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Efficient and Realistic Brain Simulation: A Review and
Design Guide for Memristor-Based Approaches

Lennart Paul Liong Landsmeer,* Muhammad Ali Siddiqi, Heba Abunahla,
Mario Negrello, Said Hamdioui, and Christos Strydis*

Computational-neuroscience research is increasingly in need of larger,
biophysically realistic brain models. These analog-in-nature models build upon
the Hodgkin-Huxley (HH) formalism and are run on digital, high-performance
computing systems making simulation very computationally
expensive. In circuit form, these models are theoretically suitable
for efficient analog implementation. However, the ion-channel components
–predominantly, sodium and potassium– are nonlinear, time-varying resistors,
lacking an efficient implementation. Chua et al. proved that these ion-channel
models are in fact memristors –devices with a conductance as a function
of applied-voltage history– claiming that “memristors are the right stuff for
building brains”. However, the kind of actual memristor implementation that
is the right one for building brains is not defined. In this article, the device class
and characteristics of such memristors are defined and existing memristive
implementations of HH-like designs are then reviewed. Surprisingly,
although often misclassified as such, no physical implementation currently
exists that replicates the original HH equations faithfully or efficiently. Having
put forward the desired memristor properties, a design guide for screening
suitable memristor designs is then proposed. Screening the existing
literature reveals that suitable devices likely already exist for potassium
ion-channel emulation, while none exists for sodium; this calls for further
investigation of higher-order, voltage-controlled and volatile memristors.
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1. Introduction

Neuroscientific research requires ef-
ficient and accurate brain-simulation
platforms.[23–26] Efficiency is measured
in speed (actual versus biological), en-
ergy usage and hardware size, while
accuracy depends on the level of mod-
eling detailed captured in simulations.
In terms of accuracy, brain models can
be divided in simplified or biophysically
realistic. Of the two classes, biophys-
ically realistic models –with the most
well-known being the Hodgkin-Huxley
(HH) model[27]– differentiate themselves
by explicitly modelling the ion channels
(e.g., sodium and potassium) present
in the neural membrane. They provide
the most insight into the brain, allow
for precise modelling of diverse neuron-
types and transfer between therapeutic
targets and clinical outcomes.[28,29] Given
their recognised high accuracy,[23,25,30]

there is a pressing need for efficient
simulation platforms incorporating such
biophysically realistic brain models.
The state of the art can be divided into

digital and analog approaches. General-
purpose, digital hardware has been the

go-to method for brain simulation for the past 70 years. Ini-
tially simulated on CPUs,[1–4,31] the need for large-scale simula-
tions of both simplified and biophysically realistic models, called
for GPU (Graphics-Processing Unit),[4–6,32] later FPGA (Field-
Programmable Gate Array)[7–11] and even AI-chip[33,34] based sim-
ulation platforms. As a specialized solution, digital neuromor-
phic chips have also emerged targeting simplified models.[17–19]

However, since biophysical models essentially are electrical cir-
cuits, there are limits to the efficiency of their simulation in dig-
ital hardware.
To overcome this challenge, researchers have eventually

turned to analog platforms. This led to specialized analog, neu-
romorphic chips targeting the simulation of simplified neural
models.[13–16] Analog platforms for simulating biophysically real-
istic models have also been proposed but capturing the necessary
ion-channel detail was so demanding that only a single neuron
could be fit per chip.[20] Still, memristor technology has, more re-
cently, led to single-device implementations of simplified neuron

Adv. Mater. Technol. 2025, e01587 e01587 (1 of 13) © 2025 The Author(s). Advanced Materials Technologies published by Wiley-VCH GmbH

http://www.advmattechnol.de
mailto:l.p.l.landsmeer@tudelft.nl
mailto:c.strydis@erasmusmc.nl
https://doi.org/10.1002/admt.202401587
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadmt.202401587&domain=pdf&date_stamp=2025-05-30


www.advancedsciencenews.com www.advmattechnol.de

Figure 1. Lack of efficient platforms for biophysically realistic brain simulation: Landscape of available hardware for the simulation of brain-models at
various levels of detail. X-axis: Hardware complexity measured in transistor-count or approximate transistor equivalents based on die-area and technol-
ogy. Y-axis: Neuroscience models at various levels of biological detail, ranging from abstract simplified models to ion-channel based bottom up models.
Digital - General Purpose including CPU,[1–4], GPU,[4–6] and FPGA[7–11] are available for all model levels. Seeking energy efficiency and miniaturisation,
both Analog Neuromorphics (Garg et al., Copyright 2024, The Authors, and BrainScaleS-2, CC-BY 4.0[12])[13–16] and Digital Neuromorphics[17–19] plat-
forms have been produced as a more specialized solution targeting simplified brain models. Few works exist that target analog implementations of
biophysically realistic neurons, Analog Biophysical (Alvado et al., Copyright 2004, Elsevier).[20] As an emerging technology in neuromorphic computing,
memristors-based solutions show high potential for simplified Memristor-based (Adda et al., Copyright 2018, Springer Nature)[21,22] circuits as well as
Memristor-based Biophysical realistic brain models. This review explores how this last class of memristor-based HH-like platforms can be used for brain
simulation. Figures reproduced with permission. Rights retained by the original copyright holders.

models, bringing their simulation efficiency close to that of the
actual brain.[21,22]

In fact, memristor technology is especially promising for
biophysically realistic brain simulation: The key insight is
the fact that ion channels in such a model are, in essence,
memristors.[35,36] Therefore, memristor-based hardware seems
to hold promise as an analog substrate for facilitating accurate
and efficient brain simulations. The problem is then to find the
right memristor-device(s) for brain simulation. Figure 1 summa-
rizes the current state of the art and also highlights the gap in ap-
proaches.
This paper starts by putting together a detailed specification of

the ideal memristor device(s) for realistic brain simulations and,
thereafter, uses it to review and taxonomise existing approaches
in literature. The work concludes by offering a practical guide
to designers for identifying existing or new memristors that are
suited for the task of simulating the HH ion channels. Concisely,
the contributions of this work are:

• A specification of the ideal memristor device(s) for HH-based
neural simulations.

• A review and taxonomy of related HH-like memristive imple-
mentations.

• A design guide for identifying existing memristor devices as
candidates for HH ion-channel simulation and an initial ex-
ploration of published devices.

• Using this design guide, a potential class of candidates for
potassium-channel-compatible memristors came to light.

The manuscript is organised as follows: In Section 2, we
provide all necessary background information: the HH model,
Chua’s insight and generalisation over biophysically realistic
brain models. Section 3 presents a detailed explanation and dis-
cussion of the essential memristor device switching behavior and
characteristics necessary to efficiently implement ion channels in
the HH model. We follow up with a literature review and a tax-
onomy of previous attempts at memristor-based neurons in Sec-
tion 4. In Section 5, we provide a design guide for identifying suit-
able devices, showing that further research is still needed for the
sodium-memristor replacement. We conclude the manuscript in
Section 6.

2. Memristors for HH-Based Brain Simulation

To see why memristors are the ideal substrate for efficient and
accurate brain simulation, we first need to go over the theory of
brain modelling, focussing on the HH model. Then, we restate
Chua et al.’s claim that ion-channels are memristors, and thus
that memristors are the ideal substrate for brain-like systems.
Finally, we generalise these arguments to biophysically realistic
brain models.

Adv. Mater. Technol. 2025, e01587 e01587 (2 of 13) © 2025 The Author(s). Advanced Materials Technologies published by Wiley-VCH GmbH
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Figure 2. Memristors and the Hodgkin-Huxley model. Comparison between the memristive-system definition and the Hodgkin-Huxley ion-channel
definitions. A) Equations shows the definition of a voltage-controlled memristive system – a memristor. Here, v is the input voltage, i is the output
current, the vector x represents a set of state variables describing the memristor (e.g., the n, m and h gates in the case of Na and K channels), and
G(…) and f(…) are continuous functions. B,C) Equations show the current-voltage relations of the potassium and sodium channels according to the
HH model. ENa and EK are the reversal potentials of the sodium and potassium ions, the membrane potential difference at which no more net ion-flux
occurs, represented as a battery/bias element. Activation functions are highlighted in square brackets. The resulting steady-state and switching-speed
are visualized in (G–L). D) Schematic picture of the main components of the HHmodel: a membrane acting as a capacitor, two ion-channels functioning
as nonlinear time-varying resistances and ions creating a potential difference across the membrane. E) Circuit representation of the HH model, which
when simulated using the equations B and C, reproduces neural behavior. F) Resulting action-potential after a stimulus. G–L) Plots of the steady state
and time-constants of the activation functions in B (G, H) and C (I, J, K, L). The zero-potential is taken as the corresponding reversal potential, meaning
that the potential difference is measured across the ion channel instead of the usual cell-potential frame of reference. The striped, black, vertical lines
correspond to the leakage-potential level, close to the resting potential. Colored traces show the recorder values over an actual noise-stimulus simulation
run and thus the operation ranges. 1-5) 1: resting state. 2: action-potential initiation, depolarization and influx of sodium ions. 3: repolarization and
outflux of potassium ions. 4: hyperpolarization. 5: return to the resting state.

2.1. Hodgkin-Huxley Model and Extensions

A brain model builds on models of individual neurons, at the
desired level of model accuracy to capture the essential compo-
nents of biology under study. The two major classes are simpli-
fied and biophysically realistic models (including the HHmodel,
see taxonomy in Ref. [30]). Simplified models concern the leaky-
integrate-and-fire (LIF) model and its derivatives, while biophys-
ically realistic modelling is epitomised in the HH model and its
extensions (multiple channels and spatial neurons). The latter
explain a neuron’s behavior at the level of their constituent ion
channels, and –if desired– take the full geometry of a spatial neu-
ron into account. This allows them to capture a wide range of
complex neural behavior not shown in simplified models, and
also predict the outcomes to therapeutic targets via simulations
of ion channel knockouts or in silico electrical stimulation. As
such, biophysically realistic brain models have been one of the
most popular models for both small and large-scale modelling
of the brain due to trade-offs in computational complexity, ex-
planatory power and interpretability against experimentally avail-
able data. For ease of understanding, the remainder of this sec-

tionwill focus on the prototypical biophysical realisticmodel –the
HH model– while later generalizing to the broader model class
(Section 2.3).
The original HH model is an electronic circuit, with common

passive elements and two time-varying resistors modelling the
ion channels. Here, we will briefly describe the different ele-
ments and how they correspond to the underlying biology (for
more details, see. Ref. [27]) The neural-cell membrane, across
which ion-concentration differences lead to the cell’s membrane
potential, is modelled as a capacitor. Passive ion transport across
this membrane – the leakage channel – is modelled as a resistor
connected to an external voltage reference. The sodium (Na+) and
potassium (K+) channels are voltage-gated ion-channels, mean-
ing their conductance changes according to the membrane po-
tential. A large number of individual biological ion-channels are
collapsed into a single HH-type ion-channel population, with in-
ternal variables describing statistical population averages. See
Figure 2. A description of the potassium and sodium chan-
nels follows.
The potassium ion-channel models the voltage-gated flow

of potassium ions across the cell membrane and is mostly
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Figure 3. Ion Channels as Memristors: IV-plane (left) and conductance vs time (right). Left: IV-plane hysteresis loops of generic memristors (top),
isolated ion channels (middle) and in full HH simulation (bottom). Right: Pulse-train response of the individual potassium (top) and sodium (bottom)
ion channels, with pulse-voltages roughly corresponding to resting state and action-potential maximum. A) Prototypical ReRAM (left) and volatile (right)
quasi-DC for sinusoidal input voltage. B) Initial experiments from Chua et al., showing that the individual ion-channels are memristors, by applying a
sinusoidal input signal around zero. C) Full HH system with spike triggered due to input current. IV-plane is centred around the reversal potentials and
thus shows the potential across the ion-channel. In grey, the resting potential is shown, which is the voltage across the device before an action potential.
It can be seen that 1) the ion-channels do not cross the reversal potentials and thus bipolar or unipolar does not make a difference 2) the sodium
memristor is biassed and closed in the resting state, while during an action potential, the channel starts temporarily conducting because of a reduced
bias across the device. D) Pulse-train response of the potassium ion-channel to characterise dynamics in a way that can also be applied to candidate
physical memristors. First a 500-Hz stimulation with 50% duty cycle is applied followed by a 250-Hz stimulation with 80% duty cycle. E) Inverted-pulse
train response of the sodium ion-channel. Similar to the HH model, temporarily lowering the bias (an inverted pulse) across the device leads to quick
opening and slow closing of the device. The same waveform is used as for the potassium channel but with different voltages corresponding more to the
sodium ion-channel voltages. This behavior could serve as a benchmark for testing physical memristors in their suitability for HH simulation.

responsible for the refractory period of the neuron
(Figure 2B,D–G). The ion channel has one gate (n), which
can be open or closed. This gate is closed in the resting state
(Figure 2-1) but at higher membrane potentials the gate slowly
opens (Figure 2-2,3). The resulting outflux (a DC bias) of potas-
sium ions leads to a drop in the membrane potential below the
resting potential (Figure 2-4). The lower membrane potential
then slowly closes the channel again, during which time it is not
responsive to inputs (the refractory period). Now fully closed,
the cell can return to its base state (Figure 2-5).
The sodium ion-channel models voltage-gated sodium ion-

flow across the channel. In contrast to the potassium channel, it
has two gates. At rest, one is open (h) and the other is closed (m).
Once the cell nears its threshold voltage, the closed gate opens al-
lowing sodium ions to flow into the cell leading to a rapid rise in
cell voltage (Figure 2-2). The higher membrane potential causes
the other gate to close, stopping the influx. At the same time, the
potassium channel will bring the cell back to the refractory state,
which is followed by the resting state (Figure 2-3,4). Finally, the
sodium gates return to their original state (Figure 2-5).
The original HH model from 1952 has evolved beyond these

two ion channels, and has become a framework for general, bio-
physically realistic neural models.[30] Notably, multiple channels
corresponding to biological counterparts have been carefully de-
veloped, explaining not just the spiking behavior but many more
aspects of cell behavior including subthreshold oscillations and
spikelets, to name a few phenomena.[37,38] Spatial structures of

cells can be replicated by discretizing the neuron shape into mul-
tiple smaller volumes following the HH dynamics, with resistors
connecting these smaller volumes.[2,4] The general class of these
models are now known as conductance-based or biologically re-
alistic neurons.[30]

2.2. Ion Channels as Memristors

In a series of papers starting in 2012, Chua et al. outlined how the
HH ion channels behave as voltage-controlled memristors.[35,36]

They showed that the mathematical definitions of the two ion
channels have the same form as the mathematical definition of a
memristor. By simulating the individual ion channels with dif-
ferent inputs, pinched-hysteresis loops were shown to exist as
well in the IV-plane, the hallmark ofmemristance (Figure 3A).[39]

Therefore, they concluded that “memristors are the right stuff for
building brain-like machines”.
The key observation that the HH channels are indeed mem-

ristors is easily shown by factoring out the Na+- and K+-channels
and comparing these to a memristor device. A memristor is a
two-terminal device with a resistance that is a function of both
the internal state variables and either voltage or current (respec-
tively a voltage- or current controlled memristor). The internal
state variables follow internal dynamics (a system of ordinary dif-
ferential equations) based, again, on the internal state and the
applied voltage or current (see Figure 2A). When we factor out

Adv. Mater. Technol. 2025, e01587 e01587 (4 of 13) © 2025 The Author(s). Advanced Materials Technologies published by Wiley-VCH GmbH
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equations governing the Na+- and K+- channels (Figure 2B,C), we
see indeed that they follow this general form: the channel current
is derived by multiplying internal state variables with an overall
maximum-conductance constant. The proof is trivially restated
here: In Figure 2, Equations (B) and (C) are of the same mathe-
matical form as Equation (A).
Consistently, also in simulation, do the two ion channels dis-

play behavioral characteristics of memristors: when an oscil-
latory voltage is applied (e.g., by substituting v = As in (2𝜋ft)
with A = 50 mV and f = 200 Hz) separately to the two chan-
nels, the resulting steady-state shows a clear pinched-hysteresis
loop in the I–V plane (Figure 3B). Going further, when applying
more complex waveforms including biharmonic and rectangu-
lar waves, simulation reveals more complex phenomena includ-
ing instantaneous switchingmodes, self-crossings away from the
origin and loop reversals. Based on this observation, Sah et al.[36]

concluded that memristors can approximate HH-modelled ion
channels.

2.3. Generalisation over Biophysically Realistic Brain Models

Until now, the focus has been on the HH model, as it will be
for the rest of this article. However, it is important to note that
the previous arguments also hold for general biophysically re-
alistic brain models, as will be demonstrated here. The proto-
typical equation solved by a brain-simulation software is known
as the cable equation. It describes how ion channels, in the
form of time-varying conductances, change the membrane po-
tential on the surface of a neuron. The following guiding sys-
tem of equations is the backbone of biophysically realistic neural
models:[2,4,30]

CmV̇ =
ΔxV

Rdiff

(
𝜕S
𝜕x

) −
∑
k

gk(sk) ⋅ (v − ek) (1)

ṡk = fk(V, s) (2)

The partial differential equation (PDE) in Equation (1) denotes
axial (x) voltage-diffusion (ΔxV) on the cell surface (S) and in-
tegration of ion-channel currents (gk(sk)(v − ek)) over the cell
membrane (Cm), while Equation (2) shows the local-mechanism
state (sk) dynamics. The channel-conductance (gk(sk)) and state-
dynamics (fk(V, s)) functions are provided by themodeller and de-
termine the specific ion channels. Again, this more general ion-
channel definition still follows the definition of a memristor. The
PDE in Equation (1) is solved in practice by discretisation, cre-
ating different compartments, each a small HH-like circuit, con-
nected with resistors.[2,4,30] In theory, an entire spatial biophysi-
cally realistic neuron should be expressible using a memristor-
based circuit, showing the great potential that memristor tech-
nologies have for brain simulation.
The calcium ion-channel, beyond the sodium and potassium

ion-channel, has already been shown to be a memristor itself.[40]

Another common extension to biophysical models, the inclusion
of temperature-effects on channel dynamics, also leads to mem-
ristor behavior.[41]

In the following section, we will provide a detailed explanation
of the memristive switching behavior and electrical characteris-
tics needed to implement HH-model ion channels.

3. Device Specifications for HH-like Memristors

The ideal analog memristor-based implementation of the HH
model or its derivatives is an exact copy of the HH formalizm in
circuit form, where the nonlinear, varying resistors are replaced
by physical memristors. The goal is to keep surrounding circuitry
to a minimum so that the benefits of memristive technologies
in area use and energy consumption are maximized. However,
the fact that the HH ion channels are memristive systems does
not mean that all memristors automatically qualify as valid ion-
channel replacements or, even, that the ion channels have an ef-
ficient physical substitute.
The search for suitable analog memristor devices is a much

harder challenge to tackle than implementingHHneurons in the
digital domain on more traditional platforms, like CPUs, GPUs,
or FPGAs. In that case, numerical approximations typically take
place and, thus, we can build the system bottom-up using theHH
equations as a guideline, at the same time providing a proof of
the equivalence.
In contrast, physical memristors need to be produced top-

down with behavior stemming from their materials and fabri-
cation methods. While various physical memristor models exist
at various scales, directly matching those to the HH equations at
the level of device fabrication seems challenging at the moment.
Instead, candidate-device selection has to be based on the care-
ful exploration of desired electrical properties. Here, we give an
overview of the most important device switching behavior and
characteristics, which help us taxonomize different memristor
device classes and narrow down to the ones of interest for HH
ion-channel implementation.
The memristive-stack material combination and fabrication

method both determine its characteristics, switching behavior
and ultimately its device classification. Discovering a suitable
HH-like memristor is necessarily a top-down approach since a
general methodology that maps materials and fabrication meth-
ods to desired dynamics does not exist. For instance, in the
HH formalizm, wemodel ion-channel dynamics as a Boltzmann
distribution, which would be interesting to approximate by an
analog memristor-switching mechanism. However, designing a
switching mechanism on spec in an accurate and completely un-
derstood manner is still an open topic in the community. Here,
we proceed to enumerate design specifications that can be mea-
sured, and thus validated, in fabricated memristor devices.
Electrical currents in biology are the result of ion transport as

opposed to electron transport. The ion channels in the Hodgkin-
Huxley model represent the population dynamics of different
voltage-gated ion channels (for Na, K and all other ions). In bi-
ology, these voltage-gated ion-channels switch between an open
and closed state, which is thermodynamically favored depending
on the potential across the membrane. The Boltzmann distribu-
tion thus serves as a template for the ion-channel population dy-
namics as presented in the HHmodel, written as sigmoidal acti-
vation functions.
Control Mechanism: Memristive systems are usually classified

as either current-controlled or voltage-controlled, meaning that
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the resistance changes due to either current through or voltage
across the device. In practice, a mixture of both is also possi-
ble (e.g., electrical-field-mediated ion migration at low bias and
current-induced Joule heating leading to filament breakdown at
high bias).
The voltage-gated ion channels modelled by the HH equa-

tions are clearly purely voltage-controlled. One could argue that
in biology a single ion channel is also current-controlled as ions
in the channel pores can prevent another ion from passing, but
this has no observable population-level switching and is not taken
into account in any HH-type model.
Depending on the mechanism, voltage-based switching can

occur at distinct Vset and/or Vreset voltages. The potassium channel
switches from OFF to ON after action-potential initiation, which
is around 70–80 mV (Figure 2H). The sodium m-gate switches
between −30 mV to 0 mV from OFF to ON (Figure 2J), and
the sodium h-gate switches normally in reverse, i.e., from ON
to OFF, at around −40 mV (Figure 2L).
Polarity: Memristors can be classified as either unipolar or

bipolar (not to be confused with bistable). For a unipolar device,
only the magnitude of the applied bias affects the conductance,
while for a bipolar device, the bias directionality is also crucial to
define the switching behavior. Unipolar means that there is no
observable polarity in the device, while a bipolar device changes
behavior based on its orientation. Both regimes can coexist in
the same memristor, as the switching behaviors triggered by dif-
ferent voltage levels can result in different underlying switching
mechanisms.[42]

The computational, HH ion-channel experiments performed
by Chua et al.[35,36] clearly showed bipolar behavior, as is also evi-
dent from the equations (Figure 2A–C). In practice, we find that
the ion channels never cross the origin in the I–V plane, making
physical implementation independent of polarity; see Figure 3C.
This might not hold for ion-channels different from sodium and
potassium in more general biophysical models.
Volatility: Memristors can be classified as volatile or non-

volatile. Most published devices are non-volatile, with resistive
random-accessmemory (ReRAM) as the prototypical example.[42]

This means that the device remembers its state when no bias is
applied. A volatile device instead resets to its default state.
The HH ion-channel gate dynamics do not have multiple,

coexisting, stable resistance states for any voltage value; this
means that all gate equations are of the form ẋ = (x∗(v) − x)∕𝜏(v),
with thus only one stable point per voltage value. As such the
ion channels should be classified as volatile. More generally,
the HH ion-channels do not show hysteresis for any voltage
value.
First-order, second-order or higher-order: Order relates to the

amount of differential equations needed to describe the internal
dynamics. This is most apparent in theoretical models, where the
exact amount of differential equations is spelled out. Published
memristor devices are reported up to 4th order.[43]

The order of HH channels related to their gate count (each
having one state variable), and as such, the potassium channel
is a 1st-order (one-gate) memristor and the sodium channel is a
2nd-order (two-gate) memristor.
Switching speed: Different memristor devices can take differ-

ent time spans to switch between resistance states given the ap-
plied bias or current.

In the HHmodel, switching-time constants depend on the ap-
plied bias. The potassium-channel switching speed is around 4
ms at the resting state, slowest at the switching point at 6 ms
and reaches 2 ms at the peak of the action potential (Figure 2H).
The sodium channel has two gates, each with its own switching
speed. The fast m gate behaves like the potassium-channel gate
but with speeds ranging between 0.01 and 0.5ms (Figure 2J). The
slower h gate normally takes around 1 ms to switch but slows
down to 6 ms at the switching point (Figure 2L). Exact matching
of the switching speed curves seems like a far stretch with the
level of control over device characteristics using current fabrica-
tion methods, and the designer should only try to keep the most
essential parts of the curves as determined by appropriate simu-
lation methods. Among others, the works in Section 4.1.1 show
that rough approximations to the activation functions still result
in the desired behavior over operation ranges.
Dynamics and Negative Differential Resistance: The potas-

sium ion channel follows common volatile memristor dynamics
reasonably well: application of a bias switches the device from
a High-Resistance State (HRS) to a Low-Resistance State (LRS),
whereas removing the bias resets the device to the HRS again
(Figure 3D). The sodium ion channel, due to its second-order na-
ture, has an activating–deactivating dynamics (Figure 3E). At the
neural resting state, a bias is applied due to the sodium reversal-
potential element, and the device is in the HRS. Lowering, or fur-
ther removal of the bias leads to a quick switch (activating) to the
LRS, followed by a slower switching to the HRS while keeping
the bias removed. Re-application of the bias at any point moves
the device to the HRS.
The fast activation of the sodium channel in response to lower

bias, is due to the negative differential resistance (NDR) of the
m gate (Figure 3I). NDR is visible as a negative differential re-
lation in the IV-plane. Moreover, this can exhibit as either a S-
type (current-controlled) NDRorN-type (voltage-controlled) NDR.
For the fast activating gate of the sodium channel, from both the
channel being voltage-controlled and the shape in the IV-plane,
is of N-type NDR.
ON/OFF Ratio and Endurance: HH model shows ratios be-

tween HRS and LRS that are maximally ≈10 in practice, and,
therefore, a high ratio is not a significant requirement. On
the other hand, high endurance, which represents the expected
switching cycles before device break-down, is desired for the HH
model. Some neurons reach spike frequencies up to a few hun-
dred Hz of continuous spiking, corresponding to multiple bil-
lion switch cycles over a year. This is a large upper bound, but
still, a correct memristor needs to be able to handle many device
cycles.

4. Related Work

In the previous section, we established a desired device class of
a voltage-controlled, volatile, physical memristor. In this section,
we provide an extensive review of related works, that is, mem-
ristor implementations of neurons. We generally identify and fo-
cus on three approaches to the design problem: theoretical tem-
plates, emulated memristors and physical memristors. A sum-
mary of the latter two using the above taxonomy is presented in
Table 1.
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Table 1. Summary of device taxonomy and memristive HH implementa-
tions. * Bipolar in theory, but unipolar would work as well in operational
ranges (Figure 3C). † Mott-memristor operated in parallel with local ca-
pacitor to form ion-channel, making the channel second-order channel –
could also be interpreted as a first order memristor. ‡ Na channel was
implemented as a 555-Timer and not as a memristor.

Material Control Polarity Memory OrderNDR type

K/Na[27] Protein Voltage Bipolar* Volatile 1/2 None/N

Hu 2019[47] Emulation Voltage Bipolar Volatile 1/2 None/N

Xu 2023[51,52] Emulation Voltage Bipolar Volatile 1/2 None/N

Li 2024[53] Emulation Voltage Bipolar Volatile 1/2 None/N

Picket 2013[44] Pt/NbO2/Pt Current UnipolarVolatile 2/2 † S/S

Feali 2017[54] Pt/NbO2/Pt Current UnipolarVolatile 2/2 † S/S

Yi 2018[45] Pt/VO2/Pt Current UnipolarVolatile 2/2 † S/S

Huang 2019[55]W/WO3/PEDOT:PSS/Pt ‡Voltage ‡Bipolar ‡Volatile ‡1/‡ None/‡

Yang 2024[46] Ti/Pt/HfO2/NbOx/Ti/Pt Current Bipolar Volatile 2/2 S/S †

4.1. Memristor Models for Ion Channels

Not all related works targeting memristors for HH ion-channel
simulation led to implementable designs, yet they still provide
theoretical insights into the matter. An early attempt at design-
ing a memristor exactly following the HH ion-channel dynamics
from nonlinear circuit theory dates back to 2013.[48,49] The au-
thors draw up a hypothetical, passive, two-port memristor, con-
sisting of five nonlinear voltage-controlled resistors and one lin-
ear dynamic one-port (i(v) = Y(d/dt)v). This model is then pa-
rameterised to match the HH equations. While no physical cor-
respondence is given to these nonlinear resistors, it does hint
that a memristive implementation of sodium and potassium ion-
channels should be possible in reality. A similar approach is taken
by Liu et al.,[50] who make a memristor model from two diodes,
a capacitor and an inductor. This memristor model is then used
to build a memristive oscillator. A full neuron is simulated us-
ing the memristive oscillation. While behavior is far from bio-
logical, properties like bursting oscillations are observed. These
theoretical works did not attempt to synthesize such memristive
devices in reality and can thus not be used for HH simulation,
yet they show that the memristive properties sought after are of
bounded complexity.

4.1.1. Discrete-Component Memristor Emulation

Memristive properties do not have to derive from a single physi-
cal device; a memristor can also be emulated using discrete com-
ponents. By replacing the sigmoidal Boltzmann activation func-
tions of the ion-channels (see Figure 2) by much simpler, scaled
exponents, a SimplifiedMemristiveHodgkin-Huxley neuronwas
designed using memristors made from analog components in-
cluding multipliers and opamps.[47] Using SPICE-based simula-
tion, the authors show that within operational ranges, the distor-
tion is limited and spiking is retained.
The works of Xu et al.[51,52] go even further and implement

the activation functions of the ion-channels using analog tanh
function modules, and provide a fully analog implementation
using discrete components on a breadboard. Their analysis in-

deed shows a multitude of biological realistic firing behaviors.
A memristor-modelling approach based on transistors was also
similarly used to implement HH-like behavior, with the fur-
ther addition of a Calcium-T ion channel to the standard HH
model.[53]

These techniques show that by designing the systems bottom-
up, the resulting system could be compared directly to the tar-
geted system at the mathematical level, guiding the design ef-
fort and providing limits on modelling-error. Concluding, we
find highly accurate neuron implementations using discrete-
component-based neurons. However, by using different compo-
nents for constructing a memristors instead of using a physical
single memristor device, promised efficiency gains are not cap-
tialised on.

4.1.2. Physical Memristors

Physical memristor-based designs are summarized in Figure 4.
When targeting biorealistic neuron-like behavior, research
has mostly focused on Mott-insulator memristors (the Mott-
memristor approach). The Mott memristor is a volatile, first-
order, S-type NDR, threshold-switching memristor, capable of a
variety of behaviors[56,57]. Among others, when coupled to a ca-
pacitor, it creates an Pearson-Anson oscillator [58] This is then
used as a building block for creating ion-channel-like behavior.
Pickett et al.[44] pioneered the Mott-memristor approach to biore-
alistic neuron implementations. Inspired by the HH formalism,
they set out to build a neuristor, an axon-like signal transmission
line.[59] Using two NbO2 memristors, oscillators corresponding
to sodium and potassium channels are built to create an all-or-
nothing-firing cell.[60] By connecting multiple such devices with
resistors, a neuristor transmission line is formed, which shows
axon-like spike transport. Others extended this work by adding
noise to a simulation of the used memristors,[56] building what
the authors call a ‘Realistic Hodgkin–Huxley Axons’.[54] Impor-
tantly, these works show one of the key principles of conductance-
based neuralmodelling: by combiningmultipleHHmodels, spa-
tially elongated structures can be built that mimic biological sig-
nal propagation (Section 2.3). Attempting to overcome the LIF
limitation[60] of the NbO2 memristors, Yi et al.[45] set out to add
more biological plausibility using VO2-based memristors. The
design follows more closely the original HH circuit design, with
an extra capacitor and a resistor between the ion-channels. As a
result, a large range of biologically plausible spiking behavior is
observed, including bursting and frequency adaptation. Rehash-
ing the potential of efficient memristor-based brain-like systems,
the authors project competitive or better energy-usage per spike
than the brain. Extending on this thread of work, in ‘Fully Inte-
grated Memristive Hodgkin-Huxley Neurons with Homeostatic
Plasticity’, Yang et al.[46] extend the Mott-memristor approach
with two ReRAMmemristors to make the neuron display home-
ostatic plasticity. By removing the capacitors from earlier designs,
letting the parasitic capacitances of each device take on the role of
a ‘local’ membrane, their design only uses four devices per neu-
ron. S-type NDR is not only limited to Mott-insulator memris-
tors. For example, perovskite memristors also show oscillations
in a Pearson-Anson configuration, allowing for single memris-
tor neuristor implementation.[61] Finally, Ascoli et al.[62] present
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Figure 4. Physical-Memristor Designs for Biorealistic Neurons. Picket et al.[44] pioneered usingMott-memristors for HH-like spiking behavior. Copyright
2012, Spinger Nature. Yi et al.[45] followed up with more biorealistic behavior by using VO2-based devices. CC-BY 4.0. Yang et al.[46] extended this line
of work by placing two ReRAM memristors between the Mott-memristors for added homeostatic plasticity. Copyright 2024, IEEE. Huang et al.[47] take
another approach based onWO3/PEDOT:PSS in combination with a 555-based timer circuit Copyright 2018,WILEY. Common toMott-memristor designs
is a local capacitor –either parasitic or discrete– in parallel to each threshold-switching memristors, and the two memristors connected via a resistor
or ReRAM element. This is in contrast to the HH-circuit representation where a single grounded capacitor is connected to both memristors, without a
resistive element between the ion channels (Figure 2). Reproduced with permission. Rights retained by the original copyright holders.

an analysis or the ‘First and Simplest Ever Reported Hodgkin–
Huxley Neuristor’, showing that also a design utilizing a single
NbOx threshold-switching memristor, could recreate the behav-
ior of the original Picket et al.
An exception to the Pearson-Anson oscillator-based ap-

proaches to HH is what the authors call a quasi-Hodgkin-Huxley
neuron: a 555-timer circuit with a W/WO3/PEDOT:PSS memris-
tor that shows timer-generated spikes followed by memristor-
mediated depolarization.[55] The depolarization is the result of
the voltage-controlled, volatile behavior of the memristor. This
is, thus, a quasi-ideal implementation.

4.2. Mott-Memristor Approach Criticism

In published physical memristors, we find higly efficient de-
signs with energy usage competitive to the biological brain[45]

and very low complexity.[46] We find the Mott-memristor
approach[44–46,54,62] emerging as a platform for building HH-like
neurons. While a promising path to the ideal HH implementa-
tion, there are however a few arguments against their use as a
substrate for efficient and accurate brain simulation – a differ-
ent goal from building efficient brain-like computing systems.
These are based on the Mott-memristor characteristics, circuit
form, and displayed ‘biorealistic’ behavior.
First, Mott-memristors switch based on current flowing

through the memristor (Joule heating resulting in a Mott-
transition). This is opposite to voltage-based switching seen in
biology. Neurons built using Mott-memristors can not be HH
neurons,[63] and this is also obvious given the electrical character-
ization given in Section 5. Furthermore, the second-order dynam-
ics displayed by the Potassium channel oscillator do not match
the expected first-order dynamics and multiple unbiological arte-
facts are present in generated spikes. Second, at the circuit level

there are large differences: the HH model only contains a single
capacitor, and the capacitor and ion-channels all terminate at the
same circuit node, without resistors in between. There is no ‘lo-
cal membrane potential’ for each channel type. Clearly the two
ion-channels in the HH model are different (Section 3), while
the memristors used in Mott-memristor designs are of similar
build. Lastly, some works show a wide range of spiking behaviors
and adaptation.[45,46] These more biorealistic behaviors could po-
tentially lead to more compact computing applications, but are
not part of the HH model itself. Within the biophysically realis-
tic brainmodelling framework, these would instead be character-
ized as extra ion-channels or the scaling of ion-channel conduc-
tances – not the result from the sodium and potassium channels
or intermediate ReRAM memristors.
As such, while the voltage trace of a Mott-memristor based de-

signmight resemble that of theHHmodel, it is not anHHmodel
in itself and thus is not an accurately model a neuron. With that,
it loses some of its most important properties of biophysically re-
alistic brain models: extensibility, and biological realism. We can
thus conclude that the ideal efficient and accurate memristor for
brain simulation has not yet been found.

5. Design Guide and Initial Exploration of Existing
Devices

The detailed review conducted in Section 4 reveals that, since
Chua et al.’s realisation that the ion channels in the HH model
are memristors, multiple works have emerged targeting these
topics. Two major approaches were found to implement HH-
like systems using memristor technology: 1) works building the
system bottom-up using emulated memristors, and 2) works us-
ing physical memristors in place of the ion channels, yet these
memristors could never replicate the full HH behavior from a
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device-class perspective since they cannot replicate the HH ion-
channel characteristics, as laid out in Section 3.
Despite the fact that multiple review papers exist that

misclassify various existing memristor designs as HH
implementations,[64–66] as of yet we have found no design
that correctly models HH ion channels. The ideal memristor-
based HH implementation directly replaces the ion channels
with physical memristors. Given the large body of published
memristor devices and (un)explored design space, it still seems
unclear which memristor to use for brain simulation, if any
exists at all. A comprehensive characterization of memristors
suitable for modelling HH ion channels seems to be lacking in
the physical-memristor sub-literature. In this section, we will
describe how the device characteristics from Section 3, in com-
bination with a test bench, could be used for memristor-device
design, selection, and validation.

5.1. A Top-down Approach to Memristor Selection for Ion
Channels

As stated in Section 3, the voltage-gated ion channels in the HH
formalism are voltage-controlled volatilememristors, with the or-
der equal to their dynamic gate count. Other device specifications
like switching thresholds and time-constants do not need to be
translated directly into every aspect of a physical device. For ex-
ample, one could decide to rescale time or voltage ranges, result-
ing in effectively the same behavior. Other characteristics like the
exact activation-function shape probably also leave some room
for error, as was seen in Section 4.1. Most importantly, a device
needs to be found that falls within the desired memristor class,
after which it can be tuned to specification.

5.1.1. K+-Channel Memristor Candidates

Having provided detailed device specifications for HH-ion-
channel replacement, here, we will go over existing memristor
designs through the lens of this specification list. The potas-
sium channel is a first-order, volatile, voltage-controlled memris-
tor. The LRS is observed after applying a bias. Several applications
have similar requirements, including synaptic plasticity, reser-
voir computing and some simplified neural-models.[67] For these,
memristors are readily available. For example, certain WOx[68] or
NbOx [69] memristors show a volatile, voltage-controlled switch-
ing mechanism via oxygen-vacancy drift-diffusion, resulting in
potentiation under bias and decay under removal of bias. This is
very similar to the required pulse-train response from Figure 3D
for potassium ion-channel emulation. While the authors of these
memristor devices show applicability in reservoir computing or
synaptic plasticity, they did not validate the usefulness of these
devices for potassium ion-channel emulation; for example by
recording the current-response after applying a similar voltage
trace obtained from a HH simulation or performing a HH sim-
ulating with the potassium ion-channel replaced by a model of
such memristors. As such, it seems reasonable that the memris-
tor technology is ready for this part of the HH model, however,
potential candidates are not screened for eligibility; noHH-based
analysis of the suitability of first-order, voltage-controlled, volatile
memristors was found in literature for the potassium channel.

Table 2. Search for sodium ion-channel candidates: second-order voltage-
controlled volatile memristors. While all design match w.r.t. these design
specifications, the dynamics are different, meaning these are not fit as
sodium replacements. * means the authors did not determine the identity
of the state variable.

Material States Model Refs.

Oxide-based

Pt/WO3/W Schottky, oxygen ✗ [72]

Pt/STO/Nb-STO Schottky, oxygen ✓ [73]

Pd/WOx/W CF area, Vo mobility ✓ [74]

alpha-IGZO w, * — [75]

Pd/TaOx/Pd w, * — [76]

Ferroelectric

LSMO/BTO/LSMO Polarization and interface
charge trapping

✗ [77]

W/aSi:H/HZO/TiN ✗ [78]

Si/HZO/TiN ✓ [79]

5.1.2. Na+-Channel Memristor Candidates

Similarly to the potassium-channel case, existing memristor de-
signs might already satisfy the requirements for the sodium
channel, which is a second-order, volatile, voltage-controlled
memristor. Furthermore, it has an activating-deactivating mech-
anism: at rest, it is operated in the HRS due to an applied bias.
When the bias lowers, the sodium channel rapidly starts to con-
duct, after which it slowly closes again (Figure 3E). Crucially,
the direct memristor replacement for the sodium channel is
a second-order memristor, which severely reduces the amount
of existing designs. In comparison to ReRAM-based devices,
higher-order memristors have not received similar research
attention.[70] Two major memristor switching mechanisms that
depend on voltage instead of current are the valency-change
mechanism (VCM) and the ferroelectric-effect[42,71]. Here, we
review published VCM- and Ferroelectric-effect-based, second-
order memristors; see Table 2 for a summary. For a general re-
view of higher-order dynamics, we point the reader to Ref. [43,
70].
For oxygen-ion/vacancy VCM-based memristors, sev-

eral works are known.[72–76] Earlier designs[75,76] attributed
second-order effects to an unknown extra state variable called
T. Later design based on a Pd/WOx/W-memristor[74] claimed
the state variables were the conductive-filament (CF) area and
oxygen-vacancy mobility, of which they provided a mathemat-
ical model. In other models,[72,73] non-CF VCM-switching is
attributed to the oxygen-ion distribution in the switching layer
and modulation of the Schottky barrier at the interface. For the
first time, direct observation of such effects was reported in a
Pt/WO3/W-memristor,[72] validating their model. In the latter
three cases, all second-order switching is thought to be fully
voltage-controlled. In the ferroelectric domain, second-order
effects are attributed to polarization and trapping of oxygen
ions at the interface. The second-order effects results from
redox reactions or other mechanisms at the surface, due to
excess oxygen-ion/vacancy charge-buildup after electrical-field
induced migration. Again, second-order effects are thought to
be voltage-controlled.
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For both types of memristors, we find nearly independent
effects, acting as superimposed volatile memristors. One ex-
ception is the Pd/WOx/W-memristor of Duet al.,[74] where
the oxygen-migration and conductive-filament equations have
a cross-dependency. Thus, physical voltage-controlled second-
order volatile memristors do exist. While these are a step in
the right direction, the desired activation-deactivation dynam-
ics of the sodium ion-channel are still absent as the second-
order mechanisms operate in the same ‘activating’ way. Research
on how to introduce a fast N-type NDR, deactivation mecha-
nism, on second-order voltage-controlled volatile memristors is
thus needed.

5.1.3. Overcoming Challenges in Fabrication

Memristor device fabrication encounters fundamental
challenges,[80] including variability due to material proper-
ties and process control, latency due to wire resistances and
non-linearities, and density constraints that impact scalability
and cost. These are well-known hurdles in neuromorphic hard-
ware, but when designing memristors to mimic biological ion
channels, additional complexities arise. For instance, biological
ion-channels operate on millisecond timescales,[27] whereas
most memristors function at orders of magnitude faster.[42] En-
gineering devices with realistic ion transport kinetics that match
neural processing speeds is essential for accurate biomimicry
of neural systems. Furthermore, unlike biological ion channels
that regenerate naturally, memristive devices must maintain
stable ionic transport over repeated switching cycles. Avoiding
ion-trapping, material degradation, and unwanted diffusion
is critical.
Despite these challenges, the highlighted devices under Sec-

tion 5.1.1, show fabrication is possible for promising candidate
devices, probing further validation. For future large-scale fabri-
cation and integration, it is essential to ensure high endurance
and yield.[81,82] Moreover, while device-to-device and cycle-to-cycle
variations are often cited as major challenges for the adoption of
memristors in end-user applications,[81,83] these issues may be
less critical in the context of biologically realistic system simula-
tions. Such systems naturally operate in noisy environments,[84]

and the inherent noise-resilience of brain networks may accom-
modate this variability.[85] It appears that the ability to build ro-
bust, reproducible, and scalable ion-channel-mimickingmemris-
tors is within reach, paving the way for more biologically realistic
neuromorphic computing.

6. Conclusion

In this work, the claim was reasserted that memristor devices
hold enormous potential in becoming essential building blocks
for efficient, biophysically realistic brain simulation.[35] A large
gap in previous works was identified: although many past works
have claimed to have developed HH-suitable memristor devices,
none of them measure up to the specifications of an HH-based
neuron model, as used in practice. To illustrate this point, an
exhaustive HH-device specification was put together that helps
identify the fabrication properties essential for correctly behav-
ing HHmemristors, followed by a detailed survey and taxonomy

of related works. By analysing previous works against material
and fabrication properties of memristors, the survey concluded
that there are no existing memristor proposals for constructing
analog, memristor-based HH neurons.
Therefore, the next step was to draw design guidelines for the

‘ideal memristors’ needed to construct HH-style neurons realiz-
ing that, in contrast to more traditional technologies, physical-
memristor replacements for the HH ion channels require a top-
down design approach. Search criteria including a testbench
were fully specified so that materials researchers can check the
suitability of their device(s) for HH simulation. Interestingly,
on following the proposed search strategy, it was found that
potassium-channel-compatible memristors likely already exist
but sodium-channel memristors still require materials research
into higher-order memristor mechanisms.
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