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1. INTRODUCTION 

Discrete choice experiments (DCE) have grown to become the primary source of 
data for obtaining estimates of behavioural importance such as consumer 
preferences for various transport goods and services or willingness to pay (WTP) 
measures for specific attributes such as travel time savings. Over time, as the 
discrete choice modelling literature has matured, a number of econometrically more 
advanced models able to uncover an increasing degree of behavioural richness have 
been developed, typified by the rapid progression from multinomial logit (MNL), 
nested logit (NL), cross-correlated NL and mixed multinomial logit (MMNL) models. 
At the same time, advancements in the construction of experimental designs that 
underlie DCE have been limited and somewhat more erratic in terms of acceptance 
within the wider literature. This is not to suggest however that advancements have 
not been made.  
 
Unfortunately, whilst information related to which alternatives, attributes and attribute 
levels to use may come from secondary data sources or qualitative research such as 
focus groups and in-depth interviews, the precise method used to construct the 
underlying experimental design remain solely at the discretion of the researcher. 
Whilst there exist multiple possible construction methods, each of which make 
different assumptions during the design generation process, unlike estimation 
problems where a number of texts describe the advantages and disadvantages of 
various models (see e.g., Train 2003), there regrettably exists little guidance as to 
which particular method to select when generating an experimental design for DCE 
type studies. A poor choice of experimental design, or one based on an inadequate 
or incorrect set of assumptions, may result in poor data quality. In turn, poor quality 
data may result in erroneous conclusions being reached, or at the very least, less 
reliable parameter estimates at a given sample size. At issue however, is that the 
advancements that have been made in relation to experimental design construction 
for DCEs have largely been theoretical in nature, with little empirical work 
demonstrating whether the theoretical advantages of the various identified design 
strategies actually translate into practice.   
 
As such, the most widely used type of design for DCEs remain what we term 
orthogonal fractional designs or simply orthogonal designs (see Section 2.1). The 
orthogonality (or otherwise) of an experimental design relates to the correlation 
structure between the attributes of the design with designs in which all between 
attribute correlations are zero being said to be orthogonal (in some cases, this 
definition of an orthogonal design may be relaxed to define orthogonality as occurring 
when all attribute correlations are zero within alternatives but not necessarily 
between alternatives; see Louviere et al. (2000) for discussion on sequential versus 
simultaneous generation of orthogonal designs). The popular use of orthogonal 
designs stems firstly from historical impetus, and secondly from a lack of guidance 
within the literature as to whether such designs represent best practice.  



  

 
In relation to historical impetus, experimental design theory as related to early DCE 
was simply borrowed from existing experimental design theory dealing primarily with 
linear models, in particular, ANOVA and regression type models (see e.g., Louviere 
et al. 1983). This resulted in the large scale use of orthogonal designs which 
continued unquestioned for many years to come. The lack of empirical evidence for 
or against the use of such designs stems from the typical use within study of a single 
experimental design. The failure to vary different experimental designs, whilst 
understandable given that most empirical studies are focused on some particular 
practical goal other than testing the impact of different experimental designs, makes 
comparisons of different design construction techniques impossible, as well as 
preventing the offering of a robust set of guidelines for best practice in generating 
experimental designs specifically for DCEs. This coupled with the fact that orthogonal 
designs appear to have worked well over the years has also resulted in their 
widespread use for DCE studies.    
 
Nevertheless, alternatives to orthogonal designs have been available for some time. 
Beginning with Fowkes et al. (1993), Bunch et al. (1996) and Huber and Zwerina 
(1996), new experimental design theories began to emerge in the early to mid 1990s 
specifically for the generation of experiments for the non-linear discrete choice 
models often associated with DCE. Further theoretical advancements in the field of 
experimental designs have been made since including, but not limited to work 
undertaken by Bliemer et al. (2009), Burgess and Street (2003), Ferrini and Scarpa 
(2006), Kanninen (2002), Kessels et al. (2006), Sándor and Wedel (2001, 2002, 
2005), Rose and Bliemer (2008), Scarpa and Rose (2008), Street and Burgess 
(2004) and Toner et al. (1999). The types of designs constructed by these 
researchers, typically referred to as efficient designs, each have the common goal of 
seeking to minimize the determinant of the asymptotic variance-covariance (AVC) 
matrix of models estimated on data collected using the designs, which essentially 
minimizes the standard errors. Differences in the construction methods posed by 
each of the above researchers however lie solely in the assumptions made about 
how to a priori estimate what the AVC matrix of a design might look like without 
having first collected any data.  
   
The objective of this paper is not to detail the advancements in generating 
experimental designs for DCEs. This has been done elsewhere (see e.g., Bliemer 
and Rose 2006, Rose and Bliemer in press, 2008). Rather, the objective of this paper 
is to empirically compare the results obtained from the two different experimental 
designs types that have been proposed and mainly used within the literature. In this 
respect, this paper joins a very small but growing area of research that seeks to 
clarify whether the theoretical advancements claimed by researchers in the area of 
experimental design generation for DCEs translates into practice. It is hoped that 
such research will ultimately produce practical guidelines for the construction of DCE 
experimental designs. 
 
The remainder of the paper is organised as follows. In the next section, we provide a 
brief literature review of several of the top tier transportation journals, in terms of the 
types of experimental designs that have been used in the past. In this section, we 
also provide a review of the literature exploring the empirical impacts of different 
experimental design types. The following section details the experimental context, 
designs and data used for empirical comparison within this paper. Section 4 provides 
a discussion of the results before concluding comments are provided. 
 
 
 



  

2. LITERATURE REVIEW 

In this section we report the results of literature review of a subset of tier 1 
transportation journals specifically looking at the types of experimental designs used. 
We then go onto to discuss the literature examining empirically the impacts of various 
experimental design types have upon behavioural outcomes.   
 
2.1 A Review of the Transportation Literature 
 
Table 1 summarizes the literature using DCE methods published in a subset of tier 
one transportation journals during the period of January 2000 to August 20091. Only 
articles in which the type of experimental design used could be determined are listed 
(i.e., articles such as Hess et al. (2007) which report the use of DCEs but do not 
provide any details as to the experimental designs used are excluded from the table). 
A total of 64 research papers were identified yielding 61 unique DCE experimental 
designs. Of these 61 studies, 40 (66 percent) utilized an orthogonal design, 12 a D-
efficient designs (20 percent), seven (11 percent) randomly assigned attribute levels 
shown to respondents and three (3 percent) used an adaptive design approach, 
alternating the levels shown to respondents based on the respondents previous 
answers.  
 
The number of alternatives, J, for each study reported range between two and six 
and several of these studies included a current or reference alternative from which 
the DCE alternatives are pivoted from (e.g., Hensher and Prioni 2002). The number 
of attributes, K, per alternative varied from three to 46 and the number of levels per 
attribute from two to 30. Some studies, such as Leitham et al. (2000), employed 
designs in which different attributes of the experiment had different numbers of 
attribute levels. Also reported, when detailed in the original study, are the fractional 
factorial dimensions and the size of the experimental designs used. The size of the 
design represents the total number of choice sets, S, generated. The majority of 
studies reviewed employed only a subset of the total possible number of choice sets. 
In determining which choice sets to give to which respondents, most studies used an 
additional blocking column in the design (39, or 64 percent of designs), however, 
some randomly assigned choice sets to respondents (8, or 13 percent). Three (5 
percent) studies gave each respondent all choice sets that were generated as part of 
the design. It was not possible to determine how the choice tasks were allocated to 
respondents in 11 (18 percent) of the studies reviewed. The number of choice sets 
given to any particular respondent is shown in the eighth column of Table 1. 
 
The number of respondents, N, surveyed is shown in the third last column of Table 
1Error! Reference source not found..2 The sample sizes reported represent the 
number of complete surveys returned that were deemed useable for each study. 
Related to the sample size is the number of observations, N.S, defined here as the 
number of choice sets used in the model estimation process. The number of 
observations ranged from a low of 60 (Brewer and Hensher 2000) to a high of 46,632 
(Teichert et al. 2008). The median number of observations over all the studies in 
which the number of observations in the study can be readily determined3 is 2,688.  
 
 



  

Table 1: Review of recent stated preference studies and sample sizes in the literature1 

Reference 
Design 
Type 

Labelled/ 
Unlabeled 

S 
assignment J K S Shown Design size N N.S. 

Models 
Estimated 

Brewer, A.M. & Hensher, D.A. (2000) Orthogonal Unlabeled Random 3 10 27 3 310 20 60 MNL 

Brownstone, D. Bunch, D.S. & Train, K. (2000) Random Unlabeled N/S 3 14 N/S 1 414 7387 4747 ML model 

Leitham, S. McQuaid, R.W. & Nelson, J.D. (2000) Orthogonal Unlabeled Random 2 7 16 2 24×33 40 640 MNL 

Ortúzar, JdeD. Iacobelli A, & Valeze, C. (2000) Orthogonal Labelled All 2 7 8 8 27 357 2774 Logit 

Wang, D. Borgers, A. Oppewal, H. & Timmermans, H. (2000) Orthogonal Unlabeled Blocked 2 14 81 9 23×311 335 3015 MNL 

Hensher, D.A. (2001) Orthogonal Unlabeled Blocked 2+rp 6 64 16 42×61 114 1824 MMNL 

Hensher, D.A. (2001) Orthogonal Unlabeled Blocked 2+rp 6 64 16 412 198 3168 MNL/MMNL 

Hensher, D.A. & King, J. (2001) Orthogonal Labelled N/S 5 9 27 3 39 536 1608 NL 

Saelensminde, K. (2001) Orthogonal Unlabeled Random 2 3 16 9 43 508 4572 Logit scaling 

Bhat, C.R. & Castelar, S. (2002) Orthogonal Labelled Blocked 6 4 32 8 N/S 136 1068 MNL/NL 

Cherchi, E. & Ortuzar, JdeD. (2002) Orthogonal Labelled Blocked 3 4 27 8-9 34 524 1396 NL (SP-RP) 

Garrod, G.D.,  Scarpa, R. & Willis, K.G. (2002) Orthogonal Unlabeled Random 2+no 5 72 8 23×32 414 3312 MNL 

Hensher, D.A. & Greene, W.H. (2002) Orthogonal Labelled N/S 5 3 N/S 4 315 210 840 NL 

Hensher, D.A. & Prioni, P. (2002) Orthogonal Unlabeled Blocked 2+rp 13 81 3 313 N/S 3489 MNL 

Wang, B. Hensher, D.A. & Ton, T. (2002) Orthogonal Unlabeled NA 1 9 27 27 35×34 194 5238 Ordered Probit 

Greene, W.H. & Hensher, D.A. (2003) Orthogonal Labelled Blocked 4 6 32 16 46 274 4384 MNL/LC/MMNL 

Hensher, D.A. & Greene, W.H. (2003) Orthogonal a: Unlabeled Blocked 3+rp 6 32 16 46 274 4384 MMNL 

- Orthogonal b: Unlabeled Blocked 2+rp 6 64 16 412 143 2288 MMNL 

- Orthogonal c: Unlabeled Blocked 2+rp 8 N/S 16 45×23 60 960 MMNL 

Jovicic G. & Hansen, CO. (2003) Orthogonal Unlabeled N/S 2 3-5 N/S N/S N/S 418/589/453 19,989 NL (SP-RP) 

Hensher, D.A. (2004) D-efficient Unlabeled Blocked 3-5 3-6 12-30 6-15 Varying 427 4593 MNL/HEV 

Zhang, J. Timmermans, H., Borgers, A. & Wang, D. (2004) Orthogonal Unlabeled Blocked 2 14 81 9 314 1400 3015 MNL 

Cantillo, V. & Ortuzar, JdeD. (2005) Orthogonal Unlabeled Blocked 2 3 27 9 33 342 3071 MNL/MMNL 

Caussade, S., Ortuzar, JdeD., Rizzi, L.I. & Hensher, D.A. (2005) D-efficient Unlabeled Blocked 3-5 3-6 12-30 6-15 Varying 403 8020 MNL/Hetero L 

de Palma, A. & Picard, N. (2005) Random Unlabeled N/A N/S N/S N/S N/S N/S 4137 N/S Ordered Probit 

Saleh, W. & Farrell, S. (2005) Orthogonal Labelled Random 3 8 27 7 38 632 4424 MNL 

Anderson, C.M., Das, C. & Tyrrel, T.J. (2006) D-efficient Unlabeled Blocked 2 7 35 7 35×42 298 2063 MMNL 

Bastin, F., Cirillo, C. & Toint, P.L. (2006) Orthogonal Labelled N/S 4 7 N/S 3 36×21 871 2602 MMNL 

Bhat, C.R. & Sardesai, R. (2006) Orthogonal Labelled Blocked ¾ 5 from 14 64 4 211×43 319 1276 MMNL 

Cantillo, V. Heydecker, B. & Ortuzar, JdeD. (2006) D-efficient Unlabeled Blocked 3/5 3 N/S N/S N/S N/S 782 MNL 

Cherchi, E. & Ortuzar, JdeD. (2006) Orthogonal Labelled Blocked 2 7 27 9 74 338 3042 NL (SP-RP) 

Espino, R., Román, C. & Ortúzar, JdD. (2006) Orthogonal Labelled Blocked 2 5 27 9 21×34 97 871 NL (SP-RP) 

Greene, W.H, Hensher, D.A. & Rose, J.M. (2006) D-efficient* Labelled Blocked 3-5 46 60 10 446 184 1840 MMNL 

Hensher, D.A. (2006) D-efficient Unlabeled Blocked 3-5 3-6 12-30 6-15 Varying 427 4593 MNL/HEV 



  

Reference 
Design 
Type 

Labelled/ 
Unlabeled 

S 
assignment J K S Shown design size N N.S. 

Models 
Estimated 

Hollander, Y. (2006) Random Unlabeled N/A 2 7 N/A 9 N/A 244 2196 MNL 

Loo, B.P.Y., Wong, S.C. & Hau, T.D. (2006) Orthogonal Unlabeled NS 2 13 N/S 2 21×313 483 815 MNL 

Rizzi, L.I. & Ortuzar, JdeD. (2006) Orthogonal Unlabeled Blocked 2 3 27 9 33 342 3078 Binary Logit 

Scott, D. & Axhausen, K.W. (2006) Orthogonal Labelled Blocked 4 6 N/S 8 212×312 163 1304 Probit 

Scott, D. M. & Axhausen, K.W. (2006) Orthogonal Labelled Blocked 4 24 72 8 213×311 N/S 1034 MNL 

Washbrook, K. Wolfgang, H. & Jaccard, M. (2006) Orthogonal Labelled Blocked 3 4 32 8 34 548 4384 MNL 

Espino, R., Ortuzar, JdeD. & Roman, C. (2007) Orthogonal Labelled Blocked 2 5 27 9 35 97 871 NL (SP RP) 

Fosgerau, M. (2007) Random Unlabeled N/A 2 2 N/A 8 N/A N/S 15,451 WTP space 
MNL 

Fowkes, T. (2007) Adaptive Unlabeled N/A 4 9 N/A 10 N/A 49 N/S Weighted 
Regression 

Hensher, D.A. & Rose, J.M. (2007) D-efficient* Labelled Blocked 3-5 46 60 10 446 184 1840 MMNL 

Hunt, J.D. & Abraham, J.E. (2007) Random Unlabeled Random 2 5 N/A 1 Random 1128 1128 MNL 

Pucket, S.M., Hensher, D.A., Rose, J.M. & Collins, A. (2007) D-
efficient¶ 

Unlabeled Blocked 2+rp 7 40 4/8 57 102 1248 MMNL 

Pucket, S.M., Hensher, D.A., Rose, J.M. & Collins, A. (2007) D-
efficient¶ Unlabeled Blocked 2+rp 7 40 4/8 57 102 1248 MMNL 

Tilahun, N.Y., Levinson, D.M. & Krizek, K.J. (2007) Adaptive Unlabeled N/A 2 2 N/A 5 N/A 167 835 GLMM 

Ahern, A.A. & Tapley, N. (2008) Orthogonal Labelled Random 2 5 16 5/10 22×43 189 1375 Rank ordered 
Logit 

Beuthe, M. & Bouffioux, C. (2008) Orthogonal Unlabeled All 1 5 25 25 56 N/S N/S Ordered Logit 

Hensher, D.A. (2008) D-efficient Unlabeled Blocked 2+rp 5 32 16 45 222 3552 MMNL 

Hensher, D.A. (2008) D-
efficient† 

Unlabeled Blocked 2+rp 5 32 16 4^5 205 3280 MMNL 

Hensher, D.A., Rose, J.M. & Black, I. (2008) D-efficient Unlabeled Blocked 4 6 32 4 23×43 209 pairs 3232 MMNL 

Teichert, T. Shehu, E. & von Wartburg, I. (2008) Orthogonal Unlabeled Blocked 2 7 128 8 27 5829 46,632 LCM 

Train, K. & Wilson, W.W. (2008) Random Labelled N/A 2 3 N/A 3 63 181 543 MMNL 

Tseng, Y.Y. & Verhoef, E.T. (2008) Orthogonal Labelled N/S 4 15 N/S 11 413×22 1005 12,265 MMNL 

Dagsvik, J.K. & Liu, G. (2009) Random Labelled All  3 8 15 15 22×31×52 
×71×111×151 

100 1491 Ordered GEV 

Hensher, D.A., Rose, J.M. Ortúzar, JdeD &.Rizzi, L.I. (2009) D-efficient Unlabeled Blocked 2 12 60 10 31×55×62 
×101×201×301 213 2130 MMNL 

Hess, S. & Rose, J.M. (2009) D-
efficient† 

Unlabeled Blocked 2+rp 5 32 16 45 205 3280 MMNL 

Lee, J. & Cho, Y. (2009) Orthogonal Unlabeled Blocked Ranked 5 216 20 21×33×41 492 9840 Linear 
Regression 

McDonnell, S. Ferriera, S. & Convery, F. (2009) Orthogonal Unlabeled Random 2+rp 7 32 18 22×32×53 310 5442 MMNL 

Puckett, S.M. & Hensher, D.A. (2009) D-efficient Unlabeled Blocked 2+rp 7 40 4 57 108 432 MMNL 

Sener, I.N., Eluru, N. & Bhat, C.R. (2009) Orthogonal Unlabeled Blocked 3 6 N/S 4 21×38×52 1621 6484 MMNL 

Rouwendal, J. de Blaeij, A., Rietveld, P. & Verhoef, E. (in press) Orthogonal Unlabeled Blocked 2 3 N/S N/S N/S 1055 N/S MMNL 

*, ¶, † indicate that the same data set has been used in these studies, N/S = not stated, N/A = not applicable 



  

2.2 A Review of the Empirical Literature Exploring the Impact of Experimental 
Designs upon Modelling Outcomes 
 
A small number of studies have recently begun to examine empirically the 
differences between data sets collected using efficient and orthogonal designs. 
Louviere et al. (2008) in a single study examined 44 different experimental designs 
varying systematically the various design dimensions as well as the level of statistical 
efficiency of the designs. It was found that the more statistically efficient the design, 
the greater the error variance resident within the data. This relationship was found to 
exist independent of the overall dimensions of the design. Hess et al. (2008) 
compared the results of three different experimental designs, including an orthogonal 
design with randomized choice set assignment, an orthogonal design with an 
orthogonal blocking column and an efficient design. They found that the efficient 
design performed only marginally better than the orthogonal design with blocking, but 
that the design with random assignment of choice tasks to respondents performed 
significantly worse than both the efficient design and the orthogonal design with 
blocking. As such, they concluded that the blocking of the experiment was far more 
important than the underlying experimental design itself.  
 
Whilst contributing to our understanding of the impacts differing experimental design 
types might have upon modeling outcomes, both of these studies fail to examine 
whether the two main theoretical advantages commonly associated with efficient 
designs actually translate into practice. That is, efficient designs have been promoted 
within the literature as producing more reliable parameter estimates given smaller 
sample sizes than other forms of designs, such as orthogonal designs. It is this claim 
that we seek to examine here. 
 
3. EMPIRICAL STUDY: AIR TRAVEL CHOICE 

3.1 Empirical Context 
 
The study presented in this paper deals specifically with air travel choice. Typically, 
when travelling to (larger) cities, it is possible to fly to a main airport close to the city 
itself. However, flying into main airports is becoming more expensive, both for the 
individual traveler and the airlines themselves. For this reason, there has been a 
growth in the use of regional airports that are located in the proximity of major cities. 
Such airports typically are cheaper to fly to (due to lower taxes) but require greater 
travel distanced to either access or egress. In the current study, we examine the 
trade-offs mainly between ticket price and travel time. One aim of the study is to 
capture the behaviour of respondents by presenting choices that closely resemble 
real-life choices. For this reason, we selected a particular trip, namely a holiday trip 
from Amsterdam to Barcelona, a popular holiday destination with a significant 
frequency of trips. The origin airport for the study is Schiphol Airport in Amsterdam, 
while the destination airport is either the main Barcelona Airport or the regional 
Girona Airport. The latter airport is much further away from Barcelona city, being 100 
kilometers distant from Barcelona compared to 13 kilometers for Barcelona Airport 
(see Figure 1).  
 
Currently, several charter airlines offer cheap tickets to Girona Airport, such that the 
traveller has the option to pay less for the air component of travel, but requires a 
longer travel time to Barcelona city by bus. Travellers choose a ticket among others 
based on ticket price, departure time, number of stops or transfers, and airline 
company (one can have a preference for a certain airline based on for example, 
experienced comfort or air miles membership card). In the current study, we also 
take destination airport and travel time and cost to the city centre into account. 



  

 

 

Figure 1: Main airport Barcelona Airport and regional airport Girona Airport 
 
 
3.2 The Discrete Choice Experiment 
 
Respondents were asked to complete an online DCE involving the choice of air ticket 
from amongst a set of five possible tickets. In the experiment, each of the five 
alternative tickets were described by the name of the airline offering the ticket, the 
ticket price, the departure time, the number of transfers required and the destination 
airport. To capture egress times and costs, the various tickets also displayed the time 
required to travel from the destination airport to the city of Barcelona as well as the 
price. Given that the flight time from Amsterdam to Barcelona airport and Girona 
airport are roughly the same, this was fixed at two hours and not varied as part of the 
experiment.  
  
Each respondent was exposed to six choice tasks in which the attributes shown were 
varied according to some underlying experimental design (see Section 3.3). The 
levels that each ticket could take as part of the experiment are shown in Table 2. 
Note that depending on the destination airport, different egress time and cost levels 
were selected. It should be noted that all attribute levels are consistent with a single 
trip, and that for example for a round trip double the price is to be considered. Figure 
2 shows an example choice task given to respondents (two alternatives are cut off in 
the screenshot). 
 
Within each choice task, respondents were able to sort the presented alternatives by 
airline, price, travel time, etc., and also select which attributes to show or omit. There 
is also an option to show the total travel time (flight time plus transfer time plus 
egress time) and total price (flight price plus egress price). This flexibility was 
included so as to enhance the feeling of dealing with an actual online travel agent 
rather than a traditional DCE. Of course, before the choice situations are presented, 
the scenario is sketched (a holiday trip from Amsterdam to Barcelona), and in the 
end also questions about the respondent (gender, income, etc.) are asked. 
 

 



  

Table 2: The attribute levels used as part of the DCE 

Airline Ticket Price Departure Time Transfers Egress Price Egress Time 

Air France €50 6:00 Non stop €1* or €9 20 min* or 1 hr 
KLM €75 12:00 1 hour €3* or €12 30 min* or 1hr20 

Iberia €100 18:00 2 hours €5* or €15 40 min* or 1hr40 
Vueling      

Transavia      
Easy Jet     

* If destination is Barcelona, other values are for destination Girona. 
 
 

 
Figure 2:  Example choice task 

 
3.3 The Experimental Design Procedure 
 
Three different experimental designs have been generated; one orthogonal design 
and two D-efficient designs. The smallest (simultaneous) orthogonal design that 
could be located with all attribute levels uncorrelated had 108 choice situations. 
Given that it was determined that presenting each respondent with 108 choice 
situations was not feasible, an orthogonal blocking column was generated such that 
18 blocks were created, each containing six different choice situations. Alongside the 
orthogonal design, a D-efficient design was constructed with 108 choice situations 
which was also blocked into 18 blocks containing six choice tasks each. Finally, a 
second D-efficient design was constructed with 18 choice situations which was 
subsequently blocked into three blocks. In the final survey, each respondent faced 
six choice situations from one of these three designs. The block allocation to the 
respondents was implemented in such a way that an even distribution over the 
different designs was established. The actual experimental designs used are 
available from the authors upon request. 
 
In order to construct MNL efficient designs, the analyst is required to assume prior 
parameter estimates in a Bayesian-like fashion. Researchers need not assume 



  

precise prior parameter values but rather, may assume prior parameter distributions 
that are expected to contain within their range, the true population parameter. In 
taking this approach, the resulting Bayesian efficient design is then optimised over a 
range of possible parameter values, without the analyst having to know the precise 
population value in advance (see e.g., Sandor and Wedel 2001 and Kessels et al. 
2006). For the current study, the two D-efficient designs were generated using 
parameter priors obtained from a small pilot study consisting of 36 respondents 
yielding a total of 216 choice observations. The pilot experiment used the 
aforementioned orthogonal design such that each block was replicated exactly twice. 
The parameter estimates of the pilot study have been estimated according to a MNL 
model where the attribute ‘Airline’ has been dummy-coded with base ‘EasyJet’, and 
departure time has been dummy-coded with base ‘6pm’. 
 
Table 3 shows the model results for the pilot study. The prior parameters used for 
design generation were drawn from Bayesian normal distributions ( )2~ ,Nβ µ σ  
where the mean µ  was assumed to be the estimation value of the parameter from 
the pilot study and the standard deviation σ  the standard error of the parameter. For 
non-significant parameter estimates, the prior parameters were assumed to be zero 
with the corresponding standard error as value for the standard deviation (e.g. the 
prior for egress price is assumed to be normally distributed with mean 0 and standard 
deviation 0.03). 
 

Table 3: Pilot study parameter estimates and efficient design priors 

Attribute Parameter t-value Prior (mean) Prior (stdev) 

Air France -0.516 -1.596 0 0.323 

KLM  0.194  0.661 0 0.293 

Iberia -0.218 -0.729 0 0.299 

Vueling  0.125  0.426 0 0.293 

Transavia -0.547 -1.765 0 0.310 

Ticket Price -0.040 -8.444 -0.040 0.005 

Departure Time (6am)  0.215  0.974 0 0.221 

Departure Time (12pm)  0.614  2.883  0.614 0.213 

Transfer Time -0.006 -3.298 -0.006 0.002 

Egress Price -0.027 -0.904 0 0.030 

Egress Time -0.018 -3.265 -0.018 0.006 

ρ
2
 =0.190, LL=-266 

3.4 Main Field Phase Sample 
 
Respondents were sampled by a Dutch market research company, TeamVier, who 
sent out emails to people in their panel database. In total 618 respondents completed 
the survey, such that the total number of observations (chosen alternatives) is 3,708. 
Of this sample, 206 (1,236 observations) respondents completed choice tasks from 
the orthogonal design, 208 (1,248 observations) from the efficient design with 108 
choice tasks, and 204 (1,224 observations) from the smaller efficient design. 
 
The age groups 26-35, 36-45, and 60+ are more or less equally represented in the 
sample, while age group 45-59 is the largest group and 18-25 is the smallest group. 
Slightly more males than females are in the sample. Most people have a full time job, 



  

the second largest group has a part time job, another large group has no job, and a 
small group stated to be a student. A quite uniform distribution of income is observed, 
from €0 to €70,000 per year.  
 
 
4. EMPIRICAL STUDY: AIR TRAVEL CHOICE 
  

4.1 Overall Model Results  
 
Before examining the impact of the different experimental designs on sample size, 
several models were estimated both on the full pooled data from all three 
experimental designs (i.e., using all 3,708 choice observations), as well as on the 
separate design specific data sets. Table 4 presents the MNL model results from 
these model runs. As well as estimating MNL models, the ‘nested logit trick’ was 
used to test for scale differences between each of the data sets. The result of this 
model are not reported however as the model collapsed back to the MNL model, 
suggesting that the different designs do not induce different degrees of error 
variance. It should be noted that this finding does not contradict that of Louviere et al. 
(2008) however as in that paper, they explored not only different designs, but designs 
with differing design dimensions. In the current study, the design dimensions were 
kept constant with only the experimental design varying.  
 
Table 4 lists the parameter estimates on data from each design separately and 
pooled. Looking at the airline parameters (relative to ‘EasyJet’) of the pooled data, 
the order of preference for airlines appears to be (from most preferred to least 
preferred): Air France, EasyJet, Transavia, Vueling, KLM, and Iberia. As expected, 
both price parameters are negative, and so are the transfer time and egress time 
parameters. It is interesting to look at the parameter ratios, indicating WTP for less 
transfer time or less egress time. The WTP for one hour less transfer time is 
approximately €32.14 (based on the flight price) compared to a WTP for one hour 
less egress time is €19.29 (based on the flight price) or €15.43 (based on the egress 
price). Therefore, roughly speaking one is willing to pay about €10.29 (single trip) for 
flying to Barcelona instead of Girona airport, which is about 40 minutes further away.  
 

Table 4: MNL model results (pooled data) 

Attribute parameter t-ratio lower 95% upper 95%  
Air France  0.377 6.019  0.254  0.500 
KLM -0.232 -3.456 -0.364 -0.101 
Iberia  -0.535 -7.629 -0.672 -0.398 
Vueling -0.008 -0.120 -0.132  0.117 
Transavia -0.137 -2.046 -0.268 -0.006 
Ticket Price -0.028 -25.115 -0.030 -0.026 
Departure Time (6am)  0.283 6.221  0.194  0.372 
Departure Time (12pm)  0.460 9.860  0.368  0.551 
Transfer Time -0.015 -32.228 -0.016 -0.014 
Egress Price -0.035 -5.956 -0.047 -0.024 
Egress Time -0.009 -8.459 -0.011 -0.007 

 
Model fits 
LL(ASC only model) -5879.526 
LL(β) -4774.862 
ρ

2 0.188 
Respondents 618 
Observations 3708 
 



  

Note that the parameters in Table 4 are different from the parameters used as priors 
for the generation of the efficient designs in Table 3. Efficient designs are efficient 
under the assumption that the priors are correct, hence it is likely that some efficiency 
is lost in the data, although the data from a Bayesian efficient design remains 
relatively efficient over a range of parameter prior values. 
 
In terms of testing the hypothesis put forward by Hess et al. (2008) with relation to 
blocking representing the most important criteria of experimental design, given that 
all designs in the current study were blocked, we are unable to test at the level of 
estimating models on the full design specific data sets, the impact of blocking upon 
the design specific results. We are able to test this impact however in Section 4.4 
where we use bootstrapping at various sample sizes, and compare the results after i) 
maintaining equal representation of respondents over the blocks, and ii) 
bootstrapping without reference to the blocks that respondents were assigned.  
 
4.2 Design Specific Model Results  
 
Table 5 presents the MNL model results for each of the designs. The statistically 
significant parameter estimates have the same sign across the three design types 
and are more or less of the same magnitude. However, there are some notable 
differences. For example, the parameter estimates for transfer time and ticket price, 
the two parameters with the highest t-ratios, are quite different between the 
orthogonal and the two efficient designs, and their ratio even more so. Although 
asymptotically any design type should lead to the same parameter estimates, in 
limited samples the parameter estimates can clearly be different. While one would 
expect the parameter estimates to be unbiased (in large samples), regardless of the 
design type used, the design could have an influence. When a design would consist 
of many dominant alternatives, the parameters are likely to be larger (in an absolute 
sense), as the error variance will be smaller for such choice situations. Hence, in a 
stated choice experiment the parameters may become biased when many dominant 
alternatives are included in the experimental design. As the orthogonal design is 
generated without any assumptions on parameter priors, one cannot avoid dominant 
alternatives here (unless one removes them by manual inspection), whereas efficient 
designs mostly rule out choice situations with dominant alternatives (as such a 
choice situation would be very inefficient). Inspection of the orthogonal design indeed 
shows that it contains several choice situations with clearly dominant alternatives, 
whereas the efficient designs contain very few (efficient design with S=108) or none 
(efficient design with S=18). In Bliemer and Rose (2009a) evidence is found that bad 
priors may lead to dominant alternatives in the design, biasing the parameter 
estimates, at least in small sample sizes.  
 
4.3 Comparison of Design Outcomes against Model Results 
 
In generating the design, we assumed some parameter priors obtained from a small 
pilot study, see Table 3. The efficient designs were generated under these 
assumptions. The estimated parameter values are presented in Table 4 (and Table 5 
for each design separately). There are some obvious differences between the 
assumed means of the priors and the estimated parameters, such that the efficient 
designs likely loose some efficiency. However, we have tried to minimize this loss in 
efficiency by adopting Bayesian efficient design principles in which we included the 
uncertainty about these priors (given by the standard deviations in Table 3), as 
explained in Section 3.3. 
 
 
 



  

Table 5: MNL model results for different designs 

 Design 1: Orthogonal, S = 108 Design 2: Efficient, S = 108 Design 3: Efficient, S = 18 

Attribute par. t-ratio 
lower 
95% 

upper 
95%  par. t-ratio 

lower 
95% 

upper 
95%  par. t-ratio 

lower 
95% 

upper 
95%  

Air France 0.422 3.423 0.180 0.664 0.319 2.994 0.110 0.527 0.457 4.401 0.253 0.660 
KLM -0.231 -1.883 -0.471 0.010 -0.402 -3.265 -0.643 -0.161 -0.112 -1.017 -0.328 0.104 
Iberia  -0.488 -3.756 -0.742 -0.233 -0.650 -5.445 -0.884 -0.416 -0.417 -3.523 -0.649 -0.185 
Vueling 0.285 2.345 0.047 0.524 -0.141 -1.324 -0.349 0.068 -0.131 -1.173 -0.351 0.088 
Transavia 0.024 0.190 -0.227 0.276 -0.301 -2.635 -0.524 -0.077 -0.052 -0.469 -0.270 0.166 
Ticket Price -0.035 -17.780 -0.038 -0.031 -0.023 -10.808 -0.027 -0.019 -0.021 -9.649 -0.026 -0.017 
Departure Time (6am) 0.300 3.311 0.123 0.478 0.410 5.387 0.261 0.560 0.171 2.285 0.024 0.318 
Departure Time (12pm) 0.627 7.181 0.456 0.798 0.348 4.181 0.185 0.511 0.303 3.786 0.146 0.460 
Transfer Time -0.011 -13.999 -0.012 -0.009 -0.015 -19.410 -0.017 -0.014 -0.018 -22.350 -0.020 -0.017 
Egress Price -0.041 -3.311 -0.065 -0.017 -0.038 -3.894 -0.057 -0.019 -0.032 -3.330 -0.051 -0.013 
Egress Time -0.012 -5.205 -0.016 -0.007 -0.006 -3.102 -0.010 -0.002 -0.006 -3.342 -0.01 -0.003 
 
Model fits 
LL(ASC only model) -1953.577 -1940.001 -1983.633 
LL(β) -1557.904 -1607.444 -1550.317 
ρ

2 0.203 0.171 0.218 
Respondents 206 204 208 
Observations 1236 1248 1224 

 
  

In the design generation process, the predicted AVC matrices are used to assess 
their efficiency. In model estimation the variance-covariance matrices are an output. 
These variance-covariance matrices determine the standard errors and the t-ratios. 
In this section we would like to compare the predicted t-ratios in the design 
generation process (before the survey) with the t-ratios computed at model 
estimation (after the survey). The model t-ratios are listed in Table 5. The t-ratios for 
each design can be computed by taking the square roots of the diagonals of the in 
the design process predicted asymptotic variance-covariance matrices for the given 
sample sizes (206, 204, and 208 respondents for the three designs, respectively). In 
order to be able to make the comparison, the parameter estimates from the pooled 
data set are used priors. 
 
Figure 3 depicts the comparison between the predicted and observed (in estimation) 
t-ratios for all parameters in each of the three datasets (hence, 11×3 = 33 points in 
the figure). Overall, the prediction is quite good, where predicted low t-ratios are 
observed as low, and high predicted t-ratios are observed high. A very interesting 
observation is, that the observed t-ratios seem to be slightly smaller than the 
predicted t-ratios. Hence, in this case study the predicted t-ratios can be seen as a 
lower bound, where the bound is general quite tight, although some outliers exist. 
Therefore, we conclude that the theoretical design principles are indeed very useful 
and quite accurate in making predictions about standard errors and t-ratios without 
conducting any survey. Hence, it is possible to identify parameters in advance that 
will likely not be statistically significant in estimation. Also, sample sizes can be 
derived as discussed in Bliemer and Rose (2009b). Note that the predicted t-ratios 
will deviate more if the assumed priors deviate more from the actual parameter 
estimates. Therefore, it is wise to invest in a good pilot study in order to obtain a 
good prediction of the t-ratios.  
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Figure 3:  Predicted (before survey) and observed (after survey) t-ratios 

(red = orthogonal design, blue = efficient design 1 (S=108), purple = efficient design 2 (S=18) 
 
 
4.4 Comparison of the Efficiencies of the Design Specific Data Sets 
 
The theoretical justification for using efficient as opposed to orthogonal designs is 
that the former are expected to produce smaller standard errors at a given sample 
size, or conversely require smaller sample sizes to produce larger t-ratios. To date, 
and to the best of our knowledge, this has only been shown to occur in simulated 
data sets. In this section, we examine whether the theoretical advantages of 
generating efficient designs actually translate to real life empirical data sets. We will 
analyze our three data sets that resulted from the three underlying experimental 
designs by (i) looking at the aggregate results using all respondents, and (ii) 
bootstrapping on each data set in order to randomly select respondents in the 
dataset for different sample sizes.  
 
Using the aggregate results, we can compute the D-error for each of the data sets, 
which is the determinant of the variance-covariance matrix, normalized to the number 
of parameters. The D-errors for each of the data sets are presented in Table 6. In 
order to compare these D-errors, we have further normalized each D-error to a single 
respondent. The lower this D-error, the more efficient the data set. As the table 
shows, the two efficient designs generated almost equally efficient data sets. Hence, 
a large design with 108 choice situations need not outperform a small design with 
only 18 choice situations. Since the number of choice situations in the orthogonal 
design could not be decreased (as we were not able to find any such orthogonal 
design), this is a clear advantage of the efficient designs in which the number of 
choice situations can be kept small. Also from Table 6 we can conclude that the two 
efficient designs indeed outperform the orthogonal design in terms of efficiency, 
which should translate itself to smaller standard errors, will is investigated next. 
 

Table 6: Comparison of D-errors 

 Orthogonal design 
(S=108) 

D-efficient design 1 
(S=108) 

D-efficient design 2 
(S=18) 

D-error 0.1253 0.1035 0.1017 



  

 
We use bootstrapping to examine the performance of the three designs over different 
sample sizes. Simultaneously, we also test the impact that blocking has upon design 
performance by performing two sets of bootstrapping on each. Firstly, we bootstrap 
in such a way that each block in each design is replicated an equal number of times 
such that the properties of the design will be maintained through to model estimation. 
Next, we perform bootstrapping in such a way that respondents are randomly 
selected, independent of the design block to which they were exposed. In this way, 
each bootstrap iteration will likely sample respondents unequally from each block, 
thus impacting upon the design properties in terms of how they are expected to 
translate through to model estimation. In each case, we perform 250 bootstrap 
iterations using the same utility specification that was assumed previously.  
 
First, we examine the impact upon the standard errors allowing for equal 
representation within each of the blocks. Across all sample sizes, at the 95 percent 
confidence level, seven of the 11 standard errors for the orthogonal design were 
found to be statistically different when comparing the results of maintaining equal 
block representation against unequal representation, only three were statistically 
different for the first efficient design, whilst all 11 were statistically different for the 
second efficient design. This suggests that blocking may have a statistically 
significant impact upon the statistical efficiency of the parameter estimates, although 
this impact appears to be small in magnitude. Therefore, in the analysis following we 
will just consider the results in which each block is represented an equal number of 
times, noting that the results for unequal representations of the blocks are similar. 
 
Figure 4 graphs the average standard error of each parameter over a range of 
sample sizes based on the bootstrap simulations. The graphs show that the two 
efficient designs produce very similar standard errors, which are in smaller than the 
standard errors produced by the orthogonal design. Only in two situations does the 
orthogonal design produce smaller standard errors, namely for the ticket price 
parameter and (to a lesser extent) the transfer time parameter. This is no 
coincidence. In the graphs also the levels of standard error required to obtain a 
statistically significant parameter estimate (t = 1.96) are plotted by horizontal solid 
black lines, based on the pooled parameter estimates. The ticket price and transfer 
time parameters can easily be estimated with a very small sample size. Efficient 
designs are optimized such that they trade off all standard errors simultaneous, such 
that all parameters can be estimated with relatively low standard errors. It is clear 
that the ticket price and transfer time parameters already have low standard errors, 
hence the efficient designs mainly aim to minimize the standard errors of the other 
parameters, accepting slightly higher standard errors for ticket price and transfer 
time.  
 
The graphs for the two efficient designs are very similar, again finding that an 
efficient design with only a small number of choice situations is just as good as 
efficient designs with a large number of choice situations. Not only is it just as good, 
in larger sample sizes it even (slightly) outperforms the larger efficient design, while 
in smaller sample sizes the larger design seems to yield smaller standard errors. This 
is an interesting observation, which may be explained by the fact that for small 
sample sizes (with only few respondents) the variation in the choice situations may 
play a dominant role, while for large sample sizes the (few) best choice tasks, 
present in the smaller design, yield best results.  
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Figure 4:  Standard errors for different designs per sample size 
 
 
The improvement in standard errors when using an efficient design may seem small, 
but standard errors that are a factor p higher require a factor p2 higher sample size. 
For example, if a standard error is 10 percent higher (factor 1.1), then a 21 percent 
higher sample size is required. Table 7 presents the sample sizes (required for 
statistical significant parameter estimates at the five percent level) for the nine 
statistically significant parameter estimates corresponding to the graphs in Figure 4. 
The percentages in Table 7 are deviations from the sample sizes required for the 
best design, the second efficient design, which performs best for each parameter. 
The first efficient design performs almost equally well. The orthogonal design 
requires for all but one parameter significantly higher sample sizes, ranging from 16 



  

percent to 61 percent more respondents for the same level of statistical significance. 
The parameter that requires less respondents, the ticket price parameter, is only a 
decrease from 5 to 4 respondents and therefore not that relevant.  
 

Table 7: Comparison of sample sizes 

 Orthogonal design  
(S=108) 

D-efficient design 1  
(S=108) 

D-efficient design 2  
(S=18) 

Attribute sample size increase* sample size increase* sample size 
Air France 85 +39% 63 +3% 61 
KLM 221 +23% 221 +23% 179 
Iberia 47 +21% 39  39 
Ticket Price 4  -20% 5  5 
Departure Time (6am) 82 +46% 57 +2% 56 
Departure Time (12pm) 29 +16% 26 +4% 25 
Transfer Time 3  3  3 
Egress Price 98 +61% 61  61 
Egress Time 47 +47% 37 +16% 32 

* extra sample size required, compared to D-efficient design 2. 
 
 
5. DISCUSSION AND CONCLUSIONS 

In this paper, we have provided a systematic and detailed study comparing 
empirically various claims made by researchers as to the benefits of using efficient 
experimental designs for studies involving DCEs. In it, we have provided an overview 
of the various types of experimental designs that have been used in practice for the 
past decade based on a literature review of several tier one transportation journals. 
Based on this literature review, it is clear that the use of efficient designs is growing 
within the literature, although their use still remains in the minority.   
 
In this study we showed that the (asymptotic) variance-covariance matrices 
computed in the design generation process (before the survey) closely corresponds 
to the variance-covariance matrix in estimation (after the survey), such that for 
example t-ratios can be predicted with a quite high level of accuracy for each 
parameter before the experiment is taken to field. However, the prediction quality 
depends on the accuracy of the parameter priors needed to generate the efficient 
designs, making pilot studies even more essential.  
 
An important finding in this research is that we could indeed empirically produce 
lower standard errors with efficient designs compared to an orthogonal design as 
suggest by the theory. These lower standard errors translate into significant 
decreases in sample size for achieving the same level of statistical significance in 
estimation. Also, we found that efficient designs with a large number of choice 
situations need not be more efficient per choice situation than an efficient design with 
a small number of choice situation, even the contrary may be true.  
When we look at the parameter estimates themselves, different designs yield 
somewhat different parameter values and the question rises of the design can bias 
the parameter estimates. It is not entirely clear why this is the case, but we 
conjectured that it may lie in the fact that dominant alternatives in a stated choice 
study bias the parameter estimates. While the orthogonal design contains the most 
choice situations with dominant alternatives, they may be the most biased. An 
alternative possible cause might lie in the way that orthogonal designs are 
constructed. These designs are constructed so that each pairwise attribute 
combination appears an equal number of times (or as close to possible) over the 
design. Thus for example, the 6am, 12pm and 6pm departure time levels each 
appear 12 times with the 0, 60 and 120 minute transfer time attribute levels. This 
relationship need not, indeed does not, hold for the efficient designs. As such, it is 



  

possible that in a stated choice experiment, the parameters may become biased 
when using efficient experimental designs in practice. At present, this remains 
conjecture, and urgent research is required to confirm or rule out this as a possibility. 
 
The current paper suffers from a number of limitations, the most predominate of 
which is our use of MNL models. As has been well know for some time, the MNL 
model fails to account for the correlation of preferences within individuals across 
choice tasks. To account for this phenomenon, more advanced models such as 
MMNL or error components models are required. Whilst we acknowledge this 
limitation here, we note that previous research has found that designs generated 
specifically for MNL models, tend to perform reasonably well when more advanced 
models are used (see e.g., Bliemer and Rose 2008 or Rose et al. 2009). We note 
however that this research also tends to rely on model simulations and hence 
empirical work is required to confirm whether this finding also translates into practice. 
 
Overall, we were unable to substantiate the findings of Louviere et al. (2008) in terms 
of efficient  designs tend to induce greater error variance, although we have also 
conjectured here that that might indeed be the case. We hypothesis that this might 
be due to orthogonal designs producing far more dominated alternatives than 
efficient designs, although again, this requires further research to confirm. Our 
findings do however tend to support those of Hess et al. (2008) in that blocking of the 
design appears to be of some importance. Our study differs to that of Hess et al. 
(2008) in which we do not randomly assign choice tasks to respondents but rather 
maintain respondents within blocks. We further distinguish our research to that of 
Hess et al. (2008) by comparing model results of maintaining between block 
representativeness to a random assignment of respondents independent of blocks, 
nevertheless, we reach similar conclusions in terms of the importance of blocking 
and maintaining equal sampling over blocks in DCEs.  
 
In conclusion, our research empirically supports some of the claims made by those 
researching in the area of efficient designs. Despite the above acknowledged 
shortcomings, we have found that these designs do indeed appear to produce more 
reliable estimates. Whilst we recommend more studies similar to the one described 
here, encompassing greater numbers of types of designs be carried out, we find no 
reason at this point to reject the use of efficient designs, and indeed we recommend 
their use in studies where smaller sample sizes are likely to be a reality. 
 
Notes 
 
1. Journals examined are limited to (in alphabetical order) Journal of Transport 

Economics and Policy, Transportation, Transportation Research Part A, 
Transportation Research Part B, and Transportation Science. 

2. Some studies used a subset of observations from the total sample population. 
Numbers reported are those used in the estimation of models within the article. 

3. In many papers reviewed, the authors were unable to determine the dimensions 
of the experimental design or information about the sample size and number of 
observations captured. Where we were unable to determine these facts, we have 
marked the appropriate cell in Table 1 as ‘not stated’. The conclusion that can be 
drawn from our literature review is that much improvement can be made in terms 
of what is reported within the SC literature. 
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