eccc⊤i XXX

)
dξξξ. (3.108)

The cumulants are then computed by differentiating Equation (3.108) and evaluating the corresponding
derivative at XXX =000, i.e., the tensor containing the i th order moments is given by

ccc(i) = ∂i

∂xxxi
C (XXX)

∣∣∣∣
XXX=000

. (3.109)

Note that contrary to the case of raw and central moments, the cumulant generating function C cannot be
easily split into separate contributions by each population fi , which makes it not possible to define a matrix
MMM to immediately transform to cumulant space. Instead, Geier et al. propose to first use a transformation
matrix MMM to move to raw moment space, and to then convert the raw moments into central moments, and
subsequently convert those into cumulants, as the relations between these moment spaces is known7, as can
be found in the works of Geier et al. [70], Fard [71] and Coreixas et al. [60]. The cumulants can then be relaxed,
and inversely transformed back to central moments and then back to raw moments, after which they can be
converted back to populations.

6The components of kkk corresponding to lower order moments also appear in the components of kkk corresponding to higher order mo-
ments. As these components will already have been relaxed, they need not be relaxed during their contributions to the higher order
moment relaxations. The fact that the relaxations are evaluated in a cascaded way, starting from the lower-order moments, is what the
‘cascaded lattice Boltzmann method’ borrows its name from.

7The conversion between raw and central moments is linear; the conversion to cumulants is non-linear, however.

4
Non-grid-conforming boundary methods

This chapter describes the immersed Boundary method introduced in Chapter 2 in more detail. Section 4.1
provides a brief overview of how the immersed Boundary method can be implemented in both a Navier-Stokes
framework, whereas Section 4.2 describes its implementation in the lattice Boltzmann method.

4.1. Immersed boundary method
The immersed boundary method (IBM) was originally proposed by Peskin et al. [4] and has been widely
applied in Navier-Stokes based CFD-applicaitons since [34, 72]. Its essence is that solid boundaries are not
directly imposed on the solution through explicit boundary conditions and therefore the grid does not nec-
essarily have to conform to the solid boundary. Instead, a force field is applied such that the resulting flow
field matches the velocity of the solid boundary.

Mathematically, this can be stated as follows. The incompressible Navier-Stokes equations are given by

∇·uuu = 0 (4.1)

ρ

(
∂uuu

∂t
+uuu ·∇uuu

)
=µ∇2uuu −∇p + fff . (4.2)

The body force fff may then be represented as a distributed force along the boundary of the immersed body,
given by

fff (xxx, t) =
∫
Γ

FFF (sss, t)δ (xxx −XXX (sss, t))dsss, (4.3)

in which FFF is the immersed boundary force and XXX (sss, t) is the parametric surface representing the solid bound-
ary. A wide variety of algorithms exists regarding how to determine FFF (sss, t) and how to discretize its integral
[4, 34].

One such example is the (multi)direct forcing scheme. The multidirect forcing scheme, proposed by Luo et
al. [73], follows an iterative scheme. The boundary is represented by a Lagrangian mesh, see also Figure 4.1.
Let xxxi denote the nodes on the Eulerian mesh, and XXX k the nodes on the Lagrangian mesh, having a velocity
UUU k .

1. After completing all computations of the previous timestep, set m = 0.
2. Compute the initial velocity field uuu(m)

i following from Equation (4.1)-(4.2) by ignoring the presence of
the boundary forcing term given by Equation (4.3).

3. Diffuse the Eulerian velocity field uuu(m)
i to the Lagrangian boundary nodes via

UUUκ (XXX κ)(m) =∑
i

uuu(m)
i (xxxi)D (XXX κ−xxxi) . (4.4)

4. Compute the direct forcing on the Lagrangian nodes by evaluating

FFF (m)
κ (XXX κ) = ρUUU (m)

κ −UUUκ

∆t
. (4.5)

29

30 4. Non-grid-conforming boundary methods

Figure 4.1: Sketch of a cylinder discretised by an Lagrangian mesh, embedded in an Eulerian mesh. Taken from Krüger et al. [2, p. 466].

5. Diffuse the Lagrangian forcing to the Eulerian nodes via

fff i (xxxi)(m) =∑
κ

FFF (m)
κ (XXX κ)D (XXX k −xxxi)∆Vκ, (4.6)

where ∆Vk is the volume of the Lagrangian body element.
6. Update the velocity at the Eulerian nodes via

uuu(m+1)
i =uuu(m)

i + fff (m)
i ∆t

ρ
. (4.7)

7. Increment m by 1, and go back to step 3 unless a specified termination-criterion is met.
8. The total Lagrangian force on each marker is then given by

FFFκ (XXX κ) =
∑
m

FFF (m)
κ (XXX κ) . (4.8)

In the above approach, D(rrr) represents the discrete delta-function, defined as

D (xxxi −XXX κ (t)) =φ(
xi ,x −Xκ,x

)
φ

(
xi ,y −Xκ,y

)
φ

(
xi ,z −Xκ,z

)
. (4.9)

Here, φ(r) is the one-dimensional discrete delta-function, which satisfies a number of properties:

1. φ(r) should be continuous.
2. There should be a value M such that φ(r) = 0 for |r | ≥ M .
3. φ(r) should satisfy

∑
j even

φ
(
r − j

)= ∑
j odd

φ
(
r − j

)= 1

2
, (4.10)

where the first sum goes over all even integers, and the second sum over all odd integers. Note that this
means that

∑
j
φ(r − j) = 1.

4. The first moment of φ(r) should be zero, i.e.∑
j

(
r − j

)
φ

(
r − j

)
. (4.11)

5. There should be a value C , independent from r , such that∑
j

(
φ

(
r − j

))2 =C , (4.12)

for all real values of r .

4.2. Implementation of the IBM in the LBM 31

Several functions satisfy these constraints, such as

φ2 (r) =
{

1−|r |, 0 ≤ |r | ≤ 1

0, |r | > 1
(4.13)

φ3 (r) =

1
3

(
1+

p
1−3r 2

)
, 0 ≤ |r | ≤ 1

2
1
6

(
5−3|r |−

√
−2+6|r |−3r 2

)
, 1

2 ≤ |r | ≤ 3
2

0, |r | > 3
2

(4.14)

φ4 (r) =

1
8

(
3−2|r |+

√
1+4|r |−4r 2

)
, 0 ≤ |r | ≤ 1

1
8

(
5−2|r |−

√
−7+12|r |−3r 2

)
, 1 ≤ |r | ≤ 2

0, |r | > 2,

(4.15)

where the subscript refers to the stencil width. A plot of these discrete delta functions is shown in Figure
4.2.

Figure 4.2: Plot of discrete delta functions φ2, φ3 and φ4. Taken from Krüger et al. [2, p. 469].

Furthermore, in Equation (4.6), the Lagrangian force is diffused to the Eulerian grid by including multiplica-
tion with the volume of the body element, ∆Vκ.

The direct forcing scheme, originally proposed by Mohd-Yusof [74], follows the same approach as the multi-
direct forcing scheme, but only uses one iteration.

4.2. Implementation of the IBM in the LBM
This multi-direct forcing method can be easily extended into the LBM [5]. In the LBM, after the populations
from the previous timestep have been streamed, the IBM algorithm is performed, yielding an additional con-
tribution to the sourcing term and affecting the equilibrium distribution (as discussed in Section 3.4.3), as
shown in Figure 4.3. Note that all necessary fluid quantities to perform the IBM algorithm are macroscopic
quantities, and implementation of the algorithm itself is therefore very similar to implementations in classi-
cal, finite volume based solvers.

Guo et al. [48] proposed a split-forcing LBM, in which a population moving from xxxn to xxxn +ccc i∆t is attributed
half of the force at xxxn and half of the force xxxn +ccc i∆t , as shown in Figure 4.4. This is in contrast to the ‘default’-
forcing, where the force experienced by that population would simply be only attributed the force at its initial
position, i.e. the force at xxxn .

Kang and Hassan [35] demonstrated that this can be applied to the IBM by adjusting Equation (4.6) to

FFF (m)
κ (XXX κ) = 2ρ

UUU (m)
κ −UUUκ

∆t
, (4.16)

and Equation (4.7) to

uuu(m+1)
i =uuu(m)

i + fff (m)
i ∆t

2ρ
. (4.17)

32 4. Non-grid-conforming boundary methods

Figure 4.3: Generic sequencing of operations in an IBM-LBM simulation.

Figure 4.4: Difference between default-forcing (a) and split-forcing (b) with regards to how the force acting on a population at xxxn , trav-
elling in the direction ccci , is computed. Taken from [35, p. 1138].

II
Implementation of the LaBIB-FSI solver

In Chapter 5-6, the main scientific contributions by the author are discussed. Chapter 5 discusses the pro-
posed implementation of an immersed interface method into the lattice Boltzmann method, including a dis-
cussion of its general characteristics and a comparison to the application of the immersed interface method
by Qin et al. [7]. Chapter 6 discusses the development of the custom fluid-structure interaction solver; a
lattice Boltzmann method solver using the immersed boundary and similar methods, and coupled to the
pyfe3d-solver [13]. This solver has been dubbed LaBIB-FSI, shorthand for Lattice Boltzmann Immersed
Boundary Fluid Structure Interaction Solver. LaBIB-FSI is written in C++, using OpenMP to parallellise ap-
propriate parts of the code and interfacing with the Python-based pyfe3d-solver.

33

5
Proposed Immersed Interface Method into

the lattice Boltzmann framework

In this chapter, a implementation of the immersed interface method into the lattice Boltzmann framework is
proposed. In Section 5.1, the derivation of the jump condition in the lattice Boltzmann equation discretised
in velocity space, but continuous in physical space and time, is shown. In Section 5.2, the implementation
of the jump condition into the lattice Boltzmann method is discussed. Section 5.3 describes a midpoint im-
mersed interface method, and explains the differences between the immersed boundary and immersed inter-
face method from a more practical point of view. In Section 5.4 the extension of the immersed interface method
to moving bodies is discussed. Section 5.5 details some additional considerations about the immersed interface
method.

Section 5.6 reflects on scientific contribution of the immersed interface method proposed here, and puts it into
perspective with related developments in the lattice Boltzmann method. Section 5.7 provides an in-depth com-
parison to the work of Qin et al. [7], who previously attempted to implement the immersed interface method
into the lattice Boltzmann method, but appear to have made flaws in their derivation. In Section 5.8 three
minor variations to the immersed interface method are discussed. Finally, Section 5.9 concludes the Chap-
ter.

5.1. Proposal of an immersed interface method
The immersed interface method (IIM) was originally developed by Leveque and Li [6] for elliptic differential
equations, later applied to the Navier-Stokes equations by Lee et al. [36] and extended to moving boundaries
by Xu and Wang [37]. Immersed interface methods are characterised by including singular attributes, such
as a singular force field arising from an immersed boundary, as jumps in the solution space. An example of
an application of the IIM to a simple, one-dimensional elliptic differential equation is provided in Appendix
A.

5.1.1. Derivation of the jump condition for populations across a stationary boundary
The IIM can be applied to the LBM in the following way. Consider again Equation (3.28),

d fi

dη
=Ωi +Fi , (5.1)

which is the Boltzmann equation discretized in velocity space, transformed using the method of character-
istics to an ODE that runs along the direction of the corresponding velocity link ccc i . Let this lattice link be
intersected at η= ηc , and let us assume that the boundary is stationary1. Furthermore, for sake of simplicity,
let the forcing term be discretized to first order, i.e. (compare with Equation (3.26))

Fi = ∂ fi

∂ξξξi

F

ρ
≈ wi

c2
s

ccc i · fff . (5.2)

1The extension of the IIM to moving boundaries will be detailed in Section 5.5.

35

36 5. Proposed Immersed Interface Method into the lattice Boltzmann framework

In addition, similar to an IBM, let a solid boundary be represented by a singular boundary force acting along
the surface, i.e.

fff =
∫
Γ

FFF (sss)δ (xxx −XXX (sss))dsss. (5.3)

Finally, let fi be allowed to be discontinuous across η= ηc , i.e., at η= ηc , fi may experience a jump denoted
by

J fi K
(
ηc

)≡ lim
δ→0

fi
(
ηc +δ

)− fi
(
ηc −δ

)
. (5.4)

We may then integrate Equation (5.2) between η= ηc −ϵ and η= ηc +ϵ. Doing so yields

ηc+ϵ∫
ηc−ϵ

d fi

dη
dη=

ηc+ϵ∫
ηc−ϵ

Ωi dη+
ηc+ϵ∫
ηc−ϵ

wi

c2
s

ccc i ·
∫
Γ

FFF (sss)δ (xxx −XXX (sss))dsssdη. (5.5)

When ϵ→ 0, each of these terms takes the following values:

• The first term becomes

ηc+ϵ∫
ηc−ϵ

d fi

dη
dη= fi

∣∣ηc+ϵ
ηc−ϵ = J fi K

(
ηc

)
. (5.6)

• The second term reduces to 0 asΩi is bounded on [η−ϵ,η+ϵ].
• The third term becomes

ηc+ϵ∫
ηc−ϵ

wi

c2
s

ccc i ·
∫
Γ

FFF (xxx, t)δ (xxx −XXX)dsssdη= wi

c2
s

ccc i ·FFF (xxxc) , (5.7)

where xxxc is the point along ccc i where the surface boundary is intersected.

Thus, we obtain

J fi K
(
ηc

)= J fi K (xxxc , tc) = wi

c2
s

ccc i ·FFF (xxxc) . (5.8)

In other words, when a lattice link ccc i intersects a solid boundary at the point xxx = xxxc at t = tc , then the popu-
lation fi must be incremented by the value computed from Equation (5.8).

Equation (5.8) is significant in the sense that it allows for imposing the boundary force during streaming
rather than during collision; in a collision-based IBM, the forcing is applied at the beginning of a timestep
(η = 0), but in streaming-based formulation, the forcing is applied during the timestep. Furthermore, in the
above derivation, no discretization error arises as the singular force is treated by an exact integral.

It should be noted that higher-order discretizations of the forcing term (Equation (5.2)) can naturally also be
used; the above derivation is easily adapted to account for e.g. Guo forcing.

5.2. Implementation of the immersed interface method in the lattice Botlz-
mann method

It should be noted that although Equation (5.1) is discretised in velocity space, it has not yet been discretised
in velocity and temporal space, which is necessary to be able to implement the jumps during the streaming
step of the LBM. This section therefore proposes an implementation of the result of Equation (5.8) into the
LBM. Section 5.2.1 describes the proposed algorithm. Section 5.2.2 provides additional detail on some of the
proposed steps.

5.2. Implementation of the immersed interface method in the lattice Botlzmann method 37

5.2.1. Description of the algorithm
First, let xxxn denote the nodes on the Eulerian mesh, and XXX κ the nodes on the Lagrangian mesh, having a
velocity UUUκ. The IIM-LBM can then be represented as follows:

1. After completing the collision operation, set n = 0 and all J fi K(0) = 0.
2. Diffuse the post-collision populations at their post-streaming locations to the Lagrangian boundary

nodes via

f̂i (XXX κ) =
∑
n

[
f̂i (xxxn , t)+ J fi K(n) (xxxn , t)

]
D (XXX κ− (xxxn +ccc i)) , (5.9)

where J fi K(n) (xxxn , t) represents the jump experienced by population fi located at node xxxn at time t in
the upcoming streaming step.

3. Compute the Eulerian velocity at each Lagrangian boundary node via

ρUUU (n)
κ =∑

i
f̂i (XXX κ) . (5.10)

4. Compute the direct forcing on the Lagrangian nodes by evaluating

FFF (n)
κ (XXX κ) = ρUUU (n)

κ −UUUκ

∆t
. (5.11)

5. Compute the population jump induced at each Lagrangian node via

J fi K(n) (XXX κ) = J f̂i K (xxxc , tc) = wi

c2
s

ccc i ·FFF (n)
κ . (5.12)

6. Diffuse the population jumps to the Eulerian nodes via

J f (n)
i K (xxxn , t) =

∑
κ

J fi K (XXX κ)D (XXX κ− (xxxn +ccc i∆t))∆Vκ, (5.13)

where Vκ is the volume of the Lagrangian body element.
7. Increment n by 1, and go back to step 2 unless a specified termination-criterion is met.
8. The total Lagrangian force on each marker and jump experienced by each population are then given by

FFFκ (XXX κ) =
∑
n

FFF (n)
κ (XXX κ) (5.14)

J fi K (xxxn , t) =
∑
n

f (n)
i (xxxn , t) , (5.15)

and the streaming operation is performed via

fi (xxxn +ccc i∆t , t +∆t) = f̂i (xxxn , t)+ J fi K (xxxn , t) . (5.16)

5.2.2. Elaboration
A number of components of the above described algorithm merit additional attention. First, in the IBM
described in Chapter 3, the macroscopic flow quantities are directly interpolated to estimate the velocity at
the Lagrangian markers. In contrast, the IIM proposed described here interpolates the populations directly,
as shown by Equation (5.9). Similarly, in Equation (5.13), the effect of the boundary forcing is diffused to the
fluid directly at a mesoscopic level, rather than via the forcing.

As a consequence of this, more control exist over how the mesoscopic quantities are incorporated into the
solver. In particular, in Equation (5.9) and (5.13), the distance used for the discrete Delta-functions is given
by XXX κ− (xxxn +ccc i∆t). This corresponds to taking the populations at their post-streaming locations. This is in
contrast to the IBM described in Chapter 3, where the macroscopic velocity is interpolated in Equation (4.4)
and the macroscopic force is diffused in Equation (4.6).

Additionally, it should be noted that although the above algorithm is iterative in nature, it can be easily mod-
ified into an implicit algorithm that computes the boundary forcing directly. The procedure for this can be
described as follows:

1. At each Lagrangian marker, apply a unit force in each spatial direction.

38 5. Proposed Immersed Interface Method into the lattice Boltzmann framework

2. For each Lagrangian marker and spatial direction, compute the jump induced by the unit force via

δJ fi ,κ,αK(n) (XXX κ) = J f̂i K (xxxc , tc) = wi

c2
s

ccc i · F̃FF (n)
κ,α, (5.17)

where F̃FFκ,α represents the unit force vector in the α-direction of the physical space.
3. Diffuse the jumps induced by the unit forces to the Eulerian grid via

δJ f (n)
i ,κ,αK (xxxn , t) =

∑
κ
δJ fi ,κ,αK (XXX κ)D (XXX κ− (xxxn +ccc i∆t))∆Vκ. (5.18)

4. Diffuse these jumps back to the Lagrangian nodes via

δJ f̂i ,κ,κ̄,αK (XXX κ) =
∑
κ̄

∑
n
δJ fi ,κ̄,αK(n) (xxxn , t)D (XXX κ− (xxxn +ccc i)) , (5.19)

where δJ f̂i ,κ,κ̄,αK (XXX κ) equals the interpolated change in the jump of population i at Lagrangian marker
XXX κ due to the unit vector in the α-direction applied at Lagrangian marker XXX κ̄.

5. Compute the change in velocity due to these jumps at the Lagrangian nodes via

δUUUκ,κ̄,α =∑
i
δJ f̂i ,κ,κ̄,αK (XXX κ) . (5.20)

6. Set up the sensitivity matrix S containing the effect of a unit forcing applied at Lagrangian marker XXX κ̄

on the velocity at Lagrangian marker XXX κ by setting

Sdκ+α,d κ̄+β = δ
(
UUUκ,κ̄,α

)
β , (5.21)

where d is the number of spatial dimensions (such thatα= 0, ...,d−1), and δ
(
UUUκ,κ̄,α

)
β is the component

of δUUUκ,κ̄,α in the β-direction.
7. Diffuse the post-collision populations to the Lagrangian markers via

f̂i (XXX κ) =
∑
n

f̂i (xxxn , t)D (XXX κ− (xxxn +ccc i)) . (5.22)

8. Compute the Eulerian velocity at each Lagrangian boundary node via

ρUUU (n)
κ =∑

i
f̂i (XXX κ) . (5.23)

9. Set up the right-hand-side matrix bbb by setting

bbbdκ+α = (
ρUUU (n)

κ

)
α . (5.24)

10. Solve the system

S⊤F +bbb =000, (5.25)

where

FFFκ,α =F dκ+α. (5.26)

11. Compute the jumps via

δJ fi ,κ,αK(n) (XXX κ) = J f̂i K (xxxc , tc) = wi

c2
s

ccc i ·FFF (n)
κ,α. (5.27)

The above formulation will compute the population jumps in a single iteration, but requires solving a system
of equations. However, it should be noted that this system of equations may be relatively sparse (since most
Lagrangian markers will not have their diffusive zones overlapping). Furthermore, the number of nonzero
entries will generally scale linearly with the fluid grid refinement (assuming the number of Lagrangian mark-
ers is increased proportionally to the fluid grid refinement, so a specialised solver may be able to solve this
efficiently.

5.3. Midpoint immersed interface method 39

5.3. Midpoint immersed interface method
As described in Section 5.2.2, the base algorithm interpolates and diffuses the populations at their end-
streaming position, and the IIM provides more control over how the mesoscopic quantities are incorporated
into the solver. One application of this could be to adjust the point in time in which the populations are
streamed. For example, instead of taking the end-streaming position of each population, one can also take
the mid-streaming position, by altering Equations (5.9) and (5.13) to

f̂i (XXX κ) =
∑
n

[
f̂i (xxxn , t)+ J fi K(n) (xxxn , t)

]
D

(
XXX k −

(
xxxn + 1

2
ccc i

))
, (5.28)

and

J f (n)
i K (xxxn , t) =

∑
κ

J fi K (XXX κ)D

(
XXX κ−

(
xxxn + 1

2
ccc i∆t

))
∆Vκ, (5.29)

without modifying the remainder of the algorithm. This modification is dubbed the midpoint immersed
interface method (MIIM). Note that taking the mid-streaming positions of the populations is simply impos-
sible in a conventional LBM scheme, as there the boundary treatment is forced to always execute at the be-
ginning of the time step. Thus, clearly the IIM allows for more flexibility in how the boundary treatment is
executed.

To illustrate the IBM, IIM and MIIM, and to elucidate the differences between them, Figures 5.1-5.3 show the
interpolation stencils for the IBM, IIM and MIIM applied to a D1q3-lattice, with a Lagrangian marker exactly
in the middle between two lattice nodes. A simple discrete delta function is used, namely

φ (r) =
{

1−|r | , |r | < 1

0, otherwise.
(5.30)

In the IBM, the velocity at xxx1 and xxx2 is interpolated based on the distance of these lattice nodes to the marker
(with the weight dictated by the green triangle). This effectively comes down to interpolating the populations
at xxx1 and xxx2 directly.

Meanwhile for the IIM, the Lagrangian marker is shifted for the evaluation of each population. In order to
perform an interpolation for f1, the marker is moved ‘back’ one unit ccc1, i.e. it is moved one lattice unit to the
left. An interpolation zone is then constructed around this fictitious marker (denoted by the blue triangle),
and the populations f1 at xxx0 and xxx1 are interpolated. Similarly, for the interpolation of f2, one creates a
fictitious node by moving one unit ccc2 ‘back’. f2 at xxx2 and xxx3 are then interpolated, as indicated by the red
triangle.

With these interpolated values of f1 and f2, the velocity at the original marker point is constructed, and the
feedback force may be obtained. This is then converted to a jump via Equation (4.8), which is then diffused
back to the grid in an identical manner as to how the populations were interpolated.

The shift ‘back’ to create a fictitious marker at which the populations are interpolated serves a clear purpose
- the populations f1 at xxx0 and xxx1 will move to xxx1 and xxx2 by the end of the time-step (and will then be the ones
closes to the Lagrangian marker), whereas the populations f2 at xxx2 and xxx3 will move to xxx1 and xxx2, respectively
(and thus also closest to the Lagrangian marker). Meanwhile, the IBM interpolates populations that, after
streaming, will be located farther away from the marker point, and thus it appears more intuitive to shift the
interpolation point as done during the IIM.

Finally, in the MIIM, the fictitious markers are only shifted half a lattice link. For f1, this means that the
fictitious marker coincides with xxx1, and for f2, this means that the fictitious marker coincides with xxx2. The in-
terpolation is self-evident in this case, and the jump can be computed through Equation (4.8) and be diffused
back to same populations. By shifting by only half the lattice link instead of the full lattice link, we essen-
tially interpolate the populations that are closest to the Lagrangian marker midway through the streaming
process - f1 will have travelled halfway from xxx1 to xxx2 and coincide with the Lagrangian marker, and f2 will
have travelled halfway from xxx2 to xxx1, coinciding in the same fashion. Thus, it makes sense to give the largest
interpolation weight to those populations.

40 5. Proposed Immersed Interface Method into the lattice Boltzmann framework

Populations 𝑓1

Discrete delta function

𝒙0 𝒙1 𝒙2 𝒙3

Populations 𝑓2

Lagrangian marker

Figure 5.1: Interpolation zone for a Lagrangian marker in the
IBM in a one-dimensional stencil.

Populations 𝑓1

Discrete delta function 𝑓1

𝒙0 𝒙1 𝒙2 𝒙3

Populations 𝑓2

Shifted Lagrangian marker for 𝑓1

Lagrangian marker

Discrete delta function 𝑓2

Shifted Lagrangian markerfor 𝑓2

−𝒄2Δ𝑡−𝒄1Δ𝑡

Figure 5.2: Interpolation zone for a Lagrangian marker in the
IIM in a one-dimensional stencil.

Populations 𝑓1

Discrete delta function 𝑓1

𝒙0 𝒙1 𝒙2 𝒙3

Populations 𝑓2

Shifted Lagrangian markerfor 𝑓1

Lagrangian marker

Discrete delta function 𝑓2

Shifted Lagrangian markerfor 𝑓2

−𝒄2Δ𝑡/2−𝒄1Δ𝑡/2

Figure 5.3: Interpolation zone for a Lagrangian marker in the MIIM in a one-dimensional stencil.

5.4. Treatment of moving boundaries
Treatment of moving boundaries is straightforward in the IIM. In the base configuration of the algorithm
described in Section 5.2.1, the velocity of the boundary is directly accounted for in Equation (5.11), and thus
the implementation of a moving boundary is simple.

There does exist some nuance with regards to how the boundary velocity is evaluated. That is, should one
take UUU k (XXX k , t), UUU k (XXX k , t +∆t), or some value in between? Since the immersed interface method integrates
over the

Secondly, the forcing term in Equation (5.2) was discretised to first order, neglecting the dependence on the
local velocity. For stationary boundaries, this is accurate up until and including second order terms, but for a
moving boundary, one may increase the order of the discretisation by using

Fi = ∂ fi

∂ξξξi

F

ρ
≈ wi

(
ccc i

c2
s
+

(
ccc i ccc⊤i − c2

s III
)

uuu

c4
s

)⊤
fff , (3.26)

instead of Equation (5.2). This accounts for the effect of the velocity on the transformation of the boundary
force from physical space to lattice space.

5.5. Additional considerations
Two important considerations still remain before the immersed interface method outlined above fits within
the LBM on a grander scale. Specifically, Section 5.5.1 briefly discusses how the IIM can be formulated in an
implicit form, and Section 5.5.2 evaluates the computational cost of the IIM compared to the IBM.

5.5.1. Implicit formulation
The implicit formulation of the default IIM, as shown in Section 5.2.2 can be applied to the MIIM described
in Section 5.3, as well as to alternative formulations of the IIM that are described in Section 5.8 in analogous
fashion. These implicit formulations were added to the Python-based solver, but not included in LaBIB-
FSI, as the multi-direct forcing scheme did not require many iterations to converge, as shown in Section
7.2.3.

5.5.2. Computational cost
The computational effort for both the IBM and the IIM scales similarly. If a certain 3D domain contains
N 3 lattice nodes, then a surface boundary will consist of O

(
N 2

)
Lagrangian markers. If an iterative scheme is

employed, then the computational effort can be expected to scale proportionally to the number of Lagrangian
markers:

• First, one loops through all of the Lagrangian markers to compute the direct forcing on each marker.
The effort required for this for a single marker is independent of grid size, as the width of the diffusive
zone is constant in lattice units, i.e. the number of fluid nodes from which being interpolated for a
single Lagrangian marker is constant and independent of grid refinement.

5.6. Reflection on the immersed interface method 41

• Secondly, one loops through all of the Lagrangian markers to diffuse the feedback force back to each
marker (in case of the IBM) or jumps back to each link (in case of the IIM). Again, the effort required for
this for a single marker is independent of grid size.

Thus, each iteration has a computational effort that scales with O
(
N 2

)
. Assuming the number of iterations to

achieve the same iteration tolerance scales with O (N), the total computational effort will therefore scale with
O

(
N 3

)
, for both the IBM and IIM.

Nonetheless, although no attempt is made to quantify the exact difference, the IBM is likely to require less
computational effort than the IIM. This is because the IIM requires information on a mesoscopic level during
the algorithm (the populations at each lattice node), whereas the IBM only uses macroscopic information
(the velocity and density at each lattice node). For a D2q9 mesh, this for example means that the IIM has to
interpolate/diffuse 9/2 times as many numerical values from and to the fluid grid.

Obviously, the IBM/IIM contain more mathematical operations than purely the diffusion and interpolation,
but this should give a good first-order approximation of the computational effort required for both of them.
Nonetheless, it should be kept in mind that the effect this has on the total wall time for a specific simulation
greatly varies, depending on the size of the boundary vs. the size of the fluid grid, the number of iterations
executed in the multi-direct forcing scheme, implementation optimisations, etc. Thus, the total simulation
time will not increase by a factor of 9/2 for a D2q9 mesh2.

It should be noted that the output of the IIM algorithm is a collection of jumps that may be directly imposed
during the streaming phase. On the other hand, the IBM algorithm results in a force field on the lattice nodes
that needs to be accounted for during stream, which requires may result in additional operations, for exam-
ple when using MRT operators. However, it is deemed unlikely that this would offset the cost imposed by
performing the interpolation/diffusion directly in population space, rather than in velocity space.

5.6. Reflection on the immersed interface method
With the application of the IIM in the LBM derived in Section 5.2, and a derivative of it derived in Section
5.3, it is worthwhile to evaluate in detail how the IIM differs from the LBM, and how it fits within boundary
treatments in the LBM from a grander point of view.

5.6.1. Comparison with the immersed boundary method
In Section 5.3, the difference between the IBM and IIM is explained, and it is shown that from a practical point
of view, the IIM simply creates a fictitious marker for each population space that is shifted in the direction
opposite to the corresponding lattice speed vector. However, an observant reader would notice that this
actually does not result in a concrete benefit to the IIM over the IBM. After all, the interpolated populations
arrive at the same grid nodes that the IBM would use at the very beginning of the next time-step. Thus, the
IBM would use the exact same populations at time-step nt +1 that the IIM used at time-step nt . It is hard
to argue this provides a legitimate benefit, as it appears to result in nothing more than the IIM preceding the
IBM by a single time-step. This is also confirmed when both methodologies are implemented.

Nonetheless, the IIM offers a fundamental benefit that the conventional IBM does not provide, namely the
freedom in time-integration that the IIM provides. This was already shown to allow for the development of the
MIIM in Section 5.3, which executes its algorithm at the mid-point in streaming. This is an important result,
and to the best of the author’s knowledge, does not appear to be implemented previously in the LBM.

5.6.2. Contribution to research gap
It should be noted that within the LBM, both the idea of having more precise control over how the boundary
treatment is executed in temporal space, and the idea of interpolating populations (instead of macroscopic
velocities) are not unique, and has been attempted by other authors.

For example, Zhou and Fan [75] implemented a Runge-Kutta scheme to the IB-LBM, with the velocity and

2Although not thoroughly measured, for the validation cases described in Chapter 7 and 8, the MIIM was experienced to be usually
around 10%-50% slower than the IBM (usually closer to 10%). However, it should be stressed that this was not exhaustively tracked, and
no significant attempt was made at optimising either implementation.

42 5. Proposed Immersed Interface Method into the lattice Boltzmann framework

density at intermediate time-steps being extrapolated from previous intermediate time-steps, via

uuu(k+α) =uuu(k) +
(
µ∇2uuu(k) −∇p(k) −ρ(k)uuu(k) ·∇uuu(k) + f̃ff

)
α∆t/ρ(k) (5.31)

ρ(k+α) = ρ(k) −∇·
(
ρ(k)uuu(k+α)

)
α∆t , (5.32)

where f̃ff is some weighted force term obtained from force terms generated in previous intermediate steps
(for sake of brevity, this expression is not included here. This imposes a significant computational effort on
the simulation, as it involves approximating several gradients and Laplacians. On the other hand, the MIIM
shown above results in a procedure whose complexity is very similar to the classical IBM, and does not involve
evaluating derivatives of any kind. Thus, the framework delivered by the IIM appears far more flexible with
regards to time integration than the method proposed by Zhou and Fan.

Tao et al. [76] proposed an IBM where the populations and their non-equilibrium parts are interpolated in
the region around the boundary marker. A equilibrium population is calculated based on the desired density
and velocity at the boundary and is compared against the interpolated equilibrium population (computed
from the population and its non-equilibrium part). The difference is diffused back to the lattice grid. This
results in an increased of order of accuracy when evaluating a cylindrical Couette flow, increasing the order
of accuracy from one to two, compared to the original IBM. However, their population-based IBM still occurs
at the very beginning of the time-step, and does not attempt to utilise any mid-streaming information. Still,
their approach appears interesting due to the population-based nature (similar to the IIM) and promising in
terms of accuracy, and combining the method of Tao et al. with the MIIM would be an interesting avenue to
explore in the future.

Finally, the Qin et al. [7] already attempted to implement the immersed interface method in the LBM. Their
approach, albeit different, comes closest to the methodology outlined previously. As such, it deserves further
attention, and Section 5.7 goes into depth about the differences and similarities between the approaches.

5.7. Immersed interface method proposed by Qin et al.
It should be noted that Qin et al. [7] recently also proposed an implementation of the immersed interface
method into the LBM framework. However, as will be explained in the hereafter, two major flaws appear to
be present in their derivation, as discussed in Section 5.7.2 and 5.7.3. The first of those is easy to correct,
but the second is more fundamental and significant. Furthermore, even if those flaws are accounted and
corrected for, their implementation appears inferior to the one proposed in Section 5.2, for reasons outlined
in Section 5.7.4.

5.7.1. Derivation proposed by Qin et al.
First, the derivation by Qin et al. [7] is provided as presented by them, without commentary on their flaws.
They initiate their derivation from the governing equations

∂ fi

∂t
+ccc i ·∇ fi =Ωi + 1

c2
s

wi ccc i ·FFF (5.33)

FFF =
∫
Γ

GGG (sss, t)δ (xxx −XXX)dsss. (5.34)

Multiplying with a test function φ and integrating overΩϵ,t shown in Figure 5.43 gives

∫
Ωϵ,t

∂ fi

∂t
φdxxx +

∫
Ωϵ,t

(
ccc i ·∇ fi

)
φdxxx =

∫
Ωϵ,t

Ωiφdxxx + 1

c2
s

wi ccc i ·
∫
Ωϵ,t

∫
Γ

GGG (sss, t)δ (xxx −XXX (sss, t))dsss

φdxxx, (5.35)

where Ωϵ,t is the domain bounding the boundary, as depicted in Figure 5.4. The first and third term both
reduce to 0 as their integrands are bounded on this domain. The second term can be integrated by parts

3It should be noted that Qin et al. initially define the integration domain as fully enclosing the boundary Γ. However, this domain may
actually be arbitrarily truncated along the boundary, and does not necessarily need to enclose a closed boundary.

5.7. Immersed interface method proposed by Qin et al. 43

as

∫
Ωϵ,t

(
ccc i ·∇ fi

)
φdxxx = ccc i ·

∫
Γ+ϵ,t

fi nnnφd a +
∫
Γ−ϵ,t

fi (−nnn)φd a −
∫
Ωϵ,t

fi∇φdxxx

 (5.36)

= ccc i ·
∫
Γ

J fi Knnnφ

∣∣∣∣∂XXX

∂r
× ∂XXX

∂s

∣∣∣∣dsss, (5.37)

and the fourth term simply reduces to

1

c2
s

wi ccc i ·
∫
Ωϵ,t

∫
Γ

GGG (sss, t)δ (xxx −XXX (sss, t))dsss

φdxxx = 1

c2
s

wi ccc i ·
∫
Γ

GGG (sss, t)dsssφ. (5.38)

Resulting in

ccc i ·
∫
Γ

J fi Knnnφ

∣∣∣∣∂XXX

∂r
× ∂XXX

∂s

∣∣∣∣dsss = 1

c2
s

wi ccc i ·
∫
Γ

GGG (sss, t)dsssφ (5.39)

J fi K= 1∣∣∣ ∂XXX
∂r × ∂XXX

∂s

∣∣∣c2
s

wi nnn ·GGG (sss, t) . (5.40)

This concludes the derivation of the jump condition by Qin et al. [7]. It can be seen that their jump condition
differs from Equation (5.8) (for example, the dot product of the boundary force density with the surface nor-
mal is taken here, instead of with the lattice speed vector in Equation (5.8)), obtained in Section 5.1. Section
5.7.2 and 5.7.3 extensively discuss the flaws in the derivation by Qin et al. that lead to this discrepancy.

Figure 5.4: Integration domain proposed by Qin et al. [7].

With the expression for the jump condition obtained, Qin et al. implemented this jump condition by first
computing the boundary forcing GGG (sss, t) through a conventional IBM algorithm (their implementation of this
algorithm is independent of the IIM). The obtained boundary force is then split into a part tangential to the
surface, and one normal to the surface. The part tangential to the surface is diffused to the grid via the same
IBM algorithm, but the normal part of the boundary force is imposed as a jump condition through Equation
(5.40) on population links that intersect the boundary.

5.7.2. Incorrect interpretation of the dot product
Throughout this derivation, two flaws appear to be present, the first of which will beg discussed in Section.
The first flaw concerns Equation (5.39), where it is assumed that ccc i can be omitted from both sides of the

44 5. Proposed Immersed Interface Method into the lattice Boltzmann framework

equation. However, this is only true if nnn ∥GGG (sss, t). Indeed, correcting the above mistakes results in

J fi K= 1∣∣∣ ∂XXX
∂r × ∂XXX

∂s

∣∣∣c2
s

wi
ccc i ·GGG (sss, t)

ccc i ·nnn
. (5.41)

However, it should be noted that Qin et al. ‘resolve’ this mistake with their implementation described in
Section 5.7.1, by only including the normal part of the boundary force is included in Equation (5.40). This
bypasses the incorrect derivation of Equation (5.40) from Equation (5.39), as now both integrands (which
form the vector with which the inner product with ccc i is performed) are both parallel to each other, and only
because of that can Equation (5.40) be used without appearing to lead to any issues. Mathematically, in this
case, where GGG(sss, t) = (GGG(sss, t) ·n)nnn, one obtains

J fi K= 1∣∣∣ ∂XXX
∂r × ∂XXX

∂s

∣∣∣c2
s

wi
ccc i · (GGG(sss, t) ·nnn)nnn

ccc i ·nnn
= 1∣∣∣ ∂XXX

∂r × ∂XXX
∂s

∣∣∣c2
s

wi nnn ·GGG (sss, t) . (5.42)

Therefore, although their derivation from Equation (5.39) to (5.40) appears somewhat careless, it can be as-
sumed their implementation is, in fact, consistent with their equation, considering they interpret GGG(sss, t) as
including only the normal component of the force, which is correct according to Equation (5.42).

5.7.3. Incorrect interpretation of the jump condition
However, even if Equation (5.40) is corrected and written as Equation (5.41), there still persists a difference
between the expression for the jump condition obtained by Qin et al. compared to Equation (5.8) following
the derivation proposed in Section 5.1, with either expressions given by

J fi K
(
ηc

)= J fi K (xxxc , tc) = wi

c2
s

ccc i ·FFF (xxxc) (5.8)

J fi K= 1∣∣∣ ∂XXX
∂r × ∂XXX

∂s

∣∣∣c2
s

wi
ccc i ·GGG (sss, t)

ccc i ·nnn
. (5.41)

Two differences are clear - the result by Qin et al. includes a division by
∣∣∣ ∂XXX
∂r × ∂XXX

∂s

∣∣∣, and a division by ccc i ·
nnn.

The term
∣∣∣ ∂XXX
∂r × ∂XXX

∂s

∣∣∣ has a straightforward explanation that is mainly dependent on how the boundary force

density is defined. In the derivation proposed in Section 5.1, the boundary force density FFF (sss) is assumed to
be in units lattice force per unit lattice length (for boundaries in two-dimensional space) or units lattice force
per unit lattice length squared (for surfaces in three-dimensional space). However, Qin et al. define their
boundary force density in units lattice force per unit length of the parametric coordinate sss (for boundaries
in two-dimensional space) or units lattice force per unit length of the parametric coordinate coordinate sss
squared (for surfaces in three-dimensional space).

As a result, the boundary force density in the derivation by Qin et al. needs to be converted to a boundary

force density based on a unit lattice length, which is what the division by
∣∣∣ ∂XXX
∂r × ∂XXX

∂s

∣∣∣ ensures. This is only

a trivial difference, and is therefore of no real concern. Note this term should generally not be necessary
anyway - when using e.g. a multi-direct forcing scheme, the obtained boundary force distribution is already
in units lattice force per unit lattice length (squared) if the marker volumes ∆Vκ are measured in unit lattice
length squared/cubed, which appears an intuitive choice to make. This is also the reason for not including it
in Equation (5.8), as it seems superfluous, but including it is evidently not wrong, either.

However, a more fundamental flaw appears to be rooted in how the value of J fi K is interpreted in the work
of Qin et al. [7]. In particular, consider Equation (5.36) and 5.37 again, which concern the integration of the
derivative of fi along the lattice link ccc i :

∫
Ωϵ,t

(
ccc i ·∇ fi

)
φdxxx = ccc i ·

∫
Γ+ϵ,t

fi nnnφd a +
∫
Γ−ϵ,t

fi (−nnn)φd a −
∫
Ωϵ,t

fi∇φdxxx

 (5.36)

= ccc i ·
∫
Γ

J fi Knnnφ

∣∣∣∣∂XXX

∂r
× ∂XXX

∂s

∣∣∣∣dsss. (5.37)

5.7. Immersed interface method proposed by Qin et al. 45

In this step, Qin et al. appear to skip an important step in defining what J fi K represents here. Equation (5.40)
implies that the jump condition is a function, whereas the jump condition is actually a distribution along the
boundary Γ. Indeed, the gradient of fi should be represented as (see e.g. Kanwal [77])

∇ fi =∇ f̄i +
∫
Γ

nnnJ f̄i K (sss, t)δ (xxx −XXX)dsss, (5.43)

where f̄i represents the part of the population that is of class C 0. The result of Equation (5.37) remains the
same (except with J f̄i K| instead of J fi K|), and by extension, the same can be said about Equation (5.41). How-
ever, it is now pivotal to understand that J f̄i K represents the value of the distribution of the jump condition
along the boundary Γ, but J f̄i Kδ (xxx −XXX) is not a function4.

As a result, Equation (5.41) ought to not be applied immediately to the populations fi . Instead, one should
integrate along the characteristic of the differential equation given by Equation (5.33), which is in the direc-
tion ccc i . Let η describe the parametric coordinate of such a characteristic, and let ηc denote the coordinate at
which the boundary is intersected. In that case, one can write

ηc+ϵ∫
ηc−ϵ

d fi

dη
dη=

ηc+ϵ∫
ηc−ϵ

ccc i ·∇ fi dη

=
ηc+ϵ∫
ηc−ϵ

ccc i ·
∇ f̄i +

∫
Γ

nnnJ f̄i K (sss, t)δ (xxx −XXX)dsss

dη

=
ηc+ϵ∫
ηc−ϵ

ccc i ·∇ f̄i +
ηc+ϵ∫
ηc−ϵ

ccc i ·
∫
Γ

nnn

 1∣∣∣ ∂XXX
∂r × ∂XXX

∂s

∣∣∣c2
s

wi
ccc i ·GGG (sss, t)

ccc i ·nnn

δ (xxx −XXX)dsssdη,

where the last term was expanded using the expression for J fi K from Equation (5.41). In the limit of ϵ→ 0,
this equation reduces to

J fi K
(
ηc

)= 0+ ccc i ·nnn∣∣∣ ∂XXX
∂r × ∂XXX

∂s

∣∣∣c2
s

wi
ccc i ·GGG (sssc , t)

ccc i ·nnn
(5.44)

= 1∣∣∣ ∂XXX
∂r × ∂XXX

∂s

∣∣∣ wi

c2
s

ccc i ·GGG (sssc) . (5.45)

This result is identical to the expression derived previously in Section 5.1 (except for the previously explained

inclusion of the term
∣∣∣ ∂XXX
∂r × ∂XXX

∂s

∣∣∣), making the derivations consistent with each other (as one would expect).

Based on this discussion, it can be concluded that the derivation by Qin et al. has serious flaws. The error in
the evaluation of the dot product, described in Section 5.7.2 can be easily corrected for (and Qin et al. ended
up not being affected by this error by only considering the normal component of the boundary force into
account for the IIM). However, the different interpretation of the jump condition is more fundamental and
leads to a different result.

The reason why this error does not appear to lead to grave errors in the results by Qin et al. is speculated
to be due to how they implement the jump condition. As explained in Section 5.7.1, Qin et al. compute
the boundary forcing from a conventional IBM, and only the normal part of the boundary force density is
then imposed on the solution via jump conditions. As a result, assuming their implementation of the IBM
algorithm is correct, this may be able to ‘compensate’ the spread of the erroneous jump condition to the
solution at each time-step, and effectively contain the effect of it.

4From basic Lebesgue Integral theory, it should hold that if f = g almost everywhere, then their integrated quantities are also equal for
any arbitrary domain, see. e.g Berberian [78]. The term J f̄i Kδ (xxx −XXX) is zero almost everywhere (except at the boundary Γ), and thus its
integral over an arbitrary domain should be equivalent to integrating 0 over the same domain. However, its integral over an arbitrary
domain that covers part of the boundary Γ is nonzero, and thus violates this propery, and thus J f̄i Kδ (xxx −XXX) cannot be treated as a
function (but should be treated as a distribution instead).

46 5. Proposed Immersed Interface Method into the lattice Boltzmann framework

5.7.4. Additional remarks
Apart from this issue arising from their derivation of the jump conditions, it should also be noted that there
appear to be gaps in the details of the implementation of their method. To be precise, it is unclear how exactly,
from a discrete boundary force representation that only exists at a given number of Lagrangian markers,
the boundary force at a point of intersection between a link and the boundary is computed. After all, this
intersection is unlikely to coincide with one of the Lagrangian markers, and thus it is not clear what value of
GGG (sss, t) should be used when computing the jump condition. Naturally, this could be done relatively easily
through an interpolation or by putting marker points directly on the intersection points, but without details
on the procedure used, it is a hard task to reproduce their methodology.

Furthermore, although not necessarily incorrect, it appears odd to use a conventional IBM treatment to com-
pute the boundary forcing, and to then split the obtained boundary forcing in a tangential and a normal force
that are treated post-IBM. For example, when using a multi-direct forcing IBM scheme, the iterative nature
of the algorithm is based on the assumption that ultimately, the final diffusion of the boundary force to the
fluid mesh happens in the same way as it is treated during the IBM algorithm. However, in the methodology
of Qin et al., the full boundary force is diffused back to the grid during the IBM algorithm, whereas only the
tangential force component is diffused back to the grid once the algorithm has obtained a boundary force
distribution - the normal force component is treated differently, through the use of the jump condition of
Equation (5.40). This seems questionable, as it means the iterations in the IBM algorithm worked under a
different model of how the force is diffused to the fluid grid than how the fluid solver actually implements the
boundary force distribution.

5.7.5. Comparison with the presented immersed interface method
Based on the foregoing discussion, several differences between the IIM proposed in Section 5.2 and the IIM
proposed by Qin et al. [7] are worthy of attention.

First, it should be noted that Equation (5.8) (proposed in Section 5.1) and Equation (5.40) (obtained by Qin et
al., as derived in Section 5.7.1) are not identical, even though they both aim to describe the jump experienced
by a link intersecting a boundary. This is due to a mistake in evaluating the dot product by Qin et al., as well as
a misunderstanding of what the jump condition represents. When correcting these mistakes, an equivalent
expression is found, confirming the correctness of the derivation shown in Section 5.1. Even when correcting
for these mistakes however, the derivation in Section 5.1 appears more simple and elegant than the derivation
by Qin et al.

However, even if these errors are corrected, the implementation proposed in Section 5.2 still appears to have
tangible benefits over the implementation proposed by Qin et al. First of all, the implementation appears
to lack detail in the description by Qin et al. In comparison, the proposal and derivation of the IIM-LBM
outlined in Section 5.1 appears, to the best of the author’s knowledge, to be correct, and its implementation
described in Section 5.2 to be fully reproducible.

Furthermore, as noted in Section 5.7.1, Qin et al. do not fully utilise IIM in their implementation, but use
the IBM to obtain the boundary force distribution, and diffuse the tangential component of that distribution
back to the grid. Only the normal component of the boundary force distribution is treated via the IIM, which
appears at least somewhat inconsistent with how the boundary force distribution is calculated. On the other
hand, the IIM proposed in Section 5.1 and 5.2 uses the principles of the IIM throughout the full algorithm,
including for its calculation of the boundary force distribution.

Finally, it should be noted that Qin et al. impose their jump conditions directly on the links that are inter-
sected by the boundary. This can form a significant computational effort, as naturally finding the intersec-
tion of the lattice links with the boundary is not a trivial task. The IIM outlined in Section 5.1 and 5.2 does not
suffer from this, as the jumps are simply diffused back to the grid.

In conclusion, even though Qin et al. [7] already proposed an implementation of the IIM to the LBM, there
appear to be several flaws in their methodology, which the derivation shown in Section 5.1 and 5.2 does not
suffer from. Even if these flaws are corrected for, the proposal of the IIM outlined in Section 5.1 and 5.2
appears to have multiple, tangible benefits over their proposal. Therefore, the author believes the proposal of
an immersed interface method in the lattice Boltzmann method described in this chapter is the first proper
implementation of an IIM in the LBM.

5.8. Alternative formulations of the immersed interface method 47

5.8. Alternative formulations of the immersed interface method
As mentioned in Section 5.2.2, the IIM allows for more control over how the diffusion and interpolation oc-
curs. A variety of modifications can therefore be proposed, which will be compared to the base algorithm
proposed in the afore in Chapter 7. However, it should be noted that these methods did appear to have any
tangible benefits over the MIIM, which is why lesser emphasis is placed on them here, and why most of Chap-
ter 7 and 8 exclusively include the MIIM.

5.8.1. Modification I - multi-stage immersed interface method
A more rigorous modification to the IIM is to employ a multi-stage approach when determining the appro-
priate jump field. That is, let the total jump field be given by

J fi K (xxxn , t) =
∑
k

∑
n

J fi K(n),(k) (xxxn , t) , (5.46)

where represent the f (n),(k)
i (xxxn , t) is the jump field computed by stage k of the multi-stage algorithm. These

stages may be computed by expanding the algorithm presented in Section 5.2.1 to the following:

1. After completing the collision operation, set k = 0.
2. Initialise the current stage by setting n = 0 and J fi K(0),(k) = 0.

(a) Diffuse the post-collision populations at their post-streaming locations to the Lagrangian bound-
ary nodes via

f̂ (n),(k)
i (XXX κ) =

∑
n

[
f̂i (xxxn , t)+

k∑
k̄

J fi K(n),(k̄) (xxxn , t)

]
D

(
XXX k −

(
xxxn +d (k)ccc i

))
, (5.47)

where J fi K(n),(k) (xxxn , t) represents the jump experienced in the kth stage by population fi located
at node xxxn at time t in the upcoming streaming step, and where 0 ≤ d (k) ≤ 1 is the stage-parameter,
controlling the temporal location at which the stage is considered.

(b) Compute the Eulerian velocity stage at each Lagrangian boundary node via

ρUUU (n),(k)
κ =∑

i
f̂ (n),(k)

i (XXX κ) . (5.48)

(c) Compute the direct forcing on the Lagrangian nodes at the kth stage by evaluating

FFF (n),(k)
κ (XXX κ) = ρUUU (n),(k)

κ −UUUκ

∆t
. (5.49)

(d) Compute the population jump induced at each Lagrangian node during the kth stage via

J fi K(n),(k) (XXX κ) = J f̂i K (xxxc , tc)(n),(k) = wi

c2
s

ccc i ·FFF (n),(k)
κ . (5.50)

(e) Diffuse the population jumps of the kth stage to the Eulerian nodes via

J fi K(n),(k) (xxxn , t) =
∑
κ

J fi K(n),(k) (XXX κ)D
(
XXX κ−

(
xxxn +d (k)ccc i∆t

))
∆Vκ, (5.51)

where Vκ is the volume of the Lagrangian body element.
(f) Increment n by 1, and go back to step 2(a) unless a specified termination-criterion is met.

3. Go to the next stage by incrementing k by 1, and go back to step 2 until k = kmax is reached.
4. The total Lagrangian force on each marker and jump experienced by each population are then given by

FFFκ (XXX κ) =
∑
k

∑
n

FFF (n),(k)
κ (XXX κ) (5.52)

J fi K (xxxn , t) =
∑
k

∑
n

f (n),(k)
i (xxxn , t) , (5.53)

and the streaming operation is performed via

fi (xxxn +ccc i∆t , t +∆t) = f̂i (xxxn , t)+ J fi K (xxxn , t) . (5.54)

48 5. Proposed Immersed Interface Method into the lattice Boltzmann framework

As an example, one may select a two-stage method, taking d (0) = 1/2 and d (1) = 1. This essentially implies
first computing the jump field necessary to satisfy the boundary conditions at the time t +∆t/2, identical to
the midpoint-based IIM proposed in Section 5.3. However, one then computes a ‘corrective’ jump field that
ensures that the boundary conditions are satisfied at t+∆t . The summation of these jump fields is then taken
to be the total jump field considered in the streaming step. Each stage may thus be seen as a ‘correction’ to
the jump fields obtained at the previous stages.

5.8.2. Modification II - filtered immersed interface method
As will be discussed in Chapter 7, both the IBM and IIM suffer from zero-energy modes when the density of
Lagrangian marker density is increased. This is due to the number of degrees of freedom on the boundary
grid5 exceeding the number of fluid degrees of freedom6 when the marker density is sufficiently high. This
results in non-physical spatial oscillations in the body force density distribution as the number of iterations
is increased. To remedy this, one can filter the number of Lagrangian markers to select only as many markers
before these oscillations start to exist.

To be precise, let the subscript denote quantities defined on the original Lagrangian grid, and let the subscript
κ̂ denote quantities defined on the filtered Lagrangian grid. Then, the base IIM algorithm may be modified
as follows:

1. After completing the collision operation, set n = 0 and all J fi K(0) = 0.
2. Diffuse the post-collision populations at their post-streaming locations to the filtered Lagrangian bound-

ary nodes via

f̂i (XXX κ̂) =
∑
n

[
f̂i (xxxn , t)+ J fi K(n) (xxxn , t)

]
D (XXX κ̂− (xxxn +ccc i)) . (5.55)

3. Compute the Eulerian velocity at each filtered Lagrangian boundary node via

ρUUU (n)
κ̂

=∑
i

f̂i (XXX κ̂) . (5.56)

4. Compute the direct forcing on the filtered Lagrangian nodes by evaluating

FFF (n)
κ̂

(XXX κ̂) = UUU (n)
κ̂

−UUU κ̂

∆t
. (5.57)

5. Interpolate the forcing at the filtered Lagrangian nodes to the set of all Lagrangian markers via

FFF (n)
κ (XXX κ) =

∑̂
κ

FFF (n)
κ̂

(XXX κ̂)W (XXX κ−XXX κ̂)∑̂
κ

W (XXX κ−XXX κ̂)
, (5.58)

where W (rrr) is some interpolation weighting function.
6. Compute the population jump induced at each Lagrangian node via

J fi K(n) (XXX κ) = J f̂i K (xxxc , tc) = wi

c2
s

ccc i ·FFF (n)
κ . (5.59)

7. Diffuse the population jumps to the Eulerian nodes via

J f (n)
i K (xxxn , t) =

∑
κ

J fi K (XXX κ)D (XXX κ− (xxxn +ccc i∆t))∆Vκ, (5.60)

where Vκ is the volume of the Lagrangian body element.
8. Increment n by 1, and go back to step 2 unless a specified termination-criterion is met.
9. The total Lagrangian force on each marker and jump experienced by each population are then given by

FFFκ (XXX κ) =
∑
n

FFF (n)
κ (XXX κ) (5.61)

J fi K (xxxn , t) =
∑
n

f (n)
i (xxxn , t) , (5.62)

and the streaming operation is performed via

fi (xxxn +ccc i∆t , t +∆t) = f̂i (xxxn , t)+ J fi K (xxxn , t) . (5.63)
5I.e., the boundary force on each marker.
6I.e., the number of fluid points that the populations are diffused to.

5.9. Conclusion 49

A methodology to automatically select the markers to be used on the filtered grid is not presented here. In-
stead, in Chapter 7 this algorithm will be considered for a simple cylinder with a uniform marker spacing,
where the number of markers can easily be manually filtered. As there was no significant benefit to the ap-
proach outlined above compared to the proposed base IIM, it was decided to not pursue this modification
further and develop an automatic filtering system.

5.8.3. Modification III - sharp immersed interface method
It has previously been established in Section 5.2.1 that the population jumps across the boundary can be
computed analytically, if the value of the boundary force distribution is known at the intersection point. It is
therefore possible to modify the last step of any of the previously listed algorithms.

The final modification proposed here is to include Equation (5.8) more explicitly into the algorithm. After all,
once the boundary force distribution is computed, the analytic jumps of only the links that are intersected by
the boundary may be readily computed. This approach is similar to the one used by Qin et al. [7], as described
in Section 5.7. Thus, after obtaining FFFκ(XXX κ), one may replace Equations by (5.15) by

J fi K (xxxn , t) = wi

c2
s

ccc i ·FFF (xxxc) , (5.64)

if the link ccc i originating from node xxxn is intersected by the boundary, and where F (xxxc) is determined by
interpolation from nearby Lagrangian markers,

FFF (n) (XXX c) =
∑
κ

FFF (n)
κ (XXX κ)W (XXX κ−XXX c)∑̂
κ

W (XXX κ−XXX c)
. (5.65)

Note that Equation (5.8) is difficult to implement in the iterative algorithm directly. Doing so would mean
that the local value of the boundary force distribution is only found at the intersections with the links, and
only along the direction of the intersected link. This would create two challenges. First, in Equation (5.11),
FFF (n)
κ may not tend to the zero-vector as the number of iterations is increased, as there may be a non-zero

component perpendicular to the intersected lattice link. This may make it difficult to establish a satisfac-
tory termination criterion. Secondly, this would introduce challenges when communicating with a structural
solver for example, as some mechanism would need to be in place to allow reconstruction of the full boundary
force distribution on the grid of the structural solver.

5.9. Conclusion
In this chapter, the adaption of the IIM into the LBM-framework was proposed. The main difference with
respect to the IBM is during which phase of the LBM the boundary treatment is performed. Whereas the
IBM requires evaluation of the boundary forces before collision, the IIM evaluates the boundary forces post-
collision, accounting for the post-streaming populations. From a methodological standpoint, this has two
benefits:

• The IBM is only able to capture flow field information at the beginning of the time step, and does not
take into account information resulting from the collision step, meaning that it is not guaranteed that
post-streaming, the velocity at the boundary markers is still equal to the imposed boundary condition.
On the other hand, the IIM is designed to account for the post-streaming flow field information.

• In similar fashion, the IIM opens up opportunities to alter the discretisation of the boundary force
integral in Equation (5.5). As was proposed before, one can e.g. use a midpoint integration rule or a
multi-step method. The effect of this can be explored in the future.

A number of modifications has been proposed in this Chapter, which are summarised in Table 5.1.

50 5. Proposed Immersed Interface Method into the lattice Boltzmann framework

Table 5.1: List of boundary treatment configurations introduced in Chapter 4 and 5.

Configuration Description Reference

IBM Classical IBM (nearly identical to the default IIM) Chapter 4.

IBM-SPLIT IBM using split-forcing Section 4.2.

MIIM Modified version of the IIM, using midpoint interpolation and diffusion Section 5.3.

IIM-MOD-A Modified version of the IIM, using multi-stage interpolation and diffusion Section 5.8.1.

IIM-MOD-B Modified version of the IIM, where the number of Lagrangian markers is increased,
where the forcing is first computed on a subset of markers, then interpolated to nearby
markers

Section 5.8.2

IIM-MOD-C Modified version of the IIM, where the jumps are imposed directly on links intersected
by the boundary, rather than through diffusion

Section 5.8.3.

6
Implementation details

In this Chapter, several important details of the LaBIB-FSI solver are discussed. Section 6.1 elaborates on the
structural solver to which the fluid solver is coupled, and Section 6.2 describes the interface between both
solvers. Section 6.3 discusses the multigrid approach that is used in the fluid solver, and finally, Section 6.4
discusses the way in which boundary conditions on the outer edges of the domain are imposed.

6.1. Structural solver
To be able to simulate fluid flows including structural deformation, the fluid solver was coupled to pyfe3d
[13], a general purpose finite-element solver for static and dynamic analysis. pyfe3d offers a variety of el-
ement discretisation types. However, due to time constraints, it was chosen to limit the coupling with the
pyfe3d to being able to simulate cantilevered beams, such that the benchmark cases by Turek and Hron [8]
can be validated, as shown in 8.3. As a result, it was chosen to only implement an interface to the BeamC-type,
which is a representation of a three-dimensional Timoshenko beam element, using consistent shape func-
tions. For details on the derivation and implementation of these elements, the reader is referred to Luo [79].
Instead, this section will explain how the structural model for a cantilever beam is defined.

6.1.1. Spatial discretisation
First, the spatial discretisation of the beam will be described. TheBeamC-elements represent one-dimensional
line segments connecting various cross-sectional centroids along the cylindrical axis of a beam. As a result,
a beam seen by pyfe3d is infinitely thin, with its cross-sectional geometry fully encapsulated by the cross-
sectional moments of area. However, for the fluid solver, it was found to be desirable to be able to model the
physical thickness of a beam, as this thickness may affect the vortex development caused by the tip of the
beam. In particular, for the validation cases of Turek and Hron [8], a cantilevered beam with a thickness of
0.02 m is attached to the trailing edge of a cylinder with diameter of 0.10 m; it was therefore not considered
safe to neglect the physical thickness of the beam in the fluid solver.

Therefore, two discretisations of the beam are made. First, a discretisation of the outside surface (minus the
attachment to the physical wall) is performed, as shown in Figure 6.1. This discretisation is used for the inter-
polation of mechanical quantities from the fluid surface, as will be explained in Section 6.2. The mechanical
quantities are then translated to a mesh that coincides with the locations of the BeamC-elements. Note that
these BeamC-elements align in the cross-sectional direction with the surface discretisation, as shown in Figure
6.1.

The vertical alignment allows for straightforward translation of the mechanical quantities from one mesh
to the other. In particular, the forces at the surface discretisation may be translated to the BeamC-elements
by simply taking the sum of the forces at the upper and lower surface. Similarly, the displacements found
by pyfe3d at the BeamC-elements may be easily transformed to the surface discretisation by equating the
displacement (consisting of components∆x and∆y) at a surface node to the translation of the corresponding
BeamC-element plus a rotation θ about this BeamC-element.

Since BeamC-elements are three-dimensional elements, whereas the fluid simulations are two-dimensional

51

52 6. Implementation details

𝑥
𝑦

Δ𝑥

Δ𝑦

𝜃

Deformed surface

Original surface

Deformed centerline

Original centerline

Figure 6.1: Structural model of a cantilevered beam, in its original and deformed position. The displacements at the outer surface nodes
can be evaluated directly from the translation and rotation of the beam elements located at the centerline.

(including the Turek and Hron [8] benchmark), the stiffness Exx of the elements was set equal to

Exx = E

1−ν2 (6.1)

where E is the E-modulus of the material and ν is the Poisson’s ratio of the material. This was done to prevent
deformation in the direction perpendicular to the plane of the fluid simulation, as done by Geller et al. [80]
and derived by [81].

6.1.2. Temporal integration
With the spatial discretisation of the beam performed, a stiffness matrix K , damping matrix C and mass
matrix M can be set up, to create a system of equations of the form

Müuu +Cu̇uu +K uuu =FFF , (6.2)

where uuu is the vector containing the displacements of each element, and FFF the forcing applied at each ele-
ment. A Newmark method [82] was employed, with parameters γ= 1

2 and β= 1
4 . That is, if uuu(k) represents the

displacement vector at time-step k, then the predictor is computed as

ũuu(k+1) =uuu(k) +∆tu̇uu(k) + ∆t 2

2

(
1−2β

)
üuu(k) (6.3)

˜̇uuu(k+1) = u̇uu(k) +∆t
(
1−γ)

üuu(k). (6.4)

The acceleration at time-step k +1 is then computed via

Müuu(k+1) =FFF (k) −C ˜̇uuu(k+1) −K ũuu(k+1). (6.5)

Finally, the corrector is computed as

uuu(k+1) = ũuu(k+1) +β∆t 2üuu(k+1) (6.6)

u̇uu(k+1) = ũuu(k+1) +γ∆tüuu(k+1), (6.7)

where the value of γ= 1
2 and β= 1

4 were used, to obtain a trapezoidal rule with unconditional stability.

It should be noted that the Timoshenko beam elements used in the pyfe3d-solver do not account from any
structural damping due to the material. Instead, to stabilise the solver, a small amount of modal damping is
allowed; that is, the damping matrix is set equal to

C =αd M +βd K , (6.8)

where αd and βd are the mass and stiffness damping factor, respectively. These damping factors have been
set equal to 1×10−3 throughout all validation cases and sensitivity analyses described in Chapter 7-9.

6.2. Fluid-structure-interaction 53

6.2. Fluid-structure-interaction
To couple the structural surface discretisation with the fluid surface discretisation, an fluid-structure inter-
action operator was implemented. This operator consists of two elements: spatial interpolation using radial
basis functions, and temporal regulation of the communication between the grids.

6.2.1. Spatial interpolation
Spatial interpolation is necessary to translate mechanical quantities from a fluid mesh to a structural mesh.
In particular, the boundary forcing found by the IBM/MIIM should be translated from the fluid mesh to the
structural mesh, and displacements and velocities should be translated from the structural mesh to the fluid
mesh.

Fluid nodes 𝑠𝑓,𝑖

Structure nodes 𝑠𝑠,𝑗

Boundary surface Γ

Figure 6.2: Discretisation of a boundary, with fluid nodes (as used by the IBM/IIM by the fluid solver described in Chapter 4 and 5) and
structural nodes (as used by the structural model described in Section 6.1).

To do so, a consistent interpolation approach based on radial basis functions was used. Consider the fluid
and structural mesh shown in Figure 6.2, where s f ,i denotes the nodes on the fluid mesh at the boundary
Γ, and ss, j denotes the nodes on the structure mesh at the same boundary. Note that the boundary is in a
two-dimensional plane, and the boundary is therefore parametrised by a single variable s.

Then, consider construction of the interpolation matrix H f s , which denotes the transformation matrix to
transform a quantity on the fluid mesh to the structure mesh. The interpolant is first defined to be a sum
of radial basis functions centered at the boundary nodes of the mesh from which the quantity needs to be
interpolated, i.e.

S (sss) =
∑

i
γiφ

(∣∣s − s f ,i
∣∣) , (6.9)

whereφ(r) is the chosen interpolation function, and γi the corresponding interpolation weights. Radial basis
functions with compact support are used; in particular the following Wendland function [83] was used:

φ (r, w) =
(
1− |r |

w

)4 (
4
|r |
w

+1

)
, (6.10)

where w is the width of the compact support, an arbitrary parameter that can be set by the user. Then, the
transformation H f s can be computed as

H f s =Φ f sΦ
−1
f f , (6.11)

where

Φ f s,i j =φ
(∣∣ss, j − s f ,i

∣∣) (6.12)

Φ f f ,i j =φ
(∣∣s f , j − s f ,i

∣∣) , (6.13)

(6.14)

54 6. Implementation details

where H f s is the transformation matrix such that

aaas = H f saaa f , (6.15)

where aaas is a vector containing a certain quantity a at all structure nodes at the boundary Γ, and aaa f is the
vector containing this quantity at all fluid nodes. To construct the transformation matrix Hs f , one simply
repeats the above derivation, simply swapping the mesh subscripts at every instance.

It should be acknowledged that he approach above is not consistent - even when a constant quantity is trans-
formed from one mesh to the other, the constant value is not recovered exactly. This could be resolved by
adding a polynomial of degree p to the interpolant, i.e. to modify Equation (6.9) to

S (sss) =
∑

i
γiφ

(∣∣s − s f ,i
∣∣)+∑

p
βp sp , (6.16)

where βp are the corresponding polynomial coefficients.

Note that the used radial basis functions (as derived by Wendland [83]) are positive definite, and therefore
there is no risk that the current implementation of the interpolation matrix H f f is singular, even without this
polynomial, as per Buhmann [84].

6.2.2. Temporal communication
Mechanical properties need to be communicated from the fluid solver to the structure solver and vice versa.
In particular, the fluid forces on the boundary should be passed to the structure solver, and the structural
displacements should be communicated to the fluid solver.

A sub-iterated parallel scheme is used, as shown in Figure 6.3 when using IBM scheme, and in Figure 6.4 when
using an IIM-based method. In both cases, the fluid boundary treatment and structural solver are executed
simultaneously1, and sub-iterations are possible, updating the input to both the fluid and structural solver
based on the output of the other solver.

It should be noted that a small difference is present between the IBM (Figure 6.3) and the IIM (Figure 6.4)
when used in a partitioned scheme with subiterations. In case of the IBM, the fluid boundary treatment is
executed before the collision operation happens; the latter does then not affect the results of the IBM scheme,
so only the IBM scheme needs to be iterated. In case of the IIM, the fluid boundary treatment is executed after
the collision operation, and the results of the boundary treatment does not affect the collision treatment; as a
result, the collision operator is only executed once, and the iterations only occur on the boundary treatment
afterwards.

𝑆(𝑘) 𝑆(𝑘+1)

𝐹 𝑘+1𝐹(𝑘)

𝒇(𝑘) 𝒅(𝑘+1)

IBM Collision Streaming

(1)

(2)

(2)

(3) (3)

(4) (5)

Figure 6.3: Discretisation of a boundary, with fluid nodes (as
used by the IBM/IIM by the fluid solver described in Chapter
4 and 5) and structural nodes (as used by the structural model
described in Section 6.1).

𝑆(𝑘) 𝑆(𝑘+1)

𝐹 𝑘+1𝐹(𝑘)

𝒇(𝑘) 𝒅(𝑘+1)

Collision IIM Streaming

(3)

(3)

(1)
(4) (4)

(2) (5)

Figure 6.4: Discretisation of a boundary, with fluid nodes (as
used by the IBM/IIM by the fluid solver described in Chapter
4 and 5) and structural nodes (as used by the structural model
described in Section 6.1).

6.3. Multigrid approach
In order to accelerate the fluid solver, a multigrid approach is utilised. The basic structure of this multigrid is
shown in Figure 6.5; each grid refinement level is exactly twice as refined as the previous level, and each sub
grid is fully contained within its ‘parent’ block.

1It should be noted that they are not executed in parallel from a pure implementation point of view - the LaBOB-FSI solver simply
executes the structural solver after performing the fluid boundary treatment, but no information is exchanged between the solvers
until after the structural solver is executed.

6.3. Multigrid approach 55

Figure 6.5: General structure of the chosen multigrid approach. Taken from Lagrava et al. [85, p. 4810].

6.3.1. Time stepping scheme
Each grid level is refined with a factor 2, such that every second time step of the finer grid, and the refined
grid is placed such that they share grid nodes with the coarser grid whenever possible. Figure 6.6 shows the
time stepping procedure in a 3-level multigrid in more detail. The finest grid uses a time step of ∆t (with a
grid spacing of ∆x); its parent grid uses a time step of 2∆t and a grid spacing of 2∆x, and the main grid uses a
time step of 4∆t and a grid spacing of 4∆x.

4Δ𝑡 4Δ𝑡

2Δ𝑡 2Δ𝑡2Δ𝑡2Δ𝑡

Δ𝑡 Δ𝑡 Δ𝑡 Δ𝑡 Δ𝑡 Δ𝑡 Δ𝑡 Δ𝑡

Level 0

Level 1

Level 2

Fine-to-coarse 𝒙𝑐→𝑓

Coarse-to-fine 𝒙𝑓→𝑐

Timestep

Figure 6.6: Time stepping scheme of the proposed multigrid procedure. The finest grids runs at a time step of ∆t ; and every level above
runs at a time step twice as long as the previous level. Whenever a parent grid matches up in time with its sub grids, communication
between the grids takes place.

6.3.2. Multigrid communication
Whenever two grid levels arrive at the same point in time, communication between a parent grid and its
subgrid needs to occur. Communication from the fine to coarse grid is necessary to utilise the improved
accuracy of the fine grid. Conversely, communication from the coarse to fine grid is necessary, as the fine
grid requires flow information at its edges that do not coincide with a physical boundary. To illustrate this,
consider the example of a multigrid configuration shown in Figure 6.7, where the coarse grid is denoted by
circles, and the fine grid by crosses. The difference between the ‘real’ and ‘fictitious’ markers will be apparent
shortly.

At t = 0, all grid nodes of all grid levels can be initialised. During the first time step on the fine grid, collision
and streaming takes place. As collision is purely local, this operation can be executed without issue. The
streaming step introduces a problem, however, as there is only a physical boundary present on the east edge
of the grid configuration shown in Figure 6.7. Along the other edges, no boundary condition is physically
present, and it’s therefore not evident which populations stream into the grid at those edges.

Therefore, it is only possible to stream the populations that originate from inside the fine grid or the physical
boundary condition. This means that after the first time step on the refined grid, the grid nodes along the
edges (except the edge fixed by a physical boundary condition) are diluted and any information propagating
from them can be discarded. However, collision can still occur on the nodes interior to this outer edge, and
streaming can be performed on the populations originating from the nodes interior to this outer edge. This
leaves the nodes adjacent to the outer edge diluted as populations from the outer edge would have streamed
into them.

56 6. Implementation details

After two time steps, the coarse grid will have executed a single time step too. Therefore, at this time, the
diluted populations (located in the red zone in Figure 6.7) can be corrected based on the populations on the
coarse grid. Fine markers that do not coincide with a coarse marker can be corrected based on an interpola-
tion procedure. On the other hand, coarse markers located within the blue zone can utilise the populations
found by the fine grid.

The red zone in Figure 6.7 therefore essentially acts as a padded buffer around the ‘real’ fine grid. This slightly
increases the computational cost per time step for the fine grid, as the effective grid is larger than actually
desired. However, communication between the fine grid and coarse grid only needs to happen every second
time step on the fine grid, instead of requiring a temporal interpolation of the coarse grid simulation to allow
for a communication at every time step of the finer grid.

Fine, real grid markers

Fine, fictious grid markers

Coarse grid markers

Physical boundary

Figure 6.7: Example of a simple multi-grid configuration. In the blue area, information from the fine grid is used to improve the accuracy
of the solution at coinciding coarse grid nodes. The red area is an area padded around the blue area, and becomes diluted over time due
to lack of physical boundary conditions.

6.3.3. Multigrid correction
As described before, the populations in the fictitious zone of the fine grid need to be corrected by the coarse
grid, whereas the populations of the coarse grid inside the real zone of the fine grid are corrected by coinciding
markers in the fine grid. As shown by Dupuis et al. [86], it is not correct to equate the populations at coinciding
markers on different levels of grid refinement. Instead, let ωc = (∆tc /τc) be the relaxation rate of the coarse
grid, and ω f = (∆t f /τ f) the relaxation rate of the fine grid. Furthermore, f eq

i represents the equilibrium part

of the population, and f neq
i the non-equilibrium part. Then, the populations at a coarse grid node may be

computed from the populations at the coinciding fine grid node via

fi ,c (xxxc , t) = f eq
i , f (xxxc , t)+ 2ω f

ωc
f neq

i , f (xxxc , t) , (6.17)

In other words, a rescaling of the non-equilibrium part is necessary, as shown by Dupuis et al. [86]. Simi-
larly, to compute populations at a fine grid node coinciding with a coarse grid node, the populations may be
computed from

fi , f
(
xxx f , t

)= f eq
i ,c

(
xxx f , t

)+ ωc

2ω f
f neq

i ,c

(
xxx f , t

)
. (6.18)

6.4. Edge treatment 57

If a fine grid node does not coincide with a coarse grid node, the populations may be interpolated from
nearby coarse nodes. Since the fine grid nodes either coincide with the coarse grid nodes, or are located
midway between two coarse grid nodes, the interpolation is straightforward and can be performed through
simple linear interpolation.

6.3.4. Summary of algorithm
The multigrid algorithm can thus be summarised as in Algorithm 1.

Algorithm 1 Multigrid algorithm.

procedure SIMULATETIMESTEP(grid, level)
Do Something
subGrids ← grid.getSubgrids()
for subGrid in subGrids do

SimulateTimeStep (subGrid, level + 1)
SimulateTimeStep (subGrid, level + 1)

end for
grid.collide()
grid.stream()
for subGrid in subGrids do

InterpolateFromCoarseToFineGrid (subGrid, grid)
InterpolateFromFineToCoarseGrid (subGrid, grid)

end for
end procedure

grid ← mainGrid ▷mainGrid is the coarsest grid
SimulateTimeStep (grid, 0)

6.4. Edge treatment
At the edges of the domain, some links will have their populations streamed to outside the domain, whereas
some links require their populations to be streamed from outside the domain. In particular, consider Figure
6.8, which shows the upper edge of a two-dimensional fluid domain. During streaming, the populations f0,
f1, f2, f6, f7 and f8 can be readily streamed from the adjacent nodes, but populations f3, f4 and f5 would
originate from outside the domain.

Although the IBM described in Chapter 4 and IIM described in Chapter 5 can deal with arbitrarily shaped
boundaries inside the fluid domain, they do not provide a solution for the treatment of the edges in an LBM,
as the diffusive zones would extend beyond the fluid domain. Indeed, a different treatment is necessary to
establish the missing populations f3, f4 and f5. It was chosen to use a small variation on the regularized
boundary condition originally proposed by Latt et al. [87].

Figure 6.8: Illustration of lattice populations at upper edge of a fluid domain. Taken from [87, p. 54].

6.4.1. Modified regularised boundary condition
Let fK (xxxn , t +∆) denote the known post-streaming populations that can be simply obtained from streaming
from adjacent nodes, and let fU (xxxn , t +∆t) denote the unknown post-streaming populations that would be
streamed from nodes outside the fluid domain. Furthermore, assume only the velocity uuu at the boundary is

58 6. Implementation details

known.

In the regularized boundary condition procedure, all post-streaming populations are replaced based on the
imposed macroscopic conditions (in contrast to e.g. the bounce-back approach, which only replaces those
that originate from outside the domain [88]). The mass before the boundary condition is applied is given
by

ρ (xxxi , t +∆t) =
∑
K

fK (xxxn , t +∆t)+
∑
Ū

f̂Ū (xxxn , t) , (6.19)

where f̂Ū are the post-collision populations on the reversed links of the unknown populations (e.g. in Figure
6.8; f2, f5 and f6); they represent the populations that will leave the domain after streaming (and hence their
value before streaming is included).

To ensure that mass is conserved during the boundary treatment, this should equal the mass of the pop-
ulations post-replacement. The next step is to compute the equilibrium population corresponding to the
computed density and imposed velocity at the boundary, simply using Equation (3.21).

The next step to compute the off-equilibrium tensor, whose general expression is given by

Π(1) (xxxn , t +∆t) = f neq
i (xxxn , t +∆t)eee i eeeT

i . (6.20)

The non-equilibrium populations of fK are computed easily via

f neq
K = fK − f eq

K . (6.21)

The non-equilibrium populations corresponding to fU are then found by assuming the non-equilibrium part
of the populations are bounced-back at the boundary. In other words,

f neq
U

(xxxn , t +∆t) = f neq

Ū
(xxxn , t +∆t) . (6.22)

With all non-equilibrium populations known, the off-equilibrium tensor from Equation (6.20) can be com-
puted. It can be shown (Latt et al. [87]), through a Chapman-Enskog expansion, that this tensor is related to
the strain rate tensor SSS and the non-equilibrium populations as

f neq
i (xxxn , t +∆t) ≈−ρwiτ

c2
s

QQQ i : SSS (xxxn , t +∆t) = wi

2c4
s

QQQ i :ΠΠΠ(1) (xxxn , t +∆t) , (6.23)

where QQQ i = eee i eee⊤i − c2
s III . Thus, the adjusted populations can now be easily computed from

fi (xxxn , t +∆t) = f eq
i (xxxn , t +∆t)+ f neq

i (xxxn , t +∆t) . (6.24)

In summary, the implemented regularized boundary condition consists of the following steps:

1. Computation of the density at the boundary via Equation (6.19).
2. Compute the equilibrium populations through Equation (3.21).
3. Compute the off-equilibrium populations through Equation (6.21) and (6.22).
4. Compute the off-equilibrium tensor through Equation (6.20).
5. Redistribute the off-equilibrium tensor through Equation 6.23.
6. Take the sum of the equilibrium and off-equilibrium populations with Equation (6.24).

6.4.2. Comparison with other boundary conditions
As it is expected that edge treatment only has a small effect on the overall fluid simulation and the treat-
ment of (moving) boundaries inside the domain is of greater interest in this work, no extensive, quantitative
comparison to other boundary treatments has been performed. Naturally however, the implementation was
verified to be mass-conserving if the boundary velocity perpendicular to the edge was 0, and the imposed
velocity constraint was met exactly.

Compared to the original proposal of the regularised boundary condition by Latt [87], the implementation
described above differs in the computation of the unknown density at the boundary, Equation (6.19). Latt
computes this density by noting that

ρ (xxxi , t +∆t) = fK (xxxi , t +∆t)+ fU (xxxi , t +∆t) (6.25)

ρ (xxxi , t +∆t)u⊥ = fU (xxxi , t +∆t)− fŪ (xxxi , t +∆t) , (6.26)

6.4. Edge treatment 59

where u⊥ is the velocity perpendicular to the boundary. It can be shown that this results in

ρ (xxxi , t +∆t) = 1

1+u⊥

(
2 fK (xxxi , t +∆t)+ fŪ (xxxi , t +∆t)

)
. (6.27)

It was chosen to use Equation (6.19) instead of (6.27), as Equation (6.19) is simpler to implement as it does not
require decomposition of the boundary velocity, and can be readily extended to e.g. corner nodes, whereas
Equation (6.27) is not easily extensible to more complex edge nodes (such as planar surfaces in 3D) [2].

Additionally, compared to other existing boundary conditions (such as the bounce-back condition ([89]),
Zou-He [90], and the method proposed by Inamuro et al. [91]) the regularized boundary condition and its im-
plementation proposed here are characterised by a number of advantages [88]. For example, the regularised
boundary condition conserves mass, even for a boundary moving in a tangential direction, unlike the bounce
back condition. Furthermore, particularly the implementation proposed above is easily extensible to corners
and 3D-edges, unlike the Zou-He method and the method by Inamuro et al. It is also conserves the macro-
scopic mass, velocity and strain rate tensor at the boundary, a property not shared by the other boundary
conditions. Finally, the regularised boundary condition is fully local, unlike some more advanced boundary
conditions that rely on interpolation from nearby lattice nodes to find macroscopic quantities.

Regarding its accuracy, Latt et al. [88] found that the Inamuro et al. and Zou-He boundary conditions boasted
better results at low 2D Reynolds number flows. For 3D flows, the Zou-He boundary condition significantly
decreased in accuracy, and the bounce-back and Zou-He boundary conditions both suffered notable stability
issues, requiring finer grids to simulate the same Reynolds number flow. On the other hand, the regularised
boundary condition was found to be very stable, capable of simulating significantly higher Reynolds number
flow than the Inamuro et al. and Zou-He boundary conditions. Thus, although perhaps not as accurate
as other boundary conditions, the regularized boundary condition boasts far better stability, an important
reason for why it was opted to use the regularised boundary condition in this work.

III
Validation

In Chapter 7-11, the LaBIB-FSI solver is validated, the performance of the midpoint immersed interface
method is compared against that of the immersed boundary method, and conclusions and recommendations
are drawn. Specifically, Chapter 7 validates the LaBIB-FSI solver for 2D fluid flow with stationary boundaries,
whereas Chapter 8 validates the LaBIB-FSI solver for 2D fluid flow with moving boundaries, either through
rigid, prescribed motion or through two-way fluid-structure interaction, with both Chapters shedding clear
light on the advantages of the immersed interface method over the immersed boundary method. Chapter 9
provides additional analysis to certain validation cases, and sheds light on the sensitivity of certain numerical
input parameters. Chapter 10 concludes and answers the research questions set out in Chapter 2, whereas
Chapter 11 provides a list of recommendations for future research.

61

7
Validation of 2D fluid solver

This Chapter validates the fluid solver of the LaBIB-FSI software, for problems involving stationary boundaries.
Three validation cases are considered. Section 7.1 considers a simple lid-driven cavity flow proposed by Botella
and Peyret [92], to validate the solver for flows with no solid object in the interior domain. Section 7.2 considers
a Taylor-Green vortex flow immersed by a cylinder, in which the analytical solution is imposed as a boundary
condition along the boundary of the cylinder, previously used by authors such as Kang and Hassan [35] and
Wu and Shu [93]. Section 7.3 evaluates the solver for the CFD1, CFD2 and CFD3 benchmark cases proposed by
Turek and Hron [8].

7.1. Lid-driven cavity flow
To validate the fluid solver without any fluid-structure interaction present, the benchmark case by Botella
and Peyret [92] is used. In this validation case, a lid is pushed over the top side of a square domain, resulting
in vortex generation inside the domain.

In this lid-driven cavity flow, in a domain of [0,L]× [0,L], the boundary at y = L has a boundary velocity
equal to ux = −u0 and uy = 0, and all boundaries are at rest. Although this results in a steady flow, as the
LBM is inherently transient, the flow is initialised as being at rest, and the simulation is then evaluated at
t = 200L/u0, which was heuristically found to be sufficiently long to converge to a steady-state. The Reynolds
number (based on the length of the domain L and velocity u0) is held constant at Re = 1000. The Mach
number was held constant at M = 0.2 (based on the velocity u0) for all simulations.

An example of the resulting vorticity field is included in Figure 7.1.

Figure 7.1: Plot of the vorticity at t = 200L/u0, using N = 257
nodes in each direction, using the cumulant MRT scheme.
For the purpose of plotting, u0 = 1.0 and L = 1.0.

Figure 7.2: Plot of the reference iso-vorticity lines for a lid-
driven cavity flow, as per Botella and Peyret. Taken from [92,
p. 428].

Two sets of simulations are performed. First, the horizontal component of the velocity along the vertical
center line is compared to the reference values obtained by Botella and Peyret. In the second set, the vorticity
at the center point of the domain will be compared to the reference values by Botella and Peyret.

63

64 7. Validation of 2D fluid solver

7.1.1. Comparison of horizontal velocity along vertical center line
For the first set of simulations, the lattice grid density is varied between runs, using L = 32∆x, L = 64∆x,
L = 128∆x and L = 256∆x. The simulations are performed for both the compressible BGK and Cumulant
MRT.

Figure 7.3 shows the horizontal velocity profile along the vertical center line for the BGK simulations, as well
as the profile found in the reference data from Botella and Peyret [92]. Figure 7.4 compares those from the
Cumulant MRT simulations and the reference data.

Figure 7.3: Plot of the horizontal velocity component along
x = L/2, at t = 200L/u0, for various grid refinement levels,
using the BGK operator. For the purpose of plotting, u0 = 1.0
and L = 1.0.

Figure 7.4: Plot of the horizontal velocity component along
x = L/2, at t = 200L/u0, for various grid refinement levels,
using the cumulant MRT scheme. For the purpose of plotting,
u0 = 1.0 and L = 1.0.

It can be observed that both collision operators result in a velocity profile that approximates the references
values by Botella and Preyet more closely as the number of lattice nodes is increased. Furthermore, the ve-
locity conditions on the boundary at y = 0 and y = L are met exactly.

7.1.2. Comparison of vorticity at center point
The vorticity at the center of the domain (x = L/2 and y = L/2) has also been examined and compared to
the reference value published by Botella and Preyet. This vorticity has been evaluated by approximating the
first-order derivatives in

ω= ∂ux

∂y
− ∂uy

∂x
(7.1)

numerically using central finite difference schemes. In particular, as the number of fluid nodes was always
odd in both the horizontal and vertical direction, there was always a node xxx ī , j̄ that coincided with the exact
center of the domain. Thus, the central difference approximation simply became

∂ux

∂y
≈

ux

(
xxx ī , j̄+1

)
−ux

(
xxx ī , j̄−1

)
2∆x

(7.2)

∂uy

∂x
≈

ux

(
xxx ī+1, j̄

)
−ux

(
xxx ī−1, j̄

)
2∆x

, (7.3)

(7.4)

where ∆x is the physical grid spacing. Equation (7.1) may then be easily evaluated and compared to the
reference value published by Botella and Preyet. The resulting error as function of grid refinement is shown
in Figure 7.5. Clearly, the order of accuracy of both collision operators is approximately 1, whereas one would
normally expect second order of accuracy for the LBM [2]. This is attributed to the treatment of the top
left and top right corners for this specific validation case. In the used boundary treatment, the grid nodes
coincide with the boundaries of the domain, which means that grid nodes coincide with the corners of the
domain.

However, since the top edge has a horizontal velocity of −u0 whilst the right and left edges are stationary, the
corners of the domain form a singularity since it implies that the velocity at those corners should both be at

7.2. Cylinder immersed in Taylor-Green vortex flow 65

Figure 7.5: Plot of the error in the vorticity at the center of domain (x = L/2, y = L/2), as function of grid density, for the BGK and
cumulant MRT operators.

rest and have a horizontal velocity of −u0. This modelling error likely reduces the order of accuracy to 1 1. It
should be noted that the validation case in Section 7.2 does show second-order accuracy, confirming that the
first-order accuracy here may be attributed to a modelling singularity in the boundary conditions rather than
a possible error in the fluid solver itself.

7.2. Cylinder immersed in Taylor-Green vortex flow
The second validation case considered is a Taylor-Green vortex flow immersed by a solid cylinder, with the
velocity at the solid boundary prescribed by the analytical solution known for the Taylor-Green vortex. This
validation case has previously been used by Kang and Hassan [35] and Wu and Shu [93] to validate various
IB-LBM variations.

It should be noted that, contrary to all other validation cases listed in Chapter 7 and 8, the prototype Python
code was used for this case instead of the C++-based LaBIB-FSI suite. This was done to allow for comparison
with the variations on the IIM proposed in Chapter 5. As will be seen throughout this section, these variations
did not appear promising compared to the MIIM, which is why they were not included in the LaBIB-FSI suite,
and why all validation cases hereafter only include the base IBM and MIIM.

In a Taylor-Green vortex flow in a square domain of [−L,L]×[−L,L], the velocity field is known to equal

ux =−u0 cos
(π

L
x
)

sin
(π

L
y
)

exp

(
−2ν

(π
L

)2
t

)
(7.5)

uy =−u0 cos
(π

L
x
)

sin
(π

L
y
)

exp

(
−2ν

(π
L

)2
t

)
(7.6)

p = p0 −
u2

0

4

[
cos

(
2π

L
x

)
+cos

(
2π

L
y

)]
exp

(
−4ν

(π
L

)2
t

)
. (7.7)

To assess the accuracy of a boundary treatment, simulations are run with an embedded circle of radius R =
0.5L located at the center of the domain. At the boundary of the embedded circle, the velocity is prescribed by
Equation (7.5)-(7.6). At the edges of the domain, the boundary conditions are prescribed by Equation (7.5)-
(7.7); the initial condition is prescribed by the same equations evaluated at t = 0. In each of the coming tests,
the solution field is evaluated at t = L/u0. The Reynolds number (based on the velocity u0 and domain-size
L) is held constant at Re = 10.

For illustrative purposes, a vorticity field corresponding to such a flow is shown in Figure 7.6. The domain is
discretised by a grid consisting of N -fluid nodes in the horizontal and vertical direction.

The accuracy of the simulation is evaluated by approximating the L2-error in the velocity in the interior of the

1For the purposes of performing a simulation, the velocity at the corners was set to 0 in the end, but this is clearly an arbitrary choice.

66 7. Validation of 2D fluid solver

Figure 7.6: Plot of the vorticity at t = L/u0, using a grid spacing of L = 40∆x, simulated by the IIM-BASE scheme.

domain, i.e.

||ϵ||2 =
√√√√∫
Ω

∣∣∣∣uuu(a) −uuu(n)
∣∣∣∣≈√

1

Nc u2
0

∑∣∣∣∣uuu(a) −uuu(n)
∣∣∣∣2, (7.8)

where the exact integral is approximated using the equidistant grid points at which the numerical solution
uuu(n) is available, and where uuu(a)

x is given by Equations (7.5)-(7.6), uuu(n) is the numerical solution, only points
located within the circle are included in the summation, and Nc is the number of points located within the
circle.

Three sets of simulations will be evaluated. The first set will demonstrate the overall order of accuracy of
the IIM and its variations introduced in Chapter 5. The second set will show the effect of the density of the
Lagrangian markers on the boundary. The third set will evaluate the effect of the number of iterations for
various boundary spacings.

7.2.1. Evaluation of order of accuracy
For the first set of simulations, the lattice grid density is varied between runs. The simulations are held at a
constant relaxation-rate ofων = 1/0.65, analogous to the value used by Kang and Hassan [35] and Wu and Shu
[93]. Furthermore, the Lagrangian markers on the discretised cylinder are placed at a spacing of ∆s/∆x ≈ 1.
This is coarser than used by Kang and Hassan [35] and Wu and Shu [93], but the choice for this spacing is
justified in Section 7.2.2. The lattice grid spacing varies between L = 10∆x, L = 20∆x, L = 40∆x and L = 80∆x
grid points across the immersed cylinder. As a baseline, the same simulations are performed without the
immersed cylinder, once for the cumulant MRT operator, once for the BGK operator.

The results are shown in Figure 7.7, where BASE-CUMMRT and BASE-BGK refer to simulation runs using the
CUMMRT and BGK operator, without the immersed body present. A number of conclusions may be drawn
from Figure 7.7.

First off all, it can be noted that the CUMMRT operator appears to have a higher order of accuracy than the
BGK operator - the former appears to be slightly larger than 3, whereas the latter only appears to have an
order of accuracy of slightly larger than 2. Furthermore, the IBM and all implementations of the IIM appear
to have second order accuracy. IIM-MOD-A, which is the configuration that evaluates the feedback force and
jumps at the midpoint of a time-step, appears the most accurate, particularly at coarser meshes. However, its
advantage over other methods appears to falter as the mesh is refined.

7.2.2. Evaluation of the boundary force density error
As the velocity of the boundary of the cylinder is prescribed by Equation (7.5)-(7.7) and should therefore
match the exact solution, the feedback force at the Lagrangian markers is also expected to 0. To evaluate its

7.2. Cylinder immersed in Taylor-Green vortex flow 67

Figure 7.7: Plot of L2-error as function of number of grid refinement for a constant Lagrangian marker density.

error, the following quantity is computed:

ϵFFF =
K∑
κ

FFFκ ·FFFκ

K
(7.9)

where K is the total number of boundary markers.

This quantity, as well as the previously defined L2-error (Equation (7.8)) is evaluated at a constant fluid mesh
refinement, using L = 20∆x, for a varying degree of boundary marker densities, varying between K = 40
(which corresponds to ∆s/∆x ≈ 1.57) and K = 200 (corresponding to ∆s/∆x ≈ 0.314). This allows for an
assessment of the influence of the boundary refinement compared to the fluid mesh refinement.

The L2-error as function of boundary refinment for the various IBM/IIM-approaches is shown in Figure 7.8;
the ϵFFF -error is shown in Figure 7.9. Note that in both Figure 7.8 and 7.9, the IBM, IIM-MOD-C and IIM-MOD-
D configurations were unable to produce results when the number of Lagrangian markers was increased
beyond K = 120.

Figure 7.8: Plot of L2-error as function of the number of La-
grangian markers, for L = 20∆x.

Figure 7.9: Plot of ϵFFF -error as function of the number of La-
grangian markers, for L = 20∆x.

It is evident that for all configurations, when the number of Lagrangian markers is increased beyond approx-
imately K = 60 (corresponding to ∆s/∆x ≈ 1.04), the accuracy starts to decrease notably, with configurations

68 7. Validation of 2D fluid solver

being either unable to provide a solution at all (IBM, IIM-MOD-C and IIM-MOD-D) or experiencing blow-up
in the boundary force density variation for K > 120.

This results appears contradictory with some existing literature. For example, Peskin [72], in his paper de-
scribing the mathematical framework of the IBM that he originally proposed in [4], stated that "to avoid
leaks, we impose the restriction that" ∆s/∆x < 1/2, without a clear justification of this limit. Other authors,
such as Huang and Tian [34] and Krüger [2] have since used Peskin’s paper as a guideline, without providing
further evidence for this limit. In fact, Krüger [2] concluded, based on a mesh spacing sensitivity analysis for
a Poiseuille flow, that decreasing the mesh size below ∆s/∆x < 1 does not provide significant benefit.

Based on this sensitivity study, it was previously decided in Section 7.2.1 to use a Lagrangian marker density
of ∆s/∆x ≈ 1.

7.2.3. Evaluation of iterative solvers
In the previous sections, only the implicit solvers have been evaluated. However, it remains interesting to
evaluate the effect of the number of iterations in multi-direct forcing based approaches. To do so, the iterative
solvers have been run on a fixed fluid mesh (L = 20∆x), at a variety of boundary mesh densities (K = 60, K = 90
and K = 120, corresponding to ∆s/∆s ≈ 1.04, ∆s/∆s ≈ 0.70, ∆s/∆s ≈ 0.52), for various number of iterations
per time-step (ranging between Niter = 5 and Niter = 1000.

To investigate the convergence behaviour of the iterative scheme, two quantities are evaluated. First, the the
boundary force density is compared to the solution found by the corresponding implicit solver and evaluated
as

∆ϵFFF =
K∑
κ

(
FFF MDF
κ −FFF implicit

κ

)
·
(
FFF MDF
κ −FFF implicit

κ

)
K

, (7.10)

where F MDF
κ is the boundary forcing density found by the MDF-algorithm, and F implicit

κ the boundary forcing
density found by the corresponding implicit algorithm.

Secondly, the difference in L2-error is evaluated as

∆ ||ϵ||2 = ||ϵ||MDF
2 −||ϵ||implicit

2 , (7.11)

where ||ϵ||MDF
2 is the L2-error for the iterative solution, found via Equation (7.8), ||ϵ||implicit

2 the L2-error for
the corresponding implicit solution. These differences are plotted in Figure 7.10, 7.12 and 7.14, and 7.11, 7.11
and 7.15, respectively.

Figure 7.10: Plot of L2-error as function of the number of it-
erations, for a number of markers equal to K = 60.

Figure 7.11: Plot of ϵFFF -error as function of the number of iter-
ations, for a number of markers equal to K = 60.

7.3. Cylinder and rigid flag immersed in horizontal cylinder flow 69

Figure 7.12: Plot of L2-error as function of the number of it-
erations, for a number of markers equal to K = 90.

Figure 7.13: Plot of ϵFFF -error as function of the number of iter-
ations, for a number of markers equal to K = 90.

Figure 7.14: Plot of L2-error as function of the number of it-
erations, for a number of markers equal to K = 120.

Figure 7.15: Plot of ϵFFF -error as function of the number of iter-
ations, for a number of markers equal to K = 120.

From Figure 7.11-7.14, it is evident that for both the IBM and IIM-based approaches, the number of itera-
tions show clearly convergent behaviour for K = 60, corresponding to ∆s/∆x ≈ 1.04. However, for finer mesh
densities, the convergence rate detoriates quickly, and it appears to carry very little benefit to increase the
boundary mesh density. This is likely caused by the fact that when the boundary mesh density is increased
whilst the fluid grid density is held constant, the number of degrees of freedom on the boundary mesh starts
to become greater than the number of degrees of freedom on the fluid grid. The solution space (which lives on
the boundary mesh) may therefore contain the eigenvectors corresponding to the zero eigenvalues, resulting
in a slow iterative process to obtain the same solution as the implicit system.

7.3. Cylinder and rigid flag immersed in horizontal cylinder flow
The third set of validation cases considered is the set of benchmarks proposed by Turek and Hron [8], which
considers the flow around a cylinder with a flag attached to its trailing edge, as shown in Figure 7.16 and 7.17.
To be specific, in the benchmark cases CFD1, CFD2 and CFD3, the attached beam is treated as a rigid object,
and the lift- and drag coefficient is measured across three different Reynolds numbers.

Figure 7.16: Definition of computational domain for the
benchmark cases CFD1, CFD2 and CFD3 proposed by Turek
and Hron [8], taken from [8, p. 249].

Figure 7.17: Sketch of the geometrical parameters for the
bench mark cases CFD1, CFD2 and CFD3 proposed by Turek
and Hron [8], taken from [8, p. 249].

The velocity at left and right boundary of the domain is prescribed by

u
(
0, y

)= u
(
L, y

)= 3

2
u0

y
(
y −H

)
4H 2 . (7.12)

The horizontal walls are treated with a no-slip condition on the velocity. The modified regularised boundary

70 7. Validation of 2D fluid solver

conditions were used for each boundary.

The relevant geometric parameters are given in Table 7.1; the relevant fluid parameters for the different
benchmark cases are given in Table 7.2. The Reynolds number has been defined with respect to the velocity
and diameter of the cylinder. The Mach number was set to 0.04 for all runs.

Table 7.1: Geometric parameters corresponding to CFD1-
CFD3.

Parameter Symbol Value [m]

Length L 2.5

Height H 0.41

Cylinder position C (0.2,0.2)

Cylinder radius r 0.05

Flag length l 0.35

Flag height h 0.02

Table 7.2: Fluid parameters corresponding to CFD1-CFD3.

Parameter CFD1 CFD2 CFD3

ρ f 1×103 kg/m3 1×103 kg/m3 1×103 kg/m3

ν f 1×10−3 m2/s 1×10−3 m2/s 1×10−3 m2/s

u0 0.2 m/s 1 m/s 2 m/s

Re 20 100 200

The domain is discretised by a grid consisting of Nx -fluid nodes in the horizontal direction, and Ny -fluid
nodes in the vertical direction.

7.3.1. Evaluation of CFD1 & CFD2 benchmark - comparison of force coefficients
The CFD1 and CFD2 benchmark case both result in steady-state solutions. Both simulations are therefore
simulated by setting the initial condition to be

u
(
x, y

)= 3

2
u0

y
(
y −H

)
4H 2 , (7.13)

and then taking measurements at t = 2L/u0, to allow for sufficient time for convergence to the steady state.
The simulations are performed for the IBM and the MIIM configurations, at three levels of grid-refinement,
ranging from R = 5∆x to R = 20∆x. The multi-direct-forcing schemes use 25 iterations for every time step. In
Table 7.3, the resulting lift and drag coefficient for each solver is shown.

Table 7.3: Lift and drag for the CFD1 and CFD2 benchmark cases from Turek and Hron [8].

Configuration Grid size
CFD1 CFD2

Fx [N] Fy [N] Fx [N] Fy [N]

IBM

R = 5∆x 15.60 1.108 155.85 7.740

R = 10∆x 14.80 1.076 144.96 8.672

R = 20∆x 14.49 1.070 140.27 8.909

MIIM

R = 5∆x 15.40 1.101 151.77 7.951

R = 10∆x 14.69 1.079 141.97 8.764

R = 20∆x 14.43 1.079 138.76 9.163

Target [8] - 14.29 1.119 136.7 10.53

As can be seen from Table 7.3, the results all seem to approximate the reference values by Turek and Hron [8]
relatively well, attaining an accuracy similar to those obtained by e.g. Geller et al. [80] and Trapani et al. [94]
who also made use of LBM-based solvers. However, it does appear that the MIIM is slightly more accurate at
the same level of grid discretisation as the IBM.

7.3.2. Evaluation of CFD1 & CFD2 benchmark - comparison of force distributions along
cylinder

The boundary force distribution along the cylinder for the CFD1 and CFD2 benchmarks has also been evalu-
ated. The horizontal component of the boundary force density is plotted as function of polar angle in Figure
7.18 and 7.19 for CFD1 and CFD2, respectively. Here the polar angle is 0◦ at the trailing edge of the cylinder
and then is measured in counterclockwise direction. The vertical component is plotted in Figure 7.20 and
7.21 respectively, and the magnitude of it is plotted in Figure 7.22 and 7.23. The results are plotted for meshes

7.3. Cylinder and rigid flag immersed in horizontal cylinder flow 71

with a refinement of R = 20∆x. Note that the boundary force from the solid on the fluid is computed (as this
is the direct output from the IBM/MIIM), and not the force exerted by the fluid on the solid (which would be
equal in magnitude but opposite in sign).

Figure 7.18: Horizontal force component density as function
of polar angle, for the IBM and MIIM, for CFD1.

Figure 7.19: Horizontal force component density as function
of polar angle, for the IBM and MIIM, for CFD2.

Figure 7.20: Vertical force component density as function of
polar angle, for the IBM and MIIM, for CFD1.

Figure 7.21: Vertical force component density as function of
polar angle, for the IBM and MIIM, for CFD2.

Figure 7.22: Force magnitude density as function of polar an-
gle, for the IBM and MIIM, for CFD1.

Figure 7.23: Force magnitude density as function of polar an-
gle, for the IBM and MIIM, for CFD2.

It is evident that the general shape of the distribution matches between the IBM and MIIM configurations for
all plots. However, it is evident that for all plots, the MIIM seems to suffer significantly less from the oscilla-
tions than the IBM. These results demonstrate that the approach of the MIIM to include the boundary forcing
during streaming rather than during collision, may benefit the overall performance of the solver, resulting in
smoother solutions in the boundary forcing.

To provide further illustration to the behaviour of the boundary force distributions, it is interesting to com-
pare the distributions with streamline plots of the flow around the cylinder and flag. These plots are shown
in Figure 7.24 and 7.25, where the streamlines are superimposed on a contourplot of the velocity magni-
tude. The plots are based on the run using the MIIM-configuration at a mesh discretisation such that R =

72 7. Validation of 2D fluid solver

20∆x.

Figure 7.24: Streamline plot of the flow around the cylinder
and flag for the MIIM, for CFD1, at a mesh resolution such
that R = 20∆x.

Figure 7.25: Streamline plot of the flow around the cylinder
and flag for the MIIM, for CFD2, at a mesh resolution such
that R = 20∆x.

In Figure 7.18-7.23 it can be seen that the strongest oscillations in the boundary force density (for both the
IBM and MIIM) occurred around θ = 3/4π and θ = 5/4π (θ = 0 corresponds to the trailing edge, and is then
measured in counterclockwise direction). This corresponds to the north-west and south-west areas of the
cylinder, where the incoming flow needs to be deflected 45◦ up-/downwards. It is speculated that this velocity
change (that is not parallel to the incoming flow) can amplify the oscillations in the boundary forcing - it may
be tricky for the boundary treatment method to simultaneously reduce the flow velocity around the boundary
to a small value and change the velocity direction.

Note that in contrast, the region with flow separation (which is particularly clearly present for CFD2), i.e.
the region around θ = π/4 and θ = 7/8π, are generally well quite well behaved and do not suffer from large
oscillations. This is likely due to the low velocity and small velocity gradients that exists in this region any-
way.

7.3.3. Evaluation of CFD1 & CFD2 benchmark - comparison of force distributions along
flag

The force distributions along the flag were also evaluated. In particular, the trailing edge of the flag is of inter-
est, as it is a short section (relative to the diffusive width of the interpolating schemes) with two corners close
to each other (with a corner likely involving very large gradients in the boundary force distributions). If s rep-
resents the parametric coordinate describing the flag, with s = 0 located at the midpoint of the trailing edge,
then with a flag thickness of h = 0.02m, the corners of the flag are located at s = 0.01m and s =−0.01m.

The horizontal component of the boundary force density is then plotted as function of parametric coordinate
in Figure 7.26 and 7.27 for CFD1 and CFD2, respectively. The vertical component is plotted in Figure 7.28 and
7.29 respectively, and the magnitude of it is plotted in Figure 7.30 and 7.31. The results are plotted for meshes
with a refinement of R = 20∆x.

Figure 7.26: Horizontal force component density as function
of parametric coordinate, for the IBM and MIIM, for CFD1.

Figure 7.27: Horizontal force component density as function
of parametric coordinate, for the IBM and MIIM, for CFD2.

7.3. Cylinder and rigid flag immersed in horizontal cylinder flow 73

Figure 7.28: Vertical force component density as function of
parametric coordinate, for the IBM and MIIM, for CFD1.

Figure 7.29: Vertical force component density as function of
parametric coordinate, for the IBM and MIIM, for CFD2.

Figure 7.30: Force magnitude density as function of paramet-
ric coordinate, for the IBM and MIIM, for CFD1.

Figure 7.31: Force magnitude density as function of paramet-
ric coordinate, for the IBM and MIIM, for CFD2.

Again, it is evident that the general shape of the forcing distribution is similar between the IBM and MIIM.
However, although the MIIM still shows some oscillations in its boundary force distributions at the corner
locations, they appear to dampen out far more quickly as one moves away from the corner points compared
to the IBM. This is clearly a great benefit to the MIIM, as it appears better capable of smoothing out any
oscillations that do arise in its solution field.

7.3.4. Evaluation of CFD1 & CFD2 benchmark - comparison of velocity profiles
The velocity and density profile along the vertical axis crossing through the center of the cylinder has been
evaluated to assess the amount of inflow within the cylinder, which ideally should be as close to 0 as possible.
The velocity profile for IBM and MIIM are shown in Figure 7.32 and 7.33; the density profile is shown in Figure
7.34. These plots were constructed using the finest meshes (R = 20∆x) for both boundary treatments. Note
that the bottom and top of the cylinder are located at y = 0.15m and y = 0.25m, respectively.

Figure 7.32: Horizontal velocity profile along the vertical axis
crossing through the center of the cylinder, for CFD2.

Figure 7.33: Vertical velocity profile along the vertical axis
crossing through the center of the cylinder, for CFD2.

It can be seen that the MIIM is notably more successful than the IBM at reducing the amount of inflow inside

74 7. Validation of 2D fluid solver

Figure 7.34: Density profile along the vertical axis crossing through the center of the cylinder, for CFD2.

the cylinder - the IBM predicts a notably larger velocity magnitude inside the cylinder, both near the edge
of the cylinder at y = 0.15m and y = 0.25m as well as at the center of the cylinder. Furthermore, as noted
in Table 7.2, the imposed initial density is equal to 1×103 kg/m3 in the entire domain. Due to the pressure
loss over a channel flow and the assumption of an ideal, isothermal gas, the density drops (as the inlet is set
equal to a 1× 103 kg/m3 density) over the length of the channel. However, the density inside the cylinder
should ideally stay as close to 1×103 kg/m3 as possible, as the flow inside the cylinder should be unaware of
the channel flow outside the cylinder. It can be seen from Figure 7.34 that the MIIM sustains a slightly larger
density inside the cylinder, indicating that less mass flux has happened across the cylinder’s surface.

It should be noted that it may appear in Figure 7.32 that the horizontal velocity component at y = 0.15m and
y = 0.25m is significantly different from 0; instead overshooting to at least ux =−0.05m/s. However, it should
be noted that this peak is located inside the cylinder, and the velocity at the control point at y = 0.15m and
y = 0.25m is much closer to 0.

7.3.5. Evaluation of CFD3 benchmark - comparison of force history
The CFD3 benchmark case results in a transient solution. This case was initialised by setting the initial flow
velocity to 0 everywhere in the domain, and using an inflow condition of

u
(
0, y

)= u
(
L, y

)= 3

2
u0

y
(
y −H

)
4H 2 , (7.14)

multiplied with a linear time-ramp up until t = 1s. The simulation is run for 0 ≤ t ≤ 8s. The same input
parameters were used as for the CFD1 and CFD2 benchmarks, and the simulation was run at mesh discreti-
sations such that R = 5∆x, R = 10∆x, R = 20∆x and R = 40∆x.

Plots of the drag and lift as function of time are shown in Figure 7.35 and 7.36, in which the obtained results
are also compared to those found by Turek and Hron [8]. Numerical values corresponding to the mean and
amplitude of the periodic behaviour of the coefficients is included in Table 7.4. It should be noted that at
R = 5∆x, the simulation resulted a steady-state simulation, and at R = 10∆x, the solution was troubled by
some low-frequency noise occurring still, too.

7.3. Cylinder and rigid flag immersed in horizontal cylinder flow 75

Figure 7.35: Drag as function of time, compared to the refer-
ence solution by Turek and Hron [8], using R = 40∆x.

Figure 7.36: Lift as function of time, compared to the refer-
ence solution by Turek and Hron [8], using R = 40∆x.

Table 7.4: Lift- and drag-coefficient for the CFD3 benchmark cases from Turek and Hron [8].

Configuration Grid size
Cx Cy

Period
Mean value Amplitude Mean value Amplitude

IBM

R = 5∆x 471.28 - 2.158 - -

R = 10∆x 469.54 2.00 -35.02 204.20 0.233 s

R = 20∆x 456.70 4.000 -35.25 346.72 0.226 s

R = 40∆x 447.33 4.431 -33.50 365.51 0.227 s

IIM

R = 5∆x 473.04 - -4.094 - -

R = 10∆x 457.37 1.51 -40.03 163.99 0.222 s

R = 20∆x 445.77 3.546 -40.20 316.52 0.228 s

R = 40∆x 444.53 4.433 -32.42 366.35 0.227 s

Reference [8] - 439.5 5.618 -11.89 437.8 0.22 s

As is evident from Table 7.4, the CFD3-benchmark appears quite sensitive to the mesh discretisation, and
although the results appear to converge reasonably quickly to the target values from Turek and Hron [8], the
results at a mesh discretisation of R = 40∆x still shows an error of approximately 20% in the amplitude of
both force coefficients. This high mesh sensitivity has also been reported by Geller et al. [80] (who also used
an LBM-based solver) and Schäfer et al. [95] (who used a finite-volume solver). Therefore, it is assumed that
this sensitivity is inherent to this validation case, and it was (due to lack of computational resources available)
considered that the trends shown in Table 7.4 are promising enough to not warrant additional simulations at
finer grid levels.

8
Validation of 2D fluid-structure solver

In this Chapter, the LaBIB-FSI solver is validated problems involving fluid-structure interaction. Three vali-
dation cases are used. Section 8.1 evaluates the solver for an oscillating rigid cylinder in a fluid at rest using
reference data from Suzuki and Inamuro [96] and Dütsch et al. [97]. This case validates the FSI-solver for mov-
ing boundaries within the fluid solver, but with a rigid structural model. Section 8.2 validates the structural
solver in isolation for the CSM3 benchmark by Turek and Hron [8]. Section 8.3 evaluates the solver for the FSI1
& FSI3 benchmark case proposed by Turek and Hron [8], this time involving a two-way coupled fluid-structure
interaction problem.

8.1. Rigid cylinder oscillating in a fluid at rest
In this validation case, a cylinder oscillates horizontally in a fluid at rest. The horizontal force coefficient is
then evaluated as function of time, and the velocity profile in the region near the cylinder is measured as
well.

55𝐷

35𝐷

20𝐷

20𝐷 10𝐷

10𝐷

Figure 8.1: Domain and grid discretisation of the flow around and oscillating cylinder in a fluid at rest. A multi-grid is used, with the
innermost, finest square having double the grid refinement of its parent grid, which in turn has a twice as fine grid as the background
grid that covers the full domain.

To be precise, the cylinder is located at the center of a domain of size 55D×35D as shown in Figure 8.1, where

77

78 8. Validation of 2D fluid-structure solver

D is the diameter of the cylinder, and the horizontal velocity of the cylinder is given by

ux,cyl (t) =−umax cos

(
2π

T
t

)
, (8.1)

where umax is the maximum velocity of the cylinder and T the period of the motion. Two non-dimensional
parameters are relevant for the solution; the Reynolds number (based on the diameter and the maximum
cylinder velocity) and the Keulegan-Carpenter number (KC = umaxT /D , which is a non-dimensional measure
of the amplitude of the motion.

A grid with multiple levels of refinement is used, as shown in Figure 8.1. The innermost, finest square having
double the grid refinement of its parent grid, which in turn has a twice as fine grid as the background grid that
covers the full domain. Two simulations are performed; the coarse simulation has a background grid that is
discretised using a grid spacing ∆x = D/5, and the fine simulation has a background grid that is discretised
using a grid spacing ∆x = D/10. The Mach number is set to M = 0.04 for all runs discussed below.

The edges of the domain in Figure 8.1 are represented by the modified regularized boundary condition with
an zero-velocity imposed at all sides. It is acknowledged that ideally, these boundary conditions would have
been outflow, but this modelling choice is justified by the fact that the outflow velocity is likely very small due
to the large size of the domain compared to the cylinder, and the time-average of the outflow velocity is zero
anyway due to the periodic motion.

8.1.1. Added mass effect
As noted by Suzuki and Inamuro [96], it is important to compensate for the added mass effect when using an
IBM-based approach, i.e. an approach where the fluid inside the object is still simulated (which also applies
to the IIM). After all, the fluid inside the object also needs to move displaced, and the forcing computed by
the boundary includes this added mass force. Mathematically, the actual body force FFF (t) acting on an object
can be expressed as

FFF (t) =FFF tot (t)+FFF in (t) , (8.2)

where FFF tot (t) is the body force obtained directly from the IBM-scheme, i.e.

FFF tot (t) =−
∫
Γ

FFF (sss, t)dsss ≈−∑
κ

Fκ (XXX κ, t)∆Vκ, (8.3)

where Fκ is the total Lagrangian force on each boundary marker (as per Equation (4.8)) and∆Vκ is the volume
of the Lagrangian body element, and the sum is taken over the total number of body markers. A negative sign
is added as the IBM typically computes the force from the boundary on the fluid, whereas the current interest
in the force from the fluid on the boundary. Finally, the internal force FFF in (t) is computed as

FFF in (t) = ρ f
d

d t

∫
xxx∈Ω(t)

uuu (xxx, t)dxxx, (8.4)

whereΩ (t) is the domain inside the boundary at time t .

In case of the rigid cylinder with prescribed, translational motion, Equation (8.4) is trivial to compute, and
the added mass effect can easily be quantified for; one can simply differentiate Equation (8.1) to find

FFF in (t) = ρ f
d

d t

∫
xxx∈Ω(t)

uuu (xxx, t)dxxx (8.5)

= ρ f
duuu (t)

d t

∫
xxx∈Ω(t)

dxxx (8.6)

Fin,x = ρ f umax
2π

T
sin

(
2π

T
t

)
π

D2

4
. (8.7)

This amount is then added to the total mass found from the IBM, and the body force on the object cylinder
can be readily computed. Note that since the motion of the cylinder is prescribed, this calculation may be
done in whole during post-processing.

8.1. Rigid cylinder oscillating in a fluid at rest 79

8.1.2. Evaluation of force coefficient
In order to compare results with those reported by Suzuki and Inamuro [96], simulations were run at a
Reynolds number of 10 and 100, with a constant Keulegan-Carpenter number of 5. For the Reynolds number
of 100, results from a numerical experiment by [97] are also available.

The time history of the drag coefficient over 3 periods of motion are then compared to the reference data
from Suzuki and Inamuro [96], as shown in Figure 8.2 and 8.3; for Figure 8.3, the result by Dütsch et al. [97]
has also been included (note that only the actual body force coefficient is presented by Dütsch et al.). The
“corrected” lines correspond to the results where the added mass effect has been accounted for. Correspond-
ing numerical values for the maximum force coefficients (note that the solution is periodic with zero mean,
so this describes all information) are shown in Table 8.1.

It is evident that the results between the MIIM and Suzuki and Inamuro [96] match closely - for Re = 10,
the resulting error is approximately 5%, whereas for Re = 100 the error is in the order of 10%. However, it
should be noted that there is also an error between the results by Suzuki and Inamuro and Dütsch et al.
for the case of Re = 100. It is hypothesized that the deviation in Suzuki and Inamuro’s results is caused by
a discretisation error, as they run their simulation at a mesh discretisation such that D = 50∆x at a Mach
number of 0.052.

Suzuki and Inamuro did not perform a mesh convergence study, so it is difficulty to evaluate how large this
discretisation error exactly is for their results. However, from the results in Table 8.1, it is apparent that for the
IBM and MIIM configuration, the discretisation error at a mesh refinement of D = 40∆x is still in the order
1% for the Re = 10 and of 5% for Re = 100. Thus, assuming both the LaBIB-FSI solver and the solver by Suzuki
and Inamuro have roughly similar mesh refinements, this would explain the deviation between the result by
Suzuki and Inamuro and Dütsch et al.

Indeed, the results for the IBM and MIIM configurations appear to converge to the results by Dütsch et al.
rather than those by Suzuki and Inamuro for the value of Fxmax for Re = 100. Based on the results for the mesh
refinement levels shown in Table 8.1, the observed order accuracy p0 may be easily computed as [98]

p0 =
ln

(
Fxmax (D=20∆x)−Fxmax (D=40∆x)
Fxmax (D=40∆x)−Fxmax (D=80∆x)

)
ln(2)

, (8.8)

resulting in an observed order of accuracy of 0.8 for both the IBM and MIIM. From this, the converged solution
may be estimated as

Fxmax,con = Fxmax (D = 80∆x)+ Fxmax (D = 80∆x)−Fxmax (D = 40∆x)

21 −1
, (8.9)

resulting in an estimate of the converged horizontal force coefficient of Fxmax,con = 3.237 for the IBM, and
Fxmax,con = 3.284 for the MIIM, which both are very close to the reference value by Dütsch et al. [97].

This remaining minor difference may be caused by a variety of factors. The solution may not be not perfectly
asymptotic yet at this level of mesh refinement (causing an inaccuracy in the computation procedure above).
Furthermore, a discretisation error due to the Mach number being fixed at M = 0.04 is still present (as ideally
the Mach number would be 0). Thirdly, a discretisation error of the boundary surface when placing the La-
grangian markers may contribute. Finally, an interpolation error is present when interpolating and diffusing
from and back to the fluid grid in the IBM and MIIM, which may contribute as well, as well as an iteration
error as a finite number of iterations is used in the multi-direct forcing scheme.

The deviation between the IBM and MIIM configurations (and the result by Dütsch et al., for that matter)
compared to the results by Suzuki and Inamuro may be the result of several factors. The use of a different
collision operator (Suzuki and Inamuro used a BGK-collision operator, whereas the IBM and MIIM configu-
rations used a CUMMRT-operator), the use of a multigrid for the IBM and MIIM configuration and different
boundary conditions at the edges of the domain may all contribute to the difference between the obtained
results and those by Suzuki and Inamuro. Finally, the results by Suzuki and Inamuro are at a mesh discreti-
sation such that ∆ = 50∆x, which likely still has a considerable spatial discretisation error, as shown by the
results from the IBM and MIIM. Unfortunately, Suzuki and Inamuro only provided results for a single mesh
refinement level, which makes it difficult to estimate how large their discretisation error was.

80 8. Validation of 2D fluid-structure solver

Finaly, it is observed from Table 8.1 that the MIIM appears to approximate the target results better than
the IBM, having a smaller error compared to Dütsch et al. than the IBM at the same grid level. Further-
more, it is confirmed that the LaBIB-FSI solver is capable of handling FSI-problems involving a moving, rigid
body.

Figure 8.2: Drag as function of time, compared to the refer-
ence solution by Suzuki and Inamuro [96], for Re = 10 and
D = 80∆x.

Figure 8.3: Drag as function of time, compared to the refer-
ence solution by Suzuki and Inamuro [96], for Re = 100 and
D = 80∆x.

Table 8.1: Amplitude of horizontal force coefficient for a cylinder oscillating horizontally in a fluid at rest, compared to reference data
from Suzuki and Inamuro [96] and Dütsch et al., [97].

Configuration Configuration
Re = 10 Re = 100

Fxmax [N] Fx,totmax [N] Fxmax [N] Fx,totmax [N]

IBM

D = 20∆x 6.614 8.030 2.579 4.409

D = 40∆x 6.729 8.185 2.867 4.688

D = 80∆x 6.827 8.303 3.029 4.880

MIIM

D = 20∆x 6.730 8.201 2.802 4.613

D = 40∆x 6.818 8.292 3.002 4.851

D = 80∆x 6.887 8.364 3.119 4.957

Target [96] D = 50∆x 7.20 8.710 3.440 5.240

Target [97] - - - 3.271 -

8.2. Cylinder and deformable flag subject to gravity
Before a full FSI-case is validated, the structural solver, described in Section 6.1, itself needs to be evaluated.
This is done using the CSM3 benchmark case proposed by Turek and Hron [8], which uses the same body
definition as the previous benchmark case by Turek and Hron (listed in detail in Section 7.3), but now the
flag has been made flexible and is subject to a gravitational load g in the negative vertical direction. The flag
is released from an undeformed state, resulting in a periodic vibration around the equilibrium state of the
flag.

The corresponding parameters are shown in Table 8.2. Two sets of simulations are run. The first set, described
in Section 8.2.1, considers the effect of refinement of the spatial discretisation, whereas Section 8.2.2 consid-
ers the effect of a refinement of the timestep. In all cases, the simulations were run for 0 ≤ t ≤ 2, to capture
two periods of motion fully.

8.2.1. Evaluation of CSM3 benchmark - effect of spatial discretisation
The first set of simulations was run at at constant physical timestep of 0.00125 s, with the beam being divided
into N = 70, N = 140, N = 280 and N = 560 elements for different levels of mesh refinement. The resulting
mean vertical displacement and amplitude of the tip of the flag is shown in Table 8.3. Furthermore, an ad-
ditional refined grid with N = 2240 elements was simulated, to obtain a pseudo-exact solution. The results
from the mesh levels included in Table 8.3 are compared to this solution, and a plot of the absolute difference
between the mean value of the tip displacement as function of mesh refinement is made; the result is shown

8.2. Cylinder and deformable flag subject to gravity 81

Table 8.2: Input parameters corresponding to CSM3.

Parameter CSM3

ρs 1×103 kg/m3

νs 0.4

Es 1.4×106 N/m2

g 2 m/s2

in Figure 8.4.

Table 8.3: Mean vertical displacement, amplitude and fre-
quency of vertical displacement of flag tip, as function of spa-
tial refinement.

Grid size dy of tip [m] Period [s]

N = 70 −0.06809±0.06978 0.925

N = 140 −0.06796±0.06966 0.925

N = 280 −0.06788±0.06960 0.925

N = 560 −0.06784±0.06957 0.925

Target [8] −0.06361±0.06516 0.913

Figure 8.4: Plot of the absolute error of the mean displace-
ment as function of spatial refinement.

From Table 8.3 and Figure 8.4, it is evident that the structural solver quickly converges to a solution. From
Figure 8.4, it appears that the solver is first-order accurate in space. However, it should be noted that there
is still a difference between the obtained results and those from Turek and Hron, that does not vanish as the
spatial mesh is further refined, and this error seems to be around 5% large in both the mean and amplitude
value of the displacement, with a small error in the period of oscillations present, too.

As a refinement of the temporal discretisation is also necessary to properly evaluate the discretisation error,
the reason for this discrepancy is addressed at the end of Section 8.2.2.

8.2.2. Evaluation of CSM3 benchmark - effect of temporal discretisation
The second set of simulations is run at a constant spatial discretisation such that the beam consisted of

N = 560 elements. Several simulations are run at physical timesteps equal to ∆t = 2−i

25 , with i ranging from
i = −1 to i = 11. The numerical values of the mean displacement, amplitude and period for i = 3 to i = 7
are included in Table 8.4 (note that i = 5 corresponds to a physical timestep of 0.00125 s, the timestep used
in Section 8.2.1). Furthermore, taking the solution for i = 11 as pseudo-exact, the mean displacement for
all other simulations is once again compared to this solution, and the resulting absolute error is plotted as
function of temporal refinement in Figure 8.5.

Table 8.4: Mean vertical displacement, amplitude and fre-
quency of vertical displacement of flag tip, as function of tem-
poral refinement.

Grid size dy of tip [m] Period [s]

i = 3 −0.06790±0.06942 0.925

i = 4 −0.06788±0.06950 0.9225

i = 5 −0.06784±0.06957 0.925

i = 6 −0.06784±0.06959 0.925

i = 7 −0.06784±0.06959 0.925

Target [8] −0.06361±0.06516 0.913 Figure 8.5: Plot of the absolute error of the mean displace-
ment as function of temporal refinement.

82 8. Validation of 2D fluid-structure solver

It is evident from Figure 8.5 that the error appears to behave somewhere between a first- and second-order
discretisation error, although it appears less well-behaved than the spatial discretisation error previously seen
in Figure 8.4. As a trapezoidal scheme is used in the structural solver (as detailed in Section 6.1), this is in line
with the expected order of accuracy.

However, based on the trends of the spatial and temporal mesh refinements studies, it is apparent that the
difference between the results from Turek and Hron [8] and the obtained results using pyfe3d cannot be
solely explained due to a discretisation error, as the discretisation error appears to be in the order of 0.1%
when using N = 560 and i = 6 for example, whereas the error compared to Turek and Hron is in the order of
5%. Therefore, the remaining error is likely caused due to modelling errors.

Several modelling assumptions may contribute to these modelling errors. First of all, the structural model
reduces the flag to a one-dimensional beam consisting of Timoshenko beam elements and assumes planar
surfaces remain planar, which may not necessarily be the case in real life. This may be of particular impor-
tance in the attachment of the flag to the cylinder, which is modelled as a single, cantilevered joint, but in
reality follows the curved boundary of the cylinder.

Secondly, the displacement of the tip of the flag is relatively large in comparison to the length of the beam -
the maximum displacement is around 0.129 m, whereas the beam is 0.35 m long. However, in beam theory,
it is assumed the displacements remain small [81] to ensure a linear model, and it is questionable whether a
displacement of 37% of the beam length qualifies as a small displacement. This could be partially resolved by
remeshing the structural model every few timesteps, such that the current displacements of the beam are im-
posed as a pre-applied deformation, and the linearised solution occurs around this pre-applied deformation,
allowing to capture non-linear effects. However, this is not implemented as of yet.

All in all, although there appears to be a small modelling error, it is evident the structural solver works cor-
rectly for simple, constant loading scenarios and is ready to be validated as part of more complex fluid-
structure interaction problems. Nonetheless, the error already existing for this simple validation case ought
to be kept in mind when evaluating subsequent validation cases.

8.3. Cylinder and deformable flag immersed in horizontal flow
The FSI solver was then validated using the FSI1 and FSI3 benchmark cases proposed by Turek and Hron
[8], which uses the same computational domain and body definition as the previous benchmark cases by
Turek and Hron (listed in detail in Section 7.3), but now with a flexible body. The fluid properties for FSI1
and FSI3 are listed in Table 8.5; the structural properties are listed in Table 8.6. The FSI1 benchmark case
results in a steady-state solution with a small tip deflection of the flag attached to the cylinder, whereas the
FSI3 benchmark case results in a transient solution with moderate displacements of the flag (the amplitude
of the deflection is about 10% of the length of the beam).

Table 8.5: Fluid parameters corresponding to FSI1 and FSI3.

Parameter FSI1 FSI3

ρ f 1×103 kg/m3 1×103 kg/m3

ν f 1×10−3 m2/s 1×10−3 m2/s

u0 0.2 m/s 2 m/s

Re 20 200

Table 8.6: Structural parameters corresponding to FSI1 and
FSI3.

Parameter FSI1 FSI3

ρs 1×103 kg/m3 1×103 kg/m3

νs 0.4 0.4

Es 1.4×106 N/m2 5.6×106 N/m2

The simulations were all performed at a Mach number of M = 0.04 and run until t = 8s, using a grid with a
refinement such that R = 20∆x.

8.3.1. Evaluation of FSI1 benchmark - comparison of body force and displacement
The FSI1 case was initialised by setting the initial flow velocity to 0 everywhere in the domain, and using an
inflow condition of

u
(
0, y

)= u
(
L, y

)= 3

2
u0

y
(
y −H

)
4H 2 , (8.10)

8.3. Cylinder and deformable flag immersed in horizontal flow 83

multiplied with a linear time-ramp up until t = 1s. The simulation is run for 0 ≤ t ≤ 8s. The simulations was
performed for only the MIIM configuration1, at a grid refinement level of R = 20∆x. 25 iterations for every
time step of the MIIM. In Table 8.7, the resulting drag, lift and tip displacement for the MIIM is shown.

Table 8.7: Drag, lift and tip displacement for the FSI3 benchmark cases from Turek and Hron [8].

Configuration Grid size
FSI1

Fx [N] Fy [N] dy [mm]

IBM

R = 20∆x 14.56 0.392 1.739

R = 40∆x 14.37 0.598 1.119

R = 80∆x 14.31 0.636 1.089

MIIM

R = 20∆x 14.45 0.577 1.208

R = 40∆x 14.34 0.710 0.906

R = 80∆x 14.29 0.707 0.909

Target [8] - 14.30 0.7638 0.8209

As can be seen from Table 8.7, the resulting drag coefficient appears to correspond reasonably well with the
reference value from Turek and Hron [8]. However, a notable difference in lift and vertical displacement of
the tip is clearly present.

In particular, a counterintuitive trend present in the IBM and MIIM configuration is that tip displacement
appears to decrease as the vertical force on the system increases, whereas one may expect a positive cor-
relation to exist there. However, from comparison of the FSI1 and CFD1 benchmarks (which are identical,
except that the flag is rigid in the CFD1 case), it can be remarked that apparently even the small displacement
of 0.8209 mm causes a large negative change in lift force - in the CFD1 benchmark, the lift is approximately
1.119 N, yet the reference value has already dropped to 0.7638 N in the FSI1 benchmark, which can only be
due to the displacement of the flag.

To elucidate this reasoning, a plot is made of the displacement of the tip of the beam as function of vertical for
the various various FSI1 runs, as well as the CFD1 runs of Section 7.3.1 (where the displacement is naturally
0). This plot is shown in Figure 8.6. If it is assumed that the solution behaves linearly, i.e. the tip displace-
ment varies linearly with the vertical force (which appears as a reasonable assumption considering the small
displacements involved), then all results obtained by the IBM and MIIM configurations appear to follow the
trend-line that goes through the datapoints from Turek and Hron.

Figure 8.6: Plot of the tip displacement as function of vertical force on the system, for FSI1 and CFD1 benchmark cases.

Thus, although there is clearly some error (either modelling or discretisation) present (particularly at R =
20∆x) in the IBM and MIIM results, the behaviour of the vertical force compared to the tip displacement
appears consistent with that found by Turek and Hron, and the error in both quantities is likely predominantly
induced by the same discretisation error.

1This was a result as a small change in the code suddenly leading to the IBM misbehaving when running this testcase; it is the intention
that results for the IBM will also be added later (previously, correct results already had been achieved for this benchmark case, so it is
merely a matter of bug-fixing the code).

84 8. Validation of 2D fluid-structure solver

The large difference in vertical displacement of the tip may be explained due to the structural modelling
approach chosen, in which the flag is reduced to a one-dimensional beam, modelled through Timoshenko
beam elements. This is a rather large simplification, as the flag is not extremely slender, being 35 cm long
whilst having a cross-sectional dimension of 2 cm.

Indeed, Geller et al. [80], who also use an diffusive IBM within the LBM, find that the displacement of the
tip of the beam is greatly dependent on the structural model they choose, with the model consisting of one-
dimensional beam elements predicting a displacement of 2 mm, whilst a pFEM-based solver would predict a
much more reasonable 0.76 mm. It is therefore imperative that in the future, LaBIB-FSI is coupled to a more
sophisticated structural model, to explore similar deviations in the results are experienced here.

8.3.2. Evaluation of FSI3 benchmark - comparison of force history
The resulting drag as function of time is shown in Figure 8.7, where it is compared to the values obtained by
Turek and Hron [8]. Similarly, the lift and vertical displacement of the tip are shown in Figure 8.8 and 8.9. The
results from the various sources were fitted such that the phase of the displacement history would coincide.
A close-up of the time-history is provided in Figure 8.10 and 8.11. Numerical values are included in Table
8.8.

Figure 8.7: Drag as function of time, compared to the refer-
ence solution by Turek and Hron [8], using R = 20∆x.

Figure 8.8: Lift as function of time, compared to the reference
solution by Turek and Hron [8], using R = 20∆x.

Figure 8.9: Vertical displacement of the tip, compared to the reference solution by Turek and Hron [8], using R = 20∆x.

8.3. Cylinder and deformable flag immersed in horizontal flow 85

Figure 8.10: Lift as function of time, compared to the ref-
erence solution by Turek and Hron [8], using R = 20∆x.
Zoomed into the domain t ∈ [7.15,7.30].

Figure 8.11: Lift as function of time, compared to the ref-
erence solution by Turek and Hron [8], using R = 20∆x.
Zoomed into the domain t ∈ [7.24,7.28].

From Figure 8.7, 8.8 and 8.9, as well as the numerical results in Table 8.8, it can be observed that the IBM and
MIIM both approximate the reference values by Turek and Horn reasonably well, matching the mean values
with an error no greater than approximately 10% of the amplitude, and having errors in the amplitude of at
most in the order of 10%, too. The only major difference is observed in the time-history of the drag force,
which appears to be approximately a quarter of a period out of phase w.r.t. the reference solution. The cause
of this phase shift is explained in Section 8.3.3.

Finally, from Figure 8.10 and 8.11, which are close-ups of the time-history of the lift force, an important differ-
ence between the MIIM and IBM in the results may be observed - the MIIM appears to produce a significantly
smoother result, whereas the IBM suffers from notable spurious oscillations. This is consistent with results
found in Chapter 7, where it was already seen that the MIIM resulted in less noise in for example the boundary
force variation around the cylinder and flag for the CFD1 and CFD2 cases.

Table 8.8: Vertical displacement, lift- and drag-coefficient for the FSI3 benchmark cases from Turek and Hron [8].

Configuration Grid size
Fx [N] Fy [N] δy [m]

Period [s]
Mean value Amplitude Mean value Amplitude Mean value Amplitude

IBM
R = 20∆x 484.65 35.97 -19.54 166.92 0.00247 0.0390 0.1885

R = 40∆x 472.92 27.58 -8.642 164.45 0.00202 0.0373 0.1866

MIIM
R = 20∆x 477.30 32.02 -17.98 162.78 0.00234 0.0389 0.1895

R = 40∆x 475.22 32.32 -8.509 165.05 0.00204 0.0391 0.1893

Target [8] - 457.30 22.66 2.22 149.8 0.00148 0.03438 0.1887

8.3.3. Evaluation of FSI3 benchmark - evaluation of added mass effect
As noted in Section 8.3.2, there appears to be a quarter-period phase shift between the drag predicted by the
LaBIB-solver vs. that predicted by Turek and Hron when the displacements are fitted such that their phases
coincide. This phase shift also did not decrease with increasing mesh refinement, indicating that the error is
not due to a discretisation error.

Indeed, it should be noted that the LaBIB-solver currently does not compensate for the added mass effect
during its simulations itself - the compensation for the added mass effect in Section 8.1 was done fully during
post-processing, as in that benchmark case, the cylinder is rigid and has a prescribed velocity (meaning that
Equation (8.4) can be easily evaluated a posteriori, and the body force never needs to be computed during
the simulation itself, as the movement of the cylinder is not affected by it).

However, evidently, in the case of FSI3, it is relevant that the force obtained by the boundary forcing method
is adjusted for the added mass effect, as the structural solver should only receive the net force acting on the
flag. The effect of this omission may be estimated by evaluating Equation (8.4) in post-processing. After all,
given the displacement d (k)

y,κ at Lagrangian markers κ at timesteps k, one can estimate the acceleration via a

86 8. Validation of 2D fluid-structure solver

central-difference scheme,

a(k)
y,κ =

d (k+1)
y,κ −2d (k)

y,κ+d (k−1)
y,κ

∆t 2 . (8.11)

By dividing the beam up in small elements and using a lumped-mass model, Equation (8.4) may then be
straightforwardly calculated. The force due to the added mass for approximately one period of motion is
calculated for both the IBM and MIIM using the simulation with a grid refinement of R = 20∆x, and is plotted
in Figure 8.12 and 8.13, respectively.

Figure 8.12: Force due to added mass effect over a single pe-
riod of motion for the IBM, at a grid resolution of R = 20∆x,
compared to the total force on the flag.

Figure 8.13: Force due to added mass effect over a single pe-
riod of motion for the MIIM, at a grid resolution of R = 20∆x,
compared to the total force on the flag.

It is evident that the magnitude of the added mass effect cannot be neglected, and it appears roughly one-
quarter of a period out of phase. Clearly, this will likely have had a profound effect on the fluid-structure
interaction of the flag, as the change in forcing applied to the flag would have resulted in a different displace-
ment profile, which in turn affects the added mass effect. Moreover, the total force on the flag is not fully
representative of what displacements the structural solver predicts, as the boundary force distribution is ob-
viously also of relevance - in fact, the force due to the added mass effect is likely to be concentrated towards
the tip of the beam (due to the tip of the beam experiencing the largest displacements), and so compensating
may have an even larger effect than Figure 8.12 and 8.13 suggest.

It is therefore imperative that in the future, the LaBIB-solver is extended to properly compensate for the added
mass effect during its simulation, such that this validation case can be validated properly. It should be noted
that compensating for the added mass effect is not a trivial task. Equation (8.4) describes the added mass for
the structure as a whole, but does not directly describe how the boundary force at each Lagrangian marker
from an immersed boundary approach should be adjusted.

Finally, it should be noted that the benchmark case by Turek and Hron [8], where the density of the fluid is
equal to the density of the structure material, is more suspect to the added mass effect than more practical
validation cases, where the density of the structure is likely significantly larger than the density of the fluid.
In that case, the force required to displace the fluid trapped inside the immersed boundary is much smaller
compared to the force required to displace the structure itself, and thus neglecting the impact of the added
mass effect is a much safer assumption.

8.3.4. Evaluation of FSI3 benchmark - temporal variation of numerical noise
It was previously seen for the CFD1 & CFD2 benchmark (Section 7.3) that significant spatial oscillations are
present in the boundary force distribution obtained from the IBM/MIIM. These are still present in the FSI3
benchmark, and it is of interest to observe how these oscillations behave over time, and whether they could
be smoothed out by simple temporal averaging of the Nt most recent timesteps, i.e. whether

F̄ (k)
κ = 1

Nt

Nt∑
i=0

F (k−i)
κ (8.12)

would yield a smoother result without degrading in accuracy. To investigate this, the boundary force distribu-
tion for the FSI3 runs were time-averaged for three different values of Nt and plotted in Figure 8.14-8.17. Note

8.3. Cylinder and deformable flag immersed in horizontal flow 87

that a single time-step is equal to approximately 2.89×10−5 s, and thus Nt = 1000 corresponds to an averaging
window of approximately 0.0289 s, approximately 1/6th of a full period of motion. The plots correspond to
runs with a mesh refinement of R = 20∆x.

Figure 8.14: Horizontal force component density as function
of parametric coordinate, for the IBM for FSI3, for three levels
of temporal averaging.

Figure 8.15: Horizontal force component density as function
of parametric coordinate, for the MIIM for FSI3, for three lev-
els of temporal averaging.

Figure 8.16: Vertical force component density as function of
parametric coordinate, for the IBM for FSI3, for three levels of
temporal averaging.

Figure 8.17: Vertical force component density as function of
parametric coordinate, for the MIIM for FSI3, for three levels
of temporal averaging.

It can be observed that temporal averaging offers little benefit - a small window does not smooth out the os-
cillations at all, and only at much larger windows are the distributions smoothed. However, at these larger
windows, the accuracy also notably decreases, with the boundary force distribution for Nt = 1000 being sig-
nificantly different from the original distribution. It can be concluded these oscillations are only of spatial
nature, and do not vary temp

8.3.5. Evaluation of FSI3 benchmark - consistency of FSI procedure
In Section 6.2.1, it is acknowledged that the spatial interpolation of the FSI algorithm is not consistent, as a
polynomial term is not added to the sum of radial basis functions, which would otherwise be able to represent
any constant or linearly varying part of the interpolated quantity. It is therefore of interest to evaluate the
consistency of the FSI operator. To do so, first the boundary force and displacement distribution of the flag
at a single point in time for the FSI3 case (corresponding to maximum downward deflection of the tip of the
flag) are plotted in Figure 8.18-8.23 for both the IBM and MIIM, to allow for a qualitative comparison. The
plots were made for runs with a mesh refinement of R = 20∆x. The radial basis function used is the Wendland
function [83] listed in Section 6.2.1, and the width of the compact support was set to 0.05 m.

88 8. Validation of 2D fluid-structure solver

Figure 8.18: Boundary force magnitude density as function of
parametric coordinate, for the IBM for FSI3, for both the fluid
and structure, the latter being interpolated from the former.

Figure 8.19: Boundary force magnitude density as function
of parametric coordinate, for the MIIM for FSI3, for both the
fluid and structure, the latter being interpolated from the for-
mer.

Figure 8.20: Boundary force magnitude density as function of
parametric coordinate (zoomed into region around the tip of
the flag), for the IBM for FSI3, for both the fluid and structure,
the latter being interpolated from the former.

Figure 8.21: Boundary force magnitude density as function of
parametric coordinate (zoomed into region around the tip of
the flag), for the MIIM for FSI3, for both the fluid and struc-
ture, the latter being interpolated from the former.

Figure 8.22: Deflection as function of parametric coordinate,
for the IBM for FSI3, for both the fluid and structure, the for-
mer being interpolated from the latter.

Figure 8.23: Deflection as function of parametric coordinate,
for the IBM for FSI3, for both the fluid and structure, the for-
mer being interpolated from the latter.

It is evident that the FSI operator interpolates the meshes correctly, even in absence of a polynomial in the
interpolant, likely due to the fact that neither the boundary force nor the displacement are characterised by
either a constant or linear distribution. Furthermore, as apparent from Figure 8.20 and 8.21, the quality of
the interpolant does deteriorate in the region around the tip, due to the large gradients and oscillations due
to numerical noise arising in the force distribution.

Apart from this qualitative comparison, the performance of the FSI-operator may also be quantified. After all,
it is desirable that the total boundary force at each time step, as well as the total work done on the boundary
during each time step, is equivalent between the fluid and structure surface. That is, the following equiva-

8.3. Cylinder and deformable flag immersed in horizontal flow 89

lence holds:

F (k)
f

∑
κ f

F (k)
κ f
∆Vκ f =

∑
κs

F (k)
κs
∆Vκs = F (k)

s , (8.13)

where the left-hand summation is taken over all the fluid boundary elements, and the right-hand summation
is taken over all the structure boundary elements, where F (k)

κ is the magnitude of the boundary force density
at Lagrangian marker κ and time step k, and ∆Vκ is the volume associated with this marker. Similarly, the
following equivalence should hold for the work done during each time step k:

W (k)
f =∑

κ f

FFF (k)
κ f

+FFF (k−1)
κ f

2
·
(
ddd (k)
κ f

−ddd (k−1)
κ f

)
∆Vκ f =

∑
κs

FFF (k)
κs

+FFF (k−1)
κs

2
·
(
ddd (k)
κs

−ddd (k−1)
κs

)
∆Vκs =W (k)

s , (8.14)

where again, the left-hand summation is taken over all the fluid boundary elements, and the right-hand sum-
mation is taken over all the structure boundary elements, FFF (k)

κ is the boundary force density vector at marker
κ and time step k and ddd (k)

κ is the displacement vector at marker κ and time step k. Due to interpolation errors
however, there is a small deviation between whether these quantities are evaluated on the fluid boundary
compared to evaluation on the structure mesh. Therefore, defining

ϵ(k)
F =

2
∣∣∣F (k)

f −F (k)
s

∣∣∣∣∣∣F (k)
f

∣∣∣+ ∣∣∣F (k)
s

∣∣∣
max

(8.15)

ϵ(k)
W =

2
∣∣∣W (k)

f −W (k)
s

∣∣∣∣∣∣W (k)
f

∣∣∣+ ∣∣∣W (k)
s

∣∣∣
max

, (8.16)

where the denominator represents the global maximum value of the sum of the absolute values of the quan-
tities in the denominator. The resulting error in the boundary force, and the error in the work done per time
step, is then evaluated over a full period of motion, and is plotted in Figure 8.24 and 8.25, respectively.

Figure 8.24: Interpolation error in the total boundary force
acting on the flag, as evaluated from the fluid surface and
structure surface, for both the IBM and MIIM.

Figure 8.25: Interpolation error in the total work done on the
flag per time step, as evaluated from the fluid surface and
structure surface, for both the IBM and MIIM.

From Figure 8.24 and 8.25, it is evident that the interpolation is relatively small for both the IBM and MIIM,
noting that the quantities plotted (defined in Equation (8.15) and (8.16)) compute the difference between the
structure and fluid surface quantities relative to the average global maximum value of those quantities. This
is further proof the spatial interpolation of the FSI algorithm has been implemented correctly.

Furthermore, it can be noted that for the error in the work done per time step, the MIIM appears to perform
better than the IBM, with the error corresponding to the MIIM mostly remaining below that predicted by the
IBM. This may be caused by the MIIM giving producing a smoother boundary force distribution, therefore
making it easier to interpolate and resulting in a smaller interpolation error than for the IBM. However, it
should be acknowledged that Figure 8.24 is inconclusive at best with regards to whether MIIM or IBM re-
sults in a smaller consistency error overall. Therefore, it cannot be established with certainty that the MIIM
will always yield better results in an FSI-interpolation, or whether Figure 8.25 is merely a fluke. Evaluating
more validation cases, executed at a higher mesh resolution, would likely in arriving at a more conclusive
answer.

9
Sensitivity Analysis

In this chapter, the effect of several numerical parameters are discussed. In Section 9.1, the effect of the mesh
refinement on the oscillations in the boundary force variation is evaluated, and it is seen whether increasing the
mesh resolution aids in reducing the numerical noise. In Section 9.2, the effect of the Mach number is evaluated,
as a higher Mach number generally smoothens the solution due to the added, nonphysical compressibility. In
Section 9.3, the effect of the width of the discrete delta function is evaluated.

9.1. Effect of mesh refinement on oscillations in boundary force variation
In Section 7.3.2 and 7.3.3, it is shown that the IBM has significantly more oscillations in its boundary force dis-
tributions than the MIIM at the same level of grid refinement for the CFD1 benchmark, a result also implied
by the evaluation of a Taylor-Green vortex flow with an immersed body in Section 7.2.

However, it remains of interest how these oscillations behave as the mesh is refined, and whether they tend
to naturally smoothen out. To investigate this, the boundary force distribution near the tip of the flag of the
FSI-1 benchmark, discussed in Section 8.3.1, is evaluated for different mesh refinement levels. The variation
of the force magnitude and its components for both the IBM and MIIM are shown in Figure 9.1-9.6, for three
levels of grid refinement. As in Section 7.3.3, s represents the parametric coordinate describing the flag, with
s = 0 located at the midpoint of the trailing edge, then with a flag thickness of h = 0.02m, the corners of the
flag are located at s = 0.01m and s =−0.01m.

Figure 9.1: Horizontal force component density as function
of parametric coordinate, for the IBM for FSI1, for three mesh
refinement levels.

Figure 9.2: Horizontal force component density as function of
parametric coordinate, for the MIIM for FSI1, for three mesh
refinement levels.

91

92 9. Sensitivity Analysis

Figure 9.3: Vertical force component density as function of
parametric coordinate, for the IBM for FSI1, for three mesh
refinement levels.

Figure 9.4: Vertical force component density as function of
parametric coordinate, for the MIIM for FSI1, for three mesh
refinement levels.

Figure 9.5: Force magnitude density as function of parametric
coordinate, for the IBM for FSI1, for three mesh refinement
levels.

Figure 9.6: Force magnitude density as function of parametric
coordinate, for the IBM for MIIM, for three mesh refinement
levels.

From Figure 9.1-9.6, it is evident that for both the IBM and MIIM, increasing the mesh refinement does reduce
the width of the area that is most subject to oscillations in the boundary force variation, and this area appears
to reduce proportionally to the mesh refinement - when the mesh refinement is doubled, the width of the
oscillations appears to half as well.

However, the amplitude of the oscillations does not seem to decrease with increasing mesh refinement.
Therefore, even with a refined mesh, the quality of the results obtained by the IBM will not converge to those
of the MIIM, a clear benefit to the MIIM.

9.2. Effect of Mach number on oscillations on the boundary force varia-
tion

The Mach number at which the simulation essentially controls the physical time-step of the simulation. Nat-
urally, preferably the Mach number is as small as possible as all validation cases used in Chapter 7 and 8
assume incompressible flow. However, the Mach number may be set higher to speed up the simulation, and
to increase the stability of the simulation, as a higher Mach number results in a higher relaxation rate τ (see
Section 3.4.4), and thus the stability limit of τ→ 1

2 is avoided.

To evaluate this effect, the IBM simulation was repeated at different Mach numbers, ranging from M = 0.04
to M = 0.32 (based on the average inlet velocity). The resulting body forces are shown in Table 9.1, and the
resulting boundary force distribution in the region near the tip of the flag (an area previously identified as
being particularly prone to oscillations) is shown in Figure 9.7 for the various IBM runs, including a compar-
ison to the MIIM at a Mach number of M = 0.04. The simulation was run at a spatial discretisation such that
R = 20∆x.

9.3. Effect of discrete delta function width on the boundary force variation 93

Table 9.1: Lift and drag for the CFD1 benchmark case from
Turek and Hron [8], with the Mach number varied among dif-
ferent IBM runs.

Configuration M Fx [N] Fy [N]

IBM

0.04 14.49 1.070

0.08 14.47 1.033

0.16 14.49 0.964

0.32 15.11 0.680

IIM 0.04 14.43 1.079

Target [8] - 14.29 1.119 Figure 9.7: Plot of the boundary force distribution at the tip
of the flag, for different Mach numbers, for CFD1 at a mesh
discretisation such that R = 20∆x.

It can be seen from Figure 9.7 that increasing the Mach number certainly aids in reducing the oscillations
experienced by the IBM. However, in order to smoothen the solution as well as the MIIM inherently does,
the Mach number needs to be between M = 0.16 and M = 0.32. However, it can also be seen that increasing
the Mach number this much appears to introduce an error in the boundary force at the tip itself, with the
magnitude of it at s = 0.0m growing increasingly with a larger Mach number. Furthermore, from Table 9.1, it
appears that increasing the Mach number above M = 0.08 has detrimental effects on the accuracy of the lift
force.

This appears to make the MIIM a more favourable way of reducing oscillations in the boundary force variation
than merely increasing the Mach number in the original IBM, as the required increase in Mach number to
attain a similar level of smoothness is quite large.

9.3. Effect of discrete delta function width on the boundary force varia-
tion

Similarly, we may investigate the effectiveness of widening the diffusive zone around the boundary of the
flag and cylinder by choosing a different discrete delta function (listed in Section 4.1). After all, by widening
this diffusive zone, the one essentially smooths out the boundary, and as a result, it can be expected that
numerical noise in the solution is damped out (at the cost of general accuracy of the solution).

To investigate this, the IBM simulation was repeated using different discrete delta functions; in particular,
the φ2, φ3 and φ4-functions listed in Section 4.1 (note that φ2 was the default delta-function that was used
throughout all of the validation cases in Chapter 7 and 8), as well as the smoothed discrete-delta function φ5

proposed by Yang et al. [39], which can be evaluated as

φ5 (r) =
r+0.5∫

r−0.5

φ4 (r̃)dr̃ . (9.1)

The resulting body forces are shown in Table 9.1, and the resulting boundary force distribution in the region
near the tip of the flag (an area previously identified as being particularly prone to oscillations) is shown in
Figure 9.7 for the various IBM runs, including a comparison to the MIIM usingφ2. The results were generated
using a M = 0.04, and using a grid discretisation such that R = 20∆x.

94 9. Sensitivity Analysis

Table 9.2: Lift and drag for the CFD1 benchmark case from
Turek and Hron [8], with the discrete delta function varied
among different IBM runs.

Configuration Discrete delta function Fx [N] Fy [N]

IBM

φ2 14.49 1.070

φ3 14.58 1.092

φ4 14.68 1.105

φ5 14.72 1.109

IIM φ2 14.43 1.079

Target [8] - 14.29 1.119 Figure 9.8: Plot of the boundary force distribution at the tip
of the flag, for different Mach numbers, for CFD1 at a mesh
discretisation such that R = 20∆x.

It can be seen that although using a wider support radius reduces the the oscillations in the boundary force
density somewhat (in particular, note how for φ2, oscillations start to occur around s = ±0.04m, but for the
wider delta functions, they appear to start slightly closer to the edge). However, overall, even φ5 does not
come close to the smoothness of the MIIM solution. Furthermore, the accuracy of the body forces also ap-
pears somewhat lesser at wider discrete delta functions, although it is not as drastic as increasing the Mach
number in Section 9.2 was.

Thus, the MIIM appears significantly more effective at reducing numerical noise than changing the discrete
delta function is.

However, even if widening the support radius was effective, there are still important caveats to make. First,
widening the diffusive zone means the boundary is smeared out over a larger part, which inevitably decreases
the accuracy of the solution. This may be an issue in particular when two boundaries are in close proximity
to each other (e.g. two wings from a flapping wing MAV providing a clap-and-fling effect), as the fluid solver
may start to be unable to distinguish effectively between the boundaries due to the diffusion of them.

Furthermore, the computational cost introduced by it is significant. When widening the support radius from
2 to 4 lattice units for example, the number of to be interpolated nodes increases by a factor 4 in a two-
dimensional lattice. Not only that, the complexity of the weighting function also increases significantly, which
makes the evaluation of it noticeably slower.

In conclusion, the MIIM is likely a more efficient solution at reducing the oscillations in the solution than
widening the support radius is, both in terms of effectiveness, accuracy and computational effort. This once
again speaks to the merits of the MIIM.

10
Conclusion

Throughout this thesis, a number of important results were obtained. This enables answering the research
questions which will be done in this Chapter.

1. How suitable is the lattice Boltzmann method for the fluid-structure-interaction of flapping wing
MAVs, such as the DelFly II, in light of the the challenges posed by the highly deformable wings, low
Reynolds number and high Strouhal number characteristics of such vehicles?

From the variety of validation cases, it can be concluded that the LaBIB-FSI solver (and therefore, the LBM) is
a suitable candidate for flow characteristic of flapping wing MAVs, with the solver showing accurate results for
the aerodynamic forces and structural deformation across a number of validation cases. The LBM is a natural
candidate for unsteady flow, and moving boundaries pose no significant difficulty compared to stationary
boundaries, a suitable property for problems involving flapping wing MAVs.

Nonetheless, it should be acknowledged that no meaningful conclusion can be drawn on whether the LaBIB-
FSI solver in its current state would be suitable for complex flow phenomena such as the clap-and-fling effect
as none of the validation cases is similar to such a flow. This should therefore be the subject of future research,
as recommended in Chapter 11.

Furthermore, it should be acknowledged that the results for the FSI3 benchmark, although promising, ap-
peared somewhat inconsistent with the results by Turek and Hron [8]. However, the likely cause for this has
been identified, and as recommended in Chapter 11, this is something that could be improved in future work
on the LaBIB-FSI solver, allowing for proper validation of the FSI3 benchmark.

2. How can the immersed interface method be applied to the lattice Boltzmann method?

Chapter 5 has shown how jump conditions can be computed from a boundary force distribution, and subse-
quently imposed in population space. A variety of derivatives of the IIM in the LBM have been proposed, the
most relevant of which is the MIIM introduced in Section 5.3.

As shown in Chapter 5, an attempt at applying the immersed interface method was previously made by Qin
et al. [7]. However, their derivation appears to be several flawed in two aspects. One of them is a simple
erroneous vector-operation that can be easily corrected for, but the other appears to be a misunderstanding
of what jump distribution found them actually represents. It is shown in Section 5.7 that correcting for this
ultimately results in an equivalent expression to the one derived in Section 5.1 (but note that Qin et al. used
the incorrect expression).

Nevertheless, even if these mistakes are accounted for, the implementation proposed in Section 5.2 still ap-
pears superior to the one by Qin et al., as the implementation proposed in this thesis does not require the
calculation of intersections between the lattice links and the boundary, and uses the IIM consistently for its

95

96 10. Conclusion

entire boundary forcing computation, whereas Qin et. al utilise the IBM to obtain the boundary forcing, and
then only impose the normal component of the boundary forcing through their IIM.

3. How does the computational effort of the immersed interface method compare to that of the im-
mersed boundary method, when applied to the Lattice Boltzmann method?

The difference in computational effort between the IBM and IIM is discussed in Section 5.5.2, where it is dis-
cussed that both methods scale in terms of computational effort with regards to the number of Lagrangian
markers in the boundary discretisation. However, the IIM is generally somewhat more expensive to run than
the IBM, as the IIM interpolates in population space whereas the IBM interpolates in velocity space. As a
result, the IIM requires the interpolation of 9/2 more solution quantities, which can be a considerable differ-
ence.

However, in practical examples, the LBM algorithm obviously includes several other steps, and generally, the
number of Lagrangian markers is small compared to the total number of fluid nodes. Therefore, in runs such
as those for the Turek and Hron [8], the IIM was only in the order of 10%-50% slower than the IBM (generally
closer to 10%), although this has not been measured systematically, as this may be dependent on hardware
and implementation optimisation, too.

4. Does the implementation of the immersed interface method provide a tangible benefit over using
the immersed boundary method in terms of numerical noise reduction and overall accuracy?

The MIIM boasts important benefits over the IBM. It is consistently shown throughout Chapter 7 and 8
that the MIIM reduces numerical noise in the boundary force solution, for example resulting in significantly
smaller spatial oscillations in the boundary force distribution in the region of the tip of the flag in the Turek
and Hron [8] benchmark cases. This is an important benefit that may be of particular relevance for coupling
with structural solvers, for whom an oscillating boundary force distribution may negatively affect the accu-
racy of the solution. Temporal variation of the total body force also appears to be lower, a result observed in
the time-history of the body forces in the FSI3 benchmark, shown in Section 8.3.2.

Apart from reducing the noise in the solution, the MIIM also appears to produce more accurate results at
more accurate results than the IBM at the same discretisation level, observed from more accurate values for
the body forces for the CFD1, CFD2 and CFD3 benchmark cases of Section 7.3, more accurate displacements
in the FSI1 benchmark of Section 8.3.1, and a smaller discretisation error (at the same grid refinement) than
the IBM in the benchmark of an oscillating cylinder in a fluid at rest of Section 8.1.2. This is another tangible
benefit to the IIM.

5. How effective is the immersed interface method in damping out numerical noise compared to ad-
justing the numerical parameters of the simulations, such as the Mach number of the flow and the
width of the discrete delta functions?

The effect of the Mach number and width of the discrete delta function is evaluated in Section 9.2 and 9.3,
respectively. The MIIM is a more efficient solution at reducing the oscillations in the solution than increas-
ing the Mach number, as the Mach number needs to be increased significantly to achieve the same level of
smoothness for the IBM that the MIIM reaches at a small Mach number, to the degree that the accuracy of the
solution starts to deteriorate quickly. Similarly, the MIIM is more effective at reducing the numerical noise
than widening the support radius is, both in terms of effectiveness, accuracy and computational effort. This
once again speaks to the merits of the MIIM.

11
Recommendations

Despite the positive results obtained in this thesis, there is still a wide array of open questions related to the
immersed boundary / immersed interface method, the lattice Boltzmann method in general, and the written
LaBIB-FSI solver, which could form the basis of future research. In Section 11.1, several recommendations
with regard to the immersed boundary / immersed interface method are made. Section 11.2 lists a number
of recommendations regarding the lattice Boltzmann method in general. Finally, Section 11.3 lists a number of
improvements that can be made to the LaBIB-FSI solver specifically.

11.1. Recommendations regarding boundary treatment
A number of opportunities for future research exist in the area of the IBM & IIM itself. First of all, as discussed
in Chapter 5, the IIM-LBM possesses more control over the time-stepping scheme than the IBM-LBM is able
to provide. Thus, it is of interest to investigate the use of more complex schemes than the midpoint method.
It should be noted that in Section 5.8.1 a variation on the IIM based on a two-stage method is proposed,
which appeared to give inferior results in Section 7.2, compared to the MIIM. However, this was merely one
time-stepping scheme that has been tested in a limited fashion, and there is undoubtedly more to explore in
this area.

Secondly, as discussed Section 5.6.2, the work by Tao et al. [76] appears interesting to combine with the
IIM. After all, Tao et al. developed an IBM where the populations are directly corrected for the presence of a
boundary (instead of through diffusion of a boundary force). Considering the IIM-LBM relies on interpolation
of in population space instead of velocity space, the IIM-LBM appears a fitting candidate to attempt the same
approach on.

Thirdly, to improve the performance of the boundary treatment at higher Reynolds number at lower grid res-
olution levels, it is interesting to apply a wall model to the solution. Wall models have been widely researched
and applied in conventional, NS-based frameworks; see e.g. the recent works by Larsson et al. [99] and Bose
and Park [100]. The central idea of a wall model is to predict the flow velocity inside the boundary layer, based
on a measurement of the velocity farther away from the wall. The velocity at the grid nodes closest to the wall
can then make use of this prediction to better simulate the flow behaviour near the wall, without requiring a
fine mesh. Normally one would require the first grid node to be y+ ≈ 1 away from the wall to fully resolve the
flow, but with the use of an accurate wall model, this distance may be much larger.

Wall models have been widely applied to Navier-Stokes based solvers, and have already been applied to the
LBM by a variety of authors, such as Malaspinas and Sagaut [101], Wilhelm et al. [102] and Maeyama et al.
[103]. Commercial solvers such as XFlow [104] and Powerflow [105] also employ wall models in their bound-
ary schemes. However, to the best of the author’s knowledge, all these applications have been to bounce-back
or wet-node boundary schemes, and never to the immersed boundary method.

Wall models have been applied to the IBM in the Navier-Stokes framework before, by e.g. Tessicini et al. [106],
Roman et al. [107] and Chen et al. [108], which shows that there is an interest in employing wall models in the
IBM, although it should be noted that these were for sharp-interface IBMs. Recently, Ma et al. [109] applied

97

98 11. Recommendations

a wall model to a diffusive IBM, by modifying the local viscosity with an eddy viscosity based on their wall
model.

It is thus of interest to apply a wall model to the diffusive IBM in the LBM. Therefore, the following proposal
of a wall-modelled, multi-direct forcing IBM in the LBM is made here. First, one can place a probing point
a few lattice units of distance away from the wall, in the direction normal to the boundary surface, at which
the fluid velocity is measured. This velocity can then be used to reconstruct the velocity profile along the
direction normal to the wall, using a suitable wall model. Now, suppose that it is found that the velocity
obtained at xxxi by a wall model is uuui ,wm(xxxi). Then Equation (4.6), which spreads the velocity from the Eulerian
grid to the Lagrangian boundary marker, could be modified from

UUU k (XXX k) =
∑

i
uuui (xxxi)D (XXX k (t)−xxxi) (4.6)

to

ÛUU k (XXX k) =
∑

i

(
uuui (xxxi)−uuui ,wm (xxxi)

)
D (XXX k (t)−xxxi) , (11.1)

and modify Equation (4.7) from

FFF (m+1)
k = ρ

UUU k −UUU (m)
k

∆t
(4.7)

to

FFF (m+1)
k = ρ−ÛUU

(m)
k

∆t
. (11.2)

Essentially, instead of spreading the velocity directly from the Eulerian nodes and computing the deficit with
the desired boundary velocity at the Lagrangian marker to compute the required corrective force FFF (m+1)

k ,
Equation (11.1) would spread the velocity deficit at each Eulerian node with respect to the ‘desired’ velocity
from the wall-model, and compute the required corrective force based on this interpolated deficit ÛUU k . Note
that the value ofUUU k is accounted for in the computation of uuui ,wm(xxxi), and taking uuui ,wm(xxxi) =UUU k would return
the original algorithm without a wall model. The intent of this modification is to ensure that the velocity at
the nodes closed to the boundary are forced towards the velocity predicted by a wall-model, rather than the
velocity of the boundary itself.

Implementation and validation of this method could offer a valuable improvement to the IBM-LBM. How-
ever, it should be noted that the methodology above can only be applied to the IBM, and not the IIM. After
all, the IIM is based on interpolation of the populations, and it is thus not directly obvious how the approach
above should be modified to fit into an IIM. A final recommendation is therefore, if the proposal listed above
is successful, to develop, implement and validate a similar methodology for the IIM.

11.2. Recommendations regarding lattice Boltzmann method
For the lattice Boltzmann method itself, a single recommendation is put forth here, regarding the use of MRT
models discussed in Section 3.5. Several authors have shown that the choice of relaxation parameter is usually
performed ad hoc, using values of unity for free relaxation parameters or using values of different authors [70,
110–113], or presented without notable corroboration [114, 115]. Meanwhile, the effect of the free relaxation
parameters can be significant, as demonstrated by various authors, such as Wu and Shao [110], Luo et al. [57],
Yoshida and Nagaoka [111] and Chávez et al. [116].

Recently, an adaptive algorithm was developed by Li et al. [117] proposed an adaptive algorithm that adjusted
the free relaxation parameters based on the local time rate of change of the various moments at a certain
grid node. Although qualitatively good results seemed to have been obtained, more research is required to
quantify its performance and stability compared to existing, fixed sets of relaxation parameters. In any case,
promise is shown in adjusting the relaxation parameters to improve the accuracy of the simulation, and a
more exhaustive study in the effect of the relaxation parameters from a practical point of view would be a
worthwhile endeavour.

11.3. Recommendations regarding LaBIB-FSI 99

11.3. Recommendations regarding LaBIB-FSI
Finally, some recommendations can be made regarding the LaBIB-FSI solver. First, a high-priority improve-
ment would be to add support for compensation for the added mass effect in the IBM and IIM procedures.
It is discussed in Section 8.3.3 that the omission of a correction for the added mass effect likely degraded the
quality of the solution of the FSI3-benchmark, and was the likely cause of a phase-shift between the time-
history of the drag force. Therefore, it is imperative that the solver is corrected for this.

However, it should be noted that a general procedure for this correction is not trivial. After all, although

FFF in (t) = ρ f
d

d t

∫
xxx∈Ω(t)

uuu (xxx, t)dxxx (8.4)

yields information on the total force of the added mass, it does not provide any information on its distribu-
tion, and how the boundary force found by the IBM/IIM should be compensated for. After all, for an arbitrar-
ily shaped, closed surface, one could easily compute the effect of the added mass enclosed in a small volume
in the interior of the body. However, it then remains a question how the boundary force distribution should
be adjusted based on the added mass of this internal volume.

Nonetheless, for the cantilever beam in the FSI3 benchmark, the correction would be easy to implement. The
current structural model reduces the beam to a single, one-dimensional line, and one could easily construct
a lumped mass model of the added mass effect, and adjust the force distribution at each structural node
based on the element volume, element acceleration and fluid density. Doing so would allow LaBIB-FSI to be
properly validated for the FSI3 benchmark.

Secondly, to improve the accuracy at higher Reynolds number flow without requiring a mesh that becomes
extremely fine, it is recommended that an eddy-viscosity model is implemented in the fluid solver. Eddy-
viscosity models have already been widely applied in the LBM, e.g by Uphoff [25], Suga et al. [118], and
Gkoudesnes and Deiterding [119]. Eddy-viscosity models are simple to implement in the LBM, as the eddy-
viscosity is simply added to the kinematic viscosity that is used to determine the relaxation parameter during
the collision process.

However, it should be noted that not many authors have actually evaluated the benefits of an eddy-viscosity
model in the LBM in comparison to a ‘bare’ LBM. It was shown by Uphoff [25] that the two-relaxation time
cascaded LBM produced similar accuracy for a turbulent channel flow compared to two-relaxation time or
multi-relaxation time models that employed a WALE or Smaogirnksy eddy viscosity model. Similarly, Geier
et al. [120] showed recently that the WALE model does not necessary increase the accuracy at low Reynolds
numbers in a cumulant MRT model. Therefore, it is recommended to investigate and quantify the benefits
that an eddy viscosity model may bring to the LBM in more detail.

Furthermore, the fluid solver should be coupled to a higher fidelity structural solver. As noted in Section 8.2,
the current structural solver, which relies on reducing a cantilever beam to a single, one-dimensional line that
connects several beam elements, appears reasonably accurate, but still shows an error of approximately 5%
for a simple validation case of a beam vibrating under its own gravitational weight. This could presumably be
improved by using a more sophisticated structural solver. This would likely also allow the support for more
complex structural bodies.

Finally, to utilise the potential for massive parallelisation of the LBM, it is suggested to implement CUDA-
support into the LaBIB-FSI solver. Currently, the LaBIB-FSI solver uses OpenMP to parallelise the fluid solver
over multiple CPU-cores, but naturally, using a GPU would allow even larger-scale parallelisation. One dif-
ficulty here is that the LaBIB-FSI solver uses some functionality that is exclusive to the C++20-standard,
whereas the most recent release of the nvcc-compiler only support up to C++17. However, it can be con-
sidered likely that C++20-support will soon come to nvcc.

11.4. Summary of recommendations
To summarise, the following actionable recommendations were set forth in this chapter:

• Explore different time-stepping schemes for the IIM-LBM, to utilise the control the IIM-LBM yields
compared to the IBM-LBM.

100 11. Recommendations

• Combine the work by Tao et al. [76], who developed an IBM where the populations are directly cor-
rected for the presence of a boundary (rather than through a feedback force at the boundary), with the
IIM-LBM developed in this thesis.

• Implement and validate the modification to the IBM-LBM described in Section 11.1, which would im-
plement a wall model into the IBM-LBM.

• Develop, implement and validate a similar methodology for the IIM-LBM.
• Examine, from a practical point of view, what the effect is of choosing different relaxation parameters

in MRT models in the LBM.
• Implement a correction for the added mass effect in the LaBIB-FSI solver directly.
• Implement an eddy-viscosity model to improve stability and accuracy at higher Reynolds numbers with

coarser meshes.
• Investigate and quantify the results of implementing such an eddy-viscosity model.
• Couple the LaBIB-FSI solver to a more sophisticated structural model.
• Implement CUDA-support in the LaBIB-FSI solver, to utilise the potential for massive parallelisation of

the LBM.

IV
Appendices

101

A
Supplementary derivations

A.1. Example of immersed interface method to an elliptic differential equa-
tion

The idea of the immersed interface method first mentioned in Chapter 2 and discussed extensively in Chapter
5 can be illustrated via an application of it to a one-dimensional elliptic differential equation. In particular,
consider the differential equation

d 2u

d x2 = f (x) (A.1)

f (x) = Kδ (x − x̄) (A.2)

u (0) = 0 (A.3)

∂u

∂x
(1) =−1, (A.4)

where f (x) is a point source applying at x = x̄, with some magnitude K . Clearly, this problem contains a
discontinuity in the forcing. Consider a mesh discretisation consisting of the nodes x0, ..., xn with xi = i /n. If
one was to use a central-difference scheme, one would simply discretise the second derivative as

d 2u

d x2 ≈ d 2u

d x2

∣∣∣∣
i
= ui+1 −2ui +ui−1

h2 , (A.5)

where h = 1/n. Suppose that x j < x̄ < x j+1 for some value of j . The above discretisation can then be freely
applied at all nodes x1, ..., x j−1, x j+2, ..., xn−1, as these regions are unaffected by the point source. For the nodes
x0 and xn , an equation may easily be derived based on the Dirichlet and Neumann boundary conditions
applying at those points. For the nodes x j and x j+1 however, a special discretisation should be set up. Note
that Equation (A.5) may be written as

d 2u

d x2

∣∣∣∣
i
≈

ui+1−ui
h − ui−ui−1

h

h
=

du
d x

∣∣∣
i+1/2

− du
d x

∣∣∣
i−1/2

h
, (A.6)

where du/d x|i is the central difference for the first derivative,

du

d x

∣∣∣∣
i
= ui+1/2 −ui−1/2

h
. (A.7)

Clearly, d 2u/d x2
∣∣
i should approximate the change in the first derivative between the interval on its right and

on its left. Now, consider the integration of Equation (A.1) in a very small region around x̄, i.e. between x̄−δx

103

104 A. Supplementary derivations

and x̄ +δx. We obtain

x̄+δx∫
x̄−δx

d 2u

d x2 d x =
x̄+δx∫

x̄−δx

Kδ (x − x̄)d x (A.8)

[
du

d x

]x̄+δx

x̄−δx
= K . (A.9)

Thus, in the limit of δx → 0, it is known that du/d x experiences a jump equal to

J
du

d x
Kx̄ = K , (A.10)

where J·Kx indicates the jump in a certain value at location x, i.e.

J f Kx = lim
δx→0

f (x +δx)− lim
δx→0

f (x −δx) . (A.11)

Now, suppose x̄ − x j < 1/2, i.e., the source is located closer to x j than to x j+1. In that case, the first derivative
du/d x has undergone the jump in Equation (A.10) between its approximations du/d x| j−1/2 and du/d x| j+1/2.
Thus, to obtain the slope of the first derivative, it would be more accurate to express the second derivative
as

d 2u

d x2

∣∣∣∣
j
≈

du
d x

∣∣∣
i+1/2

− du
d x

∣∣∣
i−1/2

− Jdu
d x Kx̄

h
=

du
d x

∣∣∣
i+1/2

− du
d x

∣∣∣
i−1/2

−K

h
, (A.12)

so as to exclude the effect that the jump has on the average slope in the first derivative. Clearly, it is similar to
an immersed boundary method as the grid does not conform to the boundary or the application of a point
force.

Bibliography

[1] Bin Abas, M. F., Bin Mohd Rafie, A. S., Bin Yusoff, H., et al., Flapping wing micro-aerial-vehicle: Kine-
matics, membranes, and flapping mechanisms of ornithopter and insect flight, Chinese Journal of
Aeronautics, 2016, vol. 29, no. 5, pp. 1159–1177, doi:https://doi.org/10.1016/j.cja.2016.08.003, URL
https://www.sciencedirect.com/science/article/pii/S1000936116300978.

[2] Krüger, T., Kusumaatmaja, H., Kuzmin, A., et al., The Lattice Boltzmann Method, Springer, Switzerland,
2017.

[3] Guo, Z., and Shu, C., Lattice Boltzmann Method and Its Applications in Engineering, World Scientific
Publishing Company, Singapore, 2013.

[4] Peskin, C. S., Numerical analysis of blood flow in the heart, Journal of Computational Physics, 1977,
vol. 25, no. 3, pp. 220–252, doi:https://doi.org/10.1016/0021-9991(77)90100-0, URL https://www.
sciencedirect.com/science/article/pii/0021999177901000.

[5] Feng, Z.-G., and Michaelides, E. E., The Immersed Boundary-Lattice Boltzmann Method for Solving
Fluid-Particles Interaction Problems, J. Comput. Phys., 4 2004, vol. 195, no. 2, p. 602–628, doi:10.1016/j.
jcp.2003.10.013, URL https://doi-org.tudelft.idm.oclc.org/10.1016/j.jcp.2003.10.013.

[6] Leveque, R. J., and Li, Z., The Immersed Interface Method for Elliptic Equations with Discontinuous
Coefficients and Singular Sources, SIAM Journal on Numerical Analysis, 1994, vol. 31, no. 4, pp. 1019–
1044, URL http://www.jstor.org/stable/2158113.

[7] Qin, J., Kolahdouz, E. M., and Griffith, B. E., An immersed interface-lattice Boltzmann method for
fluid-structure interaction, Journal of Computational Physics, 2021, vol. 428, p. 109807, doi:https:
//doi.org/10.1016/j.jcp.2020.109807, URL https://www.sciencedirect.com/science/article/
pii/S0021999120305817.

[8] Turek, S., and Hron, J., Proposal for Numerical Benchmarking of Fluid-Structure Interaction between
an Elastic Object and Laminar Incompressible Flow, in Bungartz, H.-J., and Schäfer, M. (eds.), Fluid-
Structure Interaction, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 371–385.

[9] Shyy, W., Lian, Y., Tang, J., et al., Aerodynamics of Low Reynolds Number Flyers, Cambridge Aerospace
Series, Cambridge University Press, 2007, doi:10.1017/CBO9780511551154.003.

[10] De Rosis, A., Ubertini, S., and Ubertini, F., A Comparison Between the Interpolated Bounce-Back
Scheme and the Immersed Boundary Method to Treat Solid Boundary Conditions for Laminar Flows
in the Lattice Boltzmann Framework, Journal of Scientific Computing, 12 2014, vol. 61, no. 3,
p. 477–489, doi:10.1007/s10915-014-9834-0, URL https://doi-org.tudelft.idm.oclc.org/10.
1007/s10915-014-9834-0.

[11] Hino, H., and Inamuro, T., Turning flight simulations of a dragonfly-like flapping wing-body model by
the immersed boundary-lattice Boltzmann method, Fluid Dynamics Research, 09 2018, vol. 50, no. 6, p.
065501, doi:10.1088/1873-7005/aad78c, URL https://doi.org/10.1088/1873-7005/aad78c.

[12] Rutkowski, M., Gryglas, W., Szumbarski, J., et al., Open-loop optimal control of a flapping wing
using an adjoint Lattice Boltzmann method, Computers & Mathematics with Applications, 2020,
vol. 79, no. 12, pp. 3547–3569, doi:https://doi.org/10.1016/j.camwa.2020.02.020, URL https://www.
sciencedirect.com/science/article/pii/S0898122120300870.

[13] Castro, S. G. P., General-purpose finite element solver based on Python/Cython, 2022, doi:10.5281/
zenodo.6573490, URL https://doi.org/10.5281/zenodo.6573490.

105

https://www.sciencedirect.com/science/article/pii/S1000936116300978
https://www.sciencedirect.com/science/article/pii/0021999177901000
https://www.sciencedirect.com/science/article/pii/0021999177901000
https://doi-org.tudelft.idm.oclc.org/10.1016/j.jcp.2003.10.013
http://www.jstor.org/stable/2158113
https://www.sciencedirect.com/science/article/pii/S0021999120305817
https://www.sciencedirect.com/science/article/pii/S0021999120305817
https://doi-org.tudelft.idm.oclc.org/10.1007/s10915-014-9834-0
https://doi-org.tudelft.idm.oclc.org/10.1007/s10915-014-9834-0
https://doi.org/10.1088/1873-7005/aad78c
https://www.sciencedirect.com/science/article/pii/S0898122120300870
https://www.sciencedirect.com/science/article/pii/S0898122120300870
https://doi.org/10.5281/zenodo.6573490

106 Bibliography

[14] Lighthill, M. J., On the Weis-Fogh mechanism of lift generation, Journal of Fluid Mechanics, 1973, vol. 60,
no. 1, p. 1–17, doi:10.1017/S0022112073000017.

[15] Miller, L., and Peskin, C., Flexible clap and fling in tiny insect flight, Journal of Experimental Biology,
2009, vol. 212, pp. 3076 – 3090.

[16] Liu, H., and Aono, H., Size effects on insect hovering aerodynamics: an integrated computational study,
Bioinspiration & Biomimetics, 3 2009, vol. 4, no. 1, p. 015002, doi:10.1088/1748-3182/4/1/015002, URL
https://doi.org/10.1088/1748-3182/4/1/015002.

[17] Decroon, G., Percin, M., Remes, B., et al., The Delfly: Design, aerodynam-
ics, and artificial intelligence of a flapping wing robot, Springer, 2016, doi:10.
1007/978-94-017-9208-0, URL https://research.tudelft.nl/en/publications/
the-delfly-design-aerodynamics-and-artificial-intelligence-of-a-f, harvest.

[18] Gillebaart, T., Influence of flexibility on the clap and peel movement of the DelFly II , Ph.D. thesis, TU
Delft University of Technology, 2011.

[19] Tay, W. B., van Oudheusden, B. W., and Bijl, H., Numerical simulation of X-wing type biplane flap-
ping wings in 3D using the immersed boundary method, Bioinspiration & biomimetics, 9 2014, vol. 9,
no. 3, p. 036001, doi:10.1088/1748-3182/9/3/036001, URL http://www.ncbi.nlm.nih.gov/pubmed/
24584155.

[20] Tay, W., van Oudheusden, B., and Bijl, H., Numerical simulation of a flapping four-wing micro-aerial
vehicle, Journal of Fluids and Structures, 2015, vol. 55, pp. 237–261, doi:10.1016/j.jfluidstructs.2015.03.
003.

[21] Tay, W., Deng, S., van Oudheusden, B., et al., Validation of immersed boundary method for the nu-
merical simulation of flapping wing flight, Computers & Fluids, 2015, vol. 115, pp. 226–242, doi:
10.1016/j.compfluid.2015.04.009.

[22] Arumuga Perumal, D., and Dass, A. K., A Review on the development of lattice Boltzmann compu-
tation of macro fluid flows and heat transfer, Alexandria Engineering Journal, 2015, vol. 54, no. 4,
pp. 955–971, doi:https://doi.org/10.1016/j.aej.2015.07.015, URL https://www.sciencedirect.com/
science/article/pii/S1110016815001362.

[23] Hou, S., Sterling, J., Chen, S., et al., A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows,
Cellular Automata and Lattice Gases, 1996.

[24] Krafzcyk, M., Tölke, J., and Luo, L.-S., Large-Eddy Simulations with a Multiple-Relaxation-Time LBE
MODEL, International Journal of Modern Physics B, 2003, vol. 17, no. 01n02, pp. 33–39, doi:10.
1142/S0217979203017059, URL https://doi.org/10.1142/S0217979203017059, https://doi.
org/10.1142/S0217979203017059.

[25] Uphoff, S., Development and Validation of turbulence models for Lattice Boltzmann schemes, Ph.D.
thesis, Technical University of Braunschweig, 1 2013, doi:10.24355/dbbs.084-201401141113-0, URL
https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00055260.

[26] Smagorinsky, J., General Circulation Experiments with the Primitive Equations: I. The Basic Exper-
iment, Monthly Weather Review, 1963, vol. 91, no. 3, pp. 99 – 164, doi:10.1175/1520-0493(1963)
091<0099:GCEWTP>2.3.CO;2, URL https://journals.ametsoc.org/view/journals/mwre/91/
3/1520-0493_1963_091_0099_gcewtp_2_3_co_2.xml.

[27] Van Driest, E. R., On Turbulent Flow Near a Wall, Journal of the Aeronautical Sciences, 1956, vol. 23,
no. 11, pp. 1007–1011, doi:10.2514/8.3713, URL https://doi.org/10.2514/8.3713, https://doi.
org/10.2514/8.3713.

[28] Nicoud, F., and Ducros, F., Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient
Tensor, Flow, Turbulence and Combustion, 1999, vol. 62, pp. 183–200.

https://doi.org/10.1088/1748-3182/4/1/015002
https://research.tudelft.nl/en/publications/the-delfly-design-aerodynamics-and-artificial-intelligence-of-a-f
https://research.tudelft.nl/en/publications/the-delfly-design-aerodynamics-and-artificial-intelligence-of-a-f
http://www.ncbi.nlm.nih.gov/pubmed/24584155
http://www.ncbi.nlm.nih.gov/pubmed/24584155
https://www.sciencedirect.com/science/article/pii/S1110016815001362
https://www.sciencedirect.com/science/article/pii/S1110016815001362
https://doi.org/10.1142/S0217979203017059
https://doi.org/10.1142/S0217979203017059
https://doi.org/10.1142/S0217979203017059
https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00055260
https://journals.ametsoc.org/view/journals/mwre/91/3/1520-0493_1963_091_0099_gcewtp_2_3_co_2.xml
https://journals.ametsoc.org/view/journals/mwre/91/3/1520-0493_1963_091_0099_gcewtp_2_3_co_2.xml
https://doi.org/10.2514/8.3713
https://doi.org/10.2514/8.3713
https://doi.org/10.2514/8.3713

Bibliography 107

[29] Vreman, A. W., The filtering analog of the variational multiscale method in large-eddy simulation,
Physics of Fluids, 2003, vol. 15, no. 8, pp. L61–L64, doi:10.1063/1.1595102, URL https://doi.org/
10.1063/1.1595102, https://doi.org/10.1063/1.1595102.

[30] Pradeep Kumar, S., De, A., and Das, D., Investigation of flow field of clap and fling motion
using immersed boundary coupled lattice Boltzmann method, Journal of Fluids and Structures,
2015, vol. 57, pp. 247–263, doi:https://doi.org/10.1016/j.jfluidstructs.2015.06.008, URL https://www.
sciencedirect.com/science/article/pii/S0889974615001383.

[31] De Rosis, A., Falcucci, G., Ubertini, S., et al., Aeroelastic study of flexible flapping wings by a cou-
pled lattice Boltzmann-finite element approach with immersed boundary method, Journal of Fluids
and Structures, 2014, vol. 49, pp. 516–533, doi:https://doi.org/10.1016/j.jfluidstructs.2014.05.010, URL
https://www.sciencedirect.com/science/article/pii/S0889974614001169.

[32] De Rosis, A., Ubertini, S., and Ubertini, F., A partitioned approach for two-dimensional
fluid–structure interaction problems by a coupled lattice Boltzmann-finite element method with im-
mersed boundary, Journal of Fluids and Structures, 2014, vol. 45, pp. 202–215, doi:https://doi.org/10.
1016/j.jfluidstructs.2013.12.009, URL https://www.sciencedirect.com/science/article/pii/
S0889974613002910.

[33] Tiwari, A., and Vanka, S. P., A ghost fluid Lattice Boltzmann method for complex geometries, Interna-
tional Journal for Numerical Methods in Fluids, 2012, vol. 69, no. 2, pp. 481–498, doi:https://doi.org/10.
1002/fld.2573, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2573, https://
onlinelibrary.wiley.com/doi/pdf/10.1002/fld.2573.

[34] Huang, W.-X., and Tian, F.-B., Recent trends and progress in the immersed boundary method, Proceed-
ings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,
2019, vol. 233, no. 23-24, pp. 7617–7636, doi:10.1177/0954406219842606, URL https://doi.org/10.
1177/0954406219842606, https://doi.org/10.1177/0954406219842606.

[35] Kang, S. K., and Hassan, Y. A., A comparative study of direct-forcing immersed boundary-lattice
Boltzmann methods for stationary complex boundaries, International Journal for Numerical
Methods in Fluids, 2011, vol. 66, no. 9, pp. 1132–1158, doi:https://doi.org/10.1002/fld.2304, URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2304, https://onlinelibrary.
wiley.com/doi/pdf/10.1002/fld.2304.

[36] Lee, L., and LeVeque, R. J., An immersed interface method for incompressible Navier–Stokes equations,
SIAM Journal on Scientific Computing, 2003, vol. 25, no. 3, pp. 832–856.

[37] Xu, S., and Wang, Z. J., An immersed interface method for simulating the interaction of a fluid with
moving boundaries, Journal of Computational Physics, 2006, vol. 216, no. 2, pp. 454–493.

[38] Vaughan, B., Jr., J., Smith, B., et al., A comparison of the extended finite element method with the im-
mersed interface method for elliptic equations with discontinuous coefficients and singular sources,
Communications in Applied Mathematics and Computational Science, 2006, vol. 1, pp. 207–228, doi:
10.2140/camcos.2006.1.207.

[39] Yang, X., Zhang, X., Li, Z., et al., A smoothing technique for discrete delta functions with application
to immersed boundary method in moving boundary simulations, Journal of Computational Physics,
2009, vol. 228, no. 20, pp. 7821–7836, doi:https://doi.org/10.1016/j.jcp.2009.07.023, URL https://
www.sciencedirect.com/science/article/pii/S0021999109004136.

[40] Finkelstein, L., Structure of the Boltzmann Collision Operator, The Physics of Fluids, 1965, vol. 8,
no. 3, pp. 431–436, doi:10.1063/1.1761242, URL https://aip.scitation.org/doi/abs/10.1063/
1.1761242, https://aip.scitation.org/doi/pdf/10.1063/1.1761242.

[41] Belmont, G., Rezeau, L., Riconda, C., et al., 3 - Kinetic Theory of Plasma, in Belmont, G., Rezeau,
L., Riconda, C., et al. (eds.), Introduction to Plasma Physics, Elsevier, 2019, pp. 57–74, doi:https://
doi.org/10.1016/B978-1-78548-306-6.50003-2, URL https://www.sciencedirect.com/science/
article/pii/B9781785483066500032.

https://doi.org/10.1063/1.1595102
https://doi.org/10.1063/1.1595102
https://doi.org/10.1063/1.1595102
https://www.sciencedirect.com/science/article/pii/S0889974615001383
https://www.sciencedirect.com/science/article/pii/S0889974615001383
https://www.sciencedirect.com/science/article/pii/S0889974614001169
https://www.sciencedirect.com/science/article/pii/S0889974613002910
https://www.sciencedirect.com/science/article/pii/S0889974613002910
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2573
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.2573
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.2573
https://doi.org/10.1177/0954406219842606
https://doi.org/10.1177/0954406219842606
https://doi.org/10.1177/0954406219842606
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2304
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.2304
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.2304
https://www.sciencedirect.com/science/article/pii/S0021999109004136
https://www.sciencedirect.com/science/article/pii/S0021999109004136
https://aip.scitation.org/doi/abs/10.1063/1.1761242
https://aip.scitation.org/doi/abs/10.1063/1.1761242
https://aip.scitation.org/doi/pdf/10.1063/1.1761242
https://www.sciencedirect.com/science/article/pii/B9781785483066500032
https://www.sciencedirect.com/science/article/pii/B9781785483066500032

108 Bibliography

[42] Bhatnagar, P. L., Gross, E. P., and Krook, M., A Model for Collision Processes in Gases. I. Small Amplitude
Processes in Charged and Neutral One-Component Systems, Phys. Rev., 5 1954, vol. 94, pp. 511–525, doi:
10.1103/PhysRev.94.511, URL https://link.aps.org/doi/10.1103/PhysRev.94.511.

[43] Andries, P., Aoki, K., and Perthame, B., A consistent BGK-type model for gas mixtures, Journal of Statisti-
cal Physics, 2002, vol. 106, no. 5, pp. 993–1018.

[44] Shan, X., Yuan, X.-F., and Chen, H., Kinetic theory representation of hydrodynamics: a way beyond
the Navier–Stokes equation, Journal of Fluid Mechanics, 2006, vol. 550, p. 413–441, doi:10.1017/
S0022112005008153.

[45] Liu, Q., and Pierce, D. A., A Note on Gauss-Hermite Quadrature, Biometrika, 1994, vol. 81, no. 3, pp.
624–629, URL http://www.jstor.org/stable/2337136.

[46] Abramowitz, M., Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Ta-
bles,, Dover Publications, Inc., USA, 1974.

[47] Ubertini, S., Asinari, P., and Succi, S., Three ways to lattice Boltzmann: A unified time-marching picture,
Phys. Rev. E, 1 2010, vol. 81, p. 016311, doi:10.1103/PhysRevE.81.016311, URL https://link.aps.
org/doi/10.1103/PhysRevE.81.016311.

[48] Guo, Z., Zheng, C., and Shi, B., Discrete lattice effects on the forcing term in the lattice Boltzmann
method, Phys. Rev. E, 4 2002, vol. 65, p. 046308, doi:10.1103/PhysRevE.65.046308, URL https://link.
aps.org/doi/10.1103/PhysRevE.65.046308.

[49] He, X., Shan, X., and Doolen, G. D., Discrete Boltzmann equation model for nonideal gases, Phys. Rev.
E, 1 1998, vol. 57, pp. R13–R16, doi:10.1103/PhysRevE.57.R13, URL https://link.aps.org/doi/10.
1103/PhysRevE.57.R13.

[50] Caiazzo, A., Analysis of Lattice Boltzmann Initialization Routines, Journal of Statistical Physics, 10 2005,
vol. 121, no. 1-2, pp. 37–48, doi:10.1007/s10955-005-7010-5.

[51] Mei, R., Luo, L.-S., Lallemand, P., et al., Consistent initial conditions for lattice Boltzmann simulations,
Computers & Fluids, 2006, vol. 35, pp. 855–862.

[52] Wagner, A. J., Thermodynamic consistency of liquid-gas lattice Boltzmann simulations, Phys. Rev. E,
11 2006, vol. 74, p. 056703, doi:10.1103/PhysRevE.74.056703, URL https://link.aps.org/doi/10.
1103/PhysRevE.74.056703.

[53] Ladd, A., and Verberg, R., Lattice-Boltzmann Simulations of Particle-Fluid Suspensions, Journal of Sta-
tistical Physics, 09 2001, vol. 104, pp. 1191–1251, doi:10.1023/A:1010414013942.

[54] Luo, L.-S., Unified Theory of Lattice Boltzmann Models for Nonideal Gases, Phys. Rev. Lett., 8 1998,
vol. 81, pp. 1618–1621, doi:10.1103/PhysRevLett.81.1618, URL https://link.aps.org/doi/10.
1103/PhysRevLett.81.1618.

[55] Bawazeer, S., Baakeem, S., and Mohamad, A., A Critical Review of Forcing Schemes in Lattice Boltz-
mann Method: 1993-2019, Archives of Computational Methods in Engineering, 01 2021, doi:10.1007/
s11831-021-09535-4.

[56] Viggen, E. M., The lattice Boltzmann method with applications in acoustics, Master’s thesis, Norwegian
University of Science and Technology, Trondheim, 2009.

[57] Luo, L.-S., Liao, W., Chen, X., et al., Numerics of the lattice Boltzmann method: Effects of collision models
on the lattice Boltzmann simulations, Phys. Rev. E, 5 2011, vol. 83, p. 056710, doi:10.1103/PhysRevE.83.
056710, URL https://link.aps.org/doi/10.1103/PhysRevE.83.056710.

[58] Dellar, P. J., Nonhydrodynamic modes and a priori construction of shallow water lattice Boltzmann
equations, Phys. Rev. E, 02 2002, vol. 65, p. 036309, doi:10.1103/PhysRevE.65.036309, URL https:
//link.aps.org/doi/10.1103/PhysRevE.65.036309.

https://link.aps.org/doi/10.1103/PhysRev.94.511
http://www.jstor.org/stable/2337136
https://link.aps.org/doi/10.1103/PhysRevE.81.016311
https://link.aps.org/doi/10.1103/PhysRevE.81.016311
https://link.aps.org/doi/10.1103/PhysRevE.65.046308
https://link.aps.org/doi/10.1103/PhysRevE.65.046308
https://link.aps.org/doi/10.1103/PhysRevE.57.R13
https://link.aps.org/doi/10.1103/PhysRevE.57.R13
https://link.aps.org/doi/10.1103/PhysRevE.74.056703
https://link.aps.org/doi/10.1103/PhysRevE.74.056703
https://link.aps.org/doi/10.1103/PhysRevLett.81.1618
https://link.aps.org/doi/10.1103/PhysRevLett.81.1618
https://link.aps.org/doi/10.1103/PhysRevE.83.056710
https://link.aps.org/doi/10.1103/PhysRevE.65.036309
https://link.aps.org/doi/10.1103/PhysRevE.65.036309

Bibliography 109

[59] Lallemand, P., and Luo, L.-S., Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy,
Galilean invariance, and stability, Phys. Rev. E, 6 2000, vol. 61, pp. 6546–6562, doi:10.1103/PhysRevE.
61.6546, URL https://link.aps.org/doi/10.1103/PhysRevE.61.6546.

[60] Coreixas, C., Chopard, B., and Latt, J., Comprehensive comparison of collision models in the lattice
Boltzmann framework: Theoretical investigations, Phys. Rev. E, 9 2019, vol. 100, p. 033305, doi:10.1103/
PhysRevE.100.033305, URL https://link.aps.org/doi/10.1103/PhysRevE.100.033305.

[61] Arfken, G. B., Weber, H. J., and Spector, D., Mathematical Methods for Physicists, 4th ed ., American
Journal of Physics, feb 1999, vol. 67, no. 2, pp. 165–169, doi:10.1119/1.19217.

[62] Bouzidi, M., d’Humières, D., Lallemand, P., et al., Lattice Boltzmann Equation on a Two-Dimensional
Rectangular Grid, J. Comput. Phys., Sep. 2001, vol. 172, no. 2, p. 704–717, doi:10.1006/jcph.2001.6850,
URL https://doi-org.tudelft.idm.oclc.org/10.1006/jcph.2001.6850.

[63] d’Humières, D., Ginzburg, I., Krafczyk, M., et al., Multiple-Relaxation-Time Lattice Boltzmann Models
in Three Dimensions, Philosophical Transactions: Mathematical, Physical and Engineering Sciences,
2002, vol. 360, no. 1792, pp. 437–451, URL http://www.jstor.org/stable/3066323.

[64] Ginzburg, I., Equilibrium-type and link-type lattice Boltzmann models for generic advection and
anisotropic-dispersion equation, Advances in Water Resources, 2005, vol. 28, no. 11, pp. 1171–
1195, doi:https://doi.org/10.1016/j.advwatres.2005.03.004, URL https://www.sciencedirect.com/
science/article/pii/S0309170805000874.

[65] Ginzburg, I., Verhaeghe, F., and d’Humières, D., Study of simple hydrodynamic solutions with the two-
relaxation-times lattice Boltzmann scheme, Communications in Computational Physics, 2008, vol. 3,
pp. 519–581.

[66] Ginzburg, I., and d’Humières, D., Optimal Stability of Advection-Diffusion Lattice Boltzmann Models
with Two Relaxation Times for Positive/Negative Equilibrium, Journal of Statistical Physics, 2010, vol.
139, pp. 1090–1143.

[67] Geier, M., Greiner, A., and Korvink, J. G., Cascaded digital lattice Boltzmann automata for high Reynolds
number flow, Phys. Rev. E, 6 2006, vol. 73, p. 066705, doi:10.1103/PhysRevE.73.066705, URL https:
//link.aps.org/doi/10.1103/PhysRevE.73.066705.

[68] Geier, M. C., Ab initio derivation of the cascaded lattice boltzmann automaton, Ph.D. thesis, University
of Freiburg - IMTEK, 2006.

[69] Lycett-Brown, D., and Luo, K. H., Multiphase cascaded lattice Boltzmann method, Com-
puters & Mathematics with Applications, 2014, vol. 67, no. 2, pp. 350–362, doi:https://
doi.org/10.1016/j.camwa.2013.08.033, URL https://www.sciencedirect.com/science/article/
pii/S0898122113005403, mesoscopic Methods for Engineering and Science (Proceedings of
ICMMES-2012, Taipei, Taiwan, 23–27 July 2012).

[70] Geier, M., Schönherr, M., Pasquali, A., et al., The cumulant lattice Boltzmann equation in three di-
mensions: Theory and validation, Computers & Mathematics with Applications, 2015, vol. 70, no. 4,
pp. 507–547, doi:https://doi.org/10.1016/j.camwa.2015.05.001, URL https://www.sciencedirect.
com/science/article/pii/S0898122115002126.

[71] Goraki Fard, E., Cumulant LBM approach for Large Eddy Simulation of Dispersion Microsystems, Ph.D.
thesis, Technical University of Braunschweig, 3 2015, doi:10.24355/dbbs.084-201505271009-0, URL
https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00060125.

[72] Peskin, C. S., The immersed boundary method, Acta Numerica, 2002, vol. 11, p. 479–517, doi:10.1017/
S0962492902000077.

[73] Luo, K., Wang, Z., Fan, J., et al., Full-scale solutions to particle-laden flows: Multidirect forcing and
immersed boundary method, Phys. Rev. E, 12 2007, vol. 76, p. 066709, doi:10.1103/PhysRevE.76.066709,
URL https://link.aps.org/doi/10.1103/PhysRevE.76.066709.

https://link.aps.org/doi/10.1103/PhysRevE.61.6546
https://link.aps.org/doi/10.1103/PhysRevE.100.033305
https://doi-org.tudelft.idm.oclc.org/10.1006/jcph.2001.6850
http://www.jstor.org/stable/3066323
https://www.sciencedirect.com/science/article/pii/S0309170805000874
https://www.sciencedirect.com/science/article/pii/S0309170805000874
https://link.aps.org/doi/10.1103/PhysRevE.73.066705
https://link.aps.org/doi/10.1103/PhysRevE.73.066705
https://www.sciencedirect.com/science/article/pii/S0898122113005403
https://www.sciencedirect.com/science/article/pii/S0898122113005403
https://www.sciencedirect.com/science/article/pii/S0898122115002126
https://www.sciencedirect.com/science/article/pii/S0898122115002126
https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00060125
https://link.aps.org/doi/10.1103/PhysRevE.76.066709

110 Bibliography

[74] Mohd-Yusof, J., Combined immersed boundaries/B-splines methods for simulations of flows in complex
geometries, Annual Research Briefs, 1997.

[75] Zhou, Q., and Fan, L.-S., A second-order accurate immersed boundary-lattice Boltzmann method for
particle-laden flows, Journal of computational physics, 2014, vol. 268, pp. 269–301.

[76] Tao, S., He, Q., Chen, B., et al., A distribution function correction-based immersed boundary- lattice
Boltzmann method with truly second-order accuracy for fluid-solid flows, arXiv: Computational Physics,
2018.

[77] Kanwal, R., Generalized Functions: Theory and Applications, Generalized Functions, Birkhäuser
Boston, 2004, URL https://books.google.nl/books?id=LXP_8Y0jH88C.

[78] Berberian, S., Fundamentals of Real Analysis, Universitext, Springer New York, 2013, URL https://
books.google.nl/books?id=MzQ6JA6SiHYC.

[79] Luo, Y., An Efficient 3 D Timoshenko Beam Element with Consistent Shape Functions.

[80] Geller, S., Tölke, J., and Krafczyk, M., Lattice-Boltzmann Method on Quadtree-Type Grids for Fluid-
Structure Interaction, in Bungartz, H.-J., and Schäfer, M. (eds.), Fluid-Structure Interaction, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 270–293.

[81] Megson, T., Aircraft Structures for Engineering Students, Butterworth-Heinemann, Oxford, 2007.

[82] Newmark, N. M., A Method of Computation for Structural Dynamics, Journal of the En-
gineering Mechanics Division, 1959, vol. 85, no. 3, pp. 67–94, doi:10.1061/JMCEA3.0000098,
URL https://ascelibrary.org/doi/abs/10.1061/JMCEA3.0000098, https://ascelibrary.
org/doi/pdf/10.1061/JMCEA3.0000098.

[83] Wendland, H., Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of
Minimal Degree, Journal of Approximation Theory, 1998, vol. 93, no. 2, pp. 258–272, doi:https://
doi.org/10.1006/jath.1997.3137, URL https://www.sciencedirect.com/science/article/pii/
S0021904597931373.

[84] Buhmann, M. D., A new class of radial basis functions with compact support, Math. Comput., 2001,
vol. 70, pp. 307–318.

[85] Lagrava, D., Malaspinas, O., Latt, J., et al., Advances in multi-domain lattice Boltzmann grid re-
finement, Journal of Computational Physics, 2012, vol. 231, no. 14, pp. 4808–4822, doi:https:
//doi.org/10.1016/j.jcp.2012.03.015, URL https://www.sciencedirect.com/science/article/
pii/S002199911200157X.

[86] Dupuis, A., and Chopard, B., Theory and applications of an alternative lattice Boltzmann grid re-
finement algorithm, Phys. Rev. E, 6 2003, vol. 67, p. 066707, doi:10.1103/PhysRevE.67.066707, URL
https://link.aps.org/doi/10.1103/PhysRevE.67.066707.

[87] Latt, J., Hydrodynamic limit of lattice Boltzmann equations, Ph.D. thesis, University of Geneva, 09 2007,
URL https://nbn-resolving.org/urn:nbn:ch:unige-4641, iD: unige:464; Contient un résumé
en français de 10 p.

[88] Latt, J., Chopard, B., Malaspinas, O., et al., Straight velocity boundaries in the lattice Boltzmann method,
Phys. Rev. E, May 2008, vol. 77, p. 056703, doi:10.1103/PhysRevE.77.056703, URL https://link.aps.
org/doi/10.1103/PhysRevE.77.056703.

[89] Lallemand, P., and Luo, L.-S., Lattice Boltzmann method for moving boundaries, Journal of Computa-
tional Physics, 2003, vol. 184, no. 2, pp. 406–421, doi:https://doi.org/10.1016/S0021-9991(02)00022-0,
URL https://www.sciencedirect.com/science/article/pii/S0021999102000220.

[90] Zou, Q., and He, X., On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,
Physics of Fluids, 1997, vol. 9, no. 6, pp. 1591–1598, doi:10.1063/1.869307, URL https://doi.org/10.
1063/1.869307, https://doi.org/10.1063/1.869307.

https://books.google.nl/books?id=LXP_8Y0jH88C
https://books.google.nl/books?id=MzQ6JA6SiHYC
https://books.google.nl/books?id=MzQ6JA6SiHYC
https://ascelibrary.org/doi/abs/10.1061/JMCEA3.0000098
https://ascelibrary.org/doi/pdf/10.1061/JMCEA3.0000098
https://ascelibrary.org/doi/pdf/10.1061/JMCEA3.0000098
https://www.sciencedirect.com/science/article/pii/S0021904597931373
https://www.sciencedirect.com/science/article/pii/S0021904597931373
https://www.sciencedirect.com/science/article/pii/S002199911200157X
https://www.sciencedirect.com/science/article/pii/S002199911200157X
https://link.aps.org/doi/10.1103/PhysRevE.67.066707
https://nbn-resolving.org/urn:nbn:ch:unige-4641
https://link.aps.org/doi/10.1103/PhysRevE.77.056703
https://link.aps.org/doi/10.1103/PhysRevE.77.056703
https://www.sciencedirect.com/science/article/pii/S0021999102000220
https://doi.org/10.1063/1.869307
https://doi.org/10.1063/1.869307
https://doi.org/10.1063/1.869307

Bibliography 111

[91] Inamuro, T., Yoshino, M., and Ogino, F., A non-slip boundary condition for lattice Boltzmann sim-
ulations, Physics of Fluids, 1995, vol. 7, no. 12, pp. 2928–2930, doi:10.1063/1.868766, URL https:
//doi.org/10.1063/1.868766, https://doi.org/10.1063/1.868766.

[92] Botella, O., and Peyret, R., Benchmark spectral results on the lid-driven cavity flow, Computers & Fluids,
1998, vol. 27, no. 4, pp. 421–433, doi:https://doi.org/10.1016/S0045-7930(98)00002-4, URL https://
www.sciencedirect.com/science/article/pii/S0045793098000024.

[93] Wu, J., and Shu, C., Implicit velocity correction-based immersed boundary-lattice Boltzmann method
and its applications, Journal of Computational Physics, 2009, vol. 228, no. 6, pp. 1963–1979, doi:https:
//doi.org/10.1016/j.jcp.2008.11.019, URL https://www.sciencedirect.com/science/article/
pii/S0021999108006116.

[94] Trapani, G., Brionnaud, R. M., and Holman, D. M., Non-linear Fluid-Structure Interaction using a Par-
titioned Lattice Boltzmann - FEA approach, doi:10.2514/6.2016-3636, URL https://arc.aiaa.org/
doi/abs/10.2514/6.2016-3636, https://arc.aiaa.org/doi/pdf/10.2514/6.2016-3636.

[95] Schäfer, M., Heck, M., and Yigit, S., An Implicit Partitioned Method for the Numerical Simulation
of Fluid-Structure Interaction, in Bungartz, H.-J., and Schäfer, M. (eds.), Fluid-Structure Interaction,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 171–194.

[96] Suzuki, K., and Inamuro, T., Effect of internal mass in the simulation of a moving body by the im-
mersed boundary method, Computers & Fluids, 2011, vol. 49, no. 1, pp. 173–187, doi:https://doi.org/
10.1016/j.compfluid.2011.05.011, URL https://www.sciencedirect.com/science/article/pii/
S0045793011001708.

[97] DÜTSCH, H., DURST, F., BECKER, S., et al., Low-Reynolds-number flow around an oscillating circular
cylinder at low Keulegan–Carpenter numbers, Journal of Fluid Mechanics, 1998, vol. 360, p. 249–271,
doi:10.1017/S002211209800860X.

[98] Hulshoff, S., AE2220-II: Computational Modelling: Lecture Notes, 2016.

[99] LARSSON, J., KAWAI, S., BODART, J., et al., Large eddy simulation with modeled wall-stress: recent
progress and future directions, Mechanical Engineering Reviews, 2016, vol. 3, no. 1, pp. 15–00418–15–
00418, doi:10.1299/mer.15-00418.

[100] Bose, S. T., and Park, G. I., Wall-Modeled Large-Eddy Simulation for Complex Turbulent
Flows, Annual Review of Fluid Mechanics, 2018, vol. 50, no. 1, pp. 535–561, doi:10.1146/
annurev-fluid-122316-045241, URL https://doi.org/10.1146/annurev-fluid-122316-045241,
https://doi.org/10.1146/annurev-fluid-122316-045241.

[101] Malaspinas, O., and Sagaut, P., Wall model for large-eddy simulation based on the lattice
Boltzmann method, Journal of Computational Physics, 2014, vol. 275, pp. 25–40, doi:https:
//doi.org/10.1016/j.jcp.2014.06.020, URL https://www.sciencedirect.com/science/article/
pii/S0021999114004276.

[102] Wilhelm, S., Jacob, J., and Sagaut, P., An explicit power-law-based wall model for lattice Boltz-
mann method–Reynolds-averaged numerical simulations of the flow around airfoils, Physics of Fluids,
2018, vol. 30, no. 6, p. 065111, doi:10.1063/1.5031764, URL https://doi.org/10.1063/1.5031764,
https://doi.org/10.1063/1.5031764.

[103] Maeyama, H., Imamura, T., Osaka, J., et al., Unsteady turbulent flow simulation using lattice Boltzmann
method with near-wall modeling, in AIAA Aviation 2020 Forum, doi:10.2514/6.2020-2565, URL https:
//arc.aiaa.org/doi/abs/10.2514/6.2020-2565, https://arc.aiaa.org/doi/pdf/10.2514/
6.2020-2565.

[104] Pousa, A. F., Thermal and Multiphase Validations with the Lattice Boltzmann Method Software XFlow,
Ph.D. thesis, University of Santiago de Compostella, 2015.

https://doi.org/10.1063/1.868766
https://doi.org/10.1063/1.868766
https://doi.org/10.1063/1.868766
https://www.sciencedirect.com/science/article/pii/S0045793098000024
https://www.sciencedirect.com/science/article/pii/S0045793098000024
https://www.sciencedirect.com/science/article/pii/S0021999108006116
https://www.sciencedirect.com/science/article/pii/S0021999108006116
https://arc.aiaa.org/doi/abs/10.2514/6.2016-3636
https://arc.aiaa.org/doi/abs/10.2514/6.2016-3636
https://arc.aiaa.org/doi/pdf/10.2514/6.2016-3636
https://www.sciencedirect.com/science/article/pii/S0045793011001708
https://www.sciencedirect.com/science/article/pii/S0045793011001708
https://doi.org/10.1146/annurev-fluid-122316-045241
https://doi.org/10.1146/annurev-fluid-122316-045241
https://www.sciencedirect.com/science/article/pii/S0021999114004276
https://www.sciencedirect.com/science/article/pii/S0021999114004276
https://doi.org/10.1063/1.5031764
https://doi.org/10.1063/1.5031764
https://arc.aiaa.org/doi/abs/10.2514/6.2020-2565
https://arc.aiaa.org/doi/abs/10.2514/6.2020-2565
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-2565
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-2565

112 Bibliography

[105] Fares, E., Unsteady flow simulation of the Ahmed reference body using a lattice Boltzmann approach,
Computers & Fluids, 2006, vol. 35, no. 8, pp. 940–950, doi:https://doi.org/10.1016/j.compfluid.2005.04.
011, URL https://www.sciencedirect.com/science/article/pii/S0045793005001581, pro-
ceedings of the First International Conference for Mesoscopic Methods in Engineering and Science.

[106] Tessicini, F., Iaccarino, G., Fatica, M., et al., Wall modeling for large-eddy simulation using an immersed
boundary method, in CCenter for Turublence Research Annual Research Briefs 2002.

[107] Roman, F., Armenio, V., and Fröhlich, J., A simple wall-layer model for large eddy simulation with im-
mersed boundary method, Physics of Fluids, 2009, vol. 21, no. 10, p. 101701, doi:10.1063/1.3245294,
URL https://doi.org/10.1063/1.3245294, https://doi.org/10.1063/1.3245294.

[108] Chen, Z. L., Hickel, S., Devesa, A., et al., Wall modeling for implicit large-eddy simulation and immersed-
interface methods, Theoretical Computational Fluid Dynamics, 2014, vol. 28, pp. 1–21.

[109] Ma, M., Huang, W.-X., and Xu, C.-X., A dynamic wall model for large eddy simulation of turbulent
flow over complex/moving boundaries based on the immersed boundary method, Physics of Fluids,
2019, vol. 31, no. 11, p. 115101, doi:10.1063/1.5126853, URL https://doi.org/10.1063/1.5126853,
https://doi.org/10.1063/1.5126853.

[110] Wu, J.-S., and Shao, Y.-L., Simulation of lid-driven cavity flows by parallel lattice Boltzmann method us-
ing multi-relaxation-time scheme, International Journal for Numerical Methods in Fluids, 2004, vol. 46,
no. 9, pp. 921–937, doi:https://doi.org/10.1002/fld.787, URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/fld.787, https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.787.

[111] Yoshida, H., and Nagaoka, M., Multiple-relaxation-time lattice Boltzmann model for the convection
and anisotropic diffusion equation, Journal of Computational Physics, 2010, vol. 229, no. 20, pp.
7774–7795, doi:https://doi.org/10.1016/j.jcp.2010.06.037, URL https://www.sciencedirect.com/
science/article/pii/S0021999110003529.

[112] Premnath, K. N., and Abraham, J., Three-dimensional multi-relaxation time (MRT) lattice-
Boltzmann models for multiphase flow, Journal of Computational Physics, 2007, vol. 224, no. 2,
pp. 539–559, doi:https://doi.org/10.1016/j.jcp.2006.10.023, URL https://www.sciencedirect.com/
science/article/pii/S0021999106004815.

[113] De Rosis, A., and Luo, K. H., Role of higher-order Hermite polynomials in the central-moments-based
lattice Boltzmann framework, Phys. Rev. E, 1 2019, vol. 99, p. 013301, doi:10.1103/PhysRevE.99.013301,
URL https://link.aps.org/doi/10.1103/PhysRevE.99.013301.

[114] Liu, Q., He, Y.-L., Li, Q., et al., A multiple-relaxation-time lattice Boltzmann model for con-
vection heat transfer in porous media, International Journal of Heat and Mass Transfer, 2014,
vol. 73, pp. 761–775, doi:https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.047, URL https://www.
sciencedirect.com/science/article/pii/S0017931014001756.

[115] Liu, Q., and He, Y.-L., Lattice Boltzmann simulations of convection heat transfer in porous media,
Physica A: Statistical Mechanics and its Applications, 2017, vol. 465, pp. 742–753, doi:https://doi.
org/10.1016/j.physa.2016.08.010, URL https://www.sciencedirect.com/science/article/pii/
S037843711630526X.

[116] Chávez-Modena, M., Ferrer, E., and Rubio, G., Improving the stability of multiple-relaxation lat-
tice Boltzmann methods with central moments, Computers & Fluids, 2018, vol. 172, pp. 397–
409, doi:https://doi.org/10.1016/j.compfluid.2018.03.084, URL https://www.sciencedirect.com/
science/article/pii/S0045793018301889.

[117] Li, W., Chen, Y., Desbrun, M., et al., Fast and Scalable Turbulent Flow Simulation with Two-Way
Coupling, ACM Trans. Graph., Jul. 2020, vol. 39, no. 4, doi:10.1145/3386569.3392400, URL https:
//doi-org.tudelft.idm.oclc.org/10.1145/3386569.3392400.

[118] Suga, K., Kuwata, Y., Takashima, K., et al., A D3Q27 multiple-relaxation-time lattice Boltzmann
method for turbulent flows, Computers & Mathematics with Applications, 2015, vol. 69, no. 6,
pp. 518–529, doi:https://doi.org/10.1016/j.camwa.2015.01.010, URL https://www.sciencedirect.
com/science/article/pii/S0898122115000346.

https://www.sciencedirect.com/science/article/pii/S0045793005001581
https://doi.org/10.1063/1.3245294
https://doi.org/10.1063/1.3245294
https://doi.org/10.1063/1.5126853
https://doi.org/10.1063/1.5126853
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.787
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.787
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.787
https://www.sciencedirect.com/science/article/pii/S0021999110003529
https://www.sciencedirect.com/science/article/pii/S0021999110003529
https://www.sciencedirect.com/science/article/pii/S0021999106004815
https://www.sciencedirect.com/science/article/pii/S0021999106004815
https://link.aps.org/doi/10.1103/PhysRevE.99.013301
https://www.sciencedirect.com/science/article/pii/S0017931014001756
https://www.sciencedirect.com/science/article/pii/S0017931014001756
https://www.sciencedirect.com/science/article/pii/S037843711630526X
https://www.sciencedirect.com/science/article/pii/S037843711630526X
https://www.sciencedirect.com/science/article/pii/S0045793018301889
https://www.sciencedirect.com/science/article/pii/S0045793018301889
https://doi-org.tudelft.idm.oclc.org/10.1145/3386569.3392400
https://doi-org.tudelft.idm.oclc.org/10.1145/3386569.3392400
https://www.sciencedirect.com/science/article/pii/S0898122115000346
https://www.sciencedirect.com/science/article/pii/S0898122115000346

Bibliography 113

[119] Gkoudesnes, C., and Deiterding, R., Evaluating the lattice Boltzmann method for large eddy simulation
with dynamic sub-grid scale models, in 11th International Symposium on Turbulence and Shear Flow
Phenomena (02/08/19), URL https://eprints.soton.ac.uk/433587/.

[120] Geier, M., Lenz, S., Schönherr, M., et al., Under-resolved and large eddy simulations of a decaying Taylor-
Green vortex with the cumulant lattice Boltzmann method, Theoretical and Computational Fluid Dy-
namics, 4 2021, vol. 35, no. 2, pp. 169–208, doi:10.1007/s00162-020-00555-7.

https://eprints.soton.ac.uk/433587/

	Abstract
	List of Symbols
	Acknowledgements
	Introduction
	I Theoretical Background
	Motivation
	Introduction to aerodynamic modelling of flapping wing unmanned-aerial-vehicles
	Use of the lattice Boltzmann method in simulating flapping wing UAVs
	Review of the Immersed Boundary Method
	Possible improvements to the immersed boundary method
	Research questions

	The lattice Boltzmann method
	Continuous Boltzmann equation
	Equilibrium distribution
	Boltzmann equation
	Bhatnagar, Gross and Krook collision operator

	Discretised Boltzmann equation
	Discretisation in velocity space
	Discretisation of forcing term
	Discretisation in space and time
	Velocity moments

	Chapman-Eskogg analysis
	Application of the lattice Boltzmann equation
	Initial conditions
	Boundary conditions
	External forces
	Dimensionalisation
	Overview of operations taken in an LBM simulation

	Advanced collision models
	Multiple-relaxation-time models
	Two-relaxation-time models
	Cascaded lattice Boltzmann method
	Cumulant lattice Boltzmann method

	Non-grid-conforming boundary methods
	Immersed boundary method
	Implementation of the IBM in the LBM

	II Implementation of the LaBIB-FSI solver
	Proposed Immersed Interface Method into the lattice Boltzmann framework
	Proposal of an immersed interface method
	Derivation of the jump condition for populations across a stationary boundary

	Implementation of the immersed interface method in the lattice Botlzmann method
	Description of the algorithm
	Elaboration

	Midpoint immersed interface method
	Treatment of moving boundaries
	Additional considerations
	Implicit formulation
	Computational cost

	Reflection on the immersed interface method
	Comparison with the immersed boundary method
	Contribution to research gap

	Immersed interface method proposed by Qin et al.
	Derivation proposed by Qin et al.
	Incorrect interpretation of the dot product
	Incorrect interpretation of the jump condition
	Additional remarks
	Comparison with the presented immersed interface method

	Alternative formulations of the immersed interface method
	Modification I - multi-stage immersed interface method
	Modification II - filtered immersed interface method
	Modification III - sharp immersed interface method

	Conclusion

	Implementation details
	Structural solver
	Spatial discretisation
	Temporal integration

	Fluid-structure-interaction
	Spatial interpolation
	Temporal communication

	Multigrid approach
	Time stepping scheme
	Multigrid communication
	Multigrid correction
	Summary of algorithm

	Edge treatment
	Modified regularised boundary condition
	Comparison with other boundary conditions

	III Validation
	Validation of 2D fluid solver
	Lid-driven cavity flow
	Comparison of horizontal velocity along vertical center line
	Comparison of vorticity at center point

	Cylinder immersed in Taylor-Green vortex flow
	Evaluation of order of accuracy
	Evaluation of the boundary force density error
	Evaluation of iterative solvers

	Cylinder and rigid flag immersed in horizontal cylinder flow
	Evaluation of CFD1 & CFD2 benchmark - comparison of force coefficients
	Evaluation of CFD1 & CFD2 benchmark - comparison of force distributions along cylinder
	Evaluation of CFD1 & CFD2 benchmark - comparison of force distributions along flag
	Evaluation of CFD1 & CFD2 benchmark - comparison of velocity profiles
	Evaluation of CFD3 benchmark - comparison of force history

	Validation of 2D fluid-structure solver
	Rigid cylinder oscillating in a fluid at rest
	Added mass effect
	Evaluation of force coefficient

	Cylinder and deformable flag subject to gravity
	Evaluation of CSM3 benchmark - effect of spatial discretisation
	Evaluation of CSM3 benchmark - effect of temporal discretisation

	Cylinder and deformable flag immersed in horizontal flow
	Evaluation of FSI1 benchmark - comparison of body force and displacement
	Evaluation of FSI3 benchmark - comparison of force history
	Evaluation of FSI3 benchmark - evaluation of added mass effect
	Evaluation of FSI3 benchmark - temporal variation of numerical noise
	Evaluation of FSI3 benchmark - consistency of FSI procedure

	Sensitivity Analysis
	Effect of mesh refinement on oscillations in boundary force variation
	Effect of Mach number on oscillations on the boundary force variation
	Effect of discrete delta function width on the boundary force variation

	Conclusion
	Recommendations
	Recommendations regarding boundary treatment
	Recommendations regarding lattice Boltzmann method
	Recommendations regarding LaBIB-FSI
	Summary of recommendations

	IV Appendices
	Supplementary derivations
	Example of immersed interface method to an elliptic differential equation

	Bibliography

