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SUMMARY
The shift to precision medicine in cancer focuses on providing therapies targeting vul-
nerabilities of each individual patient tumor. This approach involves identifying cancer
subtypes and discovering targets, such as genetic interactions, to treat patients who lack
effective therapy. While computational tools, especially machine learning methods, are
essential to analyze complex high-dimensional molecular data and suggest new can-
didate treatment strategies, their effectiveness is often questioned due to data-related
challenges. Specifically, limitations in data collection result in sparse or biased biologi-
cal data, hindering accurate decision-making and the identification of correct patterns.
This thesis proposes state of the art solutions to learn improved prediction models for
precision medicine and beyond by leveraging relevant data that was previously ignored,
and addressing issues of data sparsity and bias.

Prediction of gene synthetic lethalities to identify novel therapeutic targets has over-
looked sequence similarity, which is both a notable indicator of functional relation and
available for every gene pair, unlike sparser data sources often used for this prediction
task. Existing models also struggle to generalize beyond known synthetic lethalities due
to an over reliance on data affected by prominent biases. Similarly, the stratification
of cancer cohorts without effective treatments is challenging due to the small sample
sizes of cancer (sub)cohorts such as oncogene-driven cohorts. In addition, stratifica-
tion might not directly uncover an actionable treatment opportunity. The integration of
dense protein sequence similarity and comprehensive drug response data each, together
with methodological advances, led to significant improvements and revealed promising
therapeutic opportunities.

Although these integrations improved the performance of computational methods, se-
lection bias, a nonrandom sampling of training data, remained a significant issue af-
fecting fair evaluation and generalizability. Thus, this thesis also introduces strategies
to evaluate and mitigate the impact on model generalizability and fairness when the
selected training data is not representative of the underlying population. We first arti-
ficially induce multivariate selection bias by favoring the selection of specific clusters
of samples to study the fair evaluation of model generalizability. Then, to mitigate se-
lection bias, we advance semi-supervised learning methods that use unlabeled data to
gain insight into the distribution of the population beyond the labeled training data and
promote sample diversity to counter confirmation bias typical of existing approaches.
Our approaches include bias mitigation designed for specific machine learning models,
such as forest ensembles and neural networks, and model-agnostic methods that oper-
ate under fewer assumptions. We show that diversity-guided semi-supervised learning
strategies outperform existing domain adaptation techniques in the presence of various
selection biases.

IX



X SUMMARY

The computational methods proposed in this thesis enhance therapeutic target discov-
ery in cancer and address selection bias in machine learning to advance precision medicine
in cancer and improve the generalizability and fairness of bioinformatics models.



SAMENVATTING
De omschakeling naar precisiegeneeskunde in de oncologie richt zich op het bieden van
therapieën die inspelen op de kwetsbaarheden van de tumor van iedere individuele pa-
tiënt. Deze benadering omvat het identificeren van kankersubtypes en het ontdekken
van doelwitten, zoals genetische interacties, voor de behandeling van patiënten die geen
effectieve therapie hebben. Hoewel computationele methodes, waaronder vooral ma-
chine learning, essentieel zijn voor het analyseren van complexe, hoog-dimensionale
moleculaire data en het suggereren van nieuwe kandidaat-behandelstrategieën, wordt
hun effectiviteit vaak in twijfel getrokken vanwege data-gerelateerde uitdagingen. Spe-
cifiek leiden beperkingen in de dataverzameling tot schaarse of bevooroordeelde biolo-
gische data, wat een nauwkeurige besluitvorming en het herkennen van juiste patronen
belemmert. Deze thesis stelt state-of-the-art oplossingen voor om verbeterde voorspel-
lingsmodellen te ontwikkelen voor precisiegeneeskunde en daarbuiten, door gebruik te
maken van relevante data die voorheen genegeerd werd en door problemen van data-
schaarsheid en bias aan te pakken.

De predictie van genetische synthetische lethaliteiten om nieuwe therapeutische doel-
witten te identificeren, heeft de sequentiegelijkenis over het hoofd gezien, een opmerke-
lijke indicator van functionele relatie die voor elk genpaar beschikbaar is, in tegenstelling
tot de vaak schaarser aanwezige databronnen die voor deze voorspellingstaak worden
gebruikt. Bestaande modellen hebben ook moeite om te generaliseren buiten de be-
kende synthetische lethaliteiten, vanwege een overmatige afhankelijkheid van data die
wordt beïnvloed door prominente biases. Evenzo is de stratificatie van kankercohorten
zonder effectieve behandelingen een uitdaging, vanwege de kleine steekproefomvang
van kanker-(sub)cohorten, zoals oncogeen-gedreven cohorten. Bovendien onthult stra-
tificatie mogelijk niet direct een bruikbare behandeloptie. De integratie van dichte ei-
witsequentiegelijkenis en uitgebreide geneesmiddelresponsdata, samen met methodo-
logische vooruitgangen, leidde tot significante verbeteringen en onthulde veelbelovende
therapeutische mogelijkheden.

Hoewel deze integraties de prestaties van computationele methoden verbeterden, bleef
selectiebias, een niet-willekeurige sampling van trainingsdata, een significant probleem
dat een eerlijke evaluatie en generaliseerbaarheid beïnvloedt. Daarom introduceert deze
thesis ook strategieën om de impact op de generaliseerbaarheid en eerlijkheid van mo-
dellen te evalueren en te mitigeren wanneer de geselecteerde trainingsdata niet repre-
sentatief is voor de onderliggende populatie. Allereerst introduceren we kunstmatig
multivariate selectiebias door de selectie van specifieke clusters te bevoordelen, om zo
de eerlijke evaluatie van de generaliseerbaarheid van modellen te bestuderen. Vervol-
gens ontwikkelen we, ter mitigatie van selectiebias, semi-gesuperviseerde leermethoden
die gebruikmaken van ongelabelde data om inzicht te krijgen in de populatiedistributie

XI
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buiten de gelabelde trainingsdata en om de diversiteit van de steekproef te bevorderen
ter bestrijding van de typische bias bij bestaande benaderingen. Onze benaderingen
omvatten biasmitigatie die is ontworpen voor specifieke machine learning modellen, zo-
als ensembles van beslissingsbomen en neurale netwerken, evenals model-agnostische
methoden die werken onder minder aannames. Wij tonen aan dat op diversiteit gerichte
semi-gesuperviseerde leermethoden beter presteren dan bestaande domeinadaptatie-
technieken in aanwezigheid van diverse selectiebiases.

De voorgestelde computationele methoden in dit proefschrift verbeteren de identificatie
van therapeutische doelwitten in kanker en pakken de selectiebias in machine learning
aan, om de precisiegeneeskunde in kanker te bevorderen en de generaliseerbaarheid en
billijkheid van bioinformatica-modellen te verbeteren.



1
INTRODUCTION

1.1. ANTI-CANCER THERAPEUTIC TARGET IDENTIFICATION

1.1.1. CANCER AND CONVENTIONAL TREATMENTS

First described by ancient Egyptians, with references to the disease dating back
to around 3000 BCE, and then coined by Greek physician Hippocrates due to its
phenotypical resemblance to a crab, carcinoma, or cancer [1], is still one of the
leading cause of death worldwide, with an estimated 20 million incidents and 10
million deaths in 2022 [2]. It is caused by the accumulation of mutations in the
DNA due environmental and damaged molecular processes. Some of these cells with
enough accumulated mutations escape cell death, turn into cancer cells, and start
spreading. Thus, it is also characterized by the uncontrolled proliferation, division,
and growth of cells, leading to the formation of malignant tumors that can invade
surrounding tissues and metastasize to distant organs.

Conventional cancer treatments, including surgery, radiation therapy, and chemother-
apy, have been the cornerstone of cancer care for many years. These treatments aim
to remove or destroy cancer cells but often come with significant limitations and
side effects.

Surgery involves the physical removal of cancerous tissue and is most effective for
localized early-stage tumors but may be less effective for advanced or metastatic
disease [3]. For instance, lumpectomy or mastectomy are common surgical
procedures for breast cancer [4, 5], while prostatectomy is used for prostate cancer
[6, 7]. Surgery, although effective, also carries risks such as infection, bleeding [8].
Thus, it is not a completely effective treatment option.

Radiation therapy uses high-energy rays to kill cancer cells or shrink tumors,
targeting specific areas with precision [9]. Although common for some cancer types
such as skin, breast, prostate, and head and neck cancers, radiation based therapies
mostly require a combination with another treatment to be effective [10]. However,
even then, radiation can damage surrounding healthy tissue, leading to side effects
such as fatigue, skin changes, and other organ-specific effects depending on the

1
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treatment site. For example, radiation for head and neck cancer can result in dry
mouth, difficulty swallowing, and changes in taste [11].

Chemotherapy involves the use of cytotoxic drugs to kill rapidly dividing cancer
cells [12]. It is often used for metastatic cancers and as an adjuvant treatment to
reduce the risk of recurrence. Common chemotherapy drugs include doxorubicin
[13], cisplatin [14, 15], and paclitaxel[16]. However, chemotherapy lacks specificity,
affecting both cancerous and rapidly dividing healthy cells [17]. This nonspecific
nature leads to side effects like nausea, hair loss, and increased susceptibility to
infections. Patients undergoing chemotherapy for colorectal cancer, for instance,
may experience severe gastrointestinal issues that can lead to death [18].

While these treatments have been foundational in cancer care, their associated
toxicities and nonspecific nature coupled with the concept of one treatment for
all make them ineffective and also highlight the need for more targeted and
personalized therapeutic approaches (Fig. 1.1).

1.1.2. CANCER IS NOT A SINGLE DISEASE

Although numerous conventional and targeted therapies have been developed to
date, cancer remains a leading cause of death, responsible for approximately 10
million deaths each year [2]. One major challenge in developing a universal
treatment is that cancer is not a single disease although often described by one
term. Instead, it consists of various diseases with different genetic characteristics,
but each of these diseases is characterized by uncontrolled growth and spread
of cells. This diversity mainly arises from a unique accumulation of mutations,
modulated by the germline genetic landscape of the patient, the tissues and organs
it affects, and the environment [19]. As a consequence, these factors cause difference
between responses to treatments. In the end, this diversity can result in both
inter-tumor heterogeneity which is the variation between different cancer patients,
and intra-tumor heterogeneity which is the variation within one tumor or one site
in a patient. This heterogeneity makes it difficult to find a single solution that works
for all types of cancer. For the effective treatment of cancer patients with different
characteristics, it is important to understand the cancer heterogeneity and the
factors contributing to it. Although these factors can be presented under different
terms, they are usually dependent on each other.

HETEROGENEITY BY TUMOR ENVIRONMENT

Cancer can originate in various locations across the body, thus both the origin
of tissue and tumor microenvironment may impact how cancer cells emerge,
differentiate, and respond to treatments [20, 21]. Although mainly organized or
categorized by the organ or tissue of origin, the behavior of cancer may further
differ according to components in the tumor microenvironment such as immune
cells, blood vessels, fibroblasts, and extracellular matrix (ECM).

Firstly, each tissue or organ in our body may contain cells that are specialized for
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Precision Medicine

Conventional
treatment

Cancer
patients

Better survival

Patient 
prognosis
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Better survival
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OR Partial/Full
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Conventional Medicine

Figure 1.1: Overview of treatment concepts in cancer. Conventional medicine uses the same treatment on all
patients whereas precision medicine stratifies patients to find the correct targeted treatment. Properties of synthetic
lethality, a genetic interaction, can be used when cancer drivers cannot be targeted directly.

specific tasks and exclusive to that location, besides cells that are common across
the body [22]. However, even the types of cells that are common throughout the
body will exhibit differing characteristics in different locations, such as macrophages
exhibiting different behaviors and functions in the liver (Kupffer cells) [23] with
respect to brain (microglia) [24].
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The heterogeneity among tissues and the specialized functions of cells significantly
influence the process of tumorigenesis. For example, cancer originating from
epithelial cells may differ across tissue types. Breast cancer can arise from
malignantly transformed mammary epithelial cells[25] and often relies on hormone
receptor signaling pathways, such as estrogen receptors [26], that can be targeted
with hormone-related therapies like tamoxifen [27]. On the other hand, bronchial
epithelial cells, with mutations in genes such as EGFR and KRAS, may lead to
different types of lung cancer [28] and often require targeted therapies like tyrosine
kinase inhibitors (TKIs) [29, 30]. Colorectal cancer can also originate from the
epithelial cells lining the colon or rectum [31], frequently involving mutations in
genes like APC [32], KRAS, and TP53, with implications for the Wnt signaling
pathway [33].

Beyond epithelial cells, skin cancers like melanoma originate from melanocytes,
influenced by UV exposure and commonly involving BRAF mutations, are typically
treated with BRAF inhibitors and immune checkpoint inhibitors [34]. Brain cancers
such as glioblastoma arise from glial cells and involve alterations in the PI3K/AKT and
RAS/MAPK pathways, necessitating treatments that can penetrate the blood-brain
barrier. All these examples point at that cancer in each organ or tissue may bear
significant differences in terms of the reason and treatment opportunities.

Beyond the macro-level environment, such as the tissue of origin, the interaction
between tumor cells and microenvironment components plays a critical role in
cancer cell growth, invasion, and response to treatment. Variations in the
microenvironment can lead to considerable intra-tumor heterogeneity within one
tumor, which may cause resistance to many cancer treatments [35–38]. One
well-known component of the tumor microenvironment that causes heterogeneity is
tumor-associated macrophages (TAMs), which are immune cells that can polarize
into either M1-like TAMs or M2-like TAMs. While M1-like TAMs prevent tumor
growth by enhancing cytotoxic activity, M2-like TAMs suppress immune responses
and promote drug resistance [39].

Furthermore, colorectal cancers originating in different regions of the colon, such as
the right versus the left side, can exhibit significant differences in genetic profiles
and treatment responses, influenced by the unique microenvironments of each colon
segment [40]. Moreover, while resistance to treatment can result from cancer cells
developing new dependencies on alternative genes for survival after the initial target
is targeted, it can also arise from changes in the environment that do not directly
affect the tumor cells [41].

The varied origins and behaviors of different cancers underscore the need for
different diagnostic and therapeutic approaches tailored to the unique cellular
environments.
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HETEROGENEITY BY MECHANISM

The mechanisms underlying cancer development and progression are diverse,
consisting of genetic mutations, epigenetic alterations, and aberrations in cellular
signaling pathways. Genetic mutations in cancer genes drive uncontrolled cell
growth and spread [42]. Epigenetic changes, including DNA methylation and histone
modifications, can silence genes that regulate the cell cycle and apoptosis [43].
Moreover, as a result of epigenetic changes and genetic mutations, aberrant signaling
pathways, like the PI3K/AKT/mTOR pathway, cause tumor survival and resistance to
therapy [44]. Understanding these varied mechanisms can assist us in discovering
novel therapeutic targets and developing treatments tailored for specific cancer types.

For example, in lung cancer, mutations in the EGFR gene cause cancer cell survival,
but also make these tumors particularly responsive to EGFR inhibitors like erlotinib
and gefitinib [45]. On the other hand, mutations in the KRAS gene commonly found
in lung cancer cells, can result in resistance to those same inhibitors, requiring
alternative therapeutic strategies [46]. Epigenetic changes may also play a role,
such as the hypermethylation of the BRCA1 promoter leading to silencing of the
BRCA1 gene and contributing to breast cancer development [47]. Similarly, PTEN
mutations, which also fall under genetic alterations, can result in the activation of
the PI3K/AKT pathway, promoting cell survival and growth, which can be targeted
with PI3K inhibitors [48].

In short, across different tissues and even within the same tissue or tumour, cancer
cells can vary and have different characteristics due to the mechanisms it affects.

HETEROGENEITY BY OTHER FACTORS

Cancer heterogeneity is influenced not only by the environment or mechanisms but
also by other factors such as clonal evolution, selective pressures, and stochasticity.
Clonal evolution refers to the process by which tumor cells acquire new mutations
over time, leading to the emergence of diverse subclones within the same tumor.
This dynamic process results in a heterogeneous population of cancer cells that can
differ in their growth rates, metastatic potential, and response to treatment [49]. For
instance, in colorectal cancer, clonal evolution can result in different regions of the
same tumor acquiring distinct mutations, such as those in the KRAS, NRAS, or BRAF
genes, leading to subclones with varying sensitivity to targeted therapies like EGFR
inhibitors [50].

Selective pressures, such as the immune response, hypoxia, and therapeutic
interventions, further shape tumor heterogeneity [51]. Mainly, hypoxic conditions
within a tumor can select for cells that survive in low-oxygen environments, often
resulting in more invasive and therapy-resistant cancer phenotypes [52]. These
adaptations create a heterogeneous population of cancer cells with varying abilities
to evade immune detection and destruction, leading to more aggressive and
treatment-resistant clones.

Moreover, stochasticity in the acquisition of mutations during cell division and tumor
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growth can lead to differences in the genetic and phenotypic properties of cancer
cells, even among those that originated from the same clone. This randomness
can also affect how cancer cells respond to environmental stresses and therapeutic
interventions, further complicating treatment strategies.

Understanding these diverse factors is essential for developing more effective and
personalized cancer treatments that address the complexity of tumor heterogeneity.

1.1.3. LEVERAGING CANCER FACTORS FOR TARGETED TREATMENT

The heterogeneity of cancer, coupled with the availability of vast genetic data and
advanced technologies, have respectively forced and enabled a deeper analysis
of tumor development, offering insights into the mechanisms of cancer and
highlighting vulnerabilities that can be exploited for therapeutic purposes. The
latest developments in cancer research have underscored the dual nature of the
factors driving cancer: while they contribute to tumor development, they may also
constitute unique targets for treatment.

MECHANISMS UNDERLYING CANCER AND THERAPEUTIC OPPORTUNITIES

The hallmarks of cancer [53] outline the essential traits that enable tumor growth
and metastasis, including sustained proliferative signaling, evasion of growth
suppressors, resistance to cell death, enabling of replicative immortality, induction
of angiogenesis, and activation of invasion and metastasis. These hallmarks,
while instrumental in cancer progression, simultaneously offer critical targets
for therapeutic intervention. For instance, immune checkpoint inhibitors like
pembrolizumab exploit the mechanisms that tumors use to evade immune detection,
thereby enhancing the ability of the immune system to recognize and destroy cancer
cells [54]. Similarly, venetoclax, a BCL-2 inhibitor, induces apoptosis in cancer cells
that evade cell death through BCL-2-mediated survival pathways [55, 56].

While understanding these hallmarks is vital for developing targeted therapies,
they do not provide sufficient specificity for individualized treatment. To enhance
therapeutic precision, it is necessary to delve deeper into the specific factors that
contribute to these hallmarks, such as oncogenes and tumor suppressor genes.

Oncogenes are mutated or overexpressed forms of proto-oncogenes, which are
genes that normally regulate cell growth, proliferation, and differentiation. Upon
mutation or overexpression, these genes become oncogenes that drive cancer
initiation and progression with uncontrolled cell proliferation. Prominent examples
include HER2 (ERBB2) in breast cancer [57], BCR-ABL in chronic myeloid leukemia
[58], and EGFR and KRAS in various cancers, such as colorectal and lung carcinoma
[36, 59, 60]. These oncogenes, while instrumental in cancer development, can also
present as targets for therapeutic intervention.
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For cancers driven by increased activity of an oncogene, using specific oncogene-
targeting inhibitors such as trastuzumab for HER2-positive breast cancer [61, 62]
or imatinib for BCR-ABL-positive leukemia [63], can improve treatment outcomes.
Tyrosine kinase inhibitors (TKIs) like gefitinib and erlotinib, targeting EGFR-mutated
non-small cell lung cancer (NSCLC), also provide a more precise treatment approach
with higher response rates and longer progression-free survival over conventional
chemotherapy [64]. Similarly, the ALK inhibitor crizotinib has transformed treatment
for patients with ALK-positive NSCLC with great improvements compared to
chemotherapy [65].

The strategy of precisely targeting oncogenes that drive cancer has resulted in more
effective and less toxic treatment options, showing superiority over conventional
chemotherapy.

Tumor Suppressing Genes (TSGs) such as TP53, PTEN, and BRCA1, play pivotal
roles in regulating cell growth and preventing tumor formation. Contrary to
oncogenes, the loss or inactivation of these genes leads to uncontrolled cell
proliferation since these genes normally prevent tumor formation when active.
Strategies to restore the function of these genes or counteract their loss can provide
therapeutic benefits. However, targeting tumor suppressor genes is more challenging
than targeting oncogenes, because direct targeting may not be possible if tumor
suppressor genes are inactivated or non-functional [66]. To reactivate them or their
functions, it is necessary to identify and reverse the cause of their inactivation.

For instance, TP53 [67], a gene previously considered an oncogene, but now
recognized as an essential tumor suppressor gene, is often inactivated in multiple
cancers through mutations that lead to loss of function. Similarly, TSGs like ARID1A
and SETD2 are often mutated in cancers, leading to altered gene expression and
tumor progression. Regaining and restoring normal gene function for these genes
are not simple but also not impossible. For example, normal functions of p53
can be rescued by various techniques or can also be used as an advantage since
these abberations also make tumour cells dependent on other processes that can
be targeted [68]. Moreover, some TSGs are implicated in various pathways, further
complicating their targeted reactivation. For example, the Wnt/APC pathway involves
TSGs like APC and AXIN1, which, when mutated, lead to aberrant cell signaling and
cancer progression.

Although more complicated than oncogenes, understanding the complexities of these
TSGs and developing innovative approaches to address their inactivation remains as
an essential part of cancer research and therapy development.

1.1.4. CHALLENGES AND OPPORTUNITIES IN TARGETED THERAPY

Although significant advances have been made in targeted cancer therapies, several
challenges remain that must be addressed to improve their effectiveness. Targeting
oncogenes or tumor suppressor genes presents considerable difficulties due to
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various factors. Some genes are inherently difficult to target directly (i.e. they are
untargetable) because of their specific characteristics, such as the lack of accessible
binding sites or their complex cellular context. Additionally, most tumor suppressor
genes (TSGs) cannot be directly reactivated once inactivated. Moreover, cancer cells
can develop resistance to targeted therapies in many ways, reducing the long-term
efficacy of these treatments. Furthermore, targeted therapies can pose big risks,
including off-target effects and toxicity, which can have a high impact on patient
well-being.

CHALLENGES IN TARGETED TREATMENT

Untargetable cancer drivers. Some factors driving cancer are untargetable or
undruggable with current technologies, causing significant challenges in the field
of oncology. In the case of oncogenes, often times this issue relates to their
structural and chemical characteristics. For example, the protein associated with the
KRAS oncogene is difficult to target directly, since it lacks suitable binding pockets
for small molecules [69]. This limitation can be overcome by indirect methods,
such as targeting downstream effectors in the KRAS pathway or exploiting genetic
interactions to inhibit KRAS activity. Similarly, MYC, an oncogene involved in many
cancers, is difficult to target directly due to its high-affinity DNA-binding properties
and lack of suitable drug-binding sites [70].

For tumor suppressor genes such as BRCA1 and BRCA2, whose mutations are critical
in certain breast and ovarian cancers, direct targeting or inhibition is not a solution
given that the genes are already inactivated and that is what drives tumor formation
in the first place. Alternative strategies must thus be found to indirectly overcome
the disruption of TSGs. For instance, therapeutic strategies addressing the loss of
the well-known TSG TP53 often focus on compensation mechanisms by reactivating
associated pathways. For instance, MDM2 inhibitors aim to restore p53 function by
preventing its degradation [71]. However, some mutations affecting TP53, such as
the TP53-Y220C mutation, make this important TSG untargetable despite efforts to
find indirect methods.

In a majority of cases, while cancer drivers might be known, they cannot be
effectively targeted.

Resistance. Cancer cells can develop resistance to targeted therapies through
various mechanisms, including secondary mutations in the target, activation of
alternative signaling pathways, and phenotypic changes. For example, in non-small
cell lung cancer (NSCLC), secondary mutations in the EGFR gene, such as the T790M
mutation, can confer resistance to first-generation EGFR inhibitors like gefitinib and
erlotinib [72]. This has led to the development of second-generation inhibitors like
osimertinib, which can effectively target the T790M mutation and overcome EGFR
inhibitor resistance [73].

Another mechanism of resistance involves the activation of alternative signaling
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pathways. In melanoma, resistance to BRAF inhibitors such as vemurafenib can
occur through the activation of the MAPK pathway allowing cancer cells to bypass
BRAF inhibition and continue proliferating [74]. Combining BRAF inhibitors with
MEK inhibitors is an effective strategy to overcome this type of resistance [75].

Phenotypic changes can also contribute to resistance. For instance, in prostate
cancer, androgen receptor (AR) signaling can adapt and evolve in response to
AR-targeted therapies like enzalutamide [76]. This can lead to the emergence of
AR splice variants that are constitutively active and do not require androgen for
activation, thus rendering AR-targeted therapies ineffective.

Overall, intrinsic resistance combined with acquired resistance over time makes
the targeted therapy even more challenging. Overcoming the resistance requires a
deep understanding of the underlying mechanisms and the development of novel
treatment approaches.

Risks. While targeted therapy offers reduced risks compared to conventional
chemotherapy, it can still impact normal cells, leading to toxicity or adverse off-target
effects. For example, because EGFR is not only overexpressed in cancer cells but
also present in normal epithelial tissues of the skin and intestines, treatments like
gefitinib that target EGFR can cause side effects such as skin rashes and diarrhea
[77]. Similarly, HER2-targeted therapies like trastuzumab can result in cardiac
dysfunction, since HER2 is also expressed in cardiac myocytes, underscoring the
difficulty of achieving precise specificity in targeted treatments [78]. Furthermore,
some drugs may lack high specificity, potentially binding to unintended targets and
causing off-target effects. For instance, tyrosine kinase inhibitors like nilotinib or
imatinib, designed to target BCR-ABL, have been found to produce off-target effects
with both short- and long-term consequences [79].

Managing these risks involves several strategies, such as optimizing dosing to balance
efficacy and toxicity, or developing more selective inhibitors that specifically target
the mutant or overexpressed forms of proteins/genes in cancer cells while sparing
normal cells. For example, osimertinib, a third-generation EGFR inhibitor, selectively
targets the T790M mutant form of EGFR, which is often associated with resistance to
first- and second-generation inhibitors, and offers a better safety profile compared
to its predecessors [80].

In summary, it is essential to identify the potential risks associated with targeted
treatments and understand which patient groups are most affected to enhance the
overall effectiveness of cancer therapies.

OPPORTUNITIES TO OVERCOME CHALLENGES IN TARGETED THERAPY

Precision medicine and patient stratification. Precision medicine tailors treatment
based on individual patient characteristics and molecular profiles, including genetic
and epigenetic features [81]. This approach enhances the likelihood of therapeutic
success by selecting treatments that are most likely to be effective for a specific
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patient. However, finding a unique treatment for each patient can be extremely
expensive and technologically challenging. An alternative strategy typically involves
grouping patients with similar characteristics who might also respond similarly to
the same treatments (Fig. 1.1).

Historically, precision cancer treatment began by grouping patients based on tissue
or organ type, an important decision facilitated first by Rudolf Virchow and the
World Health Organization (WHO). The classification system of WHO allows for
the systematic categorization of cancers by their tissue of origin to help guide
treatment decisions and research [82]. This classification enables oncologists to
identify common characteristics within cancer types, such as histological features
and growth patterns, pivotal for developing effective treatment protocols. Building
on this foundation, precision medicine evolved to consider genetic characteristics,
such as specific driver gene mutations. For instance, previous studies discovered
that the success of EGFR inhibitors in colorectal cancer patients depends on KRAS
mutation status, where those inhibitor drugs work exclusively on KRAS wild-type
(WT) patients [83–85]. Thus, colorectal cancer patients can be stratified by KRAS
mutation status and the EGFR targeting drugs can be given to patients that
benefit from such treatment, mainly those patients whose tumors do not harbor
KRAS mutations. Similarly, PARP inhibition therapy can benefit breast and ovarian
cancer patients with BRCA1/2 mutations [86], which requires stratifying patients by
BRCA1/2 mutation status. Sensitivity of other cancer types such as glioblastoma to
PARP inhibitors like olaparib can also be dependent on homologous recombination
deficiency and microsatellite instability status of the tumor [86]. Personalized
treatment strategies have further advanced to consider specific types of mutations
within a gene. In non-small cell lung cancer (NSCLC), patients with EGFR mutations
are further stratified by secondary mutations, such as T790M [73]. This stratification
allows for drugs like osimertinib, designed to be effective for patients with this
specific mutation, to improve treatment efficacy and patient outcomes. Although
the advancement is vast, for most cancer types with known mechanisms, there is
typically no group of patients that responds with 100% success. Thus, stratifying
strategies for cancer patients remain relevant to consider finer details such as
the type or location of the mutation of the cancer-driven gene as well as other
biomarkers that can be predictive of response to a treatment [87–89].

Leveraging genetic interactions: synthetic lethality. When oncogenes and tumor
suppressor genes are undruggable or untargetable, leveraging genetic interactions
offers a viable alternative for cancer treatment. It is expected that when cancer
originates due to a dysfunction in an oncogene or TSG, the cancer cells may become
dependent on other genes, pathways, or factors for survival which can be targeted
to kill cancer cells [90]. One such interaction is synthetic lethality, which occurs
when the simultaneous impairment of two genes results in cell death, while the
impairment of either gene alone is non-lethal (Fig. 1.1). This strategy is particularly
useful in cancer therapy because cancer cells often harbor specific mutations that
can be exploited by inhibiting interacting partners, leading to selective cancer cell
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death without harming normal cells. A prime example of synthetic lethality is
the use of PARP inhibitors in BRCA1/2 mutant cancers [91]. The BRCA mutations
compromise the homologous directed DNA repair pathway, which increases the
activity of alternative repair involving the PARP gene. Inhibiting the activity of PARP
in this case leads to an accumulation of DNA damage, promoting cancer cell death.

Beyond synthetic lethality, other genetic interactions can be exploited, such as
synthetic rescue and collateral lethality. Synthetic rescue involves restoring cell
viability in the case of a harmful mutation by altering another gene or pathway [92,
93]. Although less commonly applied in cancer therapy, it holds potential in genetic
disorders where modifying a secondary gene can mitigate the effects of a primary
mutation. On the other hand, collateral lethality, a concept related to synthetic
lethality, takes advantage of passenger genes deleted alongside tumor suppressor
genes [94]. When cancer is driven by genomic deletion of TSGs, there are also
additional passenger deletions that are not directly related to cancer. However, if
one of these genes is essential for cell survival but redundant due to another backup
gene (e.g. synthetic lethal relation), their backup gene can be targeted with the aim
of killing the cancer cells. For instance, deletion of the 1p36 locus not only affects
multiple cancer driver TSGs but also the neighboring gene ENO1. Although ENO1
is essential for cell survival, cells are still viable due to a backup pathway through
ENO2. Targeting this pathway can selectively kill those cancer cells [95].

Synthetic lethality, however, remains the most explored approach, offering a
promising avenue for developing targeted cancer therapies. By identifying and
targeting specific genetic dependencies of cancer cells, treatments can be designed
that are both effective and selective, minimizing harm to normal cells. This approach
is further enhanced by advances in genomic profiling and precision medicine,
enabling the identification of patient-specific vulnerabilities and tailoring treatments.

1.1.5. COMPUTATIONAL ADVANCES FOR TARGETED THERAPY

While the potential for targeted therapy hinges on a deep biological understanding
of cancer mechanisms, our knowledge remains limited as many aspects of
cancer development and progression are still not fully understood. With the
growing availability of medical records, genotypic data (omics), and phenotypic
data, computational tools can play an increasingly important role in uncovering
new insights into cancer mechanisms and in advancing the development and
implementation of targeted cancer therapies. These tools enable the computational
analysis of large datasets for automated and systematic identification of candidate
therapeutic targets or patient subgroups, exploration of genetic interactions, and
prediction of patient responses to treatments.

COMPUTATIONAL STRATIFICATION FOR PRECISION MEDICINE

Advanced computational methods can greatly facilitate patient stratification for
precision cancer treatment, through comprehensive identification of groups that
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are most likely to benefit from specific therapies. Machine learning algorithms
are essential for analyzing vast amounts of omics data, including genomic,
transcriptomic, and proteomic profiles to classify tumors into subtypes and predict
their response to targeted therapies. Stratification typically occurs through two
primary approaches: classification and clustering.

In classification, patients are grouped into predefined categories based on known
characteristics, such as the primary origin of the disease belonging to a well-known
tumor subtype, or responsiveness to a specific drug [96]. For example, in the context
of EGFR-driven lung cancer, classification algorithms may be used to determine
which patients will respond to tyrosine kinase inhibitors by training a machine
learning model using previously collected data [97, 98]. These classification tasks
are widely applied in precision oncology, enabling more personalized treatment
approaches tailored on the basis of genetic profile.

Clustering [99], on the other hand, involves grouping patients without predefined
categories, allowing the discovery of stratifications and groups that have not been
investigated yet, e.g. a new subtype within a cancer type [100]. Clustering is mainly
facilitated through similarity-based methods [101–103], or other methods such as
Gaussian mixture models where each sample originates from a Gaussian distribution.
In breast cancer, for instance, clustering based on gene expression profiles has
revealed subgroups of patients in previously defined subtypes such as HER2-positive,
estrogen receptor-positive (ER+), and triple-negative breast cancer [104]. Each of
these subtypes requires distinct therapeutic approaches, showing the benefits of
clustering in uncovering novel subtypes and tailoring treatments more precisely.
Beyond known subtypes, clustering has been particularly effective in identifying
previously unrecognized molecular subtypes in cancers such as glioblastoma [105,
106] or large B-cell lymphoma [107], and identifying novel groups within cancer
subtypes such as a split in luminal A breast cancer [108].

These discoveries can inform the development of more targeted therapies by
addressing the specific biological characteristics of each cancer subtype, ultimately
improving treatment outcomes. By leveraging large datasets, computational
approaches enable researchers to uncover complex patterns in cancer biology that
may not be apparent through traditional methods, thereby enhancing the precision
and effectiveness of cancer treatment strategies.

However, computational stratification still often focuses on large patient cohorts,
leaving a gap in research on treatment opportunities for smaller cohorts, such
as KRAS-addicted colorectal cancer patients, where more targeted analysis is still
needed.

COMPUTATIONAL DISCOVERY OF GENETIC INTERACTIONS: SYNTHETIC LETHALITIES

Identifying genetic interactions is crucial to discover new therapeutic possibilities.
However, experimentally testing all possible interactions between all genes or other
entities in all possible genetic contexts is not feasible. Computational approaches are
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powerful tools for uncovering complex interactions between genes, drugs, diseases,
and other biological entities by leveraging large datasets and machine learning
algorithms. One fundamental use of these methods is constructing and exploiting
patterns in protein-protein interaction (PPI) graphs, which provide a framework
to understand how proteins interact to carry out cellular functions and influence
phenotypes of interest such as response to treatment as well as predicting various
interactions within these PPI graphs [71, 109, 110].

While these graphs offer a broad overview of biological networks, refined approaches
focus on specific interactions like gene-disease associations and synthetic lethal
(SL) interactions. Techniques such as CRISPR-Cas9 knockout and RNA interference
(RNAi) are used to experimentally identify and validate synthetic lethal gene pairs in
cancer cells. However, the number of possible interactions and the costs involved in
testing them are simply prohibitive. As a result, computational methods including
conventional statistical approaches and machine learning (ML) models have been
proposed to identify promising gene pairs with SL potential. The first methods
proposed for computational SL prediction were statistical approaches like DAISY
[111], BiSep [112], and ISLE [113], which depend on known SL properties such as
mutual exclusivity of mutations. The emergence of powerful ML algorithms and
the availability of experimentally identified SL relations further yielded approaches
for training ML models that can predict SL relations. We categorize them into two
groups of methods, topology- and feature-based. Topology-based methodsconstruct
a network of pairwise SL interactions between genes and use techniques like matrix
factorization [114–116] or graph-based methods [117, 118] to identify patterns and
infer new interactions based on the existing SL topology. Feature-based methods
rely on supervised ML algorithms to learn models with complex rules underlying
synthetic lethality from a variety of omics data modalities. These feature-based
models include DiscoverSL [119], EXP2SL [120], and SBSL [121].

However, effective SL prediction is still limited by various factors. Statistical methods
may not be powerful enough to uncover complex SL relationships and they tend
to perform worse than machine learning-based methods [121]. On the other hand,
the literature presents that topology-based ML methods are susceptible to biases
intrinsic to SL networks [121]. Although feature-based ML models look more robust,
they do not utilize all available data sources that are relevant for SL prediction such
as aminoacid sequences, thus also suffering from data sparsity and low sample size.

1.1.6. INTRINSIC BIAS IN GENETIC INTERACTION DATASETS

Many biological datasets used in machine learning, including SL data, are affected
by selection bias and other forms of bias due to limitations in data collection
and experimental validation [121–125]. These datasets are often generated by
researchers, whose experiments inherently influenced by existing knowledge, research
priorities, and funding possibilities. As a result, data collection tends to focus
on well-established factors, which may become overrepresented compared to rarer
factors that are often neglected. For example, in gene studies, this imbalance makes
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datasets biased toward more frequently studied genes, pathways, and interactions,
leaving potentially important but lesser-known genes or pathways ignored.

In the context of synthetic lethality (SL), selection bias leads to overrepresentation of
interactions of well-researched genes, especially those already associated with cancer
pathways [121]. The consequences of these biases can be seen in SL prediction
models, which rely on these data to identify SL interactions. When trained on biased
datasets, these models tend to perform well in scenarios where the tested genes
are similar to the ones in training data, but struggle to make accurate predictions
when tested genes or interactions are underrepresented [121]. This can result in
an incorrect assessment of model performance and a failure to identify new SL
interactions for targeted cancer therapies.

In short, biases undermine the effectiveness of machine learning algorithms, which
may overfit to the well-represented data points, reducing their ability to generalize to
new or unseen interactions. The issue is particularly problematic in bioinformatics,
given the prevalence of selection bias in biology datasets and the impact that
prediction models can ultimately have on research and clinical practice.

1.2. MITIGATING SELECTION BIAS IN MACHINE LEARNING

AND APPLICATIONS IN BIOINFORMATICS
Machine learning (ML) algorithms have become integral to various bioinformatics
tasks, offering powerful tools for analyzing complex biological data and uncovering
relationships and properties within biology that would be challenging for humans
to figure out. These algorithms are mainly designed to identify patterns and
make predictions, enabling applications such as protein structure prediction [126],
drug response prediction [127–129], patient survival analysis [130, 131], cell
type classification [132, 133], and discovery of genetic interactions [134]. A
significant portion of these ML applications involves supervised learning, where
models are trained using annotated datasets that combine sample characteristics
with corresponding labels. Nevertheless, unsupervised learning methods, such as
clustering, remain widely utilized, especially when annotations are unavailable.

In supervised learning, models are typically trained on extensive datasets where
each sample is annotated with the correct label associated with the prediction task
of interest. For example, in studies that make use of gene expression profiles,
samples may be labeled with their respective tissue types or disease states, while
in protein-protein interaction prediction data might consist of protein pairs labeled
as interacting or non-interacting. Labeled datasets are necessary for building ML
models that can predict labels for new, unseen samples. However, the quality and
representativeness of the training data are essential to build successful ML models.
If the training data is biased or non-representative of the broader population, the
resulting models are likely to inherit such biases, leading to suboptimal performance
when applied in the real world. Biases usually go unnoticed unless the models are
carefully evaluated, underscoring the importance of fair model evaluation.
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Figure 1.2: Impact of selection bias to decision making and how to address it. a A 2D example of sample space
of all possible people in a population, colored by being healthy or having disease. On the right, most likely ML
model-induced decision boundary is shown for this problem. b The same sample space but now only some of
the patients are selected. On the right, one of the possible ML decision boundaries is shown for this problem
which is different than the original correct decision boundary in a. c In case self-training is used to include more
unlabeled samples to the training process, an ML model would identify high confident areas as on the left but
ideally representative samples from different locations should be incorporated to avoid strengthening the bias as on
the right.

1.2.1. CONVENTIONAL EVALUATION OF ML ALGORITHMS

Evaluating the performance of ML models typically involves several key steps,
including measuring success metrics (e.g. accuracy, precision, recall), analyzing
model behavior, and comparing results against baselines and other state of the art
models using established benchmarks from the literature. In bioinformatics ML
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applications, the general approach is to split existing datasets uniformly at random
into train and test sets, and to use the train set for model development and reserve
the test set for evaluation. Ideally, the test set remains entirely independent of
the train set and is only used during the evaluation phase to ensure that the
generalization ability of the model beyond the specific examples it was trained on is
accurately assessed.

Nevertheless, this conventional evaluation approach has a critical limitation: both
train and test sets are derived from the same underlying dataset, meaning that they
share similar characteristics. If the original dataset is biased in any way, this bias
will be reflected in both subsets, compromising the validity of the evaluation. This
issue highlights the need for fair and comprehensive evaluation practices in ML
applications. To fully understand this challenge, it is essential first to examine the
data collection process and the inherent limitations of these datasets.

1.2.2. DATA COLLECTION, BIAS, AND LIMITATIONS

During data collection, several factors can introduce unfairness and bias into the
dataset. Selection bias, where the collected samples do not accurately represent the
distribution of the actual population, is a significant concern across various fields,
including bioinformatics [135]. In genomic studies, high-quality samples are often
more readily available from populations with better healthcare access, leading to
biased data representation [136]. Similarly, datasets derived from specific labs or
geographic regions may fail to capture the true diversity of biological samples [137].
Additionally, technological biases can emerge from the use of certain platforms or
protocols that favor particular types of samples or measurements.

When biased datasets are used for training, it can cause ML models to fail when
applied to new, diverse datasets, limiting the generalizability of the model (Fig.
1.2a-b). For example, a model trained predominantly on male patients may perform
poorly in predicting disease risk for female patients. This issue highlights the
critical importance of collecting diverse and representative datasets to ensure the
development of fair and effective ML models. However, this problem is often
overlooked during model evaluation, also due to the lack of solutions to identify bias
and assess models under such conditions. We therefore ask the question: how can
ML models be assessed in a truly fair way by taking generalizability in the presence
of bias into account?

1.2.3. EVALUATION OF THE REPRESENTATIVENESS OF ML MODELS

Evaluating the representativeness of an ML model involves determining how
accurately the patterns learned by ML model generalize to new, unseen data that
is independent of the training data. An effective approach to do this consists in
testing the prediction performance of the model on a dataset that is collected from
a different source that is independent from the train set. For example, for any kind
of prediction problem, a model trained on data collected at one hospital could be
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tested on data collected by another hospital in a different country to assess the
generalizability of the model across clinical cohorts and scenarios.

In the absence of truly independent data, which is often challenging to acquire
or unavailable, common evaluation strategies resort to splitting a dataset into two
or more non-overlapping subsets, depending on the setup: train and test; train,
validation, and test; multiple folds for training and validation, as well as parameter
tuning, in a cross-validation setting. While splitting a dataset can be useful when
no other option is available, the different partitions will likely inherit any biases of
the original dataset relative to the underlying population, which will be reflected in
similar biases across train and test evaluation.

EVALUATING THE REPRESENTATIVENESS OF AN ML MODEL WITH A LIMITED DATASET

In the absence of independent test data, the robustness and generalizability of a
model can be assessed by introducing artificial bias into the train set. By deliberately
sampling training samples based on certain features or classes, we can generate a
biased train set with different characteristics and distribution from the originally
collected data. Then the ML model can be assessed to see if it can still perform well
on the original test set [138–141]. Artificial bias is induced by modifying the training
data to overrepresent or underrepresent specific groups or features. For example,
we might induce bias by excluding data points from a particular demographic
group. The model trained on this biased data can then be tested on a test set to
assess its generalizability. This approach helps identify potential weaknesses in the
model and provides insights into its ability to handle real-world variability. However,
current methods for inducing bias often require prior knowledge of which variables
in a dataset could cause bias, and they may not always be effective or reliable in
disrupting the expected decision boundary.

1.2.4. MITIGATION OF SELECTION BIAS IN ML MODEL LEARNING

Mitigating selection bias in ML applications involves several strategies, including
more comprehensive data collection, incorporating human expertise, and employing
computational methods to address biases during training.

EXISTING COMPUTATIONAL APPROACHES TO MITIGATE BIAS DURING ML MODEL

LEARNING

Domain adaptation methods aim to adjust models trained on one dataset to perform
well on another dataset with different characteristics by correcting the distribution
shift between them [142]. These methods encompass various techniques, including
importance weighting, subspace alignment, inference-based methods, and deep
domain adaptation. Importance weighting (IW) weighs the influence of training
samples based on their relevance to the test set, assuming that the support of the
test set is included in the train set and that the entire feature space is relevant
[140, 143–152]. However, IW techniques can struggle with low sample sizes and
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high-dimensional feature spaces and may also suffer when most of the features
are not informative for the problem itself. Subspace alignment transforms feature
representations to align the conditional probabilities of the train and test sets within
a shared subspace, although optimizing these transformations can be challenging
when there is a possibility of more than one suitable transformation [153–155].
Inference-based methods, such as minimax estimation, focus on minimizing the loss
in worst-case scenarios to ensure the model remains robust under any conditions.
Yet, these approaches are often model-specific and may underperform if the chosen
model is not well-suited to the test data [141, 156]. Deep domain adaptation
(DDA) methods, which use deep neural networks, aim to find domain-invariant
representations by penalizing discrepancies between domains. However, these
approaches are limited to deep learning models and operate as black-box models
[157].

Overall, domain adaptation methods address distribution shifts between a specific
training and a test set, which limits their broader applicability and generalization
beyond the specific test domains. Essentially, they are not designed to mitigate
the bias in the train set, but rather to try to fix the decision boundary just for
that specific test set. Furthermore, many of these methods are tailored to specific
machine learning models, restricting their usability across different types of models.

OPPORTUNITIES FOR SELECTION BIAS MITIGATION WITH UNLABELED DATA

While supervised learning requires labeled samples and domain adaptation requires
additional access to test samples without their labels, for some problems there
are vast numbers of unlabeled samples that could better represent the underlying
population than available train and test sets but are not annotated due to some
limitations such as time, money, and technology. Unlabeled data may present
significant opportunities to improve generalizability, since it is not specific to any
existing test set but can be assumed to include more general knowledge of the
population distribution. We can exploit unlabeled data to learn more generalizable
models in a semi-supervised learning manner. Semi-supervised learning (SSL)
leverages unlabeled data to enhance representativeness and improve the model’s
understanding of the underlying population distribution. Techniques such as
self-training (ST)[158] and co-training (CT)[159] incorporate additional unlabeled
samples into the learning process through pseudo-labeling. In pseudo-labeling, a
model is initially trained on labeled samples and then iteratively predicts the labels
of unlabeled samples, incorporating those with high-confidence predictions into the
train set. Here, "high-confidence" typically refers to predictions with probabilities
above a user-defined threshold, such as 0.9, or the top k predictions. However, if the
model is trained on a biased dataset, the top predictions will likely also be biased,
which may lead to the inclusion of more biased samples in the training process (Fig.
1.2c). Additionally, if one class consistently has higher prediction probabilities, the
model may predominantly select samples from that class, leading to class imbalance
[160, 161]. While there are methods to reduce the inclusion of redundant samples in
pseudo-labeling, such as P3SVM [160], these approaches are typically model-specific,
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limiting their applicability to a broader range of machine learning models.

In summary, although there is an opportunity to mitigate selection bias with
unlabeled data, it is still not utilized effectively. If applied carefully, semi-
supervised learning may be helpful for bioinformatics problems that suffer from
non-representative or biased data.

1.3. KEY CHALLENGES TO ADDRESS
This thesis identified several research gaps in therapeutic target identification for
cancer treatment and selection bias in machine learning (Fig. 1.3-1.4).

Ineffective synthetic lethality prediction. Research on cancer treatment mainly
involves identifying cohorts with common vulnerabilities and determining effective
treatment options for them. When suitable cohorts with a potential target are
identified but existing treatments are limited or ineffective, genetic interactions
can be exploited for an alternative targeting possibilities that seek to sensitize the
remaining cohort. Synthetic lethality (SL) between two genes, a genetic interaction
used to target cancer cells, is increasingly identified through computational methods.
However, current tools often perform poorly or inconsistently across cancer types.
In some cases, predictions are worse than random due to the sparsity of data and
a lack of diverse biological data sources. Moreover, existing models often follow
selection biases in the data, resulting in low generalizability due to their dependence
on previously identified SL relationships. Additionally, sequence similarity—an
indicator of related gene function that can potentially lead to synthetic lethality (SL)
relationships—has not been sufficiently investigated (Fig. 1.3, left panel).

Lack of computational tools to stratify oncogene-addicted cohorts. Another
approach to discover new anti-cancer treatments is to further stratify cohorts to
find sub-cohorts with similar vulnerabilities. For example, oncogene-driven cohorts
often result in oncogene addiction, where tumor cells depend on the oncogene for
their survival. Although the target is known, some oncogene-addicted cohorts are
not targetable due to factors like the undruggability of the oncogene. However,
they may contain sub-cohorts with additional targetable dependencies associated
with oncogene addiction. Because these cohorts typically have few samples, they
have not traditionally been the focus of computational methods. However, with
the availability of cancer cell line omics and extensive drug response data, there is
now an opportunity to use these data to computationally identify sub-cohorts of
oncogene-addicted patients and potential treatments for them (Fig. 1.3, right panel).

Neglect on selection bias in machine learning. Despite efforts to address
discrepancies between sample distributions of source (training) and target (testing)
sets through domain adaptation methods, mitigating selection bias in source domains
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Figure 1.3: Overview of key challenges in targeted therapy that are addressed in this thesis along with proposed
solutions: ELISL (Chapter 2) for identifying synthetic lethal relationships and OncoStratifier (Chapter 3) for
stratifying oncogene-addicted cohorts.

to improve generalizability beyond a specific target domain remains underexplored.
In bioinformatics, fair evaluation and generalizability are often overlooked unless a
separate validation study is available, which is rarely the case.

To address selection bias and enhance generalizability, unlabeled samples, which
cannot be used in supervised learning, could be leveraged in semi-supervised
settings to learn a better approximation for the distribution and decision boundary
associated with a prediction task (Fig. 1.3). Self-training, a semi-supervised
method that incorporates unlabeled samples with high prediction confidence into
training, shows promise, but it can also reinforce existing biases by favoring already
biased samples. Therefore, there is a need for approaches that integrate diverse,
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Figure 1.4: Overview of challenges related to selection bias in machine learning, along with vanilla self-training, and
proposed solutions: Hierarchy Bias (Chapter 4) induction for investigating fair learning, and self-training-based bias
mitigation methods, DCAST (Chapter 4) and Metric-DST (Chapter 5), for achieving fair learning.

representative unlabeled samples into the training process to effectively mitigate
selection bias. Diverse samples can be selected from distinct clusters emerging
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from the training data, ideally represented according to a supervised latent space: a
learned discriminative latent space that is informative of the decision boundary for
the prediction task of interest. This strategy works well with ML architectures such
as neural networks and random forests, which intrinsically learn supervised latent
spaces (Fig. 1.3, bottom left panel). For other methods, such as logistic regression,
a supervised latent space is not readily available to promote diversity in this way.
Moreover, the assumption that training samples will yield diverse clusters may not
hold for every dataset, and thus promoting diversity based on clustering of the
data is not always applicable. Therefore, while the diversity gap can be addressed
immediately by exploiting intrinsic characteristics of certain models, there is also
a clear need for a model-agnostic approach to promote the diverse selection of
samples during ML model learning (Fig. 1.3, bottom right panel).

1.4. THESIS CONTRIBUTIONS
This thesis contributes computational methods for therapeutic target identification
in cancer and addresses challenges related to selection bias in machine learning
models.

As a contribution to finding genetic interactions for targeted therapy, in Chapter 2,
we introduce ELISL as a machine learning framework designed to predict synthetic
lethal (SL) gene pairs using a combination of carefully selected molecular biology
data deemed informative for SL prediction (Fig. 1.3). The ELISL models effectively
integrate context-free data that reflects functional relatedness of genes, such as
amino acid sequences, and context-specific data that varies between tumors, such
as tissue omics and survival as well as cancer cell line viability in the presence of
gene aberrations, to enhance the SL prediction and generalizability. Furthermore,
ELISL does not depend solely on existing SL relations in contrast to some of the
previous methods and also utilizes aminoacid sequences of proteins coded by genes
as a proxy for functional relatedness of genes. Our results demonstrate that ELISL
outperforms existing methods in predicting known SL gene pairs while remaining
robust against selection bias inherent in previous SL datasets.

To contribute to precision medicine, in Chapter 3, we present OncoStratifier, a
computational framework aimed at stratifying oncogene-driven cancer cohorts based
on drug response (Fig. 1.3). This approach is the first systematic computational
effort to stratify oncogene-driven cohorts and identify possible targets based on
available drugs. We show that OncoStratifier can identify subcohorts suitable for
specific treatments, particularly in cases where the oncogene driving the cancer is
not directly targetable.

To address selection bias in machine learning models, Chapter 4 introduces two
contributions: hierarchy bias, a method that induces bias by selecting samples while
favoring specific clusters in sample space; and DCAST, a semi-supervised learning
method based on self-training (Fig. 1.4) that incorporates diverse unlabeled samples
into the learning process to mitigate selection bias in classification tasks (Fig. 1.4).
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DCAST assumes that datasets consist of different clusters formed by diverse samples.
Thus, it identifies and includes unlabeled samples from different clusters to promote
diversity. Although not a strict requirement, DCAST suggests identification of clusters
in supervised latent space informed by the classification task to ensure the sample
space is constructed only by informative features. Our experiments show that
hierarchy bias is more reliable in inducing bias compared to previous methods, and
DCAST consistently improves model performance on biased training sets without
the performance degradation seen for other domain adaptation methods. However,
DCAST’s implementation may vary depending on the machine learning model, as
it suggests identifying a supervised latent space per method. Additionally, DCAST
assumes that samples can be clustered, with diverse clusters yielding diverse samples
to mitigate bias, which may not be true for all datasets.

To overcome the limitations of the cluster assumption and model-specific
implementation, Chapter 5 introduces Metric-DST, a self-training method that
uses metric learning to incorporate diverse unlabeled samples into the training
process, with the aim of mitigating selection bias (Fig. 1.4). The metric learning
model directly creates a bounded supervised latent space that allows for the
selection of more diverse samples, randomly distributed throughout the learned
space. Metric-DST is model-agnostic, making it applicable to any machine learning
model without requiring changes to the implementation. Our experiments show
that Metric-DST performs well across biased toy datasets, real-life datasets, and a
complex bioinformatics problem, synthetic lethality.

Finally, the thesis concludes with a summary of our contributions, a discussion of
their current and potential future impact, and possible extensions in Chapter 6.
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Motivation: Anti-cancer therapies based on synthetic lethality (SL) exploit tumour
vulnerabilities for treatment with reduced side effects, by targeting a gene that is
jointly essential with another whose function is lost. Computational prediction is key
to expedite SL screening, yet existing methods are vulnerable to prevalent selection
bias in SL data and reliant on cancer or tissue type-specific omics which can be
scarce. Notably, sequence similarity remains underexplored as a proxy for related gene
function and joint essentiality.
Results: We propose ELISL, Early-Late Integrated forest ensembles for SL prediction
using context-free protein sequence embeddings and context-specific omics from cell
lines and tissue. Across 8 cancer types, ELISL showed superior robustness to selection
bias and recovery of known SL genes, as well as promising cross-cancer predictions.
Co-occurring mutations in a BRCA gene and ELISL-predicted pairs from the HH, FGF,
WNT, or NEIL gene families were associated with longer patient survival times,
revealing therapeutic potential.
Data: 10.6084/m9.figshare.23607558
Code: github.com/joanagoncalveslab/ELISL

2.1. INTRODUCTION
Targeted anti-cancer therapy capitalises on tumour-specific molecular changes to
selectively kill tumour cells, often resulting in reduced side effects compared to
conventional chemotherapy and radiotherapy. Unfortunately, direct drug binding
may be prevented by alterations of the drug target, for instance caused by loss of
function mutations, amplification, or overexpression [1, 2]. A promising alternative
explores synthetic lethality (SL) between a group of genes, whereby co-occurring
dysfunction of all genes in the group causes cell death while disruption of only a
subset of those genes is non-lethal [3]. Tumours with a known dysfunctional gene
can then be treated by targeting its SL partner genes.

The viability of SL-based therapies has been confirmed by the approval of
PARP-inhibitor drugs for treatment of BRCA-deficient tumours [4, 5]. Yet, the search
for other SL interactions is proving challenging. New SL interactions are identified
through expensive and laborious molecular perturbation experiments [6–10], which
deem exhaustive screening impractical. Notably, computational SL prediction can
greatly help prioritise candidates for follow-up.

Existing SL prediction methods can be categorised into statistical approaches and
machine learning (ML) models. Statistical methods such as DAISY [11], BiSep [12],
and ISLE [13] select SL pairs by imposing thresholds on statistical properties
associated with SL, such as mutual exclusivity of mutations, coexpression, or
changes in dependency on a gene for cell survival. Although statistical methods are
intuitive, they struggle to capture complex relationships underlying SL interactions
and tend to underperform compared to ML-based models [14]. The ML models can
be further split into SL-topology and feature-based.

SL-topology methods represent existing SL data as a network of pairwise SL

https://doi.org/10.6084/m9.figshare.23607558
https://github.com/joanagoncalveslab/ELISL
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interactions (edges) between genes (nodes). This network is used to identify shared
SL patterns across genes and infer new SL interactions with matrix factorisation
(pca-gCMF [15], GRSMF [16], and SL2MF [17]) or graph-based methods
(DDGCN [18] and GCATSL [19]). The dependence of SL-topology methods on
existing SL interactions typically means that (i) prediction scope is limited to genes
with known SL partners, (ii) performance is heavily influenced by connectivity while
SL data is reportedly sparse, and (iii) the approach is better suited for transferring
SL interactions between genes with similar SL profiles than de novo SL discovery.
Additionally, SL data shows prevalent selection bias towards functionally related
genes with similar SL profiles, which SL-topology methods are designed to exploit.
However, such limited set of SL interactions will not generalise to most other genes,
making SL-topology methods sensitive to selection bias [14].

Feature-based ML models are built with supervised ML algorithms using omics
features (DiscoverSL [20], EXP2SL [21], Lu [22], and SBSL [14]), enabling them to
learn complex rules underlying SL interactions and remain more robust to selection
bias. Most feature-based methods rely on (regularised) logistic regression or random
forests to predict SL based on multiomics features [14, 20, 22]. Alternatively, EXP2SL
uses a neural network to learn from a fixed set of genes and their expression in
cancer cell lines [21].

Common to feature models is a focus on context-specific data for a tissue type of
interest: for lung cancer, this could be omics of lung cancer cell lines and tumour
tissue. While valuable for SL prediction, context-specific data may be difficult to
obtain for some (rarer) cancer types, limiting the ability to learn useful models.

We argue that context-free metrics of functional similarity between genes could also
be informative for SL prediction. The idea is that genes with similar functions have
more related or redundant activity, making it more likely that a (cancer) cell would
depend on the joint loss of function of those genes for its survival [23]. We consider
the homology of protein sequences and similarity of protein-protein interactions
(PPIs) as candidate metrics, which have been used successfully as proxies for
functional similarity in tasks such as protein function prediction [24, 25]. Of note,
the ISLE method has incorporated similarity of gene phylogenetic profiles for SL
prediction. While relying on sequence homology to estimate evolutionary
conservation across species, the similarity of phylogenetic profiles is ultimately
influenced by a number of factors including focus on DNA sequence, choice and
homology of other species data, and quality of inferred phylogenies. We thus favour
a context-free representation of each gene pair based on direct comparison of the
corresponding protein sequences for the organism of interest. Aminoacid sequences
are closer to the functional roles of the genes than DNA, and their features can be
compared directly for any pair of genes to provide an unbiased view of potential
functional relationships for cells of that organism. Our use of vectorised sequence
embeddings further enables a fine-grained exploration of sequence features that
would otherwise be masked when relying on a single homology value for a pair of
genes.
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We propose Early-Late Integrated Synthetic Lethality (ELISL) prediction models, the
first to integrate context-free direct protein sequence relationships and
context-specific omics to predict SL for pairs of genes. Context-free features in
ELISL encode each gene pair using embeddings of their protein sequences or PPIs.
Context-specific features are stratified per tissue and sample type. We consider
cancer cell lines because they are well characterised model systems with unique
gene dependency data, quantifying cell viability upon gene perturbation, which is
notably relevant for SL prediction and unavailable for patient tumours. ELISL looks
at the relation between dependency scores and genetic or transcriptional alterations,
as increased dependency on a gene in cell lines with altered activity of another gene
could signal SL between the two. Separately, we include tissue omics to be able to
explore the complexity inherent to human tissues. Here, impact of mutations within
a gene on the expression of another gene suggests related function and thus
increased SL potential [14]. In addition, correlation in gene expression and copy
number aberration in both healthy and tumour tissue could help identify
tumour-specific changes in the relationship between a pair of genes [14]. Finally,
effect of tumour-specific co-alterations of two genes on patient survival could be
indicative of SL, as simultaneous loss of function of SL genes might prolong survival
by inducing cancer cell death, even if co-alterations are rare due to natural selection
[13, 26, 27]. To effectively learn from low and high-dimensional data across sparser
and denser representations, ELISL combines early (concatenation) and late (output
ensembling) integration [28] using a collection of forest ensembles.

2.2. METHODS
The aim of the proposed ELISL framework is to predict if a given gene pair is
synthetic lethal by leveraging context-free and context-specific omics that represent
different relationships between the pair of genes at the molecular level (Fig. 2.1a).
To do this, ELISL makes use of an early-late integration strategy comprising six
regularised forest ensembles. Five models learn each from one individual
context-free/specific source for later integration, and one early integration model
learns from all concatenated features, enabling interactions across data sources
(Fig. 2.1a). The final ELISL prediction probability is calculated as a weighted average
of the probabilities of its six submodels.

2.2.1. DATA COLLECTION AND FEATURE GENERATION

ELISL models learn from two categories of features: context-free relations between
genes based on protein sequence or PPIs, and context-specific features based on cell
line and tissue omics. A featurised representation of each gene pair is derived per
category and data source as an fi -dimensional vector, where fi is the number of
features for data source i . For a set of N samples or gene pairs, this yields a matrix
of dimensions N × fi , where each row refers to a gene pair and columns denote the
different features.
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Figure 2.1: ELISL framework, SL label imbalance, and within cancer prediction performance. a, The ELISL
framework b, Number and ratio of positive and negative samples in the train set for each cancer type. c, Prediction
performance (AUPRC) of SL prediction methods within a cancer type over 10 runs. P: significance of the difference
in performance between the best of other models and the best ELISL model over 10 runs (red lines).

Protein sequence and protein-protein interactions. We retrieved reviewed protein
sequences from UniProt [29] and used the SeqVec pretrained model [30] to extract a
1024-dimensional embedding vector for every protein sequence. The
sequence-based feature vector of each gene pair was then calculated as the absolute
difference between the vectors of the proteins encoded by the two genes in the pair.
We collected protein-protein interactions (PPIs) from the STRING database [31],
considering only manually curated or experimentally validated interactions. Using
these data, we built a network graph of genes (nodes) and undirected interactions
between them (edges), and extracted a 64-dimensional embedding vector for each
gene in the network using the Node2Vec method with default parameters [32]. To
obtain the PPI feature vector for each pair of genes, we took the absolute difference
between the embedding vectors of the two genes.

Cancer cell line omics. We retrieved dependency scores of cancer cell lines
measured upon gene perturbation from the Cancer Dependency Map portal (public
release 2018Q3 [33, 34]). Gene expression and mutation data from the Cancer Cell
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Line Encyclopedia (CCLE) [35, 36] were obtained from the cBioPortal repository
(Broad 2019) [37]. Based on these omics data, we defined alterations as
encompassing non-silent mutations, gene expression z-scores larger than 1.96 or
smaller than −1.96 (95% confidence), and discrete copy number aberration score
equal to 2 (amplification) or −2 (deep loss). For gene expression, we used
log-transformed mRNA z-scores compared to the expression distribution of all
samples (RNA-seq RPKM). For copy number scores, we used discrete values
generated by the GISTIC algorithm [37, 38]. Two feature sets were created based on
cell line omics: CRISPR with mutation and CRISPR with expression based on CRISPR
gene dependency scores and mutation data or gene expression, respectively. Each of
these comprised four features: average dependency of the first (or second) gene
across cell lines where the second (or first) gene was unaltered, and average
dependency of the first (or second) gene across cell lines where the second (or first)
gene was altered.

Tissue omics. We collected gene expression, mutation, copy number aberration,
and clinical data for patient tissue samples in The Cancer Genome Atlas ([39] from
the cBio portal [37]. We used two different gene expression scores: log-transformed
mRNA z-scores relative to the distribution of all samples (RNA Seq RPKM) to
identify expression based alterations, and mRNA gene expression (RNA Seq V2
RSEM) to quantify expression level. Additionally, we collected healthy donor tissue
gene expression data as transcript per million (TPM) from the GTEx portal [40]
(dbGaP Accession phs000424.v8.p2). Alterations were defined as encompassing
non-silent somatic mutations, gene expression z-scores larger than 1.96 or smaller
than −1.96 (95% confidence), and discrete copy number score of 2 (amplification) or
−2 (deep loss). Using these alterations, we categorised patient tumour samples into
two groups: with alterations in both genes, where an alteration in one of the omics
was sufficient; and without simultaneous alterations in both genes. From tissue
omics, we generated the following sets of features: patient survival, average gene
expression in altered or unaltered tumour patient samples, gene coexpression in
patient tumour/normal tissue or in healthy donor tissue, and correlation of copy
number aberrations in patient tumour samples. The survival feature was the p-value
of a Wald significance test for the patient group variable based on co-mutation
status using a Cox proportional hazards (CoxPH) model of survival time, including
covariates for age, sex, and cancer type. Four average gene expression features were
defined as the average gene expression of the first (or second) gene in tumour
samples where the second (or first) gene was: unaltered (2 features) or altered (2
features). Additionally, six coexpression features were calculated as the Pearson’s
correlation and respective p-value between the expression levels of the two genes in
a gene pair in the following sets of samples: TCGA tumour samples from cancer
patients (2 features), TCGA normal samples from cancer patients (2 features), and
GTEx healthy donor tissue samples (2 features). Finally, two features expressing the
correlation and p-value of copy number aberrations between the two genes in a
gene pair were calculated using Spearman’s correlation.
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Synthetic lethality labels. We obtained experimentally derived SL labels from four
studies: DiscoverSL [20], ISLE [13], EXP2SL [21], and Lu et al. [22]. These aggregate
the results of 25 original experimental studies (Supplementary Table 2.S1),
providing positive (SL) and negative (non-SL) labelled pairs. We note that there is no
consensus on the criteria used to identify SL and non-SL pairs, with each study
employing its own methodology. Positive SL relationships are typically identified
based on statistical tests to detect an effect of simultaneous alterations to two genes,
endogenous or induced, as a reduction in cell survival ability. As for non-SL pairs,
some studies use statistical tests to determine if the interaction between the two
genes improves cell survival or growth (opposite of an SL effect), while others label
any gene pairs tested but not significant for an SL relationship as non-SL pairs. This
makes non-SL pairs less reliable, which we consider during model evaluation. From
these 4 studies, we found SL labels for 8 different cancer types (Fig. 2.1b), and
removed all gene pairs with any disagreements in SL label across studies
(Supplementary Table 2.S2). Unless otherwise specified, we used one SL dataset
containing all unique gene pairs found across the four SL label sets.

2.2.2. ELISL MODELS

ELISL models (Fig. 2.1a) take as input a featurised representation of a given gene
pair, and generate an SL prediction score denoting the probability that such gene
pair is synthetic lethal. Models are learned using SL labelled gene pairs, and the
representation comprises features from context-free and -specific omics data.

EARLY LATE INTEGRATION FRAMEWORK

The early-late integrated framework is designed to learn models from a given
number k of data sources, with k ∈N and k ≥ 2, as follows. We build k models, each
learning from the feature set created for one of the k individual data sources of
interest. We also train an additional model using the feature set obtained by
concatenating the features generated from all the individual k data sources. The
predictions of the k +1 models are aggregated using weighted average, with weights
based on the validation performances of the individual models. More formally, each
individual dataset Xi , with i ∈N and {1, ...,k}, is a feature matrix Xi ∈RN× fi , with N
denoting the number of examples or gene pairs (rows in Xi ) and fi the number of

features (columns in Xi ). The concatenated dataset is defined as Xk+1 ∈RN×∑k
i=1 fi

and results from concatenating the sets of feature matrices of all k individual data
sources, {X1, ..., Xk }. Each model is an ensemble of trees learned using a given
dataset Xi with the corresponding labels for its N examples (gene pairs). Models are
trained together with shared hyperparameters. Finally, the prediction score of a pair
is calculated as ŷ =∑k+1

i=1 wi ŷi , where wi is the weight of model i and ŷi is the
prediction probability score of the gene pair according to model i . The weight wi of
each model in the final score is determined as the prediction performance on the

validation set, normalised over all models: wi = pi∑k+1
i=1 pi

, where pi denotes the
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performance of model i (see Supplementary Materials).

2.2.3. MODEL TRAINING AND EVALUATION

We built ELISL models using two types of ensembles of decision trees: random
forests (ELISL-RF [41]) and gradient-boosted decision trees (ELISL-GB [42]).

Single-cancer models. For each cancer type, we first split the labelled pairs into
disjoint train (80%) and test (20%) sets. Then we generated ten runs: per run, pairs
of train and test were drawn by random undersampling of the majority class to
ensure balance of positive and negative SL labels. All SL prediction models were
evaluated in ten runs, each using one of the generated train/test splits (runtimes in
Supplementary Table 2.S3). Per run, models were learned on the train set and
evaluated on the test set using area under the precision-recall curve (AUPRC) and
receiver-operating characteristic curve (AUROC) as performance metrics. For ELISL,
the hyperparameters and the weight of each submodel were determined with
Bayesian grid search and 5-fold cross-validation, using validation AUPRC as
performance metric (Supplementary Materials)We assessed significance of the
difference in performance between the best ELISL and the best of the other models
using two-sided Wilcoxon signed-rank tests.

Comparison with other SL prediction methods. We trained the pca-gCMF,
GCATSL, and GRSMF methods using the parameters suggested by the authors. For
SBSL-EN, and SBSL-MUVR, we found hyperparameters using grid search as
described in the original paper (Supplementary Materials). All models were trained
and evaluated on the same train and test sets.

Pan-cancer models. Pan-cancer models were obtained by ensembling the already
trained models from each cancer type, where the weight of each model in the final
prediction was attributed based on validation performance. Combining the
predictions of the different models in this way allowed us to bypass challenges of
training with large imbalances in number of samples across cancer types. This
would have required us to balance the data across cancer types, which could also
severely limit the number of pairs available for training.

Importance of feature categories. We calculated the importance of each feature
category for the ELISL-RF models of the six cancer types with the smallest variance
in AUPRC scores across runs (BRCA, CESC, COAD, LAML, LUAD, and OV). To
calculate the importance score for a given feature set, we permuted the values of all
of its features across the gene pairs in the test set, so as to break the relation
between features and labels. When permuting a given feature set, the concatenated
features also changed accordingly. We calculated the prediction errors for the
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original test set and each of 20 different permuted test sets as (1-AUPRC) scores.
The importance score was then defined as the ratio between the prediction errors
obtained for the permuted test set and the original test set.

DETAILED ANALYSIS OF PREDICTED SL PAIRS

To evaluate predictions for gene pairs with known labels, we ranked all gene pairs
found in at least one of the ten tests sets based on their average prediction
probability scores of the single-cancer models obtained over the ten runs.

Predictions for gene pairs with unknown SL labels. We created a set of gene pairs
with unknown SL labels for breast cancer by generating all possible pairs of genes
found in cancer and DNA repair pathways, using KEGG, PID, and Reactome
pathway gene sets from the molecular signatures database v7.1 [43]. From the total
of 572 genes found across all pathways (Supplementary Materials), we generated
163,306 gene pairs. After excluding the pairs already present in the train or test sets,
we ended up with 163,118 gene pairs. The SL scores of the pairs with unknown
labels were determined as the average prediction probability over the 10 runs of the
single cancer experiment.

Survival analysis of newly predicted SL gene pairs. To validate predicted SL gene
pairs without known labels, we investigated differences in survival time between
patients with or without simultaneous alterations (co-mutation) in both genes.
Given that only a small number of patient tumours typically carried simultaneous
mutations, we looked at the relation between gene families rather than individual
genes. We stratified the patient tumour samples into two groups based on
co-mutation status, denoting presence or absence of alterations in genes of both
families. Specifically, for a given pair of genes (Gene 1, Gene 2), we denote the
group of samples with co-mutations in both a member from the family of Gene 1
(Fam 1) and a member from the family of Gene 2 (Fam 2) as (Fam 1 and Fam 2),
while the group without co-mutations is expressed by ∼(Fam 1 and Fam 2). Survival
times of both groups were estimated using a Cox proportional hazards (CoxPH)
model, including covariates for age, sex, and cancer type in addition to co-mutation
status. The significance of each variable in the CoxPH model (p-value) was
calculated using Wald significance tests. We also generated plots of Kaplan-Meier
survival curves for the patient groups. Additionally, we represented two subgroups
of the group without co-mutations, namely: the subgroup with mutation in only one
of the families but not both (Fam 1 xor Fam 2), and the subgroup with no mutation
in any of the genes from both families (Unaltered). Note that, although the
ELISL-RF model included a survival-based feature as part of the tissue-specific
model, the contribution of tissue features overall was reportedly small (1.09). One
reason for this could be the fact that survival data was very sparse due to the rare
occurrence of co-mutations in both genes.
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2.3. RESULTS AND DISCUSSION

2.3.1. CANCER-SPECIFIC SYNTHETIC LETHALITY PREDICTION

We first evaluated the ability of ELISL models to generalise within a cancer type, for
eight distinct cancer types. We compared ELISL-RF and ELISL-GB to five other
recently published ML models with high performances in their categories, namely:
pca-gCMF, GRSMF, and GCATSL as SL-topology methods, and SBSL-MUVR and
SBSL-EN as supervised ML models.

Supervised ELISL models significantly outperformed the other methods in breast
(BRCA), lung (LUAD), and skin (SKCM) cancers (Wilcoxon p ≤ 0.01). Graph-based
matrix factorisation GRSMF took the lead in cervix (CESC) and colon (COAD), and
was close second to GCATSL in leukemia (LAML) and ovarian (OV) cancers (AUPRC
Fig. 2.1c, AUROC Supplementary Fig. 2.S1a, 2.S2a), with ELISL models remaining
competitive as well. The performance of GCATSL varied widely across cancer types,
and was notably poor in BRCA, COAD, and SKCM. For kidney (KIRC) cancer, all
methods showed high variance, and there was no clear best performing model.
Overall, across all cancer types and runs, ELISL-GB was the most successful method
(average AUPRC 0.805), while GRSMF and ELISL-RF were second and third (average
AUPRCs 0.796 and 0.785), respectively (Supplementary Fig. 2.S2a). SL-topology
models showed strikingly high performances in OV. This is consistent with the
previous report that SL-topology methods might excel on OV due to the strong
selection bias in SL labelled pairs, which span a limited set of functionally related
genes [14].

2.3.2. ROBUSTNESS OF SL PREDICTION TO GENE SELECTION BIAS

To assess the impact of gene selection bias on the SL prediction methods, we
performed experiments with induced or inherent differences in selection bias
between the train and test sets.

Double gene holdout. To induce differences in gene selection bias, we enforced
zero overlap in genes between each train and corresponding test set (Fig. 2.2a). This
differs from the original experiment (Fig. 2.1c), where matched train/test sets were
disjoint in terms of gene pairs but not individual genes. All methods were evaluated
in four cancer types: BRCA, CESC, LUAD, and OV. We excluded KIRC and SKCM due
to the limited number of gene pairs, and COAD and LAML due to poor
performances in the original experiment (Fig. 2.1c).

Using double gene holdout, the performances of all models decreased significantly
for all cancer types (AUPRC Fig. 2.2a, AUROC Supplementary Fig. 2.S1b, 2.S2b),
possibly owing to the reduction in the number of training gene pairs imposed by
the train/test set construction (Supplementary Table 2.S4). For BRCA, the two ELISL
models performed the best (median AUPRC: ELISL-RF 0.67, ELISL-GB 0.69), while
the performance of SL-topology methods dropped to nearly random (Fig. 2.2a, top
left). For CESC, GRSMF had outperformed ELISL in the original single cancer
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experiment, but this difference was no longer apparent or significant using double
gene holdout (Wilcoxon p ≈ 0.92, Fig. 2.2a, top right). For LUAD, most methods
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struggled with double gene holdout Fig. 2.2a, bottom left). However, supervised ML
models SBSL and ELISL retained above random performances, with ELISL-RF
achieving the best median AUPRC (0.59). For OV, we saw the largest decrease in
performance using double holdout compared to the original experiment, which was
expected given the prominent SL label bias. ELISL-RF and GRSMF performed the
best in OV (median AUPRC 0.59 for both) using double gene holdout, while SBSL
models retained their originally modest performances (Fig. 2.2a, bottom right). The
GCATSL method performed poorly with double gene holdout in all cancers (near 0.5
median AUPRC), including in OV for which it was the best model in the original
experiment (0.98 median AUPRC).

Overall, supervised ML models SBSL and ELISL performed better than the
remaining models using double gene holdout. SL-topology methods delivered
inconsistent performances across cancer types, and were thus more sensitive to
selection bias. ELISL models outperformed the other methods in BRCA and LUAD,
and were comparable to the best performing models in CESC and OV.

Cross-SL label prediction. Since the double holdout is an extreme scenario, we
also evaluated SL prediction models with inherently occurring differences in gene
selection bias between train and test sets. To do this, we trained the models using
SL labelled pairs from one data source and tested them on labelled pairs from
another source for the same cancer type. We used the following (and reverse) SL
labelled sources, yielding between 78 and 1146 train samples (Supplementary
Table 2.S5): for BRCA, train on ISLE and test on DiscoverSL; for LUAD, train on
DiscoverSL and test on EXP2SL or Lu et al.

ELISL models outperformed the other methods when training on ISLE and
predicting on DiscoverSL for BRCA, as well as when training on DiscoverSL and
predicting on EXP2SL for LUAD (AUPRC Fig. 2.2b, AUROC Supplementary Fig. 2.S1c,
2.S2c). For the remaining LUAD experiments, one of the ELISL models ranked
second, whereas the linear SBSL-EN model took the lead. ELISL was not competitive
when training on DiscoverSL and predicting on ISLE for BRCA: this was the
combination where models had the least number of gene pairs to train on, 78, which
could be challenging for models using larger numbers of features such as ELISL.
Overall, across all cancer types and runs, ELISL-RF was the most successful method
in both the double holdout and cross-dataset experiments (average AUPRCs 0.631
and 0.685), while SBSL-EN was second best with average AUPRCs 0.617 and 0.665,
respectively (Supplementary Fig. 2.S2b-c). Thus, supervised ML models emerged as
the most robust to selection bias, with SBSL-EN and ELISL-RF standing out.

2.3.3. CROSS-CANCER SL PREDICTION USING ELISL-RF MODELS

There is evidence that some SL interactions may occur in multiple cancer types. For
instance, PARP inhibitor drugs are approved for the treatment of BRCA-deficient
breast, ovarian, prostate [44], and pancreatic [45] tumours [46]. This suggests that
there could be some benefit in leveraging successful models trained on cancer types
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with sufficient data (BRCA, LUAD, OV) to predict SL in other cancers, for which
samples are either not available or difficult to obtain (CESC, KIRC, and SKCM). To
investigate, we evaluated the performance of cancer-specific ELISL-RF models
against each of the remaining cancer types using the corresponding train and test
sets over ten runs from the original single cancer experiment.

The success of cross-cancer SL predictions was modest for most pairwise cancer
combinations, to which the quality and biases of the labels could have contributed
as well (AUPRC Fig. 2.3a, (AUROC Supplementary Fig. 2.S3a)). Nevertheless, we saw
some promising results. For the prediction of CESC pairs, the LUAD-trained model
performed better than the CESC-trained model itself (0.85 vs. 0.77 mean AUPRC).
Models trained on COAD or KIRC also achieved reasonable performances in CESC
(0.69 and 0.71 mean AUPRC, respectively). For SL prediction in KIRC, the best
model was trained using KIRC labeled pairs (0.72 mean AUPRC), followed by the
model trained on CESC (0.68 mean AUPRC), and by the models trained on BRCA
and LUAD (0.63 mean AUPRC). Overall, the results indicate that there could be
potential in identifying SL relationships across cancer types.

We further investigated if models learned using SL labels from multiple cancer types
(pan-cancer) would provide any benefit compared to cross-cancer predictions. For
every cancer type T , we trained models using labelled pairs from all other cancer
types except T , and then evaluated the predictions for labelled pairs in T . (see
Methods). Pan-cancer models showed promising performance for CESC (0.74 mean
AUPRC) and reasonable results for KIRC (0.65; Fig. 2.4a, bottom row). Performances
of pan-cancer models were not better than those of cancer-specific and cross-cancer
models, indicating that prior selection of relevant cancer types could be needed to
effectively enable pan-cancer models to predict SL for cancer types with limited
sample sizes.

2.3.4. FEATURE CONTRIBUTIONS TO ELISL-RF MODELS

To quantify the contribution of the different feature categories to the predictions of
the ELISL-RF model, we used permutation feature importance [47] (see Methods).
Sequence embeddings emerged as the most important feature in five cancer types
(BRCA, COAD, LAML, LUAD, and OV), and second most important in CESC (mean
importance: sequence 1.18) behind dependency with mutation (mean importance:
1.23). We note that importance values were more prominent for BRCA, CESC, LUAD,
and OV because the performance of ELISL-RF was also higher for these cancer types
(between 0.77 and 0.94 mean AUPRC) compared to COAD and LAML (0.67 and
0.63). High performance means low errors, which can result in larger ratios
(importances) for small changes in performance. Beyond sequence, PPI and the
interaction of CRISPR dependency and mutation were the second most important
feature categories overall. Ultimately, all data sources contributed to the ELISL-RF
model (mean importance > 1) in at least two cancer types, with the variation in
importance across cancers suggesting that the integration of multiomics could be
beneficial for cross-cancer SL prediction. We checked if the high-dimensionality of
sequence embeddings influenced ELISL-RF, but using embedding sizes between 32
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Figure 2.3: ELISL-RF SL prediction within/across cancer types and feature contribution. a, Performance of
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ELISL-RF model within the same cancer type.

and 1024 led to comparable performances (Supplementary Materials and
Supplementary Fig. 2.S3b).

2.3.5. POTENTIAL OF SL PAIRS PREDICTED BY ELISL-RF MODELS

To further assess the potential of ELISL-RF models, we first analysed the top known
gene pairs ranked by prediction probability in BRCA, LUAD, and OV. The top three
pairs for BRCA and OV were labelled as synthetic lethal (SL, Fig. 2.4a). In fact, all
top 82 pairs for BRCA and top 16 pairs for OV had positive labels, confirming that
ELISL-RF can recover known SL interactions. For LUAD, we counted six SL and four
non-SL pairs amongst the top 10 predictions (Supplementary Table 2.S6). Notably,
the highest ranked gene pair in LUAD, KRAS-MRPL28, had a non-SL label. However,
an independent study found that disruption of MRPL28 was lethal in KRAS-mutant
cancer cell lines [48]. The finding was for colorectal cell lines, but lung cancer could
share underlying mechanisms given that KRAS mutations are frequent in lung and
colorectal cancers, and colorectal cancers often metastasise to lung [49, 50].
Therefore, we cannot discard the possibility that KRAS-MRPL28 could be mislabelled
for LUAD.

Predictions for gene pairs with unknown SL status. Finally, we used ELISL-RF to
make predictions for unknown gene pairs. We focused on BRCA, for which ELISL-RF
models achieved the highest performance across experiments with varying gene
selection bias. Since we aimed to assess the impact of top SL and non-SL
predictions on patient survival, we also trained a separate ELISL-RF model on BRCA
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Figure 2.4: Analysis of top SL gene pairs predicted by ELISL-RF. a, Top 3 pairs ranked by SL prediction score
for BRCA, LUAD, and OV (average across 10 test sets). Figures b-c show results for prediction of unknown gene
pairs (not in test sets) using ELISL-RF trained on BRCA data without the survival feature. b, Distribution of SL
scores for unknown pairs compared to known SL and non-SL pairs. Dashed lines denote 5% and 95% percentiles.
c, Prediction scores of ELISL-RF without survival for the top 10 pairs in the BRCA test set and the unknown
set. d, Prediction scores of ELISL-RF without survival for pairs involving BRCA1/2 and HH, FGF, or WNT family
members. Bar length denotes average SL score and black line length represents standard deviation for the set of
pairs of interest. Figures e-h show differences in survival between patient tumours with and without simultaneous
alterations in both families of a gene pair, using Kaplan-Meier curves and Wald test p-values of survival differences
based on CoxPH models of co-mutation status adjusted for age, sex, cancer type. For pairs involving BRCA genes
and members of the (e) HH, (f ) FGF, (g) WNT, and (h) NEIL families.

data without the survival feature for fairer analysis. We predicted labels for all pairs
of genes involved in cancer and DNA repair pathways from KEGG, Reactome, and
PID (Supplementary Materials) using both models. Overall, ELISL-RF without
survival feature assigned higher SL prediction scores to pairs with known SL labels
(median 0.62), compared to pairs with known non-SL labels (median 0.38), as
expected (Fig. 2.4b). The distribution of SL prediction scores for unknown pairs
showed no particular tendency (median 0.49).

Without the survival feature, we found two unknown gene pairs among the ten pairs
with the highest ELISL-RF prediction scores, BRCA2-FGF6 and BRCA2-WNT10A
(Fig. 2.4c), immediately followed by BRCA1-NEIL2 and BRCA1-NEIL1 among
unknown pairs (Supplementary Fig. 2.S4). Using the survival feature, ELISL-RF
ranked three unknown gene pairs in the top ten: BRCA1-HHIP, BRCA2-FGF6, and
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BRCA1-FGF8 (Fig. 2.4c, Supplementary Fig. 2.S4). Of note, BRCA1-HHIP also ranked
highly without the survival feature (15th among unknowns). We investigated the
functional roles of these genes and their families, as well as association with patient
survival. We extended our analysis to gene families to obtain more robust estimates
of survival time, given that genes were infrequently co-altered.

Concerning the BRCA1-HHIP interaction, the hedgehog interacting protein (HHIP)
binds to all three hedgehog family members (IHH, SHH, DHH) with affinity to the
PTCH1 receptor, and regulates the hedgehog (HH) signaling pathway [51–53]. The
HH pathway is SL with the PI3K/AKT/mTOR pathway in rhabdomyosarcoma [54],
and the inhibition of PI3K is known to strengthen BRCA-PARP synthetic lethality in
BRCA1-deficient breast cancer [55]. We thus reason that the HHIP gene or HH
family could be an SL partner for BRCA1/2. Notably, the BRCA2-PTCH1 pair had a
positive SL label [56], and all pairs between BRCA genes and HH family members
yielded high prediction scores (>0.7 without survival feature, Fig. 2.4d). Analysis of
TCGA tumour samples showed that patients whose tumours carried alterations in a
BRCA gene (BRCA1 or BRCA2) and a HH family member (IHH, SHH, DHH, PTCH1)
had longer survival times than the rest (difference in median >220 months and
p ≈ 8.04×10−3, Fig. 2.4e, Supplementary Table 2.S7).

We assessed the BRCA2-FGF6 and BRCA1-FGF8 pairs together, as involving a BRCA
gene and FGF family member (FGF1 to FGF23). The fibroblast growth factor (FGF)
family regulates cell differentiation and proliferation, taking part in cancer
pathogenesis [57]. The BRCA1-FGF12 pair had a positive SL label, and all pairs
between a BRCA gene and FGF family members had prediction scores higher than
0.7 (Fig. 2.4d). The median survival time for patients whose tumours had alterations
in both families, BRCA1/2 and FGF1 to FGF23, was 23 months longer than for other
patients with p ≈ 1.55×10−2 (Fig. 2.4f, Supplementary Table 2.S7).

The top 5% of gene pairs (SL score > 7.57), also included several interactions
between BRCA genes and WNT family members, eight and six when using and not
using the survival feature, respectively(Fig. 2.4d, Supplementary Fig. 2.S4). The WNT
pathway regulates various processes including cell fate determination [58, 59], and
its inhibition could induce a BRCA-like state that makes cells vulnerable to PARP
inhibition [60]. This might suggest interactions between WNT, BRCA, and PARP.
Patients with tumours carrying mutations in BRCA and WNT genes lived (median)
89 months longer than the rest (p ≈ 7.35×10−5, Fig. 2.4g, Supplementary Table 2.S7).

The NEIL gene family (comprising NEIL1-3) encodes DNA glycosylases involved in
DNA repair via the base excision repair (BER) mechanism [61, 62]. Prior literature
has suggested that specific SNPs in the NEIL2 gene could establish a synthetic lethal
relationship with BRCA1/2 genes [63, 64]. Our analysis of TCGA tumour samples
unveiled that patients with alterations in a BRCA gene (BRCA1/2) and a member of
the NEIL family (NEIL1-3) experienced 24-month longer median survival times than
others, although this difference did not reach statistical significance, likely due to
the infrequency of co-occurring alterations (p ≈ 9.63×10−2; Fig. 2.4f and
Supplementary Table 2.S7).



ELISL

2

51

For comparison with the known BRCA-PARP interaction, alterations in both BRCA
and PARP (PARP1-16) genes led to 20 months longer median survival
(p ≈ 3.14×10−3, Supplementary Fig. 2.S5). For contrast, we looked at the four gene
pairs with the lowest ELISL-RF scores for both models, with and without the survival
feature. the union yielded 5 unique gene pairs: three pairs with non-SL label,
PARP1|RIPK1 (both models), MAP3K7|PARP1 (both models), and GRK4|PARP1
(without survival); and two pairs with unknown SL status, namely MAP2K2|PARP1
(with survival) and DAPK2|PARP1 (both models) (Supplementary Fig. 2.S6). For
PARP|RIPK, MAP3K|PARP, DAPK|PARP, and GRK|PARP, survival of patients with
alterations in both gene families was respectively 8, 3, 9, and 8 months shorter
(p-values 3.83×10−1, 4.07×10−6, 2.15×10−1, 2.09×10−2 (Supplementary
Fig. 2.S6a-d). For MAP2K|PARP, alteration in both gene families was associated with
17 months longer survival and p ≈ 2.41×10−3 (Supplementary Fig. 2.S6e).

Overall, the significant association between patient survival times and co-alteration
in families of highly ranked gene pairs suggests that ELISL-RF prioritises promising
SL interactions.

2.4. CONCLUSION
We proposed ELISL, forest ensemble models that leverage gene functional
relationships to predict SL in cancer. To our knowledge, ELISL models are the first
to use context-free direct protein sequence relationships as a proxy for functional
association for SL prediction, in addition to context-specific omics. The ELISL
early-late integration strategy effectively enabled learning from high-dimensional
sequence embeddings and tailored omics features.

ELISL models outperformed existing SL prediction methods, emerging as the most
robust models overall under varying gene selection bias. Nevertheless, learning from
biased data remains a fundamental ML challenge that merits further research. Some
SL-topology models (GRSMF, pca-gCMF) performed well when train and test set
followed similar distributions, but struggled to make useful predictions under
different bias, confirming previous work [14]. Other feature-based models, SBSL,
showed inconsistent performances across cancer types. This result exposed the issue
of relying on context-specific features alone, which can be sparse or unavailable for
some cancer types.

Sequence embeddings contributed the most to the predictions of ELISL models, and
thus were responsible for the advantage of ELISL over context-specific SBSL models.
Sequence embeddings also make ELISL models less dependent on context-specific
features like gene dependencies, which are exclusively available for cellular models
and may not directly translate to patient tumours.

Predicting across cancer types revealed challenging, but it was encouraging to see
that ELISL models trained on colon, kidney, or lung cancer performed reasonably
well on cervix cancer. Cross-cancer prediction should improve as higher quality, less
biased, SL data becomes available. Nevertheless, a few successful cases point to the
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existence of SL interactions across cancer types, which could bring benefit to a
larger number of patients in the future.

Using ELISL to make predictions for unknown gene pairs, we investigated promising
SL interactions. Survival analysis showed that simultaneous mutations in a BRCA
gene and at least one member of the HH, FGF, WNT, or NEIL families associated
with longer median patient survival times, reinforcing the ability of ELISL to predict
SL interactions with therapeutic potential.
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2.5. SUPPLEMENTARY MATERIALS

2.5.1. OTHER SYNTHETIC LETHALITY PREDICTION METHODS

PCA-gCMF. The PCA-gCMF method is a version of collective matrix factorization
(CMF) proposed for synthetic lethality (SL) prediction [1]. It first uses principal
component analysis (PCA) to reduce the dimensionality of rows and columns across
multiple matrices, including a (genes × genes) matrix of SL interactions and other
matrices containing different types of molecular data. After applying PCA, the
method uses group-sparse CMF to decompose these multiple matrices and make
SL predictions. Although different versions of the method were originally proposed
(CMF, PCA-CMF, gCMF, and PCA-gCMF), PCA-gCMF was the one that showed the
best performance and was therefore selected for comparison with ELISL models.
We applied the PCA-gCMF method using the following matrices: a matrix of SL
interaction labels (genes × genes); a pairwise gene co-dependency matrix (genes
× genes), containing significance p-values for the change in dependency score of
one gene in cell lines with vs. without a mutation in the other gene in each pair
(Wilcoxon rank-sum test), using CCLE data; a gene expression matrix (genes ×
samples), containing expression values measured across the available TCGA patient
tumour samples; a co-expression matrix (genes × genes), containing the Spearman’s
correlation coefficient between the expression of each pair of genes across the TCGA
patient tumour samples; and a CNV profile matrix (genes × samples), containing
continuous copy number values for the TCGA patient tumour samples. We used the
hyperparameter values suggested in the PCA-gCMF paper.

GRSMF. Graph regularized self-representative matrix factorization (GRSMF) is
another SL prediction method based on matrix factorization [2]. The GRSMF
approach learns a self-representation from a matrix of pairwise SL interaction labels,
regularized by a matrix of pairwise functional similarities between genes based on
Gene Ontology (GO) annotations. We constructed the similarity matrix as described
in the original work, using annotations from the biological process ontology. We
used the hyperparameter values suggested in the GRSMF paper.

GCATSL. The GCATSL method creates a graph of known SL interactions, as well as
graphs for other types of functional similarity relationships between genes (additional
data modalities), and uses these to predict new SL interactions [3]. The approach
learns node representations for local and global neighbours in each data modality
using graph attention networks, then aggregates local and global representations to
obtain modality-level features using multilayer perceptrons, and finally optimizes the
weights of the different modalities in a regularized linear model to reconstruct the
matrix of SL interactions. The prediction probabilities obtained for unknown gene
pairs are used for prediction. Originally, the authors used three different functional
similarity matrices: two based on GO annotations (biological process and cellular
component), and one based on protein-protein interactions (PPIs) from the BioGRID
database [4]. To ensure a fairer comparison, we applied GCATSL using the same
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manually curated or experimentally validated PPIs from the STRING [5] database
that we also used with ELISL models. We set the hyperparameter values as suggested
in the GCATSL paper.

SBSL. The SBSL framework uses conventional supervised machine learning
algorithms to learn SL prediction models based on a collection of 27 features [6].
Four SBSL models were originally proposed: two linear models using regularized
logistic regression (L0L2 [7] and Elastic Net [8]), and two non-linear models using
regularized random forests (Regularized Random Forest (RRF) [9] and Multivariate
methods with Unbiased Variable (MUVR) [10]). The 27 features used by SBSL
models are mainly context-specific and derived from different types of molecular
profiles for cancer cell lines, healthy donor tissues, and patient tissue samples. Data
modalities include, for instance: mutation and copy-number data, gene expression,
gene dependency scores, and patient survival data. For the SBSL methods, feature
calculation and hyperparameter optimization were performed as described in the
original paper.

2.5.2. DATA AND CODE

DATA SOURCES

Tissue data
Tumour patient tissue omics and clinical data (TCGA):

TCGA combined study containing samples from 8 studies: cBioPortal - TCGA
Firehose.
Healthy donor tissue data (GTEx):

GTEx gene expression: GTEx Portal - Gene TPMs (v8).
GTEx sample annotation: GTEx Portal - dbGaP de-identified open access version

(v8).

Cell line data
Cell line omics: CCLE Broad Institute & Novartis 2019.
CRISPR dependency scores: CCLE Broad Institute & Novartis 2019.

PPI data and embeddings
Protein-protein interaction data: STRING (v11).
PPI node embedding tool: Node2Vec.

Protein sequence data and embeddings
Human proteins with reviewed amino acid sequence data: UniProt.
Protein sequence embedding tool: SeqVec.

https://www.cbioportal.org/study/summary?id=brca_tcga%2Ccesc_tcga%2Ccoadread_tcga%2Ckirc_tcga%2Claml_tcga%2Cluad_tcga%2Cov_tcga%2Cskcm_tcga
https://www.cbioportal.org/study/summary?id=brca_tcga%2Ccesc_tcga%2Ccoadread_tcga%2Ckirc_tcga%2Claml_tcga%2Cluad_tcga%2Cov_tcga%2Cskcm_tcga
https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct.gz
https://storage.googleapis.com/gtex_analysis_v8/annotations/GTEx_Analysis_v8_Annotations_SampleAttributesDS.txt
https://storage.googleapis.com/gtex_analysis_v8/annotations/GTEx_Analysis_v8_Annotations_SampleAttributesDS.txt
https://www.cbioportal.org/study/summary?id=ccle_broad_2019
https://www.cbioportal.org/study/summary?id=ccle_broad_2019
https://stringdb-static.org/download/protein.links.v11.0/9606.protein.links.v11.0.txt.gz
https://github.com/aditya-grover/node2vec
https://www.uniprot.org/uniprot/?query=reviewed%3Ayes++AND+organism%3A%22Homo+sapiens+%28Human%29+%5B9606%5D%22&sort=score
https://github.com/mheinzinger/SeqVec
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Pathway gene sets used to create unknown pairs for SL prediction
Names and numbers of genes in cancer and DNA repair pathway gene sets used to
generate gene pairs with unknown SL status for prediction of promising SL pairs:

• KEGG PATHWAYS IN CANCER (325)
• KEGG BASE EXCISION REPAIR (35)
• REACTOME BASE EXCISION REPAIR (91)
• WP NUCLEOTIDE EXCISION REPAIR (44)
• KEGG NUCLEOTIDE EXCISION REPAIR (44)
• REACTOME NUCLEOTIDE EXCISION REPAIR (110)
• KEGG MISMATCH REPAIR (23)
• REACTOME MISMATCH REPAIR (15)
• WP DNA MISMATCH REPAIR (23)
• WP HOMOLOGOUS RECOMBINATION (13)
• KEGG HOMOLOGOUS RECOMBINATION (28)
• KEGG NON HOMOLOGOUS END JOINING (13)
• PID FANCONI PATHWAY (47)

CODE AND LIBRARIES

The code for the different experiments was written and integrated with Python 3.6.
Only PCA-gCMF [1] and the SBSL methods [6] were run in R. We used LightGBM [11]
and scikit-learn [12] together for the regularized random forest and regularized
gradient boosting decision tree models. We optimized the models using bayesian
optimization with gaussian process from the scikit-optimize [13] package. For
plotting, we made use of the seaborn [14] and matplotlib [15] libraries. Additionally,
we used the lifelines [16] package for the Kaplan-Meier plots and survival tests.
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2.5.3. HYPERPARAMETER SETTINGS FOR ELISL MODELS

Here we report the settings and default values used for hyperparameter optimization
of ELISL models with cross-validation on the train set.

• Number of leaves: 165
• Max depth: [10, 15, 20, . . . , 100, 105, 110, Inf]
• Learning rate: 0.1
• No of estimators: [100, 110, 120, . . . , 1180, 1190, 1200]
• Subsample for bin: 200000
• Minimum split gain: 0
• Minimum child weight: 5
• Minimum child samples: {1, 2, 4, 10}
• Subsample: {0.632, 0.8, 0.99}
• Subsample frequency: 1
• Colsample by tree: {0.5, 0.8, 1}
• Alpha regularization: 0
• Lambda regularization: {5, 10}

2.5.4. IMPACT OF SEQUENCE EMBEDDING DIMENSION

The high-dimensionality of the sequence feature embeddings used by ELISL models
(1024) could lead to overfitting [17]. To investigate the impact of sequence embedding
dimension, we retrained the single-cancer ELISL-RF models using different sequence
embedding sizes and re-evaluated the performance. To reduce the dimension,
we first applied PCA to the matrix of protein sequence embeddings, and then
regenerated the sequence feature vector for each gene pair as the absolute difference
between the embedding vectors of the proteins encoded by the two genes in the pair
in the new PCA-transformed feature space. We evaluated the following embedding
sizes: 32, 64, 128, 256, 512, and 1024. Except for OV (ovarian cancer), the changes in
performance were small and within the standard deviation of the original experiment
(Supplementary Figure 2.S3b). For OV, the performance remained similar using
embedding sizes of 1024 (average 0.87 AUPRC), 512 and 256, and modestly dropped
using smaller embedding sizes of 128, 64, and 32 (average 0.8 AUPRC). These results
show that the high-dimensionality of sequence embeddings did not play a major
role in the contribution of sequence data towards the performance of ELISL models.
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2.5.5. SUPPLEMENTARY FIGURES
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Figure 2.S1: Within cancer prediction with similar and distinct bias between train and test sets. Per cancer
AUROC performance of cancer-specific SL prediction models on unseen gene pairs from the same cancer (10
different train/test splits), under three scenarios: (a) conventional non-overlapping-pair train/test sets, thus allowed
to follow similar selection bias; (b) double gene holdout to induce distinct selection biases between train and
test sets, with left side reporting the original performance (similar bias) and the right side using double gene
holdout (distinct bias); and (c) cross-SL dataset prediction under inherently occurring differences in selection
bias between three sources of SL data (ISLE, DiscoverSL, EXP2SL), with models trained using labels from one
SL dataset and evaluated on another SL dataset considering the combinations of cancer type (BRCA, LUAD)
and SL dataset with sufficient numbers of samples. Methods: matrix factorization and graph-based (GCATSL,
GRSMF, pca-gCMF); supervised learning, including existing models (SBSL-EN/MUVR), and proposed ELISL models
(ELISL-RF/GB). Boxplots: boxes indicate the range between lower (first) and upper (third) quartiles, or interquartile
range (IQR), with a horizontal line across the box denoting the median; whiskers extend from the box to the
largest (or smallest) value within 1.5 times the IQR of the upper (lower) quartile, and points beyond the whiskers
are outliers. Red lines compare the best ELISL model with the best among the other models in single cancer
experiment using a Wilcoxon signed rank test.
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Figure 2.S2: Aggregated results of within cancer prediction with similar and distinct bias between train and test
sets. Average AUPRC performance of cancer-specific SL prediction models in an aggregated style over cancer types
on unseen gene pairs from the same cancer (10 different train/test splits), under three scenarios: (a) conventional
non-overlapping-pair train/test sets, thus allowed to follow similar selection bias; (b) double gene holdout to induce
distinct selection biases between train and test sets; and (c) cross-SL dataset prediction under inherently occurring
differences in selection bias between three sources of SL data (ISLE, DiscoverSL, EXP2SL), with models trained
using labels from one SL dataset and evaluated on another SL dataset considering the combinations of cancer type
(BRCA, LUAD) and SL dataset with sufficient numbers of samples. Methods: matrix factorization and graph-based
(GCATSL, GRSMF, pca-gCMF); supervised learning, including existing models (SBSL-EN/MUVR), and proposed ELISL
models (ELISL-RF/GB). The vertical black lines refer to the standard deviation of AUPRC performances.
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Figure 2.S3: ELISL-RF SL prediction within/across cancer types and impact of sequence embedding dimension.
(a) Performance of cancer-specific models and pan-cancer models, measured as average AUPRC over 10 runs
using undersampled 80/20 train/test splits. For cancer-specific models, presented in a matrix, the diagonal reports
prediction performance within the same cancer type, and the remaining cells show performance for prediction on
other cancer types. Pan-cancer model performances are reported in a separate row at the bottom, where models
are trained on all other cancer types except the one the model is supposed to predict on. Rows denote the cancer
type used for training, columns indicate the cancer type used for prediction and evaluation. (b) Within-cancer
prediction performance (AUPRC) of cancer-specific ELISL-RF models as the dimension of the sequence embedding
is gradually reduced from 1024 to 32. The horizontal lines connect the average AUPRC performance for different
embedding dimensions over 10 runs using independently drawn train/test set splits. The vertical lines for each
embedding dimension indicate the standard deviation over the 10 runs.
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Figure 2.S4: Top predictions of ELISL-RF BRCA model without and with the survival feature. Prediction scores of
ELISL-RF without the survival feature (left) and with the survival feature (right) for the top 100 pairs in the BRCA
test set and the unknown set.
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Figure 2.S5: Survival of patients with vs. without simultaneous alterations in BRCA and PARP genes. Survival
analysis between groups of patients with and without simultaneous alterations in both genes of the BRCA (1-2)
and PARP (1 to 16) gene families. The plot shows Kaplan-Meier survival curves for the group with simultaneous
alterations (“BRCA and PARP”, blue) and for the group without simultaneous alterations (all other patients, “Rest”,
red), where the latter is further divided into two subgroups: patients with alterations on only one of the two genes
(orange), and patients with both genes unaltered (green). The survival p-value included in the plot is based on a
Wald significance test of the co-mutation status variable in a Cox proportional hazards (PH) model of survival time
considering co-mutation status (“BRCA and PARP” or blue vs. “Rest” or red groups) and adjusted for age, sex, and
cancer type. Detailed analysis of the Cox PH model is shown in the tables below the KM plot. The top table
shows the number of patients as “# of Cases”, number of deaths as “# of Events”, and median survival time for the
groups of patients described above. The bottom table shows, for each of the four variables of the Cox PH model,
the coefficient (coe f ) and hazard ratio (exp(coe f )) of the variable in the model, as well as its effect size and
significance based on a Wald test.
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Figure 2.S6: Survival analysis of patients with vs. without simultaneous alterations in the families of non-SL
predicted gene pairs. Survival of groups of patients with and without simultaneous alterations in genes of both
gene families, for the four gene pairs that ranked the lowest in ELISL-RF predictions: (a) RIPK (RIPK1-4, DSTYK)
and PARP1-16 gene families; (b) MAP3K (MAP3K1-15, TAOK1-2, RAF1, BRAF, ARAF, MAP3K20) and PARP1-16 gene
families; (c) DAPK (DAPK1-3, STK17A, STK17B) and PARP1-16 gene families; (d) MAP2K1-7 and PARP1-16 gene
families. For each survival analysis (a)-(d), the figure shows a Kaplan-Meier (KM) plot (left) and survival analysis
tables (right). The plot shows KM survival curves for the groups with simultaneous alterations (blue) and for all
other patients (red), with the latter further split into two subgroups: patients with alterations on only one of the
families (orange), and patients with both families unaltered (green). The survival p-value is based on a Wald test
of co-mutation status in a Cox proportional hazards (CoxPH) model considering co-mutation status (blue vs. red
groups) and adjusted for age, sex, and cancer type. A CoxPH model summary is shown in the tables besides the
KM plot. The top table shows number of patients as “# of Cases”, number of deaths as “# of Events”, and median
survival time for the patient groups. The bottom table shows, for each CoxPH variable: coefficient (coe f ) and
hazard ratio (exp(coe f )), as well as effect size and p-value based on a Wald test.
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2.5.6. SUPPLEMENTARY TABLES

TABLES S1-S2 - DETAILED SL LABELS

Table 2.S1: Details of the experimental SL screens included in each SL label dataset (ISLE, EXP2SL, LU, and dSL).
For each experimental SL screen (row of the table), the table shows: a short name used internally by us to identify
the screen (“Screen” column), cross symbols “x” identifying the specific SL label datasets including the gene pairs
of the given screen (“ISLE”, “EXP2SL”, “LU”, and “dSL” columns), the cancer type of the cell lines used in the
screen or the targeted gene (“Cancer or target” column), the reference to the study (“PMID or DOI” column),
and the type of the experiment (“Type” column). Double-gene-knockout (gRNA): DGKO, double-gene-knockdown
(siRNA or shRNA): DGKD, single-gene-knockout (gRNA): SGKO or single-gene-knockdown (siRNA or shRNA): SGKD,
chemical inhibitor: CI, PARP inhibitor: PARPi. SGKO and SGKD are either applied to a cell line with an existing
mutation in a specific gene or used with an inhibitor such as CI, PARPi, or a drug to cause aberration in another
gene so that simultaneous mutation can be simulated.

Screen ISLE EXP2SL LU dSL Cancer or target
PMID

or DOI
Type

Zhao x CESC, LUAD 29452643
11,475 DGKO

459 SGKO

Big Papi x
RCC, SKCM, LUAD,

COAD, OV
29251726 DGKO

Han x LAML 28319085 DGKO

Shen x x CESC, LUAD, KIRC 28319113
23,652 DGKO

657 SGKO
ISLE1 x LAML 28162770 SGKO

ISLE2 x CESC 27453043
SGKO
Drug

ISLE4 x OV 26637171
SGKD
Drug

ISLE5 x CESC 26437225
SGKD

CI
ISLE6 x BRCA 25407795 DGKD
ISLE7 x x COAD 24104479 SGKD
ISLE8 x SKCM 22623531 SGKD
ISLE9 x x KRAS gene 22613949 SGKD
ISLE10 x x KRAS gene 19490893 SGKD
ISLE11 x CESC 20049736 CI

ISLE12 x x BRCA 18388863
SGKD
PARPi

ISLE13 x x BRCA 18832051
SGKD
PARPi

ISLE14 x x KIRC 18948595 SGKD
ISLE15 x LUAD 17429401 SGKD
LU1 x COAD 23563794 DGKD
dSL1 x BRCA, OV, PDAC 22585861 SGKD
dSL2 x HLRCC 24568598 2 SGKDs

dSL3 x
BRCA, PDAC, OV

and UTE
26427375 SGKD

dSL4 x All

10.1146/
annurev-

acancerbio-
042016-073434

Curated
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Table 2.S2: Number of labelled gene pairs available for each cancer type. Number of positive (synthetic lethal, “+”)
and negative (non-synthetic lethal, “−”) gene pairs per cancer type (rows) and SL label dataset before removing
duplicates between these SL label datasets (columns “Exp2SL”, “Lu15”, “ISLE”, “dSL”), the total number of labelled
gene pairs for each cancer type after removing disagreeing duplicates and combining the SL datasets. Duplicates
columns: “Agree”, contains the number of duplicates with the same label across datasets, “Disagree”, contains the
number of duplicates with different labels across the datasets.

Cancer Exp2SL Lu15 ISLE dSL Total Duplicates

+ − + − + − + − + − Agree Disagree
BRCA 0 0 0 0 590 1012 885 75 1444 1037 53 14
CESC 0 0 0 0 145 4762 0 0 145 4762 0 0
COAD 18 155 231 5621 2100 74244 0 0 1728 79323 350 484
KIRC 0 0 0 0 60 2514 0 0 60 2514 0 0
LAML 0 0 0 0 1191 19308 0 0 1191 19308 0 0
LUAD 307 2369 0 0 169 4735 372 339 597 5515 1695 242
OV 0 0 0 0 255 554 0 0 255 554 0 0
SKCM 18 72 0 0 89 18630 0 0 107 18702 0 0

TABLES S3 - RUN TIME OF ELISL-RF MODEL

Table 2.S3: Average run time (in seconds) of ELISL-RF for the single cancer experiment, per cancer type over 10
runs. It does not include the feature generation, only hyperparameter tuning and training of the final model.

Runtime (sec) BRCA CESC COAD KIRC LAML LUAD OV SKCM

Grid-search 2981.8 756.8 6257.0 419.8 4962.4 2159.8 689.1 384.4
Final Training 139.0 20.9 296.0 19.2 242.9 92.3 37.9 20.0
Total 3120.8 777.7 6553.0 439.0 5205.3 2252.2 727.1 404.4

TABLES S4-S5 - NUMBER OF SAMPLES USED IN SL PREDICTION EXPERIMENTS

Table 2.S4: Number of samples used in single cancer and double holdout experiments, average and standard
deviation over 10 runs using independently drawn train/test set splits.

Cancer Single Cancer Experiment Double-Holdout Experiment

Training Samples Testing Samples Training Samples Testing Samples

BRCA 1658.0±0.0 416.0±0.0 808.8±113.3 239.8±75.4
CESC 232.0±0.0 58.0±0.0 116.0±18.4 36.0±12.8
COAD 2764.0±0.0 692.0±0.0 1571.4±185.1 299.8±147.3
KIRC 96.0±0.0 24.0±0.0 56.0±12.1 12.0±4.8
LAML 1906.0±0.0 476.0±0.0 1048.6±75.5 255.6±41.4
LUAD 956.0±0.0 238.0±0.0 449.8±241.7 147.2±95.5
OV 408.0±0.0 102.0±0.0 215.0±15.4 60.2±9.5
SKCM 172.0±0.0 42.0±0.0 61.8±35.8 21.0±13.9

TABLES S6 - TOP TEN ELISL-RF SL GENE PAIR PREDICTIONS IN THE TEST SET
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Table 2.S5: Number of samples used in cross-dataset experiment, average and standard deviation over 10 runs using
independently drawn train/test set splits.

Cancer From To Training Samples Testing Samples

BRCA
ISLE DiscoverSL 1146.0±0.0 150.0±0.0
DiscoverSL ISLE 78.0±0.0 1180.0±0.0

LUAD

ISLE DiscoverSL 338.0±0.0 678.0±0.0
DiscoverSL ISLE 678.0±0.0 338.0±0.0
DiscoverSL Exp2SL 678.0±0.0 614.0±0.0
Exp2SL DiscoverSL 614.0±0.0 678.0±0.0

Table 2.S6: Top 10 scored gene pairs using cancer-specific ELISL-RF models for BRCA, LUAD, and OV. Gene pairs
were ranked based on the average ELISL-RF SL prediction score over 10 runs. Column “Score” contains the average
SL prediction score. Column “Label” contains the known synthetic lethality status, where “+” denotes synthetic
lethal and “−” denotes non-synthetic lethal.

Gene Pair Score Label Gene Pair Score Label

BRCA LUAD

BRCA1|THRSP 0.793051 + KRAS|MRPL28 0.797100 −
BRCA1|GDNF 0.789517 + KRAS|PARP12 0.790102 +
BRCA1|TSNARE1 0.778300 + KRAS|LSM5 0.789647 +
BRCA1|SLC7A13 0.775389 + KRAS|POLR2G 0.786567 +
BRCA2|HTR4 0.775112 + KRAS|TEAD2 0.783438 +
IL13|PTEN 0.771248 + KRAS|POLL 0.782135 −
BRCA1|DNAJC19 0.770358 + KRAS|MTA2 0.779881 +
APOBEC2|PTEN 0.768812 + KRAS|SERPINI1 0.778718 +
BRCA1|SLITRK3 0.768645 + KRAS|NR1D2 0.777780 −
BRCA1|ST6GAL1 0.763534 + KRAS|OSM 0.771441 −

OV

EPB41L1|YES1 0.640591 +
ABL1|SRC 0.635870 +
FYN|YES1 0.629252 +
ABL1|YES1 0.629216 +
GAB1|YES1 0.623906 +
FYN|NEDD9 0.617254 +
ABL1|BCAR3 0.616596 +
ABL1|LCK 0.614998 +
ABL2|EPB41L1 0.604245 +
LCK|PLCG2 0.596859 +
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TABLE S7 - SURVIVAL ANALYSIS FOR BRCA-HH, BRCA-FGF, BRCA-WNT, AND

BRCA-NEIL

Table 2.S7: Survival tables and CoxPH models for the gene families of promising unknown SL pairs predicted by
ELISL-RF for breast cancer (BRCA-HH, BRCA-FGF, BRCA-WNT, BRCA-NEIL). For each of the three gene pairs, one
survival table (left) and one CoxPH model table (right) are provided. Survival tables (left): show the number of
patients as “Cases”, the number of deaths as “Events”, and the median survival time in months for different groups
of patients. The group “GeneFam1 and GeneFam2” includes patients with simultaneous alterations on genes of
both gene families GeneFam1 and GeneFam2 (see paper for the definition of alteration). The group “Rest” includes
all the other patients, that is, those that do not have simultaneous alterations in genes from both families. This
latter group is further divided into two groups: the “GeneFam1 xor GeneFam2” group, containing patients with
alterations on either gene family but not both; and the group “Unaltered”, containing patients without alterations
on any genes of the two families. Note that “Median survival time” denotes the time point at which the probability
of survival for the group of patients is 0.5, meaning that half of the patients in that group are expected to be
alive. CoxPH models and significance tests (right): show details of the CoxPH functions to model the association
between survival time with and without simultaneous alterations in the two gene families (“Co-Mutation”), adjusted
for age, cancer type, and sex. The “Co-Mutation” status variable is defined based on the two groups of interest:
“GeneFam1 and GeneFam2” as Co-Mutation= 0 and “Rest” or “∼(GeneFam1 and GeneFam2)” as Co-Mutation= 1,
also highlighted in bold in the corresponding Survival Tables. For each of the four variables in the CoxPH model
(age, cancer type, co-mutation, and sex), the table includes the corresponding coefficient (coe f ) and hazard ration
(exp(coe f )) of the variable according to the model. Additionally, the table shows the effect of each variable in the
model as z, together with its statistical significance as p, determined using a Wald test. Values coe f > 0.0 (or
exp(coe f ) > 1.0) indicate longer survival time for the patient group with simultaneous alterations in the genes of
both families, “GeneFam1 and GeneFam2”.

Survival Tables CoxPH Functions

Group Cases Events
Median

survival time
Variable coe f

ex p
(coe f )

z p

BRCA and HH 152 34 Inf Age 0.01 1.01 14.91 2.76e-50
BRCA xor HH 1256 437 68.66 Cancer type -0.01 0.99 -4.96 7.19e-07
Unaltered 9411 3054 78.44 Co-Mutation 0.21 1.24 2.65 8.04e-03
Rest 10667 3491 77.65 Sex 0.09 1.09 4.27 1.97e-05

BRCA and FGF 451 142 102.1 Age 0.01 1.01 14.98 9.89e-51
BRCA xor FGF 3038 1050 70.13 Cancer type -0.01 0.99 -5.12 3.09e-07
Unaltered 7330 2333 81.2 Co-Mutation 0.12 1.13 2.42 1.55e-02
Rest 10368 3383 78.44 Sex 0.09 1.09 4.35 1.39e-05

BRCA and WNT 161 41 167.9 Age 0.01 1.01 14.93 2.13e-50
BRCA xor WNT 1291 419 81.73 Cancer type -0.01 0.99 -5.01 5.55e-07
Unaltered 9366 3065 77.19 Co-Mutation 0.23 1.26 2.88 3.96e-03
Rest 10658 3483 78.21 Sex 0.09 1.09 4.32 1.56e-05

BRCA and NEIL 122 35 102.1 Age 0.01 1.01 14.94 1.75e-50
BRCA xor WNT 1358 458 78.97 Cancer type -0.01 0.99 -5.07 4.03e-07
Unaltered 9339 3032 78.18 Co-Mutation 0.17 1.18 1.66 9.63e-02
Rest 10697 3490 78.21 Sex 0.09 1.09 4.36 1.30e-05
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Oncogenes, when mutated or overexpressed, drive tumorigenesis and can lead to
oncogene addiction, where cancer cells rely on such genes for survival and
proliferation. Stratifying oncogene-addicted cohorts is essential to uncover alternative
therapeutic avenues, for instance in cases of untargetable oncogenes or resistance to
treatment. We propose Oncostratifier, a framework to identify drugs that specifically
target oncogene-addicted cancer cohorts, differentiating between drugs that induce
sensitivity or resistance. Our results reveal 21,020 stratifying drugs spanning 267
oncogenes in cell lines of 31 different cancer types. We identify 59 mutational markers
associated with 36 of the stratifying drugs, which can possibly be used to stratify
patient tumors in the absence of drug response data. These findings reveal the
potential of Oncostratifier as a tool to generate candidate hypotheses for precision
cancer treatment strategies. Explore our detailed results at https: // edu. nl/ 6hnct .

3.1. INTRODUCTION
Cancer is characterized by a complex interplay of genetic and environmental factors
that drive uncontrolled cell proliferation and enable cells to escape mechanisms
designed to control their survival [1–3]. Central to this process are oncogenes, that
is, genes whose alteration via mutations or overexpression contributes to
tumorigenesis [4]. Well-known oncogenes such as KRAS [5], EGFR [6], and MYC [7]
play pivotal roles in regulating cell growth, division, and differentiation. As a result,
tumor-driving alterations can also lead to oncogene addiction, where cancer cells
become reliant on the activity of the oncogene for their survival and proliferation
[4]. Oncogene addiction provides an opportunity for therapeutic targeting using
drugs that inhibit the function of the oncogene to selectively promote the death of
oncogene-addicted cancer cells. For example, inhibitors targeting BCR-ABL in
chronic myeloid leukemia (CML) [8] or EGFR inhibitors in non-small cell lung
cancer (NSCLC) [9] have shown significant clinical success. However, not all
oncogene-addicted cancers can be effectively targeted. Some oncogenes are
challenging to inhibit directly due to their structural properties, for instance KRAS
lacks deep binding pockets and has a high affinity for GTP/GDP, making it difficult
to develop effective inhibitors [10]. Moreover, cancers can develop resistance to
targeted therapies through secondary mutations or activation of alternative signaling
pathways [11, 12]. Resistance mechanisms often result from dynamic changes in the
mutational landscape and phenotypic characteristics of cancer cells that lead to
variable drug sensitivity and the need for novel therapeutic strategies. Patient
stratification offers a solution in this regard to optimize treatment outcomes by
tailoring therapies to individual tumor profiles. Traditionally, stratification has been
performed either on the entire cancer patient population or within specific cancer
types, delineating subtypes based on genetic, molecular, and clinical features [13].
While these approaches have improved treatment efficacy and patient survival, they
often overlook the unique and specific characteristics of oncogene-addicted cohorts.
Given the distinctive nature of oncogene addiction and the associated treatment
challenges, there is a pressing need to stratify these cohorts with high resolution.
Stratifying oncogene-addicted tumors who currently lack effective treatments can

https://edu.nl/6hnct
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uncover specific vulnerabilities and guide the development of more targeted and
effective therapies. Despite its potential, the stratification of oncogene-addicted
cohorts has not been systematically implemented. To address this gap, we propose
the Oncostratifier framework, a systematic approach to identify drugs that
specifically stratify oncogene-addicted cohorts. This framework aims to uncover
drugs that can effectively target these unique patient populations by examining
changes in drug response specific to oncogene addiction. It further categorizes
drugs based on whether they induce sensitivity or resistance within the
oncogene-addicted cohort, ensuring that the observed effects are specific to the
oncogene in question. Using Oncostratifier, we can better understand the landscape
of drug response in oncogene-addicted cancers and identify promising therapeutic
candidates. This approach not only enhances our ability to provide effective
treatments for oncogene-addicted tumors but also contributes to the broader field
of precision oncology, where the goal is to deliver the right treatment to the right
patient at the right time. The Oncostratifier can be directly applied to stratify
patient tumors provided the availability of drug response data. Here, we showcase
its use to stratify oncogene-addicted cohorts of cancer cell lines and generate new
leads for possible treatments which might not have yet been explored in a patient
tumor setting, thus providing valuable insights for precision treatment strategies.

3.2. RESULTS AND DISCUSSION
We used the Oncostratifier framework to identify drugs that stratified an oncogene
addicted (mutated) cohort into sensitive (responder) vs. resistant (non-responder)
cell lines more strongly than in the wild-type cohort for a given cancer type. The
analysis was performed for 665 drugs and 6681 unique pairs of oncogene and
cancer type. Specifically, for each oncogene-cancer type pair, cell lines were split
into two cohorts based on the mutation status of the oncogene: OncogeneMut
(mutated) and OncogeneWT (wild-type). We relied on the Oncostratifier score to
quantify the stratification within each cohort. This score was defined as the entropy
of the proportions of sensitive and resistant cell lines, grouped based on binarized
drug response values, where the natural logarithm of the drug concentration
enabling 50% of the maximal inhibitory effect (ln(IC 50)) was respectively smaller or
greater than the peak plasma concentration ln(C M ax) (Methods). Entropy was used
to denote the ambiguity of the drug response and thus also the stratification
potential of the drug within a cohort. To quantify the effect of oncogene addiction
on stratification potential, we expressed the change between oncogene mutated and
wild-type cohorts using the difference of entropies,
∆H = H(Oncog eneMut )−H(Oncog eneW T ), with ∆H ≈ 1 denoting drug response
stratification in OncogeneMut but not OncogeneWT, and ∆H ≈−1 referring to
stratification in OncogeneWT but not OncogeneMut. Finally, we selected the candidate
drugs yielding more pronounced changes in stratification based on the
Oncostratifier permutation-based p-value (Methods). We categorized drugs showing
significant impact (Oncostratifier p-value below 0.05) into four groups, based on
their stratifying characteristics and changes in response rates between the mutated
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Figure 3.1: Oncostratifier drug categories, distribution of significant drugs, and KRAS & EGFR addictions in
colorectal carcinoma. (a) Categories of drugs found by Oncostratifier: stratifying categories include drugs that
stratify the oncogenic addicted (Mut) cohort whereas full categories include drugs that stratify the wild-type (WT)
oncogene cohort. Sensitivity categories refer to cases where the oncogene addicted cohort gains sensitivity to the
selected drug whereas Resistance categories refer to drugs gaining resistance with oncogene addiction compared to
the wild-type. (b) Histogram of drugs found significant per Oncostratifier category. (c-d) Drug response of cancer
cell lines to stratifying drugs found in (c) KRAS or (d) EGFR addiction in colorectal carcinoma split by oncogene
addicted and oncogene wild-type cohorts.

and wild-type cohorts (Fig. 3.1a). Two categories exhibited stronger stratification in
the mutated cohort than in the wild-type, namely: stratifying sensitivity (SS) and
stratifying resistance (SR), denoting drugs that stratified the mutated cohort
respectively with a gain or loss in sensitivity, quantified respectively by a larger or
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smaller proportion of sensitive cell lines compared to the wild-type cohort. The
remaining two categories showed weaker stratification in the mutated cohort than in
the wild-type, including full sensitivity (FS) and full resistance (FR), where the
mutated cohort respectively gained or lost sensitivity compared to the wild-type.

3.2.1. ONCOGENIC ADDICTION INFLUENCES THE RESPONSE TO

TARGETED THERAPY

We identified 21,020 instances where drugs significantly stratified the oncogene
addicted cohort, comprising 13,094 SS and 7,926 SR cases across 267 oncogenes and
31 different cancer types (Fig. 3.1b, Supplementary Tables 3.S1-3.S2 ). While most
significant drugs showed near maximal changes in stratification ability
(Oncostratifier score ≈ 1 or ≈−1), there were notable exceptions with minimal but
statistically significant changes (Oncostratifier Score ≈ 0).

Further examination focused on prominent oncogene addictions, such as KRAS and
EGFR in colorectal carcinoma (Fig. 3.1c-d). Mutations in the KRAS gene, prevalent in
various cancers, pose challenges to direct drug targeting due to the complexity of the
binding site and high affinity for downstream effectors that often lead to off-target
effects [14]. We identified three stratifying drugs where the KRAS-WT cohort was
predominantly resistant and the KRAS-Mut cohort showed increased sensitivity
associating with KRAS addiction (Fig. 3.1c): 123829, Z-LLNle-Cho, and BI-2536. One
of these drugs, the gamma secretase inhibitor (GSI) Z-LLNle-Cho, interferes with
Notch signaling [15], which is known to be required for the survival of KRAS
induced lung cancer cells [16]. This finding highlights how the sensitivity gain
associated with KRAS mutations could be exploited therapeutically, even if observed
in a different cancer type. Conversely, drugs like AZD8055, Pictilisib, ABT737, and
JQ1 demonstrated increased resistance in KRAS-Mut cohorts. Drugs found in both
categories underscore the intricate relationship between genetic mutations and drug
response, and could inform targeted treatment strategies for KRAS-addicted patients.

The EGFR (Epidermal Growth Factor Receptor) gene is a well-documented oncogene
in various cancers, including colorectal [17–19], where the mutational activation of
EGFR leads to uncontrolled cell proliferation and survival. The role of EGFR in
colorectal cancer makes it a prime target for anticancer therapies, with several
anti-EGFR therapies such as Cetuximab [20, 21] and Panitumumab [22] already
demonstrating clinical efficacy in managing disease progression in patients with
wild-type KRAS [23, 24]. However, the development of resistance to EGFR-targeted
therapies, often through secondary mutations or alternative signaling pathways [20,
24], remains a challenge, underscoring the need to identify additional drugs that can
bypass or overcome such resistance mechanisms. We identified 21 drugs that
stratified the EGFR-Mut cohort with increased sensitivity (SS), indicating a potential
for these drugs to enhance treatment outcomes in patients exhibiting EGFR-driven
oncogenesis (Fig. 3.1d). Five of these drugs achieved a score close to the maximum
of 1, indicative of strong stratification among EGFR-addicted patients, while all
EGFR-WT cancer cell lines were fully resistant (Pevonedistat, PFI-1, GSK690693,
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Nutlin-3a (-), and Dabrafenib). The observed sensitivity to the NEDD8 inhibitor
Pevonedistat in EGFR-mutated colorectal cancer cell lines was corroborated by
literature reporting that the combined blockade of NEDD8 and EGFR pathways
significantly enhances growth arrest and apoptosis in colorectal cancer models [25].

In total, we identified stratifying drugs for 164 different oncogene addictions where
the relation between the oncogene and cancer type was supported by the literature,
including KRAS and EGFR in colorectal carcinoma, ERBB2 in breast carcinoma, and
MYC in ovarian carcinoma (Supplementary Table 3.S1). The drugs identified in both
SS and SR categories illustrate the complexity and variety of responses based on
KRAS or EGFR mutational status, and reinforce the importance of precision
medicine approaches in the treatment of cancer. Understanding these dynamics can
help refine therapeutic strategies with the aim of developing more effective
second-line treatments or combination therapies to address resistance or
druggability issues associated with oncogene addiction.

3.2.2. ONCOGENE-ADDICTED COHORTS GAIN SENSITIVITY TO

ONCOGENE-TARGETED THERAPIES

The robustness of the Oncostratifier approach was assessed by examining if
oncogene-addicted cohorts gained sensitivity against drugs that specifically targeted
the oncogene. We hypothesized that such drugs would predominantly fall into the
stratifying sensitivity (SS) and full sensitivity (FS) categories, denoting a gain in
sensitivity when the oncogene was mutated. Confirming this hypothesis, our
analysis showed that 44.1% of the drugs targeting the tested oncogene were
categorized as SS, and 22.5% as FS. In contrast, fewer drugs were categorized under
stratifying resistance (SR, 14.4%) and full resistance (FR, 18.9%), with the latter
category showing minimal numbers of responsive cell lines in the oncogene
addicted cohort (Fig. 3.2a).

We attributed the emergence of resistance in the oncogene-addicted cohort for
drugs categorized under SR and FR to two main factors. First, the existence of
secondary targets of those drugs might confound their efficacy. Second, the
addiction effect of the oncogene could vary across cancer types. A case in point
involves drugs targeting EGFR, a crucial oncogene in glioblastoma [26], non-small
cell lung [27], head and neck [28], colorectal [17], and pancreatic cancers [29]. In
these cancer types, we found 7 drugs significantly associated with a gain in drug
sensitivity in the oncogene-addicted cohort, of which 4 in the SS and 3 in the FS
categories.However, only 2 drugs (Pelitinib and CUDC-101) were identified in the SR
category with score less than 0.4, both in non-small cell lung cancer, where nearly
half of the oncogene-addicted cohort still responded to both drugs. Moreover,
CUDC-101 also targeted the HAC1-10 and ERBB2 genes as well as EGFR, and this
low selectivity could make CUDC-101 less reliable.

We further looked into oncogene-targeting drugs focusing on cancer types with at
least 10 significant drugs identified in any category. Results indicated notable
sensitivity gains in breast cancer (51.72% SS, 44.83% FS), colorectal carcinoma
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(57.69% SS, 19.23% FS), ovarian cancer (80% SS, 20% FS), melanoma (30.77% SS,
38.46% FS), B-cell non-Hodgkin’s lymphoma (45.45% SS, 27.27% FS), and gastric
carcinoma (53.85% SS, 23.08% FS). For non-small (16.67% SS, 25% FS) and small cell
lung carcinomas (36.84% SS, 10.53% FS), the drugs identified did not predominantly
fall into categories associated with a gain in sensitivity, highlighting the variable
efficacy of oncogene-targeting drugs across tumor types.

3.2.3. DRUGS REPEATEDLY IMPACTED BY ONCOGENE ADDICTION

Oncogene addiction influences tumor development through complex interactions
involving multiple genes and pathways. This dependency often modulates the
effectiveness of drugs targeting various molecular pathways. Our Oncostratifier
framework identified several drugs with stratifying characteristics frequently
observed for multiple cancer types and oncogenes.

Specifically, seven drugs were repeatedly categorized under stratifying sensitivity (SS)
for over 100 distinct oncogene-cancer type pairs (Supplementary Fig. 3.S1): CX-5461,
Oxaliplatin, Cisplatin, 5-Fluorouracil, Mirin, Afatinib, and Methotrexate. Additionally,
Gemcitabine also consistently appeared in the SS category. Five of these drugs
primarily interfere with RNA and/or DNA synthesis and cause DNA damage
(CX-5461 [30, 31], Oxaliplatin [32–34], Cisplatin [35–37], Methotrexate [38], and
Gemcitabine [39]). As for the three others, Mirin prevents homology-dependent
repair by affecting G2/M checkpoint [40], Afatinib targets tumor growth factors
important in multiple cancer types [41–44], and 5-Fluorouracil [45, 46] impairs the
synthesis of pyrimidine which in turn induces apoptosis. These mechanisms suggest
a broader impact on cellular processes crucial for oncogene-addicted cells, reflecting
why disruptions in nucleic acid metabolism are particularly effective. The efficacy of
the highlighted inhibitors could rely on additional requirements beyond oncogene
addiction, such as Cisplatin needing ERK activation to induce apoptosis [37] or the
knockdown of NFBD1 and MDC1 enhancing the impact of Cisplatin and
5-Fluorouracil [46].

The pervasive stratification ability of these drugs in oncogene mutated cohorts is
consistent with their frequent use alone or in combination therapies in multiple
cancer types. The link between oncogenic addiction and enhanced sensitivity to
drugs affecting DNA/RNA synthesis suggests that oncogene-addicted cells could rely
more heavily on these fundamental processes, making them more vulnerable to
such interventions. Further investigation into the specific pathways and oncogene
interactions with these drugs could provide deeper insight into the mechanisms by
which oncogene addiction alters drug sensitivity. Additionally, exploring patterns of
resistance development and the efficacy of combination therapies involving these
drugs could inform more effective treatment strategies for oncogene-addicted
cancers.
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Figure 3.2: Distribution of significant drugs and associated mutational markers stratifying well-known oncogene
addictions. (a) Distribution of significant drugs found in an oncogene addiction where the oncogene is also
targeted by the drug. (b) Response of oncogene-WT cohort as well as oncogene addicted cohorts with and without
mutation in the mutational markers of oncostratifiers found for well-known oncogene addictions. P values refer to
the significance of the change in proportions between the oncogene-WT cohort and other cohorts using Fisher’s
exact test with Benjamini-Hochberg correction.

3.2.4. IDENTIFYING MUTATIONAL MARKERS FOR STRATIFYING DRUGS

In the pursuit of translating in vitro cell line results to in vivo patient tumors or PDX
models, it is crucial to identify biomarkers correlating with drug stratification in
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oncogene-addicted cohorts that can be used to generate hypotheses for additional
drug targets. We focused on gene mutational markers (Methods).

We identified 59 mutational markers associated with 36 stratifying drugs across 36
distinct genes and 11 cancer types, encompassing 46 cancer type-oncogene pairings
(Fig. 3.2b, Supplementary Fig. 3.S2-3.S5). For 7 of these pairings, existing literature
supporting the link between the oncogene and cancer provided reassurance of the
relevance of our findings.

Acute Myeloid Leukemia (AML) and FLT3 Addiction [47]: We identified BMS-509744
as a stratifying sensitivity drug (SS) with NRAS as a mutational marker in the context
of FLT3 oncogene addiction in AML cell lines (Fig. 3.2b, Supplementary Fig. 3.S6).
Within the FLT3 oncogene-addicted cohort, the subcohort with NRAS WT was
sensitive to the ITK inhibiting drug BMS-509744 (P ≈ 1.14×10−3) while the NRAS
mutated subcohort was resistant (P ≈ 1.39×10−1). This delineation underscores the
important role of NRAS status in modulating response to BMS-509744 and highlights
the potential this drug to target FLT3-addicted leukemia with specific genetic
backgrounds.

Colorectal Cancer: For colorectal cancer cell lines characterized by KRAS addiction,
we identified two stratifying drugs: 123829 and AZD8055. The drug 123829 ,
categorized as SS (stratifying sensitivity), was associated with four mutational
markers: ITSN1, KMT2D, NF1, and PPP2R1A. With KRAS addiction, the subcohorts
harboring mutations in the ITSN1, KMT2D, and/or NF1 markers showed a
significantly larger proportion of cell lines sensitive to the 123829 drug
(P ≈ 1.85×10−4 P ≈ 1.41×10−3 and ≈ 1.64×10−3, respectively) than the subcohorts
with the corresponding wild-type markers, which were predominantly resistant.
Interestingly, almost all cell lines with PPP2R1A mutations showed sensitivity to
123829 (P ≈ 6.50×10−5), suggesting PPP2R1A mutation status as a robust predictor
of sensitivity to this drug in KRAS addicted cohorts.

On the other hand, the drug AZD8055, categorized as SR (stratifying resistance),
showed association with a single mutational marker, AKAP9. In KRAS-addicted
colorectal cancer cell lines, the whole subcohort with the wild-type AKAP9 gene
exhibited resistance to AZD8055. This differed significantly from the KRAS wild-type
cohort (P ≈ 8.51×10−5) and the subcohort of KRAS mutated cell lines where AKAP9
was also mutated, both containing more than half of lines sensitive to AZD8055,
indicating that AKAP9 mutations might mitigate the loss of sensitivity usually
associated with KRAS addiction.

Furthermore, we identified Mirin as a stratifying drug with FXR1 mutation status as
a marker in UBR5-addicted colorectal cancer cell lines (Fig. 3.2b, Supplementary
Fig. 3.S7). The UBR5 gene is involved in damage response and apoptosis [48], and
has been advanced as a potential oncogene in colorectal carcinoma [49]. With the
UBR5 oncogene addicted cohort, only the subcohort with mutated FXR1 showed a
significantly larger proportion of cell lines sensitive to Mirin (P ≈ 8.11×10−5)
compared to the UBR WT cohort. Thus, FXR1 could potentially be used as a marker
to decide which UBR5 addicted colorectal carcinomas could be more effectively



3

82 CHAPTER 3

targeted using Mirin.

Non-Small Cell Lung Cancer (NSCLC): For NSCLC, the mutational status of SETD2
fully differentiated the response to the drug CX-5461, targeting RNA polymerase I, in
the NRAS-addicted cohort (Fig. 3.2b, Supplementary Fig. 3.S8). Specifically, all cell
lines were sensitive in the NRAS-addicted subcohort with mutated SETD2
(P ≈ 4.31×10−5), suggesting a potential synthetic lethal interaction between NRAS
and SETD2 associating with treatment using the CX-5461 drug.

Ovarian Cancer: In ovarian cancer, Buparlisib (targeting ROS1 addiction),
Pemetrexed (targeting BRAF addiction), and GSK690693 (targeting BRAF addiction)
showed differential effectiveness in oncogene-addicted cohorts based on ATRX,
KMT2D, and PIK3CA mutations, respectively. The effectiveness of Buparlisib was
compromised in ROS1-mutated cohorts with wild-type ATRX (P ≈ 6.02×10−5),
whereas Pemetrexed and GSK690693 showed increased sensitivity in BRAF-addicted
cohorts with mutated KMT2D (P ≈ 1.51×10−3) and mutated PIK3CA
(P ≈ 8.45×10−7), respectively, illustrating the potential for KMT2D and PIK3CA as
stratifying markers in BRAF-driven ovarian cancers.

These findings underscore the complexity of drug response in oncogene-addicted
cohorts and highlight the importance of genetic markers for predicting therapeutic
outcomes. Marker identification offers valuable insight into the mechanisms of drug
response and could assist in tailoring targeted treatment strategies for cancer
patients in the future.

3.2.5. STRATIFICATION OF ONCOGENE-ADDICTED PATIENT TUMORS

BASED ON MUTATIONAL MARKERS

To assess translation potential, we used the TCGA patient cohort to stratify
oncogene-addicted patient tumors according to the mutational status of the
previously identified cell line markers. For each cancer type-oncogene-marker
pairing, we assessed the number of patients exhibiting oncogene addiction, and its
stratification by mutational marker into WT and mutated subcohorts with at least
three patients each (Table 3.1).

In most cases, the marker-WT subcohort was larger than the marker-mutated
subcohort. This finding could be interesting for markers showing increased
sensitivity in the oncogene-addicted compared to the non-addicted cohort,
suggesting that a larger number of patients could benefit from the stratifying drug if
it revealed effective in patient tumors. Notable instances included: FLT3 addiction in
AML, where 96% (50/52) of the patient tumors had wild-type NRAS (Table 3.1), and
the cell line wild-type NRAS subcohort showed increased sensitivity to the drug
BMS-509744 (Fig. 3.2b); JAK3 and MYBL addictions in colorectal cancer with 80%
(14/17) and 82% (16/20) of the oncogene-addicted tumors showing wild-type
MAP2K1 which is associated with increased sensitivity to AZD7969, respectively; and
NUP98 addiction also in colorectal cancer where over 50% of the patient tumors
had wild-type markers CNOT1, PIK3CA, or PTEN associated with increased
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Table 3.1: Number of oncogene addicted TCGA patient tumors (per cancer type-oncogene pair) stratified by
mutational marker, and genes differentially expressed (DEGs) between the subcohorts defined by marker status.
Boldface font is used to indicate cases for which the drug response in cell lines was significantly different in
the specific oncogene-addicted mutational marker subcohort compared to the cohort without oncogene addiction
regardless of marker status (P < 0.05). An asterisk ∗ before or after the value indicates a larger number of either
resistant or sensitive cell lines, respectively.

Cancer Oncogene Marker
Oncogene
Addicted
Tumors

Marker

Mut

Marker

WT
DEGs

Tested

Genes
AML FLT3 NRAS 52 2 50* 12 16758
BRCA BRD4 PIK3R1 8 3* 5 40 19170
BRCA MSI2 NR4A2 5 1* 4 120 19004
BRCA ROS1 CHD9 22 6* 16 79 19556
COAD JAK3 MAP2K1 17 3 14* 170 19121
COAD KRAS AKAP9 220 16 *204 1140 19943
COAD KRAS ITSN1 220 14* 206 70 19943
COAD KRAS KMT2D 220 29* 191 2028 19943
COAD KRAS NF1 220 8* 212 14 19943
COAD KRAS PPP2R1A 220 6* 214 93 19943
COAD KSR2 FXR1 25 3* 22 17 19263
COAD MECOM FXR1 36 7* 29 7 19362
COAD MTOR FXR1 43 7* 36 5 19425
COAD MYBL1 MAP2K1 20 4 16* 17 19201
COAD NTRK3 FXR1 24 5* 19 14 19149
COAD NUP98 CNOT1 26 13 13* 79 19241
COAD NUP98 PIK3CA 26 11 15* 20 19241
COAD NUP98 PTEN 26 7 19* 30 19241
COAD UBR5 FXR1 33 4* 29 25 19408
COAD WWP1 FXR1 27 6* *21 17 19300
COAD WWP1 PIK3CA 27 13* *14 79 19300
GBM IGF1R EGFR 3 *1 2 477 18610
NSCLC KDM5A ARID1A 13 2* 11 340 19498
NSCLC LGR5 CLSPN 24 *1 23 793 19682
NSCLC MAP3K13 CLSPN 14 *1 13 18 19493
NSCLC MGAM TP53BP1 58 3 55 4 19863
NSCLC NTRK3 KEAP1 48 15 33* 1392 19832
NSCLC PDGFRB MAP4K3 17 2 15* 125 19673
SCLC CARD11 TJP1 32 3* 29 18 19719
SCLC INSR MED12 14 1* 13 13 19435
SKCM JAK3 ANK3 20 14 *6 38 19722
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sensitivity to HG558801 in cell lines.

Cases where the mutated marker associated with increased sensitivity in the
oncogene-addicted cell line cohort displayed more modest numbers of tumors
assigned to the mutated marker subcohort. For example, in COAD with KRAS
addiction, out of 220 tumors, only 14 and 29 harbored mutated ITSN1 and KMT2D
markers, respectively. In another case, 13 out of 27 WWP1-addicted colorectal
cancer patient tumors carried a mutated PIK3CA.

Additionally, PIK3CA was identified as a mutational marker for response to the drug
Mirin in WWP1-addicted colorectal cancer cell line cohort. In this group, the cohort
with mutated PIK3CA demonstrated significantly increased sensitivity to Mirin,
whereas those with WT PIK3CA lost sensitivity, highlighting the mutation’s dual role
in modifying drug response. This clear dichotomy makes PIK3CA a valuable
predictive marker for therapeutic strategies in WWP1-addicted COAD, with nearly
equal division of tumors into mutated and WT subcohorts.

DIFFERENTIALLY EXPRESSED GENES WITHIN ONCOGENIC ADDICTED COHORT AND

THEIR ENRICHMENT

We further investigated the oncogene-addicted patient cohorts stratified by the
mutational marker to identify changes in gene expression between the two
subcohorts defined by mutational marker status (Table 3.1). We identified
differentially expressed genes (DEGs) and performed functional and pathway
enrichment, focusing on cases where both cohorts had at least 10 patients. Here we
highlight KRAS addiction in colorectal cancer, for which we identified 220
KRAS-addicted tumors (Supplementary Fig. 3.S9).

Previously, we reported a significant loss in sensitivity against the mTORC-targeting
drug AZD8055 in the subcohort of KRAS addicted tumors with wild-type AKAP9,
including 204 of 220 patients. This suggested that AKAP9 mutation status could be
used as a marker to exclude patients with KRAS addicted tumors who might not
benefit from an mTORC-targeting drug that promotes anti-tumor immunity. We
identified 1140 DEGs between the mutated and wild-type AKAP9 subcohorts of the
KRAS addicted cohort, which were mostly associated with the major
histocompatibility complex (MHC), as well as interferon gamma response.
Consistent with this, the deterioration in MHC class 1 molecules is known to cause
resistance to immunotherapy [50]. Similarly, interferon gamma (IFN-γ) plays a vital
role in boosting the ability of the immune system to identify and destroy cancer
cells [51], making it essential for the efficacy of immunotherapies [52].

For another marker, KMT2D, the KMT2D mutated subcohort of the KRAS addicted
cohort was associated with gain in sensitivity against the drug 123829 in colorectal
carcinoma. The composition and name of compound 123829 have not been
disclosed in the GDSC studies, so it is not possible to provide further interpretation
on the underlying mechanisms of this drug. In any case, 29 of 220 patients in the
KRAS addicted cohort had KMT2D mutations, which could potentially benefit from
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treatment with 123829. We found 2028 genes differently expressed between the
mutated and wild-type KMT2D subcohorts, which were also enriched with the MHC
and interferon gamma response.

3.2.6. DRUG SETS TO COVER ONCOGENE ADDICTED COHORT

Stratifying ,oncogene addicted patient tumors is crucial to define subcohorts that
might be sensitive to treatment due to the impact of mutations in the oncogene.
However, stratification based on mutational markers usually implies that one
subcohort is sensitive while the other one is resistant to the drug. Thus, not all
oncogene-addicted patients are treatable by the stratifying drug. To bring the
potential treatment option to all of the oncogene-addicted subcohorts, we
investigated an alternative strategy where we looked for drugs that could cover or
sensitize the whole set of oncogene-addicted cancer cell lines (CCLs). We identified
62 cases in various cancer types with at least 10 oncogene addicted cell lines, where
the entire oncogene addicted cohort could be sensitized by only 2 drugs
(Supplementary Table 3.S3). Out of the 62 cases, we found literature support for 3
pairs of oncogene and cancer type.

The ERBB2 gene, widely known as “HER2”, is strongly associated with poor
prognosis in breast cancer [53] and impacts cell growth, differentiation, and
migration together with other EGF receptors [54]. The ERBB2 addicted cohort of 12
cell lines in breast cancer was covered by Afatinib (9 CCLs) and Telomerase Inhibitor
IX (8 CCLs). The drug Afatinib is already used to target ERBB2 [55], whereas the
Telomerase Inhibitor IX drug presents an opportunity to sensitize the ERBB2
addicted subcohort resistant to Afatinib [56].

The MDM2 gene is an oncogene due to highly expressed MDM2 supressing TP53,
which increases the risk of cancer [57]. Inhibition of MDM2 selectively targets
PTEN-deficient colorectal cancer cells, activating p53 and inhibiting tumor growth
[26]. The MDM2 addicted colorectal cancer cohort (11 CCLs) was covered by HDAC1
targeting AR-42 (8 CCLs) and AURKA targerting Alisertib (6 CCLs) drugs. The HDAC1
enzyme can deacetylate p53 by binding to MDM2 [58] and AURKA enhances the p53
degradation effect of MDM2 [59]. As a result, inhibiting both genes could potentially
reduce p53 degradation and lead to better prognosis in patients with MDM2
mutated tumors. Moreover, UBR5 is an oncogene associated with poor prognosis in
gastric carcinoma [60]. Our analysis showed that the UBR5 addicted gastric cancer
cohort (12 CCLs) could be covered by the PIK3CG targeting PIK-93 (8 CCLs) and
FEN1 targeting FEN1 (6 CCLs) drugs.

Furthermore, we found cases where 1 or 2 cell lines in the oncogene addicted cohort
were never sensitive to any of the stratifying drugs we identified. To reveal partial
stratification opportunities for these cases, we excluded such cell lines and repeated
the analysis to identify the minimal set of drugs that sensitized the remaining lines
(Supplementary Table 3.S4). We were then able to identify drug set covers with only
2 stratifying drugs also for other well-known oncogene addictions such as FLT3
addiction in Acute Myeloid Leukemia (AML); EGFR addiction in Glioblastoma; AKT1,
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DDR2, MET, NRAS, PIK3CB, RET, and ROS1 addiction in non-small cell lung
carcinoma (NSCLC); and EGFR and MET in small cell lung carcinoma.

3.3. CONCLUSION
In this study, we proposed Oncostratifier, a statistical framework that leverages drug
response data on cancer cell lines to find therapy-associated stratification
opportunities for oncogene addicted cohorts. Although stratification methods are
used extensively in cancer, to our knowledge Oncostratifier is the first method to
stratify oncogene addicted cohorts computationally and systematically. Importantly,
Oncostratifier suggests possible therapeutic avenues to target oncogene addicted
subcohorts based on existing drugs, which can thus be directly tested using drug
cell line screens or eventual clinical trials.

Oncostratifier identified stratifying drugs for multiple oncogene addictions in cell
lines of different cancer types, including well-known EGFR, KRAS, and UBR5
addictions in colorectal carcinoma, MYC addiction in ovarian carcinoma, and ERBB2
addiction in breast cancer. Finding drugs that sensitize part of the oncogene
addicted cohort is particularly valuable for some cases, such as when the oncogene
itself is untargetable (KRAS in colorectal carcinoma) or when there is acquired
resistance to treatment (EGFR in colorectal carcinoma).

To attempt a translation from cancer cell lines to patient tumors, we identified
mutational markers for the stratifying drugs found by Oncostratifier. The markers
enable similar stratification to that achieved by the corresponding drug, and are
therefore used as a proxy to stratify patient tumors in the absence of drug response.
Using the identified mutational markers, we demonstrated the potential to stratify
tumors that are presumed to be oncogene-addicted into subgroups that may benefit
from more targeted therapeutic strategies. This assumes that the identified markers
retain their predictive value for drug response, as observed in cancer cell lines.
However, actual tumors are more complex than cancer cell lines, and it is not
always certain which oncogene drives a given patient’s tumor. It would be in great
interest to focus on tumor patient cohorts with a well-defined oncogene
dependency and available drug response data to validate our findings directly. Since
clinical drug response data in patients remain limited, testing these markers in
patient-derived xenograft (PDX) models, where human tumor samples are implanted
into mice to more closely reflect the tumor’s natural microenvironment, offers a
promising alternative. Such models could be used to confirm that our mutational
markers are predictive of drug response for oncogene addiction and thus strengthen
the rationale for using them potentially in clinic.

Oncostratifier also uncovered treatment opportunities for oncogene addicted cell
line cohorts. For some oncogene addictions, all of the oncogene addicted
subcohorts can be sensitized using 2 or more of the identified stratifying drugs.
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3.4. METHODS

3.4.1. DATA COLLECTION AND PROCESSING

DRUG RESPONSE

We used drug response data for cancer cell lines from the Genomics of Drug
Sensitivity in Cancer (GDSC) database [61, 62] (version 27Oct23). This included data
for a total of 665 compounds across two different drug screens, 367 in GDSC1 and
198 in GDSC2, together with putative drug targets. Drugs overlapping between
GDSC1 and GDSC2 were treated as distinct. The drug efficacy for a given cancer cell
line was quantified using the natural logarithm of the 50% growth inhibition value
(ln(IC 50)). We further categorized each cell line into sensitive (responder) or
resistant (non-responder) by binarizing the ln(IC 50) response score. For this we
used the natural logarithm of the peak plasma concentration (ln(C M ax)) as a
threshold, where the cell line was deemed sensitive if ln(IC 50) was smaller than
ln(C M ax) or resistant if ln(IC 50) was greater than ln(C M ax).

CANCER CELL LINES AND ONCOGENES

We obtained annotations and lists of mutations for the cancer cell lines from the
Cell Model Passports repository [63] (version 20220510). The oncogenes to be tested
were obtained from the Memorial Sloan Kettering Precision Oncology Knowledge
Base [64] (latest version as of 10/02/2023). We considered only those genes
recognized as oncogenes in at least one tissue (“Is Oncogene” == “Yes”) and not
classified as tumor suppressor genes in any tissue (“Is Tumor Suppressor Gene” ==
“No”). The mutated status of a gene was determined based on the presence of
non-silent mutations. To ensure a minimum representation for statistical analysis,
we required that the mutated and wild-type groups of cell lines versions of the
oncogene were each represented by at least three distinct cell lines. The original
data comprised 42 cancer types and 268 oncogenes, yielding 11256 pairs of cancer
type and oncogene. Of these, 6681 pairs met the aforementioned requirements and
were subsequently tested using Oncostratifier.

PRIMARY TUMOURS

We collected gene expression, mutation, and clinical data for primary tumor
samples from the Tumor Cancer Genome Atlas (TCGA) patient tissue samples,
courtesy of the Pan-Cancer Atlas [13]. The processed and curated data was accessed
through the cBio portal [65, 66] (on 15/12/2023). We considered only primary tumor
samples and non-silent mutation data. For differential gene expression analysis, we
leveraged RSEM (Batch normalized from Illumina HiSeq RNASeqV2) mRNA
expression data. Moreover, to visualize the normalized expression values of
differentially expressed genes, we used log-transformed mRNA expression
(RNASeqV2 RSEM) z-scores compared to the expression distribution of all samples.

https://www.cancerrxgene.org/
https://cog.sanger.ac.uk/cmp/download/mutations_all_20220510.zip
https://www.oncokb.org/cancer-genes
https://cbioportal-datahub.s3.amazonaws.com/
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3.4.2. ONCOSTRATIFIER

IDENTIFICATION OF STRATIFYING DRUGS

We used Oncostratifier to identify drugs with promising differential stratification
potential in the oncogene addicted (mutated) cohort compared to the wild-type
cohort. For a given cancer type, the approach first split the available cancer cell
lines into two cohorts, OncogeneMut (mutated) and OncogeneWT (wild-type), based
on the non-silent mutation status of the relevant oncogene within each cell line.
Then the stratification within each cohort was characterized by quantifying the
variability or uncertainty in the drug response proportions, of sensitive and resistant
cancer cell lines, using the Shannon entropy (Eq. 3.1)

H
(
Oncog eneMut

)=−pS × l og2(pS )−pR × log2(pR )

H
(
Oncog eneW T

)=−qS × log2(qS )−qR × log2(qR )
(3.1)

where pS and pR (qS and qR ) represent the proportions of sensitive and resistant
cancer cell lines within the OncogeneMut (OncogeneWT) cohort, respectively. To
discern drugs that selectively stratified one cohort more strongly than the other, we
examined the differential entropy (∆H) between the cohorts for every pair of
oncogene and cancer type (Eq. 3.2).

∆H = H(Oncog eneMut )−H(Oncog eneW T ) (3.2)

A positive or negative ∆H value would indicate that the drug showed respectively
stronger and weaker stratification in the OncogeneMut cohort compared to the
OncogeneWT cohort. To select candidate drugs with a more promising differential
stratification effect, a permutation-based significance test p-value was obtained for
each ∆Hobser ved value as follows. We performed 10000 permutations, each involving
the random shuffling of the drug response labels assigned to the cancer cell lines
followed by the computation of the corresponding differential stratification score,
∆Hper mut ati on . The p-value was then defined as the probability of obtaining an
equally or more extreme ∆Hper mut ati on value than the actual ∆Hobser ved value
(Eq. 3.3), under the assumption that the null hypothesis positing no significance
difference in entropy between the two cohorts was true.

p − value = Number of permutations where
∣∣∆Hper mut ati on

∣∣ ≥ |∆Hobser ved |
Total number of permutations

(3.3)

CATEGORIZATION OF STRATIFYING DRUGS

Drugs with a permutation p-value lower than the arbitrarily chosen threshold 0.05
were considered significant, and were further categorized according to the
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differential entropy values ∆H and proportions of sensitive and resistant cell lines of
the cohorts as follows:

• Stratifying sensitivity (SS): ∆H > 0; p-value < 0.05; qS < qR

• Stratifying resistance (SR): ∆H > 0; p-value < 0.05; qS > qR

• Full sensitivity (FS): ∆H < 0; p-value < 0.05; pS > pR

• Full resistance (FR): ∆H < 0; p-value < 0.05; pS < pR

The two stratifying categories denoted cases where oncogene addiction was
associated with increased cancer cell line stratification potential, acquired through
acquisition (SS) or loss (SR) of sensitivity in the oncogene addicted cohort
OncogeneMut, given a predominantly resistant (SS) or sensitive (SR) wild-type cohort
OncogeneWT. Conversely, the two other categories denoted a reduction in
stratification ability in the oncogene addicted cohort OncogeneMut due to cell lines
gaining (FS) or losing (FR) sensitivity compared to the wild-type cohort OncogeneWT.

3.4.3. ANALYSIS OF STRATIFYING DRUGS FOUND BY ONCOSTRATIFIER

MUTATIONAL MARKERS FOR STRATIFYING DRUGS IN CELL LINES

We revealed markers for drugs that stratified oncogene mutated cell lines through
association analysis between drug response (sensitive or resistant) and the
mutational status of each cancer-related gene. We quantified the association
separately for the OncogeneMut and OncogeneWT cohorts using Fisher’s exact tests,
focusing on genes previously identified as cancer genes (CGs) amid cancer
functional events (CFEs) [62]. The Fisher’s test p-values were corrected for multiple
testing using the Benjamini-Hochberg procedure [67]. A given gene was deemed a
mutational marker of a stratifying drug if its corrected p-values were respectively
significant in the OncogeneMut (below 0.05) and non-significant in the OncogeneWT
cohort (not below 0.05).

DIFFERENTIAL GENE EXPRESSION ANALYSIS IN PRIMARY TUMORS

Considering primary tumor samples where the oncogene was mutated, we identified
differentially expressed genes between subcohorts where the marker gene was either
mutated or wild-type. We first excluded genes with variance in rounded RSEM read
count estimates below 0.0001. We used DESeq2 to identify outliers based on the
Cook’s distance, imput new values for the filtered outliers, and identify differentially
expressed genes [68] using the pyDeSeq2 implementation [69]. As suggested by
DESeq2, only the genes whose p-values passed the independent filtering stage [68]
were identified and had their p-values adjusted using the Benjamini-Hochberg
procedure [67]. Genes with adjusted p-values below 0.05 were identified as
differentially expressed.
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FUNCTIONAL AND PATHWAY ENRICHMENT FOR DIFFERENTIALLY EXPRESSED GENES

We investigated whether the differentially expressed genes associated with each
cancer-oncogene-marker pair were significantly enriched within various functional
and pathway annotations. We included annotations from the Gene Ontology
(version 2023; encompassing biological processes, cellular components, and
molecular functions) [70] and MSigDB Hallmark [71], as well as canonical pathways
from databases KEGG (2021, Human) [72], WikiPathway (2023, Human) [73], and
Reactome (2022) [74]. We performed the enrichment analysis using EnrichR (version
June 8, 2023, accessed on 17/01/2023) [75], which tests for enrichment with Fisher’s
exact tests and adjusts p-values for multiple testing using the Benjamini-Hochberg
procedure [67].

IDENTIFICATION OF MINIMAL STRATIFYING DRUG SETS FOR ONCOGENE ADDICTED

COHORTS

For each oncogene-cancer type pair, we identified a minimal set of stratifying drugs
such that each cell line in the oncogene-addicted cohort was sensitive to at least
one drug in the set. We formulated the minimal drug set selection problem as a set
cover optimization. Let C denote the set of all oncogene-addicted cell lines and
C j ⊆C , a subset of the cell lines that are sensitive to drug j . The objective is to
identify the smallest number of such subsets whose union covers the entire cohort
C . Formally, we seek a minimal collection such that:

K⋃
j

C j =C .

where K is a set of drugs in the minimal set cover.

To find the minimal set cover, we implemented a recursive algorithm that
exhaustively explores combinations of candidate drugs. In the case where multiple
minimal solutions exist, the algorithm reports the first solution it discovers.

For some oncogene–tumor type pairs, one or two oncogene-addicted cell lines were
never sensitive to any of the stratifying drugs, making it impossible to find a set that
covered the entire cohort. Thus, we repeated the analysis including only the cell
lines that were sensitive to at least one candidate drug. This allowed us to identify
minimal set covers even when a complete cover set was not possible, to provide
additional insight into partially actionable therapeutic strategies.
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3.5. SUPPLEMENTARY MATERIALS

3.5.1. SUPPLEMENTARY TABLES

The Supplementary Tables accompanying this chapter are available via the private
4TU data repository [1].

• Table 3.S1: Detailed results of every drug found significant over all cancer
type-oncogene pairs. The table includes the found drug categories, entropy
scores in both cohorts, Oncostratifier score (∆H), Oncostratifier p-value,
mutational marker if found, and additional statistics on oncogene addicted
patients for each case, as well as differentially expressed genes for the
mutational markers found.

• Table 3.S2: Number of Oncostratifier drug and oncogene pairs found for each
cancer type and their assigned categories.

• Table 3.S3: For each cancer type-oncogene pair, set of stratifying drugs that
can cover or sensitize all oncogene addicted cancer cell lines.

• Table 3.S4: For each cancer type-oncogene pair, set of stratifying drugs that
can cover or sensitize all oncogene addicted cancer cell lines known to be
sensitive to at least 1 stratifying drug.

3.5.2. SUPPLEMENTARY FIGURES

The Supplementary Figures are included in the subsequent pages of this document.

https://data.4tu.nl/private_datasets/ll7TJD-KorkYFW_h7GV7hkfx0GnjaBuTHmrDZs7REqc


3

96 CHAPTER 3

Stratifying
Sensitivity

Stratifying
Resistance

Full
Sensitivity

Full
Resistance

Category

1825_Podophyllotoxin bromide_GDSC2 (nan)

1004_Vinblastine_GDSC2 (Microtubule destabiliser)

300_CX-5461_GDSC1 (RNA Polymerase 1)

2048_Vinorelbine_GDSC2 (Microtubule destabiliser)

1048_Mirin_GDSC2 (MRE11)

1073_5-Fluorouracil_GDSC2 (Antimetabolite (DNA & RNA))

2156_5-azacytidine_GDSC2 (DNA methyltransferases)

1529_Pevonedistat_GDSC2 (NAE)

1008_Methotrexate_GDSC1 (Antimetabolite)

356_AT7867_GDSC1 (AKT)

1188_CCT245467_GDSC1 (HSF1)

1820_123829_GDSC2 (nan)

1085_Sorafenib_GDSC2 (PDGFR, KIT, VEGFR, RAF)

2055_Mycophenolic acid_GDSC2 (nan)

221_TAK-715_GDSC1 (p38alpha, p38beta)

1372_Trametinib_GDSC2 (MEK1, MEK2)

1720_AZD5991_GDSC2 (MCL1)

1089_Oxaliplatin_GDSC2 (DNA alkylating agent)

1511_Epirubicin_GDSC2 (Anthracycline)

428_Pemetrexed_GDSC1 (TYMS)

1631_PRT062607_GDSC2 (SYK)

1170_CCT-018159_GDSC1 (HSP90)

294_MPS-1-IN-1_GDSC1 (MPS1)

1378_Bleomycin (50 uM)_GDSC1 (dsDNA break induction)

134_Etoposide_GDSC1 (TOP2)

2149_CT7033-2_GDSC2 (KDM4A, KDM4C, KDM4E, KDM3A, KDM6B)

1809_Teniposide_GDSC2 (nan)

1463_AZD1332_GDSC2 (NTRK1, NTRK2, NTRK3)

326_GSK690693_GDSC1 (AKT1, AKT2, AKT3)

1006_Cytarabine_GDSC2 (Antimetabolite)

1239_YK-4-279_GDSC2 (RNA helicase A)

1912_Afuresertib_GDSC2 (AKT1, AKT2, AKT3)

1032_Afatinib_GDSC2 (EGFR, ERBB2)

1558_Lapatinib_GDSC2 (EGFR, ERBB2)

1031_Elesclomol_GDSC1 (HSP90)

1086_BI-2536_GDSC2 (PLK1, PLK2, PLK3)

1919_Osimertinib_GDSC2 (EGFR)

1434_JAK3_7406_GDSC1 (JAK3)

310_YM201636_GDSC1 (PIKFYVE)

1190_Gemcitabine_GDSC2 (Pyrimidine antimetabolite)

D
ru
g

0

20

40

60

80

100

120

140

160

Figure 3.S1: Top drugs repeatedly found significant for oncogene-cancer type pairs. Number of times each drug is
found significantly in one of the Oncostratifier categories across oncogenes and cancer types. Only the top 40
drugs are shown.
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Figure 3.S2: Additional mutational markers for stratifying drugs. Distribution of the cancer cell line drug
response grouped by oncogene-WT, oncogene-Mut & marker-WT, and oncogene-Mut & marker-Mut for the drugs
that are found as stratifying in acute myeloid leukemia, b-cell non-hodgkin leukemia, breast carcinoma, esophageal
squamous cell carcinoma, gastric carcinoma, glioblastoma, and melanoma. LN (IC 50) scores are used as drug
response. The target of each drug is pointed out in the parentheses. We tested the significance of response change
in oncogene-Mut & marker-WT and oncogene-Mut & marker-Mut groups against the oncogene-WT group using
Fisher’s exact test (corrected by the Benjamini-Hochberg [2] procedure).
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Figure 3.S3: Additional mutational markers for stratifying drugs in colorectal carcinoma. Distribution of the
cancer cell line drug response grouped by oncogene-WT, oncogene-Mut & marker-WT, and oncogene-Mut &
marker-Mut for the drugs that are found as stratifying in colorectal carcinoma. LN (IC 50) scores are used as drug
response. The target of each drug is pointed out in the parentheses. We tested the significance of response change
in oncogene-Mut & marker-WT and oncogene-Mut & marker-Mut groups against the oncogene-WT group using
Fisher’s exact test (corrected by the Benjamini-Hochberg [2] procedure).
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Figure 3.S4: Additional mutational markers for stratifying drugs in lung carcinoma. Distribution of the cancer cell
line drug response grouped by oncogene-WT, oncogene-Mut & marker-WT, and oncogene-Mut & marker-Mut for the
drugs that are found as stratifying in lung carcinoma. LN (IC 50) scores are used as drug response. The target
of each drug is pointed out in the parentheses. We tested the significance of response change in oncogene-Mut
& marker-WT and oncogene-Mut & marker-Mut groups against the oncogene-WT group using Fisher’s exact test
(corrected by the Benjamini-Hochberg [2] procedure).
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Fairness in machine learning seeks to mitigate model bias against individuals based
on sensitive features such as sex or age, often caused by an uneven representation of
the population in the training data due to selection bias. Notably, bias unascribed to
sensitive features is challenging to identify and typically goes undiagnosed, despite its
prominence in complex high-dimensional data from fields like computer vision and
molecular biomedicine. Strategies to mitigate unidentified bias and evaluate
mitigation methods are crucially needed, yet remain underexplored. We introduce: (i)
Diverse Class-Aware Self-Training (DCAST), model-agnostic mitigation aware of
class-specific bias, which promotes sample diversity to counter confirmation bias of
conventional self-training while leveraging unlabeled samples for an improved
representation of the underlying population; (ii) hierarchy bias, multivariate and
class-aware bias induction without prior knowledge. Models learned with DCAST
showed improved robustness to hierarchy and other biases across eleven datasets,
against conventional self-training and six prominent domain adaptation techniques.
Advantage was largest on multi-class classification, emphasizing DCAST as a
promising strategy for fairer learning in different contexts.

4.1. INTRODUCTION
As predictive machine learning (ML) increasingly makes its way to applications with
an impact on society, one major concern is to ensure that ML models deliver fair
predictions and do not discriminate against individuals in the population. Selection
bias is one of the most prominent sources of unfairness in ML, whereby the data
used to build ML models is not representative of the real-world and thus violates
the fundamental assumption of ML that it is independently drawn and identically
distributed to the underlying population.

Research on fairness in ML has focused on mitigating (selection) bias associated
with legally protected or sensitive features, such as sex, age, or skin color [1, 2].
However, biases can be indirectly linked to sensitive features via proxies not
recognized as sensitive [1, 2], or they can be unrelated to sensitive features and still
lead to unfairness. Ultimately, biases are likely to remain undiagnosed and be
propagated by ML models without scrutiny when a link to sensitive features is
challenging to identify. Unknown biases are often present when data is complex and
high-dimensional, data collection is non-random, and knowledge of the domain is
incomplete. We argue that unfairness mitigation should thus address bias more
generally, beyond what can be ascribed to sensitive features. This issue has deserved
attention across fields, including computer vision [3, 4], astronomy [5, 6],
biomedicine and healthcare [7–10], finance and economics [11–13], information
retrieval [14, 15], and language [7, 16]. Nevertheless, its impact is typically
overlooked, resulting in models with optimistic performances due to bias-unaware
evaluation. We identify two key areas for improvement, namely evaluation of ML
model robustness to bias, and ML bias mitigation.

Evaluation is crucial to ensure that ML models generalize and are robust to bias, but
assessing performance on data representative of the real-world distribution is rarely
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achievable. Independent test data is not always available or guaranteed to be
unbiased, and conventional data splits do not create train-test distribution shifts
suitable for model bias evaluation. A viable alternative is to induce bias to the train
set and assess the learned model on the original test set. Common bias induction
approaches include subsampling using univariate selection probabilities, based on
values or the distribution of one feature [17, 18]. This is however not representative
of multivariate biases typically present in complex high-dimensional data. Existing
methods to induce multivariate bias include: joint bias [19], which favors the
selection of samples closer to the mean; and Dirichlet bias, [20], which assigns
sample selection likelihoods based on a Dirichlet distribution. Both methods ignore
class labels and thus do not generate class-specific biases. They might also cause
class imbalances for otherwise balanced data.

We propose hierarchy bias, a multivariate class-aware bias induction technique to
produce complex class-specific biases. Hierarchy bias identifies distinctly distributed
groups of samples in the original data using clustering, and then generates a biased
selection by influencing the representation of one group of samples relative to the
others. Selection is performed per class to induce class-specific bias, aiming for an
identical number of samples per class to ensure class balance.

Methods to mitigate bias in ML generally fall in the scope of domain adaptation
(DA, [21]), seeking to adapt a model to the distribution shift between the source
training domain and a target prediction domain. Relevant DA categories span
importance weighting, subspace alignment, inference-based, and semi-supervised
learning methods. Importance weighting (IW) weighs training samples based on
their relevance to the test set, using probability ratios or discrepancy measures [6,
11, 19, 22–28]. Since IW assumes that the train set contains the support of the test
set and most features contribute to the prediction, it can be less effective with
high-dimensional data or small sample sizes. Subspace alignment (SA) transforms
the data representation [29–31], assuming there is a common subspace where
transformed train and test sets exhibit matching conditional probabilities, which
may be difficult to optimize if many transformations fit. Inference-based (IB)
methods include minimax estimation [20, 32], where loss minimization is coupled
with an adversarial maximization objective that steers the model to fit more
conservatively, aiming for improved generalization. The IB methods may
underperform if the model choice is less suitable for the test set. Overall, most IW,
SA, and IB methods adapt the model for one target test set, which can hamper
generalizability. Semi-supervised learning (SSL) leverages unlabeled samples to
provide model learning with insight into the underlying population distribution. The
most benefit can in principle be achieved by using as much unlabeled data as
available, though some SSL approaches still adapt to individual test sets [33, 34].
Unlabeled samples are typically incorporated by SSL using self-training (ST) [35] or
co-training (CT) [36], which assigns predicted pseudo-labels to unlabeled samples
and selects a subset of these to include at each training iteration. Sample selection
is often based on prediction confidence according to the model trained thus far,
which may strengthen existing bias or create other biases such as class imbalance
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for originally balanced data [4, 5]. Attempts to mitigate this behavior include, for
instance, the P3SVM support vector machine (SVM) [4] that selects pseudo-labeled
samples distant from each other and located within the margins furthest away from
the decision boundary. This method is however SVM-specific, and its sample
selection dependent on the size of the margin may limit the contribution of
unlabeled data. In summary, most DA methods mitigate distribution shifts for one
test set at a time, leading to ML models with limited generalizability beyond the
train and test domains. It remains to be investigated if generalization could be
improved by training on additional unlabeled data. Semi-supervised learning offers
this possibility, but existing methods fall short in actively mitigating bias present in
the data or further induced during model learning. Finally, many DA methods are
model-specific and cannot be applied to different types of ML models.

To improve bias mitigation, we propose Diverse Class-Aware Self-Training (DCAST),
a model-agnostic semi-supervised learning framework that gradually incorporates
unlabeled data in a class-aware manner, guided by two active bias mitigation
strategies. The core CAST strategy addresses class-specific bias by selecting a set of
pseudo-labeled samples to include separately per class, using a relaxed confidence
threshold, with options to preserve the class ratios of the original labeled train set or
to add the same number of pseudo-labeled samples per class at each iteration. The
extended DCAST strategy seeks to counter confidence-induced bias by further
selecting diverse pseudo-labeled samples, as measured by inter-sample distances in
the learned discriminative embedding or the original feature space.

We evaluate both hierarchy bias induction and (D)CAST bias mitigation across
eleven datasets, against competing approaches including Dirichlet and joint bias as
well as conventional self-training and six domain adaptation techniques. Specifically,
we investigate which bias induction method induces the most challenging type of
selection bias, leading to the strongest impact on ML model prediction
performance. We further assess to what extent the class-awareness and diversity in
(D)CAST improve robustness to bias, both across datasets and compared to the
alternative bias mitigation strategies, while coupling model-agnostic (D)CAST with
three types of ML models.

4.2. RESULTS AND DISCUSSION
The proposed hierarchy bias induction and (D)CAST bias mitigation methods aim to
provide, respectively: (i) a more realistic type of class-aware multivariate selection
bias for the evaluation of ML model robustness to bias, and (ii) class-aware and
diversity-guided strategies to learn ML models with improved generalizability in the
presence of selection bias. We briefly introduce these techniques and discuss their
evaluation across 11 datasets using logistic regression (LR), random forest (RF), and
2-hidden layer neural network (NN) prediction models. Every dataset was randomly
partitioned into 80% train and 20% test, with the test data reserved for prediction
model evaluation (Methods). Effects of bias induction on the data and model
prediction performance were assessed over 30 runs, each relying on a random split
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of the train set into labeled (30%) and unlabeled (70%) train sets. The labeled train
set was used for bias induction and for training ML models, either intact or upon
bias induction. For bias mitigation, unlabeled data was additionally used during
training, where conventional self-training (ST) and (D)CAST leveraged the unlabeled
train set, and other domain adaptation techniques exploited the unlabeled test set
instead (Methods).

4.2.1. HIERARCHY BIAS INDUCES EFFECTIVE MULTIVARIATE AND

CLASS-SPECIFIC SELECTION BIAS

Hierarchy bias generates a biased selection of samples for a given dataset, aiming to
deviate from the original data distribution by skewing the representation of a group
of samples that is deemed closer together in feature space than the remaining
samples (Fig. 4.1). The approach selects k samples per class and controls group
representation using bias ratio b as follows. A class-specific group of at least k
closely related samples is first identified using agglomerative hierarchical clustering.
To obtain the biased selection, k ×b samples are chosen uniformly at random from
the identified group and k × (1−b) samples are chosen uniformly at random from
the remaining samples (Methods).

Original Dataset Class-Specific Candidate Groups

Find cluster per class 

with ≥ k samples

Biased Sample Selection

Class 1 Class 2

Select samples per class
k x b from candidate group

k x (1-b) from remaining samples

Input

b

Number of 
samples to 
select per class

Data

Bias ratio

X, Y

k

Figure 4.1: Hierarchy bias approach for induction of selection bias. Given input data X with labels Y , number of
samples to select k, and bias ratio b ∈ [0,1], hierarchy bias selects k samples per class c: k ×b from a specific
group and k × (1−b) from the remaining samples. Each class-specific candidate group (for class c) is identified via
agglomerative hierarchical clustering with Euclidean distances and Ward linkage of the c-labeled samples until a
cluster of size ≥ k is obtained, from which k ×b samples are drawn uniformly at random. The k × (1−b) samples
are drawn uniformly at random from the remaining c-labeled samples.

To evaluate bias induction, we assessed the ability to generate a distribution shift
between the biased selection and the original data, as well as the impact of the
induced shift on ML model prediction performance. We compared hierarchy bias
with b = 0.9 to random subsampling and two alternative bias induction techniques:
joint bias [19] and Dirichlet bias [20]. Hierarchy bias and random subsampling were
set to select 30 samples per class, whereas Dirichlet targeted 60 and 300 samples in
total respectively for binary and multiclass labeled datasets. Note that Dirichlet and
joint bias do not take class labels into account when performing their selection, and
joint bias does not allow control over the selected number of samples.

Effect on data distribution. We first assessed the effect of bias induction on the
distribution of distances between samples. The underlying idea is that a biased
selection would exclude portions of the original data that deviate from the rest of
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Figure 4.2: Bias induction impact on sample distances, latent space, and classifier performance. (a) Class-specific
distributions of per sample average Euclidean distances to all other samples, for the biased selection (histograms)
and for all samples in the labeled train set (histogram peaks denoted by lines ending in a “T” shape), using three
bias induction techniques (hierarchy with b = 0.9, joint, and Dirichlet) and random subsampling on three datasets
(wine, mushroom, and fire). Kolmogorov-Smirnov (KS) effect sizes quantify the distribution shift between the biased
selection vs. all samples. (b-d) Samples selected by hierarchy bias (b = 0.9), highlighted on the respective latent
UMAP space of the labeled train set for the wine, mushroom, and fire datasets (arbitrarily chosen run 11). (e)
Accuracy of supervised RF, NN, and LR models on the test set after training on the original or biased labeled train
set, over 30 distinct train runs. Box height delimits the interquartile range (IQR =Q3−Q1), with a line across the
box denoting the median; whiskers indicate the largest and smallest values within Q1−1.5× IQR and Q3+1.5× IQR,
with points beyond the range as outliers.

the samples to some extent, thus making inter-sample distances closer on average.
For each dataset, we obtained class-specific distributions of the per sample average
Euclidean distance to all other samples. We further quantified the deviation between
the class-specific distance distributions obtained for the biased selection and the
original labeled set using Kolmogorov-Smirnov (KS) tests. Hierarchy bias (b = 0.9)
induced the most significant shift in the distance distributions for all 11 datasets (KS
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effect sizes > 0.65, p-values < 0.05; Fig. 4.2a and Supplementary Fig. 4.S1-4.S2), and
primarily towards smaller average inter-sample distances, in line with the selection
of close samples that hierarchy bias is designed to produce. Random selection
resulted in the most similar distance distributions to the original data, with the
smallest KS effect for 8 datasets. Dirichlet and joint bias led to modest shifts than
hierarchy bias, with joint bias generally showing larger KS effects than Dirichlet (9 of
11 datasets). We also examined the samples selected from each labeled train set in
the feature space, reduced to 2 dimensions (2D) using Uniform Manifold
Approximation and Projection (UMAP) for an example run 11. Hierarchy bias
selected samples from specific clusters or regions of the feature space. This was
apparent across datasets (Supplementary Fig. 4.S3), for instance hierarchy bias
ignored samples in the top right area of the 2D space for the wine dataset
(Fig. 4.2b), selected from specific clusters of the mushroom dataset (Fig. 4.2c), and
focused on the top left and bottom right areas of the 2D space for the fire dataset
(Fig. 4.2d). In contrast, samples selected by random selection, as well as by the
Dirichlet and joint biases, were spread throughout the 2D space and thus more
representative of the original labeled train set for all datasets (Supplementary
Fig. 4.S4k-4.S6). For random sampling, this was expected, given that no particular
bias was introduced. For joint bias the result was also unsurprising, seeing that it
selected the largest proportions of samples across datasets and thus captured most
of the data (overall mean average 63%, minimum 44%, and maximum 80%; for
hierarchy bias: 17%, 0.4%, and 67%; Supplementary Table 4.S1).

Impact on prediction performance. We evaluated the impact of bias induction on
the classification accuracy of supervised ML models for the 11 datasets across 30
runs. Per run, we trained 2-hidden layer neural network (NN), random forest (RF),
and logistic regression (LR) models using the original labeled train set (No Bias) or a
selection of its samples. The latter was obtained either by random subsampling or
using Dirichlet, joint, or hierarchy bias induction. All models were evaluated on the
original test set. The induced bias led to a decrease in accuracy with every
technique except joint bias (Fig. 4.2e), which as previously mentioned selected most
of the original samples and thus did not induce particularly strong bias. Hierarchy
bias caused the largest decrease in accuracy for all datasets except MNIST, where
the most impact was seen with joint bias (Fig. 4.2e). Note that the preset targets on
the number of samples to select for hierarchy bias, Dirichlet bias, and random
selection led these methods to select 64-70% of the MNIST samples per class
compared to 46-60% with joint bias. This larger coverage of the original data likely
influenced the ability of hierarchy and Dirichlet to produce a more effective biased
selection for MNIST. Overall, hierarchy bias consistently selected samples in close
proximity, leading to a significant shift in inter-sample distances and a bias towards
class-specific parts of the original distribution. This caused a marked decrease in
prediction accuracy of supervised ML models relative to other bias induction
techniques.
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4.2.2. DIVERSE CLASS-AWARE SELF-TRAINING (DCAST) FOR SELECTION

BIAS MITIGATION

Self-Training Module Diversity Module (per class)Input

m Maximum number of iterations

Labeled dataXL, YL

Unlabeled dataXU

Total number of samples to 
select in each iteration 
(sc per class c)

s

Prediction probability thresholdt

Diversity strengthd

Train

Predict

Labeled Set

Unlabeled Set

Model
Pseudo
Labeling
Process

Candidate Samples
(most confidently predicted sc x d unlabeled samples above threshold t)

Pseudo-Labeled Sample Selection

Hierarchical Clustering
(agglomerative until sc clusters are found)

Most confidently predicted sample from each cluster

Sample Representations
(learned discriminative embedding or original feature space)

Pairwise Sample Distances

DCAST

CAST

Cluster1 Clustersc
Clusteri

Figure 4.3: Diverse Class-Aware Self-Training (DCAST) framework. (Left) Input to DCAST. Labeled data XL (with
labels YL ) and unlabeled data XU , maximum number of iterations m, number of pseudo-labeled samples s to
select per iteration, confidence or prediction probability threshold t ∈ [0,1], and integer diversity strength parameter
d ≥ 1. (Middle) Self-training module. At each iteration, a model trained with labeled samples is used to predict
pseudo-labels for unlabeled samples, from which a subset is newly selected and added to the labeled set for the
next iteration. (Right) Diversity module. Selects the subset of sc = s × cl ass_r ati o(c) confidently predicted and
diverse pseudo-labeled samples per class c, as follows: (i) select the top sc ×d samples from the unlabeled set
with confidence or prediction probability larger than t (or 1.2/C , whichever is largest); and (ii) reduce this sc ×d
selection to a set of sc diverse samples by identifying sc clusters using hierarchical clustering (agglomerative
single-linkage) and selecting the most confidently predicted sample from each cluster. Note that cl ass_r ati o can
otherwise be fixed to be equal across classes. Distance between samples is based on either learned discriminative
embeddings, relating samples with respect to prediction output, or alternatively an unsupervised embedding or the
original feature space. When d = 1, DCAST becomes CAST, without the diversity strategy.

The proposed (D)CAST semi-supervised learning strategies (Fig. 4.3) aim to mitigate
selection bias by leveraging insight from unlabeled data about the underlying
distribution of the population. Both rely on self-training to gradually incorporate
unlabeled data: at each training iteration, the learnt model is used to predict
pseudo-labels for all unlabeled samples, from which a subset of s samples (sc per
class) is selected to be included in the labeled set for the next iteration. To address
class-related bias, sample selection is done separately per class as follows. First, a
set of s ×d candidates is selected as the most confidently predicted samples with
prediction probability above a threshold t , where s and d denote the number of
samples to select and diversity strength. For CAST (d = 1), this directly results in the
final set of s pseudo-labeled samples to add for the next iteration. The DCAST
selection (d > 1) extends upon CAST to mitigate confidence-related bias through
sample diversity, reducing the set of s ×d candidates to a final set of s diverse
pseudo-labeled samples. Capturing diverse sample groups is achieved via
hierarchical clustering of the candidate samples into s clusters (sc per class),
followed by selection of diverse samples comprising the most confidently predicted
sample per cluster. To ensure (D)CAST remains model-agnostic, sample distances
for clustering can be based on discriminative embeddings learnt by the model or
the original feature space.
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Figure 4.4: Bias mitigation by semi-supervised (D)CAST in the presence of hierarchy bias (ratio b = 0.9). Accuracy
of supervised and semi-supervised learning methods with (a) RF, (b) NN, and (c) LR models across 11 datasets.
Results for 30 runs: each training on a different split of the train set into labeled and unlabeled sets, all
evaluated on the same original test set. Models included (top to bottom): supervised RF/NN/LR models trained
on the original (No Bias) or biased (Bias) labeled set; and semi-supervised RF/NN/LR models, using conventional
self-training (ST) on the biased labeled train set plus the unlabeled test set, or (D)CAST on the biased labeled train
set plus the unlabeled train set. Red asterisks (*) denote statistically significant changes in accuracy over 30 runs
for each semi-supervised approach compared to supervised learning on the biased labeled set, using one-sided
Wilcoxon signed-rank tests (larger asterisks indicate p < 0.01 and smaller asterisks 0.01 < p < 0.05).

4.2.3. DIVERSITY AND CLASS-AWARENESS IN (D)CAST IMPROVE BIAS

MITIGATION VIA SELF-TRAINING

To evaluate (D)CAST bias mitigation, we first assessed its test prediction accuracy
against supervised learning and conventional self-training (ST) [35] on the biased
labeled train set, with additional unlabeled samples for self-training strategies.
Training and evaluation were performed for 11 datasets over 30 runs as previously
described, using RF, NN, and LR models. We induced hierarchy bias with ratio
b = 0.9, as this type of selection bias showed the most impact on supervised models
compared to Dirichlet and joint bias (Fig. 4.2e). The (D)CAST method was assessed
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without diversity (CAST, d = 1) or with diversities d = {10,100} (CAST-10, DCAST-100),
and was set to include s = 3×(number of classes) pseudo-labeled samples per
iteration, for at most m = 100 iterations, using prediction threshold t = 0.9 (or the
85th or 93rd percentile in the case of RF models). Conventional ST selected the
3×(number of classes) most confidently predicted samples per iteration (Methods,
Bias mitigation strategies). Concerning the mitigation of hierarchy bias with ratio
b = 0.9, with NN models the semi-supervised (D)CAST strategies significantly
improved generalizability over supervised learning across all 11 datasets (p < 0.05
with one-sided Wilcoxon signed-rank tests, Fig. 4.4b). Specifically, class-awareness
with moderate diversity (DCAST-10) was significantly better than supervised learning
on the 11 datasets, whereas class-awareness alone (CAST) or coupled with stronger
diversity (DCAST-100) both improved on 10 datasets and remained comparable
respectively on the fire and adult datasets. By contrast, conventional ST was
significantly worse than supervised learning on 10 datasets with NN models. Using
RF and LR models, mitigation of hierarchy bias with ratio b = 0.9 was more modest.
Semi-supervised (D)CAST and ST performed comparably to supervised learning on
most datasets (8 with RF and 7 with LR models; Fig. 4.4a,c), possibly due to the use
of regularization, which could hamper model adaptation. We thus saw occasional
statistically significant changes and smaller effect sizes with RF and LR models.
Notably, the higher diversity strategy DCAST-100 led to the only significant
improvement of semi-supervised over supervised learning using RF models, on the
MNIST dataset (Fig. 4.4a). Also with RF models, CAST and DCAST-10 decreased
accuracy on MNIST, while ST decreased accuracy on 3 datasets (wine, MNIST, and
pistachio; Fig. 4.4a). With LR models, (D)CAST strategies improved over supervised
learning on 4 datasets (MNIST, spam, raisin, and pistachio), whereas ST improved
on 3 datasets (spam, raisin, and pumpkin) but also caused a decrease on the wine
dataset (Fig. 4.4c).

Experiments with alternative bias induction techniques revealed similar findings,
where (D)CAST bias mitigation consistently outperformed ST across datasets under
random subsampling (Supplementary Fig. 4.S7), and under induced Dirichlet or
joint bias (Supplementary Fig. 4.S8-4.S9). Again, we saw the largest performance
differences with NN models, coinciding with the most improvement of (D)CAST and
weakest results of ST over supervised learning.

In summary, (D)CAST effectively mitigated selection bias induced by different
techniques when paired with non-regularized NN models, and was not
outperformed by supervised learning or conventional ST with regularized RF and LR
models. In contrast, conventional ST struggled to recover from the bias with all
three types of models, especially NNs. These results suggest that the class-awareness
and diversity features introduced to the pseudo-labeling procedure in (D)CAST
provide a promising semi-supervised learning strategy to mitigate selection bias.
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Figure 4.5: Bias mitigation by (D)CAST or domain adaptation beyond semi-supervised learning under hierarchy
bias (b = 0.9). Accuracy of semi-supervised (D)CAST strategies against alternative bias mitigation techniques with 3
different types of ML models for 11 datasets over 30 runs. Per run, each model was trained using a different
labeled train set with induced hierarchy bias. We included a supervised learning model as baseline per ML model
type (RF, NN, LR), together with bias mitigation models incorporating additional unlabeled samples from either the
unlabeled train set ((D)CAST) or the unlabeled test set (remaining methods). All models were evaluated on the
same original test set. Bias mitigation methods per category: semi-supervised (CAST and DCAST-100); importance
weighting (KMM, KDE); minimax estimation (RBA, TCPR); and subspace alignment (FLDA, SUBA). The (D)CAST and
KMM methods were coupled with RF, NN, and LR models, whereas the remaining methods used LR models only.
For clarity, horizontal lines group bias mitigation strategies by model type. The “x” symbol indicates model training
was unsuccessful across all 30 runs.

4.2.4. SEMI-SUPERVISED (D)CAST BIAS MITIGATION IS SUPERIOR TO

COMPETING DOMAIN ADAPTATION

We also evaluated (D)CAST against bias mitigation techniques beyond
semi-supervised learning. This included importance weighting methods KMM [19]
and KDE [22], minimax approaches RBA [20] and TCPR [32], and subspace
alignment methods FLDA [31] and SUBA [30]. All methods were trained on the
biased labeled train set and evaluated on the original test set, with (D)CAST further
incorporating samples from the unlabeled train set and the remaining methods
using unlabeled test samples during training. The (D)CAST and KMM approaches
were coupled with RF, NN, and LR models, while the remaining methods used LR
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only as per the original work.

Similar to our previous findings, CAST and DCAST-100 were the most robust bias
mitigation methods. Overall, these strategies preserved or significantly improved
over the supervised learning performance across the 3 model types and 11 datasets,
with the exception of CAST showing a decrease in accuracy for MNIST when used
with RF models. (Fig. 4.4-4.5). In contrast, KMM led to significant decreases in
accuracy for 8 datasets with NN models, as well as for 5 and 6 datasets respectively
with LR and RF models. As for the remaining bias mitigation methods using only LR
models, KDE resulted in significant decreases in performance for all except the rice
dataset. Apart from an improvement with RBA for the pistachio dataset, the RBA
and SUBA methods degraded performance significantly for 6 and 9 datasets,
respectively. The best competing methods were FLDA and TCPR, which showed
significant improvements respectively for 5 and 4 datasets (FLDA: breast cancer,
spam, raisin, pistachio, and pumpkin; TCPR: wine, rice, adult, and pistachio). The
FLDA approach also led to significant decreases for 4 datasets (wine, mushroom,
MNIST, and fire), while TCPR caused a significant decrease for the fire dataset.
Concerning the MNIST dataset, TCPR failed to build models for most runs and
caused a clear performance drop for the few remaining ones, resulting in
insufficient power to determine statistical significance. Overall, CAST and
DCAST-100 demonstrated consistent ability to match or outperform supervised
learning in the presence of hierarchy bias compared to other bias mitigation
methods. The gap was most evident on the multi-class classification problem
(MNIST), where the other methods resulted in drastic decreases in performance.

4.3. CONCLUSION
We put forth two contributions to improve the learning of prediction models in the
presence of selection bias. First, a bias induction approach termed hierarchy bias to
enable the evaluation of complex multivariate bias effects on the generalizability of
prediction models. Second, a model-agnostic semi-supervised learning framework
named (D)CAST that exploits unlabeled data in a class-aware manner and promotes
sample diversity to mitigate selection bias.

Hierarchy bias uses clustering to isolate one distinct group of samples per class and
then skews the representation of such group during sample selection to induce
class-specific multivariate bias, allowing control over the level of bias through a bias
ratio parameter. Induced hierarchy bias showed a stronger impact on the
distribution of inter-sample distances and proved more challenging for prediction
models to overcome, compared to joint and Dirichlet bias.

The (D)CAST model learning strategy progressively incorporates unlabeled samples
using self-training, which is further made class-aware in CAST by pseudo-labeling
confidently predicted unlabeled samples over a given threshold per class. Its
extended variant, DCAST, seeks to counter confidence-associated bias with sample
diversity by clustering and selecting pseudo-labeled samples from distinct groups,
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using distances based on either the discriminative embeddings provided by the
underlying model or the original feature representation.

Both class-awareness and diversity proved effective, leading to significant
improvements in the bias mitigation ability of (D)CAST over conventional
self-training across datasets and bias induction techniques. Models trained by
(D)CAST also outperformed other models built using six alternative domain
adaptation methods, comprising different importance weighting, minimax
estimation, and subspace alignment approaches.

Diversity strength was shown to influence the extent of (D)CAST bias mitigation,
where a larger value resulted in improved robustness to selection bias. More
generally, we recommend setting the diversity strength parameter such that the
number of candidate samples considered for selection at each iteration is
significantly larger than the number of samples to select. We further suggest
choosing a number of samples to select per iteration comfortably below the size of
the training set to promote a gradual adaptation of the model, but not too small so
that the added samples can have an impact: a possible choice could be the closest
even number to ⌊pN⌋, with N denoting the size of the training set. The confidence
threshold can be adjusted according to the distribution of prediction probabilities of
the model to allow (D)CAST to consider at least as many samples as the number to
add at each iteration.

We demonstrated that (D)CAST is model-agnostic through application with random
forests (RF), neural networks (NN), and logistic regression (LR) models. The success
of bias mitigation differed across architectures, with the most benefit achieved using
NN models. We hypothesized that the use of regularization could also have played a
role, by restricting model adaptation and thus limiting the contribution of unlabeled
samples in the RF and LR models. Further investigation would be needed to obtain
conclusive evidence.

Overall, our results present (D)CAST and hierarchy bias as promising strategies to
improve the learning and evaluation of machine learning models in the presence of
selection bias, as an essential step in striving towards fairness in machine learning.

4.4. METHODS

4.4.1. HIERARCHY BIAS INDUCTION AND (D)CAST BIAS MITIGATION

Notation. We denote the input data (sample × feature) matrix as X ∈RN×F , the
input label matrix as Y ∈ {0,1}N×C , and output prediction probability matrix as
Ȳ ∈RN×C , where N is the number of samples, F is the number of features, and C is
the number of classes. Following this notation, xn ∈R1×F is the feature vector of
sample n ∈ {1,2, ..., N −1, N }, yc

n is the binary label of sample n for class
c ∈ {1,2, ...,C −1,C } (1 if assigned, 0 otherwise), and ȳc

n is the prediction probability
of sample n being of class c where

∑C
c=1 yc

n = 1 and
∑C

c=1 ȳc
n = 1.
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HIERARCHY BIAS

Hierarchy bias induction generates a biased selection of samples from a given
dataset in a class-aware and multivariate manner. The idea is that the samples
belonging to each class in the dataset can be seen as originating from a mixture of
multivariate distributions. Based on this, the goal is to identify one of the mixtures
and then make a skewed selection of samples by controlling the representation of
the target mixture over the remaining samples. Hierarchy bias induction takes as
input a data matrix X , a label matrix Y , a parameter k denoting the number of
samples to select per class, and a bias parameter b ∈ [0,1] denoting the ratio of
samples that should be selected from the identified mixture (Alg. 1). The output is a
biased selection of samples, generated as follows. Agglomerative hierarchical
clustering is first applied to identify a mixture of interest per class c, corresponding
to a cluster of at least k samples. We perform the clustering for class c using all
samples from matrix X labeled with class c, with Euclidean inter-sample distances
on the original feature vectors and Ward linkage between clusters (Alg. 1, lines 4-5).
Once the cluster is identified, the final biased selection is obtained by choosing k ×b
samples uniformly at random from the cluster and choosing another k −k ×b
samples uniformly at random from the remaining samples not in the cluster (Alg. 1,
lines 6-8).

Algorithm 1 Hierarchy Bias

Require: X , Y , k, b.
Ensure: Sel ect i on ←;

1: kcluster ← k ×b
2: kr est ← k −k ×b
3: for each class c ∈C do
4: Apply agglomerative clustering with Euclidean distance and Ward linkage to

XSc , Sc = {n : n ∈ yc
n == 1}.

5: C l uster ← Set of samples from the first cluster that reaches a number of
samples ≥ k.

6: Scluster ← Select set of kcluster samples uniformly at random from C l uster .
7: Sr est ← Select set of kr est samples uniformly at random from the remaining

samples (not in C l uster ).
8: Sel ect i on ∪Scluster ∪Sr est

9: end for
10: return Sel ect i on

(D)CAST - DIVERSE CLASS-AWARE SELF-TRAINING

The proposed semi-supervised model learning framework, Diverse Class-Aware
Self-Training (DCAST), leverages unlabeled data to gain insight into the underlying
distribution of the population that may not be well represented by the labeled data.
It does this using self-training (ST), and actively addresses selection bias by
preserving class ratios or balance (CAST), and optionally also incorporating sample
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diversity into the pseudo-labeling process to counter biases present in the data or
introduced during training (DCAST).

More formally, the (D)CAST method takes as input the labeled data {XL ,YL} and
unlabeled data XU to learn from, validation data {XV ,YV } for early stopping, and the
following four additional parameters: maximum number of iterations m, number of
pseudo-labeled samples s to select per iteration, confidence or prediction
probability threshold t ∈ [0,1], and integer diversity parameter d ≥ 1. Model learning
in (D)CAST is then performed by self-training as follows. At iteration i , model M (i )

is trained on the labeled data {XL(i ) ,YL(i ) }, and used to make predictions ȲU (i ) for all
samples in the unlabeled set U (i ) (and matrix XU (i ) ). As with regular self-training, a
pseudo-labeling procedure then selects a subset of the unlabeled samples,
S(i ) ⊆U (i ), to be incorporated into model learning (Fig. 4.3). The selected samples
S(i ) are pseudo-labeled and included in the set of labeled samples for training in the
subsequent iteration, L(i+1) = L(i ) ∪S(i ), as well as removed from the unlabeled set
U (i+1) =U (i ) \ S(i ). Matrices XL(i+1) , YL(i+1) , and XU (i+1) are also updated for the next
iteration accordingly.

Pseudo-labeling in (D)CAST: class-aware with and without diversity. The
(D)CAST-specific pseudo-labeling is accomplished by the Diversity Module (Fig. 4.3).
The core CAST strategy addresses class-specific bias by performing the
pseudo-labeling separately per class, offering to either preserve the class ratios
found in the original labeled set or select an equal number of samples per class at
each iteration. Its extension, DCAST, aims for further bias mitigation by promoting
sample diversity. In conventional self-training, the pseudo-labeling procedure tends
to confirm and follow biases potentially present in the labeled set: either by
selecting unlabeled samples similar to the original labeled samples (in feature space)
or by selecting unlabeled samples whose prediction the model is most confident
about. In contrast, (D)CAST seeks to mitigate this behavior and work against the
strengthening of existing bias during training. To achieve this, (D)CAST selects and
pseudo-labels samples that are diverse amongst each other and also more dissimilar
to the possibly biased labeled samples. The (D)CAST pseudo-labeling (Alg. 2)
comprises the following steps per training iteration:

Step 1. (D)CAST - Select candidate samples for pseudo-labeling based on model
confidence. The goal of Step 1 is to select a set of candidate unlabeled samples for
pseudo-labeling and inclusion in model training. This corresponds to the
s × cl ass_r ati o(c)×d most confidently predicted unlabeled samples per class c,
with corresponding probabilities in ȲU (i ) larger than a user-defined threshold t (or a
baseline threshold r = 1.2/C , whichever is largest) (Alg. 2, lines 9-11). For CAST, with
d = 1 and thus no diversity strategy, this selection automatically leads to the final set
of s pseudo-labeled samples (sc = s × cl ass_r ati o(c) per class) to incorporate during
learning in the subsequent iteration. For DCAST, with d > 1 (Alg. 2, lines 13-15), the
selected set of s ×d samples (sc ×d per class) represents a larger pool of candidates
to consider and narrow down further to obtain the final selected set of s samples (sc

per class) using the diversity strategy. Our recommendation for DCAST is to set the
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confidence threshold t and diversity parameter d not too strictly, so as to allow for a
sufficient number (and diversity) of candidate samples.

Step 2. DCAST - Diversity: Create representations of candidate samples for
distance calculation. From the set of s ×d candidate samples selected in Step 1,
DCAST aims to extract the subset of s diverse samples. Diversity is assessed based
on pairwise sample distances, calculated using a specific sample vector
representation or embedding (denoted for all candidate samples as matrix
E (i ) ∈R(s×d)×v , where v is the embedding vector size). Preferably, DCAST uses
discriminative embeddings based on the learnt model M (i ), where two types are
currently supported. For a random forest, each sample representation corresponds
to a one-hot encoded vector of the prediction of that sample across all the leaves of
the decision trees in the forest; for a neural network, the sample representation
corresponds to the embedding based on the hidden layer closest to the output layer.
For models without discriminative embeddings, such as SVM or LR, DCAST uses the
original feature vector representation.

Step 3. DCAST - Diversity: Calculate pairwise distances between candidate
samples. To assess diversity, we use distances between samples: the larger the
distances amongst samples in a given set, the more diverse the set will be
considered. Distances are calculated by DCAST based on sample embeddings or
original feature vector representations (Alg. 2, line 13). With discriminative
embeddings, DCAST calculates normalized distances as 1− (E ·E T )/max(E ·E T ), given
an embedding matrix E ∈R(s×d)×v . Specifically, for a random forest model, these
distances represent the normalized frequency of non co-occurrence of a pair of
samples in the leaves of the decision trees. With original feature vectors, DCAST
uses Euclidean distances between sample vectors instead.

Step 4. DCAST - Diversity: Identify distinct clusters and select diverse samples to
pseudo-label. The distances calculated in Step 3 are used in Step 4 to select diverse
samples, potentially capturing different aspects of the pool of candidates and its
underlying distribution. To do this, DCAST first identifies s (or sc per class) distinct
groups of candidate samples using a clustering algorithm (Alg. 2, line 14). The
current implementation relies on agglomerative hierarchical clustering with single
linkage, however any other algorithm of choice could be employed. Given that
clustering is designed to maximize inter-cluster distances, samples across the
different clusters are likely to yield the largest distances and thus the most diversity
under the employed clustering strategy. Accordingly, DCAST selects a single sample
per identified cluster to pseudo-label, namely the candidate sample with the highest
confidence ȳc

n value (sample n and class c, Alg. 2, line 15).

Step 5. (D)CAST - Pseudo-label selected samples. At the end of each iteration,
selected samples in the set Sc are added to the labeled data matrices {XL ,YL} and
removed from the unlabeled data matrix XU .

Time Complexity of (D)CAST. To derive an upper bound for the worst-case time
complexity of the (D)CAST algorithm, we assume the following time complexities for



DCAST

4

121

an input of n samples defined over v features: training a base prediction model is
O(T (n, v)), making predictions using the trained model is O(P (n, v)), and calculating
pairwise sample distances and applying hierarchical clustering is O((n × v)2).

At iteration i , the time complexity of (D)CAST is dominated by the following
operations: retraining the model with l + i × s labeled samples in O(T (l + i × s, v))
time (Alg. 2, line 4), making predictions for l − i × s unlabeled samples in
O(P (l − i × s, v)) time (Alg. 2, line 5), and applying hierarchical clustering with
pairwise distances to at most s ×d candidate unlabeled samples in O((s ×d × v)2)
time (Alg. 2, lines 11-12). Note that l denotes the number of labeled samples in the
input matrices {XL ,YL} at the start of the execution, and i × s denotes the number of
samples that are pseudo-labeled up to iteration i (thus also added and removed
respectively from the labeled and unlabeled data). The maximum possible number
of samples for prediction at any one iteration is equal to the number of unlabeled
samples u in the input matrix XU before any pseudo-labeling has occurred, leading
to the upper bound O(P (u, v)) on the prediction time per iteration. Similarly, u is
the maximum number of samples that can be added to the input labeled data
(initially containing l samples) over all iterations, which determines the upper
bound O(T (l +u, v)) on the training time per iteration. Combining all together, each
iteration takes O(T (l +u, v)+P (u, v)+ (s ×d × v)2) time, and therefore the upper
bound on the worst-case time complexity of m iterations is
O(m × (T (l +u, v)+P (u, v)+ (s ×d × v)2)).

4.4.2. DATA

In addition to 8 datasets from the UCI Data Repository (breast cancer, adult, spam,
wine, raisin, rice, mushroom, and MNIST; https://archive.ics.uci.edu), we also used 3
datasets from other sources, including the pistachio [37], fire [38], and pumpkin [39]
datasets (Supplementary Table 4.S2). All datasets had binary class labels, except for
MNIST with 10 different class labels. The breast cancer, wine, spam, rice, raisin,
pistachio, pumpkin and MNIST datasets comprised between 7 to 64 continuous
features. The fire and adult datasets included mixed types of features, of which 1
and 7 were respectively categorical features. The mushroom dataset only had
categorical features. For the fire, adult, and mushroom datasets, all categorical
features were one-hot encoded.

4.4.3. EVALUATION OF BIAS INDUCTION AND BIAS MITIGATION METHODS

We performed experiments across 11 ML benchmark datasets with different
characteristics to assess the effectiveness of (i) selection bias induction using the
proposed hierarchy bias technique, and (ii) selection bias mitigation using the
proposed (D)CAST strategies. Hierarchy bias was compared to other bias induction
techniques concerning both the distribution shift produced by the data selection
procedure and its effect on the performance of prediction models built using
supervised learning. The (D)CAST semi-supervised bias mitigation strategies were
evaluated against conventional semi-supervised self-training (ST), as well as a range

https://archive.ics.uci.edu/
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Algorithm 2 (D)CAST - Diverse Class-Aware Self-Training

Require: T (model type); XL , YL (labeled train data); XV , YV (labeled validation
data); XU (unlabeled data); s (number of samples to select per iteration); t
(prediction probability threshold); d (diversity strength); m (maximum number
of iterations).

1: ter mi nate ← F al se
2: i ← 0
3: while ter mi nate is F al se ∨ i = m do
4: M (i ) ← train model instance of type T with XL , YL

5: Ȳ ← predict class probability for samples in XU using M (i )

6: for each class c ∈C do
7: sc ← s × cl ass_r ati o(c)
8: tc ← max(t ,r )
9: Sc ← top sc ×d confidently predicted samples with max(ȳc

n) > tc

10: if d > 1 then
11: E ← calculate pairwise distances for samples in Sc

12: C l uster s ← apply agglomerative clustering to obtain sc clusters using
distances E and single linkage

13: Sc ← choose the sample with the highest prediction probability from
each cluster in C l uster s

14: end if
15: for each selected sample n ∈ Sc do
16: XL .add(xn ), YL .add(yn ), XU .remove(xn )
17: end for
18: end for

▷ Stopping conditions: maximum number of iterations m is reached OR
all unlabeled samples have been incorporated OR validation accuracy did not
improve for the last 5 iterations.

19: if ( i == m ) ∨
( l en(XU ) == 0) ∨
( ∃z ∈ {i −6, . . . , i −1} such that Accur ac y(M (i ), XV ,YV ) <
Accur ac y(M (z), XV ,YV ) ) then

20: ter mi nate ← Tr ue
21: Mbest ← ar g maxz=0,...,i (Accur ac y(M (z), XV ,YV ))
22: end if
23: i ← i +1
24: end while
25: return Mbest
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of alternative domain adaptation methods, on their ability to build prediction
models from biased data with better generalization than using supervised learning.

Data splits and bias induction. For each dataset, 20% of the samples were
uniformly selected at random, stratified by class, and reserved as test data to
evaluate prediction models (Fig. 4.6). The adult dataset already had its own separate
test set, which we reserved. Additionally, we created 30 distinct train runs per
dataset, each by randomly splitting the remaining 80% of the samples into two train
sets, stratified by class: a labeled train set, containing 30% of the samples, from
which we also generated biased labeled sets by applying different bias induction
techniques; and an unlabeled train set, comprising the remaining 70% of the
samples. The original and biased labeled train sets were later used to build
prediction models with supervised learning or bias mitigation strategies, while the
unlabeled train set was used to learn prediction models with the semi-supervised
bias mitigation strategies (D)CAST and conventional ST (other bias mitigation
methods used test data without labels). When necessary for model training, a
validation set was further extracted from each biased train set, given that unbiased
labeled data would not be available for this purpose in a realistic setting.

BIAS INDUCTION IMPACT ON DATA DISTRIBUTION

Bias induction methods were first assessed on their ability to cause a distribution
shift in the biased selection relative to the original labeled train set. Quantitatively,
we analyzed the change in the distribution of inter-sample distances as follows. We
first calculated class-specific distributions of the per sample average Euclidean
distance to all other samples in either the biased selection or the original labeled
train set. We then determined the class-specific distribution shifts between the
biased selection and the original data using two-sample Kolmogorov-Smirnov (KS)
statistical tests. We report KS effect sizes, as well as histograms of inter-sample
distances for the biased selection distribution and histogram peaks for the original
data distribution.

Visually, we analyzed to what extent the biased selection was representative of the
original labeled train set by inspecting 2D dimension reductions of the original data
using the Uniform Manifold Approximation and Projection (UMAP) algorithm. We
applied UMAP to the original labeled set with four different nearest neighbor
parameter values (15, 50, 100, and 200) to obtain a reasonable representation of the
sample space for each dataset.

BIAS INDUCTION AND MITIGATION EFFECTS ON PREDICTION PERFORMANCE

Furthermore, to evaluate bias induction and bias mitigation techniques, we
investigated how prediction models trained on data affected or not by selection bias
generalized to test data that was more representative of the original distribution. All
models built using supervised learning or bias mitigation techniques were trained
and evaluated as follows.
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Test (20%)

Train (80%)

Unlabeled (70%) Labeled (30%)

Bias Induction
Hierarchy, Random, Dirichlet, Joint

Training Semi-Supervised Methods
ST, (D)CAST

Training Domain Adaptation Methods
(test set without labels)

KMM, KDE, RBA, FLDA, TCPR, SUBA

Evaluation
All prediction methods

Test (20%)

Training Supervised Methods
RF, NN, LR

Figure 4.6: Data split for evaluation of bias induction and bias mitigation effects on prediction performance.
Each dataset is randomly split into train (80%) and test (20%) sets, and 30 different train runs are created by
splitting the samples in the train set randomly into labeled (30%) and unlabeled (70%) train sets. Bias induction is
further applied to the labeled train sets to generate corresponding biased labeled train sets. Supervised learning is
used to build models separately from the original labeled train set and from the biased labeled train set, which
serve as baselines to assess the effects of bias induction and bias mitigationl on prediction performance. For bias
mitigation, CAST and DCAST learn prediction models using both the unlabeled and labeled train sets, while domain
adaptation methods learn from the labeled train set together with the test set (without labels). All models are
evaluated on the labeled test set.

Training of models using supervised learning or bias mitigation. To quantify the
baseline prediction performance, without bias induction, we built models using
supervised learning on the original labeled train set. To assess the effect of bias
induction compared to the baseline, we built models using supervised learning on
the biased labeled train set. Additionally, to assess the bias mitigation strategies and
investigate if they could generalize better than supervised learning on the biased
labeled train set, we used them to train models on the biased labeled train set
together with unlabeled data (namely the unlabeled train set for semi-supervised
(D)CAST and conventional ST, or the unlabeled test set for the remaining methods).
The prediction models we trained using supervised learning or bias mitigation
strategies were based on three different model types: L2-regularized random forests
(RF, [40]), 2 hidden-layered (input, 8-node, 12-node, output) neural networks (NN),
and L2-regularized logistic regression (LR) [41]. We used default parameter values
(Supplementary Table 4.S3), since fine-tuning with a biased validation set could
further reinforce the bias. To account for variation introduced by randomness in the
training procedures of the RF and NN models, we used different seeds to train 10
prediction models instead of one per run for any given combination of dataset,
model type, bias induction technique, and model learning strategy.

Evaluation of models trained using supervised learning or bias mitigation. The
performance of all prediction models was evaluated on the test set. We focused on
quantifying prediction accuracy rather than loss, since the loss could often be
improved by increasing model confidence without a measurable improvement in
accuracy, which is ultimately the goal of the models under study. We report the
performance results as the median test accuracy of the 10 models using different
seeds per run, with a total of 30 runs, for every combination of dataset, model type,
bias induction technique, and model learning strategy. Some model learning
strategies did not successfully build prediction models for all runs, which is
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necessarily reflected in the results and corresponding figures.

4.4.4. EXPERIMENTAL SETTINGS OF BIAS INDUCTION AND MITIGATION

METHODS

BIAS INDUCTION AND SAMPLE SELECTION METHODS

We compared the proposed hierarchy bias induction method against the joint and
Dirichlet bias induction techniques, as well as random subsampling. Hierarchy bias
was used with a fixed target of k = 30 samples to select per class, and a bias ratio of
b = 0.9 across experiments. Random subsampling consisted in selecting k samples
uniformly at random per class, where k was similarly set to 30. Joint bias assigns a
selection probability to each sample based on its proximity to the sample mean over
the labeled train data, and then independently selects samples according to their
selection probabilities [19]. Joint bias induction does not include any parameter to
control the number of selected samples, and it was therefore used without a fixed
target number of selected biased samples. Dirichlet bias selects a subset of samples
without replacement, where the biased selection probability of each sample is
determined based on a random likelihood function sampled from a Dirichlet
distribution [20]. This method does not consider class labels in its biased selection
and was therefore set to select a total of k ×|C | samples, with |C | denoting the
number of classes and k = 30. Of note, hierarchy bias and random subsampling
generate a biased selection that is balanced across classes, whereas joint and
Dirichlet bias induction do not offer such guarantee.

BIAS MITIGATION STRATEGIES

We assessed the proposed semi-supervised (D)CAST methods against competing
bias mitigation techniques, including semi-supervised conventional self-training and
alternative domain adaptation strategies.

The semi-supervised methods, (D)CAST and conventional ST, learned models using
the labeled and unlabeled train sets. Additionally, (D)CAST relied on early stopping
based on validation performance to make training more efficient and robust. To be
fair to other methods, (D)CAST used a portion of the labeled train set for validation
rather than a separate validation set. We set the following parameter values for
(D)CAST across experiments: maximum number of iterations m = 100, number of
pseudo-labeled samples to include per iteration s as 3×|C | (or 3 times the number
of classes), and three different diversity strengths d = {1,10,100}. In addition, the
confidence threshold t used by (D)CAST to select candidate samples for
pseudo-labeling was set to a prediction probability of 0.9 for NN and LR models.
Since RF models generally showed lower prediction probabilities, possibly due to
regularization, we defined the threshold for binary RF classification models as the
93rd percentile of all prediction probabilities on unlabeled data. This threshold was
not fully optimized, only considered sufficient to allow pseudo-labeling of some
samples across all datasets with binary class labels. For MNIST, probabilities were
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even lower given the multiclass nature of the problem, thus we set the threshold of
RF models as the 85th percentile instead.

Given that most semi-supervised learning approaches designed to mitigate sample
selection bias are not model agnostic and do not have readily available
implementations, we compared (D)CAST with the closely related conventional
self-training (ST) methods. We implemented and tested two variants of conventional
ST, which pseudo-labeled either the 3×|C | samples with the highest prediction
probabilities or all samples with prediction probabilities over 0.9. The former variant
performed better and was thus selected.

We included domain adaptation methods beyond semi-supervised learning across
three categories, using Python implementations available in the libTLDA Python
library [42]: importance weighting approaches Kernel Mean Matching (KMM [19])
and Kernel Density Estimation (KDE [22]), minimax estimation strategies Robust
Bias-Aware classifier (RBA [20]) and Target Contrastive Pessimistic Risk (TCPR [32]),
and subspace alignment methods Feature-Level Domain Adaptation (FLDA [31]) and
Subspace Alignment classifier (SUBA [30]). All of these methods were applied as
originally proposed by their authors to learn models based on the labeled train set
together with the test set without labels. In addition, all methods except KMM were
used exclusively with L2-regularized LR models. The KMM importance weighting
approach is ML model-agnostic, since it independently calculates a weight for each
sample based exclusively on the train and test data, and was therefore applied with
RF, NN, and LR models.

Data availability
The data used in this article were obtained from publicly available sources, detailed
in the Methods section. The raw data necessary to reproduce the experiments, along
with the main experimental results for CAST and DCAST, are accessible via Figshare
at doi.org/10.6084/m9.figshare.27003601.

Code availability
An implementation of the hierarchy bias and the (D)CAST methods in Python has
been made available under an open source license at
github.com/joanagoncalveslab/DCAST.
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4.5. SUPPLEMENTARY MATERIALS

4.5.1. SUPPLEMENTARY FIGURES

BIAS INDUCTION TO OTHER DATASETS
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Figure 4.S1: Bias induction impact on sample distances for the breast cancer, pumpkin, MNIST, and spam
datasets. Class-specific distributions of per sample average Euclidean distances to all other samples, for the biased
selection (histograms) and for all samples in the labeled train set (histogram peaks denoted by lines ending in
a “T” shape), using three bias induction techniques (hierarchy with b = 0.9, joint, and Dirichlet) and random
subsampling on four datasets (breast cancer, pumpkin, MNIST, and spam). Kolmogorov-Smirnov (KS) effect sizes
quantify the distribution shift between the biased selection vs. all samples distributions.
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Figure 4.S2: Bias induction impact on sample distances for the raisin, rice, pistachio, and adult datasets.
Class-specific distributions of per sample average Euclidean distances to all other samples, for the biased selection
(histograms) and for all samples in the labeled train set (histogram peaks denoted by lines ending in a “T” shape),
using three bias induction techniques (hierarchy with b = 0.9, joint, and Dirichlet) and random subsampling on
four datasets (raisin, rice, pistachio, and adult). Kolmogorov-Smirnov (KS) effect sizes quantify the distribution shift
between the biased selection vs. all samples distributions.
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Figure 4.S3: Impact of hierarchy bias induction on the UMAP latent space. Samples selected by hierarchy bias
(b = 0.9) highlighted on the respective latent UMAP space of the labeled train set for each of the 11 datasets: (a)
wine, (b) mushroom, (c) fire, (d) breast cancer, (e) pumpkin, (f) MNIST, (g) spam, (h) raisin, (i) rice, (j) pistachio,
and (k) adult. Results are shown for run 11 (arbitrarily chosen).
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Figure 4.S4: Impact of random subsampling on the UMAP latent space. Samples selected by random subsampling
highlighted on the respective latent UMAP space of the labeled train set for each of the 11 datasets: (a) wine, (b)
mushroom, (c) fire, (d) breast cancer, (e) pumpkin, (f) MNIST, (g) spam, (h) raisin, (i) rice, (j) pistachio, and (k)
adult. Results are shown for run 11 (arbitrarily chosen).
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Figure 4.S5: Impact of Dirichlet bias induction on the UMAP latent space. Samples selected by Dirichlet bias
highlighted on the respective latent UMAP space of the labeled train set for each of the 11 datasets: (a) wine, (b)
mushroom, (c) fire, (d) breast cancer, (e) pumpkin, (f) MNIST, (g) spam, (h) raisin, (i) rice, (j) pistachio, and (k)
adult. Results are shown for run 11 (arbitrarily chosen).
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Figure 4.S6: Impact of joint bias on the UMAP latent space. Samples selected by joint bias, highlighted on the
respective latent UMAP space of the labeled train set for each of the 11 datasets: (a) wine, (b) mushroom, (c) fire,
(d) breast cancer, (e) pumpkin, (f) MNIST, (g) spam, (h) raisin, (i) rice, (j) pistachio, and (k) adult. Results are
shown for run 11 (arbitrarily chosen).
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SEMI-SUPERVISED METHODS ON OTHER BIAS INDUCTION TECHNIQUES
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Figure 4.S7: Performance of semi-supervised bias mitigation upon random subsampling. Accuracy of supervised
and semi-supervised learning methods with (a) RF, (b) NN, and (c) LR models across 11 datasets. Results for 30
runs: each training on a different split of the train set into labeled and unlabeled sets, all evaluated on the same
original test set. Models included (top to bottom): supervised RF/NN/LR models trained on the original (No Bias)
or biased (Bias) labeled set; and semi-supervised RF/NN/LR models, using conventional self-training (ST) on the
biased labeled train set plus the unlabeled test set, or (D)CAST on the biased labeled train set plus the unlabeled
train set. Red asterisks (*) denote statistically significant changes in accuracy over 30 runs for each semi-supervised
approach compared to supervised learning on the biased labeled set, using one-sided Wilcoxon signed-rank tests
(larger asterisks indicate p < 0.01, smaller asterisks 0.01 < p < 0.05).
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Figure 4.S8: Performance of semi-supervised bias mitigation under Dirichlet bias. Accuracy of supervised and
semi-supervised learning methods with (a) RF, (b) NN, and (c) LR models across 11 datasets. Results for 30 runs:
each training on a different split of the train set into labeled and unlabeled sets, all evaluated on the same original
test set. Models included (top to bottom): supervised RF/NN/LR models trained on the original (No Bias) or biased
(Bias) labeled set; and semi-supervised RF/NN/LR models, using conventional self-training (ST) on the biased
labeled train set plus the unlabeled test set, or (D)CAST on the biased labeled train set plus the unlabeled train
set. Red asterisks (*) denote statistically significant changes in accuracy over 30 runs for each semi-supervised
approach compared to supervised learning on the biased labeled set, using one-sided Wilcoxon signed-rank tests
(larger asterisks indicate p < 0.01, smaller asterisks 0.01 < p < 0.05).
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Figure 4.S9: Performance of semi-supervised bias induction under joint bias. Accuracy of supervised and
semi-supervised learning methods with (a) RF, (b) NN, and (c) LR models across 11 datasets. Results for 30 runs:
each training on a different split of the train set into labeled and unlabeled sets, all evaluated on the same original
test set. Models included (top to bottom): supervised RF/NN/LR models trained on the original (No Bias) or biased
(Bias) labeled set; and semi-supervised RF/NN/LR models, using conventional self-training (ST) on the biased
labeled train set plus the unlabeled test set, or (D)CAST on the biased labeled train set plus the unlabeled train
set. Red asterisks (*) denote statistically significant changes in accuracy over 30 runs for each semi-supervised
approach compared to supervised learning on the biased labeled set, using one-sided Wilcoxon signed-rank tests
(larger asterisks indicate p < 0.01, smaller asterisks 0.01 < p < 0.05).
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Table 4.S1: Class balance of original and biased labeled train sets, as well as biased selection ratio, for 11
datasets over 30 train runs. The “class balance” columns indicate the ratio between the number of samples in the
first class (Class 0) and the total number of samples in the original and the biased labeled sets. The “Selection
ratio” columns refer to the ratio between the number of samples in the biased labeled set and the number of
samples in the original labeled set per class. The columns “Avg.” and “SD” contain the average and standard
deviation of the values over 30 runs, respectively. For MNIST, only the statistics for the first 2 classes are reported.
“CB” refers to class balance and “SR” refers to selection rate by bias.

Dataset Bias
Original

CB
Biased

CB
SR

(class 0)
SR

(class 1)

Avg. SD Avg. SD Avg SD

Adult Dirichlet

0.241

0.249 0.058 0.006 0.001 0.006 0.000
Adult Hierarchy (0.9) 0.500 0.000 0.013 0.000 0.004 0.000
Adult Joint 0.271 0.004 0.653 0.010 0.557 0.006
Adult Random 0.500 0.000 0.013 0.000 0.004 0.000

Breast Cancer Dirichlet

0.625

0.478 0.063 0.337 0.045 0.614 0.075
Breast Cancer Hierarchy (0.9) 0.505 0.011 0.353 0.000 0.576 0.024
Breast Cancer Joint 0.671 0.029 0.688 0.040 0.563 0.067
Breast Cancer Random 0.500 0.000 0.353 0.000 0.588 0.000

Fire Dirichlet

0.498

0.533 0.061 0.015 0.002 0.013 0.002
Fire Hierarchy (0.9) 0.500 0.000 0.014 0.000 0.014 0.000
Fire Joint 0.500 0.008 0.503 0.015 0.498 0.014
Fire Random 0.500 0.000 0.014 0.000 0.014 0.000

MNIST Dirichlet

0.102

0.514 0.067 0.704 0.121 0.678 0.110
MNIST Hierarchy (0.9) 0.496 0.019 0.641 0.034 0.665 0.035
MNIST Joint 0.443 0.054 0.463 0.087 0.595 0.096
MNIST Random 0.500 0.000 0.682 0.000 0.698 0.000

Mushroom Dirichlet

0.518

0.550 0.069 0.033 0.004 0.029 0.004
Mushroom Hierarchy (0.9) 0.500 0.000 0.030 0.000 0.032 0.000
Mushroom Joint 0.544 0.011 0.597 0.015 0.536 0.014
Mushroom Random 0.500 0.000 0.030 0.000 0.032 0.000

Pistachio Dirichlet

0.427

0.456 0.065 0.124 0.018 0.111 0.013
Pistachio Hierarchy (0.9) 0.500 0.000 0.136 0.000 0.102 0.000
Pistachio Joint 0.411 0.018 0.656 0.057 0.701 0.032
Pistachio Random 0.500 0.000 0.136 0.000 0.102 0.000

Pumpkin Dirichlet

0.480

0.504 0.085 0.105 0.018 0.095 0.016
Pumpkin Hierarchy (0.9) 0.500 0.000 0.104 0.000 0.096 0.000
Pumpkin Joint 0.441 0.016 0.580 0.040 0.679 0.028
Pumpkin Random 0.500 0.000 0.104 0.000 0.096 0.000

Raisin Dirichlet

0.500

0.638 0.060 0.355 0.034 0.201 0.034
Raisin Hierarchy (0.9) 0.500 0.000 0.278 0.000 0.278 0.000
Raisin Joint 0.482 0.024 0.689 0.042 0.741 0.045
Raisin Random 0.500 0.000 0.278 0.000 0.278 0.000

Rice Dirichlet

0.572

0.522 0.066 0.060 0.008 0.073 0.010
Rice Hierarchy (0.9) 0.500 0.000 0.057 0.000 0.077 0.000
Rice Joint 0.604 0.009 0.630 0.022 0.553 0.023
Rice Random 0.500 0.000 0.057 0.000 0.077 0.000

Spam Dirichlet

0.394

0.524 0.050 0.072 0.007 0.043 0.004
Spam Hierarchy (0.9) 0.500 0.000 0.069 0.000 0.045 0.000
Spam Joint 0.388 0.007 0.780 0.020 0.800 0.012
Spam Random 0.500 0.000 0.069 0.000 0.045 0.000

Wine Dirichlet

0.754

0.801 0.055 0.041 0.003 0.031 0.009
Wine Hierarchy (0.9) 0.500 0.000 0.026 0.000 0.078 0.000
Wine Joint 0.786 0.007 0.725 0.043 0.606 0.048
Wine Random 0.500 0.000 0.026 0.000 0.078 0.000
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Table 4.S2: Dataset statistics. Statistics of the datasets used to evaluate bias induction and bias mitigation strategies.

Dataset
Number

of
samples

Feature
types

Number
of

features
Classes Balance

Breast
cancer

569 Continuous 30 Malignant (0), Benign (1) 0: 37%, 1: 63%

Wine 6497 Continuous 11 Red (0), White (1) 0: 25%, 1: 75%
Mushroom 8124 Categorical 22 Poisonous (0), Edible (1) 0: 48%, 1: 52%
MNIST 1797 Continuous 64 10 classes: 0 to 9 0, ..., 9: 10%
Fire 17442 Mixed (1C) 6 Non-extinction(0), Extinction (1) 0: 50%, 1: 50%
Spam 4601 Continuous 57 Safe (0), Spam (1) 0: 61%, 1: 39%
Adult 48842 Mixed (7C) 13 Earns <50k (0), Earns >50k (1) 0: 76%, 1: 24%
Rice 3810 Continuous 7 Cammeo (0), Osmancik (1) 0: 43%, 1: 57%
Raisin 900 Continuous 7 Kecimen (0), Besni (1) 0: 50%, 1: 50%
Pistachio 2148 Continuous 17 Kirmizi (0), Siit (1) 0: 57%, 1: 43%
Pumpkin 2500 Continuous 13 Cercevelik (0), Urgup (1) 0: 52%, 1: 48%

Table 4.S3: Parameter values of models trained using supervised learning and bias mitigation methods. Model
types: LR, logistic regression (scikit-learn implementation); RF, random forest (LightGBM implementation); and NN,
neural network (Keras implementation).

Method Hyperparameter Brief description Value

LR
penalty Regularization type L2
C Inverse of reg. strength 5.0
max_iter Maximum iteration 100

RF

subsample
Subsample ratio of
training samples

0.9

subsample_freq Frequency of subsample 1

min_child_weight
Minimum sum of instance weight
(Hessian) needed in a child

0.01

reg_lambda L2 regularization term 5
num_leaves Maximum tree leaves 31
max_depth Maximum tree depth -1
n_estimators Number of decision trees 100

NN
activation Activation function of layers RELU
optimize Optimization strategy Adam
loss Loss function to optimize Cross entropy
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Selection bias poses a critical challenge for fairness in machine learning, as models
trained on data that is less representative of the population might exhibit undesirable
behavior for underrepresented profiles. Semi-supervised learning strategies like
self-training can mitigate selection bias by incorporating unlabeled data into model
training to gain further insight into the distribution of the population. However,
conventional self-training seeks to include high-confidence data samples, which may
reinforce existing model bias and compromise effectiveness. We propose Metric-DST, a
diversity-guided self-training strategy that leverages metric learning and its implicit
embedding space to counter confidence-based bias through the inclusion of more
diverse samples. Metric-DST learned more robust models in the presence of selection
bias for generated and real-world datasets with induced bias, as well as a molecular
biology prediction task with intrinsic bias. The Metric-DST learning strategy offers a
flexible and widely applicable solution to mitigate selection bias and enhance fairness
of machine learning models.

5.1. INTRODUCTION
Machine learning (ML) algorithms enabling predictive modeling and data-driven
decision-making have contributed important advances across disciplines. The
increasing pervasiveness of ML in society also raises awareness about its potential
impact on people’s lives and the need to ensure fairness in predictions made by ML
models. Selection bias is one of the most common sources of unfairness in ML,
where the training data is not representative of the underlying population, with
some groups or profiles appearing more prominently while others might be
excluded [1–5].

Mitigating selection bias is crucial to ensure fairness, accuracy, and reliability of
machine learning models. Several approaches have been proposed to address this
issue, including data preprocessing techniques [6–8], reweighting methods [9–15],
and algorithmic fairness measures [16, 17]. Most of these methods are proposed
under the umbrella term of domain adaptation (DA), which adjusts models to
account for distribution shifts between source and target prediction domains.
Available DA approaches typically focus on adapting models to specific test sets,
which can limit the generalizability of the models beyond the train and test data.

Semi-supervised learning has gained traction to address bias by leveraging abundant
unlabeled data that might offer further insight into the true underlying distribution
of the data but cannot be directly used in supervised learning. A common
framework for semi-supervised learning relies on self-training that iterates between
(i) building a model with supervised learning and (ii) using the model both to
predict pseudo-labels for unlabeled samples and to select a subset to incorporate
into the learning during the subsequent iteration. Conventional self-training selects
pseudo-labeled samples based on model confidence, often focusing on the most
confident predictions [18, 19], which can reinforce the bias in the data by
incorporating samples similar to others already in the biased labeled set [20–22].
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To counteract this confirmation bias, the DCAST [21] semi-supervised strategy
gradually includes diverse pseudo-labeled samples above a relaxed confidence
threshold. Diversity is achieved by choosing samples from distinct clusters, identified
based on sample distances or dissimilarities. The preferred DCAST approach
leverages distances within a learned class-informed latent space, rather than the
original feature space, to lessen the influence of uninformative features. This can be
especially important for high-dimensional data, however the approach cannot be
combined with classifiers lacking such latent representations. Additionally, DCAST
presumes that the different clusters in the latent space capture diverse sets of
samples, which can be suboptimal if the data cannot be meaningfully clustered.

We introduce Metric-DST, a self-training framework relying on metric learning to
enable more general selection bias mitigation for diversity-aware prediction models.
Metric learning offers a suitable alternative to obtain a class-informed latent
space [23] by optimizing a transformation of the original feature space to a lower
dimensionality in a class-contrastive manner. Metric-DST uses this mechanism to
learn a bounded latent space where distances between samples reflect both
dissimilarity and class membership, and then generates random locations within the
space to select diverse samples that are predicted by a companion classifier above a
relaxed confidence threshold. Metric-DST exploits sample diversity during model
learning to improve generalizability, and can be used with virtually any type of
classifier.

 

Labeled
samples
(XL, yL)

Unlabeled
samples

(XU)

Train
Model

Metric
Learning

Transform
XL → ZL

Transform
XU→ZU

Pseudo-labeling

Selection of
diverse
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(ZU)
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Figure 5.1: Overview of the Metric-DST methodology. A Metric-DST iteration encompasses 1) training a metric
learning model on labeled data that can be used to transform both labeled and unlabeled samples into an
embedding space, 2) obtaining predicted pseudo-labels and model confidence values for unlabeled samples using
k-nearest neighbors (kNN) on the embedding space representations, 3) selecting diverse pseudo-labeled samples
distributed across the learned embedding space and adding them to the labeled set for the subsequent iteration.
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5.2. RESULTS AND DISCUSSION

5.2.1. MODEL LEARNING UNDER SELECTION BIAS WITH METRIC-DST
The aim of the proposed semi-supervised Metric-DST framework is to learn a
prediction model with improved robustness to selection bias by leveraging available
unlabeled data for additional representativeness of the underlying population
distribution (Fig. 5.1). Using self-training, unlabeled samples are gradually
pseudo-labeled and selected to be incorporated into model learning. Since
conventional self-training is prone to reinforcing data bias, Metric-DST seeks to
counter such behavior through the selection of diverse pseudo-labeled samples. To
achieve this, Metric-DST exploits a metric learning model formulation to generate
class-informative representations of samples in a bounded latent space. Briefly, at
each self-training iteration, Metric-DST first learns a transformation function or
model fθ from the labeled samples XL and respective labels yL using metric
learning with a contrastive loss to optimize class separation in the learned latent
space (Fig. 5.1, Methods). The learned transformation fθ is used to obtain
embeddings or representations ZU of the unlabeled samples XU in the new space.
Then, the learned representations are used by Metric-DST in two ways: (i) to make
predictions and thus assign pseudo-labels to unlabeled samples, using a simple
weighted k nearest neighbors classifier; and (ii) to select p/2 diverse pseudo-labeled
samples per class as randomly generated points in the latent space whose nearest
pseudo-labeled sample satisfies a relaxed confidence threshold µ.

We evaluated the bias mitigation ability of the proposed diversity-guided Metric-DST
method against two approaches: Metric-ST, a similarly semi-supervised variant
relying on conventional self-training without diversity; and Supervised, vanilla
supervised learning. Generally, our goal was to investigate if Metric-DST could build
models with improved robustness to selection bias and if the diversity strategy was
effective in that regard. All three strategies used metric learning with an identical
neural network architecture, in combination with weighted kNN for prediction.
Different bias scenarios were also considered across generated and real-world
benchmark binary classification datasets, as well as a molecular biology challenge
inherently affected by selection bias called synthetic lethality prediction. Each of the
three learning methods was assessed for each bias scenario across 10 different
train/test splits (Methods).

5.2.2. METRIC-DST MITIGATES BIAS INDUCED TO GENERATED AND

REAL-WORLD DATASETS

We first evaluated Metric-DST, and the Metric-ST and Supervised baselines, on
binary classification tasks using artificially generated and real-world benchmark
datasets with induced selection bias. Briefly, for each train/test split, the train set
comprising 90% of the data was further randomly split into labeled (30%) and
unlabeled (70%) subsets. The Supervised approach trained using labeled data alone,
while Metric-(D)ST trained using both labeled and unlabeled data. For experiments
using bias, selection bias was induced only to the labeled subset, enabling us to
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assess if the trained model could generalize beyond the biased training data and
also leverage the unlabeled data to do so. For comparison, we also trained separate
models without bias induction and using a random selection of samples (as many
as used in the biased selection).

Moons dataset and delta bias. The generated moons dataset contained 2000 data
points in 2 dimensions, distributed over two classes, with the class-specific point
clouds forming interleaving moon shapes (Fig. 5.2a). We induced selection bias
using a technique termed delta bias to obtain a set of either 100 or 200
class-balanced samples in the vicinity of user-defined points ∆0 and ∆1 for classes 0
and 1, respectively. We also used two combinations of ∆ points: identical for both
classes, ∆0 =∆1 = (0,0); and different per class, with {∆0 = (1,0.5),∆1 = (0,0)}. The
effect of delta bias was confirmed by visualizing the samples in the 2D space. We
observed that the biased selection excluded relevant regions of the point clouds,
which could shift the decision boundary of a classifier (Fig. 5.2a).

Selection bias had a noticeable impact on models built using supervised learning,
where training on a biased selection generally resulted in lower performances
compared to training on the original data (Fig. 5.2b, blue vs. grey), with differences
in median AUROC between 0.02 and 0.28. The effect of supervised training on a
biased selection was also larger than that of training on a random selection with the
same number of samples (Fig. 5.2b, blue vs. purple), enabling us to disentangle the
influence of bias and sample size. We further noticed that the decrease in
supervised learning performance was stronger using selection bias with distinct ∆
points per class, leading to median AUROC values of 0.69 and 0.84 for 100 and 200
samples, compared to 0.88 and 0.95 using identical ∆ points (Fig. 5.2b, blue). The
Metric-ST variant without diversity was unable to overcome the induced selection
bias, leading to large variances accompanied by decreases in performance compared
to supervised learning across all four bias settings (Fig. 5.2b, yellow vs. blue), three
of which were statistically significant (p-values < 0.03). In contrast, the
diversity-guided Metric-DST method showed a significant improvement in
performance with 100 samples and identical ∆ points (median AUROC: supervised
0.88, Metric-DST 0.93, p-value: 0.037) and no significant performance differences
but smaller variances in performance for the three remaining bias settings
compared to supervised learning (Fig. 5.2b, green vs. blue).

Overall, on the moons dataset, Metric-DST delivered models with increased
robustness to induced delta bias compared to conventional self-training (Metric-ST).
The proposed diversity-guided approach also performed comparably or better than
supervised learning.

Higher-dimensional two-cluster datasets and hierarchy bias. We complemented
the generated data using 8 balanced binary classification datasets of 2000 samples
spread over two clusters per class. The datasets spanned four dimensionalities or
numbers of features (16, 32, 64, and 128), paired with an additional setting
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Figure 5.2: Mitigation of selection bias induced to generated and real-world benchmark data. (a) Samples selected
by delta bias (∆0 =∆1 = (0,0) for classes 0 and 1) highlighted on a scatter plot of the artificially generated 2D moons
dataset. Performance (AUROC) of supervised and semi-supervised Metric-(D)ST methods using metric learning and
kNN on: (b) generated 2D moons dataset of 2000 samples with four delta bias induction settings, selecting
100 or 200 samples with ∆0 =∆1 = (0,0) and {∆0 = (1,0.5),∆1 = (0,0)}, (c) generated higher-dimensional datasets of
2000 samples and 16, 32, 64, and 128 features with hierarchy bias induction (ratio b = 0.9) selecting 100 or 200
samples, and (d) eight real-worlddatasets with hierarchy bias induction (b = 0.9) targeting the selection of 60 and
100 samples. Results of 10-fold cross-validation, with all methods evaluated using the same folds (train/test splits)
and the same divisions of the train sets into labeled and unlabeled subsets. Methods included: supervised model
trained on the complete labeled set (No Bias), on a biased selection (Bias), or on randomly selected samples
(Random, same number as the biased selection); and semi-supervised models, using conventional self-training
(Metric-ST) or diversity-guided self-training (Metric-DST) on the biased labeled train set plus the unlabeled train
set. The red asterisks stand for significant difference (p-value<0.05) between the performances of the method with
asterisk and the biased supervised method based on a two-sided Wilcoxon signed-rank test.

determining whether 100% or 80% of those features were informative for the
classification task. We selected a biased subset of 100 or 200 samples from each
dataset using hierarchy bias with bias ratio b = 0.9 [21], which favored samples from
one specific cluster identified de novo per class (Methods, Supplementary Fig. 5.S1).

Training on a random selection of 100 or 200 samples caused a decrease in the
performance of supervised learning across 7 of the 8 datasets compared to training
without bias (Fig. 5.2c, purple vs. grey). The biased selection using hierarchy bias
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led to a further decrease in supervised model performance beyond the impact of
random selection and respective reduction in sample size, with a change in median
AUROC between 0.06 and 0.17 for 100 samples and between 0.03 and 0.14 for 200
samples (Fig. 5.2c, blue vs. purple). The Metric-ST method relying on conventional
self-training was comparable or worse than supervised learning concerning
robustness to induced hierarchy bias, and led to significant decreases in
performance for 2 out of the 8 datasets for both 100 and 200 selected samples
(Fig. 5.2c, yellow vs. blue, p-values < 0.03). Metric-DST was mostly comparable to
supervised learning, with only two significant differences: a performance increase
for 100 samples with 16 dimensions of which 80% informative (Fig. 5.2c, green vs.
blue, p-value < 0.05), and a performance drop for the 200 sample selection of the
64-dimensional dataset with 80% informative features (p-value 0.004). We also
observed non-significant increases in median AUROC for 100 samples with 64
dimensions of which 80% informative (medians 0.73 vs 0.76) and for 200 samples
with 16 and 32 dimensions of which 80% informative (medians 0.77 vs 0.79 for 16
dimensions and 0.83 vs 0.85 for 32 dimensions).

On the generated higher-dimensional datasets, Metric-DST displayed superior
robustness to induced hierarchy selection bias compared to the Metric-ST approach.
Mostly Metric-DST was able to protect the supervised learning performance, with
occasional very modest improvements.

Real-world benchmark datasets with hierarchy bias. Event though artificially
generated data and bias induction may offer some sense of control over the
conditions of the experiments, there is still a multiplicity of factors to consider, and
it is unlikely that the generated datasets capture the complexity and exhibit the
behavior of real-world datasets. For this reason, we also evaluated the mitigation of
selection bias on 8 real-world binary classification tasks using public datasets. We
induced hierarchy selection bias with ratio b = 0.9, targeting selections of 60 and 100
samples due to the limited size of some datasets (Methods, Supplementary Fig. 5.S2).

Training on the biased sample selection led to an overall decrease in the
performance of supervised learning models compared to training on the original
data or a random selection (Fig. 5.2d). The effect of the induced hierarchy bias was
however less pronounced using the larger 100 sample selection, and did not
significantly affect model performance for datasets like Raisin and Breast cancer for
which the sample count corresponded to a substantial portion of the data (≃153
samples in the labeled training set before bias induction).

Using the 60 sample selection, Metric-ST improved performance in two datasets,
Raisin and Rice (p-values 0.006 and 0.020). Metric-DST resulted in significantly
improvements for three datasets, Fire (p-value 0.049), Raisin (p-value 0.020), and
Adult (p-value 0.002). Additionally, Metric-DST increased performance in the Fire
dataset as well, but the change was not significant (p-value 0.064). While Metric-ST
showed potential, Metric-DST demonstrated a greater overall impact. Using the 100
sample selection, neither semi-supervised Metric-(D)ST approach delivered
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significant performance improvements consistently across datasets: only on one
instance Metric-DST improved significantly over supervised learning on the biased
data, on the Rice dataset (p-value 0.020). It is worth noting that the larger biased
selection of 100 samples did not affect the original performance as much, leaving
limited room for improvement for semi-supervised learning methods. Some
datasets, especially Breast cancer, could also potentially harbor easily separable
classes, a dynamic that may cause biased selections to still capture the original
decision boundary, thereby rendering semi-supervised methods less effective.
Overall, Metric-DST showed improved robustness to selection bias compared to
Metric-ST, and the ability to preserve or improve performance compared to
supervised learning across all datasets.

5.2.3. METRIC-DST MITIGATES SELECTION BIAS FOR SYNTHETIC

LETHALITY PREDICTION

The evaluation with induced biases on generated and real-world benchmark
datasets enabled us to assess the effectiveness of the learning methods in cases
where the biases in the data are unknown or difficult to characterize. However,
artificially induced biases also have their limitations, and the insights gained from
such experiments might not translate well to real-world prediction tasks inherently
affected by complex selection biases. To cover this scenario, we finally evaluated
Metric-DST on a molecular biology challenge, called synthetic lethality (SL)
prediction, where the set of labeled samples available for training is known to be
biased.

We performed three experiments to evaluate Metric-DST on SL prediction, which
were designed to control the extent of the difference in selection bias between
paired train and test sets (Methods).

Randomized split for similar train/test selection bias. We assessed the supervised
and semi-supervised learning methods on SL prediction for each of five distinct
cancer types under similar selection bias between train and test sets. The supervised
model showed noteworthy median AUPRC performances for the BRCA and LUAD
cancer types (0.854 and 0.837, respectively). Metric-ST and Metric-DST both led to
marginal, non-significant improvements in median AUPRC performance compared
to supervised learning for LUAD (0.843 and 0.851), and Metric-DST also for BRCA
(0.859) (Fig. 5.3a, green vs. blue). Possibly due to the ample sample sizes
(Supplementary Table 5.S1-5.S3) and high starting performances of BRCA (1443 SL,
1010 non-SL pairs) and LUAD (594 SL, 5509 non-SL pairs), the use of additional
pseudo-labeled data yielded inconsequential performance gains.

We noticed improvements of Metric-ST and Metric-DST over supervised learning in
median AUPRC for the cancer types with more limited numbers of labeled samples,
including CESC, OV, and SKCM. However, owing to relatively large variances, the
only significant improvement was seen with Metric-DST for CESC (Fig. 5.3a, green



METRIC-DST

5

151

Metric-ST

SLNot SL

Av
er

ag
e 

Eu
cl

id
ea

n 
D

is
ta

nc
es

0.0

0.7

0.3

0.4

0.5

0.6

0.1

0.2

Metric-DST

BRCA CESC LUAD OV SKCM
Cancer

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
U

PR
C

Double holdout 

Bias - Supervised (ML+KNN)
Bias - Self-training (Metric-ST)
Bias - Diversity-guided ST (Metric-DST)

a b

c d

isle-dsl dsl-isle isle-dsl dsl-isle exp2sl-dsl
BRCA BRCA LUAD LUAD LUAD LUAD

dsl-exp2sl
Cancer / Training-Testing

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U

PR
C

Cross Dataset
Bias - Supervised (ML+KNN)
Bias - Self-training (Metric-ST)
Bias - Diversity-guided ST (Metric-DST)

BRCA CESC LUAD OV SKCM
Cancer

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U

PR
C

Randomized Split

Bias - Supervised (ML+KNN)
Bias - Self-training (Metric-ST)
Bias - Diversity-guided ST (Metric-DST)

SL Status

*
*

* *

Figure 5.3: Mitigation of intrinsic selection bias for synthetic lethality prediction. Prediction performance (AUPRC)
of synthetic lethality prediction models trained and tested per cancer type using supervised learning or the
semi-supervised Metric-ST and Metric-DST methods for 10 train/test splits. Three types of splits were used
to control the degree of similarity in selection bias between the train and test sets: (a) Randomized split, (b)
Double holdout, (c) Cross dataset. For (a), (b), and (c), boxplots include all points (no outlier detection), and the
white circles denote the mean values. (d) Average Euclidean distances between pseudo-labeled samples selected
by Metric-ST and Metric-DST per class, with diamonds denoting outliers. The red asterisks denote significant
differences in performance (p-value < 0.05) between the method with an asterisk and the biased supervised method
based on a two-sided Wilcoxon signed-rank test.

vs. blue, p-value 0.014). Additionally, both Metric-DST and Metric-ST seemed
superior to supervised learning for CESC and OV in median AUPRCs (Metric-DST
CESC: 0.696, OV: 0.772; Metric-ST CESC: 0.683, OV: 0.765; supervised CESC: 0.587,
OV: 0.701). We also saw a moderate non-significant improvement in median AUPRC
of the Metric-(D)ST methods over supervised learning for the SKCM dataset
(Metric-DST 0.769, Metric-ST 0.771, supervised 0.747).

In summary, the application of Metric-DST looked cautiously promising in the
context of a randomized split, preserving similar biases between train and test sets,
for cancer types with more limited sample sizes (CESC, OV, and SKCM).

Double holdout for distinct train/test selection bias. We also assessed Metric-DST
with paired train and test sets yielding different biases, adopting a double holdout
technique where gene overlap between test and train sets was entirely prevented.
This restrictive split resulted in a diminished train set size, reaching its lowest for
the CESC dataset with only 90 samples.

Relative to the randomized split experiment, supervised learning using double
holdout resulted in lower median AUPRCs (Randomized split vs. Double holdout in
BRCA, OV, CESC, SKCM, and LUAD: 0.853 vs. 0.527, 0.701 vs. 0.558, 0.587 vs. 0.560,
0.747 vs. 0.497, and 0.837 vs. 0.517, respectively) (Fig. 5.3b). This was expected due
to the restrictions imposed by the double holdout to ensure zero overlap in
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individual genes, in addition to zero overlap in gene pairs between train and test
sets. Although some performance differences could be observed between the
Metric-(D)ST methods and supervised learning for the BRCA, LUAD, OV, and SKCM
datasets, none of them reached statistical significance. Metric-ST showed higher
median AUPRC than Metric-DST and supervised learning for LUAD, OV, and SKCM,
while Metric-DST did better in this regard for BRCA and CESC. The only significant
improvement in AUPRC performance was recorded for CESC, with Metric-DST
outperforming the supervised model (median AUPRC 0.60 vs. 0.56, p-value 0.010). It
is important to note that the semi-supervised methods did not cause significant
decreases in performance relative to supervised learning.

Multiple factors might explain the lack of effectiveness of Metric-DST for some
cancer types. For instance, the restrictions imposed by the double holdout
procedure may have caused too extreme differences in biases between the train and
test sets, due to the absence of shared genes. An additional contributing factor
could be the reduction in train set size, exemplified by the CESC dataset
(Supplementary Table 5.S4). The impact of these constraints also resulted in a large
performance decrease for the baseline supervised model (Fig. 5.3a-b), making the
recovery more difficult for the semi-supervised techniques which rely heavily on an
initial successful model.

Cross dataset split with naturally occurring selection bias. To evaluate bias
mitigation with naturally occurring differences in selection bias between train and
test sets, we set up the data splits to train using SL labeled samples from one study
and test on SL labeled samples from another study, encompassing six permutations
across three studies (ISLE, dSL, and EXP2SL).

For BRCA, when trained on ISLE and tested on dSL, both Metric-ST and Metric-DST
induced an increase in the minimum AUPRC performance by over 0.2, but overall
there were no significant differences in performance between the two
semi-supervised methods and supervised learning (Fig. 5.3c). For LUAD, the
Metric-(D)ST methods resulted in significant performance improvements only for
the setting that trained on dSL and tested on EXP2SL significant differences (median
AUPRC: Supervised 0.536; Metric-ST 0.561 with p-value 0.049; Metric-DST 0.576 with
p-value 0.014). The remaining study combinations did not reveal significant changes
either, but we observed small decreases in median AUPRC for Metric-ST trained on
ISLE and tested on dSL, as well as for Metric-DST trained on dSL and tested on ISLE.

Taking all experiments on synthetic lethality prediction into account, it is important
to highlight that the two semi-supervised Metric-(D)ST methods significantly
outperformed supervised learning on three scenarios, while never performing
significantly worse. Instances where Metric-ST and Metric-DST yielded no clear
impact might be attributed to multiple factors, including the inherent complexity of
the problem with baseline supervised learning performances hovering around 0.5, or
extreme disparities between the train and test sets.
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Figure 5.4: UMAP projections of the SL dataset for BRCA. On the left, the training samples are highlighted before
the training. The top right plot shows the pseudo-labeled samples selected by Metric-ST and the pseudo-labeled
samples selected by Metric-ST during the training. The number of samples of each class is stated in parentheses.
The highlighted box highlights a cluster dominated by gene pairs containing the gene CDH1.

METRIC-DST PROMOTES DIVERSITY IN SELECTED PSEUDO-LABELED SAMPLES

To verify if the diversity approach of Metric-DST was able to select more diverse
samples, we analyzed the Euclidean pairwise distances between pseudo-labeled
samples assigned to the same class label in the learned embedding space, using the
BRCA Randomized split as an example (Fig. 5.3d). The distances were larger on
average for pseudo-samples selected by Metric-DST, confirming a more
heterogeneous sample selection compared to Metric-ST.

We also examined the distribution of selected pseudo-labeled samples in a UMAP
projection of the labeled and unlabeled samples original feature space onto two
dimensions (Fig. 5.4). The projection showed no clear linear separation between the
labeled samples of the two classes, SL and non-SL, reflecting the complexity of the
prediction task and its underlying decision boundary. In addition, most clusters
apparent in the UMAP embedding contained no labeled samples that could be used
for supervised training, which further illustrates the lack of representation and the
extent of the selection bias problem in synthetic lethality.

More detailed analysis revealed that Metric-ST incorporated a total of 55 and 125
pseudo-labeled samples, respectively assigned non-SL and SL labels. Of the 55
non-SL pseudo-labeled samples, 29 were in a cluster dominated by the gene CDH1
(Fig. 5.4). This cluster originally contained 507 labeled and unlabeled samples, of
which 501 contained the gene CDH1. The fact that the method focused heavily on
one cluster demonstrates the main drawback of using conventional self-training and
relying on model confidence alone to mitigate the effect of selection bias. In
contrast, Metric-DST was able to select a more varied set of 90 pseudo-labeled
samples, of which only 6 originated from the “CHD1” cluster.

Together, these findings highlight the ability of Metric-DST to promote diversity
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while incorporating unlabeled samples into the learning of a prediction model.

5.3. CONCLUSION
In this work, we proposed Metric-DST, a semi-supervised framework coupled with
metric learning to build prediction models with improved robustness to sample
selection bias. Metric-DST relies on self-training to incorporate unlabeled samples
for additional representation and insight into the underlying distribution of the
population. Crucially, Metric-DST introduces a strategy to counter confirmation bias
of conventional self-training by learning from a more diverse set of samples.
Diversity is introduced via metric learning of a class-contrastive representation,
which facilitates the pseudo-labeling and identification of dissimilar unlabeled
samples to include in the training.

Evaluation using artificially generated and real-world datasets with induced selection
bias suggested the potential of self-training to enhance model generalizability, yet
also its susceptibility to exacerbate data bias. The proposed diversity-guided
approach, Metric-DST, showed greater resilience than conventional self-training,
albeit with modest performance improvements. Application to synthetic lethality
prediction showed that semi-supervised metric learning could augment performance
in scenarios where train and test sets yielded similar or distinct naturally occurring
selection biases. It was reassuring that Metric-DST was able to preserve the
performance obtained with supervised learning or deliver more robust models in all
contexts, and especially under challenging conditions, such as with limited numbers
of training samples or weak baseline models. Ultimately, the effectiveness of
Metric-DST is contingent upon factors such as the performance of the underlying
base model, the type and extent of the data bias, and the ratio of features to
samples, among others. Future work warrants a deeper exploration of the potential
of the Metric-(D)ST learning framework, including refinement of neural network
architectures and loss functions. Leveraging metric learning as a means of
diversifying pseudo-sample selection in combination with various classifiers could
further expand the scope of the model. We also envision further addressing the
limitations of the existing pseudo-labeled sample selection approach, which could
be extended to ensure a more comprehensive representation of the embedding
space by excluding unpopulated regions.

5.4. EXPERIMENTAL PROCEDURES

5.4.1. METRIC-DST
Metric-DST is a semi-supervised ML framework based on metric learning to obtain
an embedding function or transformation that is informative for a classification task
of interest with increased robustness to selection bias. Learning is accomplished via
self-training, where the transformation is gradually refined by incorporating a
diverse selection of newly pseudo-labeled unlabeled examples into the training
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process. The learned transformation serves the dual purpose of predicting
pseudo-labels and assessing sample diversity to counter the data bias.

Each self-training iteration involves three steps: (1) learn a metric embedding
function from the labeled data such that the latent representation of a sample also
yields pertinent information about class separation, (2) pseudo-label unlabeled
samples based on the learned transformation so they can be considered as
candidates for selection and training, (3) select a diverse subset of pseudo-labeled
samples and include them in the labeled train set for the next iteration.

LEARNING OF A METRIC EMBEDDING FUNCTION

At iteration t , Metric-DST first learns a transformation function or model f (t )
θ

based

on the labeled samples in matrix X (t )
L and the corresponding binary labels y (t )

L using
metric learning. The general goal is to learn a transformation of an individual
sample vector x to a latent embedding representation z = f (t )

θ
(x), guided by class

assignments and inter-sample distances, such that samples of the same class are
closer together and samples from different classes are distanced further apart in the
learned embedding space. Various model architectures could be used for the
transformation, in this case we used a feed-forward neural network with a single
hidden layer. The model is optimized based on the contrastive loss function
designed to minimize intra-class distances and maximize inter-class distances of
samples in the embedding space (Eq. 5.1).

Lcontr ast i ve =
∑

(i , j )∈P
1yi=y j max{0,di , j −mpos }+ 1yi ̸=y j max{0,mneg −di , j } (5.1)

Here, di , j denotes the Euclidean distance between samples xi and x j in the

embedding space, thus di , j = d( f (t )
θ

(xi ), f (t )
θ

(x j )). Symbol P represents the set of all
sample pairs within a training batch, and the indicator function 1condi t i on takes
value 1 if the condition holds or 0 otherwise. The positive and negative margins,
mpos and mneg , are used to prevent the algorithm from forcing samples with the
same labels to overlap completely or samples with different labels to be separated
infinitely. Specifically, the distance between samples with the same labels only
increases the loss when it exceeds the positive margin, and the distance between
samples with different labels stops contributing to the loss once the distance
exceeds the negative margin.

Once the transformation has been learned from the labeled samples X (t )
L , it can be

applied to obtain embedding representations for unlabeled samples in X (t )
U as well.

We denote the embedding matrix containing the representations of all samples,
labeled and unlabeled, by Z (t ).

PSEUDO-LABELING OF UNLABELED SAMPLES THROUGH METRIC EMBEDDING

The transformation model f (t )
θ

learned from the labeled data cannot be directly
used to make predictions and thus assign pseudo-labels to unlabeled samples. To
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classify the unlabeled samples, Metric-DST applies a weighted version of k nearest
neighbors (kNN) to the embedding matrix Z (t ) with the learned representations
z (t ) = f (t )

θ
(x) of all samples. For a given unlabeled sample i with representation

z (t )
i ∈ Z (t ), Metric-DST identifies the set N (t )

i of its k closest labeled samples in Z (t ).
The prediction class probability ȳi ∈ [0,1] for sample xi is then calculated as a
weighted average of the probabilities of the k neighbors, as given by Eq. 5.2. The
calculation factors in the distance of each neighbor representation to zi , so that
closer neighbors contribute more than farther ones.

ȳi =
∑

n∈N (t )
i

yn × (1−di ,n)+ (1− yn)×di ,n

|k| (5.2)

The probability ȳi represents the confidence of the model, where values close to 1
and 0 indicate high confidence in predicting class 1 and class 0, respectively. The
final class label ŷi is obtained by thresholding the probability value ȳi as per Eq. 5.3.

ŷi =
{

1, if ȳi > 0.5

0, otherwise
(5.3)

SELECTION OF DIVERSE PSEUDO-LABELED SAMPLES

After assigning pseudo-labels, Metric-DST selects which newly pseudo-labeled
samples to include in the labeled set for the subsequent training iteration.

Conventional self-training (ST) typically chooses the p newly pseudo-labeled
samples with the highest confidence [19], where p is a user-defined parameter. The
reliance on confidence alone promotes confirmation bias, where the model is likely
to follow and strengthen the selection bias present in the labeled data. Additionally,
ST is not class-aware in that it does not consider that the model may not be
similarly confident about prediction of different classes, which could further lead to
unwanted biases such as class imbalance.

To address both issues, Metric-DST performs diversity-guided self-training (DST),
which introduces sample diversity and class balancing into the selection of
pseudo-labeled samples using the learned metric embedding. Diversity is achieved
through randomness in the choice of each pseudo-labeled sample as follows. First,
Metric-DST creates a candidate point in learned embedding space Z (t ) as a tuple of
randomly generated coordinates in the range [0,1]. Then, the pseudo-labeled
sample closest to the candidate point is identified based on the Euclidean distance
(Eq. 5.2). The selected pseudo-labeled sample is designated for inclusion in the
labeled train set for the subsequent iteration if the confidence on its prediction
surpasses a predefined relaxed threshold µ. Class balance is achieved by selecting
p/2 positive and p/2 negative pseudo-labeled samples sequentially using the
aforementioned procedure for each self-training iteration. If Metric-DST fails to
secure a sufficient number of pseudo-labeled samples within 50×p attempts for any
one self-training iteration, undersampling of the majority class is employed to
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obtain a class balanced set of pseudo-labeled samples.

5.4.2. EVALUATION OF METRIC-DST
We evaluated the Metric-DST semi-supervised model learning strategy proposed to
mitigate sample selection bias against two baselines: Metric-ST, also a
semi-supervised approach based on metric learning to train models using both
labeled and unlabeled data, but paired with conventional self-training and thus
missing the class-awareness and diversity elements of Metric-DST; and Supervised,
referring to the traditional supervised metric learning technique to train models
from labeled data alone. We used the same neural network model architecture as a
basis with all learning strategies, consisting of an 8-dimensional hidden layer and a
2-dimensional output layer. Unless otherwise specified, the batch training size was
set to 64, and the confidence threshold µ was set to 0.9. We further relied on
weighted kNN with k = 5 to make predictions based on the metric embedding of a
sample. Finally, we assessed the bias mitigation ability of Metric-DST across a range
of binary classification tasks and selection bias scenarios, ranging from artificially
generated and real-world benchmark data with induced selection bias to an
important prediction task in molecular biology intrinsically affected by selection bias.

DATASETS AND SELECTION BIAS

Generated 2-dimensional moons dataset and induced delta bias. We generated
the simplest “moons” dataset as a binary class-balanced set of 2000 samples or
points in a 2-dimensional space, such that the samples of the two classes formed
interleaving half circles (or moons), using the make_moons function from
scikit-learn [24]. Selection bias was induced by choosing an equal number of
samples from each class, while favoring samples closer to a point in space with
user-defined coordinates ∆i for each class i . We refer to this type of bias as delta
bias, where we set the selection probability of each sample x according to its
distance to the point ∆cl ass(x) associated with the corresponding class label cl ass(x),
and then selected samples without replacement based on their normalized selection
probabilities. The selection probability of a sample x was defined to decrease
exponentially with the Manhattan distance to ∆cl ass(x), multiplied by a factor of 2
denoting bias strength: Px = e−2×(|x1−∆cl ass(x),1|+|x2−∆cl ass(x),2|), where x1 and x2 are the
coordinates of x and ∆cl ass(x),1 and ∆cl ass(x),2 are the coordinates of ∆cl ass(x) in the
2D space, respectively. Four different biased selections of the moon dataset were
generated, two of 100 samples and two of 200 samples, combined with ∆0 = (0,0)
and ∆1 = (0,0) or ∆0 = (1,0.5) and ∆1 = (0,0).

Generated higher-dimensional datasets and induced hierarchy bias. We created 8
n-dimensional datasets, each containing 2000 samples with binary class-balanced
labels and forming two sample clusters per class, using the make_classification
function from scikit-learn [24]. Each n-dimensional dataset was generated with f of
the n dimensions independent and informative for the prediction task, and the
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remaining n − f dimensions as linear combinations of the f informative features.
Briefly, the procedure for the informative dimensions creates a f -dimensional
hypercube with sides measuring 3 units, then generates clusters of samples
distributed around the vertices of the hypercube (within 1 standard deviation), and
finally assigns two randomly chosen clusters to each class. The n − f additional
dimensions are generated by linearly combining randomly selected informative
features. We generated 8 datasets spanning four dimensionality values (16, 32, 64,
and 128), combined with 80% or 100% of informative features. We induced selection
bias using hierarchy bias [21], a multivariate technique which identifies clusters of
samples and makes a biased selection of k samples per class, where a bias ratio
parameter b is used to skew the representation of samples selected from one specific
cluster relative to the others. To achieve this, hierarchy bias performs agglomerative
hierarchical clustering until it obtains one cluster with at least k samples, and then
selects k ×b samples uniformly at random from such cluster plus k × (1−b) samples
uniformly at random from the remaining data. For the experiments with generated
high-dimensional datasets, we used a challenging hierarchy bias with ratio b = 0.9 to
create two biased selections of 100 and 200 class-balanced samples.

Real-world binary classification benchmark datasets and induced hierarchy bias.
We used 8 publicly available binary classification benchmark datasets of varying
dimensions, feature types, and complexity: 5 from the UCI Data Repository [25]
(breast cancer, adult, spam, raisin, rice) and 3 from other sources including
pistachio [26], fire [27], and pumpkin [28]. To induce selection bias, we again used
hierarchy bias [21] with bias ratio b = 0.9 to create two biased selections of 60 and
100 class-balanced samples per dataset. The numbers of selected samples were
chosen to be feasible and consistently applied across all real-world benchmark
datasets.

Synthetic lethality dataset and inherent selection bias. To assess the bias
mitigation ability of Metric-DST on a real-world prediction task inherently affected
by selection bias, we focused on the molecular biology challenge of synthetic
lethality prediction. Synthetic lethality refers to a relationship between two genes,
relevant for cancer therapy [29, 30], whereby the loss-of-function of both genes leads
to cell death but loss-of-function of either gene independently is not lethal[31].
Computational prediction of synthetic lethality (SL) gene pairs is key to generate
promising candidates for the discovery of new SL relationships. However, the
existing labeled gene pairs used for training SL prediction models suffer from
extensive selection bias [32], as they are often limited to specific disease-related
genes, gene families, or pathways [33–37].

Following recent work on supervised SL prediction models ELISL [38], we
represented each sample or gene pair by a 128-dimensional vector expressing a
relationship between the embedding representation vectors of the two genes, based
on amino acid sequence. This formulation was introduced to reflect the functional
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similarity of a pair of genes, and emerged as the most successful predictor of SL in
ELISL models. We used SL labeled samples from 5 different cancers [38]: breast
(BRCA), lung (LUAD), ovarian (OV), skin (SKCM), and cervix (CESC) (Supplementary
Table 5.S1). In addition to the labeled SL gene pairs, we used a set of unlabeled
samples comprising pairwise combinations of 572 genes involved in cancer and
DNA repair pathways, excluding any samples already present in the labeled set [38]
(Supplementary Table 5.S1). We did not use bias induction techniques with SL data,
since the goal of this particular use case was to assess the behavior of the different
model learning strategies in the presence of naturally occurring selection bias. We
leveraged such bias for evaluation as described below.

TRAINING AND EVALUATION OF PREDICTION MODELS

Generated and real-world binary classification tasks. We trained and evaluated all
models using 10-fold cross-validation (CV), stratified by class. The CV procedure
generated a split into train set (90%) and test set (10%) for each fold, with the train
set further split randomly into labeled (30%) and unlabeled (70%) subsets.
Supervised metric learning models were trained per fold on the corresponding
labeled train subset, as well as biased and random selections of it. Metric-DST and
Metric-ST were used to learn models per fold from the corresponding labeled train
subset, as well as its biased and random selections, together with the unlabeled
train subset. For the Metric-(D)ST methods, the number p of selected
pseudo-labeled samples was set as the greatest even integer smaller than or equal top

n, with n referring to the number of labeled samples available for training. We
induced selection bias to the labeled train subset using either delta or hierarchy
bias, depending on the dataset, as previously described. Each trained model was
evaluated on the unbiased test set of the corresponding fold for which it was
learned using the area under the receiver-operating characteristic curve (AUROC) as
performance metric. The same folds and train set splits were used across all
experiments. We tested the significance of performance differences between the
supervised model learned from biased data and Metric-(D)ST using two-sided
Wilcoxon signed rank tests and a p-value threshold of 0.05.

Synthetic lethality prediction. We evaluated Metric-DST, Metric-ST, and supervised
metric learning for SL prediction with three experiments, each involving 10 runs of
model training and evaluation based on different train/test splits. We largely
followed an experimental setup previously proposed and refined to assess
robustness to selection bias in SL prediction [32, 38].

The Randomized split experiment assessed SL prediction performance without
explicitly evaluating bias effects: the labeled gene pairs were randomly split into
20% train and 80% test data per run, with both subsets then expected to exhibit
similar biases (Supplementary Table 5.S2 for the distribution of classes). The two
other experiments evaluated the ability of the model learning strategies to mitigate
selection bias in training data. The Double holdout split was set up to promote
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distinct biases between train and test data by distributing the labeled gene pairs
into disjoint train/test sets per run, but this time also enforcing zero overlap of
individual genes in addition to no overlap in gene pairs (More details in
Supplementary Methods). For the Cross dataset experiment, we took advantage of
the fact that different SL studies focus on distinct sets of genes and thus naturally
yield varying selection bias. We therefore split the labeled gene pairs based on the
three SL studies from which they were obtained: ISLE [39], dSL [40], EXP2SL[41].
Considering only cancer types and studies with a sufficient number of samples,
models were trained using labeled pairs from one study and tested on labeled pairs
from another study. Any gene pairs overlapping between the train and test sets, due
to their inclusion in multiple studies, were removed from the train set.

For all three experiments, train and test sets were class-balanced at the start of each
run by randomly undersampling the majority class, and 20% of the train set was
used as a validation set for early stopping (Supplementary Table 5.S3-5.S5 for the
number of samples in each experiment). Each model was trained until the
validation loss did not decrease for five consecutive rounds of self-training, with the
final performance evaluated on the test set. We measured performance using the
area under the precision-recall curve (AUPRC) score, given that SL prediction places
a greater emphasis on detecting positive SL pairs and negative pairs (non-SL)
cannot be confidently identified or validated. The AUPRC score is suitable for
measuring performance in this scenario, as it does not take correctly predicted
negatives into account. We assessed the significance of performance differences in
SL experiments using two-sided Wilcoxon signed ranked tests and a p-value
significance threshold of 0.05.

The hyperparameters of Metric-(D)ST, namely the confidence threshold µ and
number of pseudo-labeled samples p to select per iteration, could be set judiciously
for the application to other datasets using controlled bias induction. Since the effect
of these hyperparameters could be more challenging to predict for the synthetic
lethality dataset with inherent selection bias, we performed grid search to identify
the hyperparameter values leading to the lowest validation loss per run for each
experiment (Supplementary Table 5.S6-5.S8). The final performance was obtained
on the test set using the model with the selected hyperparameter values.

5.4.3. RESOURCE AVAILABILITY

DATA AND CODE AVAILABILITY

The data used in this article were obtained from publicly available sources, detailed
in the Experimental procedures section. The raw data necessary to reproduce the
experiments are accessible via Figshare at 10.6084/m9.figshare.27720726.v2. An
implementation of the dataset generation, bias induction, and Metric-DST method
in Python has been made available under an open source license at
github.com/joanagoncalveslab/Metric-DST.

https://doi.org/10.6084/m9.figshare.27720726.v2
https://github.com/joanagoncalveslab/Metric-DST
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5.5. SUPPLEMENTARY MATERIALS

5.5.1. SUPPLEMENTARY FIGURES

Class 0
Class 1
Selected Class 0
Selected Class 1

Figure 5.S1: Impact of hierarchy bias on the UMAP latent space for a generated higher dimensional dataset. 100
Samples selected by hierarchy (0.9) bias highlighted on the latent UMAP space of the labeled train set for artificially
generated higher dimensional dataset with 16 dimensions and 80% informative features. Results are shown for run
1 (arbitrarily chosen).
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Class 0
Class 1
Selected Class 0
Selected Class 1

Figure 5.S2: Impact of hierarchy bias on the UMAP latent space for a real world fire dataset. 60 Samples selected
by hierarchy (0.9) bias highlighted on the latent UMAP space of the labeled train set for fire. Results are shown for
run 7 (arbitrarily chosen).

5.5.2. SUPPLEMENTARY TABLES

Table 5.S1: Numbers of synthetic lethality labeled and unlabeled samples or gene pairs per cancer type.

Cancer Total SL non-SL Unlabeled

BRCA 2453 1443 1010 151888
OV 805 253 552 151972
CESC 4900 144 4756 150964
SKCM 18407 107 18300 151545
LUAD 6103 594 5509 150944
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Table 5.S2: Final distribution of classes in ST in the Randomized split experiments. The percentage of final train
sets that are reported are averaged over 10 runs.

Cancer Share majority class (%) Share minority class (%)

BRCA 55 ± 2 45 ± 2
OV 69 ± 3 31 ± 3
SKCM 70 ± 5 30 ± 5
CESC 68 ± 6 32 ± 6
LUAD 56 ± 2 44 ± 2
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Table 5.S3: Sizes of individual runs for the randomized split experiment after splitting the data and balancing for
each set.

Run Cancer Train SL
non
SL

Validation SL
non
SL

Test SL
non
SL

1 BRCA 1294 647 647 324 162 162 402 201 201
2 BRCA 1294 647 647 324 162 162 402 201 201
3 BRCA 1294 647 647 324 162 162 402 201 201
4 BRCA 1294 647 647 324 162 162 402 201 201
5 BRCA 1294 647 647 324 162 162 402 201 201
6 BRCA 1294 647 647 324 162 162 402 201 201
7 BRCA 1294 647 647 324 162 162 402 201 201
8 BRCA 1294 647 647 324 162 162 402 201 201
9 BRCA 1294 647 647 324 162 162 402 201 201
10 BRCA 1294 647 647 324 162 162 402 201 201
1 OV 324 162 162 80 40 40 102 51 51
2 OV 324 162 162 80 40 40 102 51 51
3 OV 324 162 162 80 40 40 102 51 51
4 OV 324 162 162 80 40 40 102 51 51
5 OV 324 162 162 80 40 40 102 51 51
6 OV 324 162 162 80 40 40 102 51 51
7 OV 324 162 162 80 40 40 102 51 51
8 OV 324 162 162 80 40 40 102 51 51
9 OV 324 162 162 80 40 40 102 51 51
10 OV 324 162 162 80 40 40 102 51 51
1 CESC 184 92 92 46 23 23 58 29 29
2 CESC 184 92 92 46 23 23 58 29 29
3 CESC 184 92 92 46 23 23 58 29 29
4 CESC 184 92 92 46 23 23 58 29 29
5 CESC 184 92 92 46 23 23 58 29 29
6 CESC 184 92 92 46 23 23 58 29 29
7 CESC 184 92 92 46 23 23 58 29 29
8 CESC 184 92 92 46 23 23 58 29 29
9 CESC 184 92 92 46 23 23 58 29 29
10 CESC 184 92 92 46 23 23 58 29 29
1 SKCM 138 69 69 34 17 17 42 21 21
2 SKCM 138 69 69 34 17 17 42 21 21
3 SKCM 138 69 69 34 17 17 42 21 21
4 SKCM 138 69 69 34 17 17 42 21 21
5 SKCM 138 69 69 34 17 17 42 21 21
6 SKCM 138 69 69 34 17 17 42 21 21
7 SKCM 138 69 69 34 17 17 42 21 21
8 SKCM 138 69 69 34 17 17 42 21 21
9 SKCM 138 69 69 34 17 17 42 21 21
10 SKCM 138 69 69 34 17 17 42 21 21
1 LUAD 760 380 380 190 95 95 238 119 119
2 LUAD 760 380 380 190 95 95 238 119 119
3 LUAD 760 380 380 190 95 95 238 119 119
4 LUAD 760 380 380 190 95 95 238 119 119
5 LUAD 760 380 380 190 95 95 238 119 119
6 LUAD 760 380 380 190 95 95 238 119 119
7 LUAD 760 380 380 190 95 95 238 119 119
8 LUAD 760 380 380 190 95 95 238 119 119
9 LUAD 760 380 380 190 95 95 238 119 119
10 LUAD 760 380 380 190 95 95 238 119 119
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Table 5.S4: Sizes of individual runs for the double holdout experiments

Run Cancer Train SL
non
SL

Validation SL
non
SL

Test SL
non
SL

1 BRCA 520 260 260 130 65 65 214 107 107
2 BRCA 532 266 266 132 66 66 210 105 105
3 BRCA 460 230 230 114 57 57 216 108 108
4 BRCA 524 262 262 130 65 65 208 104 104
5 BRCA 558 279 279 140 70 70 202 101 101
6 BRCA 494 247 247 124 62 62 202 101 101
7 BRCA 460 230 230 116 58 58 256 128 128
8 BRCA 520 260 260 130 65 65 224 112 112
9 BRCA 534 267 267 134 67 67 202 101 101
10 BRCA 538 269 269 134 67 67 206 103 103
1 OV 142 71 71 36 18 18 42 21 21
2 OV 142 71 71 36 18 18 50 25 25
3 OV 136 68 68 34 17 17 40 20 20
4 OV 144 72 72 36 18 18 44 22 22
5 OV 148 74 74 36 18 18 44 22 22
6 OV 144 72 72 36 18 18 50 25 25
7 OV 136 68 68 34 17 17 46 23 23
8 OV 152 76 76 38 19 19 44 22 22
9 OV 140 70 70 36 18 18 46 23 23
10 OV 140 70 70 34 17 17 44 22 22
1 CESC 90 45 45 22 11 11 28 14 14
2 CESC 90 45 45 22 11 11 30 15 15
3 CESC 90 45 45 22 11 11 28 14 14
4 CESC 92 46 46 22 11 11 30 15 15
5 CESC 90 45 45 22 11 11 28 14 14
6 CESC 88 44 44 22 11 11 30 15 15
7 CESC 92 46 46 22 11 11 30 15 15
8 CESC 88 44 44 22 11 11 28 14 14
9 CESC 92 46 46 22 11 11 28 14 14
10 CESC 90 45 45 22 11 11 24 12 12
1 SKCM 120 60 60 30 15 15 22 11 11
2 SKCM 120 60 60 30 15 15 22 11 11
3 SKCM 120 60 60 30 15 15 22 11 11
4 SKCM 120 60 60 30 15 15 22 11 11
5 SKCM 120 60 60 30 15 15 22 11 11
6 SKCM 120 60 60 30 15 15 22 11 11
7 SKCM 120 60 60 30 15 15 22 11 11
8 SKCM 120 60 60 30 15 15 22 11 11
9 SKCM 120 60 60 30 15 15 22 11 11
10 SKCM 120 60 60 30 15 15 22 11 11
1 LUAD 322 161 161 80 40 40 106 53 53
2 LUAD 334 167 167 84 42 42 104 52 52
3 LUAD 322 161 161 80 40 40 100 50 50
4 LUAD 334 167 167 84 42 42 106 53 53
5 LUAD 334 167 167 84 42 42 104 52 52
6 LUAD 380 190 190 94 47 47 120 60 60
7 LUAD 340 170 170 84 42 42 106 53 53
8 LUAD 348 174 174 86 43 43 108 54 54
9 LUAD 322 161 161 80 40 40 100 50 50
10 LUAD 330 165 165 82 41 41 106 53 53
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Table 5.S5: Sizes of datasets for the Multiple SL label sources experiments.

Training
study

Test
study

Cancer Train SL non-SL Test SL non-SL Unlabeled

ISLE dSL BRCA 1509 573 935 960 885 75 151882
dSL ISLE BRCA 893 854 39 1575 590 985 151882
ISLE dSL LUAD 4897 168 4729 711 372 339 150944
dSL ISLE LUAD 711 372 339 4897 168 4729 150944
EXP2SL dSL LUAD 2676 307 2369 711 372 339 150944
dSL EXP2SL LUAD 711 372 339 2676 307 2369 150944

Table 5.S6: Selected parameters for the randomized split experiments. For µ, the confidence threshold, the values
0.80, 0.85, 0.90 and 0.95 were tested. For p, number of pseudo-labeled samples to add in each iteration of
self-training, the values 10, 20 and 50 were tested.

Cancer p µ

BRCA 0.90 20
OV 0.85 20
CESC 0.90 10
SKCM 0.90 10
LUAD 0.90 10

Table 5.S7: Selected parameters for the double holdout experiments. For µ, the confidence threshold, the values
0.70, 0.75, 0.80, 0.85, 0.90 and 0.95 were tested. For p, number of pseudo-labeled samples to add in each iteration
of self-training, the values 6, 10 and 20 were tested.

Cancer p µ

BRCA 0.85 6
OV 0.80 6
CESC 0.75 6
SKCM 0.75 20
LUAD 0.90 10

Table 5.S8: Selected parameters for the Multiple SL label sources experiments. For µ, the confidence threshold,
the values 0.75, 0.80, 0.85, 0.90 and 0.95 were tested. For p, number of pseudo-labeled samples to add in each
iteration of self-training, the values 4, 6, 10 and 20 were tested.

Training
study

Test
study

Cancer p µ

ISLE dSL BRCA 6 0.85
dSL ISLE BRCA 4 0.95
ISLE dSL LUAD 10 0.80
dSL ISLE LUAD 10 0.85
EXP2SL dSL LUAD 6 0.85
dSL EXP2SL LUAD 10 0.80
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5.5.3. SUPPLEMENTARY METHODS

DETAILS OF THE DOUBLE HOLDOUT EXPERIMENT

To assess the performance of the proposed methods when the train and test set
follow different biases, we performed an experiment where the gene pairs in the
train and test sets did not have any genes in common. By decoupling the genes in
the train set from the test set, we constructed an experiment where the two sets
do not originate from the same distribution and do not follow the same sample
selection bias. In this experiment, we could evaluate the ability of the methods to
transfer knowledge learned on one distribution to data with a different bias. For
BRCA, CESC, LUAD, and OV, we divided the set of all individual genes instead of
pairs into two sets: a training and a test gene set. Then all pairwise combinations
of genes with available SL labels were generated within each set while trying to
protect the ratio of samples between the training and test set to 4:1. We generated
10 different runs where in each run, the gene sets were selected randomly. This
separation ensured that there was no overlap between the two sets of gene pairs.
In contrast, for the SKCM dataset, since the gene MYC was dominant and only 60
samples did not contain the MYC gene, we constructed the test set always from
these pairs without MYC gene. Then, for the training set, we used all pairs except
those 60 and any other pair that had any gene overlap with these 60 samples.
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DISCUSSION

Throughout the years, understanding cancer and effectively treating cancer patients
has been a top priority in the medical field. As much as our understanding
of cancer has improved, and significant progress has been made in technology
and treatments, we also realize there is still a lot to uncover about cancer and
its treatment. Cancer treatment originally focused more on surgeries, and cancer
research depended more on prior biological knowledge and experiments in the
lab to discover additional characteristics of cancer that could be exploited by
new therapies. With recent advances in computational tools and molecular data
measurement technologies, many more targetable vulnerabilities of cancer can be
uncovered in a data-driven manner, without the need for prior knowledge. Especially
with the fast progress of machine learning (ML) and the ability to mathematically
find relations and patterns in complex high-dimensional molecular data, identifying
treatment opportunities with computational tools has gained momentum in cancer
research [1]. In this thesis, we focused on improved solutions for the computational
prediction of candidate cancer treatment targets and, more generally, for building
more generalizable machine learning models in the presence of selection bias. In
this chapter, we discuss our conclusions, as well as the remaining gaps in the
literature along with future research directions to address them. Furthermore, we
briefly offer our views on the prospects of machine learning for the identification
of effective cancer treatments as well as on fundamental issues related to bias in
machine learning.

6.1. EFFECTIVE CANCER TREATMENTS
Targeted therapy has led to improved cancer treatment outcomes and patient
prognoses over the years. However, effectively treating cancer remains an ongoing
challenge. Due to the inherent heterogeneity of cancer, the development of
resistance, and other complicating factors, even targeted therapies can sometimes
prove ineffective. Effective targeted therapy first requires the precise identification
of cohorts that could benefit from specific treatments and the determination of
the most suitable therapeutic approach, whether directly or indirectly targeting
cancer drivers. With the advances in high-throughput technologies that generate
vast amounts of molecular data, as well as more complex computational tools,
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we can now uncover deeper insights, such as further stratifications within cancer
cohorts and potential genetic interactions that may effectively target cancer drivers.
Nevertheless, there are still many hidden insights that can be uncovered.

6.1.1. UNCOVERING GENETIC INTERACTIONS

SYNTHETIC LETHALITY BETWEEN GENES

For certain cancer driver genes, even when their mechanisms are well understood,
there are currently no effective methods to target them due to challenges such as
inaccessible binding sites or inactivity of the driver gene. In these scenarios, genetic
interactions like synthetic lethality offer promising alternatives. Since many cancer
driver genes are associated with cellular proliferation and survival, their alteration
and mutation transform normal cells into cancer cells. As this happens, cancer cells
may simultaneously become dependent on other genes and pathways for survival.

Although numerous computational tools exist to identify synthetic lethal relationships,
they often fall short in predictions for certain cancer types or are susceptible to bias,
which often restricts their ability to identify interactions solely to specific genes or
gene families. To address this, in Chapter 2, we introduced ELISL, a framework that
integrates biological information about genes and gene pairs from multiple sources
to create an ensemble ML model capable of predicting the synthetic lethality status
of gene pairs. To build a robust and reliable model, ELISL makes use of both
context-specific data sources specific to each cancer tissue type such as omics from
cancer patients and cancer cell lines, and context-free data sources such as protein
sequence similarity and protein-protein interaction networks. While context-specific
data sources already used by other methods help uncover cancer-specific relations
and reflect the variation between patients, they are also limited as they can be sparse
for some cancer types. Context-free data sources, especially protein aminoacid
sequences, contain information about the functional properties of the proteins,
which could be informative of related gene function and genetic interactions.
Moreover, aminoacid sequences are well-characterized and available for all proteins,
thus preventing the sparsity problem. Additionally, ELISL relies on feature-based
ML using forest ensembles to build models with increased generalizability in the
presence of selection bias prevalent in SL training data. ELISL showed superior
performance compared to models based on matrix factorization [2, 3] or network
graphs [4, 5], which were more prone to follow the bias in the data. Furthermore, we
showed that ELISL could be used in a cross-cancer setting where a model trained
on a cancer type was used to predict SL relations for another cancer type. Lastly,
we showed that mutations in the top SL pairs predicted by ELISL for breast cancer
associated with longer patient survival, suggesting they could harbor therapeutic
potential.

The Success of Amino Acid Sequence Information. The results from ELISL show
the importance of amino acid sequences, which are believed to contain essential
information about protein functions [6], in understanding genetic interactions.
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Since functional relatedness is a key factor in determining genetic interactions, the
information encoded within amino acid sequences is extremely valuable. However,
amino acid sequence alone might not provide all necessary information about
genetic interactions. For instance, protein-protein interactions could be informative
as well, although they are typically based on physical and experimentally curated
interactions that also do not cover the entire collection of known proteins and
interactions between them.

Another important question that arises from the success of using amino acid
sequences is to what extent does the computational method used to extract
information contribute to this success? We know that the methods extracting
embeddings from aminoacid sequences are well-established and they can provide
valuable insight for various problems [6]. For example, deep learning models
can uncover sequence features that correlate with functional relatedness and other
biological properties. However, these methods are not always entirely accurate and
they may introduce biases or miss critical information. Therefore, while we suggest
that information extracted by deep learning models from amino acid sequences
can be valuable across various problems, we should not ignore how much these
methods specifically impact the problem. For example, what is the gain of using
complex embedding extraction methods compared to one-hot binary encoding in
various downstream tasks? This issue is beyond identifying synthetic lethality (SL)
interactions, it also affects other fields where amino acid sequences and embedding
methods are utilized. For example, applications in protein structure prediction,
function annotation, or drug-target interaction prediction may face similar issues.
Thus, we need to ensure that these methods are reliable and effective in downstream
tasks across different biological problems.

Challenges with Context-Specific Data Sources. Data sources collected from
patients or cancer cell lines have profoundly influenced cancer research across a
wide range of applications. However, these types of data are still collected by humans
from a relatively narrow group of patients or cell lines, constrained by various
limitations such as time, cost, and technology, as well as the quality versus quantity
trade-off in sample collection. Consequently, for different cancer types originating
from various tissues, varying number of available samples limit the effectiveness
of the computational methods that heavily depend on the data. Additionally, for
some cancer types, data collection may lack quality, resulting in numerous missing
data points. Typically, missing data or technical errors in a few samples have a
diminishing impact as more data is collected. However, for cancer types with a small
number of samples, these issues remain critical. Thus, it is essential that future
data collection efforts are standardized and that samples are carefully evaluated.
When using existing datasets, it may be wise to exclude certain data points to avoid
introducing confusion while preserving meaningful biological variability. However, it
is not straightforward to distinguish between technical errors and genuine biological
deviations. While some methods, such as outlier detection, can help in deciding
which samples to exclude, without detailed metadata that includes technical and



6

174 CHAPTER 6

biological variables, the likelihood of error in selection remains high.

IS SYNTHETIC LETHALITY ONLY BETWEEN PAIRS OF GENES?

Current computational approaches for predicting synthetic lethality (SL) mainly
identify interactions between pairs of genes. However, the mechanisms underlying
SL are often far more complex and typically involve entire biological pathways rather
than just individual genes. A prominent example is the well-known synthetic lethal
interaction between BRCA1/2 mutations and PARP which arises from a dependency
between a pathway and a gene [7]. Inhibition of PARP leads to an accumulation
of double-stranded breaks due to not being able to repair single-stranded breaks.
Simultaneously, mutations in the BRCA1/2 genes result in a deficiency in the
homologous recombination repair pathway, rendering the cells less capable of
repairing double-stranded breaks. Consequently, the inhibition of PARP in cells with
defective homologous recombination repair leads to an outstanding accumulation of
DNA damage and, ultimately, cell death. This interaction illustrates that synthetic
lethality is not simply a relationship between two genes but rather a result of broader
pathway vulnerabilities and compensatory mechanisms that become critical when
one pathway is disrupted.

Furthermore, synthetic lethal relationships are not necessarily limited to interactions
between just two entities. For example, studies have shown that the BRCA-PARP
synthetic lethal interaction can be further enhanced by the additional inhibition of
RAD52, a protein involved in an alternative DNA repair pathway [8]. Thus, targeting
multiple genes or pathways together could enhance therapeutic efficacy, particularly
as cancer cells frequently develop resistance to established treatments. Expanding
the concept of synthetic lethality to include interactions involving multiple genes
or pathways could help find promising strategies for overcoming resistance and
improving the effectiveness of cancer therapies.

Most existing computational models are limited to the gene-gene pair concept,
limiting our understanding of more extensive genetic relationships that involve gene
families, gene sets, or even entire pathways. Capturing these broader interactions
computationally is a complex process. Traditional gene-based approaches often fail
to account for the multi-layered, network-driven nature of cellular processes that
drive SL. To bridge this gap, the integration of knowledge graphs could offer a
powerful alternative.

A knowledge graph is a structured representation of knowledge where entities
(such as genes, proteins, and pathways) are connected through edges that denote
relationships, such as functional associations, co-expression, or other regulatory
interactions [9]. Knowledge graphs can capture the intricate network of interactions
that underlie cellular function and can incorporate diverse data types, including
genomics, transcriptomics, proteomics, and metabolomics. By embedding these
graphs within SL prediction frameworks, it becomes possible to explore more
complex relationships beyond simple gene pairs. This approach could enable
the identification of SL relationships among gene families or pathways, offering
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a more holistic understanding of synthetic lethality and potentially revealing new
therapeutic opportunities that target these broader biological contexts. However,
these network-driven approaches should be used with caution, for example only as
a supplement to a robust unbiased method, as their previous performance suggest
that methods based on previously known SL interaction graphs are likely to follow
the bias in the data [10].

UNCOVERING OTHER GENETIC INTERACTIONS

While synthetic lethality has garnered the most attention in the field of cancer
therapeutics, there are other genetic interactions such as synthetic rescue that occur
when the lethal effects of a mutation in one gene are alleviated by mutations or
alterations in another gene [11]. This concept can be used to reactivate tumor
suppression components. For example, if a tumor suppressor gene is inactivated
due to mutations, identifying a synthetic rescue interaction could provide a way to
restore the function in the cells. Currently, besides a couple of studies [12, 13],
synthetic rescue interaction is largely overlooked in computational studies compared
to synthetic lethality predictions.

The primary challenge in identifying synthetic rescue and other genetic interactions
lies in the complexity of their relationships, which often go beyond simple binary
relations. Current computational methods primarily frame the problem as a binary
classification task, where the model predicts whether a specific relationship, such
as synthetic lethality, exists between a pair of genes. This binary approach limits
our ability to explore the full spectrum of genetic interactions. Instead, there is a
need for developing multi-class classification models that can predict not only the
existence of a genetic interaction but also classify the type of interaction whether it
is synthetic lethality, synthetic rescue, or another form of genetic interplay.

6.1.2. STRATIFYING COHORTS DEEPER

Stratifying cancer patient groups is an effective technique to find more refined
cancer treatments. However, cohorts identified by stratification may still contain
subgroups that develop resistance to current treatments. Additionally, as more data
becomes available, we can see that new patients who are assigned to a subcohort
may not respond well to the targeted therapy designed for that specific subcohort.
Over time, each level of subcohorts can become inadequate. For example, initial
stratification by tissue of origin becomes progressively insufficient. Or patient
cohorts stratified by cancer driver genes also become a limitation. Consequently,
more refined stratification is required that incorporates various biomarkers such as
specific mutation types in particular genes, combinations of mutations, alterations
in passenger genes, and other epigenetic markers.

In Chapter 3, we introduced OncoStratifier, a framework designed to further stratify
oncogene-addicted cohorts by identifying drugs that induce the cohort to split into
two distinct groups with different responses to treatment. Unlike other stratification
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problems where ML models can be effectively applied, oncogene-addicted cohorts
often consist of a small number of samples where it is harder to use ML methods
that typically require large datasets. Therefore, we utilized drug response data from
cancer cell lines—one of the more reliable data sources—to identify subcohorts of
oncogene-addicted cohorts with differential responses to a given treatment. To
measure the stratification potential within a cohort, we used Shannon entropy [14],
which quantifies the ambiguity in drug response among the group. Simultaneously,
we ensured that the same drug did not produce a similar stratifying effect in the WT
cohorts, thereby identifying exclusive stratifiers for specific oncogenes.

Our strategy for identifying stratifiers exclusive to a specific oncogene is based on
two key considerations. First, to accurately analyze an oncogene that is driving
cancer, the ideal scenario would involve a cohort where that oncogene is the sole
driver, meaning no other mutated cancer drivers are present. However, such cohorts
are either non-existent or too small to support robust analysis. As a result, both
oncogene-addicted and wild-type (WT) cohorts may include samples where cancer is
also driven by another gene. This overlap introduces a complication: if the response
of a drug response appears stratified within an oncogene-addicted cohort, it may be
due to the presence of another cancer driver within a subset of that cohort.

For instance, if a drug specifically targets a secondary oncogene and this secondary
oncogene is mutated in half of the cohort primarily driven by the first oncogene, the
response to the drug will appear stratified. To exclude such cases, we also examine
whether the response to the drug is stratified in the cohort where the primary
oncogene is wild-type assuming that the mutational status of first and secondary
oncogenes are not identical across the cohort. If the response is stratified in this
cohort as well, it suggests that the drug is likely targeting another cancer driver, and
the observed stratification is not related to the primary oncogene of interest. This
additional check ensures that the identified stratifiers are genuinely associated with
the primary oncogene and are not confounded by other underlying genetic factors.

Moreover, for some of the stratified cohorts, we identified mutational biomarkers
that could transition the study to clinical settings involving cancer patients. This
approach is particularly valuable for well-known cases of oncogene addiction that
currently lack effective treatment or targeting options, such as KRAS mutations in
colorectal cancer [15].

WHEN TO STOP STRATIFYING

The process of stratifying cancer cohorts leads to questions about the depth
of stratification needed. The biggest challenge with deeper stratification is that
subcohorts become increasingly smaller with each level of stratification. As cohort
sizes shrink, the statistical power to detect meaningful differences also diminishes.
Additionally, the evolution of cancer cells, which can gain resistance to therapies,
is not readily characterized and thus does not provide sufficient data for further
stratification. This lack of data makes it hard to achieve clinically meaningful
stratification.
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While stratifying deeper to identify more precise subcohorts, we should also consider
the limitations due to sample size and data availability. Excessive stratification
can lead to subcohorts that are clinically not valuable since they might focus on
irrelevant patterns to cancer such as age, sex, race, or other protected attributes.
Patient stratification research is in need of a theoretical framework to guide these
kind of stratification decisions, focusing on the clinical utility and the potential to
develop effective, targeted therapies.

WHEN AND HOW TO UTILIZE MACHINE LEARNING MODELS IN STRATIFICATION

In our study, we chose not to use ML models for stratification purposes. Firstly,
supervised learning models require pre-existing annotations for each sample, and in
stratification problems, there is usually no ground truth or established annotations
available. This lack of annotated data makes supervised learning models less
commonly utilized in the literature for such applications. Another reason is that
supervised learning models, which require labeled training data, typically need a
large number of sample points to accurately recognize patterns and establish correct
relationships between sample characteristics and their corresponding labels. With a
small number of samples, either no solution is found that maps the features to the
corresponding labels, or the models find a suboptimal local solution that may be
valid for the small sample set but is not a globally optimal solution that would work
for all samples. This means that the performance of supervised learning models is
influenced by the quantity of labeled data available. More samples generally lead to
better performance and more robust models [16]. Oncogene-addicted cohorts often
have very small sample sizes, frequently less than ten, which makes it difficult to
apply supervised learning effectively in these scenarios.

On the other hand, unsupervised learning methods like clustering aim to discover
inherent structures or patterns within data without the need for labeled outputs.
Unlike supervised learning, which requires mapping features to specific labels,
clustering focuses mostly on the similarities and differences among samples based
on their feature representations. Since the aim is not uncovering one specific type of
pattern, these models can group samples solely based on intrinsic properties, which
may reflect different patterns. While having more data can improve the stability and
resolution of the patterns identified in both learning types, some clustering methods
can still be effective with a smaller number of samples if those samples possess
informative features that capture the essential characteristics of the data. The
effectiveness of clustering methods relies more on the distinct separation between
intended clusters rather than the sheer quantity of samples [17]. For instance,
methods like k-means are less affected by sample size as they partition the data into
clusters based on feature similarities regardless of the number of samples [17]. In
contrast, methods based on the number of neighbors, such as DBSCAN, can still
be slightly affected by sample size because they require enough neighbors to form
meaningful clusters [17]. Therefore, although not all, but some of the clustering
methods may be less sensitive to the number of samples, unlike the supervised
learning methods. However, it is important to note that with the advancement of
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clustering methods that use complex deep learning structures, number of samples
may still be as important as supervised learning due to the high number of
parameters to learn.

However, although clustering can find meaningful patterns with fewer samples, the
patterns used to cluster the data may not have clinical or practical utility, as they
are not guided by specific labels or outcomes as in supervised learning. Therefore,
the identified groups may lack therapeutic value because they do not correspond to
any available treatments or actionable targets, rendering the stratification clinically
irrelevant. For example, a subcohort might be defined by a unique combination of
mutations that is not related to any known therapeutic pathways. This limitation
diminishes the practicality of the stratification, as it does not result in actionable
clinical interventions.

Therefore, unsupervised ML methods require additional analysis post-stratification
to determine the relevance and clinical applicability of the identified subgroups.
First, the subcohorts need to be characterized by specific genomic, molecular, or
phenotypic characteristics, if such characteristics exist. Then, subsequent analysis
is necessary to identify any targetable factors within these groups and propose
potential treatments. This multi-step process of post-analysis and validation can be
time-consuming and resource-intensive, complicating the integration of unsupervised
learning into clinical stratification workflows. Without detailed follow-up, there is a
high risk that the identified subcohorts may not translate into meaningful clinical
outcomes.

In summary, the applicability of machine learning (ML) methods for patient
stratification, whether supervised or unsupervised, should be critically investigated
before application. Supervised ML models should be employed only when there is a
sufficient sample size for robust model training and unsupervised methods should
be used only when preliminary evidence suggests that stratification could lead to
actionable therapeutic insights due to extensive post-stratification validation. This
preliminary evidence can be defined in different ways, such as a subcohort starting
to show resistance to an already accepted therapy while retaining its previously
identified biomarker. Stratification can also be tailored to the applicability of an
existing drug that has passed toxicity tests if the drug can be repurposed for a
different subcohort than originally intended.

With current problems in both supervised and unsupervised learning, integrating
clinical relevance with computational techniques can be the only way to make
ML valuable for cancer stratification and precision medicine. This may involve
utilizing features previously linked with clinical relevance to remove potentially noisy
features, using clinical knowledge as constraints to guide unsupervised stratification,
or employing them in post-stratification validation. Additionally, domain experts can
be engaged to guide stratification by providing very limited input to correct model
errors, similar to reinforcement learning, [18] or supplying further information where
the model struggles to make any decisions, as in active learning techniques.
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6.2. SELECTION BIAS IN MACHINE LEARNING MODELS
Previous studies on SL prediction [10], as well as our work in Chapter 2 (ELISL),
have shown that only certain gene pairs, consisting of specific genes or genes from
particular gene sets, are annotated with SL status. This results in a dataset that
is biased towards specific genes. Since most supervised learning methods rely on
these pre-annotated SL pairs for training, the models they produce become also
biased. This is a classic example of selection bias, where samples in a dataset
are not selected randomly or independently of any factor. As a result, training
models on such biased datasets that do not represent the true data distribution,
can lead to reduced generalizability and models that overlook or mispredict cases
that are originating from a distribution that is different from the training data
distribution. The recognition and examination of the impact of selection bias on ML
models remain limited in bioinformatics, as traditional evaluation methods, such as
randomly splitting a dataset into train and test sets, are often used. This approach
may not provide a fair evaluation of an ML method because, even if the split is
random, both the train and test sets will share similar characteristics and inherent
biases already present in the original dataset.

In Chapter 4, to evaluate the generalizability of ML models learned using a
biased train set for a prediction task of interest, we introduced “hierarchy bias”, a
cluster-based method designed to artificially induce bias to any dataset by selecting
specific samples. Hierarchy bias induces selection bias separately for each class by
first finding clusters using hierarchical clustering, and then influencing the number
of samples selected from a specific cluster relative to the others. Unlike other bias
induction techniques [19, 20], this method allows users to control the total and
biased number of samples selected, and can introduce different biases to different
classes, making it more effective in altering the original ideal decision boundary
compared to previous approaches. Machine learning (ML) models trained on
datasets with induced hierarchy bias consistently showed a decline in generalizability
compared to models trained on the same datasets with other existing bias induction
techniques. This indicates that hierarchy bias can effectively introduce selection
bias that alters the correct decision boundary. Therefore, when an independent
validation dataset is unavailable for measuring generalizability, we can artificially
induce bias and generate train and test sets with different distributions, even though
they are derived from the same dataset. This approach allows us to measure
model performance in terms of generalizability by providing train and test sets with
discrepancy in distribution and different decision boundaries.

In Chapter 4, we proposed DCAST, a framework aimed at mitigating selection bias
by incorporating diverse unlabeled (not annotated) samples into the learning of ML
models. The DCAST strategy employs a semi-supervised technique called self-training
(ST) [21], which iteratively adds to the train set new unlabeled samples whose labels
are predicted (pseudo-labels) with high confidence by the latest model trained on
the already available (pseudo-)labeled data. For models learned from biased data,
focus on high-confidence predictions is likely to yield samples more similar to the
biased data, making self-training prone to further strengthening the existing bias. To
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address this, DCAST selects pseudo-labeled samples by identifying distinct clusters
of unlabeled samples for each class and then selecting one sample from each cluster
based on a relaxed confidence threshold, assuming that different clusters contain
samples with varying characteristics. The DCAST framework consistently delivered
models with improved generalizability compared to conventional self-training and
other domain adaptation methods. Evaluation across multiple real-life datasets
with different characteristics demonstrated that DCAST is applicable across diverse
problems, including binary and multi-class classification. However, for effective
selection of diverse pseudo-labeled samples using high-dimensional data, DCAST
ideally requires ML models to have a latent space informed by class labels
(supervised embedding). This requirement is not feasible with all models, such as
logistic regression, which thus limits the applicability of the method.

In Chapter 5, we introduced Metric-DST, a framework similar to DCAST that also
incorporates diverse unlabeled samples using self-training, but relies on metric
learning to obtain supervised embeddings that can be exploited for prediction by
any ML model of interest. Metric learning finds a function that converts original
features into a lower-dimensional representation optimized to separate samples of
different classes. Metric-DST first finds a bounded latent space representation of
the samples using metric learning and then selects pseudo-labeled samples nearby
random coordinates in this space to promote diversity. Any other ML model can
then be employed within this new space to determine pseudo-labels for unlabeled
samples, thereby making the method agnostic to the type of ML model used for
predictions. Metric-DST showed potential for mitigating selection bias across simple
toy datasets, real-world ML benchmark datasets, and synthetic lethality prediction.
While Metric-DST may be more model-agnostic than DCAST, it does introduce an
intermediate step to learn a supervised embedding representation that is not as well
integrated as when this is intrinsically part of the prediction model. This also means
that Metric-DST functions more like a black-box compared to DCAST, limiting user
control and impact.

While both methods are potential solutions for mitigating selection bias within
semi-supervised settings, some limitations remain.

Fundamental Assumptions for Incorporating Unlabeled Samples. All self-training
methods, including DCAST and Metric-DST, begin by training with a labeled set
and assume that the initial model can accurately predict the labels of unlabeled
samples. If the initial performance of the model is not substantially better than
random guessing, self-training methods may fail to assign correct labels to unlabeled
samples, rendering them ineffective. Based on this, we can also argue that the
starting performance of a model trained on biased labeled data will most likely issue
biased predictions and thus have modest generalizability. However, in the presence
of selection bias, even if the unbiased prediction performance (generalizability)
were to be only slightly better than random chance, predictions that are close to
the decision boundary, thus with low confidence, are more likely to be incorrect
while predictions with a high confidence that are further away from the decision
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boundaries are less likely to be incorrect unless the change in decision boundary is
extreme such as finding a linear boundary instead of a nonlinear one. Selection
bias usually causes slight shifts and rotations in the decision boundary, which
predominantly affect samples close to the decision boundary that originally have low
prediction confidence. Consequently, high-confidence predictions are least affected
by changes in the decision boundary, especially in cases where there is a shift without
rotation and the support remains the same. Therefore, considering high-confidence
predictions while promoting diversity makes diverse selection feasible.

Semi-supervised learning, including self-training, relies heavily on the smoothness
and clustering assumptions, besides other assumptions due to label propagation
[22]. Furthermore, one of our proposed methods, DCAST, is also built heavily on the
cluster assumption to identify diverse unlabeled samples. Smoothness assumes that
samples close to each other share the same labels, while clustering assumes that
data is composed of clusters and that samples within the same cluster are likely to
share the same label. Although self-training uses supervised ML model predictions
rather than a purely similarity-based method such as k-nearest neighbors, these
assumptions still apply in self-training, as samples with similar characteristics from
the same cluster are likely to receive similar predictions. However, a fundamental
issue is that not all features in a dataset are necessarily relevant to the prediction
task of interest. For example, in predicting patient response to therapy based on
gene expression profiles, there may be more than 20,000 genes in the feature space,
but only two genes might be relevant to the specific therapy response. As a result,
many samples (patients) might appear similar when considering all 20,000 genes
but not when considering only the two relevant genes or vice versa. Therefore,
this was an important aspect we considered when designing DCAST and Metric-DST
methods and their procedures for assigning pseudo-labels and promoting diversity.
For example, DCAST selects one sample from each identified cluster, and if
this process was done considering the full original feature space we might add
samples from different clusters that looked diverse in the full feature space but
quite similar when only the informative features were considered. This motivated
the use of class informative supervised embeddings instead: lower-dimensional
sample representations learned using supervised ML methods that incorporate class
information to ensure that the dimensions of the new latent space and any distances
based on them are more relevant to the prediction problem.

However, while supervised embeddings can be extracted from random forests or
neural network-based models, simpler models like logistic regression do not provide
a class-informative latent space. For these types of algorithms, suitable alternatives
include using only a selection of class informative features from the original feature
space, or relying on an approach such as Metric-DST to learn a class informative
embedding based on which predictions can be made using an independent ML
model.

Problem of Endless Hyperparameter Space. As ML models become more complex,
they are associated with an increasing number of hyperparameters that require
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extensive tuning. Normally hyperparameter values are determined by the user, but
with automated algorithms the best possible hyperparameters for the specific task
can be found by looking at the performance on the left out validation set. When
these models are combined with other models in a pipeline or integrated into
another framework, the number of hyperparameters further increases since additional
parameters that control the integration of models to pipelines or frameworks also
need to be configured. As the number of hyperparameters grows, it becomes nearly
impossible for humans to manually identify the optimal combination. Although
automated hyperparameter optimization is widely used, when working with biased
datasets the automatic tuning of hyperparameters may overfit or overoptimize the
model for the specific dataset in question to the point that it might fail when used
on other datasets with slightly different characteristics. Therefore, we often focused
on what type of model and architecture were fundamentally required more than
trying to find the most optimal hyperparameters for performance.

6.2.1. THE POTENTIAL OF DOMAIN ADAPTATION METHODS IN

GENERALIZABILITY

Domain adaptation methods are designed to address discrepancies between the
source (training) and target (test) sets, either independently or during model training
[23]. Thus, they typically focus exclusively on specific source and target set pairs,
requiring the retraining of the model whenever the target set to be tested changes.
Thus, they are mainly used when the objective is to improve model performance
for a specific target set, such as predicting the outcome for a new patient from a
different hospital than those represented in the source set. However, their ability to
make models generalizable across all types of target sets without retraining is not yet
well-explored.

Similar to semi-supervised ML methods, domain adaptation can be applied using
unlabeled samples that are different than the samples in target set. Technically
it only requires the models to treat the unlabeled set as the target set. These
methods do not require labels for the target set, which allows them to be applied
to an unlabeled set instead. The idea is to align the distributions of the source set
and the unlabeled set to develop a model that can predict any target sample and
evaluate the model on different target sets. While it is technically feasible to use
domain adaptation methods with a large, readily available set of unlabeled samples
that better approximates the true underlying distribution of the population, their
effectiveness can be limited by the complexity of the decision boundary and the
distribution of the unlabeled data. This limitation arises because most domain
adaptation methods assume that the correct decision boundary, or its support
within the target set, is represented in the source set. However, this assumption
may not hold when using a large and diverse unlabeled set that requires a much
more complex decision boundary than that represented by the biased source set.
Therefore, we should also evaluate domain adaptation methods in semi-supervised
settings where the primary objective is to improve generalizability rather than to
adapt a model to a specific target set.
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6.2.2. POTENTIAL OF MULTIOMICS IN MITIGATING BIAS

Selection bias arises from the way samples are chosen during data collection or
annotation and is not necessarily related to the features of the samples used during
training. However, one could argue that since these samples are selected in a biased
manner based on at least one of their characteristics, the way these characteristics
are represented in the feature space may also be important for mitigating selection
bias if such characteristics are present among the features. Thus, using feature
spaces that are independent from the bias source is important. Since the source of
the selection bias is unknown for most applications, it may be better to use different
feature spaces, while mitigating bias. In bioinformatics, samples can have different
types of measurements at the molecular and cellular level, termed generally as omics,
including gene expression, somatic mutations, protein expression, methylation, and
copy number variation as well as other biological data sources. It is widely known
that each of these data sources contains both common and exclusive information
about samples, such as patients in cancer-related studies. Previous literature has
shown that the performance of ML models can be improved by using multiple omics.
Following this reasoning, we can also use multiomics data that reflect different
characteristics together to mitigate bias.

Self-training conventionally is designed and used for single omics to predict the
pseudo-labels of unlabeled samples, thus not considering different aspects of
using multi-omics. Co-training [24] is a modified version of self-training where
multiple subdatasets that are different portions of the features or samples of the
original dataset are created and utilized while incorporating unlabeled samples. In
co-training, two or more classifiers are trained on different subdatasets of the same
data. These classifiers then iteratively label the unlabeled samples for each other.
The success of co-training relies on the assumption that each view is conditionally
independent given the class label, and that each view is sufficient for learning.
Inspired by the co-training framework, we can modify our methods so that the
pseudo-labels are not predicted by just one data source but by multiple sources
or omics. One strategy would be to use multiple datasets/omics to train multiple
models, with all of them contributing to the pseudo-label prediction. For example,
we could consider adding a pseudo-labeled sample to the training set only if all
ML models from all datasets agree on the pseudo-label of the sample or if a
majority of the models agree on a label. In short, we would still use self-training
procedure but in each iteration, we can use the ensemble of multiple ML models
to decide which samples to incorporate. our main ML model for the self-training
would be an ensemble ML model. While this technique is intuitive and may
improve performance by finding more reliable predictions, it is unknown if it would
contribute to the diversity approach we have used while selecting pseudo-labeled
samples to be incorporated. However, if the feature space of one or more datasets is
more representative, they may still affect how the sample space is used for diversity.

Another approach would be to split the self-training process for each dataset, omic,
or view, and only allow information sharing between them during pseudo-labeling.
For example, there could be a separate self-training process for each omic, but in
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each iteration, the pseudo-labeled samples added for one dataset could be added to
another dataset’s training set. By doing this, we aim to increase the information
sharing between all datasets. Then, in the end, an ensemble model could be built
by combining the resulting models of all datasets.

However, both ideas require careful examination due to many unanswered questions.
What should be done if different models disagree on pseudo-labels? How much
should each model contribute to the ensemble model? Should a model itself agree
with the pseudo-labeled sample sent by other models? Could a model’s good initial
performance be hindered by an unsuccessful model during information sharing?
Therefore, if multiomics are utilized for mitigating bias, these questions need to be
carefully considered and answered.

6.3. FINAL REMARKS
In this thesis, we introduced a method to uncover genetic interactions, specifically
synthetic lethality, that could be used to discover new strategies to treat cancer
patients more effectively. We also developed a method to identify cancer patient
groups experiencing oncogene addiction without current treatment, and propose
potential treatment possibilities for them relying on existing drugs. Additionally, we
presented computational methods to study, replicate, and reduce sample selection
bias in ML.

Throughout our methods, we applied several key concepts, such as using pretrained
ML models to extract valuable information from biological data, employing ensemble
ML models to predict genetic interactions with multiomics, and utilizing drug
entropy information to identify further stratification of underexplored cohorts. We
also used various techniques in semi-supervised settings with available unlabeled
data to address selection bias and unfairness of computational methods. Together,
the proposed contributions strive to make computational methods that suggest
potential cancer treatments fairer and more unbiased.
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