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Abstract

Automated diagnosis of epilepsy for differentiating epileptic EEGs without Interictal
Epileptic Discharges (IEDs) from normal EEGs remains a critical challenge in clinical
settings. Current state-of-the-art methods use algorithms that can effectively detect
epilepsy seizures which improves the current treatment methods for people suffer from
epilepsy. Electroencephalograms (EEGs) analyzed by neurologists which are not able
to meet the criteria are further looked into to obtain an efficient classification. However,
this manual process can be time-consuming and prone to errors. The main objectives
of this research include the development of a robust multi-processing feature extraction
pipeline, the application of VGG16 model / XGBoost classifier, and the validation of
the proposed methods on comprehensive EEG datasets. Specifically, the focus is on
detecting epilepsy in EEG data without Interictal Epileptic Discharges (IEDs) which
poses a significant challenge due to the complex nature of the EEG signals in such cases.

This thesis presents an automated epilepsy diagnosis approach using a multi-
algorithmic feature extraction pipeline. The final models include the development of
a multi-processing feature extraction pipeline, the application of advanced machine
learning / deep learning algorithms, and the validation of the proposed methods on
comprehensive EEG datasets. The results, achieved using an XGBoost classifier with
leave-one-subject-out (LOSO) cross-validation, demonstrate comparable performance
to state-of-the-art epilepsy detectors. The study emphasizes the detection of epilepsy
without IEDs, optimizing models through nested cross-validation, and evaluates their
performance on the Temple University Hospital (TUH) and Erasmus MC (EMC)
Rotterdam datasets.
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Introduction 1
1.1 Epilepsy Diagnosis

Epilepsy is a long-term brain condition where individuals have repeated seizures
caused by brain activity and it affects 50 million people globally [1]. Doctors can
identify epilepsy using an electroencephalogram (EEG) i.e. a method that records the
brain’s activity through electrodes placed on the scalp. According to the World Health
Organization, experiencing one seizure does not automatically indicate epilepsy;
10% of individuals may have a seizure at some point in their lives [1]. Moreover,
epilepsy is diagnosed after two or more seizures occur over a period of time. Early
diagnosis following the seizure is very important for determining the effective long
term treatment options. In regions, such as the Netherlands, diagnosing epilepsy often
involves both EEG and magnetic resonance imaging (MRI) to understand seizure risks
[2, 3].

There are various kinds of brain wave patterns that can be seen in epilepsy such as
seizures and Interictal Epileptic Discharges (IEDs) which are essential for diagnosing
epilepsy [4]. These type of patterns can be observed not only during seizures but also
in between areas that would indicate potential epileptic activity as IEDs [5]. Since
epilepsy is a healthcare issue in the Netherlands, the need for diagnostic approaches
is important. To mitigate these far-reaching implications, the implementation of a
diagnostic system aims to identify high-risk epilepsy patients using techniques from
signal processing and machine learning that can help reduce the occurrence of epilepsy.
Furthermore, one of the main goals is to contribute on epilepsy diagnostics which will
improve the Netherland’s position in neurological studies.

The past few years researchers have been using machine learning and deep learning
models to determine whether a patient has epilepsy or not. This research shows a
detailed data-processing pipeline based on the methodologies shown in Thangavel et
al.’s research [6]. The pipeline includes four essential stages used in many literature:
data acquisition [7], pre-processing [8], feature extraction[4, 6], and classification as
shown in Figure 1.1. Initially, EEG recordings are collected at the medical center /
hospital and processed into a raw EEG data (EDF format). During the pre-processing
phase, there are many techniques used such as artefact removal, sampling, and filtering
for improving the data quality and removing noise in each channel. Next, feature
extraction is used to identify different unique patterns from the processed EEG signals.
Finally, these features are used in the classification stage to differentiate between
epileptic and healthy patients. This systematic approach forms the foundation of this
research methodology [6].
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Figure 1.1: Data processing and analysis pipeline in EEG-based BCI systems.

1.2 The Main Challenges

Epilepsy diagnostics depend mainly on detecting interictal epileptiform discharges
(IEDs) in EEG recordings. The presence of IEDs suggests a high risk of seizure
recurrence up to 90% which often requires immediate concern [1]. On the other
hand, a standard EEG without visible abnormalities usually leads to a follow-up
sleep-deprived EEG to improve sensitivity [2]. However, even with these approaches,
a significant number of patients develop epilepsy despite having initially normal EEG
results highlighting a major diagnostic challenge that will be studied in this thesis.

The current problem in clinical neurology lies in the group of patients with vi-
sually normal EEGs who nonetheless face a significant risk of future seizures. The
inability to identify these patients without IEDs early denies them the benefits of
treatment which can potentially affect their quality of life and increase the burden
on healthcare systems. This highlights a huge gap in the diagnostic process and
underscores the need for enhanced detection methods.

The diagnosis process typically begins with an initial clinical evaluation where
the neurologist gathers detailed medical history and information about the patient’s
seizures. This is followed by a neurological examination to assess brain function
and identify any abnormalities. As mentioned before, the primary diagnostic tools
used are the EEG and MRI. In some cases, additional tests such as blood tests,
lumbar puncture, or neuropsychological evaluations may be conducted to gather more
information [2].

The main goal of this thesis is to introduce an automated way to analyze EEGs
that uncovers hidden indicators of epilepsy beyond the typical IEDs. This framework
can be seen in Figure 1.1. The study seeks to address the gap by using computational
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methods to identify subtle but medically important EEG patterns that can predict
epilepsy in patients showing no apparent abnormalities on standard recordings.

1.3 Research Questions

This thesis investigates various methods for feature extraction, machine learning / deep
learning classification, and model evaluation in the context of EEG signal analysis. This
research aims to address the following questions:

• RQ1: How effective are the traditional feature extraction methods in
distinguishing between epileptic and healthy EEG signals for EEG sig-
nals w/o IEDs?

• RQ2: What is the impact of including additional patient-specific infor-
mation (e.g. age, gender, vigilance state) on the classification accuracy
of EEG signals?

• RQ3: How do different machine learning algorithms and hyperparame-
ter tuning methods affect the classification performance of EEG signals?

• RQ4: What are the comparative performances of the proposed classi-
fication methods on different EEG datasets (e.g., TUH vs. EMC)?

• RQ5: How do deep learning architectures affect the performance met-
rics compared to traditional methods and how do these results align
with those reported in recent research studies?

These questions guide the research presented in this thesis aiming to improve the accu-
racy and reliability of EEG signal classification through advanced feature extraction,
machine learning techniques, and different evaluation methodologies.

1.4 Thesis Outline

The thesis is structured to provide a comprehensive exploration of the research
topic through several sections. It begins with an introduction to epilepsy diagnosis
highlighting the main challenges outlining the problem statement and discussing the
clinical significance of the research. Following this, the research questions guiding the
study are presented along with an overview of the thesis outline.

The background chapter starts off with the current state of knowledge discussing
montages, segment lengths, and combiners, as well as pre-processing techniques and
EEG-level feature extraction methods. This chapter covers various features and
provides an overview of machine learning and classification techniques relevant to the
study.

The methods chapter describes the datasets used followed by an overview of the
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pipeline showing feature selection, data analysis, and feature selection processes. This
chapter also explains the model development, training, and evaluation processes. In
stage one, the evaluation of individual features is explained while stage two focuses
on the evaluation of combined features. In addition to this, the pre-trained model
process is discussed with. The chapter also discusses hyperparameter tuning and
model evaluation along with the evaluation metrics used in this thesis.

The statistical analysis chapter presents a detailed examination of the statistical
methods used in the research including the Mann-Whitney U test and the subsequent
findings. It also provides an overview of the VGG16 model features output analysis
explaining significant features. The results chapter presents the findings from the
feature extraction process and the performance of the models. It includes a detailed
comparison of epileptic patients with interictal epileptiform discharges (IEDs) versus
healthy controls using the TUH dataset and epileptic patients without IEDs versus
healthy controls across both the TUH and EMC datasets. The chapter also discusses
the results from the ensemble method and hyperparameter tuning.

Finally, the discussion chapter shows the results connecting them back to the
research questions and the existing literature which was observed during the literature
review phase. The future research directions and conclusion chapter summarizes the
key findings of the study discusses their challenges for clinical practice and suggests
potential areas for future research in the topic of epilepsy diagnosis.
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Background 2
This chapter provides a brief background on the various techniques and methods used in
this thesis. The current state of knowledge in the field of EEG-based epilepsy diagnosis
is discussed followed by an exploration of specific methods such as montages, segment
lengths, and combiners. Then, the pre-processing steps and the feature extraction
techniques used to analyze EEG data is discussed in detail. Followed by this is a section
discussing the machine learning and deep learning methods used. The processes done
in MATLAB are provided by P. Thangavel, J. Thomas & J. Dauwels and it is replicated
in Python.

2.1 Current State of Knowledge

For the past few years, diagnosing epilepsy involves examining EEG recordings to detect
IEDs and other irregular patterns that can be used in clinical decision making [9, 10, 11].
Despite progress in the field of ML / AI, there are still obstacles in diagnosing epilepsy
especially in patients with normal or inconclusive EEG results which then require long-
term analysis [10]. There are limitations of approaches that prove the need for precise
diagnostic techniques that can provide increased sensitivity and specificity.
Recent studies have focused on making automated systems to detect IEDs using signal
processing and machine learning methods [12]. However, the effectiveness of these
systems may vary depending on factors such as EEG data quality, feature selection
and algorithm usage. This thesis seeks to fill some of these gaps through exploring
techniques for feature extraction and classification to improve the precision of epilepsy
diagnosis. Moreover, the articles studied during the literature phase were from different

Figure 2.1: EEG figures show the locations of the major coordinates of the International
10–20 system with respect to the anatomy of the head and brain [13].
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search engines as can be seen in Figure B.3.

2.2 Montages, Segment Lengths, & Combiners

In EEG analysis, montages refer to how electrodes are arranged / represented on the
scalp [14]. There are different montages used in this thesis that can impact the in-
terpretation of EEG signals. By evaluating the features for various non-overlapping
EEG segment lengths from 2s to 300s, different outcomes are possible. For each seg-
ment length, various statistical combiners are calculated from multiple non-overlapping
epoch segments of the entire EEG as shown in Table 2.1. In this study, as shown in

Table 2.1: Different montages, segment lengths, statistical combiners and feature sets inves-
tigated in this study similar to Thangavel et al. [6].

Montages Segment lengths [s]
Statistical
combiners

CAR
Cz

Bipolar
Laplacian

2
Mean
Median

Standard deviation
Skewness
Kurtosis

5
10
20
30
60
300

Table 2.1, four different types of EEG montages are used i.e. Common Average Ref-
erential (CAR), Cz Referential, Longitudinal Bipolar, and Laplacian montage. In the
CAR montage, the potential at each electrode is measured against the mean poten-
tial of all electrodes removing the influence of a physical reference electrode and the
computation can be seen in Equation 2.1 [15].

VCAR,i = VER,i −
1

n

n∑
j=1

VER,j, (2.1)

where VER,i is the potential of the i-th electrode relative to the reference, and n is the
total number of electrodes.

In the Cz montage, each electrode potential ’V’ is referenced to a specific type
of electrode i.e. in this case the ’Cz’ electrode which is useful for analyzing non-
localized EEG abnormalities and the computation can be seen in Equation 2.2
[6].

VCz,i = VER,i − VCz, (2.2)

where VCz represents the potential at the Cz electrode.

The Longitudinal Bipolar montage involves connecting each electrode to its im-
mediate neighbor in a specific manner i.e. in ’an anterior-to-posterior direction which
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then provides a good spatial resolution for detecting focal brain activity’ as stated in
Demoulin et al.’s paper [14, 16, 17]. The brain regions can then be deduced by the
electrode pairs (19 channels) using Figure 2.1 and this can be seen in Table 2.2.

Table 2.2: Bipolar montage electrode pairs and their corresponding brain regions [18].

Electrode Pair Brain Region

FP1 - F7 Frontal - Temporal
F7 - T3 Temporal
T3 - T5 Temporal - Parietal
T5 - O1 Parietal - Occipital
FP1 - F3 Frontal
F3 - C3 Frontal - Central
C3 - P3 Central - Parietal
P3 - O1 Parietal - Occipital
FP2 - F8 Frontal - Temporal
F8 - T4 Temporal
T4 - T6 Temporal - Parietal
T6 - O2 Parietal - Occipital
FZ - CZ Frontal - Central
CZ - PZ Central - Parietal
FP2 - F4 Frontal
F4 - C4 Frontal - Central
C4 - P4 Central - Parietal
P4 - O2 Parietal - Occipital

The Laplacian montage uses the average potential of the nearest surrounding electrodes
as the reference for each electrode [19]. Reduction of local artifacts is the reason this
montage is known and the computation can be seen in Equation 2.3 [15].

VLaplacian,i = VER,i −
1

n

∑
j∈Si

VER,j, (2.3)

where Si is the set of neighbouring electrodes around the i-th electrode. With the
statistical combiners found in Appendix B, the montages and segment lengths, this
method can create multiple combinations that can be used to obtain a higher accuracy.

2.3 Pre-processing

Pre-processing of raw EEG data is an important step to improve the quality and re-
liability of the signals before feature extraction and classification. The following pre-
processing pipeline was used for this study:

• Noise Removal and Filtering:
The first step involves removing very high noise values i.e. ±9999 which is an
indication for artifacts during measurements [6]. This is followed by applying a
notch filter (4th order, Butterworth) at 60 Hz to eliminate electrical artifacts [20].
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A high-pass filter (4th order) is then used to remove the direct current (DC) offset
and baseline variations from the signals [21]. These filters help in cleaning the
data by removing both high-frequency noise and low-frequency drifts [22].

The filtering process is implemented using the filtfilt function which performs
zero-phase filtering to avoid phase distortions. The padding length (padlen) is
calculated as shown in Equation 2.4.

padlen = 3× (max(len(b), len(a))− 1) (2.4)

where b and a are the filter coefficients [23]. The padtype used is ’odd’ which
pads the signal with odd symmetry.

• Resampling:
To standardize this process further, the sampling rate of the EEG data is down-
sampled to 200 Hz. This uniform sampling rate provides consistent feature ex-
traction and analysis and helps with reducing the number of samples [24]. It can
help especially if the original sampling rate is, for example, 1000 Hz as this can
reduce the number of samples per EEG channel by 5 times.

• Segmentation and Artifact Rejection:
The EEG data is segmented into 1-second intervals using a buffering technique.
Each segment is then analyzed for artifacts by computing the root mean square
(RMS) value. This buffering technique replicates the ’buffer’ function in MATLAB
and it can be seen in Algorithm 5.

Segments with RMS values exceeding a certain threshold, determined based on
noise statistics, are identified as noisy and are subsequently rejected [25]. This step
ensures that the remaining data is free from significant artifacts such as muscle
movements or environmental interferences[12].

• Removing Empty Segments:
To further clean the data, segments that contain minimal EEG activity are iden-
tified and removed. This is achieved by analyzing the difference between adjacent
channels and flagging segments with zero or near-zero values. Removing these
empty segments helps in retaining only the relevant EEG data for analysis [26].

• Conversion to Microvolts:
Finally, the EEG data is converted to microvolts, which is a standard unit for
EEG measurements. This conversion ensures consistency in the amplitude values
of the EEG signals across different recordings and datasets [27].

• Removal of Light stimulation segments:
The segments of EEG data that contain light stimulation events were excluded
to match the data similar to other datasets used for comparison. This is done by
identifying the onset and duration of light stimulation events from an events file.
Moreover, this step is important in eliminating potential artifacts created by the
light stimulation that could mislead the classification results.
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The preprocessing steps described above are crucial for minimizing the impact of vari-
ous artifacts and improving the quality of the EEG data for subsequent analysis.
The pre-processing pipeline ensures that the EEG data is clean, segmented, and stan-
dardized, making it suitable for extracting meaningful features and performing accurate
classification.

2.4 EEG-Level Feature Extraction

Feature extraction is an important step in the analysis of EEG data aimed at iden-
tifying important characteristics of the signals. This process includes extracting
IED-independent features from various domains such as time, frequency, and time-
frequency. Time-domain features include mean, median, and standard deviation, while
frequency-domain features involve power spectral densities and band power ratios.
Time-frequency analysis, such as wavelet transforms, provides a more detailed rep-
resentation of the signal characteristics over time.

2.4.1 Univariate Temporal Measures (UTMs)

Univariate Temporal Measures (UTMs) are essential for analyzing the time-domain
characteristics of EEG signals. These measures provide insights into the statistical
properties of the signals which are important for identifying patterns associated
with epilepsy. This section details the UTMs used in the pipeline explaining their
importance and relevance to epilepsy diagnosis [6]. Consider x(t) to be the EEG signal
for each channel.

Mean: The mean µ of an EEG signal x(t) over a time window is the average
value of the signal.

µ =
1

N

N∑
i=1

x(i) (2.5)

where N is the number of samples in the time window. The mean provides a baseline
level of the signal [28].

Median: The median is the value separating the higher half from the lower
half of the signal values. Unlike the mean, the median is robust to outliers and
provides a better measure for skewed distributions.

Standard Deviation (std): The standard deviation measures the amount of
variation of the signal.

Standard Deviation =

√√√√ 1

N

N∑
i=1

(x(i)− µ)2 (2.6)

where µ is the mean of the signal. A high standard deviation means a lot of variability
in the signal.
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Kurtosis: Kurtosis measures how often outliers occur in the signal distribution.

Kurtosis =
1

N

N∑
i=1

(
x(i)− µ

σ

)4

− 3 (2.7)

where σ is the standard deviation of the signal. High kurtosis values indicate the
presence of sharp peaks in the signal [29]. In Python, the difference of 3 is deducted
from the measure to match the output of the kurtosis function in MATLAB.

Skewness: Skewness measures the asymmetry of the signal distribution which
is important to see the deviations between each feature and the formula can be seen
in Equation 2.8.

Skewness =
1

N

N∑
i=1

(
x(i)− µ

σ

)3

(2.8)

Peak-to-Peak Amplitude (Vpp): The peak-to-peak amplitude is the difference be-
tween the maximum and minimum values of the EEG signal.

Vpp = max(x)−min(x) (2.9)

Number of Zero Crossings: The number of zero crossings is the number of times
the signal crosses the zero voltage line.

Number of Peaks: The number of peaks is the count of local maxima in the
EEG signal. Peaks in the EEG signal can show events such as spikes or artefacts in
epileptic patients.

Nonlinear Energy Operators:

• Envelope-Derivative NLEO (ED): Measures the non-linearity in the envelope
of the signal where H is the frequency response [30].

ED(x) = x′(t)2 +H[x′(t)]2 (2.10)

• Teager–Kaiser NLEO (TE): Estimates the instantaneous energy of the signal
[30].

TE(x) = x′(t)2 − x′′(t) (2.11)

Nonlinear energy operators provide information about the signal’s instantaneous
energy helpful for detecting the changes in EEG data [30].

Signal Energy:

• Time Domain Energy (Et): Total energy of the signal in the time domain [31].

Et = log(
1

N

N∑
i=1

x(i)2) (2.12)
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• Frequency Domain Energy (Ef): Total energy of the signal in the frequency
domain. This can be computed using the Discrete Fourier Transform (DFT) [31].

Ef = log(
N∑
k=1

|X(k)|2) (2.13)

where X(k) is the DFT of the signal x(t).

Shannon Entropy H(x): Shannon entropy measures the uncertainty or randomness
in the signal [32] and Equation 2.14 shows the formula with how to calculate entropy
of a signal x(i).

H(x) = −
N∑
i=1

p(x(i)) log p(x(i)) (2.14)

where p(x(i)) is the probability distribution of the signal values.

The box plots can be seen in Figure A.16 which compares the healthy and epileptic
patients in the TUH dataset. The combination of these features allows for a compre-
hensive understanding of the EEG signal’s statistical properties which are important
for distinguishing between normal and abnormal brain activities.

2.4.2 Spectral

We evaluate spectral features, specifically, relative power (RPf ) obtained from five EEG
frequency bands: delta (δ, 1–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–13 Hz), beta (β,
13–30 Hz), and gamma (γ, 30 Hz) [6]. Relative power (RPf ) is defined as shown in
Equation 2.15 [6].

RPf =
Pf

Ptotal

(2.15)

where total power (Ptotal) is the sum of the powers of all frequency bands:

Ptotal = Pδ + Pθ + Pα + Pβ + Pγ

and f indicates different frequency bands (f ∈ {δ, θ, α, β, γ}). This calculation results
in five feature values for each single-channel EEG segment.

2.4.3 Wavelet Features

Wavelet transform is a method that shows the time-frequency representation of EEG
signals and can be used for feature extraction of signals [33]. It captures both the
frequency and temporal content. In this study, the wavelet coefficients are extracted us-
ing Discrete Wavelet Transform (DWT) and Continuous Wavelet Transform (CWT) [6].

Continuous Wavelet Transform (CWT): The CWT of a signal x(t) is de-
fined as shown in Equation 2.16 [34].
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W(a, b) =
1√
|a|

∫ ∞

−∞
x(t)ψ∗

(
t− b
a

)
dt (2.16)

where a is the scale parameter, b is the translation parameter, ψ(t) is the mother
wavelet, and ψ∗(t) denotes the complex conjugate of the mother wavelet. The type
of mother wavelet used for the CWT is the Morlet (morl) because of its good balance
between time and frequency resolution which is one of the main reasons most research
papers use this [35]. When applied to a discrete signal x[n], the CWT results in a
matrix of coefficients:

CWTmatrix =


W (a1, b1) W (a1, b2) · · · W (a1, bN)
W (a2, b1) W (a2, b2) · · · W (a2, bN)

...
...

. . .
...

W (aM , b1) W (aM , b2) · · · W (aM , bN)

 (2.17)

For this study, specific parameters are used to compute the CWT matrix based on the
paper from Thangavel et al [6]. These parameters include the scale parameter s0, the
scale increment ds, and the number of scales Nbsc. The scales above frequency of 2 Hz
are calculated as follows:

s0 = 2.45, ds = 0.4875

Note that the s0 value in MATLAB is 0.2 whereas in Python 2.45 was the lowest value
to be chosen due to difference in computation complexity. The number of scales Nbsc
and scales are computed as shown in Equation 2.18 and Equation 2.19 respectfully [36].

Nbsc =

⌊
log2(nsamples · dt/s0)

ds

⌋
(2.18)

scales = s0 · 2(k·ds), k = 0, 1, . . . , Nbsc− 1 (2.19)

By using the FFT algorithm, the CWT computation captures the time-frequency
characteristics of the EEG signals with high precision. This approach is essential for
identifying and analyzing patterns associated with epileptic activity leading to more
robust diagnostics. Besides this, the algorithm is faster than the convolution algorithm
used in Python. This results in truncating the resulting CWT matrix to include the
first 13 scales.

Discrete Wavelet Transform (DWT): The DWT decomposes a signal into a
set of basis functions called wavelets obtained by shifting and scaling the mother
wavelet function. It decomposes the signal into approximation (known as low pass
sub-band) and detailed coefficients (high pass sub-band) [37]. Considering a signal
x[n], each phase involves high pass and low pass filters i.e. g[n] and h[n], and double
down samplings. From the approximation coefficients Aj(k) at level j, the coefficients
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Figure 2.2: Structure of decomposition with DWT at level 6 [40].

Aj+1(k) and Dj+1(k) is computed as shown in Equation 2.20 [38].

Dj+1(k) =
∑
n∈z

g(2k − n)Aj(n) = cDj+1

Aj+1(k) =
∑
n∈z

h(2k − n)Aj(n) = cAj+1

(2.20)

The type of mother wavelet used is the Daubechies (db4) i.e. 6 level wavelet decompo-
sition [39].

DWT(j, k) =
N−1∑
n=0

x[n]ψj,k[n] (2.21)

where ψj,k[n] is the mother wavelet function for the DWT.
The DWT results in a set of coefficients for each level of decomposition:

DWTmatrix =


cA1 : cA6

cD1

cD1
...
cDj

 (2.22)

where cAi are the approximation coefficients at level i and cDj are the detailed coeffi-
cients at level j. Note that MATLAB has pre-defined functions to obtain the approxi-
mation and detailed coefficients. In python, the Pywavelets package is used [41]. The
psuedo code for this is shown in Algorithm 1.
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Algorithm 1 Discrete Wavelet Transform (DWT) Process

1: Input: data, Fs,montage, wavelet
2: Output: c all (combined coefficients)
3: data← apply montage(data,montage)
4: for each channel j in data do
5: signal← data[j]
6: coeffs← pywt.wavedec(signal, wavelet =′ db4′, level = 6)
7: for i from 1 to 6 do
8: cD[i]← coeffs[i]
9: end for

10: for i from 1 to 6 do
11: max level← len(coeffs)− 1
12: if i == max level then
13: cA[i]← coeffs[0]
14: else
15: Aj ← pywt.waverec(coeffs[: −i], wavelet =′ db4′)
16: if abs(Aj[−1]−Aj[−2]) < 0.00001 then
17: Aj ← Aj[: −1]
18: end if
19: cA[i]← Aj
20: end if
21: end for
22: c all← [cD[i], cA[i] for i from 1 to 6]
23: end for
24: return c all

Extracted Features:
From the wavelet coefficients, two features are extracted: the mean and the standard
deviation of the square of the absolute values of the coefficients. These features capture
the statistical properties of the wavelet coefficients providing valuable information about
the EEG signal.
For a given set of wavelet coefficients W (ai, bj), the detailed mathematical formulation
is shown in Equation 2.23 [42].

MSA =
1

MN

M∑
i=1

N∑
j=1

|W (ai, bj)|2

SSA =

√√√√ 1

MN

M∑
i=1

N∑
j=1

(|W (ai, bj)|2 −MSA)2

(2.23)

The mean and standard deviation of the absolute values of the Continuous Wavelet
Transform (CWT) and Discrete Wavelet Transform (DWT) coefficients are calculated
as shown in Equation 2.24 [6].
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MSAmorl = mean(|CWTmatrix|)
SSAmorl = std(|CWTmatrix|)
MSAdb4 = mean(|DWTmatrix|)
SSAdb4 = std(|DWTmatrix|)

(2.24)

These simplified features, calculated as the mean and standard deviation of the absolute
values of the wavelet coefficient matrices, offer a practical and computationally efficient
means to capture essential characteristics of the EEG signals for further analysis. To
illustrate the wavelet features, the average CWT coefficients across a subset of epileptic
and healthy EEGs can be computed and visualized. The visualizations in Figure A.8
help to illustrate the differences in the time-frequency characteristics of EEG signals
from epileptic and healthy patients. These differences are crucial for developing accu-
rate diagnostic models and understanding the underlying brain activity. The color bar
indicates the squared magnitude (power) of the CWT coefficients.

2.4.4 Connectivity Features

In this study, we evaluate the connectivity between the n channels of EEG to under-
stand the interactions and communication between different regions of the brain. The
connectivity features are derived by computing the n2 connectivity matrix between
the channels and then extracting the lower triangular matrix features. This results in
(n2 − n)/2 features which is exactly replicating the method proposed by Thangavel
et al. [43]. We focus on two primary connectivity measures: maximum normalized
cross-correlation (C-C) and phase locking value (C-PLV). These measures provide
valuable insights into the temporal and phase relationships between EEG channels,
which are crucial for understanding the underlying neural dynamics associated with
epilepsy [43, 44].

Maximum Normalized Cross-Correlation (C-C)
The maximum normalized cross-correlation between two input signals xn and yn is a
measure of the similarity between the signals as a function of the time-lag applied to
one of them. It is computed using the following Equation 2.25 and 2.26 [43].

R̂xy,max(m) =
1√

R̂xx(0)R̂yy(0)
R̂xy(m), (2.25)

R̂xy(m) =

{∑N−m−1
n=0 xn+m × y∗m, for m ≥ 0,

R̂∗
yx(−m), for m < 0,

(2.26)

where R̂xy(m) is the cross-correlation function, R̂xx(0) and R̂yy(0) are the autocorre-
lations of xn and yn at lag 0, respectively, and * indicates complex conjugation. This
measure captures the strength and direction of the relationship between two EEG
signals over different time lags [43].
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Phase Locking Value (C-PLV)
The phase locking value (C-PLV) quantifies the consistency of the phase difference
between two signals across time. It is computed as [44]:

C− PLV =
1

N

∣∣∣∣∣
N∑

n=1

exp (i [ψx(n)− ψy(n)])

∣∣∣∣∣ , (2.27)

where ψx(n) and ψy(n) are the instantaneous phase values of the signals xn and yn
at time n, computed using the Hilbert transform, and i denotes the imaginary unit.
The C-PLV ranges from 0 to 1, with 1 indicating perfect phase synchronization and 0
indicating no phase synchronization [44].
Visualisation of the connectivity matrices comparing a healthy and epileptic patient are
shown in Figure A.9. By using these connectivity measures, we can gain insights into
the functional connectivity patterns in the brain, which are critical for understanding
the neural mechanisms underlying epilepsy. These features are extracted and used in
subsequent analysis and classification tasks to improve the accuracy and robustness of
epilepsy diagnosis.

2.4.5 Stockwell transform

The Stockwell Transform (ST), also known as the S-transform, is a hybrid of the Short-
Time Fourier Transform (STFT) and the Continuous Wavelet Transform (CWT) [45].
It combines the frequency localization properties of the STFT with the multiresolution
capabilities of the CWT making it highly suitable for analyzing non-stationary signals
such as EEG.
The Stockwell Transform is defined as a CWT with a specific mother wavelet w(t, f)
multiplied by a phase factor [45]. The ST of a signal x(t) is shown in Equation 2.28.

S(τ, f) = exp(i2πfτ)W (τ, d) (2.28)

where the CWT of an input function x(t) is defined as shown in Equation 2.29 [46].

W (τ, d) =

∫ ∞

−∞
x(t)w(t− τ, d) dt (2.29)

and the specific mother wavelet is defined as shown in Equation 2.30 [6].

w(t, f) =
f√
2π

exp

(
−t

2f 2

2

)
exp(−i2πft) dt (2.30)

Here, the scale parameter d is the inverse of frequency f . In MATLAB, the edge
removal process is often handled automatically, but in Python, we need to apply edge
removal manually before performing the Hilbert transform and then applying the Stock-
well Transform. The edge removal process is shown in the psuedo-code in Algorithm
2. The following steps are crucial for ensuring accurate ST computation:

• Edge Removal: This step removes polynomial trends from the data and applies a
window function to smooth the edges of the timeseries data [47]. To mitigate edge
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Algorithm 2 Edge Removal Process

1: function apply edge removal(timeseries)
2: n← length of timeseries
3: ind← range from 0 to n
4: r ← polynomial fit(ind, timeseries, 2)
5: fit← polynomial evaluate(r, ind)
6: timeseries ← timeseries - fit
7: sh len← ⌊n/10⌋
8: wn← hanning window(sh len)
9: if sh len == 0 then

10: sh len← n
11: wn← array of ones with length sh len
12: end if
13: timeseries[:sh len//2] ← timeseries[:sh len//2] × wn[: sh len//2]
14: timeseries[-sh len//2:] ← timeseries[-sh len//2:] × wn[−sh len//2]
15: return timeseries
16: end function

effects, a second-degree polynomial fit was removed from the time series data. The
time series X(t) is detrended by fitting a polynomial P (t) and subtracting it:

P (t) = at2 + bt+ c (2.31)

where a, b, and c are coefficients determined by polynomial fitting. The detrended
signal is then given by:

Xdetrended(t) = X(t)− P (t) (2.32)

In addition to this, a Hann window was applied to the edges of the signal for
smoothing.

• Hilbert Transform: This step is used to compute the analytic signal which provides
instantaneous amplitude and phase information [48]. The Hilbert transform is
applied to the edge-removed time-series data.

• Stockwell Transform: Finally, the Stockwell Transform is applied to the prepro-
cessed signal to obtain the time-frequency representation using the stockwell pack-
age [49].

Extracted Features From the Stockwell Transform, two features are extracted that
are particularly relevant for analyzing EEG signals:

• Mean Square Root of Standard Deviations (ST-SR): This feature captures
the mean square root of the standard deviations of the ST matrix, providing a
measure of the variability in the signal across different frequencies and time epochs.

ST-SR = mean
(√

std(STmatrix)
)

(2.33)
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• Skewness of Sum of Powers (ST-P): This feature measures the skewness of
the sum of the powers of the Stockwell Transform over epochs of Fs

2
, giving insights

into the asymmetry of the power distribution in the signal [50].

ST-P = skewness
(∑

|STmatrix|
)

(2.34)

In Python, edge removal and Hilbert transform are performed before computing the
Stockwell Transform to ensure accuracy. Moreover, the features above capture the
statistical properties of the Stockwell Transform coefficients providing valuable infor-
mation about the underlying EEG signal. The ST-SR feature helps in understanding
the signal’s variability while the ST-P feature highlights the asymmetry in the power
distribution which are both important for distinguishing between normal and abnormal
brain activities.

2.4.6 Graph metrics

Graph metrics play a crucial role in understanding the connectivity and structural
properties of EEG networks. Derived from the Cross-Correlation (C-C) and Phase
Locking Value (PLV) feature sets, these metrics provide insights into the topological
characteristics of brain networks. This section details the graph metrics used in this
study, computed using the MATLAB Brain Connectivity Toolbox [51]. From the C-C
and C-PLV feature sets, two types of networks are constructed:

• C-C Network (C-C-net): Based on Cross-Correlation features [6].

• C-PLV Network (C-PLV-net): Based on Phase Locking Value features [6].

Nodal features provide information about individual nodes (channels) within the net-
work. The following nodal features are calculated (see Table 2.3). Note that these
descriptions were taken from the BCT toolbox and a few research papers [52, 53, 54].
Edge features describe the properties of connections between nodes. The following
edge features are computed (see Table 2.4). An aggregate feature provides a summary
measure of the network. In this case, there is only 1 feature i.e. matching index that
provides a measure of the similarity of neighbors between pairs of nodes [53]. In addi-
tion to this, the graph metric visualisations are shown in Figure A.11. Moreover, some
of the features didn’t work the same as in MATLAB so a few of the algorithms had
to be re-written due to conflicts in the BCT Python toolbox. Some of the algorithms
are re-written and implemented to match the MATLAB code and this can be seen in
Appendix D.
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Table 2.3: Nodal Features in EEG Network Analysis with descriptions taken from BCT
Toolbox [53, 52].

Feature Name Description

Degree The number of connections a node has.

Strength The sum of weights of connections a node has.

Assortativity The tendency of nodes to connect to others that are similar.

Characteristic Path
Length

The average shortest path length between nodes.

Local Efficiency Efficiency of information transfer within a node’s neighbor-
hood.

Eccentricity Most distance b/w 2 nodes.

Betweenness Centrality Count of shortest paths through each node.

Eigenvector Centrality Strength of a node in a network.

Clustering Coefficient The degree to which nodes cluster together.

Node Coreness The level of connectivity of a node within the core of the
network.

Participation Coeffi-
cient

The extent of a node’s connections within different commu-
nities.

Diversity Coefficient The diversity of a node’s connections across different com-
munities.

Table 2.4: Edge Features in EEG Network Analysis with descriptions taken from BCT Tool-
box [52].

Feature Name Description

Assortativity Coeffi-
cient

The correlation between the degrees of connected nodes.

Global Efficiency The efficiency of information transfer across the entire net-
work.

Radius The minimum eccentricity of any node in the network. [54]

Diameter The maximum eccentricity of any node in the network. [54]

Transitivity The ratio of triangles to triplets in the network.

Edge Neighborhood
Overlap

The overlap of group of nodes between connected nodes.

Node Pair Degree The product of degrees of connected nodes.
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2.4.7 Short-Time Fourier Transform

The Short-Time Fourier Transform (STFT) is used in time-frequency analysis to cap-
ture both frequency and temporal information and is effective for examining EEG
signals that vary over time [55]. By dividing the signal into short segments of equal
length and then applying the Fourier transform to each segment, the STFT can be
computed. A Hamming window is used as the window function (where ′nperseg′ = 64
in this case). Here, larger window size provides better frequency resolution [55]. This
is important to detect patterns to distinguish the 2 classes. Mathematically, the STFT
of a signal x(t) is defined as shown in Equation 2.35 [55].

STFT(t, f) =

∫ ∞

−∞
x(τ)w(τ − t)e−j2πfτ dτ (2.35)

The output of the STFT is a complex-valued function of time and frequency as shown in
the above formula and its magnitude squared is known as the scalogram / spectrogram
which can be seen in Equation 2.36 which represents the energy distribution of the
signal [55].

E(t, f) = |STFT(t, f)|2 (2.36)

The STFT is used to generate time-frequency representations of the EEG signals which
can then be input for a deep learning / transfer learning application to classify the
healthy vs epileptic patients. Algorithm 3 processes epilepsy / non-epilepsy signals by

Algorithm 3 STFT Image Generation with Sobel Filtering

1: Input: Set of EEG signals EEG signals, output directory dir1, STFT parameters
nperseg, noverlap, nfft

2: Output: Sobel-filtered STFT images
3: Initialize batch size to n EEGs
4: for each batch in EEG signals with size batch size do
5: for each signal in batch do
6: Compute STFT: (f, t, Zxx)← stft(signal, fs, nperseg, noverlap, nfft)
7: Compute magnitude scalogram: scalogram ← |Zxx|
8: Apply Sobel filter along frequency and time axes:
9: sobel x ← sobel(scalogram, axis = 0)

10: sobel y ← sobel(scalogram, axis = 1)
11: Compute gradient magnitude: sobel scalogram ←

√
sobel x2 + sobel y2

12: Save sobel scalogram as STFT output image in dir1

13: Free memory by deleting variables and calling garbage collection
14: end for
15: end for

computing their Short-Time Fourier Transform (STFT) to generate scalograms using
Sobel filtering to also detect edges. The resulting Sobel-filtered STFT images are saved
to a directory with memory management steps to handle large datasets / EEG signals
with too many sample points. Note that with multiple EEGs per patient, the EEGs
for every channel are concatenated and then the STFT is applied to the flattened EEG
signal.
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2.5 Machine learning, Transfer learning & XAI

2.5.1 Machine learning (ML)

ML is a subset of artificial intelligence that focuses on creating algorithms to enable
computers to learn from and make predictions based on data [56]. There is supervised
and unsupervised learning which can be seen in Figure 2.3. One of the main types of
ML is supervised learning which involves training a model on a labeled dataset which
will be done in this thesis. In supervised learning, each training example has an input
and a corresponding output label where the main aim of the model is to learn a mapping
from inputs to outputs for accurate predictions on new data. Supervised learning can

Figure 2.3: Machine learning applications on EEG [57].

be divided into regression and classification [57]. Here, we focus on the classification
part in this thesis. Classification tasks predict discrete labels from predefined classes
[58].
The dataset is usually split into a training, testing and validation set for seeing the per-
formance of the classifier. Cross-validation is mainly used to assess model performance.
This technique involves dividing the dataset into multiple folds, training, and testing
the model multiple times with different folds to ensure reliability [59]. Moreover, hy-
perparameter tuning is important for optimizing model performance. Techniques like
grid search and random search test multiple hyperparameter combinations to find the
best configuration.
In classification tasks, performance is evaluated using metrics like accuracy, precision,
recall, F1-score, and AUC-ROC. Accuracy is the ratio of correctly predicted instances,
while precision and recall provide insights into the model’s handling of true positives.
The F1-score balances precision and recall, and AUC-ROC assesses the model’s ability
to distinguish between classes at different thresholds. Some of the classifiers that are
used are SVM, XGBoost, and Random Forests.
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2.5.2 Deep Learning

In the realm of machine learning, transfer learning is a technique that uses pre-trained
models on datasets to apply knowledge to related but different tasks [60]. This ap-
proach is especially beneficial in domains with limited data as it enables the reuse of
features learned from extensive datasets such as images, audio, and text [10, 61].
The architecture of CNNs typically comprises layers pooling layers and connected layers
where after the pooling layers, there are feature maps that can be used in further classi-
fication processes. CNNs excel in tasks like image classification due to their capability
to autonomously learn and extract features from data [62, 63]. The VGG16 Model is a
trained deep learning model known for its success in image classification With a compo-
sition of 16 layers containing 13 layers and 3 connected layers VGG16 has been trained
on extensive datasets such as ImageNet to effectively extract meaningful features from
images [64].

2.5.3 Explainable AI (XAI)

The XAI method used in this thesis is SHAP (SHapley Additive exPlanations) values.
The main use of this is to check and understand the feature importance in machine
learning models. SHAP values, derived from cooperative game theory, provide a
unified approach to explain the output of machine learning models by attributing the
contribution of each feature to the model’s prediction [65, 66]. Moreover, SHAP values
provide insights into which features in the feature vector can have the most influence
on the model’s predictions. This is important in understanding complex models to
check their interpretability. Besides this, SHAP values help to identify key EEG signal
features that differentiate between healthy and epileptic states [67, 68].

SHAP values, also known as Shapley values, are formulated to distribute pay-
outs fairly among players in a cooperative game [65]. For a given model f , the Shapley
value for a particular feature i is computed using Equation 2.37 [67].

ϕi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(S ∪ {i})− f(S)] (2.37)

In this formula, N represents the set of all features, S is a subset of N excluding i,
and |S| denotes the number of elements in S [66, 67]. To determine the contribution
of each feature to the model’s prediction, SHAP values are calculated by averaging the
marginal contributions of a feature across all subset i.e. in this case the number of
EEGs / patients S. This is mathematically represented as shown in Equation 2.38 [67].

ϕi = ES⊆N\{i} [f(S ∪ {i})− f(S)] (2.38)
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In practice, this expectation can be efficiently approximated using algorithms like
Kernel SHAP and Tree SHAP mainly for models based on decision trees [66, 69]. For
the implementation, the SHAP Python library is used [70]. The process involves steps
like training the ML model, computing SHAP values for each feature in the feature
vector, and then taking the mean of all these values to check overall feature importance
across all patients / EEGs. Moreover, the generalized algorithm in terms of code to

Algorithm 4 Generalized SHAP Value Computation Process

1: Input: Feature Extraction Matrix, Model
2: Output: Top SHAP Values, Features index
3: for each Feature Matrix X in Dataset do
4: Train Model M on X
5: Compute SHAP values S using M
6: Identify the top k features with the highest absolute SHAP values
7: Store the top k SHAP values
8: end for
9: Combine and Analyze SHAP Results across all Feature Matrices

10: Visualize the top SHAP values with respect to their feature importance

compute the SHAP values is based on the feature matrix input and the model which in
this case was the XGBoost due to its high performance. The process to get the SHAP
values results is shown in Algorithm 4.
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Method 3
This section explains the data collection process, the types of feature extraction meth-
ods selected, and the approach for classifying the patient data. In addition to this,
the statistical tools used to compare MATLAB and Python implementations are in-
troduced and later on compared. The metrics used in this study to analyze how the
models work.

3.1 Datasets

For this thesis, routine scalp EEG recordings from two independent datasets are used:
Temple University Hospital (TUH, USA) which is the largest publicly available EEG
corpus [71] and Erasmus Medical Center Rotterdam (EMC, NL). The statistics of the
data-set is shown in Table 3.1. For the TUH dataset, the information about the first
seizure was not available in all the clinical reports [6]. The EEGs were recorded at
various sampling frequencies according to the International 10–20 electrode placement
scheme and they were annotated by at the individual centers independently in typical
clinical settings [6]. For the EMC dataset, the diagnosis process is shown in Figure 3.1.

Table 3.1: Patient details of both datasets [Note: For the Age / Gender, (Mean ± Standard
deviation) Age]

Dataset Type Fs (Hz) No of EEGs Age/Gender
(No of patients) Male Female

TUH
w IEDs

Normal
500

44 (30) 60 (48.8 ± 17.9) 39 (50.9 ± 20.5)
Epileptic 259 (42) 32 (50.3 ± 20.2) 33 (56.4 ± 19.7)

TUH
wo IEDs

Normal
500

44 (30) 55 (46.7 ± 18.2) 35 (49.5 ± 19.8)
Epileptic 161 (33) 20 (34.5 ± 15.3) 24 (37.9 ± 16.1)

EMC
Normal

1000
105 (105) 69 (40.00 ± 17.85) 36 (44.78 ± 19.56)

Epileptic 42 (42) 28 (49.75 ± 17.10) 14 (40.00 ± 17.85)

The procedure starts off with an initial clinical evaluation where the neurologist gathers
detailed medical history and information about the patient’s seizures. As mentioned
before, EEG is used to record the electrical activity of the brain and detect abnormal
patterns indicating if a patient could have epilepsy [72]. Whereas, the MRI provides
detailed images of the brain’s structure to identify any underlying conditions that might
cause seizures [73]. In some special cases, additional tests are required to collect more
information. The diagnosis may also involve long-term monitoring with video EEG
to capture and analyze seizure activity over an extended period. The annotations are
shown in Figure A.12 for the EMC dataset. R. van den Berg et al. explained the
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overall procedure and the outcomes flowchart illustrates these steps showing the pro-
gression from initial evaluation to various diagnostic tests and procedures. It highlights
the importance of a thorough and systematic approach to ensure accurate diagnosis
and effective management of epilepsy. This detailed diagnostic process is essential for

Figure 3.1: A comprehensive flowchart of the epilepsy diagnosis process of the EMC dataset
provided based on feedback by R. van den Berg.

identifying patients at an elevated risk of epilepsy, allowing for timely interventions
and personalized treatment plans. By following this structured approach, healthcare
providers can boost the patient outcomes.
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3.2 Overview of pipeline used for validation

3.2.1 Data analysis

The following pre-processing pipeline is used for both the TUH and EMC datasets as
shown in Figure 3.2. These steps explained in the chapter 2 are used to pre-process
and clean the EEG data.

Figure 3.2: Pipeline used for pre-processing.

3.2.2 Feature selection

This section details the construction of feature vectors for each patient based on the
extracted features. Each feature set is organized to create a comprehensive represen-
tation of the EEG data which can be used for further analysis and modeling. Spectral
features are derived from the power spectral density (PSD) estimates of the EEG sig-
nals across the Given 19 EEG channels, the feature vector containing all the frequency
bands (delta, theta, alpha, beta, and gamma) for each patient has a shape:

S-F = 19 channels× 5 bands = 1× 95

UTMs capture the time-domain characteristics of the EEG signals. For each EEG chan-
nel, the mean, median, standard deviation, kurtosis, skewness, peak-to-peak amplitude,
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number of zero crossings, number of peaks, nonlinear energy operators (NLEOED and
NLEOTK), signal energy (time and frequency domain), and Shannon entropy are com-
puted. This results in:

UTM-F = 19 channels× 13 features = 1× 247

Using the DWT and CWT, the wavelet features are computed. For each channel,

Table 3.2: Feature Vectors for Each Patient used in XGBoost + LOSO CV classification

Feature Type Individual Features Calculation Size/Shape

S-F Power in delta, theta, alpha,
beta, and gamma bands for
each ch

19 ch× 5 bands 1× 95

UTM-F Mean, median, std, kurtosis,
skewness, peak-to-peak ampli-
tude, zero crossings, peaks,
NLEOED, NLEOTK, time
and frequency domain energy,
Shannon entropy

19 ch× 13 features 1× 247

DWT-F Mean and std of DWT coeffi-
cients at 6 levels

19 ch× 6DWT levels×
2 features

1× 456

CWT-F Mean and std of CWT coeffi-
cients at 6 scales

19 ch× 6CWT scales×
2 features

1× 494

CC-F Cross-correlation (C-C) be-
tween ch

19 ch× 19 ch 1× 171

CPLV-F Phase locking value (PLV) be-
tween ch

171× 6 1× 1026

Graph Metrics Nodal and edge features from
C-C and C-PLV networks

Mean of all ch values 1× 20 each

ST Features Mean square root of std (ST-
SR), skewness of sum of pow-
ers (ST-P)

19 ch× (5 bands +
eeg signal)× 2 features

1× 570 each

the mean and standard deviation of the square of the absolute values of the DWT
and CWT coefficients are extracted. Given the multi-level decomposition in DWT and
multi-scale analysis in CWT, the feature vectors are constructed as:

DWT-F = 19 channels× 12DWT coefficients× 2 features = 1× 456

CWT-F = 19 channels× 13CWT scales× 2 features = 1× 494

Connectivity features are derived from the cross-correlation (C-C) and phase locking
value (PLV) between the EEG channels. The feature vectors are constructed as follows:

C-C F = 19 channels× 19 channels = 1× 171

C-PLV F = 171× 6 = 1× 1026
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Graph metrics are computed based on the connectivity features. For each EEG record-
ing, the graph metrics include nodal features (e.g., degree, strength, centrality mea-
sures) and edge features (e.g., assortativity, efficiency). For each connectivity network
(C-C and C-PLV), the mean of all channel values is taken, resulting in:

C-C Network F = 1× 20

C-PLV Network F = 1× 20

The ST features include the mean square root of standard deviations (ST-SR) and the
skewness of the sum of powers (ST-P) of the ST matrix over different epochs. For each
EEG channel and band, these features are computed as:

ST Feature Vector = 19 channels× (5 bands + eeg signal)× 2 features = 1× 570

This structured approach ensures that all relevant characteristics of the EEG signals
are captured providing a robust input for further analysis and machine learning mod-
els.
Besides this, there are a few clinical features that can be added to the data-set by
concatenating these features with the feature vector mentioned above. This is shown
in Table 3.3 which displays the one-hot encoding technique. One-hot encoding is a
technique used in machine learning to convert categorical data into a format that can
be provided to algorithms to improve predictions [74]. The categorical data is con-
verted into binary vectors where each category is represented by a unique combination
of binary values. This is particularly useful for categorical features such as age ranges,
vigilance states, and gender as it allows the model to interpret the data without assum-
ing any relationship between the categories. In the table, we have used binary encoding
for age ranges and vigilance states [6] where each category is represented by a two-digit
binary code. For gender, a simple binary encoding (0 for Female, 1 for Male) is used.

Table 3.3: Encoding for Age, Vigilance State, and Gender of the Patient

Feature Encoding Feature Value

Age

00 18 ≤ age < 30
01 30 ≤ age < 50
10 50 ≤ age < 70
11 age > 70

Vigilance State of Patient
00 Awake
10 Drowsy
11 Intermittent sleep

Gender
0 Female
1 Male

3.2.3 Multiprocessing & CLI

Due to the high computation times for some features, multiprocessing is added to
the pipeline. As shown in Figure B.2, the multiprocessing process for each montage,
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segment length, and combiner is done. This improved the speedup to be approximately
10 times faster than with just serial processing besides parallel processing. For instance,
the CWT computation time for the EMC dataset was approximately 55 hours with 1
core but with 16 cores, it reduces to 5-6 hours of computation time. Also, command
line interface (CLI) of each function / method is done for the neurologist to have an
easier time to run the code with integration of the tqdm tool to see the progress bar
(%) of how many files have been created.

3.3 Model Development & Training

This section details the methodologies used for developing, training, and evaluating
the models in this study. The process includes establishing a benchmark using a CNN
architecture, performing Leave-One-Subject-Out Cross-Validation (LOSO CV) on var-
ious feature sets, and evaluating the models using different feature combinations.
To establish a benchmark, the same model selection pipeline is used as described in
the recent paper [6]. The LOSO CV EEG classification (epileptic EEGs with IEDs vs.
normal EEGs) was applied separately to each EEG dataset in this paper i.e. the TUH
and EMC datasets. EEG classification was conducted across the two datasets in two
stages:

3.3.1 Stage One: Evaluation of Individual Features

In the first stage, LOSO CV was performed on each feature set individually for each
EEG dataset as shown in Figure 3.3. The process for each dataset and selected feature
involved training the classifier on N − 1 subjects and evaluating it on the Nth subject.
This was repeated N times to evaluate all subjects.
For each dataset, a Receiver Operating Characteristics (ROC) curve was generated
from the test results, and the LOSO CV Area Under the Curve (AUC) and Balanced
Accuracy (BAC) were computed with other metrics explained later. This process was
repeated across different datasets and the mean AUC and BAC results were saved.
Given the various combinations of montages, segment lengths, and statistical measures,
144 LOSO CV EEG classification results were obtained for each feature set. Based on
these results, the features were ranked according to their maximum LOSO CV AUC.

3.3.2 Stage Two: Evaluation of Combined Features

In the second stage, LOSO CV was performed by combining the IED rate with various
combinations of IED-independent features to check the validation of the code made in
Python. This method is shown in Figure 3.4. For each dataset with N subjects, data
was split into training, validation, and testing sets. The data from the Nth subject is
used for testing while the remaining N − 1 subjects were split equally for training and
validation.
A grid search was made to find the optimal combination of weights for the multiple
features so that the sum of the weights equaled one. The best combination of weights
was then applied to the test subject’s data to predict the output. This step was
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Figure 3.3: LOSO CV process on individual features [6].

repeated N times to evaluate all subjects, and the AUC and BAC were computed
from the ROC curve. For the evaluation, the optimal weights were used to combine
the predictions from the classifiers trained on different feature sets and the equation is
shown in Equation 3.1 [6].

Output =
n∑

i=1

wopt,i × oi (3.1)

where wopt,i is the optimal weight for the output oi from the i-th classifier, and n
represents the total number of feature sets.

3.3.3 Hyperparameter Tuning and Model Evaluation

To make sure there is optimal performance of our classifiers, we employed a compre-
hensive hyperparameter tuning process using nested cross-validation combined with
grid search. This approach is illustrated in Figure 3.5.

Nested Cross-Validation with Grid Search:
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Figure 3.4: LOSO CV process on combination of features [6].

Nested cross-validation is a robust technique to simultaneously optimize hyperparam-
eters and evaluate model performance [75]. It consists of two nested loops: an outer
loop for model evaluation and an inner loop for hyperparameter tuning.

• Outer Loop (Model Evaluation)

– The EEG dataset is divided into multiple combinations for cross-validation
in which the training and testing datasets are stratified to maintain the pro-
portion of classes.

– We use stratified group 5-fold cross-validation (CV) for the outer loop. In
each iteration, the dataset is split into five folds: four folds for training and
one fold for testing.

– The performance metrics, Area Under the Curve (AUC) and Balanced Ac-
curacy (BAC), are computed based on the predictions on the test set.

• Inner Loop (Hyperparameter Tuning)

– Within each training set of the outer loop, we further split the data using
stratified group 4-fold cross-validation for hyperparameter tuning.

– A grid search is performed over a predefined hyperparameter space which
can be changed depending on the feature set that we extract. Each combina-
tion of hyperparameters is evaluated by training the model on two folds and
validating it on the remaining fold.

– The best combination of hyperparameters making the highest validation score
is selected.

• Grid Search

– The grid search explores various hyperparameter combinations within the
specified grid space.
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– Each hyperparameter combination is evaluated in the inner loop to identify
the best configuration.

• Hyperparameter Selection and Model Training

– The best hyperparameter combination from the inner loop is used to train
the final model in the outer loop.

– This process is repeated for all outer folds checking that each data point is
used for both training and testing.

• Performance Metrics

– The performance of the model is assessed using AUC and BAC metrics.

– The mean AUC and BAC scores from the outer loop provide a robust estimate
of the model’s performance.

This nested cross-validation approach [76] is integrated with the LOSO CV process
described earlier. For each dataset with the selected feature, we train the classifier
on N − 1 subjects and evaluate it on the Nth subject repeating this step N times to
evaluate all subjects. The best hyperparameters are selected through the nested cross-
validation process providing optimal model performance. This nested cross-validation

Figure 3.5: Nested cross-validation with grid search for hyperparameter tuning. The inner
loop performs 4-fold cross-validation for hyperparameter selection while the outer loop per-
forms 5-fold cross-validation for model evaluation. Algorithm is taken from [77]. [NOTE: The
best hyperparameters are selected based on the highest AUC and BAC scores]

approach ensures that our model is validated and the selected hyperparameters lead
to optimal performance reducing the risk of overfitting and improving the model to
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Table 3.4: Default Parameters for XGBoost

Parameter Default Value

n_estimators 100

learning_rate 0.1

max_depth 6

subsample 1

colsample_bytree 1

gamma 0

reg_alpha 0

reg_lambda 1

unseen data. XGBoost Default Parameters are shown in Table 3.4.
Hyperparameter Space for Grid Search in this thesis is shown in Table 3.5. The XG-

Table 3.5: Hyperparameter Space for Grid Search

Parameter Grid

n_estimators [50, 100, 150, 200]

learning_rate [0.01, 0.1, 0.2, 0.3]

max_depth [3, 4, 5, 6, 7, 8]

subsample [0.6, 0.7, 0.8, 0.9, 1.0]

colsample_bytree [0.6, 0.7, 0.8, 0.9, 1.0]

gamma [0, 0.1, 0.2, 0.3, 0.4, 0.5]

reg_alpha [0, 0.01, 0.1, 1]

reg_lambda [1, 1.5, 2, 2.5, 3]

Boost classifier was chosen due to its robustness and ability to provide feature relevance
[78]. The ‘sample pos weight‘ parameter in XGBoost was adjusted to handle class im-
balance while other hyperparameters were set to their default values.
In both stages, BAC was reported for 80% sensitivity to standardize the results [6]. The
mean LOSO results are reported for both datasets providing a comprehensive evalua-
tion of the model’s performance to compare and check on which dataset this model has
the best performance.

3.4 Transfer learning

The transfer learning method used in this thesis is a combination of using STFT
images extracted from each EEG file which is then fed into a pre-trained model and a
classifier [55]. The raw EEG data loaded from EDF files was preprocessed to remove
light stimulation segments showing that only relevant brain activity was analyzed.
After resampling the data to a uniform frequency (200 Hz), the signals were normalized
to maintain consistency across different EEG recordings. STFT is used to convert
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the EEG signals into a time-frequency representation i.e. in this case scalograms by
segmenting the EEG signal into short windows. A Sobel filter was applied to the
magnitude scalograms derived from the STFT for the edges of the image [79]. This
method provides a 2D matrix where one axis represents time and the other represents
frequency. The pre-trained weights from the ImageNet dataset are used in this case
and also to make the image in the correct format i.e. 3 channel (RGB) image and
resizing to 224 x 224 pixels input size. The epilepsy channels used are flattened to
make a single epilepsy signal that is then converted into an STFT and the same goes
for the non-epilepsy signals. A window size of 64 is used which gives more temporal
resolution in this case.

Figure 3.6: A transfer learning technique used to load the weights of the convolutional part
of the network and features are extracted from the spectrogram/scalogram input [55].

STFT for Epilepsy detection: The STFT-transformed data is also processed
using the VGG16 model. The features extracted by VGG16 are then used as input
to an SVM classifier. This approach leverages the feature extraction capabilities
of VGG16 and the robust classification performance of SVM using Mahfuz et al.
approach [55]. In addition to this, besides using the SVM classifier, the XGBoost
and Random forest classifiers with LOSO CV are also used to evaluate the model’s
performance. Besides this, regularization parameters are added to the XGBoost
classifier to prevent overfitting. To do additional tests, a hold-out test set is made
which contains 5 STFT’s from each class. They are processed and not used in the
training data where the model is trained excluding the hold-out test set. After this,
the model is tested using the hold-out test set to evaluate the performance model.

3.5 Evaluation

3.5.1 Statistical analysis

To check the accuracy and consistency of the data processing pipeline, we compared
the results of pre-processing and feature extraction between MATLAB and Python
implementations. The comparison was based on two key metrics: Pearson correlation
coefficient and Normalized Root Mean Square Error (NRMSE). In addition to this, after
computing the features for both epileptic and healthy patients, the Mann-Whitney U
test is used to compare the distributions of features between these two groups.
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Pearson Correlation Coefficient

The Pearson correlation coefficient (r) measures how closely two datasets are related in
a linear manner [80]. Further, the value of r is calculated for each feature by comparing
the results obtained from MATLAB and Python. This coefficient varies between 1 and
1 with 1 showing a linear connection 1 indicating a strong negative linear relationship
and 0 implying no linear association. The formula for the Pearson correlation coefficient
is shown in Equation 3.2 [80].

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(3.2)

where xi and yi are the data points from MATLAB and Python, respectively, and x̄
and ȳ are their means. By calculating the correlation for each data channel, the degree
of similarity between the two sets of results was analyzed.

Normalized Root Mean Square Error (NRMSE)

NRMSE is used to measure the difference between the values predicted by the Python
implementation and the actual values from MATLAB. It is normalized by the range of
the data to provide a relative measure of error. The formula for NRMSE is shown in
Equation 3.3 [81, 82].

NRMSE =

√
1
n

∑n
i=1(yi − ŷi)2

max(y)−min(y)
(3.3)

where yi are the observed values from MATLAB, ŷi are the predicted values from
Python, and n is the number of observations. NRMSE provides a normalized measure
of the differences making it easier to compare across different scales of data.

The data is loaded in both formats and a unit test is done to check data sizes
and min/max values. For each channel, pearson correlation and NRMSE is calculated
providing a linear relationship and error metric to check the differences. The results
are then aggregated accross all channels and analyzed. Files with low correlation
values (below 0.9) were identified for further investigation to check any discrepancies.
This comparison helped validate the integrity of the Python implementation so that it
can be used in further analysis and research.

Mann-Whitney U Test for Feature Comparison

After computing the features for both epileptic and healthy patients, the Mann-Whitney
U test is done to compare the distributions of these features between the two groups.
It is used to determine whether there is some difference between the distributions of
two independent samples. Unlike parametric tests, the Mann-Whitney U test does
not assume a normal distribution, making it suitable for ordinal data or non-normal
distributions and the test statistic U is calculated using Equation 3.4 [83, 84].
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U = n1n2 +
n1(n1 + 1)

2
−R1 (3.4)

where n1 and n2 are the sample sizes of the two groups, and R1 is the sum of the
ranks for the first group. The resulting U value is compared to a critical value from
the Mann-Whitney U distribution to determine statistical significance.
By applying the Mann-Whitney U test, the distribution of features can then be analyzed
and differed between epileptic and healthy patients which can providing insights into
the distinguishing characteristics of these groups.

3.5.2 Metrics

The classification model is examined using performance metrics. Performance metrics
are essential for evaluating and comparing machine learning models. For binary
classification, these metrics are based on the ratios of four possible outcomes that is
usually displayed in the confusion matrix when you visualize it: True Positive (TP),
True Negative (TN), False Positive (FP), and False Negative (FN).

Confusion Matrix: The confusion matrix shows the number of correctly and
incorrectly classified instances for each class where the structure is as follows: As

Table 3.6: Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

shown in Table 5.8, the definitions of True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) are important. TP refer to cases where the
model correctly identifies patients who have the condition as positive and TN repre-
sents instances where the model accurately classifies patients without the condition as
negative. FP occur when the model incorrectly identifies a healthy patient, whereas
FN are cases where the model fails to detect the condition in patients who actually
have it which could result in incorrect diagnosis.

Accuracy (ACC): This metric is the ratio of the correctly predicted EEGs /
patients to the total number and is defined as Equation 3.5. Note that the mean
accuracy is calculated across all folds.

ACC =
TP + TN

TP + TN + FP + FN
(3.5)

Balanced Accuracy at 80% Sensitivity (BAC0.8): Balanced Accuracy ensures
that sensitivity is at least 80%. It is calculated as shown in Equation 3.6.

BAC0.8 =
0.8 + TN

TN+FP

2
(3.6)
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Receiver Operating Characteristic (ROC) Curve: A typical ROC curve can be
seen in Figure A.15. It plots the True Positive Rate (TPR) against the False Positive
Rate (FPR) at various threshold settings. The True Positive Rate is also known as
sensitivity and the False Positive Rate is calculated as shown in Equation 3.7 [6].

FPR =
FP

FP + TN
(3.7)

Area Under the Curve (AUC): The AUC provides a single value to evaluate the
classifier’s performance across all threshold levels. A higher AUC value indicates better
classifier performance for epilepsy diagnosis. This is computed using the scikit-learn
package in Python. These evaluation metrics, including AUC and BAC0.8, are impor-
tant for assessing the performance of the machine learning models used in this thesis.
They provide comprehensive results into the models’ effectiveness in distinguishing be-
tween epileptic and healthy EEG patients so that the models achieve high sensitivity
and specificity which is the ratio of TP/(TP + FP ) which is the positive predicted
value. This gives information to the neurologist to see how many of his patients have
epilepsy or not and the same goes for the negative predicted value which can be found
from the confusion matrix.
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Statistical analysis 4
4.1 Overview

This chapter presents the statistical analysis conducted on EEG features from both
the TUH and EMC datasets. The Mann-Whitney U test is applied to the extracted
features to check significant differences between healthy and epileptic EEGs. Research
shows that this test is used in multiple research papers to see the involvement of features
in the feature vector where the features (spectral & phase) in each feature vector was
observed [85, 86]. Note that this is the statistical analysis of the data without IED’s
regarding the TUH dataset.

4.2 TUH Dataset

Table 4.1 provides a summary of the statistical analysis for the different feature sets
in the TUH dataset. For each feature set, the best performing montage was identi-
fied based on the lowest p-value obtained. The percentage of significant features, the
lowest p-value, the index of the feature with the lowest p-value, the mean p-value,
and the standard deviation of p-values are displayed. The statistical analysis shows

Table 4.1: Summary of Statistical Analysis for Different Feature Sets

Feature Montage % Lowest [p] Index Mean [p] Std [p]

S Laplacian 4.21 2.04× 10−5 73 0.39 0.31

CWT BipolarDB 42.74 1.89× 10−13 11 0.16 0.26

DWT BipolarDB 49.07 1.89× 10−13 7 0.13 0.25

CC CAR 7.60 2.68× 10−7 46 0.28 0.31

PLV Laplacian 9.84 1.03× 10−9 1000 0.32 0.32

UTM BipolarDB 34.19 1.89× 10−13 169 0.22 0.30

GCC CAR 15.00 N/A N/A N/A N/A

GPLV CAR 10.00 N/A N/A N/A N/A

mST Laplacian 16.67 3.50× 10−12 71 0.23 0.29

sST BipolarDB 26.85 1.89× 10−13 72 0.21 0.29

several important effects in the epileptic EEGs from the TUH dataset. The feature
sets CWT, DWT, UTM, and sST showed the highest percentage of significant features
with more than 25% of their features being significant. Statistical features derived from
the Laplacian and BipolarDB montage also show significant differences which provides
more variability and higher-order statistical properties that can distinguish healthy and
epileptic brains. However, cross-correlation was not as significant as the other features
but still provided valuable insights with the CAR montage. In addition to this, the
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graph metrics have p > 0.001 so they were marked with N/A. This could mean that
the results obtained from the graph metric features are not significant due to their high
p-values. The box plot in Figure 4.1 shows the distribution of the most significant

Figure 4.1: Distribution of the most significant features for each feature set in the TUH
dataset comparing healthy and epileptic EEGs.

features for each feature set, comparing healthy and epileptic EEGs. The consistent
differences across various feature sets underscore the multifaceted nature of epileptic
EEGs, where both temporal, spectral, and spatial characteristics are affected.

4.3 EMC Dataset

Similarly, Table 4.2 provides a summary of the statistical analysis for the different
feature sets in the EMC dataset with finding out best montages, feature index in the
feature vector and the p-value statistics.

The statistical analysis reveals several important effects in the epileptic EEGs
from the EMC dataset. The feature sets CWT, DWT, and sST showed the highest
percentage of significant features meaning their involvement in distinguishing between
healthy and epileptic EEGs. The statistical features derived from the BipolarDB and
Cz montages were most effective highlighting their use in capturing the relevant EEG
patterns. In contrast, cross-correlation and graph-based features (GCC and GPLV)
were less significant suggesting that they may capture less different information in
this dataset. The box plot in Figure 4.2 shows the distribution of the most significant
features for each feature set comparing healthy and epileptic EEGs.

Figure A.19 provides a detailed observation of the top 10 significant features for
each feature set further showing the specific features that differentiate healthy from
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Table 4.2: Summary of Statistical Analysis for Different Feature Sets

Feature Montage % Lowest [p] Index Mean [p] Std [p]

S Cz 5.56 5.86e−6 6 0.30 0.31

CWT BipolarDB 17.52 8.52e−13 433 0.28 0.31

DWT BipolarDB 15.97 8.52e−13 394 0.29 0.31

CC Laplacian 10.53 1.64e−10 166 0.35 0.31

PLV BipolarDB 7.30 6.35e−11 867 0.31 0.31

UTM CAR 19.43 8.52e−13 192 0.25 0.30

GCC BipolarDB 5.00 N/A N/A N/A N/A

GPLV BipolarDB 3.00 N/A N/A N/A N/A

mST Cz 4.63 4.63e−10 82 0.31 0.29

sST Cz 15.74 8.52e−13 12 0.33 0.31

Figure 4.2: Distribution of the most significant features for each feature set in the EMC
dataset comparing healthy and epileptic EEGs.

epileptic EEGs. Moreover, the analysis of both the TUH and EMC datasets reveals
consistent patterns in significant features. Both datasets highlighted the importance of
CWT, DWT, and sST features providing their effectiveness in distinguishing between
healthy and epileptic EEGs.
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4.4 Feature Extraction Results

Besides the Mann=Whitney test, the distribution of power in different frequency bands
is looked into to observe how different the data is in both datasets. Figure 4.3 shows
the distribution of power in different frequency bands for healthy and epileptic patients
where here we compare both datasets i.e. TUH and EMC. The distribution of rela-
tive power in different EEG frequency bands (Delta, Theta, Alpha, Beta) across four
groups: Epileptic with IEDs (TUH), Epileptic without IEDs (TUH), Healthy (EMC),
and Epileptic (EMC) is calculated for all the patients. A few observations were noted.

Figure 4.3: Distribution of Power in Different Frequency Bands.

The epileptic patients with IEDs have higher relative power in the Delta band compared
to other groups in the TUH dataset suggesting a significant difference in slow-wave ac-
tivity noted by J. Dauwels. The relative power in the Theta band is slightly higher in
epileptic patients with IEDs in the TUH dataset but shows less variation in the EMC
dataset. The Healthy group in the TUH dataset has lower Alpha power whereas the
EMC dataset shows similar values of the Alpha power between Healthy and Epileptic
groups. The Beta band shows similar values too with the highest variability observed
in the TUH dataset’s Epileptic without IEDs group.
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4.5 VGG16 model features

After the VGG16 model processing, the feature matrix contain each feature vector of
a patient is obtained. To compare the significant features, the Mann-Whitney U test
is used for both the epileptic and healthy datasets. The top significant features for the
TUH dataset with very low p-values are shown in Figure 4.4. Note that there are only
6 of the features shown in the figure that have very low p-values that meet the criteria.
The other comparisons show that there are very similar traits. As shown in Figure 4.5,

Figure 4.4: Distribution of Top 10 Significant Features (Mann-Whitney U Test) for the TUH
dataset

the heatmap of the feature distribution from the Mann-whitney U test is displayed.
The features i.e. 578, 743, and 776 show a lot of difference when comparing the mean

Figure 4.5: Heatmap of healthy vs epileptic significant feature distribution of the TUH dataset
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values across each patient. These variations are important showing the distrubution of
values with key differences that can influence the output of the classifiers. As there are
many features that have very low p-values for the EMC dataset, the top 10 features that
have the most differences between epilepsy and healthy class is shown in Figure 4.6.
Here, it can be noted that there are some huge distinctions between both the classes
compared the TUH dataset which shows that these features can be very useful for
classification purposes. As shown in the box-plot, certain features i.e. at index 410 and

Figure 4.6: Distribution of Top 10 Significant Features (Mann-Whitney U Test) for the EMC
dataset

762 shows distinct median differences between the two classes showing strong indicators.
The variation across the features shows the importance of feature selection to develop
improved classification results. The heatmap for the epileptic data shows a more varied

Figure 4.7: Heatmap of healthy vs epileptic significant feature distribution of the EMC dataset
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and distributed pattern across different patients whereas for the healthy patient data,
it is more uniform with less variance across the features showing consistency. Features
show that there were more variations across the patients in epileptic EEGs which is
important for differentiating with the healthy patient data. Further analysis of these
features are important as there are a lot of features in the feature vector that has
an influence on the classification results. Besides this, the feature maps shown in
Figure A.20 and Figure A.21 shows the key differences in how the STFT images for
both epileptic and non-epileptic patients change after each filter and layer in the VGG16
model.
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Results 5
This chapter presents the results of the analysis on three EEG datasets: TUH (with
IEDs and without IEDs datasets) and EMC. First, the results obtained from MATLAB
and Python are compared to validate the consistency and reliability of the used meth-
ods. The findings are organized into sections corresponding to the different stages of the
analysis used in this thesis including feature extraction, model performance, evaluation
metrics, and hyperparameter tuning. We conclude the chapter with a comparison to
baseline results and a discussion of the implications of our findings. Second, validating
our method by comparing the results of Epileptic with IEDs vs. healthy patients to
the baseline results reported by Thangavel et al is done as it is also one of the research
questions for this thesis.

5.1 Correlation and NRMSE Analysis Between MATLAB and
Python

To ensure the consistency and reliability of the pre-processing steps between MATLAB
and Python, the mean correlation was calculated after each significant pre-processing
step. As shown in Figure 5.1, the mean correlation remains consistently high across all
steps, indicating a high level of agreement between the two platforms.

Figure 5.1: Mean Correlation After Different Pre-Processing Steps.

The accuracy of feature extraction methods was assessed using Pearson correlation
co-efficients and Normalized Root Mean Square Error (NRMSE) between MATLAB
and Python implementations. The mean correlation and NRMSE for different feature
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sets are presented in Figure 5.2. The results show that most features have high mean
correlation values showing that the features extracted from both versions are very
similar. The NRMSE values are low for most features except with the CWT feature
having the highest NRMSE due to scaling differences in Python. This is due to the
’morl’ wavelet being slightly different in both versions.

Figure 5.2: Mean Correlation and NRMSE for Different Feature Sets.

These evaluations confirm that the pre-processing steps and feature extraction meth-
ods used are consistent and reliable across MATLAB and Python implementations
ensuring the robustness.

5.2 Model Performance

5.2.1 Epileptic with IEDs vs. Healthy (TUH Dataset)

First, a comparison of the Area Under the Curve (AUC) and Balanced Accuracy
(BAC) metrics for various feature sets is evaluated under three conditions: MATLAB
implementation (baseline i.e. Thangavel et al. paper), without age and vigilance
features, and with age and vigilance features. The feature sets include Spectral (S),
Cross-Correlation (CC), Phase Locking Value (CPLV), Stockwell Transform features
(ST SR and ST P), Discrete Wavelet Transform features (db4 and morl), Univariate
Temporal Measures (UTM) , and Graph-based features (Cnetwork and Pnetwork).
As shown in Figure 5.3, the individual features show very less deviations between
the AUC and BAC values across all conditions indicating their robustness in distin-
guishing between epileptic and healthy EEG signals. This can also be seen in Table C.1.

Cross-Correlation (CC) and Phase Locking Value (CPLV) show lower AUC and
BAC values compared to Spectral features with CC benefiting slightly from the
inclusion of age and vigilance features while CPLV remains relatively unaffected.
The Stockwell Transform features demonstrate a notable difference, with ST SR
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Figure 5.3: Comparison of AUC and BAC metrics for different feature sets across three
conditions: MATLAB implementation (baseline), without age and vigilance features, and
with age and vigilance features.

maintaining high AUC and BAC values, whereas ST P exhibits a significant drop
especially without the additional features. Both Discrete Wavelet Transform feature
sets (db4 and morl) perform reliably, with high AUC and BAC values, showing
minimal impact from age and vigilance features.
Graph-based features (Cnetwork and Pnetwork) show variability, with Cnetwork gen-
erally outperforming Pnetwork, and both benefiting from the additional demographic
features. The rest of the feature vector sets shows similar performance showing that
the methods has been validated properly.

5.2.2 Epileptic without IEDs vs. Healthy (Both Datasets)

Next, we apply our validated methodology to both the TUH and EMC dataset which
consists of epileptic patients without IEDs and healthy patients.

The performance of the models is evaluated using ROC curves and confusion ma-
trices. Figure 5.4 & Figure 5.5 shows the ROC curves for the top-performing models
on both datasets.

The plot shown includes multiple ROC curves for different feature sets. The GPLV

feature stands out with the highest AUC of 0.72 showing it is the most effective feature
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for class discrimination in this dataset. Features like PLV, S, and sST also show good
performance with AUC values ranging from 0.65 to 0.71. Other features such as CWT,
DWT, mST, CC, GCC, and UTM have lower AUC values suggesting they are less effective
in distinguishing between classes. The plot includes multiple ROC curves, each repre-

Figure 5.4: ROC Curves for Top-Performing combinations on TUH Dataset w/o IEDs.

senting a different feature set or combination of features. The PLV feature shows the
highest AUC of 0.77 showing it has the best discriminatory power among the features
tested. The S, sST, GCC, and GPLV features also show reasonable performance with
AUC values around 0.67 to 0.71. Features like CWT, DWT, mST, CC, GPLV, and UTM show
comparatively lower AUC values indicating less effective differences between classes.

The overall performance across features in the TUH dataset is somewhat lower than
the EMC dataset suggesting possible differences in the dataset characteristics or quality.
The CWT and mST improved with the addition of the vigilance states by 1 % whereas
the other features didn’t improve. Both datasets show that certain features such as
PLV and sST consistently perform well in distinguishing between classes highlighting
their robustness across different datasets. The higher AUC values in the EMC dataset
compared to the TUH dataset shows that the EMC dataset has more distinct patterns
or less noise, making classification easier.
Table 5.1 presents the BAC (Balanced Accuracy) and AUC (Area Under the Curve)
mean differences for the TUH and EMC datasets. The comparisons include different
pre-processing configurations comparing the results with and without age and vigilance
state where

• w1: Difference between with age + state and without age + state

• w2: Difference between with age and without age + state
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Figure 5.5: ROC Curves for Top-Performing combinations on EMC Dataset.

Table 5.1: AUC & BAC Mean Differences Comparing with and without Vigilance State +
Age for TUH and EMC Datasets.

Dataset Metric Comparison CAR Cz BipolarDB Laplacian

TUH

BAC w1 1.48 1.69 1.48 1.44
BAC w2 1.37 1.63 1.30 1.44
AUC w1 0.02 0.02 0.02 0.02
AUC w2 0.01 0.02 0.01 0.01

EMC

BAC w1 1.44 1.66 1.48 1.46
BAC w2 1.38 1.64 1.46 1.47
AUC w1 0.02 0.02 0.02 0.02
AUC w2 0.01 0.02 0.01 0.01

Note that for the EMC dataset, the gender is also added to the feature data.

For the TUH dataset (Figure 5.6a), these values indicate that the classifier was
highly effective at identifying positive cases (epileptic) but struggled with negative
cases (healthy). The high number of true positives suggests that the model is sensitive
and performs well in detecting the epileptic EEGs with IEDs. For the EMC dataset
(Figure 5.6b), the classifier displayed a high number of true negatives, indicating strong
performance in identifying healthy subjects. However, it had difficulties correctly classi-
fying positive cases (epileptic EEGs without IEDs), as evidenced by the higher number
of false negatives.

The confusion matrices (Figure 5.6) reflect the model’s performance differences be-
tween the two datasets. The TUH dataset shows higher sensitivity which leads to the
model’s ability to detect epileptic EEGs more effectively compared to the EMC dataset.
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(a) TUH Dataset: Feature PLVmean,
Segment length: 120, Montage: CAR

(b) EMC Dataset: Feature PLVskew,
Segment length: 300, Montage: CAR

Figure 5.6: Confusion Matrices for highest AUC feature-set for TUH (left) and EMC (right)
Datasets. (Note that the results of each class are flipped for both datasets as there are more
epileptic EEGs in the TUH dataset and more non-epileptic EEGs for the EMC dataset)

The EMC dataset shows higher specificity showing that the model performs better in
identifying healthy subjects. These results highlight the importance of dataset char-
acteristics on model performance. The model’s high sensitivity in the TUH dataset
indicates its suitability for detecting clear epileptic signals. However, its lower sensi-
tivity and higher specificity in the EMC dataset suggest that further improvements
are needed for datasets without IEDs possibly through advanced feature extraction or
ensemble methods.

5.2.3 Ensemble Method Results

The table below presents the results of the ensemble method for both the Thangavel
et al. study and the current thesis version. The performance metrics used are Area
Under the Curve (AUC) and Balanced Accuracy (BAC). The combinations of features
for each method are listed alongside their corresponding metrics and includes the
comparisons between the baseline results from Thangavel et al. and the results from
the thesis version using both the TUH and EMC datasets.

The baseline results from Thangavel et al. show that the combination of IED,
DWT, and ST-P achieved the best performance with an AUC of 0.787 and a BAC
of 73%. Moreover, it shows that both the thesis version and baseline version do
match. For the thesis version using the TUH dataset, the best results were obtained
with the combination of IED, DWT, and ST-P, achieving an AUC of 0.76 and a
BAC of 71.66%. Other combinations, such as S, DWT, and ST-P, also demonstrated
competitive performance.

In the EMC dataset, the combination of S, DWT, and PLV yielded the highest
AUC of 0.70 and a BAC of 64.33%. These results indicate the effectiveness of different
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Table 5.2: Ensemble Method Results Comparison.

Type Combination AUC BAC

Thangavel (baseline version)
IED + DWT + CWT 0.662 58.9
IED + DWT + ST-P 0.787 73

Thesis version [TUH]

IED + DWT + CWT 0.645 57.43
IED + DWT + ST-P 0.76 71.66
S + DWT + ST-P 0.625 55.93
S + DWT + ST-P 0.71 67.33

Thesis version [EMC]

S + DWT + PLV 0.68 63.55
S + DWT + sST 0.68 65
S + DWT + CWT 0.65 64.51

S + DWT + PLV + sST 0.70 67
CC + DWT + GCC + mST 0.67 61.38

feature combinations in enhancing epilepsy detection models. The results highlight
the potential of various feature combinations to improve the performance of epilepsy
detection models. This can be seen in Figure 5.7 Furthermore, the combination of

Figure 5.7: ROC Curves for Top-Performing combinations on EMC Dataset.

IED, DWT, and ST-P in both the baseline and the TUH dataset versions and the
combination of S, DWT, and PLV in the EMC dataset shows that with hyperparameter
tuning, the results i.e. AUC and BAC values can be increased.
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5.2.4 Hyperparameter Tuning Results

The optimal hyperparameters were identified through a nested cross-validation with
grid search approach as illustrated in Figure 3.5. Table 5.3 lists the best hyperpa-
rameters for the XGBoost classifier. There was only a 2 percent increase in the AUC
and BAC values. Hence, this approach needs to be looked into again in the future.
As shown in Table 5.4, the AUC improved by 0.01 and the BAC improved by 0.33.

Table 5.3: Optimal Hyperparameters for XGBoost Classifier.

Parameter Optimal Value

learning Rate 0.01
max Depth 6
n estimators 100
subsample 0.9
gamma 0.1

This shows that the algorithm needs to be applied on all combinations besides a single
combination as proposed before. The hyperparameter tuning process is also applied to

Table 5.4: TUH Dataset Without IEDs: AUC and BAC Before and After Hyperparameter
Tuning [All Feature Sets].

Feature Set Before Tuning After Tuning
AUC BAC AUC BAC

S 0.67 65.0 0.68 65.33

CWT 0.61 55.50 0.62 58.0

DWT 0.62 56.0 0.62 58.5

CC 0.60 68.0 0.61 57.5

PLV 0.77 72.0 0.77 71.60

UTM 0.62 58.33 0.63 59.0

GCC 0.68 64.6 0.68 64.3

GPLV 0.57 53.0 0.57 53.0

mST 0.64 61.0 0.65 61.67

sST 0.69 65.0 0.7 67.0

the EMC dataset and similar results were obtained with an increase of AUC/BAC of
1 percent.
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5.2.5 XAI method for both datasets

Moreover, Figure 5.8 shows the highest SHAP values for various feature types and
montages across the TUH and EMC datasets using the feature importance scores using
the Thangavel et al. method. The highest SHAP values for each feature type, segment
length and montage combination are shown which provides the most important features.
The PLVskewness feature in the BipolarDB montage showed high importance in the

Figure 5.8: Comparison of Highest SHAP Values for Various Feature Types and Montages
Across TUH and EMC Datasets.

EMC dataset as shown by the high SHAP value. Whereas, the CWT and DWT feature
also gives significant importance in both datasets contributing to the model’s outcome.
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5.3 Transfer learning Results

5.3.1 TUH dataset

In this section, we present the comparison between the results obtained using Leave-
One-Subject-Out Cross-Validation (LOSO CV). To better understand the feature
space, the Principal Component Analysis (PCA) on the features extracted by the
VGG16 model is performed and can be seen in Figure A.14. The plot shows that
the features extracted by the VGG16 model maintain their ability to distinguish be-
tween classes even after the dimensionality reduction. The PCA plot shows that the
features corresponding to epilepsy (blue dots) and non-epilepsy (orange dots) are dis-
tinguishable, however, with some overlap showing that there could be misclassifications.
Based on the transfer learning results for the TUH dataset, the following metrics are
observed across the three models: XGBoost, SVM, and Random Forest in Table 5.5.

Table 5.5: Metrics comparison using LOSO CV on the TUH dataset

Model Accuracy Precision Recall F1-Score

Epileptic Healthy Epileptic Healthy Epileptic Healthy

XGBoost 0.70 0.58 0.61 0.58 0.73 0.63 0.67

SVM 0.52 0.52 0.0 1.0 0.0 0.69 0.0

Random Forest 0.67 0.63 0.61 0.64 0.63 0.63 0.63

Figure 5.9: ROC curve of multiple classifiers on the TUH dataset using LOSO CV.
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As shown in the table, the LOSO CV cross-validation with the XGBoost yields re-
sults in higher accuracy, precision, recall, and F1-Score compared to the other models.
One possible reason for the poorer performance of the LOSO CV method could be the
varying sizes of EEG segments across subjects that can lead to inconsistencies when
generating images from these signals. This difference in the content in each image can
negatively impact the performance of the models particularly in deep learning contexts
where image consistency is critical which is why segmentation might be key for the
TUH dataset. This can be considered as a future work.

Figure 5.9 illustrates the Receiver Operating Characteristic (ROC) curves for
the classifiers. Note that the SVM classifier is not added to the results as it underper-
formed with an AUC of 0.4. The poor performance could be due to the complexity
of the feature matrix whereas the tree classifiers can handle these feature vectors
from the VGG16 model. The ROC curves indicate that the XGBoost and Random
Forest models achieve the highest Area Under the Curve (AUC) values showing their
robustness and reliability in classifying epileptic versus healthy EEG signals in the
TUH dataset.

Furthermore, the ROC curve indicates that the model performs well with an
AUC of 0.77. The confusion matrix reveals that the model correctly identifies a
majority of the epileptic and non-epileptic cases, although there are some that are not
classified correctly that needs to be investigated in the future.
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XAI results

As shown in Figure 5.10, the plot in the left provides an overview of the top 10 most
important features in the XGBoost model’s predictions for epilepsy detection. The
bar plot shows the average magnitude of the SHAP values for each feature showing
how much each feature has an influence to the model’s output. Feature 841 has the
most effect compared to the other features in the image array. The second plot in

Figure 5.10: Comparison of the top 10 SHAP values for the features extracted using the
VGG16 model (left) and highest SHAP value dependence plot for the TUH dataset.

Figure 5.12 is a SHAP scatter plot for Feature 841 showing the relationship between
the SHAP value of this feature and its actual value in the dataset. Points higher on the
Y-axis give a stronger positive impact on the model’s prediction suggesting that higher
values of Feature 841 are linked with a higher probability of an EEG being classified
as epileptic. The same goes for the lower probabilities in the bottom of the y-axis.
The clustering of points also could mean that possible patterns in how these features
interact can have a huge impact on the model’s performance.

58



5.3.2 EMC dataset

The results of the epilepsy detection models demonstrate multiple levels of perfor-
mance across the different classifiers using the VGG16 as the integration of transfer
learning. As stated before, the LOSO CV was used for the cross-validation method.
The XGBoost model achieved the highest AUC of 0.86 showing a strong ability to
distinguish between epileptic and healthy patients. This model also demonstrated

Figure 5.11: ROC curve of multiple classifer on the EMC dataset using LOSO CV.

a balanced accuracy and high precision for detecting epileptic EEGs meaning that
it is effective at correctly identifying patients with epilepsy when looking at the
positive and negative predicted values. The Random Forest model also performed

Table 5.6: Detailed analysis of LOSO CV results for EMC dataset.

Model TP TN FP FN AUC BAC

XGBoost 92 29 13 13 0.86 83.2

SVM 98 12 30 7 0.74 71.67

Random Forest 96 25 17 9 0.85 82.33

well with an AUC of 0.85 showing similar performance when compared to XGBoost,
however, with lower precision and recall for healthy cases. On the other hand,
the SVM model showed a lower AUC of 0.74 showing lower performance which
struggles with differentiating between the two classes. With false positives being
the problem as indicated by its lower precision and recall scores for healthy EEGs,
it can be seen that there is lower performance. Table 5.6 gives a further detailed
analysis of how many patients were classified properly and how many were not which
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could be useful for the neurologist. The true positives and true negatives were very
high for both the epilepsy and healthy patients i.e. multi-seizure vs single seizure
classification in this case especially for the XGboost classifier. 87.6 percent of the
non-epileptic patients and 69.05 percent of the epileptic patients were classified
correctly in terms of a neurologist perspective. Overall, while all models performed

Table 5.7: Metrics comparison using LOSO CV on the EMC dataset

Model Accuracy Precision Recall F1-Score

Epileptic Healthy Epileptic Healthy Epileptic Healthy

XGBoost 0.82 0.69 0.88 0.69 0.88 0.69 0.88

SVM 0.75 0.63 0.77 0.29 0.93 0.39 0.84

Random Forest 0.82 0.74 0.85 0.60 0.91 0.66 0.88

well, XGBoost and Random Forest are the most robust classifiers for automated
epilepsy detection using Transfer learning. This was achieved with handling the data
imbalance similar to Thangavel et al.’s approach and optimizing the identification of
epileptic EEG patterns through the features extracted from the VGG16 model. To
prevent data leakage, several checks were done to check for duplicates / near duplicates.

Additionally, the use of Leave-One-Subject-Out Cross-Validation (LOSO CV)
played a vital role in mitigating overfitting by making sure that the model was tested
on entirely unseen data from different subjects. This approach to validation not only
improves the model’s relevance but also provides a more reliable assessment of its true
performance in clinical settings.

5.3.2.1 Evaluation on the Hold-Out Test Set

The model was evaluated using a hold-out test set to check its performance on
completely unseen data. This evaluation provides insight into the model’s ability and
its effectiveness when using new patient data.

The model achieved an accuracy of 0.8 (80%) on the hold-out test set showing
that it correctly classified 80% of the EEG data. This accuracy suggests that the
model performs reasonably well on data it has not encountered during training.

The confusion matrix for the hold-out test set is shown in Table 5.8. The model

Table 5.8: Confusion Matrix for Hold-Out Test Set.

Predicted Epileptic (0) Predicted Non=Epileptic (1)

Epileptic (0) TP: 3 FP: 0

Non-Epileptic (1) FN: 2 TN: 5

correctly identified 3 out of 5 epileptic patients and all 5 non-epileptic samples.

Table 5.9 summarizes the precision, recall, and F1-score for both classes. The
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Table 5.9: Performance Metrics for Hold-Out Test Set

Metric Epileptic Non-epileptic

Precision 1.00 0.71

Recall 0.60 1.00

F1-Score 0.75 0.83

model shows perfect precision (100%) meaning all predicted Healthy cases were
correct. However, the recall was lower at 60%, meaning that the model missed 2
actual epileptic cases. Regarding the healthy patients i.e. non-epileptic, the model
achieved perfect recall (100%), correctly identifying all actual cases. Moreover, the
model performs better on the healthy class due to more samples present in the training
data. This class imbalance costs some false positives in the epileptic class and hence,
the trade-off between precision and recall must be considered in the future. In the
context of epilepsy diagnosis, incorrectly classifying an epileptic case can have severe
consequences. Therefore, the model’s performance is important to meet the criteria of
the neurologist.

5.3.2.2 XAI results

As shown in Figure 5.12, the plot in the left provides an overview of the top 10 most
important features in the XGBoost model’s predictions for epilepsy detection. The bar
plot shows the average magnitude of the SHAP values for each feature showing how
much each feature has an influence to the model’s output. Feature 722 has the most
effect followed by Features 917 and 6. These features have the largest mean absolute
SHAP values suggesting they are the most influential in distinguishing between epileptic
and healthy EEG signals. The second plot in Figure 5.12 is a SHAP scatter plot for

Figure 5.12: Comparison of the top 10 SHAP values for the features extracted using the
VGG16 model (left) and highest SHAP value dependence plot for the EMC dataset.

Feature 722 showing the relationship between the SHAP value of this feature and its
actual value in the dataset. The color gradient indicates the value of another feature
which in this case is randomly chosen due to its lower SHAP value i.e. Feature 497 which
gives more information on how Feature 722 interacts with Feature 497 in the model’s
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decision-making process. The analysis shows similar effects which was discussed in the
XAI results for the TUH dataset.
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Discussion 6
In this chapter, the results obtained are discussed connecting to the initial research
questions and exploring implications of the field fo epilepsy diagnosis. The validation
of the pre-processing and feature extraction steps is done by comparing results
between MATLAB and Python implementations. As shown in the correlation and
NRMSE plots, there is a high degree of agreement between the two versions with mean
correlations greater than 0.9 for most features and minimal NRMSE values. This
successful correlation shows that the data processing pipeline across different software
environments is consistent.

In this study, two methodologies are used, XGBoost with Leave-One-Subject-
Out Cross-Validation (LOSO CV) and VGG16-based transfer learning, to analyze and
classify epileptic EEG signals from the TUH and EMC datasets. The findings indicate
that both methods performed decent with the VGG16 model achieving a high (AUC)
of 0.86 and an accuracy of 82%.

Table 6.1: Summary of comparison of our work with other state-of-the-art methods developed
using EEG signals.

Study Method Dataset Split ra-
tio

Results (%)

Thomas et
al. [12]

CNN, Tem-
plate Match-
ing, S-F
classifier

Ep: 33, Np: 30 LOSO CV AUC = 0.812, Bal-
anced Accuracy =
74.8

Thangavel
et al. [87]

1D ConvNet,
2D ConvNet

Ep: 93, Np: 461 LOIO CV AUC = 0.839, Bal-
anced Accuracy =
78.10

Yang et al.
[29]

Time-domain
features

Ep: 27, Np: 17 LOSO CV Accuracy = 79.55,
Recall = 81.44,
Specificity = 76.47

Aristizabal
et al. [88]

CNN &
LSTM

Ep: 1360, Np: 240 5 fold CV Accuracy = 72.54

Syamsun-
dararao et
al. [89]

CNN TUH dataset 10-fold CV Accuracy: 85.48,
Precision: 76.65,
Recall: 78.20, F1-
score: 69.12

Continued on next page
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Table 6.1: Summary of comparison of our work with other state-of-the-art methods developed
using EEG signals (continued).

Study Method Dataset Split ra-
tio

Results (%)

Mahfuz et
al. [55]

STFT or
CWT,
VGG16,
SVM

Multiple datasets 5-fold CV Mean Accuracy =
87%

Taski et al.
[90]

Hypercube,
MDWT,
NCA, kNN,
IMV

TUH dataset train-test
split

Accuracy = 86.23,
Sensitivity = 80.16,
Specificity = 91.33,
Precision = 88.60,
F1-score = 84.17

Our
method

XGBoost +
LOSO CV

TUH dataset /
EMC dataset

LOSO CV AUC = 0.77, BAC
= 72.0 / AUC =
0.7, BAC = 67

Our
method

VGG16
method

TUH dataset /
EMC dataset

LOSO CV AUC = 0.77, F1-
score = 65, AUC =
0.86, F1-score = 79

Our methods were compared against several state-of-the-art techniques from recent
studies. Thomas et al. [12] used CNN and template matching achieving an AUC of
0.812 and a balanced accuracy of 74.8%. Thangavel et al. [87] applied 1D and 2D
ConvNets obtaining an AUC of 0.839 and a balanced accuracy of 78.10%. Yang et al.
[29] employed time-domain features with LOSO CV achieving an accuracy of 79.55%,
recall of 81.44%, and specificity of 76.47%. The comparative analysis reveals several
important facts. The higher AUC and accuracy of our methods suggest that transfer
learning, particularly using pre-trained models like VGG16, can effectively capture
complex patterns in EEG signals. This is proven by the PCA visualization which
shows distinct clustering of features extracted by VGG16 showing major differences
after dimensionality reduction.

The results from the transfer learning approach using the VGG16 model for fea-
ture extraction shows significant variations in performance across different classifiers
on both TUH and EMC datasets. The EMC dataset outperforms the TUH dataset
with these STFT + VGG16 features + XGBoost + LOSO CV. The XGBoost model
was the most effective with an AUC of 0.86. This indicates a strong capability in
distinguishing between epileptic and healthy EEGs without clear markers i.e. IEDs.
The Random Forest model closely followed XGBoost with an AUC of 0.85 showing
that it is also highly effective even with lower precision and recall for the epileptic
class. On the other hand, the SVM model gives a lower AUC of 0.74 showing a relative
difficulty in distinguishing between the two classes with the high number of false
positives for healthy EEGs. This outcome highlights the challenges SVM faces when
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applied to this type of complex, imbalanced data which other models can perform
better.

Future work will focus on expanding the dataset to include more diverse patient
demographics and exploring additional deep learning architectures to further improve
classification accuracy as shown Table 6.1. In addition to this, XAI techniques such
as SHAP values provide better understanding of model predictions showing their
acceptance and use in clinical practice.

Despite the above results, several limitations must be discussed. The primary
limitation is the potential for overfitting due to the relatively small sample size.
While LOSO CV mitigates this risk, larger datasets are necessary to validate the the
findings. Furthermore, this study shows the usefulness of advanced machine learning
and deep learning techniques in classifying epileptic patients. Future research will aim
to address the identified limitations and further refine these models to improve their
diagnostic accuracy and reliability.
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Future research directions &
Conclusion 7
7.1 Research Findings, Limitations and Significance

In this section, the findings from the methods used in this report are discussed by
connecting the results to the research questions to check their significance in improving
epilepsy diagnosis. The main aim of this research was to create and validate machine
learning algorithms for classifying people with epilepsy and those without using
different techniques. This research focuses on testing the new techniques against
well-known diagnostic standards using the TUH and EMC dataset. We checked how
patients with IEDs compared to healthy individuals where the frequency band powers
in Figure 4.3 shows the distributions impact. Our findings showed the use of the
methods from the initial study conducted by Thangavel et al. which leads to the
right direction for the epilepsy diagnosis research. The AUC and BAC values for
the TUH dataset containing IEDs closely resembled the results documented in the
research paper suggesting that this method of extracting features and classifying them
is reliable and successful.

After achieving these results with the TUH dataset, the same method is applied
to the EMC dataset too for analyzing and distinguishing epileptic patients without
IEDs from healthy individuals. This was done to evaluate how well our approach
could be adapted to other datasets. The results showed that although the performance
metrics (AUC and BAC) were slightly lower for the EMC dataset compared to the
TUH dataset, the models still displayed similar results. This discovery implies that
the features we identified are pertinent and efficient across different patient groups
and recording settings.The results of this research have some implications. Being able
to classify EEG signals from patients with epilepsy compared to those without can
still be challenging. In addition to this, the adapting these techniques across datasets
highlights the potential for increased use. Additional data collection is still important
to improve the EEG analysis on the EMC dataset.

Although this paper showed different outcomes, there are limitations to take
into account. After applying the model on the EMC dataset with Thangavel et
al. method, it didn’t reach the same level as on the TUH dataset. This difference
might come from variations in recording environments, patient characteristics, or
the presence of distinct epileptic patterns in the EMC dataset. Future studies could
explore alternative feature extraction methods, data augmentation techniques, and
different machine learning algorithms to further improve classification accuracy [76].
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7.2 Future Research Directions

7.2.1 Expanding and Merging Datasets

Expanding the datasets to include a more varied patient population and a broader
range of epilepsy types that occur in the future could provide more validation of the
proposed methods. Merging both datasets could also be a new solution to increase the
sample size that can help with training the models from scratch in addition to using
pre-trained models. In addition to this, based on past experience in an internship,
re-training the models after finding out the mis-classified features can also be a new
approach in epilepsy diagnosis as this can for sure improve the accuracy of the model
by removing the bad features that are used for training.

7.2.2 Hybrid Models and Deep Learning Approaches

Using a hybrid model approach such as combining XGBoost with an LSTM model
could improve classification accuracy. Deep learning approaches could have a significant
impact by using the known feature vectors implemented in this thesis. The integration
of STFT or wavelet transforms with 1D or 2D-CNNs depending on the complexity is
recommended for future work as these methods have proven to be successful in other
studies. However, it is important to note that not all studies use datasets without IEDs
which can have an impact on classification performance as highlighted in this study as
there is a significant performance drop between dataset with and without IEDs. Future
advanced deep learning research could focus on 1D CNNs on time-domain signals, 2D
CNNs on STFT-domain signals or transformers (impact in image classification tasks)
[91, 92].

7.2.3 Statistical Analysis and alternatives

Further research should also involve statistical analysis of all extracted features to
examine the main effects in epileptic EEGs when using the ensemble method. This
could give more information in the feature selection process identifying the most signif-
icant features and improving model performance. Looking into alternatives to wavelet
and Stockwell transforms such as multi-frequency band functional connectivity analysis
could provide more insights into the brain’s functional networks with additional feature
extractions related to mean or median power / energy [12, 33, 90]. This could give a
better understanding of the EEG data and improve classification accuracy. Besides
this, looking into how the artefact removal algorithm influences the statistical proper-
ties of the EEG signal should be looked into to see if there are better techniques other
than the one used in this thesis.

7.2.4 Analysis of External Factors

The analysis of the effects of external factors such as hyperventilation, photic stimula-
tion, and sleep deprivation on EEG patterns, as shown in the annotations in the EMC
dataset in Figure A.12, is another important direction. These factors are known to in-
fluence EEG readings, and their inclusion or exclusion could improve model robustness
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and accuracy. In this thesis, the photic stimulation part is removed from the dataset
due to too many spikes as mentioned in the Background chapter.

7.2.5 Including Patient-Specific Information

Including patient-specific information such as age, gender, and medical history in the
epilepsy diagnosis models could provide more detailed differences between the 2 classes
improving the model’s ability to distinguish between epilepsy types and other neuro-
logical conditions especially when expanding the dataset.

7.2.6 Segmentation and Transfer Learning for Data Augmentation

Provided this limited size of the current dataset, training deep learning models from
scratch may not be feasible or reliable i.e. there could be overfitting when trying the
STFT and a 2D CNN. Using segmentation techniques to generate an increased number
of training samples and applying transfer learning from pre-trained models could help
overcome these data limitations and improve model performance.

7.2.7 Other feature extraction methods

There are many other features other than the ones used in this thesis that can influence
the outcomes of the model. In terms of connectivity features, coherence can be a new
feature that can be looked into as mentioned in some papers [93]. So, the cross-
correlation and phase locking value from before can be compared to this feature set.
Different combiners can be added and looked into in the future besides the current 5
combiners.
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Conclusion

The application of transfer learning using the VGG16 model has proven to be highly
effective for the diagnosis of epilepsy using EEG data from the EMC dataset. The
model that performed best is the VGG16 + XGBoost + LOSO CV which shows that
it can be a strong candidate for future automated epilepsy detection systems. Other
than this, Thangavel et al.’s approach on both datasets prove that there are significant
results when classifying EEGs without IEDs which was one of the main research
challenges of this thesis.

The results suggest that integrating deep learning-based feature extraction with
traditional machine learning classifiers such as XGBoost can improve the accuracy
and reliability of automated epilepsy diagnosis systems a lot. Future work could also
explore the integration of these models into clinical workflows which could have a
significant impact on patient outcomes.

In conclusion, this study successfully developed, validated, and compared differ-
ent machine learning models for the classification of EEG signals in epileptic and
healthy patients. The results show the efficiency of the proposed methods and their
potential for clinical application. Future research should aim to address the limitations
which was mentioned and continue to refine and expand the capabilities of these
models for epilepsy diagnosis. With not many papers focusing on EEGs without IEDs,
many techniques can be tested to check whether the classification results can improve.
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Supplementary Figures &
Statistical analyses A
A.1 Pre-processing

Figure A.1: Frequency responses of the notch & high pass filter.

Figure A.2: Single-sided amplitude spectrum of channel F3.
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Figure A.3: Pre-processing of TUH dataset showing raw EEG data noise & artifact removals.

Figure A.4: Distribution of zero counts across all channels before the removing segments
stage.
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Figure A.5: Plot of the EEG signals from different channels of the EMC dataset.
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A.2 Feature extraction analysis

Figure A.6: Spectral bands of EEG signals showing the relative power of delta, theta, alpha,
beta, and gamma bands.

Figure A.7: Approximate and detail coefficients of a sample EEG signal segment taken from
a epileptic patient.
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Figure A.8: Average CWT coefficients for epileptic and healthy EEGs using Morlet (morl)
wavelet. The plot shows the time on the x-axis and frequency on the y-axis with the color
bar indicating the squared magnitude (power).

Figure A.9: Heatmap of CC showing the strength of connections between different EEG
channels.

Figure A.10: CPLV connectivity matrices for different bands.
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Figure A.11: Graph metrics visualisation using the networkx toolbox [94].

Figure A.12: EMC dataset annotations.
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Figure A.13: PCA Visualization of VGG16 Features (TUH dataset).

Figure A.14: PCA Visualizations 2 components (left) & 3 components (right) of VGG16
Features (EMC dataset).

77



A.3 Statistical analysis

Figure A.15: A typical ROC curve [95].

Figure A.16: Box-plots of each UTM feature comparing Epileptic vs Healthy patients [N =
10] for TUH dataset.
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Figure A.17: Box-plots of DWT features comparing Epileptic vs Healthy patients [N = 10]
for EMC dataset.
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Figure A.18: Distribution of Top 10 Significant Features (Mann-Whitney U Test) for Each
Feature Set (TUH).
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Figure A.19: Distribution of Top 10 Significant Features (Mann-Whitney U Test) for Each
Feature Set(EMC).
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Figure A.20: Feature maps in first, third and fourth convolutional blocks for epileptic patient
(sub-0001) EMC dataset.

Figure A.21: Feature maps in first, third and fourth convolutional blocks for non-epileptic
patient (sub-0001) EMC dataset.
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Flowcharts B

Figure B.1: Labelling & lookup table for TUH dataset configuration.

Figure B.2: Overall process with multiprocessing using Delftblue cluster.
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Figure B.3: Flowchart describing the different steps of article collection.
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Comparison b/w MATLAB
and Python algorithms C

Figure C.1: Pre-processing channel metrics results b/w MATLAB and Python.

Figure C.2: Pre-processing Correlation line plot b/w MATLAB and Python.
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Figure C.3: Pre-processing NRMSE results b/w MATLAB and Python.

Figure C.4: Pre-processing Correlation & NRMSE results b/w MATLAB and Python.
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Figure C.5: S Correlation results & NRMSE b/w MATLAB and Python.

Figure C.6: CC Correlation results & NRMSE b/w MATLAB and Python.

Figure C.7: CPLV Correlation results & NRMSE b/w MATLAB and Python.
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Figure C.8: DWT Correlation results & NRMSE b/w MATLAB and Python.

Figure C.9: CWT Correlation results & NRMSE b/w MATLAB and Python.

Figure C.10: Global S-transform MATLAB vs Python.
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Figure C.11: RMSE and NRMSE stockwell MATLAB vs Python.

Figure C.12: Correlation analysis stockwell MATLAB vs Python.
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Figure C.13: Graph metrics Correlation results & NRMSE b/w MATLAB and Python.
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C.1 Tabular results

Table C.1: Individual features comparison of the TUH dataset with IEDs.

Feature
Thangavel Paper w/o Age + Vigilance with Age + Vigilance
AUC BAC AUC BAC AUC BAC

S 0.867 74.167 0.8633 77.33 0.87 78.33

CC 0.8 70.167 0.798 70.33 0.8 70.66

CPLV 0.78 66.833 0.7848 66.16 0.79 67.166

ST SR 0.85 78.33 0.842 77.66 0.848 79.33

ST P 0.69 60 0.68 59.66 0.7 61

DWT 0.87 80.33 0.86 79.33 0.8656 79.66

CWT 0.85 75 0.8464 74.66 0.856 75.33

Cnetwork 0.72 68 0.71 66 0.7233 68.33

Pnetwork 0.77 69.33 0.78 69.66 0.79 71

UTM 0.86 83.33 0.85 83 0.856 83.2
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Algorithms re-implemented
after bug-fixes in Python
library D
D.1 Pre-processing

Algorithm 5 Buffer Data into Segments of 1 Second

1: Input: data (signal), sample rate (samples per second)
2: Output: padded data (buffered data in segments)
3: buffer len← sample rate
4: num segments← ⌈ length(data)buffer len ⌉
5: padded len← num segments× buffer len
6: padded data← zeros(padded len)
7: padded data[: length(data)]← data
8: return padded data.reshape(num segments, buffer len)

D.2 Graph metrics

Algorithm 6 Eigenvector Centrality for Undirected Networks

1: Input: network (adjacency matrix)
2: Output: v (eigenvector centrality)
3: n← length of network
4: if n < 1000 then
5: vals, vecs← eig(network)
6: else
7: vals, vecs← eigs(csr matrix(network), k=1, which=’LM’)
8: end if
9: idx← argmax(real(vals))

10: ec← abs(vecs[:, idx])
11: v ← ec.reshape(len(ec), 1)
12: return v
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Algorithm 7 Autofix Matrix Adjustments

1: Input: W (matrix)
2: Output: W (modified matrix)
3: Clear diagonal elements of W
4: diag(W ) ← 0
5: Remove Infs and NaNs from W
6: W [isinf(W ) or isnan(W )] ← 0
7: Ensure exact binariness of W
8: U ← unique(W )
9: if len(U) > 1 then

10: idx 0← |W | < 10−10

11: idx 1← |W − 1| < 10−10

12: if all(idx 0 or idx 1) then
13: W [idx 0]← 0
14: W [idx 1]← 1
15: end if
16: end if
17: Ensure exact symmetry of W
18: if not array equal(W , W T ) then
19: if max(|W −W T |) < 10−10 then

20: W ← W+WT

2
21: end if
22: end if
23: return W

Algorithm 8 Custom Local Assortativity

1: n← length of W
2: Set diagonal of W to 0
3: rpos ← assortativity of W × (W > 0)
4: rneg ← assortativity of −W × (W < 0)
5: strpos, strneg ← strengths of W
6: Initialize loc assort pos, loc assort neg as NaN arrays
7: for curr node = 0 to n− 1 do
8: jpos ← indices of W [curr node, :] > 0
9: if strpos[curr node] ̸= 0 then

10: loc assort pos[curr node]←
∑
|strpos[jpos]− strpos[curr node]| /strpos[curr node]

11: end if
12: jneg ← indices of W [curr node, :] < 0
13: if strneg[curr node] ̸= 0 then
14: loc assort neg[curr node]←

∑
|strneg[jneg]− strneg[curr node]| /strneg[curr node]

15: end if
16: end for
17: if sum of loc assort pos is not NaN then
18: loc assort pos← ((rpos + 1)/n)− (loc assort pos/

∑
(loc assort pos))

19: end if
20: if sum of loc assort neg is not NaN then
21: loc assort neg ← ((rneg + 1)/n)− (loc assort neg/

∑
(loc assort neg))

22: end if
return loc assort pos, loc assort neg
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Algorithm 9 Modularity Calculation for Weighted Networks

1: Input: A (connection matrix), γ (resolution)
2: Output: Ci (community indices), Q (modularity)
3: Initialize N , K, m, B, Ci, cn, U
4: while U not empty do
5: Compute eigenvalues and eigenvectors of B
6: Identify maximum eigenvalue and corresponding eigenvector
7: Compute S and modularity contribution q
8: if q > 0 then
9: Fine-tune S by iteratively adjusting signs

10: if no split possible then Remove current community from U
11: elseDivide community and update Ci and U
12: end if
13: elseRemove current community from U
14: end if
15: Update B for next community
16: end while
17: Compute final modularity Q based on Ci

D.3 CWT algorithm with modified checks

Algorithm 10 Feature Extraction Using CWT

1: Input: EEG data data, Sampling frequency Fs, Segment length sec, Wavelet type
WAVELET TYPE

2: Initialize: Number of segments seg num, scales scales, output matrix out
3: Checks: Check frequencies greater than 2 Hz and segment lengths
4: if seg num == 0 then
5: out ← CWT of the entire data
6: else
7: Adjust scales dynamically to ensure sufficient scales
8: for each segment and each channel do
9: Apply CWT on the segment

10: Extract mean and standard deviation of squared coefficients
11: Store features in out
12: end for
13: end if
14: Output: Feature matrix out
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