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OBSERVING BANDLIMITED GRAPH PROCESSES FROM SUBSAMPLED
MEASUREMENTS

Elvin Isufi†,‡, Paolo Banelli‡, Paolo Di Lorenzo∗ and Geert Leus†

ABSTRACT

This work merges tools from graph signal processing and
linear systems theory to propose sampling strategies for ob-
serving the initial state of a process evolving over a graph.
The proposed method is ratified by a mathematical analysis
that provides insights on the role played by the different ac-
tors, such as the graph topology, the process bandwidth, and
the sampling strategy. Moreover, conditions when the graph
process is observable from a few samples and (sub)optimal
sampling strategies that jointly exploit the nature of the graph
structure and graph process are proposed. Finally, numerical
tests are conducted to illustrate the benefits of the proposed
approach.

1. INTRODUCTION

A key aspect in graph signal processing (GSP) [1, 2] is the
sampling of bandlimited graph signals, i.e., signals that are
sparse in a well-defined graph Fourier domain [3–5]. Exam-
ples of the latter include temperature measurements, where
adjacent sensors measure similar values, and data from net-
works that exhibit a clustering behavior such as opinion net-
works. Such a graph prior has in fact been exploited by a
number of recent works [3–7] to propose graph signal recon-
struction strategies from a few measurements.

Differently from the above works, where the signal is con-
sidered time invariant, we here generalize the sampling of
graph signals to the observation of the initial state of a time-
varying graph signal named a graph process. These processes
are often encountered in consecutive sensor measurements,
biological signal evolution prone to stimuli, and information
diffusion over networks. The importance of temporal GSP has
been recently recognized by a number of works. The authors
in [8, 9] focus on harmonic analysis of time-varying graph
signals, while [10–12] on graph-time filters. In [13, 14], on
the other hand, the graph-bandlimited prior is exploited for
prediction and tracking of graph processes.

From a different perspective, yet related to this paper,
are the works in [15–17]. The authors in [15, 16] studied
the observability of network processes for sensor placement,
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while [16] focused on designing observable network topolo-
gies. While these findings are of particular importance, these
works do not consider sampling strategies for observing the
network process. Differently, we exploit GSP tools and in
particular the bandlimited prior to bring the graph sampling
theory into the temporal dimension.

More specifically, this paper aims at answering the fol-
lowing research questions: (Q1) Under which conditions is
a bandlimited graph process observable from a few measure-
ments? (Q2) When and where should we collect measure-
ments to estimate the network state up to a desired accuracy?

Next, we present the background material while the meth-
ods employed to answer the above questions are provided in
Section 3. Section 4 instead presents the numerical results
and Section 5 the paper conclusions.

2. BACKGROUND

GSP. Let G = (V, E ,S) be an undirected graph with V and
E the node and edge set, respectively, and with graph shift
operator S (e.g., adjacency matrix, or graph Laplacian). We
denote with x a signal residing on the vertices of G. Following
[1], the graph Fourier transform (GFT) of x is

x̂ = UHx, (1)

where U is a unitary matrix obtained from the eigendecom-
position of S, i.e., S = UΛUH. The diagonal matrix Λ
contains the eigenvalues of S and in analogy with the clas-
sical harmonic analysis they are referred to as the graph fre-
quencies [2]. Given a subset of graph frequency indices F ⊆
{1, . . . , N}, x is said to be perfectly localized over F (or
F−bandlimited) if

UFUH
Fx = x, (2)

where UF ∈ C
N×|F| contains the columns of U relative to

the set F . Similarly, if S ⊆ V is a subset of vertices and
CS = diag(1S) the respective set projection matrix, x is said
to be perfectly localized on S if CSx = x.

Then, we recall the following result from [5]. An F−
bandlimited graph signal x can be perfectly recovered from
samples collected over the set S if and only if

‖CScUF‖ < 1, (3)

i.e., there are no F−bandlimited graph signals perfectly lo-
calized on the complementary vertex set Sc = V\S . Here,
CSc = IN −CS is the projection matrix onto Sc.

������������	��
�����������
����
�������� ���������
���

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2021 at 07:14:55 UTC from IEEE Xplore.  Restrictions apply. 



In the sequel, we will extend condition (3) to the observ-
ability of graph processes, which also corresponds to the an-
swer of (Q1).

Systems on graphs. Consider the N−state discrete linear
time-varying system

xt = At−1xt−1 +Bt−1ut−1 (4a)
yt = CSt

(xt + vt), (4b)

where xt is the state vector containing the graph signal at
time t and ut is the input signal. At and Bt are the time-
varying state-transition and input matrices, respectively, that
are related with the graph structure (see Assumption 1 in the
sequel). yt ∈ C

N is the measurement vector and CSt
=

diag(ct,1, . . . , ct,N ) is the sampling matrix related to the in-
stantaneous sampling set St, i.e., ct,n = 1 if n ∈ St and
ct,n = 0 otherwise. vt is white zero-mean noise with co-
variance matrix Σv = σ2

vIN . Such a model captures the
evolution of different network processes including the heat
diffusion [18], the discretized wave equation on graphs [19],
and ARMA graph processes [20]. In this work, we consider
the graph process to be F−bandlimited as defined next.

Definition 1. A graph process xt with instantaneous GFT
x̂t = UHxt is F−bandlimited if x̂t has non-zero frequency
content only on a subset of graph frequency indices F .

The set F = {n ∈ {1, . . . , N}|x̂t,n �= 0, t ≥ 0}
consists of the union of all instantaneous sets Ft = {n ∈
{1, . . . , N}|x̂t,n �= 0}. We can therefore write

xt = UF x̃t, (5)

where x̃t ∈ C
|F| is the vector containing the entries of x̂t

indicated by F . We will further assume the following.

Assumption 1. The system evolution matrices At and Bt

share the eigenvectors with the graph shift operator S.

This assumption focuses our attention to linear time-
varying systems on graphs that are a function of the graph
shift operator. This is the case for all network processes listed
earlier. With this in place, (4) can be written as

x̃t = Ãt−1x̃t−1 + B̃t−1ũt−1 (6a)
yt = CSt(UF x̃t + vt), (6b)

where Ãt = UH
FAtUF and B̃t = UH

FBtUF are diago-
nal matrices containing the in-band spectrum of At and Bt,
respectively and ũt = UH

Fut. For short, we will refer to sys-
tems that can be written in the form (6) as F−bandlimited
systems on graphs.

3. METHODS

We here presents the theoretical results of the paper and gen-
eralize condition (3) from the reconstruction of an F− ban-
dlimited graph signal to the observation of an F−bandlimited

graph process. To this aim, we adapt the definition of observ-
ability [21] to our context.

Definition 2. An F−bandlimited system on a graph is ob-
servable over the set S0:T =

⋃T
t=0 St = {n ∈ {1, . . . , N}; t ∈

{0, . . . , T}| ct,n = 1} if for any F−bandlimited initial state
x0 and some final time T , the initial state x0 can be uniquely
determined in the absence of noise by the knowledge of the
input ut and measurement yt for all t ∈ {0, . . . , T}.

The set S0:T contains all graph-time locations where and
when the nodes are sampled in the interval {0, . . . , T}. Using
recursion (6), we can now express yt as

yt = CSt
UFÃt,0x̃0 +CSt

UF
t−1∑
τ=0

Ãt,τ+1B̃τ ũτ +CSt
vt,

(7)with

Ãt,τ =

⎧⎨
⎩

Ãt−1Ãt−2 . . . Ãτ , t > τ
I|F|, t = τ
0|F|0T

|F|, t < τ.
(8)

Then, by setting y0:T = [yT
0 ,y

T
1 , . . . ,y

T
T ]

T, we can write

y0:T = O0:T x̃0 + J0:Tu0:T−1 +CS0:T
v0:T , (9)

where O0:T = CS0:T
(IT+1 ⊗UF )Ã0:T , with

CS0:T
= blkdiag(CS0

, . . . ,CST
),

Ã0:T =
[
I|F|, ÃT

1,0, . . . , Ã
T
T,0

]T
,

and where u0:T−1 = [uT
0 ,u

T
1 , . . . ,u

T
T−1]

T, and v0:T =

[vT
0 ,v

T
1 , . . . ,v

T
T ]

T. J0:T is the input evolution matrix in the
interval {0, . . . , T} whose expression is not required for our
derivations, but can be obtained from (7).

Given then CS0:T
, the set projection matrix over the set

S0:T , system (6) is observable over S0:T iff the observability
matrix O0:T is full column-rank [21], i.e., rank(O0:T ) = |F|.
Then, we have

x̃o
0 = O†

0:T (y0:T − J0:Tu0:T−1) , (10)

which is also the least squares (LS) estimate of x̃0 in the pres-
ence of noise. Given the above expression, we can present our
first result.

Proposition 1. An F−bandlimited system on a graph is ob-
servable over the set S0:T only if at least |F| graph-time sam-
ples are taken in the time interval {0, . . . , T}. These samples
can be taken by |F| nodes at a fixed time instant, by one node
in |F| time instants, or by a combination of the two.

Proof. By applying the rank inequality

rank(AB) ≤ min{rank(A), rank(B)} (11)

to O0:T = CS0:T
(IT+1 ⊗UF )Ã0:T , we have that O0:T can

be full column-rank |F| only if rank (CS0:T
) ≥ |F|, which

from the structure of CS0:T
is always true when the claimed

conditions are satisfied.
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In other words, the result of Proposition 1 is equivalent to

|S0:T | ≥ |F|, (12)

i.e., the cardinality of the sampling set must be greater than
or equal to the process bandwidth. However, (12) is only a
necessary condition for observability. In fact, O0:T may be
easily ill-conditioned depending on the particular location of
these samples and the spectral support of x̃0. It is therefore
paramount to carefully pick the samples in a graph-time fash-
ion such that O0:T is of full column-rank |F|, and in the pres-
ence of noise vt �= 0, possibly also well-conditioned. That is,
from rank(O†

0:T ) = |F| [cf. (10)], S0:T should satisfy

rank
( T∑

t=0

ÃH
t,0U

H
FCStUFÃt,0

)
= |F|, (13)

where the single shot graph signal reconstruction [5] is the
special case T = 0. The following theorem generalizes (3)
to a necessary and sufficient condition for the observability of
an F-bandlimited graph process over a sampling set.

Theorem 1. An F−bandlimited system on a graph is observ-
able over the set S0:T if and only if

‖CSc
0:T

(IT+1⊗UF )‖ <
s2min(Ã0:T )

s2max(Ã0:T )
, (14)

where CSc
0:T

= IN(T+1)−CS0:T
is the operator that projects

onto the complementary set Sc
0:T = {n ∈ {1, . . . , N}; t ∈

{0, . . . , T} | ct,n = 0} and smin(Ã0:T ), smax(Ã0:T ) indicate
the minimum and maximum singular values of Ã0:T , respec-
tively.

Proof. The proof is provided in [22].

Condition (14) (analogous to (3)) is again related to the lo-
calization properties of graph signals involving also the evolu-
tion model of the latter. It implies that in their evolution there
are no F-bandlimited graph processes perfectly localized on
the complementary set Sc

0:T . The single shot condition (3) is
obtained for T = 0.

Mean square error. We here quantify how the sampling set
S0:T affects the MSE of the LS estimate (10). The latter will
be then used as a criterion to select good graph-time samples.
The MSE expression is given by the following proposition.

Proposition 2. Given an F−bandlimited graph process fol-
lowing the model (6) and assuming the result of Theorem 1
holds. Then, the MSE of the LS observed signal x̃o

0 is

MSE= E
{‖x̃o

0 − x̃0‖2
}
= E

{
tr
[
(x̃o

0 − x̃0)(x̃
o
0 − x̃0)

H
]}

=σ2
v tr

{[
ÃH

0:T (IT+1⊗UF )HCS0:T
(IT+1⊗UF )Ã0:T

]−1
}
.

(15)

Proof. The claim follows from the covariance matrix of the
LS estimator [23].

Besides characterizing the impact of the graph-time sam-
ples on the MSE1, expression (15) shows that not only the
number of selected samples plays a role, but also their loca-
tion in graph and time. In the sequel, we show how to select
these samples such that a target MSE is guaranteed, which
also answers question (Q2).

Sampling strategy. Given (15), we follow the sparse sensing
approach in [24] to design the sampling set S0:T such that a
target MSE estimation performance is guaranteed. The latter
is achieved as the solution of the convex problem

minimize
c0:T

1T
N×(T+1)c0:T

subject to tr
[(

ΨH
0:TCS0:T

Ψ0:T

)−1
]
≤ γ

σ2
v

,

CS0:T
= diag(c0:T ),

Ψ0:T = (IT+1⊗UF )Ã0:T ,

0 ≤ c0:T,i ≤ 1, i = 1, . . . , N(T + 1),

(16)

where the objective function is the l1-surrogate of the l0-norm
and imposes sparsity in S0:T ; the constant γ > 0 imposes a
target MSE performance; and the last constraint is the relax-
ation of the Boolean constraint c0:T,i ∈ {0, 1} to the box one.
Alternatively, one can adopt a greedy approach similar to [25]
for building S0:T . Obviously, we can also consider the oppo-
site problem where the aim is to minimize the MSE, while
imposing a fixed budget on the selected number of samples.
The latter translates as well into a convex problem.

4. NUMERICAL RESULTS

We evaluate the proposed findings using the Molene weather
data set2. In these simulations, we made use of the GSP box
[26] and CVX [27].

The data set consists of R = 744 hourly temperature
recordings collected in January 2014 over 32 cities in the re-
gion of Brest, France. The graph is a k-nearest neighbour
(kNN) [26] graph with k = 3. For every recording3 rτ , we
diffuse it following the heat diffusion model xt = e−wLdrτ ,
with w = 1.5 and T = 10.

First, we analyze the effect of the sampling set S0:T when
the graph process is perfectly F−bandlimited. In this regard,
we consider |F| = N = 32 (i.e., the entire bandwidth) and
corrupt the measurements with a zero-mean Gaussian noise
with σ2

v = 10−1, which corresponds to an average signal-to-
noise ratio (SNR) of 19.3dB computed as

SNR = 10log10

[∑R
τ=1 ‖rτ‖22
NRσ2

v

]
. (17)

1The absence of model noise in (4a) allows us to find a closed-form ex-
pression for the MSE, rather than an upper bound. It also matches perfectly
the considered models.

2Data publicly available at https://donneespubliques.
meteofrance.fr/donnees_libres/Hackathon/RADOMEH.tar.gz.

3The graph signal consists of the measured temperature after subtracting
their average value.
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Fig. 1: NMSE versus the number of samples for the sampling
algorithm (16) and uniformly random sampling. The process
bandwidth is |F| = N = 32.
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Fig. 2: NMSE versus the number of selected graph-time loca-
tions for the sampling algorithm (16) and a uniformly random
sampling. The process bandwidth is |F| = 8.

The |S0:T | samples are chosen as the ones that minimize the
MSE (15) in a sparse sense fashion. To evaluate the perfor-
mance, we use the normalized MSE (NMSE) between the es-
timated (observed) τ th recording roτ and the true one rτ , de-
fined as NMSE =

∑R
τ=1 ‖roτ − rτ‖2/

∑R
τ=1 ‖rτ‖2.

Fig. 1 shows the obtained NMSE as a function of |S0:T |.
It can be seen that, in contrast to uniformly random sampling,
even with 60 samples (out of 320) an NMSE of −20dB is
achieved. This finding suggests that the sparse observability
approach can also be implemented for graph processes that
have a contribution on the entire bandwidth.

In the second scenario, we restrict the process band-
width to the first |F| = 8 graph frequencies and analyze
two different noise variances σ2

v = {10−1, 5} (SNR =
{19.3dB, 2.3dB}). The sampling set is built similarly as
in the previous scenario.

Fig. 2 depicts the average NMSE as a function of |S0:T |,
where the proposed selection strategy outperforms again the
uniformly random sampling. We further observe that the
NMSE has a lower floor much higher than for the full band-
width case and its value does not reduce even by increasing
|S0:T |. We attribute this limitation to the restricted band-
width, since the out-of-band signal contribution plays a role
in further improving the performance.

In the third scenario, we analyze the effect of the signal
bandwidth on the observability performance. We fix |S0:T | =
60 samples (i.e., almost twice the full bandwidth) and com-
pute the NMSE for different values of |F| and σ2

v . These
results are shown in Fig. 3.

We observe an increasing trend of the NMSE in high
noise regimes (i.e., σ2

v = 5). This suggests that the mean-

0 5 10 15 20 25 30
-25
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Proposed Sampling (16), σ2 = 10−1

Proposed Sampling (16), σ2
v = 5

|F|

N
M

SE
(d

B
)

Fig. 3: NMSE versus the signal bandwidth |F| for different
noise powers. The sampling set has cardinality |S0:T | = 100
chosen by minimizing the MSE (15).

ingful information is concentrated in the first few frequencies
and, therefore, the graph process is bandlimited. This result
suggests that in the presence of noise the process bandwidth
should not be determined solely by the signal energy, but also
by the signal-to-noise ratio (SNR). Indeed, a larger bandwidth
(although the signal has energy content) degrades the over-
all SNR. This finding is further reinforced in the low noise
regime, where a larger bandwidth is preferred to exploit the
SNR on the high frequencies for better observing the process.

5. CONCLUSIONS

We have generalized the sampling of bandlimited graph sig-
nals to time-varying graph processes that follow a predefined
evolution model. We provided necessary and sufficient condi-
tions to observe the initial state of the graph process and per-
formed a detailed MSE analysis to highlight the role played
by the underlying topology, the process dynamics, and the
sampled nodes. Finally, we proposed a sparse sensing sam-
pling strategy to select graph-time samples such that a target
MSE performance is guaranteed.
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