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SUMMARY

Federated learning (FL) has emerged as an important paradigm in distributed machine
learning, enabling collaborative model training across decentralized devices while pre-
serving data privacy. FLs privacy-preserving nature — where raw data remains on local
devices and only model updates are shared — has made it suitable in sensitive domains
like healthcare and finance. However, the decentralized framework introduces funda-
mental challenges that threaten its reliability and adoption. Data heterogeneity, security
threats, and privacy leakage risks create critical vulnerabilities that demand robust solu-
tions.

To study such vulnerabilities, this thesis considers two kinds of parties: the clients
and the servers. Clients act as data owners that perform localized computations and
share only model parameters, thereby preserving raw data privacy, yet they introduce
vulnerabilities through potential malicious behaviors (e.g., data/model poisoning at-
tacks) or unreliable contributions due to data quality. In contrast, the server, while facil-
itating model convergence through aggregation, poses inherent privacy risks by poten-
tially inferring sensitive client information from shared gradients, even without direct
data access. These two parties create a dual-threat landscape: clients may compromise
model performance through adversarial manipulations, while servers break confiden-
tiality via reconstruction methods.

This thesis investigates these challenges through four key research questions, com-
bining theoretical analysis with empirical validation to advance FL robustness. The first
challenge stems from the inherent data heterogeneity in FL systems, where clients pos-
sess non-identically distributed data that can significantly impact model convergence.
The second vulnerability involves security threats from malicious clients who may poi-
son the training process. The third investigates privacy risk where servers could recon-
struct sensitive data from model updates, especially under data reuse for training, violat-
ing FLs core privacy guarantees. The fourth study extends the privacy leakage concerns
to emerging federated generative models.

In Chapter 2, we focus on client selection in heterogeneous FL environments. Tra-
ditional approaches often overlook participants with unique data distributions, leading
to decreased model performance. We explore the role of specialized clients with unique
data distributions and develop adaptive strategies to optimize their participation. We
propose an adaptive selection strategy that dynamically evaluates the feature distances
based on the data characteristics of the clients’ models and the global model, ensuring
optimal participation patterns across different learning phases.

In Chapter 3, we study untargeted attacks with limited knowledge or resources in FL
systems. Unlike existing work that assumes strong adversary capabilities, we consider
more realistic scenarios where attackers lack training data or update visibility to benign
clients. The proposed attack framework demonstrates how carefully crafted synthetic

ix



X SUMMARY

updates can effectively compromise model performance. We complement this chapter
with a defense mechanism that identifies and mitigates such specific attacks.

In Chapter 4, we investigate privacy risks in multi-server FL environments, where
clients participate in multiple concurrent learning tasks and reuse their local training
data. We analyze how gradient updates from different tasks can be integrated to break
data privacy, developing theoretical bounds on the relationship between data reuse and
privacy leakage. Our proposed attack method leverages collusion between servers to
significantly improve reconstruction quality compared to single-server scenarios.

In Chapter 5, we explore privacy vulnerabilities in federated diffusion models, which
act as increasingly important high-quality generative models. While most FL privacy re-
search focuses on involving external knowledge, we demonstrate how the unique train-
ing of diffusion models creates a new privacy attack paradigm. Our proposed two-stage
inversion method successfully reconstructs training images despite the additional com-
plexity introduced by the denoising process.

Finally, in Chapter 6, we summarize the conclusions made in this thesis, with regard
to the research questions, and outline the limitations and future research directions.



SAMENVATTING

Federated learning (FL) is uitgegroeid tot een belangrijk paradigma in gedistribueerd
machinaal leren, waarmee collaboratieve modeltraining over gedecentraliseerde appa-
raten mogelijk wordt gemaakt terwijl de dataprivacy behouden blijft. De privacybescher-
mende aard van FL - waarbij ruwe datalokaal op apparaten blijft en alleen modelupdates
worden gedeeld - maakt het geschikt voor gevoelige domeinen zoals gezondheidszorg
en financién. Het gedecentraliseerde framework brengt echter fundamentele uitdagin-
gen met zich mee die de betrouwbaarheid en adoptie ervan bedreigen. Datahetero-
geniteit, beveiligingsdreigingen en privacyrisico’s creéren kwetsbaarheden die robuuste
oplossingen vereisen.

Om dergelijke kwetsbaarheden te bestuderen, beschouwt dit proefschrift twee soorten
partijen: clients en servers. Clients fungeren als data-eigenaren die lokale berekeningen
uitvoeren en alleen modelparameters delen, waardoor de privacy van ruwe data gewaar-
borgd blijft. Toch introduceren ze kwetsbaarheden door mogelijk kwaadwillend gedrag
(zoals data/modelvergiftigingsaanvallen) of onbetrouwbare bijdragen door datakwaliteit.
De server daarentegen, hoewel deze modelconvergentie faciliteert via aggregatie, vormt
inherente privacyrisico’s door mogelijk gevoelige clientinformatie af te leiden uit gedeelde
gradients, zelfs zonder directe datatoegang. Deze twee partijen creéren een dubbel dreig-
ingslandschap: clients kunnen modelprestaties compromitteren via adversariale ma-
nipulaties, terwijl servers vertrouwelijkheid schenden via reconstructiemethoden.

Dit proefschrift onderzoekt deze uitdagingen aan de hand van vier onderzoeksvra-
gen, waarbij theoretische analyse wordt gecombineerd met empirische validatie om de
robuustheid van FL te verbeteren. De eerste uitdaging komt voort uit de inherente data-
heterogeniteit in FL-systemen, waarbij clients niet-identiek verdeelde data bezitten die
modelconvergentie aanzienlijk kunnen beinvloeden. De tweede kwetsbaarheid betreft
beveiligingsdreigingen van kwaadwillende clients die het trainingsproces kunnen vergifti-
gen. Het derde onderzoek richt zich op privacyrisico’s waarbij servers gevoelige data
kunnen reconstrueren uit modelupdates, vooral bij hergebruik van trainingsdata, wat
in strijd is met de kernprivacygaranties van FL. Ons vierde onderzoek breidt de priva-
cyproblematiek uit naar opkomende federatieve generatieve modellen.

In Hoofdstuk 2 richten we ons op clientselectie in heterogene FL-omgevingen. Tra-
ditionele benaderingen negeren vaak deelnemers met unieke dataverdelingen, wat leidt
tot verminderde modelprestaties. We onderzoeken de rol van gespecialiseerde clients
met unieke dataverdelingen en ontwikkelen adaptieve strategieén om hun participatie te
optimaliseren. We stellen een adaptieve selectiestrategie voor die dynamisch de feature-
afstanden evalueert op basis van de datakarakteristieken van de clientsmodellen en het
globale model, waardoor optimale participatiepatronen over verschillende leerfasen ge-
garandeerd worden.

In Hoofdstuk 3 bestuderen we niet-gerichte aanvallen met beperkte kennis of midde-
len in FL-systemen. In tegenstelling tot bestaand werk dat uitgaat van sterke adversary-
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capaciteiten, beschouwen we realistischer scenario’s waarbij aanvallers geen trainings-
data of updatezichtbaarheid van goedaardige clients hebben. Het voorgestelde aanvals-
framework demonstreert hoe zorgvuldig geconstrueerde synthetische updates model-
prestaties effectief kunnen compromitteren. We complementeren dit hoofdstuk met een
verdedigingsmechanisme dat dergelijke specifieke aanvallen identificeert en mitigeert.

In Hoofdstuk 4 onderzoeken we privacyrisico’s in multi-server FL-omgevingen, waar-
bij clients deelnemen aan meerdere gelijktijdige leertaken en hun lokale trainingsdata
hergebruiken. We analyseren hoe gradientupdates van verschillende taken geintegreerd
kunnen worden om dataprivacy te doorbreken, en ontwikkelen theoretische grenzen
voor de relatie tussen datahergebruik en privacy-lekkage. Onze voorgestelde aanvalsmeth-
ode benut collusie tussen servers om reconstructiekwaliteit significant te verbeteren ver-
geleken met single-server scenario’s.

In Hoofdstuk 5 exploreren we privacykwetsbaarheden in federatieve diffusiemod-
ellen, die steeds belangrijkere hoogwaardige generatieve modellen vormen. Terwijl het
meeste FL-privacyonderzoek zich richt op externe kennis, demonstreren we hoe de unieke
training van diffusiemodellen een nieuw privacy-aanvalsparadigma creéert. Onze voor-
gestelde tweefasen-inversiemethode reconstrueert succesvol trainingsafbeeldingen on-
danks de extra complexiteit van het denoisingsproces.

Tenslotte vatten we in Hoofdstuk 6 de conclusies van dit proefschrift samen met be-
trekking tot de onderzoeksvragen, en schetsen we de beperkingen en toekomstige on-
derzoeksrichtingen.



INTRODUCTION

Federated learning (FL) was introduced by Google researchers in 2016 to address privacy
concerns in distributed machine learning, specifically targeting mobile applications like
Google’s Gboard. FL enables collaborative training on data from multiple parties without
direct raw data sharing. The goal was to enable devices such as smartphones to collabo-
ratively train machine learning models on the task of next-word prediction. This innova-
tion was a result of the growing demand for privacy-preserving techniques, particularly
as data privacy regulations like the General Data Protection Regulation (GDPR) were be-
coming more prominent. Over time, FL expanded beyond mobile applications and en-
tered domains such as healthcare, finance, and autonomous systems. For example, in
healthcare, it enables the training of models on sensitive medical data across hospitals
without sharing patient records. In finance, FL is used to detect fraud across institutions
without exposing proprietary customer data. In other words, it leverages the crowd-
sourcing of diverse data and the computational power of distributed devices, making it a
scalable solution for training fast adaptive models on large, distributed datasets without
sharing the raw data. Thus, as data privacy concerns and regulatory constraints grow, FL
becomes a crucial technology for enabling secure and efficient machine learning appli-
cations across diverse domains.

There are two key parties in the context of FL systems: the data owners, i.e., clients,
and the model aggregator, i.e., the server. Multiple clients (sometimes can be anony-
mous) are decentralized parties that participate in the training of a shared global model
using their local data, such as smartphones, IoT devices, or organizational servers, each
holding data that never leaves local devices. Clients iteratively train the model on their
own datasets and send updates, such as gradient information, to a central server for
aggregation. This decentralized approach helps to preserve data privacy but introduces
challenges like varying computational capacities and unstable Internet connectivity. More-
over, clients may have heterogeneous data, which means the data of different owners
varies a lot, e.g., data class and data quantity. It results in making the learning process
more complicated and may affect the global model’s performance unless handled prop-
erly.
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In contrast to the clients, the server acts as the central coordinator that aggregates
model updates from clients and manages the global model. The server’s primary role
is to initialize and distribute the machine learning model, collect updates from multi-
ple clients, aggregate them, which often computes weighted averages, update the global
model accordingly, and redistribute the updated model to the clients. Please note that
aggregations and redistributions are repeated over multiple global rounds, e.g., hun-
dreds or thousands. Thus, after each round of aggregation, the server distributes the
updated model back to the clients for the next round of local training. The server must
handle challenges such as ensuring authenticated, secure communication, mitigating
the effects of data heterogeneity, and handling the scalability of multiple participants, as
the number of clients might be very large. The FL. models range from classifications, pre-
dictions, to generations, covering various modalities including image, text, audio, and
time-series data.

Above, we introduced the general process of FL. However, one issue associated with a
large number of participants is that some parties might be malicious (actively malicious
or curious-but-honest). On the client side, malicious clients can intentionally change
their data input or directly modify model updates. The goal could be degrading the over-
all performance of the global model, injecting a backdoor into the model, or just joining
the learning without providing any real contribution. By submitting such manipulated
updates, they pose significant threats to the system’s security and reliability. Also, for
the server side, the server has access to multiple updates from different clients, which
may result in privacy attacks inferring confidential information, thus, breaking the ini-
tial advantage of protecting the data of FL. This privacy challenge is crucial for clients
to consider. Additionally, there is the possibility of collusion attacks among clients or
among servers, which can happen for both security and privacy attacks. These attacks
are particularly dangerous because they exploit the decentralized nature of FL and are
more difficult to detect, as the malicious behavior can be masked within normal client
activity.

To create more secure and robust FL systems, this thesis explores the vulnerabili-
ties concerning both the clients and the servers to improve the robustness. We investi-
gate vulnerability-related issues of FL systems, which are specified by data heterogeneity,
client security attacks, and the risk of privacy leakage by the server. We design and ana-
lyze novel methods that address the threats of these two kinds of parties: the server and
the clients, respectively. In particular, for the clients, we design and analyze a method
to effectively select suitable clients for round-wise participation, a method to attack the
global model in a manner that requires less knowledge than state-of-the-art methods,
as well as the corresponding defenses for the clients. As for the server, we analyze and
develop a collusion data reconstruction method to break the local data privacy. We also
extensively study this reconstruction in a different type of task, namely, generative mod-
els. We now introduce the background (Section 1.1, Section 1.2), vulnerabilities for the
clients (Section 1.3), vulnerabilities for the server (Section 1.4), our research questions
(Section 1.5), the structure of this thesis and its scientific contributions (Section 1.6),
and our research methodology (Section 1.7).
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Server\“*_
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Initialized/aggregated
model weights
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gradients

Figure 1.1: Federated learning with two kinds of parties: the servers (can be multiple) for model initialization,
distribution, aggregation, and redistribution; the clients (multiple) as the data owners for training and model
updating.

1.1. FEDERATED LEARNING

Federated learning is a distributed machine learning paradigm designed to train mod-
els across decentralized devices while keeping data in local devices. Unlike traditional
approaches that centralize data in a single server, FL allows multiple participants to col-
laboratively train a shared model without exchanging their raw data. This decentralized
approach enhances privacy and data security by minimizing the risk of exposing sensi-
tive information about the raw data, as only model updates are communicated. The key
components and functionalities are shown in Figure 1.1.

Specifically, the training process typically begins with the initialization of a global
model by a central server, e.g, CNNs for image classification and LSTMs for text predic-
tion. This model is then distributed to a set of selected clients [99], each of which trains
the model locally using their own private data. The local training step involves running a
few iterations of standard machine learning algorithms, such as gradient descent, on the
client’s dataset. Once the local training is complete, the clients send the updated model
parameters (e.g., gradients or weights) back to the central server. Importantly, no raw
data is ever shared and no clients are connected to each other, ensuring the privacy of
each client’s information. This local training phase may vary in length depending on the
client’s computational resources and data availability.

After receiving the local updates from clients, the server performs an aggregation
step to update the global model. One of the most common aggregation methods is Fed-
erated Averaging (FedAvg) [96], where the server takes a weighted average of the clients’
updates based on the size of their local datasets. This ensures that clients with larger
amounts of data have a proportionally greater impact on the global model’s updates.
More advanced aggregation techniques may be used to handle data heterogeneity or de-
fend against malicious updates. For instance, some methods include outlier detection or
clipping extreme gradients to prevent any one client from intentionally or unintention-
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ally influencing the model. Once aggregated, the updated global model is redistributed
to the clients for another round of local training.

The process of local training, aggregation, and model distribution is repeated iter-
atively until the global model reaches the desired level of performance. Each iteration
is often referred to as a global communication round, and the number of rounds de-
pends on factors like model complexity, data distribution, and client participation. Dur-
ing training, some clients may drop out due to connectivity issues or lack of resources,
but FL frameworks are designed to handle such scenarios through asynchronous up-
dates or selective client participation, with the aim of converging to a high-quality global
model. Over multiple global rounds, the global model gradually converges, leveraging
the collective knowledge of all participating clients without compromising the privacy
of individual data. This iterative process is key to achieving a well-trained model under
the FL paradigm.

1.2. VULNERABILITIES IN FEDERATED LEARNING

This thesis researches various vulnerability issues in FL. Specifically, it is important to
understand the three main aspects of distributed machine learning vulnerability: the
challenges brought by diverse data distribution, the security risks of training many clients
to gain a high-quality global model, and the privacy threats to clients’ data from the
server’s view.

1.2.1. DATA HETEROGENEITY
Data heterogeneity is a fundamental challenge in FL, arising from the non-independent
and identically distributed (non-i.i.d.) nature of data across clients. Unlike traditional
machine learning, where data is centralized, federated learning operates in a decentral-
ized environment where each client collects and stores data independently. This leads to
significant variations in data distributions, including differences in feature spaces, data
quality, and the quantity of data across clients. For example, in a FL system for pre-
dictive text on smartphones, the typing patterns and language preferences of users can
vary widely, resulting in each client having a unique dataset [96]. This heterogeneity has
a negative impact on the training process, compared with centralized training, as the
global model must effectively generalize across these diverse datasets without access to
the raw data, which can lead to challenges in model convergence and performance.

Addressing data heterogeneity in FL systems requires specialized techniques to en-
sure the global model remains robust and accurate. Strategies such as personalized
models [29, 25], where the global model is fine-tuned for each client, and Federated
meta-learning [137], which aims to create a model that can quickly adapt to new client
data, have been developed to handle these variations. Aggregation methods also pay a
crucial role in managing heterogeneity. Techniques like weighted averaging consider the
size and relevance of each client’s data during model updates [96]. Furthermore, algo-
rithms are designed to identify and mitigate the impact of outlier data that could skew
the global model.

Despite these efforts, data heterogeneity remains a critical area of research in FL,
as it directly impacts the scalability and effectiveness of the system across real-world
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applications where data diversity is inherent.

1.2.2. SECURITY THREATS

Malicious clients pose a significant threat to FL systems, where the training process re-
lies on the cooperation and integrity of numerous participating entities owning data.
This decentralization opens the door for adversarial participants to introduce harmful
actions, such as data poisoning [135], where the training data of a client is maliciously
pre-processed or biased by design, and model poisoning [118], where malicious clients
intentionally submit incorrect or manipulated model updates to break the performance
of the global model. These clients might even execute backdoor attacks [5] to skew the
model in favor of specific outcomes, such as misclassifying certain data points to the
wrong label. Detecting such malicious behavior is challenging because the server only
receives the model updates, with no direct visibility into the raw data or local computa-
tions.

To mitigate the risks posed by malicious clients, FL systems incorporate various se-
curity measures and robust aggregation techniques. Secure aggregation protocols [10],
for instance, ensure that the server can combine updates without learning any individual
client’s contribution, reducing the risk from adversarial attackers by malicious updates.
Additionally, anomaly detection algorithms can identify suspicious behavior by mon-
itoring the consistency and validity of client updates, flagging or excluding those that
deviate significantly from expected patterns. Techniques such as Byzantine fault toler-
ance [9] are also employed, allowing the system to work correctly even when a portion
of the clients behave adversarially, according to the pair-wised distance [98] or statistic
features [157] compared with other clients.

Despite these defenses, the evolving stealthiness of attacks attracts ongoing research
and development to enhance the robustness of FL systems against malicious clients,
ensuring that the collaborative model training process remains secure and reliable.

1.2.3. PRIVACY LEAKAGES

While the server is designed to organize the collaborative model training without ac-
cessing raw data, it can still become a key point for privacy concerns despite it not hav-
ing data. Although the server only receives aggregated model updates from clients, it
is theoretically possible for an honest-but-curious or malicious server to infer sensitive
information from these updates. For example, through model inversion attacks or by
analyzing the gradients sent by clients, a server could potentially infer the membership
(the participation of one data point) [26, 102, 149] of a specific data point, recover im-
portant features of the training dataset [97], or even reconstruct the original data [66, 31,
165]. These behaviors exactly violate privacy guarantees. This risk is particularly con-
cerning in scenarios where the data is highly sensitive, such as in healthcare or financial
applications, where even minimal data leakage could have severe consequences.

To address the potential privacy attacks conducted by the server, FL systems im-
plement various privacy-preserving techniques. Differential privacy [27] is one popular
method, where noise is added to the updates before they are sent to the server, making
it much harder for the server to extract meaningful information about individual data
points. The local training by the clients can also apply specific transformations of gra-
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dients to hide precise information. Secure multi-party computation (SMPC) and homo-
morphic encryption (HE) are other advanced techniques that ensure data privacy even
in the presence of a potentially untrustworthy server. These methods enable the server
to perform necessary computations on encrypted data without ever accessing the data
in its raw form.

Despite these defenses, the possibility of server-side privacy leakage remains a criti-
cal area of concern for privacy-preserving distributed learning. A variety of vulnerabili-
ties and corresponding defenses introduced above pose potential threats to FL systems.
Specifically, they are launched by either the clients, the server(s), or third parties. In this
thesis, we focus on the most general cases: the clients and the servers.

1.3. ATTACKS AND DEFENSES FOR CLIENTS

Multiple state-of-the-art works have been proposed to demonstrate the damage to mod-
els caused by misbehaving participants in FL. It is worth mentioning that the attacks in-
volved in this thesis are carried out during training time only by insider malicious partic-
ipants (clients or server(s)). Threats are characterized according to the following criteria.

Security Attack Goal. Participants can maliciously contribute to FL frameworks for
various goals ranging from provoking arbitrary damage to the system to targeted back-
door attacks. Attackers might try to prevent model convergence, degrade model accu-
racy, inject backdoors in the model, misclassify a certain type of input, or have access to
the model without actually participating in the training process.

Number of Attackers. Adversarial behaviors can be carried out by individual par-
ticipants separately or by multiple participants simultaneously. The latter can either be
controlled by the same malicious party in order to bring more damage to the system
(Sybil Attacks) or parties can collude to achieve a common adversarial goal by injecting
different but coordinated malicious inputs, respectively.

Participants’ Knowledge. The background knowledge of the attacker is a decisive
factor of the attack impact. For instance, they may know other honest participants’ train-
ing data or their training model parameters. They can be aware of the defense mecha-
nism applied by the server to detect malicious activity, and so on.

Attack Duration. Some FL malicious behaviors may require to be carried out con-
tinuously through multiple rounds but with less perturbation between the benign and
malicious updates to take effect. Normally, in this case, the attack is more stealthy. On
the other hand, some adversarial goals are more straightforward to achieve, and thus,
the attack can be carried out in a single round.

1.3.1. ATTACKS

Various attacks can undermine the effectiveness of the global model, such as free-riding,
targeted, and untargeted attacks. A free-riding attack [35, 85, 86] is when clients partic-
ipate in the FL process without contributing meaningful updates, essentially exploiting
the benefits of the global model without computational costs or data privacy risks. This
can slow down model convergence or even lead to lower model performance. In con-
trast, targeted attacks involve malicious clients intentionally manipulating their updates
to bias the global model towards specific and harmful outcomes, such as causing the
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model to misclassify certain types of data [92, 5], like misidentifying security threats in a
cybersecurity application. Untargeted attacks [84, 33] are the most harmful and aim to
degrade the overall performance of the global model without a specific target in mind.
In these attacks, malicious clients may introduce random noise or incorrect gradients,
causing general inaccuracies in the model’s predictions. Both targeted and untargeted
attacks pose significant threats to the reliability and robustness of FL systems.

In terms of the way to inject attack, data poisoning and model poisoning are two sig-
nificant types of attacks that can attack the global model. Data poisoning happens when
malicious clients introduce corrupted or biased data into their local training datasets.
This manipulation aims to skew the model’s learning process, leading to inaccurate or
harmful predictions once the poisoned data influences the global model. For example,
in a healthcare application, data poisoning could cause a model to misdiagnose a par-
ticular disease by altering the data it learns from. Model poisoning, on the other hand,
involves directly manipulating the model updates—such as gradients or weights—sent
to the central server. Malicious clients may modify these updates to introduce vulner-
abilities or degrade the model’s overall performance. Unlike data poisoning, which af-
fects the model indirectly through malicious data, model poisoning directly attacks the
model’s parameters.

1.3.2. DEFENSES

To avoid attacks from the client’s side, there are three impactful approaches: execut-
ing Byzantine robust aggregation methods, auditing abnormal gradients, and applying
trusted hardware environments.

Byzantine Robust Aggregation. Byzantine robust aggregation is designed to safe-
guard the global model from the influence of malicious clients, often referred to as Byzan-
tine clients. Clients operate independently and the server has limited visibility into their
actions, some clients may behave adversarially or submit corrupted/low-quality updates,
intentionally (e.g., data poisoning) or unintentionally (e.g., data heterogeneity). Byzan-
tine robust aggregation methods aim to mitigate the impact of these unreliable clients
by ensuring that the global model remains accurate and stable despite their presence.
Techniques fall into two categories: statistic-based: median and trimmed mean, which
filter out extreme or suspicious updates before they can affect the global model, and
distance-based, e.g., Krum [9], mKrum [9], Bulyan [98], which determines the abnor-
mality by pairwise distance of client updates. These approaches work by identifying and
minimizing the influence of outlier updates, thereby protecting the integrity of the learn-
ing process.

Gradient Auditing. The purpose of this kind of protection mechanism is to detect
and punish malicious behavior such as model poisoning or free-riding. In this case, the
server is assumed to be trusted and it monitors statistical changes in model updates. The
monitoring tries to point out suspicious updates and exclude them from the aggregation
process or reduce their weights. Examples of such approaches are FoolsGold [132] and
Gradient Norm Bounding [37].

Trusted Execution Environments. This a hardware-based protection mechanism
that is mostly adapted to cross-silo ! federated learning ecosystems where the local train-

1Cross-silo FL is an FL setting that involves a small number of relatively reliable clients, for example, multiple
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ing code on the participants-side is implemented in a Trusted Execution Environment
(TEE) such as Intel-SGX (e.g., [84]). This way, the code run by participants is attested by
the server to make sure that the updates they send are not malicious.

1.4. ATTACKS AND DEFENSES FOR THE SERVER

Besides the crowd-sourcing clients, the server, which does not have data itself, may also
be adversarial in the FL system. First, we introduce the four parts of the adversarial
model. We then summarize the attacks and corresponding defense mechanisms, which
are mostly applied by the client in this section.

Adversarial Goal. The goal of the servers is to steal private information from the
clients instead of crafting the training model. The leakage of privacy is demonstrated by
membership attacks, inference attacks, and data reconstruction attacks. These attacks
pose different levels of leakage while sharing the same adversarial goal: breaking the
privacy of the confidential training data of the clients by the server.

Number of Attackers. Similar to the adversarial clients, the number of attackers with
regard to the server can be one or multiple. Generally, it is determined by the FL sys-
tem architecture. Under the setting of single-server FL, the number of attackers is 1.
However, under the setting of multiple-server FL, the number of attacks can be 1 (non-
collusion among attackers) or more (with collusion).

Participants’ Knowledge. The background knowledge of the attackers reflects the
systematic settings. Normally, the honest-but-curious servers only have knowledge of
global model parameters, the number of clients, and the updates transmitted by the
clients, while the original data of the clients are confidential. The defense applied by
the clients can be known or unknown. Further, active adversarial servers possess more
knowledge but it is beyond the research of this thesis.

Attack Duration. The attack duration of the server attacks can be a single shot or
multiple rounds, which can be either continuous rounds or separate rounds. Usually,
multiple-round attacks are more effective than single-round attacks, due to the deeper
extraction of clients’ private information.

1.4.1. ATTACKS

As the server does not have original data for training, the honest-but-curious server may
conduct privacy leakage attacks to infer confidential information from the clients [153,
178, 145]. Privacy concerns extend beyond the protection of raw data, as adversaries may
exploit the system through various attacks, such as membership inference attacks [26],
and data reconstruction attacks [66]. A membership attack is when an attacker attempts
to determine whether a specific data point is part of a client’s training dataset. This can
lead to privacy threats, particularly in sensitive domains such as medical records. Infer-
ence attacks go a step further by attempting to infer sensitive attributes, e.g., financial
risk preference, or information about the data based on the model updates received by
the server, even if the raw data remains unknown. Data reconstruction attacks are the
most dangerous, where attackers use gradients or model updates to reconstruct original
data samples, completely violating the goal of FL to preserve privacy.

organizations collaborating to train a model.
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1.4.2. DEFENSES

There are two possible ways to protect the server from privacy leakage attacks in FL. On
the one hand, the client can implement local gradient transformation before sending it
to the server. On the other hand, the basic FL protocol can be enhanced by prevention
mechanisms that stop malicious behavior from occurring in the first place. In the fol-
lowing, we present some state-of-the-art mechanisms that were proposed to detect and
prevent malicious contributions in FL frameworks.

Gradient Sparsification. This protection mechanism limits the effect of the privacy
leakage attacks by pruning gradients that have a small magnitude, this is also referred to
as gradient compression. It has been shown in a paper [88] that gradients can be com-
pressed up to a factor of 300 while maintaining the same model accuracy. This approach
was initially proposed to reduce communication bandwidth in distributed learning but
was shown in [92] to be an effective way to protect against privacy leakage with a reason-
able tradeoff between the accuracy-loss and protection-level.

Differential Privacy. Initially, differentially-private FL was proposed to reduce infor-
mation leakage about local users’ data [40]. However, since adding noise to user updates
bounds their influence over the joint model, some state-of-the-art works [5, 92] consid-
ered using differential privacy as a protection mechanism to limit the damage caused
by security attacks. This approach works by first clipping abnormal (e.g., amplified) and
potentially malicious updates, then adding Gaussian or Laplacian noise to them. This
simply reduces the impact of such attacks but does not entirely eliminate them. Also,
adding user-level noise potentially reduces the accuracy of the trained models.

1.5. RESEARCH QUESTIONS

This thesis aims to provide an in-depth exploration of solutions for enhancing inter-
nal robustness in the presence of misbehaving clients and the server in modern feder-
ated learning systems, with enhanced scenarios such as extreme data distribution, less
knowledge required for attack, and collusion attacks. The overarching research question
addressed in this thesis is:

How can we detect the vulnerabilities of federated learning systems in order to improve
their robustness?

To answer this overarching research question, we explore both the server(s) and the
clients through the following related research questions. Specifically, we define two ques-
tions for the client, related to data heterogeneity and attacks on security, as well as two
questions for privacy leakage by the server side in federated learning systems.

[RQ1] What is an effective client selection strategy for federated learning when
specific data is exclusively owned by only a few clients? In practice, there exist mul-
tiple types of data heterogeneity. We bring up a common but overlooked scenario where
specific data are owned and controlled by a few clients in the system called Mavericks.
We are curious about the convergence performance of the FL system in the presence
of Maverick. Considering the mainstream client selection methods based on the con-
tribution of federated clients, we aim to investigate whether distance-based selection
enhances efficient training in the presence of heterogeneous clients.

[RQ2] How can malicious clients launch an untargeted attack on federated learn-
ing systems without training data? Clients in the FL systems are multiple individuals
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and are sometimes anonymous during the collaborative training process. Thus, it is dif-
ficult to guarantee the security of the system in such a crowdsourcing scenario. The most
harmful attacks on the system are untargeted attacks, which destroy the functionality to-
tally. Existing untargeted attacks require the adversary with large local data or the ability
to eavesdrop on the benign updates. We aim to explore whether it is possible to launch
a successful untargeted attack without the attacker having raw data and accessing the
benign updates.

[RQ3] How can the servers collaboratively reconstruct the data from the clients
who reuse data for multiple training processes? Due to the distributed nature, data
owned by clients may be utilized in multiple training tasks (e.g., multiple servers) to gain
more benefits for the clients. However, no existing work has studied and quantified the
privacy leakage risk brought by joining multiple FL tasks with the same data. Our goal
is to quantify the privacy leakage risk of data reuse, in terms of data reconstruction, in
multi-server systems. Additionally, we aim to propose the aggregation method for mul-
tiple servers when negotiating the optimization direction for reconstruction.

[RQ4] How can a server apply a data reconstruction attack against generative mod-
els of federated learning? Generative models have played a crucial role in artificial intel-
ligence systems, where diffusion models are one of the emerging generative models that
train to reverse the process of adding noise to image samples from the training set. The
training of diffusion models naturally fits FL. The reason is that the original centralized
training of diffusion models use random sampling for inputting separate data samples,
which can easily be processed in a distributed manner. As the general FL based on classi-
fication and regression models is vulnerable to data reconstruction attacks by the server,
we are wondering whether the generative model server is also capable of recovering the
training data of the clients. Thus, our goal is to design a gradient inversion attack that
reconstructs original data by approximating the gradients calculated by training, against
federated diffusion models.

1.6. THESIS OUTLINE AND CONTRIBUTIONS

In the next four technical chapters of this thesis (Chapters 2-5), we address our four
research questions (RQ 1-4 of Section 1.5). Figure 1.7 illustrates the two types of vulner-
ability issues covered by these chapters. Figure 1.2 shows these issue within the clients
and the servers. We now illustrate the contents and contributions of each chapter.

[Chapter 2] Federated learning under heterogeneous clients. In this chapter, we
address RQ1 by designing a client selection method to simulate a real-world example
application case of client heterogeneity. To achieve fast convergence with heteroge-
neous clients, selecting those who can contribute effectively is essential. A key but over-
looked case, Mavericks, represents a certain data distribution (e.g., children’s hospitals
with pediatric cardiology data). The chapter highlights the importance of Mavericks’
contributions, which the common contribution-based method, Shapley Value, has un-
derestimated. Thus, we introduce FEDEMD, an adaptive strategy leveraging the Wasser-
stein distance, which accelerates convergence by prioritizing Mavericks when beneficial.
FEDEMD improves neural network convergence speed and maintains consistent perfor-
mance across varying levels of heterogeneity.

The research objective and key contribution are illustrated in Figure 1.3. This chapter
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Figure 1.2: Overview of the proposed vulnerability issues covered by all chapters.

is based on the following two publications, where the former is a workshop paper and
the latter is the extended version as a full conference paper:

Jiyue Huang, Chi Hong, Yang Liu, Lydia Y. Chen, and Stefanie Roos. "Tackling maver-
icks in federated learning via adaptive client selection strategy." In International Work-
shop on Trustable, Verifiable and Auditable federated learning in Conjunction with AAAI,
vol. 2023. 2022.

Jiyue Huang, Chi Hong, Yang Liu, Lydia Y. Chen, and Stefanie Roos. "Maverick mat-
ters: Client contribution and selection in federated learning." In 27th Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining, pp. 269-282. Cham: Springer Nature
Switzerland, 2023.

[Chapter 3] Data-free Untargeted Attack in Federated Learning. In this chapter, we
address RQ2 by designing two variants of a data-free adversary to launch an untargeted
attack in the training process of FL systems. Attacks on FL can greatly reduce model
quality. However, current untargeted attacks are often unrealistic because they assume
attackers know every benign client update or have access to large training datasets. This
chapter introduces a data-free untargeted attack (DFA) that generates adversarial mod-
els without eavesdropping or needing large training data. We propose two variants,
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Figure 1.3: Overview of the proposed Federated Earth Mover’s Distance (FEDEMD) in Chapter 2.

DFA-R and DFA-G, which balance stealthiness and effectiveness. DFA-R minimizes
global model prediction confidence, while DFA-G directs the model output toward a
specific class. Experiments on three different datasets show that DFA achieves similar
or even higher attack success rates under existing defense mechanisms than state-of-
the-art attacks.

To counter these attacks, we introduce REFD, a defense that detects biased or low-
confidence updates using a reference dataset. REFD outperforms current defenses by
filtering malicious updates and preserving high global model accuracy.

The research objective and key contribution are also illustrated in Figure 1.4. This
chapter is based on the following publication:

Jiyue Huang, Zilong Zhao, Lydia Y. Chen, and Stefanie Roos. "Fabricated Flips: Poi-
soning federated learning without Data." In 53rd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), pp. 274-287. IEEE, 2023.

[Chapter 4] Privacy Risk of Data Reuse in Multi-server Federated Learning In this
chapter, we address RQ3 by proposing a gradient inversion attack that includes a col-
luded attack under a multi-server FL system. As shown by various privacy attacks, the
model updates shared by the clients to the server leak information about the dataset.
While privacy in single data use is well-studied, users often provide the same data for
multiple tasks. We focus on data reuse in scenarios with multiple colluding servers,
whether for the same or different training tasks. We introduce Collusion Gradient In-
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Figure 1.4: Overview of the proposed Data-Free Untargeted Attack (DFA) in Chapter 3.

version (CGI), an attack that combines gradients from repeated data use to reconstruct
the original data. We analyze a theoretical bound on how privacy leakage grows with
data reuse for the same task. Additionally, we show that Nash bargaining games effec-
tively determine aggregation weights across tasks. Our experiments confirm that CGI
improves the quality of reconstructed images compared to single-server attacks, both
with and without defense mechanisms.

The research objective and key contribution are also illustrated in Figure 1.5. This
chapter is based on the following publication:

Jiyue Huang, Lydia Y. Chen, and Stefanie Roos. "On Quantifying the Gradient Inver-
sion Risk of Data Reuse in federated learning Systems." In the 43rd International Sym-
posium on Reliable Distributed Systems (SRDS), 2024.

[Chapter 5] Gradient Inversion Attack in Federated Diffusion Models In this chap-
ter, we address RQ4 by studying the key difference between classification models and
diffusion models in terms of privacy. We present our fusion optimization method of Gra-
dient Inversion of Diffusion Models (GIDM) consisting of two phases. Training effective
diffusion models require large amounts of real data, typically distributed across multiple
parties. Due to privacy concerns, these parties often cannot share raw data, limiting the
use of diffusion models. We propose that diffusion models can be trained federatedly,
with data kept on-premise. Our main focus is on evaluating privacy risks through gradi-
ent inversion attacks to reconstruct training data. We introduce a two-phase optimiza-
tion method, GIDM, where the first phase uses the diffusion model as prior knowledge
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Figure 1.5: Overview of the proposed Collusion Gradient Inversion (CGI) in Chapter 4.

to limit the inversion search space, followed by pixel-level fine-tuning. GIDM nearly
replicates the original images. Given that the original data, the sampling step, and the
noise are all unknown to the adversarial server, we design a triple optimization method
to adapt and optimize all three factors simultaneously.

The research objective and key contribution are also illustrated in Figure 1.6. This
chapter is based on the following publication:

Jiyue Huang, Chi Hong, Lydia Y. Chen, and Stefanie Roos. "Gradient Inversion of Fed-
erated Diffusion Models." In the 20th International Conference on Availability, Reliability
and Security (ARES), 2025.

In summary, we address four key research questions (RQ1-RQ4) related to the vul-
nerability of federated learning systems. Chapter 2-5 address critical aspects of data het-
erogeneity, privacy, and security in FL systems. Our proposed methods provide insights
into the vulnerability of different FL systems and introduce innovative solutions, like
FEDEMD for effective client selection in heterogeneous environments, data-free untar-
geted attacks with novel defense mechanisms, and gradient inversion attacks for multi-
server systems and federated diffusion models. These contributions highlight the im-
portance of adaptive strategies to enhance convergence speed, maintain privacy, and
protect against emerging threats in FL. Overall, the chapters emphasize the need for ro-
bust, privacy-preserving techniques in complex, real-world FL scenarios.
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Figure 1.6: Overview of the proposed Gradient Inversion on Diffusion Models (GIDM) in Chapter 5.

1.7. RESEARCH METHODOLOGY

As we research this domain, the two primary research methodologies applied are the
following:

* Theoretical Methods: This research methodology explores the theoretical foun-
dations of how federated learning models manage global model convergence un-
der disturbance. Researchers use mathematical tools such as formal proofs to ex-
amine the inherent limitations and capabilities of these models in heterogeneous
clients’ environments and quantify the privacy leakage bound. This theoretical
analysis provides valuable insights into the guarantees and trade-offs associated
with various data distributions, which provides a deeper understanding of their
effectiveness and limitations.

* Experimental Methods: This approach focuses on evaluating the effectiveness of
proposed methods to enhance the robustness of heterogeneous federated learn-
ing models against privacy and security threats. Researchers conduct extensive
experiments using established benchmarks to measure the performance of their
methods. These studies typically involve diverse datasets (including both real data
and synthetic data) and adversarial techniques to simulate systems with mali-
cious clients. By examining the model’s performance across varying levels and
patterns of attackers, researchers can compare and improve their techniques, en-
suring their methods are robust and effective in handling malicious clients and
servers.

In this thesis, we explore both experimental and theoretical aspects, addressing each
research question by designing, implementing, analyzing, proving, and evaluating the
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RQ ‘ Method Source Code Repository ‘ Implemented Parties for Attack
1 FEDEMD [57] Single server, multiple clients
2 DFA, REFD [55] Single server, multiple clients
3 CGI-S, CGI-D [54] multiple servers, single client
4 GIDM [56] Single server, single client

Table 1.1: An overview of source code for each research question (proposed method) in this thesis.

FedEMD CGl

S Security Chapter 4
Heterogeneity Privacy
Clients Server
oA LN \/ S GIDM
REFD e GIDM+
Chapter 3 Chapter 5

Figure 1.7: The methods proposed in the thesis and their relation to each chapter with respect to the research
questions.

impact of adversaries to enhance the robustness of FL systems. Specifically, on the theo-
retical side, Chapter 2, which explores RQ1, aims at achieving high accuracy and fast con-
vergence. It analyzes the fairness of contribution evaluation and then derives the theo-
retical convergence bound for the proposed client selection method. We first provide a
clear definition of the Maverick, associated with key properties. These assist the analysis
of this application case. To derive the convergence bound, we follow the assumptions
of related studies, e.g., L-smooth and pu-strongly convex on the objective functions. In
order to study the heterogeneity, our theoretical analysis also includes the factor to rep-
resent the heterogeneity degree. Chapter 4, which explores RQ3, aims at analyzing the
reconstruction bound according to the number of data reuses that quantifies the privacy
leakage and applies game theory for aggregation. We discuss the reconstruction bound
by different loss functions of the FL network, i.e., linear or polynomial (reflecting one
kind of convolutional neural network).

On the experimental side, we implement all our proposed methods in Python, the
leadinglanguage for machine learning research. We explore PyTorch as the primary tools
and libraries for implementing our algorithms. We include at least three replication ex-
periments to mitigate the impact of randomness brought by common machine learning
training processes, e.g., stochastic gradient descent. To develop our method, we initial-
ize our FL code base as the foundation for easy comparison and adaption (details see
Table 1.1). Subsequently, we implement and deploy our method on top of the code base.
The code base for this thesis is a simulation system of a distributed machine learning
framework, instead of physically distributed devices. Note that in this simulation, we
execute the training and aggregation on the same machine, while demonstrating the ac-
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Dataset ‘ Task Type ‘ Number of Samples ‘ Number of Classes ‘ RQ
MNIST classification 60K 10 1,3
Fashion-MNIST | classification 60K 10 1,2
CIFAR-10 classification 50K 10 1,2
CIFAR-100 classification 50K 100 3
STL-10 classification 500 10 1,3
SVHN classification 60K 10 2
LFW classification 13K 2 3
CelebA generation 202K N.A. 4
LSUN-bedroom | generation 120K N.A. 4

Table 1.2: An overview of public datasets used for each research question (proposed method) in this thesis.

tions of the clients and the server alternatively and sequentially. The reason is that the
research questions and methods of this thesis only consider clients’ data and updates by
algorithm, rather than hardware manipulation or communicational eavesdropping. By
this means, we are able to focus on the vulnerability study in terms of data with a large
number of clients, e.g., 100.

Each chapter includes a detailed description of the experiments conducted. Our
evaluation is carried out by Alienware- Aurora-R13 with Ubuntu 20.04. The machine
is equipped with 64G memory, GeForce RTX 3090 GPU, and 16-core Intel i9 CPU. Each
of the 8 P-cores has two threads, hence each machine contains 24 logical CPU cores in
total. In addition to implementing and designing the methods, we thoroughly evaluate
the performance of our proposed approaches on a diverse set of public and widely used
datasets in deep learning. Table 1.2 provides a comprehensive overview of the datasets
employed in each research question. For each research question, we evaluate with non-
i.i.d. data to simulate real-world data distributions. The level of heterogeneity varies
according to different tasks. To further assess the performance of our proposed meth-
ods, we evaluate their performance using the most common metrics: test accuracy for
the global model, attack success rate, and defense pass rate for security attacks by clients,
and standard image similarity metrics (SSIM, MSE, LPIPS, PSNR) for privacy threats by
servers. We promote the reproducibility of our proposed methods and experiments by
providing detailed explanations of the methods in each chapter.

This work advances FL robustness by addressing critical vulnerabilities in both client-
server dynamics, offering practical solutions for secure, privacy-preserving collaborative
learning in real-world applications. The proposed methods balance performance, secu-
rity, and scalability, shedding light on future robust adoption of FL in sensitive domains.







FEDERATED LEARNING UNDER
HETEROGENEOUS CLIENTS

Federated learning enables collaborative learning between parties, called clients, with-
out sharing the original and potentially sensitive data. To ensure fast convergence in the
presence of such heterogeneous clients, it is imperative to timely select clients who can ef-
fectively contribute to learning. A realistic but overlooked case of heterogeneous clients
are Mavericks, who monopolize the possession of certain data types, e.g., children’s hos-
pitals possess most of the data on pediatric cardiology. In this chapter, we address the
importance of Mavericks and tackle its challenges by exploring two types of client selec-
tion strategies. First, we show theoretically and through simulations that the common
contribution-based approach, Shapley Value, underestimates the contribution of Maver-
icks and is hence not effective as a measure to select clients. Then, we propose FEDEMD,
an adaptive strategy with competitive overhead based on the Wasserstein distance, sup-
ported by a proven convergence bound. As FEDEMD adapts the selection probability such
that Mavericks are preferably selected when the model benefits from improvement on rare
classes, it consistently ensures fast convergence in the presence of different types of Mav-
ericks. Compared to existing strategies, including Shapley Value-based ones, FEDEMD
improves the convergence speed of neural network classifiers with FedAvg aggregation by
26.9% and its performance is consistent across various levels of heterogeneity.

19
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Figure 2.1: Mavericks (or Shared Mavericks within a small group) are specific data owners that exclusively
own both rare class data and general class data.

2.1. INTRODUCTION

Federated Learning enables clients (either individuals or institutes who own data) to col-
laboratively train a global machine learning models by exchanging locally trained mod-
els instead of data [96, 91]. Thus, Federated Learning allows the training of models when
data cannot be transferred to a central server and is hence often a suitable alternative for
medical research and other domains, such as finance, with high privacy requirements.
The effectiveness of FL, in terms of accuracy and convergence, highly depends on how
the local models are selected and aggregated.

In FL, clients tend to own heterogeneous datasets [80] rather than identically and in-
dependent distributed (i.i.d.) ones. The prior art has recently addressed the challenge of
heterogeneity from either the perspective of skewed distribution [179] or skewed quan-
tity [140] among all clients. However, a common real-world scenario, where one or a
small group of clients monopolize the possession of a certain class, is universally over-
looked. For example, in the widely used image classification benchmark, Cifar-10 [72],
most people can contribute images of cats and dogs. However, deer images are bound to
be owned by comparably few clients. We call these types of clients Mavericks. Another
relevant example, shown in Fig. 2.1, arises from learning predictive medicine from clin-
ics who specialize in different conditions, e.g., AIDS and Amyotrophic Lateral Sclerosis,
and own data of exclusive disease types. Without involving Mavericks into the training,
it is impossible to achieve high accuracy on the classes for which they own the majority
of all training data, e.g., rare diseases.

Given its importance, it is not well understood when to best involve Mavericks in FL
training, because the effectiveness of FL, in terms of accuracy and convergence, highly
depends on how those local models are selected and aggregated. The existing client se-
lection! considers either the contribution of local models [13] or difference of data dis-
tributions [99]. The contribution-based approaches select clients based on contribution

I Note that here we only discuss selection on statistical challenges, the selections considering system resources,
e.g., unreliable networks are left for other works.
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scores preferring clients with higher scores [34], whereas the distance-based methods
choose clients based on the pairwise feature distance. Both types of selection method-
ologies have their suitable application scenarios and it is hard to weigh the benefits of
one over the other in general.

In this chapter, we aim to effectively select Mavericks in FL so that users are able to
collaboratively train an accurate model in a low number of communication rounds.We
first explore Shapley Value as a contribution metric for client selection. Although Shapley
Value is shown to be effective in measuring contribution for the i.i.d. case, it is unknown
if it can assess the contribution of Mavericks and effectively involve them via the selec-
tion strategy. Moreover, we propose FEDEMD, which selects clients based on Wasser-
stein distance [4] of the global distribution and current distribution. As FEDEMD adapts
the selection probability such that Mavericks are preferably selected when the model
benefits from improvement on rare classes, it consistently ensures the fast convergence
in the presence of different types of Mavericks.

Our main contributions for this work can be summarized as follows. i) We explore
the effectiveness of both contribution-based and distance-based selection strategies for
Mavericks. ii) Both our theoretical and empirical results show that the contribution
of clients with skewed data or very large data quantity is measured below average by
Shapley Value. iii) We propose FEDEMD, a novel adaptive client selection based on the
Wasserstein distance, derive a convergence bound, and show that it significantly outper-
forms SOTA selection methods in terms of convergence speed across different scenarios
of Mavericks.

2.2. RELATED STUDIES

Contribution Measurement. Although the self-reported contribution evaluation [34]
is easy to implement, it is fragile to dishonest parties. Besides, existing work on con-
tribution measurement can be categorized into two classes: i) local approach: clients
exchange the local updates, i.e., model weights or gradients, and measure the contribu-
tion of each other, e.g., by creating a reputation system [68], and ii) global approach: all
clients send all their model updates to the federator who in turn aggregates and com-
putes the contribution via the marginal loss [110, 144]. Prevailing examples of globally
measuring contribution are Influence [110] and Shapley Value [144, 121]. The prior art
demonstrates that Shapley Value can effectively measure the client’s contribution for the
case when client data is i.i.d. or of biased quantity [121]. A work [141] has proposed
federated Shapley Value to capture the effect of participation order on data value. The
experimental results indicate that Shapley Value is less accurate in estimating the con-
tribution of heterogeneous clients than for i.i.d. cases. However, there is no rigorous
analysis on whether Shapley Value can effectively evaluate the contribution from het-
erogeneous users with skewed data distributions.

Client Selection. Selecting clients within a heterogeneous group of potential clients
is key to enabling fast and accurate learning based on high data quality. The state-of-
the-art client selection strategies focus on the resource heterogeneity [107, 60] or data
heterogeneity [13, 15, 80]. In case of data heterogeneity, which is the focus of our work,
selection strategies [15, 41, 13] gain insights on the distribution of clients’ data and then
select them in specific manners. Goetz et. al [41] apply active sampling and Cho et. al
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[15] use Power-of-Choice to favor clients with higher local loss. TiFL [13] considers both
resource and data heterogeneity to mitigate the impact of stragglers and skewed distri-
butions. TiFL applies a contribution-based client selection by evaluating the accuracy
of selected participants each round and chooses clients of higher accuracy. FedFast [99]
chooses classes based on clustering and achieves fast convergence for recommendation
systems. One recently work [95] focuses on reduce wall-clock time for convergence un-
der high degrees of system and statistical heterogeneity. However, there is no selection
strategy that addresses the Maverick scenario.

2.3. FEDERATED LEARNING WITH MAVERICKS

In this section, we first formalize a Federated Learning framework with Mavericks. Then
we rigorously analyze the contribution of clients based on Shapley Value and argue that
the contribution of Mavericks is underestimated by the Shapley Value, which leads to a
severe selection bias and a suboptimal integration of Mavericks into the learning pro-
cess.

Suppose there are a total of N clients in a federated learning system. We denote the
set of possible inputs as & and the set of L class labels as % ={1,2,...,,L}. Let f: & — &
be a prediction function and w be the learnable weights of the machine learning tasks,
the objective is then defined as: min £ (w) = minZlL:1 p(y = DExy—; [log fi(x, w)].

The training process of a FL system has the following steps?:

1. INITIALIZATION. Initialize global model w and distribute it to the available clients,
i.e.,, aset € of N clients.

2. CLIENT SELECTION. Enumerate the K clients € (7, w;), selected in round r with
selection strategy =, by Cy, ..., Ck.

3. UPDATE AND UPLOAD. Each client Cy. selected in round r computes local updates
w’r‘ and the federator aggregates the results. Concretely, with n being the learning
rate, C. updates their weights in the r-th global round by: w* = w,_1 - ZZL:I pky=
DVoExy=1 [log fi(x,@,-1)].

4. AGGREGATION. Client updates are aggregated to one global update. The most com-
mon aggregation method is quantity-aware FedAvg, defined as follows with ¥ in-

k
dicating the data quantity of Cy: w, = 2115:1 ﬁw'ﬁ .
k=1

To facilitate our discussions, we also define the following:

Local Distribution: the array of all L class quantities 2*(y = 1), € {1, .., L} owned by client
C;.

Global Distribution: the quantity of all clients’ data by class as 2, = Zﬁ\il 2'(y=0D,le
{1,..,L}.

Current Distribution at R: by summing up the class quantity of all clients’ data re-
ported, which have been chosen up to round R as: 2, = Zle Ycent P k.

2Here we assume all the clients are honest. Since we focus on the statistical challenge, the impact of unreliable
networking and insufficient computation resources is ignored.
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Definition 1 (Maverick). Let Yj,, be the set of class labels that are owned by Mavericks.
In the extreme case, there is one Maverick but it might also be a small set of Mavericks
jointly owning the same class. For a client Cg, let qIZCVI %Y be the fraction of Cy’s data that
has label Yy;,,. Then:

ap @.1)

Mav _ 1—¢,if Cy is a Maverick
¢,if Cy is not a Maverick.

An exclusive Maverick is one client that owns one or more classes exclusively. A shared

Maverick is a small group of clients who jointly own one class exclusively. That is:

2.2)

i=

i i . L .
3 {{{xl’yl}_leYMW’ {xl’yl}lezYMa,,}’lf C; is a Maverick
i e .
X1, ¥ 1¢y,,,, if Ci is not a Maverick,

where D; denotes the dataset for C;, {x;, yl}i denotes the dataset in C; with label [.

In the rest of this chapter, we assume the global distribution organized by the server’s
preprocessing has high similarity with the real-world (test dataset) distribution, which
is balanced, so that data {x;, y;}¢v,,,, are evenly distributed across all parties, whereas
{x1, yi}ievy,, either belong to one exclusive Maverick or are evenly distributed across
all shared Maverick parties. We focus our analysis on exclusive Mavericks since shared
Maverick are a straightforward extension. Based on the assumptions above, we obtain
the following properties for Mavericks.

Property 1. Because the data distribution is balanced, Mavericks have a larger data
quantity than non-Mavericks. Concretely, let n” be the data quantity of a non-Maverick.
Let n'" be the quantity for Mavericks, then n™ = ((N/m—1) x Y4, + L) x n", where m is
the number of Mavericks.

Property 2. Assume N > 2, the KL divergence of a Maverick’s data to the normalized
global distribution is expected to be larger than for a non-Maverick due to their specific
distribution, i.e., DKL(%IIQJD@) > Dgr(241122,), where 9’@, 2, are the data distribution
with class labels for Maverick and non-Maverick, where 22, denotes for global distribu-
tion.

Definition 2 (Shapley Value). Let Z = € (m,w,) denote the set of clients selected in a
round including Cy, £ \ {Cy} denote the set £ without Cy. Shapley Value of Cy is:

S| T-1SI-1)!
SV(Cy= ), MSC;C(.S”). (2.3)

SCHNCL |A !

Here we let 6C(S) be the Influence [110]. Influence can be defined on loss, accuracy,
etc., here we apply the most commonly used loss-based Influence written as In fs(Cy)
for set Cy.



24 2. FEDERATED LEARNING UNDER HETEROGENEOUS CLIENTS

Lemma 1. Based on Shapley Value in Eq. 2.3, the difference of Maverick C,,’s and non-
Maverick C,,’s Shapley Value is:

1
SV(C) = SV(Cp) = m((m — DL (Crm) = L(Cn)
+ Y IS T —1SI = DI Rfs(Cr) — Infs(Ca)) o
ScS_ :
+ Y ISIGH | =18| = DUIRFS(Cm) = Infs(Ca))),
ScS,

with S_ = £ \{Cp,Cpi}, S+ = £ \{Cp,Ci} U Cyyp, Cpp € {Cpy, Cpp}. Note that we simplify
Infsuc, (C;) as Infs(C;) for readability.

Comparison of Shapley Value and Influence: Rather than considering Influence for
the complete set of K clients, Eq. 2.4 only considers Influence on a subset S. However,
our derivations for Influence are independent from the number of selected clients and
remain applicable for subsets S, meaning that indeed the second and the third term of
Eq. 2.4 are negative. Similarly, the first term is negative as the loss for clients only owning
one class is higher. However, Shapley Value obtains higher values for i.i.d. clients with
large data sets than Influence since £(C,,) — £(C,) increases if the distance between
Cy’s distribution and the global distribution is small, in line with a previous work [58].

Property 3. Shapley Value and Influence share the same trend in contribution measure-
ment for Mavericks.

Theorem 1. Let C,;, and C,, be a Maverick and a non-Maverick client, respectively, and
denote by SV;(Cy) the Shapley value of Cy in round r. Then SV;(Cy,) < SV;1(Cp,) and
SV:(Cy,) converges towards SV;(Cp,).

We present the empirical evidences of how one or multiple Mavericks are measured
by Shapley Value. We here focus on single exclusive Mavericks and leave multiple Mav-
ericks, shared and exclusive, for our in-depth experimental evaluation in the supple-
mentary material. We use Fashion-MNIST (Fig. 3.6a) and Cifar-10 (Fig. 3.6b) as learning
scenarios and use random client selection with FedAvg.

Fig. 2.2 shows the global accuracy and the relative Shapley Value during training, with
the average relative Shapley Value of the 5 selected clients out of 50 indicated by the dot-
ted line. The contribution is only evaluated when a Maverick is selected. Looking at
Fig.(3.6a), (3.6b), The Shapley Value of the Maverick indeed increases over time but re-
mains below average until round 160, providing concrete evidence of Theorem. 1. Fur-
thermore, the accuracy increases when a Maverick is selected, indicating that Mavericks
contribute highly to improving the model. Thus, assigning Mavericks a lower contribu-
tion measure is unreasonable, especially in the early stage of the learning process. All of
the empirical results are consistent with our theoretical analysis.

2.4. FEDEMD: AN ADAPTIVE STRATEGY FOR CLIENT SELECTION

WITH MAVERICKS

In this section, we propose a novel adaptive client selection algorithm FEDEMD, which
enables FL systems with Mavericks to achieve faster convergence compared with SOTA
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Figure 2.2: Global model accuracy and relative Shapley Value measured for Mavericks during training on
FMNIST and Cifar-10.

methods, including Shapley Value-based ones. The key idea is to assign a higher prob-
ability for selecting Maverick clients initially to accelerate convergence; later we reduce
the selection probability to avoid skewing the distribution towards Maverick classes. To
measure the differences in data distributions, we adopt Wasserstein distance (EMD) [4],
which is used to characterize weight divergence in FL [174]. The Wasserstein distance

(EMD) is defined as:

EMD (Py, Pp) = ;glflxzy lx—=yly(x, y) = ;25 Exy~ylx—yl, (2.5)

where I[1(P;, Pg) represents the set of all possible joint probability distributions of P, Py.
Y(x, y) represents the probability that x appears in P, and y appears in Py.

Algorithm 1: FEDEMD Clients Selection

Data: @' foriel,2,..., N.
Result: .%: selected participants.
Set: distance coefficient 8 > 0;
initialize probability Proba';
initialize current distribution 2;
Dy — XL, 2"
calculate emd ¢ by Eq. 2.7;
for roundr=1,2, ..., Rdo
KT =rand(K,€,Proba")
DN =D+ e P
calculate efr;z“dz by Eq. 2.8;
10 | forclienti=1,..., Ndo
11 | update Proba’"! by Eq. 2.6

W N -

© N o O

©

Overview The complete algorithm is shown in Alg. 1, we here summarize the differ-
ent components that make up the algorithm. i) Data Reporting and Initialization (Line

1-3): Clients report their data quantity so that the federator is able to compute the global
data size array 2, and initialize the current size array 2.
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ii) Dynamic Weights Calculation (Line 4-11): In this key step, we utilize a light-weight
measure based on EMD to calculate dynamic selection probabilities over time, which
achieve faster convergence, yet avoid overfitting, concretely we compute

Proba’ = softmax(emA/dg - tﬁ;n?i;) (2.6)

where Probaj is the probability for selecting C; in round r. f8 is a coefficient to weigh
the global and current distance and shall be adapted for different initial distributions,
i.e., different dataset and distribution rules. emd g and emd ; are the normalized EMDs
between the global/current and local distributions (Line 5, 9), namely

emdg = Norm(IEMD(@),2")|;c D) 2.7

which is constant through the learning process as long as the local distribution of clients
stays the same. The larger emd g is, the higher the probability Proba; that a client C; is
selected to increase model accuracy (Line 11), since C; brings more distribution infor-
mation to train w,. However, for convergence, a smaller emd ¢ is preferred in selection,
so that emd, depends on the round r:

emd, = Norm(EMD@[,2")|;c > 2.8)

.....

where 2] is the accumulated 9’ of selected clients over rounds (Line 8). Let [ denote
one class randomly chosen by the federator except for the Maverick class from 2, here
: f e _ emd
we apply normalization: Norm(emd,2) = o =DIN
iii) Weighted Random Client Selection (Line 7): At each round r, we select clients
based on a probability distribution characterized by the dynamic weights [28] Proba’:

K =rand(K,€,Proba’). (2.9)

Sampling K out of N clients based on Proba’ has a complexity of O(Klog(N/K)), so
comparably low. Thus, Mavericks with larger global distance and smaller current dis-
tance initially are preferred to be selected. The decrease of probability for selecting Mav-
ericks elaborates based on the global and current distances changes over the learning
procedure. As r increases, so does the impact of the current distance based on Eq. 2.6,
reducing the probability of selecting a Maverick, as intended.

Convergence Analysis: To derive the convergence bound we follow the setting of [81].
We let Fi be the local objective of client Cy, and define F(w) = Z _1 PxFr(w), where py is
the weight of client C; when doing the aggregation. We have the FL optimization frame-
work ming, F(x) = mina,ZfCV:1 prFr(w). We make the L-smooth and u-strongly convex
assumptions on the functions Fj, ..., Fy [81, 105]. Let T be the total number of SGDs in
a client, E be the number of local iterations of each client in each round. t is used to
index the SGDs in each client. Thus, the relationship between E, ¢ and global round r is
r=|t/E|]. F* and F]: are the minimum values of F and F.. I'= F* — Zi’:l kaZ is used to
represent the degree of heterogeneity. We obtain:

Theorem 2. Let ¢ ’; be a sample chosen from the local data of each client. For k € [N],
assume that:

2
E|vPew}, ¢ - Feh, <o, 2.10)
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and
k ek [|? ~ 2
[EHFk(wt,Et)stG. 2.11)
Then let e = ﬁ, Y = max{8¢, E} and the learning rate n; = #(Y 7+ We have the following
convergence guarantee for Algorithm 1.
. € 2(¥ + D)
ElF(wr)] - F" =< ( W[E||w1 w*|3], (2.12)
vy+T-1 u

where W =YY (Proba.''")20 2 +6LI +8(E - 1)>G? and ® = £ E2G2.

Since all the notations except T in Expression (2.12) are constants, we have O(%)
convergence rate for the algorithm where limy_ o, E[F(w7)] — F* = 0.

2.5. EXPERIMENTAL EVALUATION

In this section, we comprehensively evaluate the effectiveness and convergence of FEDEMD

in comparison to Shapley Value-based selection and SOTA baselines. The evaluation
considers both exclusive and shared Mavericks.

Datasets and Classifier Networks We use public image datasets: i) Fashion-MNIST [151]

for bi-level image classification; ii)) MNIST [77] for simple and fast tasks that require a low
amount of data; i7i) Cifar-10 [72] for more complex task such as colored image classifi-
cation; iv) STL-10 [18] for applications with small amounts of local data for all clients.
We note that light-weight neural networks are more applicable for FL scenarios, where
clients typically have limited computation and communication resources [99]. Thus,
here we apply light-weight CNNs for all datasets.

Federated Learning System The system considered has 50 participants with homo-
geneous computation and communication resources and 1 federator. At each round,
the federator selects 10% of clients using different client selection algorithms. The feder-
ator uses average or quantity-aware aggregation to aggregate local models from selected
clients. We set one local epoch for both aggregations to enable a fair comparison of
the two aggregation approaches. Two types of Mavericks are considered: exclusive and
shared Mavericks with up to 3 Mavericks. We demonstrate the case of single Maverick
owning an entire class of data in most of our experiments.

Evaluation Metrics i) Global test accuracy for all classes; ii) Source recall for classes
owned by Mavericks exclusively; iii) R@99: the number of communication rounds re-
quired to reach 99% of test accuracy of random selection results; iv) Normalized Shapley
Value ranging between [0, 1] to measure the contribution of Mavericks.

Baselines We consider four selection strategies: Random [96], Shapley Value-based,
FedFast [99], and TiFL [13]% under both average and quantity-aware aggregation meth-
ods. Further, in order to compare with state-of-the-art solutions for heterogeneous FL
that focus on the optimizer, we evaluate FedProx [80] as one of the baselines.
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Figure 2.3: Comparison on FEDEMD with baselines.
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Figure 2.4: Comparison on FEDEMD over different f.

2.5.1. FEDEMD IS EFFECTIVE FOR CLIENT SELECTION
Fig. (2.3a),(2.3b) show global accuracy over rounds. First, we focus on the compari-
son between the contribution-based SVB and our proposed distance-based FEDEMD.
FEDEMD achieves an accuracy close to the maximum almost immediately for FedAvg
while SVB requires about 100 rounds (72 and 104 rounds for R@99 for SVB and FEDEMD).
For average aggregation, both client selection methods have a slower convergence but
FEDEMD still only requires about half the number of rounds to achieve the same high
accuracy as SVB. Indeed, SVB fails in reaching R@99 within 200 rounds. The reason is
that SVB rarely selects the Maverick in the early phase, as the Maverick has a below-
average Shapley Value. We can also see the superiority of FEDEMD among results pre-
sented for the baselines in the figures. The detailed analysis will be discussed together
with Tab. 2.1 below.

We evaluate the effects of the hyper-parameter § in Fig. (2.4a),(2.4b). The server can
apply a preliminary client selection simulation before training based on the self-reported
data size array. FEDEMD works best when the average probability of selecting Maverick

3We focus on their client selection and leave out other features, e.g., communication acceleration in TiFL. We
apply distribution mean clustering for FedFast following the setting in their paper.
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Table 2.1: Convergence rounds of selection strategies in R@99 Accuracy, under average and quantity-aware
aggregation (Every result is averaged over three runs and is marked with standard deviation among all of the

replication results).
Average Aggregation

Dataset d FedProx TiFL FedFast SVB FEDEMD

MNIST 133 + 4447 118 + 850 111 =+ 21.66 >200 = NA 147 * 5250 99 =+ 24.70
Fashion-MNIST | 144 + 5147 135 + 2059 140 + 862 >200 + NA 103 + 56.00 131 =+ 37.29

Cifar-10 141 + 611 164 + 1500 147 + 1097 >200 + NA 184 + 924 140 =+ 1513

STL-10 122 + 4994 186 + 436 125 + 5750 171 + 1674 190 + 3.06 96 <+ 493

Quantity-aware Aggregation

Dataset d FedProx TiFL FedFast SVB FEDEMD

MNIST 72 = 2926 51 <+ 819 84 + 3799 >200 * NA 49 + 252 40 + 557
Fashion-MNIST | 111+ 37.75 92 + 1212 146 + 3818 >200 =+ NA 80 =+ 4013 80 =+ 10.79

Cifar-10 143 + 2629 144 + 3946 120 + 945 174 + 950 132 + 2650 107 + 1058

STL-10 180 + 058 179 + 624 >200 + NA 153 + 3488 181 + 1097 95 =+ 265

is within [1/N —¢,1/N + €] based on our observation experiments, where € > 0 is a task-
aware small value. In our example with Fashion-MNIST, we choose f equal to 0.008,
0.009 and 0.01, with the results displayed in Fig. 2.4. These three values all satisfy the
average probability above with € = 0.002. The results shows that all of the 3 numbers
work for Fashion-MNIST, verifying the effectiveness of FEDEMD for various values of the
hyper-parameter. However, there are also values of f that are not suitable, e.g, = 0.1
for which the Maverick is selected too rarely.

Comparison with baselines. We summarize the comparison with the state-of-the-
art methodologies in Tab. 2.1. The reported R@99 is averaged over three replications.
Note that we run each simulation for 200 rounds, which is mostly enough to see the
convergence statistics for these lightweight networks. The rare exceptions when 99%
maximal accuracy is not achieved for random selection are indicated by > 200.

Due to its distance-based weights, FEDEMD almost consistently achieves faster con-
vergence than all other algorithms. The reason for this result is that FEDEMD enhances
the participation of the Maverick during the early training period, speeding up learn-
ing of the global distribution. For most settings, the difference in convergence rounds is
considerable and clearly visible.

The only exceptions are easy tasks with simple averaging rather than weighted, e.g.,
Fashion-MNIST with average aggregation, which indicates our distribution-based se-
lection method is especially useful for data size-aware aggregation and more complex
tasks. Quantity-aware aggregation nearly always outperforms plain average aggregation
as its weighted averaging assigns more impact to the Maverick. While such an increased
weight caused by larger data size can lead to a decrease in accuracy in the latter phase
of training, Mavericks are rarely selected in the latter phase by FEDEMD, which success-
fully mitigates the effect and achieves a faster convergence.

In order to demonstrate the comparison of FEDEMD and SVB across multiple datasets,
here we also provide the experimental results with MNIST and Cifar-10, which is in line
with our conclusion of Fashion-MNIST in Fig. 2.4 for better convergence performance
of FEDEMD.

2.5.2. FEDEMD WORKS FOR MULTIPLE MAVERICKS
We explore the effectiveness of FEDEMD on both types of Mavericks: exclusive and
shared Mavericks.
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Figure 2.5: Comparison on FEDEMD with SVB.

We vary the number of Mavericks between one and three and use the Fashion-MNIST
dataset. The Maverick classes are ‘T-shirt, ‘“Trouser’, and ‘Pullover’. Results are shown
with respect to R@99.

Fig. (2.6a) illustrates the case of multiple exclusive Mavericks. For exclusive Maver-
icks, the data distribution becomes more skewed as more classes are exclusively owned
by Mavericks. FEDEMD always achieves the fastest convergence, though its conver-
gence rounds increase slightly as the number of Mavericks increases, reflecting the in-
creased difficulty of learning in the presence of skewed data distribution. FedFast’s K-
mean clustering typically results in a cluster of Mavericks and then always includes at
least one Maverick. In some initial experiments, we found that constantly including
a Maverick hinders convergence, which is also reflected in FedFast’s results. TiFL out-
performs FedAvg with random selection for multiple Mavericks. However, TiFLs results
differ drastically overruns due to the random factor in its local computations. Thus,
TiFL is not a reliable choice for Mavericks. Comparably, FedProx tends to achieve the
best performance among the SOTA algorithms but still exhibits slower convergence than
FEDEMD as higher weight divergence entails a higher penalty on the loss function.

For shared Mavericks, a higher number of Mavericks indicates a more balanced dis-
tribution. Similar to the exclusive case, FEDEMD has the fastest convergence and Fed-
Fast again trails the others. The improvement of FEDEMD over the other methods is less
visible due to the limited advantage of FEDEMD on balanced data. A higher number of
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Figure 2.6: Convergence rounds R@99 for multiple Mavericks.

Mavericks resembles the case of i.i.d.. Random performs the most similar to FEDEMD
for shared Mavericks, as random selection is best for i.i.d. scenarios. Note that the stan-
dard deviation of FEDEMD is smaller, implying a better stability.

2.6. CONCLUSION

Client selection is key to successful FL as it enables maximizing the usefulness of dif-
ferent diverse datasets. In this chapter, we highlighted that existing schemes fail when
clients have heterogeneous data, in particular if one class is exclusively owned by one or
multiple Mavericks. We first explore Shapley Value-based selection, theoretically show-
ing its limitations in addressing Mavericks. We then propose FEDEMD that encourages
the selection of diverse clients at the opportune moment of the training process, with
guaranteed convergence. Evaluation results on multiple datasets across different sce-
narios of Mavericks show that FEDEMD reduces the communication rounds needed for
convergence by 26.9% compared to the state-of-the-art client selection methods.






DATA-FREE UNTARGETED ATTACKS
IN FEDERATED LEARNING

Attacks on Federated Learning can severely reduce the quality of the generated models and
limit the usefulness of this emerging learning paradigm that enables on-premise decen-
tralized learning. However, existing untargeted attacks are not practical for many sce-
narios as they assume that i) the attacker knows every update of benign clients, or ii) the
attacker has a large dataset to locally train updates imitating benign parties.

In this paper, we propose a data-free untargeted attack (DFA) that synthesizes ma-
licious data to craft adversarial models without eavesdropping on the transmission of
benign clients at all or requiring a large quantity of task-specific training data. We de-
sign two variants of DFA, namely DFA-R and DFA-G, which differ in how they trade off
stealthiness and effectiveness. Specifically, DFA-R iteratively optimizes a malicious data
layer to minimize the prediction confidence of all outputs of the global model, whereas
DFA-G interactively trains a malicious data generator network by steering the output
of the global model toward a particular class. Experimental results on Fashion-MNIST,
Cifar-10, and SVHN show that DFA, despite requiring fewer assumptions than existing
attacks, achieves similar or even higher attack success rate than state-of-the-art untar-
geted attacks against various state-of-the-art defense mechanisms. Concretely, they can
evade all considered defense mechanisms in at least 50% of the cases for CIFAR-10 and
often reduce the accuracy by more than a factor of 2.

Consequently, we design REFD, a defense specifically crafted to protect against data-
free attacks. REFD leverages a reference dataset to detect updates that are biased or have
a low confidence. It greatly improves upon existing defenses by filtering out malicious
updates and achieves high global model accuracy.

33
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3.1. INTRODUCTION

Federated learning [154, 106] enables distributed training of machine learning models,
e.g., multi-class image classifiers, without sharing the raw data. Clients train models lo-
cally and the overall model, called the global model, is an aggregation of these local mod-
els. The training proceeds in multiple rounds: in each round, the central server provides
a global model that clients use to initialize their local models. They then train on their
local dataset and provide updates to the central server, who aggregates these updates to
a new global model for the next round. In this manner, models requiring personal data
such as information about medical or financial conditions can be obtained without ex-
plicit privacy violations. Recently, FL has been applied to domains such as detection of
credit card fraud [176, 175], cybersecurity center operations [70], and medical relation
extraction [128].

A downside of preventing the central server from accessing local data is that it lim-
its the ability to detect misbehavior. Adversarial clients may reduce the quality of the
model by manipulating the data they train on [135] or their local model directly [32].
Cross-device [69, 44] FL, which allows arbitrary parties to join the distributed training,
is especially vulnerable as attackers can easily infiltrate the system. The attack can be
untargeted, i.e., aiming for an overall accuracy degradation of the trained global model.
It can also be targeted, i.e., only supposed to affect certain input, e.g., inject backdoors
that lead to wrong model output from input data with a certain chosen feature [5]. In
this chapter, we focus on untargeted attacks, as they are far-reaching denial-of-service
attacks. In cross-device FL, attackers may run such a denial-of-service attack to under-
mine a competing company from getting meaningful models after their users. Further-
more, when machine learning as a service [109] is extended to include FL [71], untar-
geted attacks aiming to cause losses for a service provider are to be expected, similar to
current denial-of-service attacks on Amazon Web Services and Github !.

There have been a number of untargeted attacks on FL [32, 7, 118]. Yet, some at-
tacks [7, 118] assume that the adversary is aware of all of the updates that benign clients
send. It is unclear how they can practically obtain such knowledge as clients only share
the updates with the benign central server and communication can be encrypted to pre-
vent eavesdropping from the adversary. While not all attacks require benign updates,
attacks that can succeed without this knowledge requires that the attacker has a con-
siderable amount of training data to train substitute benign updates [32]. Although this
assumption is realistic for common tasks, e.g., image classification of common pets, the
possession of such data is much less likely for special-purpose tasks, e.g., classification
of rare disease based on detailed medical data [111].

In this chapter, we consider whether it is actually necessary to have real data (or be-
nign updates). One may expect that in cross-device FL, it is relatively easy to obtain data
as everyone can join, which might indicate that everyone can have data. However, there
exist scenarios where admission is not restricted to a predefined group because there
are few parties that can contribute and it is not known who they are. For instance, for a
study on the lives of people with a rare disease, it might not be possible to access medical
records on who has the disease, so it makes sense to just publicly ask for participation.
Furthermore, not requiring parties to identify before joining allows them to participate

1
https://www.alOnetworks.com/blog/aws-hit-by-largest-reported-ddos-attack-of-2-3-tbps/
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anonymously, possibly using tools like Tor [24] to send in their updates without having
to fear that they reveal that they have a certain medical condition, which could increase
their insurance premium or prevent them from gaining employment. In such a scenario,
it is also hard to corrupt participating clients and use their data, as the identity of the
clients is not known. Even if the learning task is such that is easy to obtain data, e.g., a
software company aiming to build a model on how users interact with their tool, it is still
additional overhead for the attackers, e.g., they have to either use the tool themselves
or obtain data from a real user. Thus, even if the attacker can get data, the question of
whether they have to or can skip the overhead of data acquisition is essential as without
data acquisition, it is more likely that attacks can be automated and run at scale against
many FL learning tasks.

We design a novel Data-Free Attack (DFA) and evaluate it on the example of im-
age classification. The goal of the attack is to reduce the overall accuracy of the model
through the injection of malicious model updates based on synthetic images. In each
round, the attacker first generates malicious images by making use of the received global
model and then trains the local adversarial model using those images paired with a ran-
domly chosen class Y. We design two variants of DFA, DFA-R and DFA-G, which steer
the global model to classify images to either have low confidence or to classify incor-
rectly. Our first attack variant, DFA-R, generates synthetic local data by adding a filteR
layer to the training. This data generation optimizes towards local synthetic data that is
ambiguous according to the current global model, i.e., the current global model should
output each of the L possible classes with equal probability. A local model correspond-
ing to such data diverts the global model and reduces classification accuracy. In contrast,
our second attack, DFA-G, iteratively trains a Generator that should produce synthetic
images that are not from a specific randomly chosen class Y. We then assign these im-
ages with class label Y and train on the resulting dataset, thus implicitly combining syn-
thetic data generation with label flipping for poisoning.

To improve stealthiness for both attacks, we add a regularization term to the loss
function of the classifier that steers the update generation such that updates are not de-
tected as outliers and hence not removed by defenses. DFA thus stealthily bypasses the
defense by ensuring that the deviation to the global model follows similar patterns as
benign updates.

In our evaluation, we determine the attack success rate, i.e., the decrease in model
accuracy caused by the attack, and the rate at which our attackers pass the defense. We
evaluate different levels of data heterogeneity by assigning data to clients according to
the Dirichlet distribution, which is a common model for heterogeneous real-world dis-
tributions [148]. DFA-R and DFA-G reduce the accuracy of the trained model by a factor
of 2 for most settings, even if defenses are applied. In comparison to state-of-the-art at-
tacks, DFA-R and DFA-G achieve similar results, despite having weaker assumptions.
Indeed, for most scenarios, our attacks perform slightly better than the existing attacks.

Having shown that data-free attacks have severe impact on the accuracy of FL, we
propose a defense strategy, REFD, which aims to defend against DFA-G and DFA-R by
leveraging a reference dataset at the server. Based on this reference dataset, the cen-
tral server determines whether a received model update is biased toward a certain class,
which is typical for DFA-G, or shows a low confidence, which is typical for DFA-R. It
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Attacks | LIE[7] | Fang[32] | Min-Max[118] | Min-Sum(118] | FEDEMD (ours)
No benign updates needed X vI1X 11X vI1X v
Defense-agnostic v X v v v
No raw data needed v vIX viX viX v
Heterogeneity considered X v v v v
Attack categories Statistic | Statistic Statistic Statistic Optiminzation

Table 3.1: Applicability of targeting scenarios and categories of five attacks (four state-of-the-art baselines and
ours): v'refers to applicable, Xrefers to not applicable, and v'/Xmeans the successful attack requires either
information available.

combines these two factors into a novel defense score, termed 2-score. Our evalua-
tion results show that REFD successfully defends against the proposed data-free attacks,
achieving accuracies that are close to the accuracy achieved in the absence of both at-
tacks and defenses.

3.2. BACKGROUND AND RELATED WORK

3.2.1. FEDERATED LEARNING PRIMER

As a distributed machine learning framework, FL systems consist of a set of N clients
and a central server. The global training process considers R consecutive rounds in-
dexed by the round number ¢. After model initialization by the server, each client i (for
i =1,2,...,N) trains a local model based on their own real data without sharing the raw
data. The server iteratively aggregates models/gradients submitted from clients and dis-
tributes the aggregated model to the clients until reaching global model convergence. As
clients can be offline or unresponsive, only a subset of them usually submits updates.

In this chapter, we focus on image classification tasks with L classes. Let D; be the
local dataset of client i and F be the objective function for the classification task. The
client i updates its local model weights based on the global model w(t) by:

0F(w(1),D;)
wi(t+1)zw(t)—nTm, 3.1

where 7 is the global uniformed learning rate.

For aggregating models of K < N clients, the predominant method for attack-free
scenarios is FedAvg [96], which aggregates the new global model as a weighted average
of the submitted local models, i.e.,

K i
w(t) = Z ST Wi, (3.2)
i=1 k nk

where n; is the number of training samples of client i. However, the above algorithm
is not robust under attacks [backdoor:conf/aistats/BagdasaryanVHES20, 32, 118, 152],
hence defenses for securing the aggregation against maliciously crafted updates (also
called robust aggregation methods) have been developed.
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3.2.2. EXISTING ATTACKS IN FL SYSTEMS

FL empowers clients by leaving the training to them and not revealing the local data.
However, as a consequence, FL systems are vulnerable to malicious behaviors. Attacks
can happen during the training time [7, 118, 5, 32, 152] or inference time [158, 125, 102].
For the inference-time attacks, attackers aim to infer private data [102]. They may even
reconstruct the private local training data [158]. In this chapter, we focus on training-
time attacks where attackers participate in the training. We classify the training-time
attacks from two perspectives: i) the attack objectives and ii) the attacked component of
the FL system, e.g., data or model.

There are three attack objectives for training-time attacks: Free-riding [85, 35] is
used to obtain the global model without contributing data and computation. Targeted
attacks [5, 152] aim to decrease the model accuracy for specific data, e.g., data with de-
signed triggers. Untargeted attacks [7, 32, 118], in contrast, aim to decrease the general
accuracy of the model.

There are four state-of-the-art untargeted attacks, namely LIE [7], Fang [32] as well as
Min-Max and Min-Sum [118], which are two variants of the same attack idea. We sum-
marize their key differences in Table 3.1. All attacks require knowledge of the models
of benign clients, real data, or knowledge of any defenses applied by the server. Some
of them, like Min-Max, are flexible in that they can work with either benign updates
or real data but they need at least one of the two, which we indicate by v'/X in the re-
spective rows in the table. In terms of methods, all existing attacks rely on statistical
methods or heuristics to construct the malicious updates by shifting the mean of benign
updates without being detected. Concretely, LIE [7] calculates the mean and standard
deviation of all of the benign updates and then shifts the true mean by changing the
value in one direction in such a manner that it is within the range that is considered
acceptable by the defense. Shejwalkar et. al [118] further improve LIE by adapting the
scaling factor z of the weighted sum as well as extending the standard deviation to the
sign and unit vector of the gradient. By such means, the maximum distance (or the sum
of squared distances for Min-Sum) of the malicious gradient from all the benign gradi-
ents is upper bounded. Note that while the authors [118] propose a number of attacks
according to different levels of adversarial knowledge, we only compare to the Min-Max
attack, which is the strongest in their paper. Fang et. al [32] propose an attack that steers
global model parameters in the opposite direction of the benign updates and ensures
its stealthiness through the knowledge of the exact defense. Aforementioned untargeted
attacks, except LIE, are evaluated in junction with the heterogeneous data, which is at-
tribute skewed [20, 127] or label skewed [139, 161, 87].

Moreover, attacks can also be categorized by the component which attacks act upon:
data or model. During the training time, the adversary may inject malicious data with
dirty labels or data to train the local model, e.g., label flipping [135] and trigger injec-
tion [5, 152]. For example, backdooring]5] is executed by injecting trigger-based mali-
cious samples [5, 162] into the local training dataset. DBA [152] then extends the study [5]
to bypass Sybil defenses such as FoolsGold [38]. Modeling poisoning [7, 118, 32, 5, 152]
manipulates the submitted model rather than merely adopting malicious data to train,
e.g., submit updates of the reversed sign of training gradient [32]. Generally, model poi-
soning attacks require sophisticated technical capabilities such as eavesdropping and
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sufficient computation resources.

None of the existing attacks can deal with an attacker that does not have data un-
less they can observe the communication in plaintext. Our attack uses a generator, as
do other attacks but for highly different scenarios or goals: attacking centralized learn-
ing [169, 164], attacking privacy [170, 125], or mimicking prototypical samples of the
other participants’ training set with the goal of targeted attacks [167, 168].

3.2.3. EXISTING DEFENSE MECHANISM IN FL
We here focus on defense mechanisms for FL, as algorithms designed for centralized
learning (e.g., [14, 79] are not directly applicable in FL. To tackle the attacks on FL sys-
tems, existing defense strategies can be conducted either on the server-side [9, 98, 157],
or the client-side [129, 173, 100]. Server-side defenses are effective against both targeted
and untargeted attacks due to the access to all model updates, whereas the state-of-the-
art client-side defenses are merely shown to be effective against targeted attacks. As we
are concerned with untargeted attacks, we hence focus on server-side defenses.
Generally, there are three categories of server-side defenses: i) Sybil defenses aim at
detecting Sybil attackers who are controlled by one entity and submit similar updates.
For example, FoolsGold [38] identifies Sybils based on the diversity of client contribu-
tions using cosine similarity of client updates. ii) Statistic defenses curate the aggre-
gated model by computing the statistics of every parameter across multiple updates. Me-
dian [157] utilizes the median value of all updates for each parameter whereas Trimmed
mean (TRmean) [157] excludes the minimum and maximum value from the average of
each parameter. iii) Outlier detection [9, 98] removes updates based on the pairwise dis-
tances of returned models. Higher distance implies that data owned by a client is of low
quality or unrelated to the training task. Krum [9] only uses one update sent from the
client whose cumulative distance of updates to the other updates is the lowest, taking
the squared L2 Norm as a metric. mKrum [9] extends this idea by choosing multiple up-
dates. Bulyan [98] first selects updates using mKrum and further computes the trimmed
mean of the selected gradients.

3.3. AN OPTIMIZATION-BASED DATA-FREE ATTACK

In this section, we first introduce the threat model for our work. Then we propose our
data-free attack (DFA) with two variants to generate malicious data inputs and local
model updates: DFA-R and DFA-G.

3.3.1. THREAT MODEL

We assume that communication between clients and the central server uses encrypted
and authenticated channels, which prevent eavesdropping and manipulation of data
during transmission. As a consequence, attackers are unaware of benign client updates.
Benign clients always follow the protocol whereas malicious clients may arbitrarily devi-
ate. All attackers may submit the same update. We add these assumptions for simplicity
as we can easily circumvent Sybil defenses by adding small perturbation noise, as shown
in the related work [5]. The central server applies a defense mechanism, which is not
known to the clients.
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Figure 3.1: The framework of our proposed data-free attack (DFA) without knowing benign updates and
owning raw data.

We focus on cross-device FL, which means that anyone can join and at the same time
there is client selection each round. Furthermore, the adversary inserts their own clients
in the system rather than corrupt other clients. Corrupting other clients requires know-
ing the identities of other clients, which is not explicitly shared in cross-device FL. In the
absence of anonymous communication, the adversary could obtain the identities only
from observing network traffic but the ability to observe network traffic is restricted to
internet service providers and other parties, so we do think it is more realistic to assume
that the adversary does not know the other clients and hence also cannot easily corrupt
them.

Additionally, we assume that malicious parties do not have any data so as to enhance
the versatility of the adversary. In practice, the difficulty of obtaining data varies between
tasks. It is reasonable to assume that there are tasks relying on rare data that an attacker
cannot easily obtain. We assume that all computations are executed by one adversarial
party, who then sends the updates to individual malicious clients.

Objectives: The overall objective of an untargeted attack in Federated Learning is
reducing the accuracy of the global model maintained by the central server. As a part of
achieving this objective, clients need to craft malicious updates that bypass the applied
defense.

Capabilities: First, we assume that the number of malicious users controlled by the
adversary in the system does not exceed 50% of the total clients. It seems implausible
that a defense can overcome a higher number of attackers as defenses typically need
a reference for benign behavior. The attacker cannot break cryptographic primitives.
More generally, it is computationally bounded so that it cannot solve NP-complete or
NP-hard problems. Otherwise, they can arbitrarily control the communication and com-
putation of the malicious clients but not of any other parties in the system.

Knowledge: Neither the defense algorithm nor benign updates are known to the ad-
versary. As the attacker also does not have data, the only knowledge of the adversary is
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the classification task in general, i.e., the number of classes, which is necessarily acces-
sible as the server distributes the model.

3.3.2. ATTACK OPTIMIZATION FRAMEWORK

The overall framework of our proposed attack DFA is illustrated in Fig. 3.1. The server
first distributes the current global model (classifier) w(#) to all of the clients. The benign
clients truthfully follow the protocol and send the trained model w (¢ + 1) back to the
server. Malicious clients send the adversarial model w,, (¢ + 1) instead. Then the server
aggregates the submitted updates according to the deployed defense. As attackers do
not have real data or benign updates, intuitively, the most obvious approach to attack is
to directly change w(t).

We experimented with using random weights but the attack was detected almost al-
ways. Concretely, only 2.62% and 6.57% of all updates submitted by malicious clients
with random model weights bypassed the mKrum defense for Fashion-MNIST and Cifar-
10, respectively. For the Bulyan defense, the attack only bypassed the defense in 3.27% of
the cases for Fashion-MNIST and always failed for Cifar-10. As manipulating the model
directly does not seem a promising approach, we optimize the generation of synthetic
malicious images according to w(t) and then use it to train the local adversarial model
every round. The attack process consists of the following two steps.

1. Malicious image generation. We propose two optimization methods to synthe-
size malicious images based on different optimization methods, objectives of adversarial
models and, importantly, the feedback of the global model. The first method is DFA-R,
which introduces an additional filter input layer? and optimizes it from a dummy image
with the objective to reduce the confidence on all outputs of the global model. Our sec-
ond method, DFA-G, designs a generator network to synthesize malicious images such
that the output of the global model biases toward a randomly chosen class. As such,
the generated noisy images paired with incorrect labels are applied to malevolently up-
date the current model. The details on DFA-R and DFA-G are discussed in the following
subsections.

2. Adversarial classifier training with distance-based loss. In this step, the attacker
uses synthetic data as generated by step 1 to train the classifier w,,(f + 1). The opti-
mization problem of the attack then becomes min,,, F(w;, S), where S is the generated
image set. In order to enhance the stealthiness and hence pass the unknown defense,
we propose to train with a distance-based loss function min,,, (F(w;, S) + Z£;) with reg-
ularization term %,; to enhance stealthiness (detailed illustration in Sec. 3.3.5). The size
of S, |S], is a hyper parameter of our attack framework that depends on the task. In the
evaluation, we find that using a similar number of images as benign clients results in an
effective attack. The adversary can estimate the size during training based on the aggre-
gated results of the global model and the duration that other clients require for training.

3.3.3. DFA-R SYNTHETIC DATA GENERATION
When constructing the synthetic dataset S, DFA-R aims to aggressively lower the con-
fidence of all outputs of the global model by introducing a malicious filter layer(i.e., a

2Such a layer has the same input dimension as the original image.
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Figure 3.2: Synthetic data generation process of DFA-R.

convolutional layer). DFA-R optimizes this image layer such that per-class probability
output of global model is equally low; i.e., Yp = [%, %, ey %], where L is the total number
of classes. Such data is bound to confuse the global model. Fig. 3.2 depicts the optimiza-
tion procedure to find |S| malicious images iteratively via two steps: i) generating the
malicious image through mapping a random dummy image via a filter layer [76], and ii)
optimizing the filter layer by minimizing cross-entropy loss of the global model between
the predicted class probabilities and Yp.

Concretely, we first generate a random image A (size a x a), with each pixel being
drawn from a uniform distribution, and apply the filter layer to transform it into an im-
age B(size b x b). In this manner, we train a mapping from randomness to images that
have the desired properties. The size of image B is the same as the real image. We let
this convolutional layer have kernel size J x J, i.e., the square filter layer between image
A and B in Fig. 3.2. After being filtered from the convolution layer, the image B is then
classified by the current global model. The attack works for various network structures
and datasets, e.g., Alexnet, VGG on other image datasets, as long as the relation between
input and output are maintained. Concretely, for stride size St and padding size P [82],
we require a = b x (St+1) —2P + J. The attack can be extended to other tasks, e.g., text
processing, by replacing the filter model and using a Seq2Seq model [133] instead of a
convolutional layer. In this manner, the random text (mapped from random values to
a dictionary) is filtered by the Seq2Seq model and fed in the text processing network,
similar to Fig. 3.2.

To optimize the convolutional layer that results in ambiguous Yp, we first consider
the dummy image A, the filter layer, synthetic image B, and the global model as one big
classification problem. Its training objective is to minimize the cross-entropy loss of pre-
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dicted probabilities of image B and Yp, such that the model cannot predict classes reli-
ably. Different from the regular training of a classification problem, we keep certain parts
of the model and input constant. Specifically, the model weights of the global model and
the image A are static. Otherwise, without keeping A static, we would need to re-train
whenever we change the randomness. Keeping the number of trainable parameters to a
minimum, we optimize the efficiency of the attack. The only trainable parameters here
are the parameters of the filter layer. It takes E epochs to train this convolutional layer.
Upon finishing training, the image B is one data instance of S. To increase the diversity
of the training dataset S, for each FL training round, we repeat the above process for |S|
times to construct S.

3.3.4. DFA-G SYNTHETIC DATA GENERATION

Generator G o

Synthetic images S

@
N S
(s, 7) o  Wm(t+1)

Figure 3.3: Synthetic data generation process of DFA-G.

In contrast to DFA-R, DFA-G synthesizes images through a generator network, which
misleads the global classifier to confidently make incorrect classifications. In order to do
so, we generate images that are not supposed to be from a class ¥ but classify all of
them as Y, which is a randomly chosen label and never changes through the training
procedure. The training/optimization of the generator network is through the feedback
of the global model, i.e., we assume that the classification provided by the global model
is the correct classification of the synthetic image. Typically, benign training minimizes
the cross-entropy of the prediction and true label so that the model can output an ac-
curate prediction. However, as our goal is to reduce the model accuracy, we maximize
the cross-entropy of the prediction and Y to train ¢, steering the generated images away
from Y. As DFA-R, DFA-G works for various network structures, with input and output
size needing to match the training data.

The training procedure for the generator is shown in Fig. 3.3. We first draw a ran-
dom noise vector Z from the Gaussian distribution and input Z into a generator ¢ to
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synthesize malicious images. We use the same random seed over multiple rounds so
that the trained generator is able to consistently produce synthetic data different from
class Y, as our training goal is to optimize the mapping from the generated vector to the
targeted synthetic data. The network structure of the generator is a transpose convolu-
tion neural network (TCNN), which outputs task-specific image size data S = ¢(Z). The
size of real data can be obtained from w(¢). Specifically, we use a lightweight TCNN of
two transposed convolutional layers and one convolutional layer following the structure
of the popular WGAN paper [4]. The model parameter of the generator ¢ is randomly
initialized before training, denoted as 6. As the generator aims at synthesizing images
that differ from the chosen class Y, the objective function of ¥ is maxg F(w(1), (S, )
where S is generated from 6. After training ¢ locally for E epochs until convergence,
the synthetic images are leveraged to train w,, (¢ + 1). When it comes to other tasks, e.g.,
text processing, the generator is a recurrent neural network such as GRU [17] in order to
generate random texts rather than just random numbers.

In summary, differences between the two variants are i) the optimization network,
i) the objective functions, iii) the use of Y, and iv) the randomness in their inputs.

3.3.5. DISTANCE-BASED REGULARIZATION
State-of-the-art defenses in a FL system are mainly based on the pairwise distances
among multiple updates. In order to bypass the defense mechanisms, we introduce a
distance-based regularization term when training the adversarial classifier with the aim
to further enhance stealthiness of the adversarial model updates. The concrete regular-
ization term is

La=llw-w@lz—lw(®)-wit-1l>. 3.3)

In Eq. 3.3, the first term refers to the weight differences of the adversarial update and
the current model. Analogously, the second term refers to the difference between the
current model and the model of the previous round. This term varies over rounds and
the optimization variable is the model parameter w. We add Z; to the vanilla cross-
entropy loss in the objective function of the adversarial classifier to avoid extremely high
differences in model changes over rounds, which could be easily detected. Thus, in both
DFA-R and DFA-G, we guide the training such that the differences in weights are similar
to the ones in previous rounds, as achieved by using the two most recent global models.

3.4. EXPERIMENTAL EVALUATION

We empirically evaluate the effectiveness of our proposed data-free untargeted attack,
on three commonly used classification benchmarks. We compare the attack success rate
and defense pass rate for various settings, for four state-of-the-art defenses and in com-
parison to three existing attacks. All of the results reported in this section are averaged
over three runs. The source code of DFA is provided in github.

3.4.1. EXPERIMENT SETUP

The experimental setups are organized into the following categories. These components
jointly define a realistic and reproducible federated learning environment for evaluation.
Each category is specified in detail.
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FL system. Our FL system considered contains 100 clients. In typical real-world
FL systems, some of the clients could be offline or unavailable temporarily and hence
not all of them might be able to participate in the whole training process. Thus, as in
previous work [5, 96, 118], 10 of the available clients are selected uniformly at random
each round. Clients train the classifier locally for one epoch. For the main results, we
assume that the adversary can compromise 20% of the clients following [118, 32], unless
stated otherwise, and further evaluate 10% and 30% in Sec. 3.4.5. Lower percentages of
attackers have been shown to be ineffective [119].

Datasets and networks. In this work, we consider three datasets. Fashion-MNIST [151]
consists of a training set of 60,000 and a test set of 10,000 fashion-related images. Each
instance is a 28 x 28 grayscale image. Cifar-10 [73] contains 50,000 training images of
3-channel RGB images and 10,000 of test images. SVHN [104] includes 73257 digit im-
ages for training and 26032 for testing. All digits have 32 x 32 pixels. All datasets have
10 classes in total. For Fashion-MNIST and Cifar-10, the images are evenly distributed
over classes. SVHN in slightly imbalanced in class distribution. The total number of im-
ages used to train in this chapter is reduced to 10% for Fashion-MNIST and Cifar-10 but
maintain the original size for SVHN. For Fashion-MNIST and Cifar-10, the data are cho-
sen uniformly at random in order to model real-world scenarios that full data may not
be available during the whole training. This amount is verified to be sufficient for train-
ing on Cifar-10 and Fashion-MNIST [6].To determine the |S| and show hyperparameter
sensitivity, we run initial experiments varying |S| from 20, 50, and 100 based on knowing
50 samples per client for Cifar-10. We found that DFA is able to achieve similar attack
success rate. Indeed, sometimes alower |S| had a higher ASR, e.g., for DFA-G on Fashion-
MNIST with B = 0.5, |S| = 20 has higher attack success rate than |S| = 50. As they all suc-
ceed in attacking, we use the results of 50 in the chapter to keep consistency. For these
three datasets, we use representative neural networks with 2 (for Fashion-MNIST) and
6 (Cifar-10 and SVHN) convolutional layers connected with 1 and 2 densely-connected
layers, respectively, to map the inputs and outputs®.

Defense mechanisms. Four state-of-the-art defenses are evaluated in our work:
mKrum, TRmean, Bulyan and Median. We do not apply Krum since mKrum interpo-
lates between Krum and averaging, thereby allowing the trade-off between the resilience
properties and the convergence speed [9].

Data heterogeneity. To emulate a heterogeneous distribution, we assign data to
clients according to the commonly used Dirichlet distribution. It emulates a real-world
data distribution and the degree of heterogeneity is governed by the hyperparameter
B [148], indicating the level of heterogeneity. In Sec. 3.4.4, we vary  from 0.1 to 0.9 in or-
der to demonstrate our effectiveness for different degrees of data heterogeneity. Higher
B means a lower degree of data heterogeneity. For our experiments, except for Sec. 3.4.4,
we choose = 0.5, as in the prior work [148, 51].

Hardware. Our FL emulator is based on Pytorch and we run experiments on a ma-

chine running Ubuntu 20.04, with 32 GB memory, a GeForce RTX 2080 Ti GPU and an
Intel i9 CPUs with 10 cores (2 threads each).

3We use shallow networks to simplify evaluation, consistent with [118], higher accuracy can be achieved with
deep nets.
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3.4.2. EVALUATION METRICS.
We utilize two main metrics to evaluate the effectiveness of our attack. i) Attack success

rate (ASR) is defined by:

acc— accy
ASR= ——— x100%, (3.4)
acc

i.e., the decrease of accuracy caused by attacks. Specifically, it is the difference between
the global accuracy acc without attacks and defenses and the maximum accuracy accy,
of the global model during one experiment with attacks. Attack success rate specifies
the effectiveness of an attack strategy through the decrease in accuracy. The Higher, the
better.

ii) Defense pass rate (DPR) is a metric to measure the stealthiness of an attack. In this
chapter, it is defined by the proportion of attackers who have passed the defense (V)
from all of the randomly selected attackers (Ny):

NP
DPR=—F x100%. 3.5)

N

DPR as defined above requires that defenses select updates for aggregation rather than
computes statistics on all updates. Thus, as detailed Sec. 3.2.3, DPR can only be com-
puted for mKrum and Bulyan, but not for TRmean and Median. High DPR is better.

Table 3.2: Attack success rate (ASR) and the maximum accuracy (accy,) accordingly under attacks on
Dirichlet distribution. 8 = 0.5. (The accuracy without attacks and defenses acc for Fashion-MNIST, Cifar-10
and SVHN is 82, 50, and 86, respectively [7]).

Fang LIE Min-Max DFA-R DFA-G
Dataset Defense | acc (%) ASR (%) | acc (%) ASR(%) | acc(%) ASR(%) | acc (%) ASR (%) | acc (%) ASR (%)

Fashion-MNIST | mKrum 73.5 10.37 72.7 11.34 67.3 17.93 52.6 35.85 64.3 21.59
Bulyan 68.1 16.91 75.0 8.54 56.8 30.73 70.8 13.66 59.8 27.07
TRmean 30.9 62.32 59.9 26.95 37.8 53.90 21.9 73.29 51.3 37.44
Median 61.1 25.49 73.4 10.49 62.0 24.39 62.0 24.39 60.9 25.73
Cifar-10 mKrum 34.1 31.80 33.5 33.00 27.8 44.40 24.6 50.80 24.4 51.20
Bulyan 28.4 43.30 31.4 37.20 21.2 57.60 22.2 55.60 21.7 56.60
TRmean 13.9 72.20 13.1 73.80 12.6 74.80 14.4 71.20 12.5 75.00
Median 24.5 51.00 37.0 26.00 24.9 50.20 24.7 50.60 23.8 52.40
SVHN mKrum 81.85 4.83 80.87 5.97 28.03 67.41 60.33 29.85 26.36 69.35
Bulyan 73.03 15.08 50.18 41.65 19.66 77.14 19.30 77.56 42.70 50.35
TRmean | 19.59 77.22 46.76 45.63 42.54 50.53 42.06 51.09 41.13 52.17
Median 59.67 30.62 83.63 2.76 43.38 49.56 68.08 20.84 65.09 24.31

Baselines. We are the first to propose data-free untargeted attacks. So there is no
direct baseline to compare to. To demonstrate the effectiveness, we compare our re-
sults with the three state-of-the-art attacks LIE [7], Fang [32] and Min-Max [118] that
require knowledge of benign updates or real data. We make the following choices re-
garding the parametrization of the defenses. As defenses are unknown to the attacker
in our scenario, we implement the version of the Min-Max attack that is designed for
unknown defenses and achieves the best results. For the Fang attack, the original paper
assumed knowledge of the defense. We here use the version of the Fang attack that as-
sumes TRmean or Median as the defense, which is the only source code provided by the
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authors. Otherwise, we use the parameters that produced the best results in the original
papers.

3.4.3. COMPARISON WITH BASELINES

ASR and DPR. Our main results for the attack success rate and defense pass rate are
shown in Tab. 3.2 and Fig. 3.4. Among all of the baseline methods, Min-Max attack is
the most successful attack, with high ASR even on low DPR. In general, our experimental
evaluation demonstrates that the proposed data-free attack strategies, DFA-R and DFA-
G, are able to achieve similar or even slightly higher attack success rate than the baseline
attacks, which require full knowledge of benign updates or a large quantity of raw data.
DFA-G outperforms DFA-R in terms of DPRfor most results on different datasets, which
shows its stealthiness. During the first rounds of training, the attack is relatively weak as
the global model does not yet provide a good enough model to generate effective poison-
ing, as indicated by our experimental results. Once the model converges, the polished
model guides the attack and the attack success increases.

Specifically, from the results of Fashion-MNIST, DFA-R is better than DFA-G and
all baselines when mKrum and TRmean are used to defend. Bulyan rejects on average
more updates while Median merely includes the median of each model parameter from
all of the clients. Both make it hard to inject malicious data into the model, leading to
the low pass rate for DFA-R and hence higher effectiveness of the more stealthy DFA-G.
Correspondingly, DFA-R performs better mKrum and TRmean as they allow it to pass
the defense more frequently.

On the other hand, DFA-G performs well for Cifar-10 due to the fact that training
Cifar-10 networks with more layers (parameters) results in slower convergence so that
it favours attacks that continuously circumvent the defenses. Also, the use of 3-channel
RGB data increases the diversity of benign updates. As a consequence, the level of un-
certainty is generally higher during training, so that it becomes easier to pass the defense
as the benign updates are not consistent enough to act as a reference point that can be
used to detect malicious images. For the same reason, DPR of both DFA-G and DFA-R
is higher on Cifar-10 than on Fashion-MNIST. However, Fang and Min-Max are not more
successful on Cifar-10. Min-Max, which is aware of benign updates and hence can adapt
to different datasets, already integrates dataset-specific behavior that allows it to adapt
to Fashion-MNIST’s low diversity. Fang rarely passes defenses, regardless of the dataset.
The results of ASR for Fang without knowing the exact defense is consistent with the
original results [32, 118].

For SVHN, both DFA-R and DFA-G achieve competitive ASR compared with the
baselines. The only exception is Median where Min-max clearly outperforms our at-
tacks. The result can be explained by the complexity of SVHN. SVHN is more complex
than Fashion-MNIST, so it benefits from the additional knowledge Min-Max leverages
to craft the update. In contrast, Cifar-10 also has a higher complexity, but experiments
show that Median has alow accuracy for Cifar-10 even in the absence of attacks if there is
data heterogeneity, as it does not include important information in the model. So it does
not make so much of a difference which attack is applied. The DPR of DFA is lower than
most other attacks for SVHN, in contrast to the other datasets. The results show that the
effectiveness of the attacks depends on a combination of dataset and applied defense.
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Figure 3.4: Defense pass rate (DPR) on Dirichlet distribution. § = 0.5 for Fashion-MNIST, Cifar-10 and SVHN.

We now consider the baseline attacks in more detail. LIE appears to be weaker than
other attacks since it applies only a minor static shift to the mean of benign updates in
order to pass defenses. This results in LIE’s high DPR but it limits its attack effectiveness.
In contrast, Min-Max attack trains (maximizes) the scale of the shifting from the mean
of benign updates each round so as to enhance effectiveness, especially under hetero-
geneous data. This the reason why it achieves good ASR even with low DPR. The few
times it overcomes the defense are sufficient for the crafted malicious updates to per-
manently damage the model. Fang attack has the least DPR, as it steers the global model
parameters to the reverse direction. It is even more easily detected by the defenses than
Min-Max, to the extent that the attack effectiveness is severely reduced.

3.4.4. DATA HETEROGENEITY LEVEL

We evaluate the impact of different levels of data heterogeneity on the ASR of attacks.
Specifically, we choose 8 = 0.1 as the most heterogeneous case while § = 0.9 is the least
heterogeneous case. Fig. 3.5 displays the results for Fashion-MNIST and Cifar-10 when
Bulyan is used as a defense, which is a defense our attacks usually do not achieve the
highest attack success rate, as can be seen from Tab. 3.2. In general, the effectiveness
for all attacks increases with an increased level of data heterogeneity, since more hetero-
geneity means that the benign updates are more diverse and hence detection of outliers
is harder.

The global model accuracy decreases on more heterogeneous data without attacks.
This is consistent with the intuitive expectation that data of higher heterogeneity in an
FL system results in poorer global accuracy within the same number of training rounds.

From Fig. 3.5, we can observe that for the aggressive Bulyan defense, the Min-Max
attack achieves mostly the best performance among all of the attacks. Attacks with full
knowledge of benign updates as well as adaptive weights for maliciously shifting the
mean is expected to work better. That is especially true under aggressive defenses be-
cause in contrast to our attacks, Min-Max has access to information necessary to ensure
their updates are less suspicious than others. Yet, thanks to the enhanced stealthiness,

DFA-G outperforms Min-Max when data is less heterogeneously distributed among clients.

Accordingly, DFA-R achieves the best results when § = 0.1 on Cifar-10 dataset. In this
scenario, the requirement of stealthiness is the least for all of the six scenarios because
Cifar-10, as discussed above, has more diverse updates and the high degree of hetero-
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geneity further increases the diversity, making it hard to detect outliers. Additionally, the
ASRof LIE and Fang attack decreases drastically with decreased heterogeneity. LIE attack
adds a static minor shift to the true mean as it is designed to attack independent and
identical distribution scenarios. For more heterogeneous updates, LIE attack is more
likely to pass the defense and have an impact. Fang attack usually requires knowledge of
the defense; in the absence of this knowledge, it fares better when its behavior is harder
to be detected. The results on SVHN dataset show similar trends with regard to data
heterogeneity. As for Cifar-10, the ASR for § = 0.9 may exceeds the ASR for §=10.5, e.g.,
DFA-G on SVHN has an ASR of 71.68% and 50.35% for $ = 0.9 and § = 0.5, respectively.
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Figure 3.5: ASR(%) for different methods of attacks under different levels of training data heterogeneity on
Fashion-MNIST and Cifar-10 dataset.

3.4.5. DIFFERENT PROPORTION OF ATTACKERS

In this section, we demonstrate the applicability of our proposed attack for different
numbers of attackers. In order to show our effectiveness, we choose TRmean, which
is a statistic-based defense, and mKrum, which is a distance-based defense, for our ex-
perimental results presented in Fig. 3.6. The results are evaluated on the Fashion-MNIST
dataset. We vary the attacker proportion from 10% to 30% as we do not expect the attack-
ers of an FL learning system to exceed 30%. To create heterogeneous data, we follow the
Dirichlet distribution with 8 = 0.5 as in Tab. 3.2.

The results of Fig. 3.6 demonstrate the consistent effectiveness of DFA compared
with other attacks. The more attackers we have, the higher the attack success rate, as one
expects. Yet, DFA achieves the highest attack success rate, compared to other attacks.

DFA-R usually has the best performance, with the exception of 10% on mKrum,
where Min-Max attack has the best ASR. Indeed, it is easier to defend against a smaller
number of attacks in the simpler dataset. As Min-max has more knowledge about the
benign updates, it is then able to send in more malicious models than DFA in this easy-
to-defend case.
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Figure 3.6: ASR(%) for different methods of attacks under different proportions of attackers on mKrum and
TRmean defense.

GENERATOR TRAINING EPOCHS

Here, we empirically investigate the convergence towards the optimal loss, where DFA-R
is minimizing its loss but DFA-G is maximizing it. Fig. 3.7 shows the results for Fashion-
MNIST on all four defenses. It can be clearly seen that the local training for generating
malicious images converges to a local optimum. For both of our proposed attacks, DFA-
R and DFA-G, we only need a few epochs to train. For DFA-R, E is 5 for Fashion-MNIST,
and E = 10 for Cifar-10 and SVHN as Fashion-MNIST is easier to train.

COMPARISON WITH NON-TRAINING APPROACH

Given that the training converges fast, we also investigate the impact of training in com-
parison to just using a randomly initialized filter layer for DFA-R and a randomly initial-
ized generator for DFA-G without any updating over rounds. As explained, according to
the definition, DPR is measured only on mKrum and Bulyan defenses. We hence report
the results for TRmean and Median as “N/A”. The maximum accuracies without attack
are the same as Tab. 3.2.

The results can be seen in Tab. 3.3 and confirm that training according to the current
global model is indeed necessary. For DFA-R, training a single layer aims at generating
images that confuse the global model. Without the training step, the injection of DFA-
R is less malicious. Thus, ASR usually decreases without training, except for Fashion-
MNIST with Bulyan defense. This observation is due to the fact that training DFA-R
reduces the stealthiness of the attack by focusing on effectiveness and hence DFA-R
passes Bulyan more often without training. This is consistent with our results in Fig. 3.4
that Bulyan significantly reduces the DPR of DFA-R.

When it comes to DFA-G, training helps to enhance stealthiness. The impact can
be clearly seen from the results for DPR in Tab. 3.3, especially for Bulyan. Only for a
relatively lenient defense like mKrum, the training has little additional impact as DPR is
already high without training. These results also reflect the minor increase of DPR from
Fashion-MNIST to Cifar-10 dataset for mKrum in Fig. 3.4.
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Figure 3.7: Local training process of both DFA-G and DFA-R on Fashion-MNIST.

IMPACT OF THE REGULARIZATION TERM

In this part, we conduct an ablation study for our proposed distance-based loss, which
adds a regularization term to the original cross-entropy loss function. Tab. 3.4 shows
both ASR and DPR with and without the regularization term on Fashion-MNIST. For
DFA-R, the effectiveness of the regularization term is more apparent for mKrum. How-
ever, for DFA-G, the increase is most notable for Bulyan. This is because the regular-
ization term in the less stealthy DFA-R is insufficient for passing Bulyan whereas it is
what enables DFA-G to pass Bulyan frequently. In contrast, DFA-G does not require the
regularization term for mKrum as it already passes without extra regularization.

SYNTHETIC VS REAL DATA

In order to demonstrate the effectiveness of our malicious synthetic data, we compare
the ASR of our attacks to a version of the attack that uses real data, i.e., we use a set
of real images instead of the synthetic image set S. We assign the number of real im-
ages owned by the attackers under the same Dirichlet distribution as for benign users.
The results for the four defenses on both datasets are shown in Fig. 3.8 with stripped vi-
sualization. “Real-data” in the figure refers to the results of ASR using real data paired
with the uniformly chosen label Y to train w(¢) with distance-based loss as described in
Sec. 3.3 similarly for the synthetic data. Fig. 3.8 shows the effectiveness of our malicious
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Table 3.3: ASR and DPR for (non-)training approach where “Static” refers to non-training way with only
randomly initialized. “Fashion” and “Cifar” is short for Fashion-MNIST and Cifar-10 datasets.

Static Trained
Attack | Defense | ASR(%) DPR(%) | ASR(%) DPR(%)

mKrum 18.17 87.78 35.85 70.33
DFA-R | TRmean | 37.20 N/A 73.29 N/A
Fashion | Bulyan 23.66 57.50 13.66 6.86
Median 21.22 N/A 24.39 N/A

mKrum 17.07 88.33 21.59 89.02
DFA-G | TRmean | 30.73 N/A 37.44 N/A
Fashion | Bulyan 24.88 65.26 27.07 69.33
Median | 22.44 N/A 25.73 N/A

mKrum 50.00 85.20 50.80 86.04
DFA-R | TRmean | 71.14 N/A 71.20 N/A

Cifar Bulyan 56.00 60.98 55.65 61.05
Median 48.60 N/A 50.60 N/A
mKrum 38.60 56.46 51.20 88.14
DFA-G | TRmean | 71.40 N/A 75.00 N/A

Cifar Bulyan 47.80 37.35 56.60 63.99
Median 50.60 N/A 52.40 N/A

Table 3.4: ASR and DPR for ablation test of the regularization term proposed by our distance-based loss.

without regularization | with regularization

Attack | Defense | ASR(%) DPR(%) ASR(%)  DPR(%)
DFA-R | mKrum 17.68 41.92 35.85 70.33
TRmean 58.78 N/A 73.29 N/A
Bulyan 10.73 3.32 13.66 6.86
Median | 23.72 N/A 24.39 N/A

DFA-G | mKrum 20.98 87.34 21.59 89.02
TRmean | 31.71 N/A 37.44 N/A

Bulyan 22.32 60.27 27.07 69.33
Median 23.78 N/A 25.73 N/A
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synthetic data generated by DFA-R and DFA-G as ASR outperforms the case of using
real images. That is expected because our synthetic images are specifically constructed
such that the attack is very effective but at the same time stealthy. Thus, even if data is
present at the attacker, a data-free attack can be the better choice. Consequently, it is
usually not necessary for the attacker to invest the overhead of obtaining data.
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Figure 3.8: Comparison of ASR (%) of real data and synthetic data by DFA-R and DFA-G with four defenses
on Fashion-MNIST and Cifar-10.

3.5. DEFENSE FOR DFA: REFD

Based on the results of the previous section, our attack is highly effective against known
defenses. Yet, the attack might not withstand defenses that are crafted with data-free at-
tacks in mind. Thus, in this section, we design and evaluate a novel defense that specifi-
cally addresses the reasons why existing defenses are insufficient.

Let us first state why existing defenses fail. mKrum and Bulyan reject updates that
differ greatly from others. Our regularization term ensures that our updates do not differ
too much from the global model from the previous round, which at least once the model
starts to converge is close to the models submitted by benign clients. Statistical methods
lose information about the distribution but medians or trimmed means also shift easily
without the need for an attacker to provide outlier data [7].

3.5.1. DESIGN OF REFD
The defense is designed with data-free attacks in mind and overcomes the drawbacks
of existing defenses. We rely on a reference dataset 2, to detect unusual classification
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patterns. Upon receiving an updated model from clients, the server uses that model
and executes the model inference on Z,, i.e., they compute predicted class probabilities.
We design a novel statistic, D-score, which identifies the model updates whose outputs
have either biased prediction or low confidence. To evaluate the effectiveness of REFD,
we apply REED on both our proposed attacks and the state-of-the-art attacks, for both
balanced and heterogeneous data distributions.

Assumptions. REFD is a server-side defense. REFD requires that the server owns a
small reference set 2, of real data with correct labels. The quantity of each class label is
assumed to be balanced.

The design core of REFD is the D-score for each model update received: a low score
indicates a high risk of the update being malicious and results in the server rejecting the
update. The D-score is computed based on two parts: the balance value and the confi-
dence value of updates. The balance value determines how balanced the outputs from
the updated model are, to detect updates that are biased toward a specific class, such as
DFA-G, LIE [7], and Min-Max [118]. The confidence value measures the confidence in
predicting a class and rejects updates that result in low confidence, which are the objec-
tive of DFA-R and Fang [32].

Before explaining those values, we first explain background notations. w; is defined
as the updated classifier model received from the client i, which maps the data input
into two kinds of output. Specifically, wf () maps the data into the per class probability
vector, and w?(') maps the data into the per class one-hot encoding vector. Both vectors
have a length of L, corresponding to the number of classes.

Balance value. To tackle the attack type that causes bias in classification, we define
the balance value B; for the updated model of client i as the inverse of the standard
deviation of the class label distribution:

1
Jif std(A;) #0
Bi:{std(Ai) stdidn # (3.6)

1if std(A;) =0

where std(-) is the standard deviation over all class labels and A; consists of the aggre-
gated number of predicted labels of each class. For instance, A; for Cifar-10, is a set of 10
values, i.e., the number of predicted samples per class. To compute A;, we first apply w?
on each sample in D, and aggregate them. Overall, the non-biased output prediction
from benign clients results in a better balanced A; across all classes and thus a higher
value of B;. The adversarial parties on the other hand should have a lower value of B;.

Confidence value. This value quantifies the average confidence when using the up-
dated model on 2,. Specifically, for a data sample j in 2,, we let the confidence of
applying classifier of client i, M;; as the biggest element of the output probability vector
wf (2,(j)). We thus define the confidence value, V;, as:

1 I%l
Vi=— Y M. 3.7)
=T

Low confidence values indicate higher risks of being adversarial updates. The poten-
tial drawback of using V; to detect adversarial behavior is that low confidence may also
appear in the early training epochs of honest clients.
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D-Score. For each client update, we combine the balance value, B, and the confi-
dence value, V, to detecta wide range of adversarial behaviors. Motivated by Fg Score [116],
we define the D-Score to evaluate the quality of an intermediate training model from
client i as:

Bi xV;

D—Score=(1 +a2) X ——,
azBi+ Vl

(3.8)
where a is a hyper-parameter to weigh the importance between balance value and con-
fidence value. It can be set as a specific value according to what the central server knows
or suspects about the executed attack. It can also be adaptive and learned over epochs,
but we consider this out-of-scope for the chapter and a good avenue for future work.
Instead, we set a = 1 to represent the equal importance of B; and V;. If the predictions
are perfectly balanced and have high confidence, we have a D-Score of 1. When B; is
reduced while V; stays constant, the D-Score is reduced, mirroring the increased bias.
Analogously for V;, a lower value for V; leads to a lower D-Score to indicate the lower
confidence. Moreover, as we designed the defense with data-free attacks in mind, we
expect it to work better for those than for other attacks, for which defenses already exist.

Removing attackers. After calculating the D-Score for each update of a given round,
the server rejects the updates with the X lowest D-Scores. The server then excludes them
for aggregation. The method is the same as used by mKrum [9]). X is determined by the
server’s assumptions about the fraction of attackers, i.e., the more attackers they expect,
the higher they choose X.

3.5.2. EVALUATION FOR REFD

Experimental settings. To evaluate the effectiveness of REFD, we compare the accu-
racy of the global model in the presence of the new defense. We use the full test set
for the respective dataset in the presented results but also experimented with smaller
reference datasets (1000 images instead of 10000) and found no significant difference.
Hence, smaller datasets can be used to increase efficiency and lower the requirements
in terms of data availability at the server side. However, the reference set has to be bal-
anced among class labels to compute the balance value reliably. REFD is evaluated on
both Fashion-MNIST and Cifar-10 datasets. Additionally, our experiments include four
different levels of data heterogeneity: independent and identical distributed (i.i.d) and
three heterogeneity levels (8 = 0.1,0.5,0.9, where § = 0.1 indicates the highest level of
heterogeneity) as in Sec. 3.4.4. We also evaluate the impact of different levels of data
heterogeneity since defenses are sensitive to the heterogeneity, especially for distance-
based defenses. Intuitively, a higher level of training data heterogeneity makes defense
more difficult. The robustness of a defense in the presence of high data heterogeneity is
important to various real-world application scenarios.

As in other works [32, 118], we set the proportion of attackers in the system to be 20%
and X = 2. We compare REFD against Bulyan, the most effective SOTA defense for our
attack.

Results for defense DFA.

From Fig. 3.9, we see that REFD significantly outperforms Bulyan. The advantage
of our defense is obvious when the heterogeneity of the data is high. For g = 0.1 and
Fashion-MNIST, REFD achieves an accuracy of more than 70% when the attack is DFA-
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Figure 3.9: Accuracy(%) for REFD on Fashion-MNIST and Cifar-10 datasets with different levels of data
heterogeneity, compared with the maximum accuracy under Bulyan defense.

R and close to 75% for DFA-G. In contrast, the accuracy of Bulyan is only around 40%.
Bulyan is relatively effective for i.i.d data, achieving a similar value as REFD for both
attacks.

The results on Cifar-10 confirm the superiority of REFD. As noted in Sec. 3.4, the
accuracy on Cifar-10 is generally lower. Yet, REFD is clearly the more effective defense.
In the presence of data heterogeneity, the accuracy is at least twice as high for REFD than
Bulyan.

For both datasets, the advantage of REFD is least pronounced for the i.i.d setting. For
i.i.d, the benign updates are very similar, hence making it barely possible for our attacks
to deviate without being detected. Thus, there is little difference between defenses. The
results for Fashion-MNIST and Cifar-10 differ in that the final global model accuracy dif-
ference between REFD and Bulyan is larger for Cifar-10. The data complexity of Cifar-10
is higher, increasing the difficulty of defending so that our specifically designed defense
shows a more pronounced advantage.

The achieved accuracy is close to the accuracy achieved without attacks and de-
fenses. For instance, for § = 0.5, the accuracy without attacks and defenses is 82% for
Fashion-MNIST, which is less than 2% higher than the accuracy for REFD for DFA-G.
For DFA-R, the attack decreases the accuracy by about 10%. For Cifar-10, the accuracy
with and without attacks is almost equal. Indeed, the accuracy with attack and defense
is insignificantly higher for some settings, which is likely due to randomness.

Defending against other attacks. REFD is designed with DFA in mind, as our goal
is to show that we can defend against data-free attacks. The design does not necessarily
work against all attacks. Here, we establish whether the defense can nevertheless defend
against Fang, LIE, and Min-Max attack and compare it with the results for DFA.

The results are reported in Fig. 3.10. We also follow the setting of 20% attacking pro-
portion and compare the maximum global model accuracy for the state-of-the-art de-
fenses and REFD. We include the baseline accuracy with no attack and no defense as
the dashed line. From Fig. 3.10, we can see that REFD has a good defending perfor-
mance in general. However, it is not always the best among the state-of-the-art defenses.
Specifically, for the LIE attack, REFD gets the best defending performance. LIE shifts the
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Figure 3.10: Comparison of Accuracy(%) for defenses with state-of-the-art attacks on Fashion-MNIST and
Cifar-10 datasets.

true statistical features of the benign updates, which can easily be caught by the balance
value B of REFD. Moreover, REFD also protects the model from the Fang attack, where
it achieves the second-best ranking on both datasets. REFD works well for Fang since
Fang updates malicious models in the opposite direction, which causes low confidence,
i.e., low V. However, REFD is less effective against Min-Max than other defenses, as
Min-Max’s scaling technique should not affect balance and confidence value much. In
summary, REFD protects well against data-free attacks presented in this chapter and can
also protect against other attacks. However, it is not a generic defense and hence should
be applied in combination with other defense mechanisms. It is also interesting to note
that with RefD, the global model accuracy can even be higher than the baseline on Cifar-
10. This result implies that RefD has benefits in the presence of data heterogeneity in
comparison to FedAVG.
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3.5.3. OVERHEAD ANALYSIS FOR DEFENSE

The defense does not add any communication, so merely the computation complexity
is affected. The defense first evaluates the local update of each client for each image in
the reference dataset, so the cost is 0(|2,|K) times the cost of evaluating the update.
Furthermore, the D-Score needs to be computed, which is linear in (|2, |) as we com-
pute the standard derivation (for B) and the maximum (for V) of G (|2;]) values. Last,
we determine the clients with the smallest values, which has complexity 0(K). Overall,
evaluating updates is of a lower complexity than training new models, so the overhead is
not prohibitive and can be reduced by using a smaller set 2.

3.6. CONCLUSION

We propose DFA, the first data-free untargeted attack on FL. Our results confirm that
data-free attacks can be similar or even more effective than other attacks that require
data or benign updates, due to generating synthetic images to train on that are partic-
ularly useful at steering the model in the wrong directions. Furthermore, we design a
defense strategy REFD that effectively protects against the proposed DFA and existing
attacks by leveraging the statistics of model outputs in predicting reference data. In the
future, we want to explore DFA on different data types, e.g., text, and check whether
combining synthetic and real data in an attack can improve attack effectiveness and to
what extent data is needed in a defense.







PRIVACY RISK OF DATA REUSE IN
MULTI-SERVER FEDERATED
LEARNING

Federated learning enables clients to collaboratively learn models without revealing their
local data. However, the shared model updates still reveal information about the data set,
as indicated by a number of attacks on privacy. While privacy in the context of single data
use is well-studied, users may provide the same data for multiple tasks. Hence, we focus on
the case when data is re-used in the presence of multiple colluding servers, either the same
or the different training tasks. We develop Collusive Gradient Inversion (CGI), an attack
that combines multiple gradients computed on the same data to reconstruct the original
data. The theoretical bound on how privacy leakage increases with the number of re-use is
analyzed for the same task reconstruction. We then show that Nash bargaining games are
effective in determining aggregation weights while integrating contributions from differ-
ent tasks. We experimentally validate the increased quality of the reconstructed image in
comparison to single-server reconstruction, both with and without defense mechanisms.
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4.1. INTRODUCTION

Federated learning [59, 155] collaboratively trains a machine learning model without
sharing the raw data. As a consequence, it enables learning from distributed sensitive
data, such as medical [112] or financial [64] data that cannot be shared due to the serious
implications of data leakage for users. A typical FL architecture consists of a single server
and multiple clients, who jointly learn a single task over multiple global rounds and only
exchange the intermediate model updates instead of raw data.

&

<«——> communication between server and client be “,  service range of the server

@ communication among servers O client connected with multiple servers

Figure 4.1: Multi-server Federated learning with data-reusing clients submitting updates to multiple servers.
The tasks offered by the servers may be the same or different.

In this setting, data is only used to train one task provided by the single server. It has
been shown that even contributing to single-server FL by exchanging model updates
is vulnerable to a number of attacks on privacy. In particular, data reconstruction at-
tacks, also called gradient inversion attacks [39, 165] aim to reconstruct the raw data,
completely defeating the purpose of FL, which originally aims to hide this exact data.
However, for a single server to successfully reconstruct high-quality data usually requires
external knowledge such as a well-trained generative adversarial network [31, 66] or data
owned by the server that highly resembles the target user data [146]. Furthermore, re-
cent single-server gradient inversion attacks are limited as they can only handle small
batch sizes [178, 172, 159], with training always being executed on one batch at a time.
Indeed, attacks on batch sizes of above 48 have only been proven successful even when
the attacker had external knowledge (66, 83, 31].

Till now, no work has studied the increased privacy risk of gradient inversion caused
by data reuse in the context of FL, which is common in practice. A server might train mul-
tiple tasks, either the same task, i.e., to evaluate whether results vary, or different tasks,
by reusing the same data [11]. Examples of such scenarios include self-driving cars [65].
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In addition to considering the same server with multiple different tasks, the emerging
multi-server architecture [89, 43] has multiple collaborative servers that first coordinate
the learning for clients within geographical vicinity and then aggregate their local re-
sults to improve latency and reduce communication overhead. There can be clients that
are within the vicinity of two or more servers and hence send updates to all of them, by
reusing the same local data, as illustrated in Fig. 4.1. Furthermore, research confirms
that client selection affects the model performance drastically [16], meaning that differ-
ent servers (e.g., companies) may choose to train on different but overlapping sets of
clients for the same or similar tasks.

Thus, in this chapter, we focus on investigating the risk of data reconstruction in re-
peated usage of images for FL. While our scenario includes both single server and mul-
tiple colluding servers, we generalize by associating each task with one (virtual) server,
resulting in the Multi-server Federated Learning (MSFL) setting described in Fig. 4.1. We
assume that the servers are honest-but-curious and collude in running a data recon-
struction attack.

Our multi-server Collusive Gradient Inversion (CGI) attack initializes dummy data
randomly and then iteratively adapts the dummy data such that it resembles the original
data. Concretely, for one specific global training round, all servers receive task gradients
from a common client. They then compute the inversion gradients based on the losses of
task gradients and dummy gradients, which are obtained by back-propagating through
the dummy data. These inversion gradients are then aggregated by one of the collud-
ing servers to update the dummy image. For the aggregation, there are two variants of
CGI: CGI-S considers the case when the learning tasks are the same and CGI-D is the
case when they are different. If the tasks are the same, the aggregation simply averages
over the gradients. If the tasks are different, the updating direction and gradient magni-
tude can differ as well, which may prevent the convergence of the attack optimization.
We model the process of agreeing on weights for different-task gradient aggregation as a
Nash bargaining game. After the aggregation, the dummy data is updated and the pro-
cess repeated until a maximal number of iterations is reached or the distance between
dummy data and real data is extremely small.

We extensively evaluate CGI on four datasets and compare it against four optimization-
based state-of-the-art single-server reconstruction attacks in the presence of four com-
mon privacy defense mechanisms. To assess how well our reconstructed images resem-
ble the original data, we consider four common similarity measures for (image) data
(MSE, LPIPS, PNSR, and SSIM) to cover various definitions for similarity. For all met-
rics, CGI outperforms the baseline methods considerably, especially for large datasets
with complex deep neural networks, where single-server algorithms fail. For shallow
nets with small data input, CGI-S usually requires fewer iterations than the existing ap-
proaches, frequently reconstructing images that closely resemble the original according
to all four metrics in 10 iterations. Batch sizes of up to 64 can be handled, an increase of
33% in comparison to single-server attacks.

We are the first to conduct the impact of data reuse on gradient inversion attacks,
establishing both a novel model for covering such attacks and providing the first results.
We further determine a theoretical bound on how the privacy leakage increases with the
number of servers and design the first aggregation methods for a collusive attack based
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on Nash bargaining game.

4.2. MULTI-SERVER FEDERATED LEARNING SYSTEM

In this section, we first introduce background knowledge on Federated Learning and
data reconstruction attacks. Then, we model multi-server FL systems in the context of
existing frameworks, followed by popular privacy leakage defense for FL. Last, our threat
model is described in detail.

4.2.1. FEDERATED LEARNING

In vanilla single-server FL, each client C; € €, i € [1, N], utilizes its local data to train the
model initialized by the single server . without sharing the data D; = {(xfw yfl)}lr?:’l €
RIPil jtself. The updated local models are aggregated by the server and distributed itera-
tively for multiple global rounds until convergence. Denote the model at the r'”* global

training round as ", and let 1) be the global learning rate, so
Wl =nF",Dy), (4.1)

where F is the function to update the task model, e.g. a classification task or a generative
task. Using the common FedAvg aggregation [96] weighted by data quantity, the server
aggregates the models from multiple clients as:
Zé\il |Dl |w;+l
v —— (4.2)
Zi:l |Dl|

The training process continues for R global rounds.

wr+1

4,2.2. GRADIENT INVERSION

Recent studies show that an honest-but-curious server is able to reconstruct raw train-

ing data from clients based on their submitted gradients [178, 172, 39]. This process of

reconstruction is called gradient inversion. Let £ be the loss function, then the gradient

of client C; is:

6F(w’, Dl')
ow™

We here consider two-dimensional images of width I and height J, with K indicating

the number of possible pixel colors. To reconstruct D;, D; € RP*/*K the attacker first

initializes the dummy image D; € R”*/*K_ Similarly, the dummy gradient is computed as

gi=VZW",Dj)=n (4.3)

&=V, Dy. (4.4)

As the server already knows the model w, to reconstruct the data, the gradient inversion
attack minimizes the distance of received and dummy gradient:

minDist(§;,g;) = Dist(VL(w",D;), g, (4.5)

by optimizing D;. The distance measure Dist for two gradients is usually L2-Norm or
cosine similarity. Modern learning paradigms use batched data to train models. Gener-
ally, the reconstruction of batched (size B) data regards the input as a B x I x J x K data
and also use the same dummy data size.
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4.2.3. SYSTEM MODEL

In this chapter, we look at a general system where a client may contribute the same data
to multiple training tasks proposed by different servers, referred to as Multi-server FL.
Concretely, we have a set of servers . with |#| > 1 and a set of tasks 9~ such that each
server S manages one task Ty. There is a set of clients € with subsets 6 such that
% consists of all clients that contribute to task T;. We assume that at least one client
contributes to more than one task. If a client joins two tasks T} and T}, we can have
Tj =Ty or T # Ty. We call the first case Same-Task MSFL (sMSFL) and the second case
Different-Task MSFL (dMSFL). Note that different tasks still require that the client can
reuse the same dataset. For instance, the same face images could be used to predict
gender as well as sexuality.

We assume that parties are incentivized to participate in multiple tasks through re-
wards, e.g., the server may provide monetary compensation. There are a number of
strategies for assigning rewards in the context of FL [163, 22, 75]. As our work is or-
thogonal to the topic of reward allocation, we do not integrate reward allocation in our
evaluation but merely assume that it is sufficient to encourage participation.

4.2.4. DEFENSES AGAINST INVERSION
The goal of defense mechanisms is to i) ensure system resilience against privacy leakage
attacks, ii) without significantly affecting the model accuracy on the learning tasks [130].

State-of-the-art defenses are conducted by individual clients without collaboration. Specif-

ically, defenses can be classified into gradient perturbation [156, 131, 130, 3], where gra-
dients are transmitted after local perturbation, or input perturbation [166, 63], which for
instance linearly mixing up images from the same dataset before local training. Among
the above two, gradient perturbation is more commonly used due to its efficiency and
global model accuracy.

4.2.5. THREAT MODEL

We assume encrypted and authenticated communication channels between clients and
servers. We assume all the clients to be honest and the servers to be honest-but-curious.
Servers collude, meaning they share the updates they receive. To conduct gradient inver-
sion attacks, colluding servers are not required to share all updates, attacks on a single-
round update are sufficient.

Capabilities: The servers do not have real data. Moreover, the servers’ computational
resources are bounded, they can hence only execute (probabilistic) algorithms that are
polynomial in the input.

Knowledge: We assume that servers can identify clients, e.g., by IP address, and can
hence determine whether a client contributes to multiple tasks. The servers also natu-
rally own the global model and is able to access the model parameters.

Objective Let C; be a client contributing to multiple tasks. Without loss of generality,
let T, ..., Tk be the tasks that C; contributes to. Given local models (w; x)x=1.x Or gra-
dient updates (g; k(-)) k=1. x, which are trained on the same local dataset D; of client C;,
the servers . design an inversion method to reconstruct client’s training data D; based
on the gradients in global round r.
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4.3. RELATED WORK

Based on the gradients shared by clients in FL, a server is able to break the user-level pri-
vacy of clients [178, 46], which unexpectedly leaks local data information to the server.
On the highest level, gradient privacy leakage attacks can be classified into feature leak-
age or data leakage. Feature leakage attacks infer merely specific features or statistics
about the original data [48, 120, 97] instead of fully reconstructing the data. In this chap-
ter, we focus on data leakage attacks, which are stronger as they infer the actual data the
model was trained on. Data leakage attacks can be classified into recursion-based and
optimization-based attacks.

Optimization-based attacks. The reconstruction process is formulated as an iterative
optimization problem for dummy data. The earliest Deep Leakage from Gradient (DLG)
attack [178] reconstructs the dummy data and the label at the same time. Optimiza-
tion on gradients requires the global model to be second-order differentiable. There are
three directions to improve gradient inversion: i) changing optimizer/objective func-
tion, i) integrating prior information, or iii) adding more external knowledge. The dif-
ference between ii) and iii) lies in the origin of the knowledge. For i), DLG-Adam [153]
is a variant of DLG, which changes the optimizer from L-BFGS to Adam to improve the
performance for larger global model networks. InvG [39] changes the distance metric
from using L2 Norm to cosine similarity to fit industrial realistic scenario in deep and
non-smooth global model architectures. For ii), iDLG [172] infers labels from the gradi-
ent rather than optimizing the dummy label to improve the efficiency and accuracy of
DLG. This method is limited to batch size 1 as it cannot infer batch labels. InvG [39] adds
total variation [114] prior knowledge, with a theoretical guarantee for inversion on linear
fully-connected network. As for 7ii), GradInversion [159] adds a batch normalization reg-
ularizer to iDLG as extra knowledge to achieve reconstruction for large batch size of up
to 48. GIAS [66] utilizes prior data distributions and improves the reconstruction qual-
ity of GradInversion using a pre-trained generative adversarial model (GAN). GGL [83]
and GIFD [31] further fine-tune the use of such external GANs. AGIC [153] approximates
gradient updates to simplify the procedure and leverage gradients from multiple epochs.

In summary, most optimization-based inversion attacks only work on small batch
sizes. Moreover, guarantees that inversion is possible are only given for linear networks [39].
Our focus in this chapter is to uncover the increased risk of re-using the same data to join
multiple learning tasks and is independent of research on external knowledge, which can
also be used to improve our attack. Therefore, we mainly compare our work with i) and
ii).

Recursion-based attacks. The key idea is to exploit the implicit relationships among
the input data, model parameters, and gradients of each layer to find a mapping so-
lution the minimal error. The attack was first constructed for shallow nets [108] and
then extended to convolutional neural networks by converting the fully connected lay-
ers to convolutional layers [30]. To provide theoretical guarantees of reconstruction, R-
GAP [177] analyzes and provides a closed-form recursive procedure. Overall, recursion-
based methods do not work on models with pooling layers or batch sizes larger than
1. Moreover, they are sensitive to gradient perturbations and thus are ineffective in the
presence of defenses [31].
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Figure 4.2: Collusive data reconstruction attack for Multi-server FL. The client contributes the same local data
to multiple learning tasks (e.g., Task 1 and Task 2 at two different servers in the figure), and the servers
reconstructs the data from a dummy image by minimizing the loss of the dummy, based on the received
gradients g; .. Aggregation varies depending on whether the tasks are the same or different.

We now introduce our solution for multi-server gradient inversion protocol as Col-
lusive Gradient Inversion (CGI), which reconstructs the re-used data. Fig. 4.2 illustrates
the two phases of our attack: i) training phase, when the client submits gradients to mul-
tiple servers, and ii) reconstruction phase, where servers collude to optimize the dummy
data. The two variants of our attack are CGI-S for sMSFL and CGI-D for dMSFL. The dif-
ference between CGI-S and CGI-D is the way to aggregate updates from multiple servers.
In this section, we start with the more straightforward CGI-S, where all servers learn the
same task independently. We describe the collusive inversion process and analyze it the-
oretically. Our theoretical results show that g servers are able to reconstruct data if V£
is a polynomial of degree g, meaning that the more servers collude, the more complex
networks can be handled.

4.4.1. COLLUSIVE INVERSION STEPS

Alg. 2 lists the steps of our attack for both CGI-S and CGI-D. Multiple servers recon-
struct client data merely from received gradients collusively. Every server calculates the
dummy gradient on the same dummy data, according to each client’s gradients and one
master server node executes the gradient aggregation. The master server can be selected
randomly between the servers. If there is only one server offering multiple tasks, the
server trivially acts as the master. Note that the inversion is launched at one round r and
we skip the coefficient r for simplicity.

In the training phase, client C; contributes to multiple learning tasks by submitting
trained gradients (Line 12). Thus, each server Sy receives gradients g; = VL (wg, D).
In order to launch an inversion attack, at the beginning of reconstruction phase, the
master server generates the common random dummy data D, which is of the same size
as D (Line 13), and distribute it to collusive servers. At the same time, the aggregation
weights for collusion are initialized. After receiving the task gradient g; , each server
S calculates the dummy gradients by inputting D; to the most recent global model w,,
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Algorithm 2: Colluded gradient inversion for MSFL, with CGI-S for sMSFL and
CGI-D for dMSFL.
Data: wy, gk, 4 £k () forserver k€ 1,2,..., K, for client C;.
Result: D; ~ D;: reconstructed data, which is similar to the original data D;.
12 calculate g; = VL (g, D;), Vk € K;
13 initialize dummy data D;, aggregation weights Y ay = 1;
14 for iterationt=1,2, ..., Tdo
15 | calculate g; y = V% (wk, D)), VkeK;
16 calculate the distances Dist(g; k, §i k)
17 | use back propagation to get the gradients gi for D; respectively.
18 if D; is reused by same task then
19 L assign ay =1/K asin Sec. 4.4;

20 if D; is reused by different task then
21 for epoche=1, ..., Edo
22 L optimize a by Nash bargaining game in Sec. 4.5;

23 aggregates gradient § = AD; = ¥ -, x) ¥k 8k
24 | update dummy data DI*! = DT + uADT.

as gy = V% (wr, D;) (Line 15). The goal of updating g; x is to approximate g; x. As
illustrated in [39], cosine similarity is better suited to deep and non-smooth global model
architectures, which are commonly used for real-world industrial applications. Thus,
we apply the cosine similarity distance Dist(g; i, &,x) [153, 39] as the loss of updating
D; (Line 16). As different servers have different losses, the gradients g; from multiple
servers need to be aggregated. In the context of same-task MSFL, servers are learning
the same task and the same network structure. Thus, we do not expect large differences
in magnitudes and optimization directions of the gradients. Thus, for CGI-S, we assign
the aggregation weight aj = 1/K to all servers (Line 19). On the other hand, for CGI-D,
we assign weights according to Nash bargaining game (Line 22), as described in detail in
Sec. 4.5.

The weights assigned for each task are used afterward for weighted aggregation (Line
23). Then, the dummy data of iteration 7+1 is updated using the learning rate y (Line 24).
The dummy data update is conducted multiple times until a convergence criterion is
reached. In Alg. 2, we repeat the update a fixed number of rounds for simplicity but
alternative methods to determine convergence can be integrated trivially.

We analyze the bounded reconstruction output. Additionally, we show via experi-
ments that this simple combination of loss functions works well for effectively recon-
structing client data.

4.4.2, ANALYSIS ON RECONSTRUCTION

We analyze whether our approach provides any guarantees on approximating the orig-
inal image. Given the loss function of £(-), the real gradient from C; for task Ty is
gix = VL (w, D;) and the dummy gradient aggregated is §, = V£ (wk, D;). We want to
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i) prove that D; approximates D; and ii) provide a bound on the tightness of the approx-
imation. We first consider models with a linear mapping function and then extend our
analysis to polynomial functions. Finally, we discuss how the results for the polynomial
setting translate to more general CNN networks.

For brevity, we ignore the indices k and i when they are apparent from the context
and consider a single data sample x € D. Input data can be different dimensions, e.g.,
1-dimension for common speech signals and 2-dimensions for common image data).
Here we reshape x into a 1-dimension (if not the original 1D) array by concatenation.

LINEARVZ(-)

The widely adopted fully-connected neural networks generally contain linear convolu-
tional layers and fully-connected layers. Generally, biases can be added after the multi-
plication, i.e., an additional column in the weight matrix.

Proposition 1. Let x € R”, V£ (w, x) € R” and p > n. We assume there is no zero gradient
conditions. If V.Z(-) islinear, x can be uniquely reconstructed from the network gradient
VZ (w,x).

Prop. 1 holds for single-server FL [39] and directly translates to the multi-server set-
ting.

POLYNOMIAL V.Z(-)

convolutional neural networks with hidden layers can be approximated by polynomial
expressions, which will be discussed in more detail at the end of the section. Considering
x is used for the training of K servers, gradients are denoted by V.Z (w1, x), VL (w2, X), ...,
VZ(wk, x), since for same task we can simply ignore the k index for V.Z ().

Proposition 2. Let x € R", V£ (wg, x) € RP and p > n. We assume there are no zero gra-
dient conditions. If V.Z(-) is polynomial with the highest term of order g, g non-linearly
dependent gradients of servers from . are able to reconstruct x within g” limited range.

The result shows that we can approximate one image within tight bounds. In prac-
tice, images are usually trained in batches. Reconstructing batched data by the men-
tioned optimization-based inversion increases n, i.e., the approximation becomes less
tight. Therefore, the above analysis also hints at why optimization-based gradient inver-
sion is limited by the number of images (batch size) reconstructed simultaneously [153,
172, 178].

APPROXIMATING CNNS

According to approximation theory [136], a CNN consisting of input layer, hidden layer
and output layer can be approximated by a polynomial of one variable. Adding a non-
linear activation function to a CNN and increasing the network depth only increases the
degree of freedom of the neural network. Polynomials can still approximate such neural
networks with a bounded error [23]. Moreover, in real applications, the accuracy of the
approximation depends on the specific target distribution. If the target distribution is
relatively simple, the neural networks degenerate into a polynomial function under reg-
ularized sparse learning [94]. Thus, even for generic neural networks, Prop. 2 is relevant




68 4. PRIVACY RISK OF DATA REUSE IN MULTI-SERVER FEDERATED LEARNING

as it indicates that in many cases, we can approximate the input data well. We also em-
pirically demonstrate the effectiveness of introducing multiple servers for reconstruct-
ing data for complex neural networks, e.g., ResNet [45].

4.5. COLLUSIVE INVERSION FOR DIFFERENT-TASK

Here we introduce the collusive gradient inversion method for dAMSFL as CGI-D. Note
that CGI-D can also be applied if the tasks are the same. However, it increases computa-
tional complexity considerably and is hence inefficient than CGI-S. Compared to sMSFL
in Sec. 4.4, collusion on different network structures (dAMSFL) brings additional chal-
lenges for the reconstruction attack. When calculating the loss based on the distances,
the value is accumulated from every parameter of the network. Thus, there can be alarge
difference in magnitudes between different servers, i.e., the learning task of the largest
net dominates the training. There may also exist conflicts of optimization direction pro-
posed by different servers, hindering convergence. Thus, a simple averaging of gradients
does not work in this case.

Consequently, as illustrated in Fig. 4.2, for CGI-D, we design a novel aggregation
method for gradients gi but keep the training, output, and other components of the
reconstruction phase consistent with CGI-S. Motivated by game theory [36] we propose
to model the aggregation of multiple gradients through a Nash bargaining game, i.e., a
cooperative game in which the servers negotiate to reach the agreement on the direction
of inversion gradients. In order to apply the underlying results from game theory and ob-
tain a unique result, during the game, we assume that servers prefer their own gradients
to dominate the results. Note that the goal of the servers remains to reconstruct images,
they merely assume the selfish behavior common for games to reach an agreement that
fulfills the guarantees needed.

4.5.1. NASH BARGAINING GAMES

In a Nash bargaining game, generally, there are K players who bargain over a fixed amount
of resources such that the product of their respective utility is maximized. All players are
selfish and have the freedom to make their own decisions independently. There are two
types of outcomes for such a game, namely reaching an agreement or not. There are
multiple solutions when there is an agreement but only one when there is a disagree-
ment. The agreements are elements from a convex closed subset of RX, which is called
the feasibility set. The disagreement is what players are guaranteed to receive if they can-
not come to a mutual agreement. Prior to the starting of the game, each player knows
the number of players and their utility functions, denoted as fiVk, as well as the utility
of disagreement, which is usually pre-determined by the system.

In the case of agreement, all players agree on how they split the total resources, i.e.,
the result is a vector specifying the proportional allocation of resources to players, a =
(m,...ar), where 0 < ar < 1, and } . ar = 1. Let o be the set of all such vectors. The
utility payoff of player k is thus uy = fi(a). If they fail to agree on any alternative, there is
a fixed disagreement outcome, s, with the payoff of player k being dj. = fi.(s).

A solution to a Nash bargaining game should satisfy the following Nash axioms (de-
tails see [101]): i) Pareto optimality; ii) Symmetry; iii) Independence of irrelevant alter-
natives and iv) Invariance to affine transformation. Nash proved that a solution that
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satisfies all axioms exists and is unique. It is equivalent to solving:

m;le(uk—dk).
k . (4.6)
s.t.aeof,Vk: ug > dy

Then, the set of utilities {u;|k = 1,..., K} is a Nash bargaining solution if it solves Eq. 4.6.
In other words, the objective of this game is to find a to maximize the product of the
payoff difference between the agreement and disagreement, u; — d, for all players. Two
constraints need to be considered simultaneously are i) a € o, and ii) utility payoff from
the agreement should be greater than disagreement, u;. > dj. Optimizing Eq. 4.6 is equiv-
alent to maximizing the sum of log (uy — di). Depending on the complexity of the utility
function, f, one can either solve it numerically or through a closed-form solution.

4.5.2. NASH BARGAINING SOLUTION FOR CGI-D

We follow the Nash bargaining game to model our collusive gradient inversion with K
servers, including the utility function design, disagreement point, and fulfillment of ax-
ioms. The server k bargains for an aggregation weight aj to influence the direction of
dummy data update g =Y @ g%, which sums over the weighted gradients of all servers,
ar8k- The objective of the game is to reach an agreement on the weight allocation for all
tasks, a = (a1,..., ), where a; € [0,1] and }_; a; = 1. As every server aims at maximiz-
ing the similarity (represented by cosine similarity or scalar product) between its local
gradient and the aggregated dummy gradient, we define the utility function for server k
as uy = §' gr Vk. Another key modeling component is the disagreement point. When
servers do not reach an agreement on the aggregation weight, we let dy = 0Vk, mean-
ing that servers keep the dummy data as in the previous iteration to avoid optimizing in
the wrong direction. As our global learning objectives exhibit the same form as a multi-
task learning game, we follow the argument of [103] that the four axioms are satisfied
and our game is equivalent to Eq. 4.6. Putting everything together, we can thus write the
following optimization to determine ay for any given iteration of CGI-D

max[]g" g«
k
(4.7)
s.t. Za’kgk = g,Zak =1.
k k

Moreover, we need to consider one additional constraint specific to the gradient inver-
sion for images. The dummy gradient update, g, is bounded in a certain range, deter-
mined by the data source. For example, if the source data is an 8-bit binary encoded
value, then the pixel-wise color range is [0,255]. Alternatively, the n-channel images
pixel value can also be used to bound the range of dummy gradient update. Thus, to
solve this gradient inversion bargaining game of Eq. 4.7, we first take the log of the ob-
jective function and optimize the summation of the log. Afterward, we find a solution
using the concave-convex procedure [103].
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Figure 4.3: Comparing the reconstruction results for 2 servers same-task with single-server baselines; metrics
are MSE, SSIM, PSNR and LPIPS on Cifar-100 (LeNet, ResNet-20) and STL-10 (ResNet-34) datasets. Averaged
over 3 runs.

4.6. EMPIRICAL EVALUATION

In this section, we first introduce our evaluation settings in detail. Then, we quantify the
advantage that attackers have when data is re-used for both sMSFL and dMSFL, even in
the presence of a defense mechanism.

4.6.1. EXPERIMENTAL SETUPS

GENERAL SETTINGS

We evaluate our CGI-S and CGI-D on Cifar-100 [74], Ifw [53], STL-10 [19] and Mnist [21]
datasets with LeNet [77], ResNet [45] and Vgg [122] neural networks. To demonstrate the
quality of image data reconstruction, MSE [8], PSNR [50], SSIM [143] and LPIPS [171]
are applied.

BASELINES

As this chapter aims to reveal the increased privacy risk for a client of contributing local
data to multiple tasks, it is necessary that we keep the other variables consistent. We
compare our proposed CGI with optimization-based inversion methods without exter-
nal knowledge, concretely: DLG [178], iDLG [172], DLG-Adam [153], and InvG [39].
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Figure 4.4: Reconstructed CIFAR-100 images from ResNet-20 with 1000 iterations for five baselines and CGI-S.

TASKS

For most experiments, we utilize 2 servers as the minimum collusive version. For sMSFL,
we follow the same setting for every server as the original single-server classification on
each dataset. For dMSFL, we mainly perform 2 different tasks on the same dataset. For
Cifar-100, one server is conducting a 100-class classification task while the other server
is for 20-class, based on the two benchmark labels. Similarly, for Ifw and STL-10, they
identify 5749 different people/binary gender classification, and original 10-class/2-class
animal or transportation respectively. Using the above settings, we validate the effec-
tiveness of collusive inversion based on our Nash bargaining game. We vary the number
of servers from 2 to 5 with increasingly fine-grained label distinctions while keeping the
optimizer, distance metric, learning rate and other settings consistent with single-server
settings.

DEFENSES

Following the related works [31, 90, 61], we select four representative defenses with the
following settings. i) Noising: Gaussian Noise with standard deviation 0.1; ii) Clipping:
Gradient clipping with a clip bound of 4; iii) Sparsification: Gradient sparsification in a
sparsity of 90; and iv) Soteria: Soteria with a pruning rate of 80%.

OTHER SETTINGS
All the baseline methods are for a single server with a single task. Thus, we compare
the baselines with CGI-S for sMSFL. For Vgg-11 and ResNet, we train 1000 iterations for
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inversion while 500 for LeNet. We evaluate the batch size as 2¥, where k € {1,2, ..., 6}, and
the detailed comparison for batched data is in Sec. 4.6.2. Our reconstruction of batched
data focuses on the data leakage risk and does not consider the alignment of batched
data order, which is practical and is consistent with related studies [153, 66, 83, 31].

4.6.2. SAME TASK MSFL (SMSFL)

COMPARISON WITH BASELINES

We start by discussing the results for 2 servers under sMSFL, then show that additional
servers increase the risk of a successful reconstruction attack. Fig 4.3 shows the inversion
progress over iterations using the 4 evaluation metrics: MSE, LPIPS, PSNR and SSIM on
datasets Cifar-100 and STL-10. For Cifar-100, we use VGG-11, ResNet-20, and ResNet-
34 to demonstrate the impact of the network size. We also visualize the reconstructed
images from Cifar-100 as examples in Fig. 4.4.

Fig. 4.3 demonstrates that our proposed CGI-S outperform baseline methods overall,
exhibiting higher PSNR/SSIM and lower MSE/LPIPS. Notably, our CGI-S shows clear ad-
vantages in terms of PSNR and SSIM, with less distinctly differences in terms of MSE and
LPIPS. This difference arises from the fact that PSNR, SSIM, and LPIPS focus on image
quality assessment, while MSE treats all pixel values equally, potentially leading to dif-
fering perceptual outcomes. LPIPS, specifically, adapts its evaluation based on learned
features and can be dataset-sensitive, showing a smaller range of values in our study
(e.g., 0-0.5 for ResNet on Cifar-10). Moreover, our CGI-S yield significantly improved
results with more complex networks like ResNet-20 on Cifar-100 and ResNet-34 on STL-
10. However, the performance gap narrows with smaller networks such as Vgg-11 on
Cifar-100. Additionally, experiments with LeNet on Cifar show minimal differences in fi-
nal similarities between CGI-S and single-server attacks, but CGI-S demonstrates higher
efficiency. This suggests that for simpler tasks where baselines achieve successful recon-
struction, CGI-S benefits from enhanced efficiency, guided by bounded reconstruction
probabilities in Sec. 4.4.

In terms of the dataset, the results are very consistent in the sense that the rank-
ing the attacks in terms of achieved similarity usually results in the same ranking for
all datasets. Concretely, CGI-S is mostly the best-performing attack, followed by iDLG.
Convergence-wise, DLG and iDLG sometimes may converge faster than CGI-S but they
do not achieve the same reconstruction quality. The faster convergence is due to the
use of the L-BFGS optimizer by DLG and iDLG, which is known for fast convergence.
DLGAdam and InvG are consistently of a lower performance than CGI-S, regardless of
the number of iterations. By visualization in Fig. 4.4, we show the perceptual similarity
between the reconstructed data with the original data, which is consistent with Fig. 4.3,
demonstrating the high privacy risk of data reuse, even if there are only 2 servers.

Additionally, we also evaluate the performance of reconstructing at different phases
of the training, i.e., different round numbers r. The conclusion is consistent with the
single-server case [153]: It is easier to launch the attack in the early training phase where
gradients are not affected by the previous global models and hence updates from other
users.

According to Sec. 4.4, the reconstruction performance also depends on the original
size of image and network size. Comparing 32 x 32 images taken from Cifar-100 with
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96 x 96 sampled from STL-10, in Fig. 4.4 and Fig. 4.5, we find that single-server inversion
methods fail on larger images with complex networks such as ResNet. However, with
the same optimizer and distance function, collusive servers are able to reconstruct high-
resolution images without extra external knowledge. As stated earlier, using multiple
gradients reduces the searching space for optimization, which has more impact when
the search space is big due to complex models or large images size. Another observation
worth mentioning is that even with collusive servers, larger data input is difficult to be
reconstructed for small networks, where the gradient information is limited, as indicated
by the notable better image quality for CGI-S with ResNet in comparison to CGI-S with
LeNet in Fig. 4.5 (e) and (f).

Table 4.1: Results for inversion from dMSFL on Cifar-100, Ifw and STL dataset with LeNet and ResNet
averaged over 5 runs. We compare our CGI-D with weights assigned to a “Single” server and “Random”
weights assigned for each task.

MSE | LPIPS | PSNR | SSIM 1
Dataset | Iter | Single Random CGI-D | Single Random CGI-D | Single Random CGI-D | Single Random CGI-D

Cifar-100 | 25 0.428 0.190 0.004 | 0.154 0.105 4.3e-3 | 51.819 55.336 72.547 | 0.249 0.413 0.969
50 0.182 0.526 1.4e-3 | 0.067 0.035 9.9e-6 | 55.532 60.924 86.619 | 0.463 0.695 0.999
LeNet 75 0.084 0.020 9.6e-6 | 0.040 0.009 3.0e-7 | 58.890 65.204 98.290 | 0.624 0.842 0.999
100 | 0.040 0.009 6.3e-6 | 0.018 0.003 1.7e-7 | 62.071 68.579 100.13 | 0.755 0.932 0.999

Ifw 25 0.043 1.307 8.7e-5 | 0.048 0.278 3.5e-5 | 61.813 46.968 88.727 | 0.550 0.067 0.969
50 0.002 0.018 3.3e-8 | 0.001 0.009 9.9e-6 | 75.806 65.668 122.894 | 0.965 0.855 0.999
LeNet 75 8.1e-5 6.0e-6 3.0e-8 | 2.7e-5 1.2e-6 7.7e-9 | 89.060 100.381  123.316 | 0.998 0.999 0.999
100 | 4.4e-6 l.1le-7 3.0e-8 | 1.3e-6 1.7¢-6 7.7e-7 | 101.742 117.687 123.316 | 0.999 0.999 0.999

STL-10 300 | 0.242 0.223 0.184 | 0.048 0.039 0.047 54.300 54.638 55.481 0.214 0.265 0.301
600 | 0.201 0.200 0.119 | 0.039 0.044 0.033 | 55.109 55.124 57.386 | 0.314 0.299 0.415
ResNet20 | 900 | 0.100 0.150 0.068 | 0.034 0.034 0.024 | 58.127 56.382 59.802 | 0.515 0.375 0.586
1800 | 0.067 0.109 0.005 | 0.015 0.036 0.001 59.890 57.738 70.921 0.614 0.491 0.927

DIFFERENT BATCH SIZES

A common issue for optimization-based inversion is that the algorithm is too slow to
converge with low quality reconstructed data for large batch size B as batched data can
have B! different permutations [178]. Here, we use Mnist dataset and LeNet with batch
sizes of 2%k € {1,2,...,6}, where the largest successful reconstruction by optimization
without external knowledge is 48 in related studies. We empirically show that multiple
servers allow for higher batch sizes for the same reason as why they do well with complex
networks and large images: they narrow down the search space of dummy data opti-
mization through intersecting multiple search spaces. The result is in line with the theo-
retical results of Sec. 4.4 that the increased number of servers entails that (approximate)
reconstruction is possible in more complex settings. We utilize DLG as the single-server
baseline, since for iDLG, the predicted single label does not work on batched data, where
one batch can contain different labels. The results are displayed in Fig. 4.6, showing the
final image of 300 iterations for batch size 4 and 8 and 1000 iterations for batch size 64.
Single-server attacks still work for up to a batch size of 4 but start failing at a batch size of
8. CGI-S results in relatively similar images even for a batch size of 64, which is as similar
quality visually with the related study on large batch sizes, e.g., 48 [39].
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IMAGE SI1ZE V.S. NETWORK SIZE

(a) original
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Figure 4.5: Reconstruction visulization on high-resolution image STL-10 (size 96 x 96) with different network
sizes, comparing CGI-S and baselines.

According to Sec. 4.4, the reconstruction performance also depends on the original
size of image and network size. The results of Fig. 4.3 only covers successful recon-
struction with varying network on 32 x 32 Cifar-100. Here we apply high resolutional,
i.e., 96 x 96, input data sample from STL-10, to compare the reconstruction results be-
tween single/multi-server and shallow/deep network. The original image and the re-
constructed results are shown in Fig. 4.5. From Fig. 4.5, we can see that although single-
server inversion methods work on some low resolutional data input, e.g., 32 x 32 Cifar-
100 image in Fig. 4.4, it fails on the more complex deep neural network of ResNet. How-
ever, with the same optimizer and distance function, collusive servers are able to recon-
struct high resolutional image without extra external knowledge. As stated earlier, using
multiple gradients reduces the searching space for optimization, which has more impact
when the search space is big due to complex models or large images size. Another obser-
vation worthy mention is that even with collusive servers, larger data input is difficult to
be reconstructed for small networks, where the gradient information is limited, as indi-
cated by the notable better image quality for CGI-S with ResNet in comparison to CGI-S
with LeNet in Fig. 4.5 (e) and (f).
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Figure 4.6: Performance for different batch sizes, up to 64, on Mnist.

PERFORMANCE IN PRESENCE OF DEFENSE

Table 4.2: PSNR 1 results under defense mechanisms for sMSFL on Cifar-100 with ResNet-20 and 1000
iterations.

Defense strategy
Method Noising [1]  Clipping [1] Sparsification [3]  Soteria [130]
DLG [178] 51.485 50.579 50.743 50.911
iDLG [172] 50.978 52.003 50.513 49.894
DLG-Adam [153] 50.094 48.634 47.993 49.141
InvG [39] 42.531 47.595 47.619 48.086
CGI-S 63.086 66.176 66.396 67.438

We furthermore evaluate the effectiveness of reconstructing client data under dif-
ferent defense strategies. The PSNR comparison results on Cifar-100 dataset are shown
in Tab. 4.2. Note that PSNR without defense is shown in Fig. 4.3g for the 500" itera-
tion. According to PSNR, we see that each defense decreases the reconstructing quality
in general. Among the baselines, CGI-S is able to reconstruct images with higher PSNR
for all four defenses compared to single-server attacks, demonstrating its effectiveness
in the presence of defenses.

4.6.3. DIFFERENT-TASK MSFL (DMSFL)
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COMPARISON WITH BASELINES

As we are the first to evaluate the attack in the multi-server setting, there is no exist-
ing baseline for different tasks. We hence compare our CGI-D with 2 settings: i) Single
server, where only one randomly chosen task gradient is applied to update the dummy
data and ignore the gradients from other tasks; ii) Random weights, where each iteration
a randomly chosen weight vector is applied for gradient aggregation of servers. The re-
sults of MSE, LPIPS, PSNR and SSIM averaged with 5 replications are given in Tab. 4.1.
We train each inversion for multiple iterations determined by the network size and re-
port the results at iterations 25, 50, 75, 100 for LeNet and iterations 200, 400, 600, and
800 for ResNet-34. For more iterations, MSE and LPIPS decrease while PSNR and SSIM
increases, showing better reconstruction performances. According to the results, it is
evident that Random outperforms Single in general, which means that even without so-
phisticated weight assignment, multiple servers lead to lower privacy. Yet, both Single
and Random fluctuate and do not converge monotonously. This is in line with our mo-
tivation to design gradient aggregation based on Nash bargaining game, namely that
randomly or averagely integrating different tasks may suffers from gradient conflicts,
which affect convergence. As a comparison, our CGI-D utilizes Nash bargaining game
to coordinate the aggregation, so that each server negotiates on the updating direction,
resulting in the clearly better results than those achieved by the baselines.

IMPACT OF DUMMY INITIALIZATION

Inverting gradients starts from the initialized dummy data. Hence, we also consider how
the initialization method affects our results. Four initialization methods are considered:
i) standard norm distribution, where each pixel is generated as Do ~ N(0,1); ii) the ini-
tialized images follows uniform distribution on the interval [0, 1); iii) random integers in
the range of pixel color encoding, e.g., [0,255] for 8-bit; and iv) real images chosen from
the same dataset but not the image we aim to reconstruct. Fig. 4.7 displays the results
for CGI-D on Ifw dataset on LeNet. Random integers do not lead to good results as the
training procedure takes float/double values. Using a real image from a similar data dis-
tributions means that the optimization may get stuck in local optimum and hence also
does not lead to good results in terms of reconstruction. Float type initialization from
[0,1) based on either standard norm or uniform distribution differ only slightly, shown
in the first and second row of Fig. 4.7 on reconstruction. A similar conclusion with regard
to dummy initialization holds for CGI-S on sMSFL.

IMPACT OF THE NUMBER OF DIFFERENT TASKS

We now increase the number of servers. The Cifar-100 dataset is chosen since the 100
classes can be grouped such that we have 2-class, 10-class, 5-class and 20-class labels,
resulting in total of 5 classification tasks when including the original 100 classes. From
Fig. 4.8, we can see that generally, the effectiveness of the reconstruction, measured in
terms of PSNR, increases with the number of servers. However, there is hardly any differ-
ence between 4 servers and 5 servers, indicating diminishing returns for a higher number
of servers.
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Figure 4.7: Impact of different initialization methods for CGI-D on Ifw human face dataset using LeNet:
random noise of standard norm / uniform distribution, random integers encoded as 8-bit and real image
from the same dataset.

Table 4.3: PSNR 1 results under defense mechanisms for dMSFL on Cifar-100 with ResNet-20.

Defense strategy
Method Noising[1] Clipping[1] Sparsification [3] Soteria [130]

Single 50.648 52.337 50.694 51.460
Random 49.947 51.131 50.063 50.842
CGI-D 51.184 64.366 63.047 66.576

PERFORMANCE IN PRESENCE OF DEFENSE

We apply the same four defenses as for sMSFL. The results, displayed in Tab. 4.3, confirm
that CGI-D outperforms the baselines in the presence of defenses. Note that the advan-
tage is considerable for all defenses but Noising, where CGI-D is only slightly better than
the baselines, indicating that the defense is quite effective. Compared to CGI-S (Tab. 4.2),
we find that the results for CGI-D are a bit worse, so it is harder to evade defenses when
the tasks are different and aggregation is hence more challenging.

4.7. CONCLUSION

We are the first to analyze the risk of data reconstruction when a client repeatedly uses
their data to contribute to multiple tasks. Both analytical and empirical results indicate
that our attacks, CGI-S and CGI-D, are considerably more impactful than attacks in the
single-server setting, even in the presence of defense mechanisms. We demonstrate the
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superiority of our attack through better performance on large image sizes, large batch
sizes, and more complex deep neural networks.



GRADIENT INVERSION ATTACK IN
FEDERATED DIFFUSION MODELS

Diffusion models are becoming the most prevalent generative models, producing excep-
tionally high-quality image data through a stochastic process of diffusion steps based on
Gaussian noise. Recent studies explore the federated training of diffusion models, enabling
the collaborative training of a model without clients sharing raw data. We demonstrate
that even without direct sharing of the data, the shared gradients of federated diffusion
models already leak sensitive information about the raw data.

In this chapter, we first argue that diffusion models can easily be trained in a federated
manner, without the raw data leaving premises. Our main contribution then lies in eval-
uating the privacy leakage of the shared model updates by developing gradient inversion
attacks to reconstruct training data. We design the first gradient inversion attack GIDM for
diffusion, which can reconstruct the training data from the shared model updates. GIDM
is a two-phase fusion attack that is both efficient and effective. In its first phase, GIDM
leverages the trained diffusion model itself as prior knowledge to constrain the inversion
search (latent) space, followed by a second phase of pixel-wise fine-tuning. Different from
existing inversion attacks on the classification models, inverting diffusion models presents
new challenges, most notably that the noise term and randomly sampled diffusion step are
not known to the attacker but are required for the reconstruction. To tackle this challenge,
we propose a joint triple-optimization algorithm to approximate the raw data, sampling
step, and noise term simultaneously. GIDM is shown to be able to reconstruct images al-
most identical to the original ones and clearly outperforms baselines, i.e., GIDM without
the second phase and state-of-the-art attacks on classifiers adapted to diffusion.

79
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Figure 5.1: Original training image (left) v.s. Recovered images (right) by our proposed GIDM on diffusion
models: reconstructing almost identical to the original image of 128 x 128 size.

5.1. INTRODUCTION

The emergence of likelihood-based diffusion models empowers probabilistic models to
generate high-quality data, such as image and video data [124, 49, 113]. Diffusion models
are trained by finding the reverse Markov transitions that maximize the likelihood of the
training data. In practice, the training is done by gradually adding noise to and denoising
the images over multiple steps.

However, training high-quality diffusion models usually requires a large amount of
data. Practically, such data may be owned by different parties. Following data privacy
regularization such as HIPAA [2] and GDPR [138], data owners are not allowed to share
such data if it contains personally identifiable information, which includes, in particular,
sensitive data such as medical records. As a consequence, prior works argue that diffu-
sion models need to be trained in a distributed manner without sharing raw data, e.g.,
in a federated learning manner [117, 78]. Indeed, the design of the Denoising Diffusion
Probabilistic Model (DDPM) [49], the most common architecture for training diffusion
models, enables distribution trivially: in each round, the algorithm independently sam-
ples a random Gaussian noise € for data sample(s) x( at each sampling step ¢. Thus,
there exist multiple designs for federated diffusion, which — while differing in the de-
tails of their implementation — all share the following approach: at each global round of
training, multiple distributed data owners (clients) train the diffusion sub-models based
on their local data. Then, the central server, which connects to every client, aggregates
their gradients before returning the aggregated gradient to the clients for further training
until convergence is reached.
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Such a federated diffusion method successfully avoids direct data sharing and en-
ables the server to obtain the intermediate training gradients and the diffusion model in
the end. In this paper, we consider the privacy leakage caused by the shared gradients.
While there have been privacy attacks on diffusion models, they do not consider gradi-
ents. For example, relying on inferring information from the trained model, e.g., error
comparison of the forward process posterior estimation [26, 117], adversaries are able to
launch membership inference attacks [52, 26, 149] or attribute inference attacks.

Although studies on federated training classifiers demonstrate that the server is able
to invert the client’s raw data from their gradients [178, 153, 39, 172], we argue that ex-
isting attacks cannot be easily transferred to diffusion models. The key idea of previous
attacks is to reconstruct images from dummy data by using the gradients to constrain
the search space. In the context of classification, label information needs to be present
or reconstructed as part of the attack. In contrast, diffusion does not have labels; rather,
it requires the sampling step ¢ during the training process and the noise prediction € in
each step, so that a novel approach is needed.

In this paper, we systematically study the data reconstruction risk when training fed-
erated diffusion models. We first define the common factors of federated training meth-
ods for diffusion models, according to related studies. Afterwards, we design our attack,
which relies on diffusion-specific information that other scenarios lack. Specifically, at
the end of the training process, the server owns a trained diffusion model, which we can
use to constrain the search space for the reconstructed images. Using generative mod-
els has been explored in prior studies on inversion attacks on classification [66, 31] but
these studies rely on external models.

Concretely, to reconstruct images that resemble the training data, we thus design a
fusion optimization, GIDM, that includes two phases. The generating phase maps the
dummy data into a narrow latent space to optimize in-distribution images by utilizing
the diffusion model as prior knowledge. Then the fine-tuning phase further optimizes
the similarity between the dummy and real gradients to update the dummy data gener-
ated during the first phase of the attack.

Approximating the gradient of diffusion models also requires the knowledge of € and
t, which may only be known to the clients, a key challenge of inversion attacks on diffu-
sion models. To solve this, the two phases of GIDM include a novel triple-optimization
for dummy data, €, and t. Specifically, the triple-optimization includes three indepen-
dent optimizers for the dummy data, the noise, and the sampling step to refine the joint
training. By coordinating the three optimizers with updating intervals, we are able to
recover images without knowing the exact values of € and ¢.

Our proposed GIDM is able to recover images almost identical to the original data
up to size 128 x 128, as shown in Fig. 5.1. Our evaluation further shows that the fine-
tuning phase is indeed required and GIDM cannot reliable reconstruct images without
using the triple-optimization. For comparison, we adapt two attacks for image classi-
fiers, DLG [178] and InvG [39], to the scenario of diffusion. Note that as these attacks do
not consider € and ¢, we weaken the adversarial model for them by providing the con-
crete parameter values. Despite these attacks having more information, which would
not be available in a real-world setting, GIDM outperforms them in terms of four key
image similarity metrics.
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We summarize our main contributions as follows. We present the first gradient in-
version attack GIDM on diffusion models, leveraging three key novel ideas: the use of
the trained diffusion model to constrain the search space; a two-phase attack consist-
ing of a phase based on the existing diffusion model, and a fine-tuning phase; a triple-
optimization method that jointly reconstructs the data, the sampling step, and the noise
parameter. Our evaluation shows that GIDM can successfully reconstruct images of a
large size and highlights the impact of the different attack components through ablation
studies.

5.2. RELATED WORK

Diffusion Models and Privacy. Diffusion models employ a two-step process: First, they
deconstruct the training data structure step by step in a forward manner. Second, they
master the reconstruction of the structure from noise in a reverse process. The De-
noising Diffusion Probabilistic Model (DDPM) [49] introduces a stable and efficient im-
plementation of diffusion for high-quality image synthesis. DDPM relies on a forward
process without learnable parameters while employing simplified Gaussian noise in the
reverse phase. Further variants of diffusion models such as DDIM [124], Stable Diffu-
sion [113], and Imagen [115] improve the sampling efficiency or involve deep language
understanding for text-to-image generation. However, well-trained diffusion models
have been shown to be vulnerable to privacy attacks, i.e., information leakage on the
training data. Recent studies on privacy concerns of diffusion models mainly focus on
membership inference attacks [26, 52, 149] or training data memorizing attacks [123, 12];
both of which are executed on the trained model. None of the studies has addressed the
data reconstruction from the gradients of diffusion models.

Privacy Defenses of Federated Learning. In order to enhance system privacy against
privacy leakage attacks and not significantly reduce model accuracy [156, 3, 47, 130],
current defenses are primarily conducted individually by clients, falling into two cate-
gories: gradient perturbation and input perturbation. Gradient perturbation [156, 131,
27, 1, 3, 47, 126, 62], preferred for its efficiency and maintaining global model accu-
racy, involves transmitting perturbed gradients. In contrast, input perturbation, such
as mixing images before local training, is less common [166]. Prominent gradient per-
turbation defenses include differential private stochastic gradient descent [27], which
adds noise and clips gradients to limit sensitivity [1]. Gradient sparsification accelerates
training by setting small gradient entries to zero [3], differing from dropout by removing
small entries rather than randomly selecting them [62, 47, 126]. Soteria proposes a fully-
connected defense layer to perturb data representation, crucial for preventing inversion
attacks while preserving Federated Learning performance [130]. Overall, defense effi-
cacy depends on parameters like noise level, clipping bound, sparsity, and pruning rate,
which need to be carefully chosen to balance model quality and privacy.

Gradient Inversion. As the first practical gradient inversion attack for classifiers, Deep
Leakage from Gradients (DLG) reconstructs data and label simultaneously by directly
approximating gradients from the dummy data input [178]. DLG tends to reconstruct
images of low quality and cannot deal with large training batches. To strengthen DLG,
one line of work improves DLG by developing different optimizers [153, 39], distance
metrics [39], or integrating direct features [172], e.g., they first infer labels before recon-
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structing. The other line of work focuses on leveraging external knowledge for inversion.
Such knowledge includes prior data distributions for more accurate embeddings [42],
adding batch normalization regularizers to manage larger batches [159], applying pre-
trained generator models to ensure high-quality reconstructed data [66, 31, 83] and uti-
lizing auxiliary datasets [147]. GGDM iteratively refines the noise via a pre-trained un-
conditional DDPM as a guidance, but also targeting invert classifiers. These advanced
attacks [31, 66, 159, 67] successfully integrate additional information to improve the at-
tack effectiveness. However, such knowledge can also be further integrated to our pro-
posed GIDM. Thus, our direct comparison baselines are DLG and InvG.

Apart from classification models, inversion can be applied to Generative Adversarial
Networks (GANSs), where the attacks aim to invert a generated image back into the latent
space of a pre-trained GAN model [150], i.e., reconstructing the latent code instead of the
training images. Currently, there exist no inversion attack studied for inverting diffusion
models.

5.3. METHODOLOGY

In this section, we first introduce preliminaries on federated diffusion models, highlight-
ing the common components of existing frameworks. Then, we propose our inversion
attack GIDM, which leverages the trained diffusion model as prior knowledge for con-
strained optimization, consisting of two phases. The generative phase improves the
quality of a dummy image to achieve fast convergence, followed by a fine-tuning phase
to increase the pixel-wise similarity. For both phases, we argue that the prior art of gra-
dient inversion attacks does not apply to diffusion models due to the inability to handle
more unknown factors, namely the noise € and sampling step ¢, according to the DDPM
training strategy. Thus, we design a triple-optimization algorithm to infer the original
image, €, and ¢ simultaneously.

5.3.1. FEDERATED DIFFUSION MODEL PRELIMINARIES
We consider a federated image generation task following the standard DDPM diffusion
models [49], which aims to optimize the weighted variational bound:

e-eo (Vao + vI=aie )] 6.1

L) = [Et,xo,e

where xg € R™ are training samples of dimension m = width x height x color, L(:) is the
point-wise loss function, 0 denotes the diffusion model network parameters and &, is a
hyper-parameter controlling the forward noising process. Note that the sampling step
t is chosen uniformly between 1 and T and we follow the definition [49] that €y is a
function approximator intended to predict the Gaussian noise € added to the image x;
of step .

There are K clients serving as data owners who are responsible for diffusion model
training. The k' federated learning client owns the local real dataset X, k € {1,2, ..., K},
which is not shared with others. Each client reports the gradient:

2
Vi “€k—€9k (\/ arXo+v1-a€g, t) ” )
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Algorithm 3: Federated Diffusion Model Training

25 Input: The number of clients K, number of global training round R, local
datasets X, k € [1, K], diffusion steps T, global learning rate 7.

26 Initialize model 0

27 forr=1,2,...,Rdo

28 fork=1,2,...,Kdo

29 t ~ Uniform({1,...,T})
30 e~N(0,1)
31 xp ~ Xk

— = 2
32 ngVGk ||€k—€3k( al‘x0+\/]-_al’€k’ t)”
33 end

34 gzllelkilgk

35 Update 06 =0 -ng

36 end

37 Return the trained 6* (0 from the last round)
38 Result: the trained 6*

for the locally sampled data xg. We use R global training rounds. The single server .,
which does not own any data itself, aggregates, usually by computing their average, and
distributes the aggregated model in each global training round.

In contrast to other federated learning models, e.g., classification tasks, diffusion
models require sampling the parameters € and ¢. We assume that they are sampled by
the clients who own the data during the training process. Consequentially, the server
does not know which parameters were chosen by each client. In the evaluation, we com-
pare this setting to a less privacy-preserving variant where the server chooses € and ¢
and distributes them to the clients in Sec. 5.4.4 and Sec. 5.4.5. Both settings can be im-
plemented as equivalent optimization problems to centralized diffusion models. The
general training process is given in Alg. 3.

5.3.2. THREAT MODEL
Our threat model considers the federated server .# as the adversary to reconstruct the
input training data X} of the target client C. The threat model is as follows.

Objective. The adversarial server aims to recover the input data Xj trained by client
Ci based on the gradient:

2
8k=Vo Hé‘k—é‘ek (\/ rXp + Vl_@tekrt)” )

during a specific global training round r. As the inversion can be executed at one given
global round, we drop the index r for simplicity. The attack is successful if the recovered
image X is almost identical to Xj.

Capability. We assume that the honest-but-curious server does not have access to
the real data of data owners. Moreover, the servers’ computational resources are limited,
so it cannot, e.g., break cryptographic primitives.
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Figure 5.2: The workflow of two phases of GIDM: Generative phase to optimize the latent code, while the
fine-tuning phase continues to improve the pixel-wise similarity between the recovered images and the
original ones to achieve both efficiency and effectiveness.

Latent initial

Knowledge. To recover input data at a specific round, we assume . naturally owns
the global model and can access the model parameters and the submitted gradient of all
clients. However, the initialization of € and the sampling step of ¢ are unknown to the
adversary unless stated otherwise.

5.3.3. TWO-PHASE INVERSION WITH DIFFUSION PRIOR

To assess the privacy leakage of federated diffusion, we propose the first gradient inver-
sion attack GIDM: an honest-but-curious server reconstructs a victim client’s data using
the gradients submitted by the client. We model the inversion process as an optimization
problem that iteratively modifies the dummy data by minimizing the distance between
known and approximated gradients, as proposed by the inversion attacks for federated
classifier training [178]. Following Alg. 3, when client k computes the gradient for the
training data xg, the gradient is:

2
gk = Vo, ex—eo, (Varxo+ VI-drer )| -

Note that since a gradient inversion attack can be launched at any specific global training
round for any client, we drop the round and client indexes r and k in the following.
Assuming that 0 is second-order differentiable, we suppose that the dummy data Xy is
an approximation of xg if § ~ g, where g is the dummy gradient calculated based on Xo.
Thus, our gradient inversion objective turns to:

min Dist(Vy “e— €o (\/d_tfco +V1-age, t) Hz,g), (5.2)
0

where Dist(:) is a distance metric for two gradients.

Without constraining the search space, the difficulty of inversion increases exponen-
tially with the image size [178]. We leverage the final trained diffusion model, which the
server naturally possesses as it is the result of the training process, to constrain the search
space. In contrast to prior work, no external pre-trained model is required. Concretely,
we propose a constrained fusion model consisting of two phases: the generative phase
and the fine-tuning phase. First, the generative phase leverages prior knowledge of the
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trained final diffusion model, 2y~ : R — R, where 0" is the diffusion model parameter.
Then, the fine-tuning phase improves the dummy image from the generative phase by
efficiently minimizing the pixel-wise similarity. The overall workflow is summarized in
Fig. 5.2, where the first generative phase outputs the optimized latent code as the input
to the fine-tuning phase. The fine-tuning phase then output the final recovered images.

Ground truth *

Latent initial Dummy initial

Dy

Training diffusion model

Untrained

r=0

S

Distance calculation Latent optimized

R
Federated diffusion model training over R global rounds

Figure 5.3: We utilize one 128 x 128 image from CelebA as an example to show every intermediate result above.
The generative phase executes 5000 iterations in this example, finally outputting the high-quality latent code
which is able to sample resembled images from the trained diffusion models.

Generative phase. We aim to generate images that resemble the training dataset as
the starting point for dummy data optimization by gradient approximation. Our ap-
proach is to map the original search space into a narrow latent space with constraints
(based on prior knowledge). The details of the generative phase is presented in Fig. 5.3.
Let the latent code f(() [142] be of the same dimension as the dummy data X, from Eq. 5.2
and Xo = Py (X;,, ). We execute multiple iterations to optimize X;,, as described below, so
that the gradient computed on X, has a small distance to the real gradient. Thus, instead
of directly updating the dummy data, we perform a latent space search over &;, which is
the input of 9y, outputting Xy. That is:

X" =Py (argminDist(é,g), t),
%

with:
2
6=Vy H(:‘—Eg (\/ dtgg(f((), H++v1—-aze, t) “ .
Fine-tuning phase. The generative phase is able to generate high-quality data, yet,

indirectly optimizing X, does not guarantee pixel-wise similarity. Moreover, each itera-
tion of optimizing the latent code % requires T sampling steps of the trained diffusion
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Figure 5.4: We utilize one 128 x 128 image from CelebA as an example to show every intermediate result above.
The fine-tuning phase consists of 1500 iterations. The latent optimized ﬁ(’)* is the output of the generative
phase.

model, e.g., T = 1000 in DDPM, which is computationally expensive. Therefore, our fine-
tuning phase executes direct optimizing of X, following Eq. 5.2 based on the output of the
generative phase )“(6* to increase the pixel-wise similarity. The details of the finet-tuning
phase is presented in Fig.5.4.

The output of the generative phase, i.e., the intermediate dummy data, generated by
the optimized latent code 5(6* , is then optimized by the fine-tuning phase. From Fig. 5.4,
we see that the generative phase is already able to reconstruct a high-quality image that
overall resembles the original picture while the pixel-wise similarity with the original
data is low. As in the comparison example, The output of the generative phase differs
from the original data in hair, face, and background. By integrating the generative phase
and the fine-tuning phase, we recover high-quality data efficiently and effectively with
high pixel-wise similarity.

Within both phases, calculating the gradients requires the knowledge of private € and
t. We first conduct an exploratory experiment to determine whether inversion methods
for classifiers adapted for diffusion models enable successful attacks. The result, pre-
sented in Sec. 5.4.4, demonstrates that adapted existing attacks are unable to recover
training samples when applied to diffusion models due to the large search space of the
diffusion optimization procedure. This motivates the novel design for gradient approxi-
mation on diffusion models.

5.3.4. TRIPLE-OPTIMIZATION

To enable inversion without knowing {€, ¢}, we optimize three different parameters si-
multaneously while taking their design principles and differences into consideration.
Concretely, we design a triple-optimization method to refine the coordination of the
three independent optimizations, namely, of x, €, and ¢ by determining the approxi-
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mations Xg, & and 7, respectively. Note that all three optimizations are based on back-
propagating with the goal approximating the gradient.

Optimizing €. In DDPM, we compute the distribution of the noisy sample after ¢
iterations of the forward process in closed-form by:

q % 1%0) = A (x65/E o, (1 - @01,

The number of iterations in the forward process is set to a large T, and the variance
levels B; € (0,1) increase linearly (ranging from 1074 to 0.02), which means that @, =

§=1 (1- B:) approximates 0 for large ¢. Thus, the latent distribution is a Gaussian dis-
tribution € sampled locally by the client, i.e., we should have € ~ .A4(0, I). To follow such
a Gaussian distribution, i.e., reduce the probability of sampling unlikely values, when
implementing stochastic gradient descent requires a small learning rate 7, to update &.
Also, following Eq. 5.1, training diffusion models is to predict the noise added during the
forward process and the training performs well without changing the noise term dur-
ing every iteration of inversion. Thus, we utilize an interval updating strategy for €. The
updating is achieved by:

pitl =i _neaDi”(_g’g)‘
0é'

Optimizing . In contrast to € and xg, which are floating tensors, ¢ is an discrete inte-
gerin{l,..., T}. To find the optimal ¢ by stochastic gradient descent, we initializea 1 x T
auxiliary vector following the uniform distribution: £ ~ Uniform(0, J) where J is a vector
of ones. In each iteration of optimization for approximating the dummy gradient to the
real gradient, £ is updated by the learning rate n);. The inferred 7 is chosen as the index of
the maximum element in the vector after softmax transition: # = argmax(so f tmax(#)).
f is updated at each inversion iteration:

i i 0Dist(g,8)
+1 _
it _tl_nt—aii .

Optimizing %,. Replacing € and ¢ in Eq. 5.2 with & and #, we perform the optimiza-
tion of %Xy starting with a random initialized image %y ~ Uniform(0,2”1), given that the
source data is a p-bit binary encoded value. With each iteration, we update Xy by back-
propagating the distance between g and g. We set the learning rate of the dummy data
as 1. Xg is updated at each inversion iteration:

X(i)ﬂ :ié_ deisf(.g,g).
0%},

The optimizers are coordinated based on an optimization interval S. After every S
iterations of updating Xy and #, we perform S iterations of €, X9 and 7 simultaneously.

In summary, the triple-optimization gradient inversion coordinates three indepen-
dent optimization processes to perform data reconstruction for the practical federated
diffusion models without knowledge of the private noise and step sampled by each client.
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5.4. EXPERIMENTAL EVALUATION

We design a set of experiments to study the impact and effectiveness of gradient inver-
sion attacks on diffusion models, as well as the ablation studies. The experimental se-
tups, baselines, evaluation metrics, employment details, and results are presented in this
section.

5.4.1. SETUPS

Datasets. Unless stated otherwise, our experiments use two datasets : Celeb-A [93] and
LSUN-Bedroom [160], both with images resized to 128 x 128 since the original images
from these datasets are of varying sizes. Both datasets are trained using the standard
DDPM model [49] as by Alg. 3 with 50 rounds. The optimization interval of GIDM for é
optimizer is set to be S = 50. For all three optimizations of our triple-optimization, we
use Adam as the optimizer. We choose Dist(-) to be the L2-Norm [178] distance, as the
distance calculated by cosine similarity is large in our model, which may cause exploding
gradients during training.

Hardware. For hardware, we conducted our experiments using an Alienware Aurora R13
running Ubuntu 20.04. This system boasts 64GB of memory, a GeForce RTX 3090 GPU,
and a 16-core Intel i9 CPU. With each of its 8 P-cores supporting two threads, the ma-
chine houses a total of 24 logical CPU cores.

Hyperparameters. The project of this paper is based on Pytorch 2.3.0. In our gradient
inversion attackers, we apply Adam as the optimizer for both €, f and the dummy image.
The learning rate used in this paper is 0.01 without any scheduler for learning rate decay.
The diffusion model for our experiments is the commonly used DDPM, which uses UNet
to implement the sampling of each step. For our topic, the server can reconstruct the
data from each client. Thus, we experiment on one random client for this work, following
the settings of the baseline works [153, 178].

5.4.2. BASELINES WITH ADAPTATION

Since we are the first to study the gradient inversion attack on diffusion models, there
is no direct baseline to compare to. State-of-the-art inversion attacks are designed for
classifiers. Thus, we compare GIDM with adapted versions of the attacks that are com-
patible with diffusion models: DLG-dm [178] and InvG-dm [39] with Adam optimizer.
Please note that without knowing {e, t}, DLG-dm and InvG-dm are not able to invert im-
ages similar to the original. As a consequence, we provide {e, t} for these methods, giving
them additional information that GIDM does not have. Specifically, for the same train-
ing input of images, the initialization works the same for DLG-dm and InvG-dm as for
DLG and InvG. The backpropagation for calculating the gradients of diffusion models
requires the additional inputs of € and ¢, which does not apply to the baseline DLG and
InvG. Thus, for DLG-dm and InvG-dm on diffusion models, we randomly sample € fol-
lowing a Gaussian distribution of the same size of the dummy image and ¢ from (1, T']
following a uniform distribution. They are kept constant over all inversion iterations.
When it comes to the distance metric, we keep L2-Norm for DLG-dm and cosine simi-
larity for InvG-dm, as for DLG and InvG.
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5.4.3. METRICS

In evaluating the gradient inversion attack, which aims to reconstruct data that closely
matches the original client data, we employ four metrics to gauge the resemblance be-
tween the reconstructed and real data: Mean Squared Error (MSE), Structural Similarity
Index (SSIM)[143], Peak Signal-to-Noise Ratio (PSNR)[50], and Learned Perceptual Im-
age Patch Similarity (LPIPS) score [171]. Statistically, MSE calculates the average squared
difference on a pixel level between the reconstructed and original images:

1 M-1N-1 2
MSE(ql,qz)=m ZO Zo(m(l',j)—qZ(l',j)) ,
=0 j=

where ¢, (i, j) and g2 (i, j) indicate the original and recovered images, respectively. PSNR
relates this MSE to the maximum pixel values, concretely, considering the ratio of the
maximal value to MSE in a logarithmic manner:

R2
PSNR = 1010g10 ﬁ,

where R is the maximum possible pixel value of the image. When the pixels are repre-
sented using 8 bits per sample, this is 255. For more modern visual assessments, SSIM
mimics the human visual system to measure the structural variance of images based on
luminance, contrast, and structure:

2y, Uy, +C120 5,1, + C2

2 2 2 2
Ky, T+ Hx, T 10

SSIM = ,
Xr +0'xy +Co

where py, and iy, represent the means of the ground truth and the generated image,
respectively. Accordingly, o3, and oy, are the standard deviations of X, and x;. More-
over, o denotes the covariance between both images, while ¢; and ¢ are constants set to
avoid instability.

LPIPS determines the perceptual similarity between the original and reconstructed
images by learning the inverse mapping from the generated image back to the original.
For MSE and LPIPS, lower values indicate greater similarity, whereas for SSIM and PSNR,
higher values signify closer resemblance.

5.4.4. FINAL RECONSTRUCTED IMAGES
The performance of our GIDM is assessed by the similarity between the final recovered
image and the original image used during training. To demonstrate our inversion ef-
fectiveness, we report the final MSE, LPIPS, PSNR, SSIM results in Fig. 5.5. We also
visualize examples of the final reconstructed images in Fig. 5.6 for CelebA and LSUN-
bedroom. For GIDM, we assume {€, t} is sampled by the client and randomly initialized:
é ~ /(0,1 and 7 ~ Uniform({l, ..., T}). Recall that for the baselines, {€, t} is assumed
to be known. “Generative” refers to only the output of the generative phase before the
fine-tuning phase, with {€, ¢} known.

From Fig. 5.5, it is evident that GIDM outperforms baseline methods consistently for
all four evaluation metrics, demonstrating superior reconstructing results. Yet, our gen-
erative phase does not always recover better images than DLG-dm and InvG-dm, which
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Figure 5.5: Inversion results of diffusion models on CelebA and LSUN-Bedroom. We compare our GIDM
(unknown {€, t}) with DLG-dm, InvG-dm, and our generative phase result (all three known {e, t}). | stands for
the lower the better, 1 for the higher the better.

can be explained by the difference in goals in terms of similarity. The four evaluation
metrics compute the quality of similarity based on pixels. In contrast, “Generative” op-
timizes the latent space to conduct indirect inversion. Thus, the high-quality output
(semantically similar and clear) from the diffusion model may result in lower pixel-wise
similarity than baselines, which appear comparably blurred in Fig. 5.6. Adding the fine-
tuning phase resolves the issue and achieves better performance in terms of the metrics
despite using less information.

Fig. 5.6 visualizes and compares the recovered images on both datasets. GIDM suc-
cessfully reconstructs high-quality images from the gradients that are nearly indistin-
guishable from the ground truth perceptually. As a comparison, DLG-dm and InvG-dm,
which are designed for classifiers, fail to recover images resembling the ground truth.
Specifically, they are only able to create images of similar color palettes as the original
data without recreating the original object, let alone high-quality details. This meets our
expectations since they conduct pixel-wise optimization. These methods suffer from
exponentially increased difficulty when the image size is large.

When it comes to the difference between “Generative” and GIDM, we observe that
our generative phase can already recover good approximations of the original image.
Generally, the main color, object outline, and positions after the generative phase are al-
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Ground truth

DLG_dm

InvG_dm

Generative

GIDM

Figure 5.6: Visualization of recovered images comparing with baselines on CelebA and LSUN-Bedroom
datasets. “Generative” in the figure is the output of our generative phase before the fine-tuning phase. For
GIDM, we assume that the server does not know {e, t}, while the baselines assume known {e, t}.

most identical to the ground truth, though there are still minor differences in the details
of the images. For example, the face and hair shape, the background texture, or some-
times the makeup color is different from the ground truth for the CelebA human-facial
dataset. The fine-tuning phase adjusts the generated images by direct gradient approxi-
mation, which results in successful reconstruction.

To summarize, gradient inversion of diffusion models is possible. Using the trained
diffusion model to constrain the search space is highly effective. Still a fine-tuning phase
is required to indeed recover high-quality images. With this phase, GIDM clearly outper-
forms the adapted baselines, despite using less knowledge.

5.4.5. INTERMEDIATE INVERSION OUTPUTS OF GIDM
We now analyze the quality of the reconstructed images during the optimization process.
We use example images from the CelebA dataset, both for known and unknown {€, £}.

Fig. 5.7 shows the intermediary results for our example image. It highlights that both
phases are necessary for the inversion process. For both known and unknown f{g, },
we observe gradual improvements, with the color palette and the profile details getting
more similar to the original image in each step.

For the generative phase, the initialized random Gaussian noise can directly output
a distinguishable image of a human face. However, this image shows an arbitrary hu-
man face, with no strong similarity to the original image. Thus, we have constrained the
search space to images of human faces, which now enables finding one particular hu-
man face. We hence see that leveraging the trained diffusion model as a prior is highly
effective in narrowing down the set of potential results.

After calculating the dummy gradient based on the previous image, our back prop-
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Figure 5.7: Step-by-step gradient inversion intermediate results visualization for known and unknown {e, }.
The generative phase is marked by yellow arrows while the fine-tuning phase is red arrows. We initialize the
latent code using 128 x 128 Gaussian noise. The generative phase is trained for rg = 5000 and the fine-tuning
phase for r¢ = 1500 iterations. The same number n; of images is shown for both phases, with the iterations
between images being rg/n; and r¢/n; for the generative and fine-tuning phases, respectively.

unknown

{e.t}

Ground truth

agation adjusts the Gaussian noise so that it gradually generates an image of a similar
color palette and object profiles. One interesting finding is that GIDM can reconstruct
similar colors at an early stage of the training. In contrast, object outlines, such as the
hair, converge slowly and gradually. Upon reaching the 3000-th iteration of the genera-
tive phase, the recovered image has been gradually started resembling the original image
but does not mirror all the details of the original. Note that increasing the number of it-
erations to 10,000 does still not result in a fully recovered image, further motivating the
need for the fine-tuning phase.

The fine-tuning phase starts with the output of the generative phase and we train
1500 iterations. Following the red arrows, the hair outline, and background start to ap-
proximate the original data. The fine-tuning phase does not utilize the diffusion model
for optimizing alternative space. Thus, the reconstruction is efficient by not unnecessar-
ily executing diffusion model sampling at each optimization iteration as in the genera-
tive phase.
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5.4.6. THE IMPACT OF KNOWING f OR € ON GIDM

Our results in Sec. 5.4.4 consider € and ¢ initialized together by the client, which is un-
known to the server. Here we provide an ablation study on the impact of knowing one
factor and keeps the other one unknown repectively. We start by discussing the impact
of known and unknown t. Hence, we assume that € is known in this section. We use an
image from CelebA as an example and show the process of optimization in Fig. 5.8. From
the steps, it can be observed that when ¢ is known to the server, the optimization process
is smooth. This demonstrates that generating the changing ¢ as the input of 2 (%, t) in-
fluences the approximation during the optimization process of . However, even without
knowing ¢, the 128 x 128 images can be recovered in the end due to the less randomness
thane.

t known

t unknown

Figure 5.8: Step-by-step gradient inversion intermediate results visualization, comparing known or unknown
t. We initialize the latent code by 128 x 128 Gaussian noise. We present some of the representative
intermediate outputs through the whole process. The total number of inversion iterations is 4000.

As a comparison, we also evaluate the impact of known or unknown ¢ for the recon-
struction. Here, it is also assumed that ¢ is known to the server (adversary). The results
are shown in Fig. 5.9. Similarly, in the end, our GIDM is shown to be able to reconstruct
images that resembles the original (ground truth in the figure). However, the intermedi-
ate output shows different way approaching the end. In general, the middle steps looks
more natural perceptually with € known by the server. We could observe smooth changes
towards the final results. Additionally, each output demonstrates high quality in terms
of both the color blocks and facial profiles (figures above). As a comparison, unknown
€ causes some deformed images, represented by both color and profiles (figures below).
When it comes to the difference between Fig. 5.9 and Fig. 5.8, we find that ¢ influences
more on the image content (e.g., natural undistorted face) while € controls more on the
image clarity (blurness and random dots).

5.4.7. EFFECTIVENESS OF TRIPLE-OPTIMIZATION

In this part, we conduct an ablation study to showcase the significance of our joint triple-
optimization. We apply the two-phase fusion model to compare the final recovered im-
age without optimizing 7 or &. An example reconstruction can be seen in Fig. 5.10.

In Fig. 5.10, we can first observe that it is indeed necessary to optimize the three
factors jointly. Without such a joint optimization, the reconstructed images do not re-
semble the original image closely. The difference in importance between the two terms is
notable. Concretely, when  is not optimized, the resulting image is very close to random
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€ known

€ unknown

Figure 5.9: Step-by-step gradient inversion intermediate results visualization, comparing known or unknown
€. We initialize the latent code by 128 x 128 Gaussian noise. We present some of the representative
intermediate outputs through the whole process. The total number of inversion iterations is 4000.

k-
g A

i

w/o optimizing {#} w/o optimizing {€} triple-optimization

Figure 5.10: The reconstruction results of without optimizing # (random sampled), without optimizing &
(random sampled) and triple-optimization on an example of CelebA.

pixels. In contrast, when 7 is optimized but € not, the reconstructed images is clearly that
of a human face, though the details are not reconstructed.

Although 7 is only a single value that has a limited range, e.g., integer values between
0 and 999 for the classical DDPV, it decides the specific position on the Markov chain to
train on. It guides the training process, similar to the label of classification tasks, which
has a huge impact on the gradients. Thus, without having 7 resemble the parameter used
during training, we have a very noisy image.

Without optimizing the noise term €, which is a float tensor with more randomness,
the image quality remains low but the attack is able to recover most color palettes and
some outline information. We argue that there might be two reasons. First, € is intro-
duced as a prediction target for training, which is less sensitive to incorrect sampling
than 7, which directly instructs the noising process through the position of the chain.
Second, the noise term is designed to follow a Gaussian distribution, avoiding unlikely
values during inversion avoids extreme differences. In summary, our triple-optimization
is indeed required.
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5.5. CONCLUSION

In this paper, we are the first to study gradient inversion attacks on diffusion models.
Leveraging the trained diffusion models as prior knowledge to constrain the search space,
we propose an attack GIDM consisting of two phases. In the first phase, we use the
trained diffusion model to approximate the image before fine-tuning the image to re-
semble the origin on a pixel-by-pixel basis in the second phase. The key challenge in de-
signing GIDM is that the noise and sampling step are not known to the attacker, which
we solved by the use of a joint optimization algorithm. Our reconstruction results are
impressive, almost perfectly recreating images up to 128 x 128 in size.

In the future, we aim to develop a defense mechanism against the inversion attack,
e.g., by using differential privacy [27]. It is unclear how differential privacy can be inte-
grated in such a manner that the quality of the trained diffusion model is not severely
impacted.



CONCLUSION

The primary aim of this thesis is to develop mechanisms for enhancing the robustness
of federated learning systems. In the face of several vulnerabilities, we have considered
the privacy and heterogeneity of the clients and the security of the server(s), and four
related research questions are introduced. We have concluded by examining how such
proposed mechanisms can improve the system’s robustness under different clients and
servers with attacking scenarios. In this chapter, we summarize the conclusions and
discuss the limitations and future directions of this thesis.

6.1. CONCLUSIONS

This thesis detects essential vulnerabilities of federated learning systems by involving
adversarial or heterogeneous clients and honest-but-curious servers. Specifically, four
key contributions are made to address the identified research questions (RQ1-RQ4), ad-
vancing both theoretical understanding and practical solutions for federated learning
robustness:

1. Optimization under Client Heterogeneity (RQ1). In Chapter 2, we introduced the
importance of client selection in FL as a critical factor for maximizing the utility of
diverse clients. We have shown that existing schemes struggle when faced with
heterogeneous data, particularly when one or more classes are exclusively owned
by Mavericks. We first explored Shapley value-based selection and theoretically
demonstrated its limitations in addressing the challenge posed by Mavericks. We
then proposed FEDEMD, a method that encourages the selection of diverse clients
at the optimal stage of the training process, ensuring guaranteed convergence. We
conclude that our evaluation of multiple datasets and scenarios involving Maver-
icks shows that FEDEMD reduces the number of communication rounds needed
for convergence.

2. Data-free Adversarial Vulnerability (RQ2). In Chapter 3, we present DFA, the first
data-free untargeted attack in FL. We demonstrated that data-free attacks can be
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as effective (or even more effective than as) other attacks that require data or be-
nign updates, primarily because synthetic images generated for training are par-
ticularly effective at steering the model in the wrong direction. Furthermore, we
designed a defense strategy, REFD, that effectively protects against the proposed
DFA as well as existing attacks, by leveraging the statistics of model outputs to pre-
dictreference data. We conclude that synthetic data can also be used for launching
effective untargeted attacks in FL systems, raising our attention to system security,
especially under practical FL scenarios where clients are anonymous.

. Privacy Risks by Data Reuse (RQ3). In Chapter 4, we introduce the first analysis

of the risk of data reconstruction when a client repeatedly uses their data to con-
tribute to multiple tasks. We have shown, through both analytical and empirical
results, that our attacks, CGI-S and CGI-D, are significantly more impactful than
attacks in a single-task setting, even in the presence of defense mechanisms. We
conclude that our attack outperforms others, particularly on larger image sizes,
larger batch sizes, and more complex deep neural networks.

. Generative Model Vulnerabilities (RQ4). In Chapter 5, we study gradient inver-

sion attacks on diffusion models, marking the first exploration of this area. We
have shown that when an adversarial server knows the Gaussian noise and sam-
pling step used during training, our proposed GIDM effectively optimizes a dummy
image through a generative phase followed by a fine-tuning phase. Our experi-
ments demonstrate the critical role of both phases in recovering high-resolution
data, enabling successful reconstruction where other attacks fail.

In summary, the findings from these chapters demonstrate how federated learning

systems can be strengthened against various client and server-side vulnerabilities, pro-
viding a comprehensive approach to enhancing the robustness of FL systems under di-
verse conditions. We derive the following two high-level conclusions for both sides:

1. The Evolving Role of Data. This thesis challenges traditional assumptions about

data’s role in federated learning, discussing its dual identity as both for improve-
ment and for vulnerability. While client heterogeneity and synthetic data gener-
ation advance model training, they also bring fundamental threats: client selec-
tion strategies must balance efficiency with effectiveness, and synthetic inputs de-
signed for preserving privacy empower adversaries. Our work demonstrates that
the expanding usage of data (e.g., in generative models or cross-task reuse) en-
larges the attack surface, demanding systems that natively integrate robustness
and privacy into their design. These findings highlight that future distributed learn-
ing frameworks must treat data not as a static resource but as a dynamic and chal-
lenging element in distributed machine learning.

. The Trade-Offs upon Design. Distributed machine learning systems are within a

constrained design space, where advances in one dimension (e.g., convergence
speed, privacy, or robustness) often compromise another. Through theoretical
and empirical analysis, this thesis discusses these trade-offs, showing how client
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heterogeneity increases vulnerability for attackers, while defenses against data re-
construction reduce model utility. Also, we show that traditional adversaries fail
to consider risks arising from more practical aspects (e.g., data reuse or genera-
tive training), promoting solutions that address interdependencies between per-
formance and security. The broader implication is clear: federated learning’s next
generation must move beyond isolated optimizations and design frameworks where
trade-offs are explicitly modeled and managed as a core requirement of system ar-
chitecture.

6.2. LIMITATIONS

While this thesis explores significant aspects of enhancing the robustness of federated
learning systems, limitations remain. We clarify the limitations of each chapter in the
following:

1. In Chapter 2, like most experimental research works, the proposed solutions, such
as client selection strategies, primarily focus on constrained experimental settings
and may not fully capture the complexity of real-world, large-scale federated learn-
ing environments, where the behavior of clients and servers can vary significantly.
Also, the effectiveness of these strategies may decrease in scenarios with extreme
heterogeneity.

2. In Chapter 3, the defense design targets DFA specifically. To enhance the gen-
eralization, REFD needs to consider when active adversarial behaviors evolve over
time. The scalability and computational overhead of some proposed solutions, es-
pecially when DFA involves adaptive strategies and complex attack models, could
pose challenges when applied to large-scale federated systems.

3. In Chapter 4, while the analysis of privacy risks, such as gradient inversion at-
tacks and data reuse, provides concrete insights, it is based on certain assumptions
about system architecture, noise parameters, and model structures that may not
always hold in practical implementations. The evaluated defenses, such as those
based on statistical modeling, may require further refinement to ensure they can
handle more sophisticated attack methods and real-world deployment challenges.

4. In Chapter 5, the study focuses mainly on specific vulnerabilities of gradient in-
version on diffusion models, with concrete solutions, but no high-level strategy
for designing such solutions was extensively summarized, e.g., intuitions for other
types of federated tasks. Additionally, although this work is a new field in gradient
inversion of diffusion models themselves, more adapted baselines can be included
to demonstrate the conclusions.

6.3. FUTURE DIRECTIONS

This thesis has provided an exploratory analysis of the solution space of FL robustness
under different settings. Therefore, there is still much to be explored beyond what is
presented in this thesis. We now provide several promising directions for future work
related to each chapter:
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. In Chapter 2, we propose a selection strategy for the FL settings, including Mav-

ericks. Future research should focus on further refining and expanding adaptive
client selection strategies, particularly in environments characterized by extreme
data heterogeneity. Investigating how these strategies can be integrated with other
advanced techniques, such as personalized FL models [134] or differential pri-
vacy [1], could enhance both the efficiency and security of FL systems. Addition-
ally, exploring the impact of Mavericks in real-world applications and extending
FEDEMD'’s applicability to other types of learning tasks, such as reinforcement
learning or unsupervised learning, could provide deeper insights and broader util-
ity. Future studies might also consider developing more sophisticated models that
can dynamically adjust to varying levels of client participation and data availabil-
ity, ensuring optimal performance even in more complex and diverse federated
learning scenarios.

. In Chapter 3, we propose an untargeted data-free attack. We could explore adap-

tive defense mechanisms that dynamically respond to evolving attack strategies,
particularly in scenarios where attackers continuously modify their approaches to
bypass defenses like REFD. Additionally, investigating the integration of REFD with
other defense techniques, such as differential privacy or anomaly detection, could
further improve the security and privacy of FL models. There is also a need for
more extensive real-world testing and benchmarking of these defense strategies
across a wider array of datasets and FL applications. Finally, research could focus
on creating proactive measures that predict potential vulnerabilities in FL systems,
reducing the need for reactive defenses and keeping models secure against new
types of attacks.

In Chapter 4, we discover privacy leakage of data reuse when a data source con-
tributes to a multi-server system. We could focus on developing more robust de-
fense mechanisms that can protect against gradient-based reconstruction across
various tasks. Additionally, this research can be integrated with Chapter. 5 to ex-
tend the conclusion to different tasks and models for generality. Expanding this
research to include different types of data, such as text or time-series data, and
testing in more complex, real-world FL environments would also be valuable. Fi-
nally, there is a need for theoretical advancements that provide stronger guaran-
tees of privacy preservation, even when data is reused extensively in FL systems.

In Chapter 5, we show how the original data is exposed for the training of Feder-
ated diffusion models without the presence of external knowledge from another
well-trained generative model. Building on the vulnerabilities exposed by gradi-
ent inversion attacks as GIDM, future work could explore the robustness of these
models against more complex and adaptive adversarial strategies that could help
strengthen their resilience. Expanding the research to include a broader range of
data types and more diverse federated settings would also provide deeper insights
into potential weaknesses. One finding worth mentioning is that while uncovering
the relationship between the gradients and the real data, we noticed the implicit
link between the random noise input and the sampled data output during the dif-
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fusion process. This could assist in understanding the diffusion process concern-
ing both generative capability and stability.

In summary, the future directions of this thesis lie in three main parts: 1) detecting
vulnerabilities over a broader range of data types and different scenarios of distributed
machine learning systems; 2) designing defense mechanisms to enhance the robustness
of the systems, targeting more advanced adversaries; 3) improving practical attack meth-
ods considering the adversarial behaviours from a third-party (external) and hardware
integration. The research on detecting the vulnerability of distributed machine learning
systems assists in building robust systems with the development of machine learning
systems. Future work will progress the functionality, scalability, and reliability in a mu-
tually reinforcing manner.
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