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Multi-parametricflowandmass cytometry allows exceptional high-resolution exploration of the cellular compo-
sition of the immune system. A large panel of computational tools have been developed to analyze the high-
dimensional landscape of the data generated. Analysis frameworks such as FlowSOM or Cytosplore incorporate
clustering and dimensionality reduction techniques and include algorithms allowing visualization of multi-
parametric cytometric analysis. To additionally provide means to quantify specific cell clusters and correlations
between samples, we developed an R-package, called cytofast, for further downstream analysis. Specifically,
cytofast enables the visualization and quantification of cell clusters for an efficient discovery of cell populations
associatedwith diseases or physiology.Weused cytofast onmass and flow cytometry datasets based on themod-
ulation of the immune system upon immunotherapy.With cytofast,we rapidly generated visual representations
of group-related immune cell clusters and showed correlations with the immune system composition. We dis-
covered macrophage subsets that significantly decrease upon cancer immunotherapy and distinct prime-boost
effects of prophylactic vaccines on the myeloid compartment. Cytofast is a time-efficient tool for comprehensive
cytometric analysis to reveal immune signatures and correlations. Cytofast is available at Bioconductor.

© 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Mass cytometry (cytometry by time-of-flight; CyTOF) can detect as
many as 40 markers present on millions of single cells. The number of
studies based on mass cytometry has considerably increased over the
last few years, broadening simultaneously the choice of clustering tech-
niques, such as SPADE [1], FlowMaps [2], FlowSOM [3], Phenograph [4],
VorteX [5] and Scaffold maps [6], but also dimensionality reduction-
based techniques including PCA [7], t-SNE [8] and Diffusion Map [9]. A
recent new computational tool, HSNE [10], embedded in Cytosplore
[11], proposed a combination of the two afore-mentioned techniques,
building a hierarchical representation of the complete data that pre-
serves the non-linear high-dimensional relationships between cells
and avoids any down-sampling [12]. The aforementioned computa-
tional tools lack, however, the means for downstream analysis, where
no automatic process has been proposed to link clusters abundance
with e.g. clinical outcome and to visually interpret the data in the con-
text of the experimental setup. Citrus [13] is currently a broadly used
analysis tool for statistical comparison but presents several limitations.
The number of samples to be included in such analysis should be
. on behalf of Research Network of C
more than eight and the number of cells are randomly downsampled
before analysis. Moreover, Citrus is using agglomerative clustering,
which brings complexity in data visualization.

Here, we developed a workflow, called cytofast, for a fast and quan-
titative analysis of flow andmass cytometry data. Cytofast allows the vi-
sualization of cluster phenotypes, their abundance per sample and per
group and additionally enables statistical comparisons taking in account
different clinical outcome variables.

We verified our workflow on a non-paired mass cytometry dataset
originating from a published study focused on differences between ef-
fective and ineffective treatment. We also demonstrated the use of
cytofast on a paired dataset of a prime-boost vaccination study. In addi-
tion, we verified cytofast on a flow cytometry dataset. Together these
analyses showed that our workflow is valid, replicating similar findings
previously described and in addition provided a deeper exploration of
the data by newly identifying cell clusters that correlate to treatment.

2. Results and discussion

2.1. Cytofast: workflow presentation

We designed an R package, named cytofast, and introduced a
workflow to quantify and identify significant group-related
omputational and Structural Biotechnology. This is an open access article under the CC BY
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subsets. Cytofast can be used after cluster analysis (for example
with Cytosplore or FlowSOM) has been performed. Here, we fo-
cused on the clustering analysis with Cytosplore using mass and
flow cytometry datasets.
Fig. 1. Schematic overview of the cytofast workflow. Flow and mass cytometry data processe
quantification and exploration of cell subset clusters. Cluster visualization, cluster abundance
manner.
The workflow of cytofast can be divided in four parts (Fig. 1). First, a
heatmapwith a dendrogram is generated showing themedian ArcSinh-
transformed marker expression values (blue-to-red scale) for all the
identified clusters (cluster phenotype overview). Second, a quantitative
d by Cytosplore or other clustering techniques (e.g. FlowSOM) can be used as input for
per sample and quantitative comparisons are automated and displayed in a user-friendly

Image of Fig. 1
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heatmap is generated showing the cell frequency calculated for
each cluster stratified per individual sample. Thus, one row is
representing one biological sample and the identified subsets are
Fig. 2. Identification and abundance of CD45+ cell clusters by cytofast. (A) Mass cytometry d
treatment at two different timepoints (Day 3 and Day 8). Heatmap of all 31 CD45+ cell cluste
transformed expression marker is displayed by a blue-to-red scale. Dendrogram on the top
Euclidean distance and complete linkage clustering. (B) Heatmap of relative abundance (expre
dividual mouse. One row is representing onemouse sample, subsets are displayed per column.
tively, compared to the average. The dendrogram displayed on the left is based on hierarchical
data represented on the panel above by using the median for each group.
displayed per column (cluster abundance per sample). A dendro-
gram, represented on the side of the panel, indicates the cluster-
ing of the samples sharing phenotypic similarities. Hierarchical
ata of CD45+ immune cells in the spleen of mice that received effective and ineffective
rs identified independent of treatment based on Cytosplore clustering. Level of ArcSinh5-
represents the hierarchical similarity between the identified clusters and is based on

ssed as variance or dispersion from themean) for each cluster identified above in each in-
A green or a purple square is representative of a lower or a higher number of cells, respec-
clustering using Euclidean distance and complete linkage clustering. (C) Summary of the

Image of Fig. 2


Fig. 3. Quantitative comparison of cell clusters from unpaired samples by cytofast. (A) Sample t-SNE of the data of Fig. 2 where one dot is representing one sample, based on the cluster frequencies. The two groups, ineffective and effective, can be
clearly distinguished, showing that the immune system is differently shaped by treatment efficiency. (B) Bar graphs representing the average of each sample per group overlaid with the dot plots representing the percentage of the cluster for each
sample. P-values are provided to indicate significant differences between the ineffective and the effective group for both timepoints. Statistical analysis was performed on individual clusters (annotated from 1 to 31) using a t-test.
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clustering was performed on subset frequencies using the
Euclidean distance and complete linkage clustering. The summary
of the quantitative heatmap can be displayed underneath taking
in account the median abundance of each cluster per group.
Next, a dimensionality reduction analysis based on cluster fre-
quency is performed. As a result, a t-SNE map is drawn, where
one dot is representing one sample colored by group assignment,
proposing an alternative way to represent similarities between
samples. Finally, the abundance of each cluster per group is repre-
sented in a quantitative bar graph. Statistical comparison is per-
formed to highlight significant changes in cluster abundance
between groups.

2.2. Cytofast applied to a non-paired mass cytometry datasets: comparison
between effective and ineffective cancer immunotherapy

We tested our workflow on an unpaired mass cytometry data set
from Spitzer et al. [14]. The authors characterized two effective therapies
in mice by a combination of tumor-binding antibodies and adjuvants
(B6-alloIgG + anti-CD40 + IFN-γ, CD-1-alloIgG + anti-CD40 + IFN-
Fig. 4. Identification and abundance of CD45+ cell clusters in the blood of cynomolgusmacaque
all 23 CD45+ cell clusters identified independent of treatment based on Cytosplore clustering. L
drogram on the top represents the hierarchical similarity between the identified clusters. Den
complete linkage clustering. (B) Heatmap of relative abundance (expressed as variance or disp
row is representing onemacaque blood sample, subsets are displayed per column. A green or a p
to the average. Dendrogramdisplayed on the left is based on hierarchical clustering using Euclid
in this figure legend, the reader is referred to the web version of this article.)
γ; together called Eff) and compared these to two ineffective therapies
[15] (anti-PD-1, no treatment; together called Ineff). The experimental
mouse model used was the spontaneous MMTV-PyMT (murine mam-
mary tumor virus-polyoma middle T) model of breast cancer, which is
refractory to other immunotherapies such as checkpoint blockade (i.e.
anti-PD-1). At an early (Day 3) and later (Day 8) stage, mice were
sacrificed and immune cells analyzed (n = 3–4 per treatment, per
timepoint). We focused on comparing the effective and ineffective im-
mune responses in the spleen at the two different timepoints. The
data from the two effective and the two ineffective treatments were
combined, resulting in one large effective treated group and one large
ineffective treated group. Next, the data from the early and later
timepoints of the effective and ineffective treated groups were pooled,
resulting in four different groups. This approach allows then the simul-
taneous analysis of both treatment and time.

Upon processing the data (containing 3.8 million cells) with
Cytosplore, thirty-one clusters could be identified (Fig. 2A), and in-
cluded distinct subsets of cytotoxic T cells (clusters 12, 16), helper T
cells (e.g. clusters 17, 28), B cells (e.g. clusters 29, 22, 30), myeloid
cells (e.g. cluster 21 identifying granulocytes) and erythroid lineages
s after prime and boost immunizationwithmodified vaccinia virus Ankara. (A) Heatmap of
evel of ArcSinh5-transformed expression marker is displayed by a blue-to-red scale. Den-
drogram displayed above is based on hierarchical clustering using Euclidean distance and
ersion from the mean) for each cluster identified above in each individual macaque. One
urple square is representative of respectively a lower or a higher number of cells compared
ean distance and complete linkage clustering. (For interpretation of the references to color

Image of Fig. 4
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(clusters 4 and 27). The generated abundance heatmap for each individ-
ual sample quantitatively compared the abundance of each cluster be-
tween ineffective and effective groups or between an early (Day
3) and late (Day 8) response, (Fig. 2B). The two treatment groups (inef-
fective and effective) on the dendrogram of the heatmap could be dis-
tinguished. The summary heatmap, which displays the data based on
the median of each group, is displayed to recapitulate the observed
changes (Fig. 2C).

Based on the abundance of each cluster per sample, we established a
sample-t-SNEmap (Fig. 3A).We could reveal that the ineffective treated
mice clustered together and that also the effective treated mice clus-
tered, irrespective of the time-point of analysis. The absence of substan-
tial differences on the immune system at an early stage (Day 3) or later
stage (Day 8) indicates that the treatment effect is rapid and remains
prevailing in time. We next analyzed the abundance of each cluster
per group and per timepoint (Fig. 3B). We established that B cells ex-
pressing MHC class II (MHC-II) (clusters 29, 22 and 30) were more
abundant upon effective treatment. Moreover, we newly identified
two myeloid clusters (clusters 6 and 8), which were significantly re-
duced upon effective therapy, specifically at a later stage. These two
subsets presented the highest expression in F4/80 among all the identi-
fied clusters (cluster 6: F4/80+/Ly6G+/CD44+/IgD+, cluster 8: F4/80+/
CD11b+/Siglec-F+).

In conclusion, our workflow enables the overview of a large data set
containing four different groups and improves the profiling of immune
subsets that relate to therapy.

2.3. Cytofast applied to paired mass cytometry datasets: effect of prime-
boost vaccination

To analyze paired samples by cytofast, we selected a partial dataset
from Palgen et al. [16]. The mass cytometry data consists of blood im-
mune cells analysed one day after first and second immunization of cy-
nomolgus macaques with modified vaccinia virus Ankara (MVA).

The clustering analysis from Cytosplore identified twenty-three
clusters, whose phenotype were presented by the heatmap (Fig. 4A).
The abundance of each cluster stratified per sample showed a clear dis-
tinction between the immune response after prime and boost (Fig. 4B).

The difference between the two groups are clearly represented by
the sample t-SNE map (Fig. 5A). The two populations after prime and
boost are distinct, and do not cluster per individual, revealing that the
variation triggered on the immune system of each individual is stronger
than their intrinsic immune signature. The average abundance of each
cluster per group can bedisplayed in bar graphs, and suchquantification
of the data allows thus direct comparisons between groups. We choose
to characterize here the difference between the two groups by paired
analysis for each identified cluster (Fig. 5B). After prime, certain cell
subsets (characterized by CCR7+, IL-8+ and IL-10+) were absent but
these were specifically detected after boost (clusters 1, 7, 12, 14, 15,
16). Conversely, other clusters, displaying low cytokine levels like IL-
10, IL-8 or the CCR7 receptorwere only identified after primebut absent
after boost (clusters 17, 18, 20, 21, 22, 23).

2.4. Cytofast applied to flow cytometry data

With proper adjustment of the clustering in Cytosplore, cytofast can
also be applied to flow cytometry datasets. We tested here a flow cy-
tometry dataset comparing phenotypes of blood cells between patients
suffering fromacutemyeloid leukemia (AML) and non-affected patients
[17] (downloaded from FlowRepository [18]). After processing six ran-
dom samples from each group (non-affected patients called Normal,
and affected patients called AML), we applied cytofast and obtained a
similar visualization output to mass cytometry data (Fig. S1). Thus,
cytofast is also operational for visualization of complex flow cytometry
data sets and can rapidly identify immune subset changes between
groups.
3. Conclusion

Here we report the helpfulness of an R-based workflow, named
cytofast, which is designed for visual and quantitative analysis of flow
and mass cytometry data to discover immune signatures and correla-
tions.Weused a non-paired dataset generated by Spitzer and colleagues
in which the effects of immunotherapy were examined, and newly
identified with cytofast two macrophage clusters (F4/80+/Ly6G+/
CD44+/ IgD+ and F4/80+/ MHC-II+/ Siglec-F+) that were significantly
reduced upon effective therapy, specifically at a later stage. In a prophy-
lactic vaccine study by Palgen and colleagues, paired samples were
analysed and showed clear booster effects of the vaccine on myeloid
cell subsets. The usefulness of cytofast to distinguish different immune
signatures between groups was also observed with flow cytometry
datasets of immune cells in the blood of leukemia patients and non-
affected individuals.

Some of the displayed clusters appear highly similar in the
heatmaps. It is optional for the user tomerge similar clusters. Such clus-
ter merging might remove subtleties, yet this might also make the re-
sults more robust against individual sample variation or batch effects.

For all tested datasets, cytofast yielded rapid results. With standard
modern computer hardware and specifications (32GB RAM memory),
the output was produced in less than thirty seconds (excluding cluster-
ing analysis with e.g. Cytosplore), making this tool highly suitable for a
rapid and visual data screening.

4. Material and methods

4.1. Use of clustering method

The two cohort mass cytometry datasets were downloaded from
Cytobank.

4.1.1. Use of cytosplore
Thefileswere uploaded to Cytosplore, already pre-gated by the orig-

inal authors. Files were sample-tagged by adding the CSPRL_ST channel,
their marker expression arcsinh5 transformed and subjected to dimen-
sionality reduction. The iterations chosen of the HSNE analysis were
1,000. We clustered the data with a kernel size sigma of 30 on the over-
view level and exported the resulting clusters without manually modi-
fying it. Lastly, in R we used cytofast for further analysis of those files.

4.1.2. Use of other clustering method
The use of cytofast is not restricted to a pre-processing of the data

with Cytosplore. Most of the clustering providing a cluster assignment
to each cell can be used (e.g. FlowSOM as detailed in the vignette).

4.2. Use of cytofast

Our workflow is linked to the use of an upstream clustering tools
such as Cytosplore or FlowSOM. We load the clusters produced by ap-
plying the HSNE dimensionality reductions and mean shift clustering
in Cytosplore and saved as FCSfiles. After loading the FCS files of all clus-
ters, cytofast analysis is based on the sample characteristics written to a
single file, gathering relevant information like sample name, clinical
outcome and sample tag (also named CSPRL_ST in Cytosplore). The clin-
ical input can be any qualitative clinical data like gender, or group affil-
iation, or quantitative like tumor size or age.

The vignette, where all the steps are explained to facilitate the repro-
ducibility of the figures and the package itself will be deposited on
Bioconductor. A downsampled number of cells from the Spitzer study
is included in the vignette. Differences might be seen between the
downsampled dataset provided in the vignette and the analysis from
this paper due to the downsampling.



Fig. 5. Quantitative comparison of cell clusters from paired samples by cytofast. (A) Sample t-SNE where one dot is representing one sample, based on the sample frequencies. The two groups can be clearly distinguished, showing that the immune
system is differently shaped upon the two immunizations. (B) Box plots representing the average and standard deviation of each sample per group. Samples are paired. P-values are provided to indicate the significance between different groups.
Statistical analysis was performed for each individual cluster (annotated from 1 to 23) using a t-test.
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4.3. Flow cytometry data

We confirmed that our R script was also valid to represent flow cy-
tometry datasets. We downloaded data files from FlowRepository
(https://flowrepository.org/id/FR-FCM-ZZYA) and selected six patients
per group (Files 0006.FCS, 0014.FCS, 0022.FCS, 0030,FCS, 0046.FCS,
0062.FCS from the Normal group; Files 0038.FCS, 0070.FCS, 0206.FCS,
0262.FCS, 0294.FCS, 0390.FCS from the AML group). Data was clustered
with Cytosplore, clusters sharing high similarities were manually
merged and the resulted output were processed with cytofast.
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