
Updating and Versioning of 3D City Models

Konstantinos Mastorakis
student #4844238

1st supervisor: Stelios Vitalis
2nd supervisor: Hugo Ledoux

On-site supervisor: Maarten Vermeij

January 5, 2020

Contents

Acronyms iii

1 Introduction 1
1.1 3D City Models (3DCMs) in a nutshell . 1
1.2 Problem statement . 2

2 Motivation 3

3 3DCMs and Versioning Control Systems (VCSs) 4

4 Research scope 6

5 Related work 7
5.1 Data models and encodings . 7

5.1.1 CityGML . 7
5.1.2 CityGML versioning extension . 8
5.1.3 CityJSON . 8

5.2 Software implementations . 8
5.2.1 Git . 9
5.2.2 GeoGig . 9
5.2.3 QGIS versioning plugin . 10
5.2.4 PostGIS Versioning - pgVersion . 10
5.2.5 Oracle Workspace Management (OWM) and ESRI ArcSDE 10
5.2.6 Azul, CityJSON-Web-viewer, CityJSON-QGIS-plugin, cjio, 3dfier 11

6 Research questions 11

7 Methodology, tools and datasets used 11

8 Time planning 13

9 Datasets and tools 13
9.1 Datasets . 13
9.2 Tools . 13

ii

Acronyms

3DCM 3D City Model. ii, 1–7, 9–14, 17

API Application Program Interface. 12

CLI Command Line Interface. 11

CVS Concurrent Versions System. 4, 10

GML Geography Markup Language. 2, 7, 8

GUI Graphical User Interface. 3, 4, 11

JSON JavaScript Object Notation. 3, 8

NGO Non-Governmental Organization. 7

OGC Open Geospatial Consortium. 2, 5, 7

OWM Oracle Workspace Management. ii, 10

RCS Revision Control System. 4

SCCS Source Code Control System. 4

UNIX Uniplexed Information and Computing Service. 4

VCS Versioning Control System. ii, 4, 8–11

iii

1 Introduction

1.1 3DCMs in a nutshell

3DCMs are digital models of urban areas that represent terrain, surfaces, sites, buildings, veg-
etation, infrastructure and landscape elements in three-dimensional scale including related
objects (city furniture) belonging to urban areas. (Wikipedia, 2019a)

Figure 1: A snapshot of the publicly available 3DCM of the city of Rotterdam.
Source: https://3drotterdam.nl/#/

There are many factors, that make 3DCMs so popular for academia, industry and individual
researchers. Four of the most important originate from the nature of these models:

i. They can contain and organize enormous amount of geo-information, representing po-
tentially every entity that resides in urban environments such as buildings, road network,
vegetation, underground utilities etc.

ii. They are schematically extendable, which means their internal structure can be augmented
and customized to store additional entities, with completely different characteristics and
attributes.

iii. They are stored mainly as open formats that are both human and machine readable, which
allows more people to understand their structure and developers to create different soft-
ware implementations for these models, for any purpose.

iv. They can associate geometries with attributes and semantic information.

There is no limitation in the nature or the amount of the (semantic) information that 3DCMs
can incorporate and that is why there are utilized in a vast number of applications, from vari-
ous domains and for completely different end goals. Namely, Biljecki et al. (2015) demonstrate
-at least- 29 use cases of 3DCMs that comprise a subset of at least 100 applications. By storing
semantic information the computer can ’understand’ surfaces and objects based on that infor-
mation. This allows further extended analysis apart from geometrical. For example, knowing
that a surface is “roof” and not “wall” allows the solar capacity analysis of the model. The

1

https://3drotterdam.nl/#/

computer can identify the potential surfaces for solar panels to be placed, which would be
impossible lacking the semantic information, and carry out the analysis on them. The same
idea applies for any other kind of analysis that is attempted on the model and is possible only
by semantic information.

Figure 2: The applications of 3DCM in various domains.
Source: Biljecki et al. (2015)

1.2 Problem statement

Cities change amazingly fast. Having potentially all available urban information contained in
a 3DCM -at a specific time instance-, that will ideally be utilized by a very wide range of users,
creates an urgent need for an efficient managing solution. In other words, having obsolete data
can render the 3DCM partially or completely useless. Changes and modifications should be
done at a building level in order for model to be constantly up to day on a daily basis. There
is currently no such solution that allows building-level or lower visual editing, updating and
keeping track of the updated versions of a 3DCM. That can be partly attributed to the lack
of a unique representation schema due to the heterogeneity of 3DCMs contents (Wikipedia,
2019a); which also allows the introduction and propagation of -very common- errors (Biljecki
et al., 2016). Although an encoding standard of the schema has been already implemented by
the Open Geospatial Consortium (OGC) (Gröger et al., 2012), in practice it is really difficult to
implement any updating solution based on it. That is due to the the conceptual design of this
standard, which allows more than one ways to store the same information and the verbosity
of Geography Markup Language (GML), which is officially adopted by OGC as the standard’s
implementation language.

The lack of such a solution, makes 3DCMs owners, administrators, managers etc unable to
have a day to day updated model that also keeps track of its past states. This leads to long
periods of data obsolescence and massive updates every few years, not always clean of errors.
This translates first and foremost into reduced functionality of the model itself, the need to
outsource the updating task to third parties and a high financial cost. This is the case with the

2

municipality of Rotterdam as well, whose model gets updated once every few years, not nec-
essarily at equal time intervals and always depending on their budget. Such a solution would
address more than one problems at the same time. It would tackle all the issues mentioned,
while it would give the capability of in-house data management, correcting errors that exist
in the 3DCM at any given time and diminishing error propagation down the line. It would
revolutionize the way practitioners think about 3DCM management and attract many more
users with the guarantee of up to date, integer and consistent 3DCM data. Finally, having a
tracking system of all the modifications in every updated version of a 3DCM means that more
than one people can work on the model concurrently without messing with each others work,
which is a big need in the spatial data industry at the moment.

2 Motivation

The end goal of this thesis is the proof of concept that a framework which allows manual
object-level updating and versioning of 3DCMs through an intuitive Graphical User Interface
(GUI) is feasible. It will be built on a alternative encoding of the CityGML data model based
on the JavaScript Object Notation (JSON) format (?), CityJSON (Ledoux et al., 2019). Specifi-
cations of the CityJSON and why it was chosen will be thoroughly explained in section 5.1.3.
The use case for prototyping this framework is the 3DCM of the municipality of Rotterdam.
In section 4 the research scope of the project will be thoroughly analyzed under the frame of
the use case.

The mere fact that multidisciplinary practitioners use 3DCMs, implies that there is different
familiarization level regarding the 3DCM structure and its constraints, which lies underneath
the -very easy to understand- 3D representation of it. Simply put, not everybody understands
how a 3DCM is created, encoded and stored; and as a matter of fact they do not necessarily
need to. Thus, updating and maintaining them in an intuitive way, that strongly focuses on
the facilitation of small scale changes i.e. changing the attributes of a building or (part of) its
geometry would be really useful. This will not only bring more value to 3DCM-related work-
flows, but it will establish the basis for a ’data at the source’ approach. The same dataset will
be continuously updated, via mechanisms that ensure data integrity, while allowing previous-
state-browsing and branching capabilities. It will then be stored in one remote repository that
could be accessed and cloned locally at will, by all interested parties. Pretty similar to what
Git allows developers to do with their source code files.

Another important benefit of endorsing small scale changes in 3DCMs, is the potentiality of in-
house maintaining. It is a fact that the volume of information 3DCMs may contain is massive.
In addition, tools that enable small scale editing, as described in the previous paragraph are
lacking. Eventually, the creation or the update of the models is in most cases carried out out-
side the organization that will be the owner of the model. That is because of the extremely high
labor-intensity it requires to massively update such an amount of information and the lack of
resources, leading to outsourcing. It is technically impossible to outsource minor object-level
day-to-day updates of the model in real time. Regarding the municipality of Rotterdam, cur-
rently, this outsourcing cycle takes few to many years due to the cost of the venture itself,
leaving the model in an obsolete state for long time spans. It becomes then clear that the im-
pact of in-house small scale maintenance would free 3DCMs owners and maintainers from
outsourcing, with all the benefits that it comes with. It would probably redefine the workflow
of updating and maintaining 3DCMs, enabling instant updates rather than big stockpiled ones
that cover large time periods.

3

Apart from the specific technical challenges, which are a strong motivation alone, there is
also broader motivation. It originates from the obstacles imposed by proprietary software
with undisclosed file formats, when the same data needs to be used in different industry do-
mains by a versatile range of multidisciplinary practitioners. This results in the user getting
trapped in limited software solutions -regulated by others-, while the exchange of informa-
tion is severely crippled, resulting in lack of communication between neighboring industries
(i.e. urban planners and architects); something conceptually similar to what data silos are for
linked data.

Keeping that in mind all the existing software used and all software developed under the
scope of this thesis will be free and open source software that one can use and modify at
will. Specifically, for the visualization and editing of the 3DCMs, an add-on was created for
Blender (Blender Foundation, 2019), a really powerful open source 3D modeling software with
an intuitive GUI. One of the advantages of using Blender is that once a 3DCM is imported
in it, it can be exported to any of the available export formats Blender offers. What is more, if
Blender were to be extended to export in a new -previously unsupported- format, then it would
automatically mean that the 3DCM could be exported to this format as well. The extensibility
of Blender is of utmost importance in the effort to create an integrative platform for 3DCMs
maintenance. Finally, it is and will be free for everybody to use and extend, adding lots of
extra functionality -that could potentially be useful regarding 3DCMs- at zero cost.

3 3DCMs and VCSs

Versioning control systems is not something new. Early implementations of VCS go over four
decades back with Source Code Control System (SCCS) (Glasser, 1978) being one of the very
first, developed in 1972 by Uniplexed Information and Computing Service (UNIX) develop-
ers. It was later followed from the Revision Control System (RCS) and Concurrent Versions
System (CVS) (Wikipedia, 2019b). The major problem all VCSs are designed to solve, is to
keep track of the changes made in computers programs source code files (i.e. text files). They
are essential for efficient and effective improvement of computer software especially when the
source code is collaboratively developed.

There are plenty of different implementations of VCSs through the last forty years, both pro-
prietary and open source, with some of them prevailing over others (Wikipedia, 2019c). In
the software development domain the versioning problem can be considered solved, since the
improvement of VCSs for almost half a century led to extremely robust and free VCS imple-
mentations, which correspond to the actual needs of today’s programmers. One of the most
powerful characteristics of most modern VCSs is branching. In simple words branching is the
ability to create a copy of the actual code at any given time instance and work on that instance
without affecting the original code. Changes to the original code can be made independently
on a copy of it, which later -if needed- can be merged back to the main (original) branch.
Arguably, the world’s most dominant VCS today is Git1. This can be attributed to its funda-
mental differentiation from the traditional past approaches, i.e. the way it treats updated files
(new versions) and the fact that is a distributed VCS (Chacon and Straub, 2019). A more in
depth explanation on the mechanics of Git will be given in section 5.

Open encodings of 3DCMs files resemble to source code files as shown in figure 4, in the sense
that they are both standardized syntax-wise. The syntax of both conforms to a predefined

1https://git-scm.com/

4

https://git-scm.com/

Figure 3: The concept of branching. A branch must have at least 1 commit (orange branch) or
more (blue branch) stemming from different point (time instance) of the master branch and
merged back to it on any point, without affecting it at all.

Source: https://www.nobledesktop.com/learn/git/what-is-git

schema, which is essentially a strictly predefined pattern to store information or write scripts
respectively. Although it is comparatively harder than with source code, changes in the in-
formation contained in 3DCM files can also relatively easily be tracked, as long as the the file
encoding is kept simple enough to parse and there is not redundancy of information or ways
of storing that information. Being able to track all changes and store them alongside their
metadata -such as who did the change, timestamp, elements changed etc- means that apart
from having always an up to date model, the time dimension is integrated in the model and
shuffling through different (time) instances of the 3DCM becomes possible. What is more, at
any given time instance the branching principle mentioned in section 3 can be applied allow-
ing for practitioners to test ideas and possible scenarios without interrupting the workflow of
other maintainers.

There has been already a proposal about version management of 3DCMs, for datasets en-
coded under the CityGML data model (Chaturvedi et al., 2016), which will be incorporated
into CityGML’s third version2. It is clear that the official authoring and maintaining institution
of the whole CityGML initiative, OGC, attempts to tackle this challenge. Admittedly, from a
technical point of view, it looks quite difficult if not impossible for this conceptual model that
supports versioning, to be implemented in a functional way in practice. Although CityGML is
quite useful as a data model, in the sense of standardizing the schema that 3DCM data should
be stored; when implemented into a data exchange format, it becomes inefficient. According
to Ledoux et al. (2019), most efforts have been focused on developing concepts, but not on
how to implement them. More insight on CityGML and its versioning schema extension will
be given in section 5.1.1 and 5.1.2 respectively.

2https://github.com/opengeospatial/CityGML-3.0CM

5

https://www.nobledesktop.com/learn/git/what-is-git
https://github.com/opengeospatial/CityGML-3.0CM

(a) A 3DCM encoded in CityJSON
Source: Municipality of Rotterdam (originally in

CityGML)

(b) A python (version 3) script

Figure 4: A side to side comparison between a CityJSON-encoded 3DCM and a source code
python script

Source: Author

4 Research scope

The research scope of this thesis is to investigate how a framework should be implemented,
to enable graphical user interaction with the 3DCM -viewing and modifying- while keeping
track of all the modifications via a versioning control system designed specifically for this pur-
pose. As mentioned in section 1 the use case is the municipality of Rotterdam. The framework
will be focused on their publicly available 3DCM, but it will be designed to be functional more
or less with any other 3DCM -encoded with the CityJSON format- with little to none modifi-
cation of the framework mechanisms themselves.

The core of the project can be divided in two major components. First, the technical aspect.
This includes the creation of the software that implements the framework in practice. By the
time of writing this thesis, there is no implemented solution to my knowledge, that manages
3DCMs. This implies that there many challenges to be faced and decisions to be made, which
will have to be tested at a primitive level. So all software that will be developed, should be
seen as prototype software and under no circumstances as a complete once-off solution to the
3DCMs updating and versioning problem. Ideally, this prototype software, should be further
developed and maintained in the future by me, TU Delft, or any third parties, as the source
code will be freely available online under an open source license.

The second component is the managerial aspect, that could be summarized as follows: Re-
ceiving explicit feedback from multidisciplinary practitioners inside the municipality of Rot-
terdam, who interact with the 3DCM, in order to understand and prioritize their needs, so the
framework can be adapted around them, rendering it is as appealing and intuitive as possible
for the user the interact with. In parallel with the technical aspect, practitioners will be inter-
viewed, so as vital information on the current management procedures and shortcomings can
be gathered. This information will then be evaluated and taken under consideration during
the development of the framework’s software so major features can be incorporated directly

6

to it, via an iterative process.

As mentioned in section 2, the global goal of this thesis is the proof of concept of the potential-
ity to create a highly functional integrative framework based on an alternative encoding of the
CityGML data model, for updating and versioning 3DCMs at object level, using open source
software. On a lower level, given the time frame of this thesis which is around 8 months more
specific milestones can be defined:

1. Create a Blender extension (add-on) to import CityJSON files.

2. Add functionality to the add-on to export any scene of Blender in CityJSON encoding.

3. Elaborate on the integration of a versioning control system prototype (Vitalis et al., 2019)
to the add-on.

4. Incorporate features received from practitioners’ feedback into the extension.

5. Test framework and report results.

The extent to which functionalities that practitioners will suggest, will be introduced, as well
as the testing of the framework itself, is highly dependent on the time frame of the project. It
is related to the challenges that will have to be tackled during any of the above milestones.

5 Related work

There is a lot of activity in the 3DCM domain last years with respect to standardization and
software developed for interaction with them. This section gives an overview of what has
been done so far on a conceptual and practical level. Section 5.1 is about standardization
of storing 3DCMs. Section 5.2 focus specifically on software. Some of the software focuses
specifically on the CityJSON encoding. Some other implementations are about geo-versioning
control systems.

5.1 Data models and encodings

In this section all the fundamental related work on which this thesis will be based on, is pre-
sented. The term fundamental is used to describe all that preliminary work that without it,
it would be impossible for this project to exist. Those are the data model that was created to
schematically dictate how 3DCM related information should be stored and a couple of imple-
mented encodings that translate this data model into files.

5.1.1 CityGML

CityGML3 can be a confusing term. That is because it either stands for the open data model def-
inition of the schema in which 3DCMs information is stored, or the CityGML file exchange for-
mat that implements the schema utilizing a GML-based .gml format. It is designed, maintained
and supported by the OGC and is the very popular among companies, Non-Governmental
Organizations (NGOs), public agencies etc. It is already an international standard, which is
reassuring for interested stakeholders should they adopt it or not.

3https://www.opengeospatial.org/standards/citygml

7

https://www.opengeospatial.org/standards/citygml

Arguably the biggest shortcoming of GML based formats is their verbosity. The same opening
and closing tags must be used repetitively throughout the whole file length, increasing dra-
matically the size of it without adding extra information. Also there are more than one ways
-redundancy- to store the same information, meaning that software implemented to parse it
will not be robust and will often crash. In addition, there are no native GML parsers for
programming languages so one needs to create their own ad-hok parser; which it not trivial.
Finally, it has a rather hierarchical (nested) structure, which adds to the overall complexity
and reduces its web compatibility.

5.1.2 CityGML versioning extension

As already introduced in section 3, there is a documented suggested approach from Chaturvedi
et al. (2016) for the CityGML data model to be extended in order to support versioning. In spite
of the end purpose of this extension, which is to lay the conceptual basis for (software) imple-
mentations of VCSs, I strongly believe that it will not be the case. The major reason in my
opinion is the fact that it does not allow versioning down to the object level (buildings, road
segments etc). This is of crucial importance as it goes in pair with the concept of small scale
changes, which inevitably are object-level changes. Even the authors of this proposed ex-
tension recognize this drawback, mentioning that in the future this feature might be required.
Implementing it will be impossible unless the GML specification is changed (Chaturvedi et al.,
2016).

5.1.3 CityJSON

CityJSON4 is an alternative encoding -of a subset- of the CityGML data model. It is developed
and maintained by the 3D geoinformation group at Delft’s University of Technology. In com-
parison with the latter, it is based on the JSON format, keeping software developers in mind.
It was designed as an attempt to address the shortcomings of the CityGML encoding. It is
superior to the CityGML encoding in the way it stores data. Its structure is more flat, it stores
no redundant information and the vertex storing approach simplifies a lot the topological re-
construction. The absence of opening and closing tags for each entity makes it six times more
compact on average than CityGML. Last but not least, it can be parsed natively by every pro-
gramming language that supports JSON files parsing, which is extremely convenient when
one wants to implement software based on this file format. There is already free software that
allows bi-directional conversion between CityJSON and CityGML encoding, so from an exter-
nal, non-programming point of view, both files can be considered equivalent.

5.2 Software implementations

Except from the work presented above, there are also several software implementations re-
lated with the manipulation of geoinformation which are interesting under the research scope
of this thesis. Some are related because they are developed around the CityJSON encoding,
others because they implement a geo-VCS. Except those mentioned in section 5.2.5, all the
others are open source non-proprietary ones.

4https://www.cityjson.org/

8

https://www.cityjson.org/

5.2.1 Git

Git5 is the only software that is not related with geoinformation at all. It is a VCS created to
maintain source code files and for many developers probably the most robust and reliable.
It is also free and open source. It is a distributed VCS, which in simple words means that
you don’t need to be connected to a server to work and the whole database that stores the
different versions is saved also locally.It was initially developed by Linus Torvalds in 2005 to
maintain the Linux kernel. The fundamental difference of Git related to other VCSs is the way it
keeps track of the different versions. While most VCSs just store the differences -often referred
as ’deltas’- from a version to another, Git stores complete snapshots throughout the project’s
lifecycle, creating a tree structure in which nodes are references to these snapshots. For a better
understanding of Git’s internal architecture the Chacon and Straub (2019) manual will come
really handy. Git’s robust principles and simplistic design has tempted some geo-software
developers to create a Git-like VCS wrapped around geodata files. Software presented in 5.2.2,
5.2.3, 5.2.4 and 5.2.5 are such examples.

5.2.2 GeoGig

GeoGig6 is a versioning open source tool that implements the Git principles to manage the ver-
sioning of geospatial vector data. It is a distributed VCS which can be accessed as a datastore
in Geoserver7 (Franceschi et al., 2019). It currently supports Shapefiles, PostGIS and SpatiaLite
data, which are imported into a Git-like repository where all changes are tracked. Internally,
when a dataset is imported, GeoGig converts it to its own binary format that can handle and
keep track. Then, the dataset is staged for commit and after it is committed, a new version of
the dataset is created and stored to GeoGig’s repository, which is a database. As with Git all
the objects that comprise a version are stored, not only the deltas. In case an object is the same
in two consecutive versions the new version will contain a reference to the previous version’s
object. In other words, the original dataset is stored only once. What is stored in the local
repository might as well be also stored in a remote repository. GeoGig is conceptually almost
identical to what this thesis is about. The difference is, geospatial vector files are not similar
with 3DCM files and every successful VCSs should wrap around the file structure it attempts
to keep track of, as firmly as possible. That is the same reason why Git as an implementation
does not solve the problem for geospatial data out of the box, since it is designed to track
changes in source code files.

Figure 5: GeoGig’s workflow
Source: http://geogig.org/docs/start/introduction.html

5urlhttps://git-scm.com/
6http://geogig.org/
7http://geoserver.org/

9

http://geogig.org/docs/start/introduction.html
http://geogig.org/
http://geoserver.org/

5.2.3 QGIS versioning plugin

The QGIS versioning plugin8 developed by Oslandia9 is another approach to achieve geospa-
tial data history management. It is also a distributed VCS which uses the PostGIS10 database
schema in its core. According to the official website, this project started because none of the
previous implementations fulfilled the creators’ needs. Those were using a PostGIS as the
main repository and the ability to work offline, i.e. having a distributed VCS. Although the
approach is neat, similar to GeoGig it focuses on spatial vector and raster data, so it can not
support versioning of 3DCM files.

5.2.4 PostGIS Versioning - pgVersion

pgVersion is another geo-VCS implementation which attempts to tackle the problem of con-
current editing of one PostGIS layer by more than one persons. It is a centralized VCS, which
means there must always be an active connection to the server similar to how CVS or Sub-
version11 operate. As in 5.2.2 and 5.2.3 this approach is also wrapped around a different data
structure than the one used from 3DCMs file structure. Furthermore, the fact that it is a cen-
tralized VCS, probably would make it a non practical VCS for tracking 3DCMs due to their
notably bigger file size; which translates to lots of data being exchanged between the server,
where the database is stored and every client, which commits the updates.

5.2.5 OWM and ESRI ArcSDE

Both systems are database oriented and they operate in a very similar level conceptually. What
changes is the difference in terminology. For example in OWM users work in workspaces which
can be seen as individual rooms where users work, with all the changes being visible only to
these users. The changes of the workspace are applied to the parent workspace via a merge
transaction which makes the changes visible to the parent workspace as well (Oracle, 2013).
To be noted that in the case of Oracle products, this approach does not apply only to geospa-
tial data but in every kind of data as long as the database schema can support it. Similarly,
the equivalent of workspace for ESRI is called version. ESRI’s solutions are by default spatial-
database oriented, although the principles do not differ so much from traditional non-spatial
databases. The approach in this case is that every database has a default version which can
not be deleted and is owned by the administrator. The different versions are stored in the
geodatabase and regardless how many of them exist each dataset is only stored once. The
technique used here is known as ’delta tables’ meaning tables storing all the updates from
version to version (Law, 2010). Both systems are commercial and proprietary, meaning that
they can not be freely used or further developed by anyone except their owners. Lastly, the
data types that these solutions handle are not the similar to 3DCM data encodings. So, even
if the source code were publicly available it would not change much with respect to 3DCMs
versioning.

8https://oslandia.com/en/2013/07/13/qgis-versioning-plugin/
9https://oslandia.com/en/

10https://postgis.net/
11https://subversion.apache.org/

10

https://oslandia.com/en/2013/07/13/qgis-versioning-plugin/
https://oslandia.com/en/
https://postgis.net/
https://subversion.apache.org/

5.2.6 Azul, CityJSON-Web-viewer, CityJSON-QGIS-plugin, cjio, 3dfier

CityJSON viewers

Azul12 is a fast viewer for CityJSON datasets that operates on macOS, while there is a cross-
platform web viewer13 for CityJSON files. Lastly, a QGIS plugin14 has been also developed for
visualizing 3DCMs encoded in CityJSON into the QGIS environment.

CityJSON editors, manipulators and generators

cjio15 is an editing and manipulating software, designed specifically for CityJSON-encoded
files. Through the Command Line Interface (CLI) the user can extensively edit a CityJSON
file. It also allows chain processing (pipelines) for multiple operations to be applied directly
in one go.

3dfier16 is a generator of CityJSON files. It takes as input 2D GIS datasets and it extrudes the
2D objects in 3D with the use of point clouds. It also considers the semantics of each entity,
so it is properly lifted -for example water should always be a flat surface- while rooftops not
necessarily.

All the above software has been developed and maintained by TU Delft’s 3D geoinformation
group. They are all free to use and open source, so they can be further developed, combined
with other software or one could use the design concepts this software was created with to
further develop 3DCM-related software.

6 Research questions

Having everything mentioned in the previous sections in mind, eventually lays the foundation
for the research questions:

i. To what extent is it possible to implement an integrative framework for geometric and
semantic updating and versioning of CityJSON-encoded 3DCMs?

ii. Which are the small scale day to day editing needs of a 3DCM?

iii. Is the Git-like VCS approach appropriate to address the needs of versioning 3DCMs files
encoded in CityJSON?

iv. How could the current updating process of 3DCMs be improved by such a framework?

7 Methodology, tools and datasets used

To answer the research questions as they are defined in section 6, a specific methodology must
be introduced. First and foremost, the feasibility of an integrative framework, as it is men-
tioned in section 6 for managing 3DCMs, must be examined. For this reason, a GUI tool will
be created, that will allow the visualization of a 3DCM and graphical editing of the informa-
tion it contains, geometrical, descriptive or semantic. For this purpose, Blender a free and open

12https://apps.apple.com/nl/app/azul/id1173239678?mt=12
13https://viewer.cityjson.org/
14https://github.com/tudelft3d/cityjson-qgis-plugin
15https://github.com/cityjson/cjio
16https://github.com/tudelft3d/3dfier

11

https://apps.apple.com/nl/app/azul/id1173239678?mt=12
https://viewer.cityjson.org/
https://github.com/tudelft3d/cityjson-qgis-plugin
https://github.com/cityjson/cjio
https://github.com/tudelft3d/3dfier

source 3D creation suite, Blender Foundation (2019) is chosen. From a technical point of view,
that is mainly for three reasons. First, it offers a very intuitive Application Program Interface
(API) in python, thus it can be easily extended. Second, it is free and open source so anybody
can use it free of charge and understand how it works. Third it is very versatile and powerful
3D suite that gets developed and maintained by a very big community.

Once the tool is created that successfully imports a CityJSON-encoded 3DCM in Blender with
all its attributes and semantic information and allows editing, then the updated 3DCM should
be exported back into the CityJSON format, in its updated version. So, an exporter should
be implemented to convert the 3DCM from the structure Blender uses to handle it internally,
to CityJSON encoding. Doing so establishes a complete workflow of visualizing a 3DCMs,
graphically editing it and creating new -updated- versions of it.

With more than one versions of a 3DCM, the versioning aspect takes over. At this stage a
mechanism is needed to be in place to manage the different versions efficiently creating all
the necessary links and relations among them. In the framework of this project, an already
implemented solution for versioning CityJSON files as described by Vitalis et al. (2019), will
be used17. This solution attempts to port Git’s robust principles into a prototype version-
ing control system for CityJSON files. It will be attempted to adapt this solution, so it can
be incorporated into the Blender’s suggested ’update’ workflow and extend it to a ’complete
maintenance’ workflow, meaning both updating and versioning 3DCMs

In parallel with the technical aspect of this thesis, i.e. creating or adapting software to establish
a graphical workflow for maintaining 3DCMs, great importance will be given in understand-
ing Rotterdam’s Municipality 3DCM management process and needs. Analyzing through the
findings will lead to incorporating features and principles in the proposed framework, that
will better suit the demands of Rotterdam’s Municipality with respect to maintaining its 3DCM.
Collecting information will happen through interviews, with active multi-disciplinary practi-
tioners on the geoinformation field from inside the municipality. In an ideal scenario, all the
necessary features should be implemented in the framework. In practice, most probably that
will not be the case; nevertheless, even if not all the demanded features will be implemented,
all the findings will be reported for future reference.

Figure 6: The methodology explained in a graph as conceptual steps and their transition.

17More details on this mechanism in section 9.2

12

8 Time planning

In figure 7 an idea is given on the -approximate- time that will be dedicated on every task.

Figure 7: Time allocation of the master thesis tasks.

9 Datasets and tools

9.1 Datasets

For software developing and testing certain datasets are used. Those are the 3DCM of Rotter-
dam, which is publicly available, free to use and was provided directly by the municipality
and free CityJSON encoded datasets that can be found on CityJSON’s official website. The lat-
ter ones cover more or less every possible variation a CityJSON files can have -with respect to
representation of the information- and that is why they were also chosen for testing.

9.2 Tools

The tools that will be used are:

i. The Blender 3D suite as mentioned above, that will be extended to handle CityJSON files.

ii. The CityJSON-Blender plugin18 that imports CityJSON 3DCMs files into Blender and al-
lows to graphically edit the objects’ geometry, attributes or semantics using Blender’s func-
tionality (see figure 8). It has been initially developed by me under the frame of TU Delft’s
course ’GEO5010 - Research Assignment’ and it is currently further developed by the 3D
geoinformation group of TU Delft and myself under the official CityJSON19 repository.

18https://github.com/cityjson/Blender-CityJSON-Plugin
19https://github.com/cityjson

13

https://github.com/cityjson/Blender-CityJSON-Plugin
https://github.com/cityjson

iii. Vitalis et al. (2019) versioning prototype20 for CityJSON files. This software implementa-
tion ports Git’s robust principles to the 3DCM domain. More specifically the CityJSON-
encoded 3DCMs files are treated by this prototype implementation as source code files
are treated by Git. Once versioning for a 3DCM file is initiated it augments the structure
of the CityJSON by adding one extra entry/tag/dictionary key into it, which is called
’versioning’ and contains all versions of the file, branches, tags etc as its children. For a
better understanding and a visual comparison between a versioned and a non-versioned
CityJSON file see figure 9.

Figure 8: The plugin that imports CityJSON files into Blender.

Figure 9: The augmented structure of a vCityJSON (left) file compared to an ordinary CityJSON
(right) file. Under the versioning tag all the version-related information are stored.

20https://github.com/tudelft3d/cityjson-versioning-prototype

14

https://github.com/tudelft3d/cityjson-versioning-prototype

References

F. Biljecki, J. Stoter, H. Ledoux, S. Zlatanova, and A. Çöltekin. Applications of 3D City Models:
State of the Art Review. ISPRS International Journal of Geo-Information, 4(4):2842–2889, dec
2015. doi: 10.3390/ijgi4042842.

F. Biljecki, H. Ledoux, X. Du, J. Stoter, K. H. Soon, and V. H. S. Khoo. The most com-
mon geometric and semantic errors in CityGML datasets. ISPRS Annals of Photogramme-
try, Remote Sensing and Spatial Information Sciences, IV-2/W1:13–22, oct 2016. doi: 10.5194/
isprs-annals-iv-2-w1-13-2016.

Blender Foundation. Blender 2.82 reference manual, 2019. URL https://www.blender.org/.

S. Chacon and B. Straub. Pro Git. Apress, 2019. URL https://git-scm.com/book/en/v2.

K. Chaturvedi, C. S. Smyth, G. Gesquière, T. Kutzner, and T. H. Kolbe. Managing Versions
and History Within Semantic 3D City Models for the Next Generation of CityGML. In
Advances in 3D Geoinformation, pages 191–206. Springer International Publishing, oct 2016.
doi: 10.1007/978-3-319-25691-7 11.

S. Franceschi, K. Adoch, H. K. Kang, C. Hupy, S. Coetzee, and M. A. Brovelli. OS-
GEO UN Committee Educational Challenge: A use case of sharing software and expe-
rience from all over the world. ISPRS - International Archives of the Photogrammetry, Re-
mote Sensing and Spatial Information Sciences, XLII-4/W14:49–55, aug 2019. doi: 10.5194/
isprs-archives-xlii-4-w14-49-2019.

A. L. Glasser. The evolution of a Source Code Control System. ACM SIGSOFT Software Engi-
neering Notes, 3(5):122–125, nov 1978. doi: 10.1145/953579.811111.

G. Gröger, T. H. Kolbe, C. Nagel, and K.-H. Häfele. OGC City Geography Markup Language
(CityGML) Encoding Standard. Open Geospatial Consortium, 2.0.0 edition, 2012.

D. Law. Versioning 101: Essential information about ArcSDE geodatabases. 2010. URL https:

//www.esri.com/news/arcuser/0110/versioning101.html.

H. Ledoux, K. Arroyo Ohori, K. Kumar, B. Dukai, A. Labetski, and S. Vitalis. CityJSON: a
compact and easy-to-use encoding of the CityGML data model. Open Geospatial Data, Soft-
ware and Standards, 4(1):4, June 2019. ISSN 2363-7501. URL https://doi.org/10.1186/

s40965-019-0064-0.

Oracle. Oracle Database 12c: Workspace Manager. 2013. URL https://download.oracle.

com/otndocs/products/workspace_manager/pdf/workspace_manager_12c_twp.pdf.

S. Vitalis, A. Labetski, K. Arroyo Ohori, H. Ledoux, and J. Stoter. A data structure to incorpo-
rate versioning in 3D city models. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial
Information Sciences, IV-4/W8:123–130, 2019. doi: 10.5194/isprs-annals-IV-4-W8-123-2019.
URL https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/

IV-4-W8/123/2019/.

Wikipedia. 3D city models. Wikipedia, 2019a. URL https://en.wikipedia.org/wiki/3D_

city_models.

Wikipedia. Source Code Control System. Wikipedia, 2019b. URL https://en.wikipedia.org/

wiki/Source_Code_Control_System.

15

https://www.blender.org/
https://git-scm.com/book/en/v2
https://www.esri.com/news/arcuser/0110/versioning101.html
https://www.esri.com/news/arcuser/0110/versioning101.html
https://doi.org/10.1186/s40965-019-0064-0
https://doi.org/10.1186/s40965-019-0064-0
https://download.oracle.com/otndocs/products/workspace_manager/pdf/workspace_manager_12c_twp.pdf
https://download.oracle.com/otndocs/products/workspace_manager/pdf/workspace_manager_12c_twp.pdf
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W8/123/2019/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W8/123/2019/
https://en.wikipedia.org/wiki/3D_city_models
https://en.wikipedia.org/wiki/3D_city_models
https://en.wikipedia.org/wiki/Source_Code_Control_System
https://en.wikipedia.org/wiki/Source_Code_Control_System

Wikipedia. Comparison of version-control software. Wikipedia, 2019c. URL
https://en.wikipedia.org/wiki/Comparison_of_version-control_software#

History_and_adoption.

16

https://en.wikipedia.org/wiki/Comparison_of_version-control_software#History_and_adoption
https://en.wikipedia.org/wiki/Comparison_of_version-control_software#History_and_adoption

List of Figures

1 A snapshot of the publicly available 3DCM of the city of Rotterdam. 1
2 The applications of 3DCM in various domains. 2
3 The concept of branching. A branch must have at least 1 commit (orange branch)

or more (blue branch) stemming from different point (time instance) of the mas-
ter branch and merged back to it on any point, without affecting it at all. 5

4 A side to side comparison between a CityJSON-encoded 3DCM and a source
code python script . 6

5 GeoGig’s workflow . 9
6 The methodology explained in a graph as conceptual steps and their transition. 12
7 Time allocation of the master thesis tasks. 13
8 The plugin that imports CityJSON files into Blender. 14
9 The augmented structure of a vCityJSON (left) file compared to an ordinary

CityJSON (right) file. Under the versioning tag all the version-related informa-
tion are stored. 14

17

	Acronyms
	Introduction
	3dcm in a nutshell
	Problem statement

	Motivation
	3dcm and vcs
	Research scope
	Related work
	Data models and encodings
	CityGML
	CityGML versioning extension
	CityJSON

	Software implementations
	Git
	GeoGig
	QGIS versioning plugin
	PostGIS Versioning - pgVersion
	owm and ESRI ArcSDE
	Azul, CityJSON-Web-viewer, CityJSON-QGIS-plugin, cjio, 3dfier

	Research questions
	Methodology, tools and datasets used
	Time planning
	Datasets and tools
	Datasets
	Tools

