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Introduction 1
Oxford Nanopore Technologies (ONP) developed the first and only nanopore based
DNA/RNA sequencing devices, one of which is called the MinION: A portable cellphone
sized device that can be connected to a regular computer or laptop. The portability and
ease of use of the device aims to enable anyone from sequencing DNA anywhere [5]. Uses
of it include: Large scale human genomics, cancer research, research in microbiology and
environmental research.

In the context of ONP sequencing, basecalling is the process of translating the raw
electrical signal from e.g., the MinION to a nucleotide sequence. Several different base-
calling applications exist, all of which are implemented using artificial neural networks
[3]. One such application is Scrappie [6]. Scrappie is an open-source basecaller by Oxford
Nanopore. In this thesis work we port Scrappie to Maxeler Dataflow Engines (DFEs).

1.1 Motivation

Basecalling is typically performed on a CPU, either on a laptop or workstation (slow), or
in a data center (expensive, requires internet connection). Another option is acceleration
using GPUs. However, this comes at the cost of increased energy usage. An alternative
is to use FPGAs to accelerate basecalling, achieving performance on par with GPUs,
while still using significantly less energy.

Dataflow computing, developed by Maxeler Technologies, provides means to program
FPGA based platforms in an easy and scalable way, by using the abstraction of Dataflow
Engines (DFEs).

We can translate this into the following three research questions:

1. Which existing basecalling algorithm is best suited for FPGA acceleration?

2. Can FPGAs provide an interesting alternative for accelerating basecalling/neural-
networks in terms of throughput and power consumption as compared to CPUs
and GPUs?

3. Is there a way to achieve maximum DRAM read and write bandwidths in the
context of an FPGA basecalling application?

1



2 CHAPTER 1. INTRODUCTION

1.2 Thesis Organization

In chapter 2 the necessary background on DNA sequencing and artificial neural net-
works is presented to understand the operation of Scrappie. Subsequently, existing ONP
basecallers are discussed, and the concept of dataflow programming using FPGAs is ex-
plained. Lastly, a structured design and implementation methodology used to implement
such systems is explained.

Chapter 3 introduces the artificial neural network used to implement basecalling in Scrap-
pie. The application is profiled to identify all computational and communication bottle-
necks. A software/hardware partitioning of the network is subsequently studied based
on the above analysis.

The DFE performance model and hardware design are presented in chapters 4 and 5
respectively. In the performance model, area utilization, I/O usage, and throughput are
carefully characterized.

The performance of the implemented final system and its predicted performance are
evaluated in chapter 6. In addition, the final system performance is compared to state
of the art server CPUs.



Background 2
2.1 DNA Sequencing

To understand what DNA sequencing is, we must first understand the basic structure
of DNA. Deoxyribonucleic acid (DNA) consists of two chains of nucleotides, wrapped
around one another in a double-helix shape. Each nucleotide contains one of four possible
nitrogen bases: Adenine (A), Thymine (T), Cytosine (C), or Guanine (G). The order of
these different bases in a chain essentially encode the “instructions” on how an organism
will develop [7].

Each base of the one chain is connected to another base in the other chain according
to the following rules: A connects to T, C connects to G. This means that both chains
contain the same information. Figure 2.1 shows the double-helix structure of a DNA
double-helix, and the complementary connected bases.

T A

C G

A T

A T

C G

C G

A T

Figure 2.1: DNA Double-helix structure

In general, DNA sequencing is the process of turning the chains of the DNA double-helix
structure into a (digital) sequence of bases, i.e.: a sequence of A, T, C, and G. These
sequences can then be used in biological research for a number of tasks, such as person
identification or medical diagnosis.

In the following sub-sections, we will briefly go over the history of different DNA se-
quencing techniques, based on the overview made by Slatko et al [8].

3



4 CHAPTER 2. BACKGROUND

2.1.1 First Generation: Sanger Sequencing

Sanger sequencing was developed in 1977, and is named after its inventor: Frederick
Sanger. Although slow compared to later generation sequencing techniques, improve-
ments and commercialization of the technique make it relevant even today.

The Sanger sequencing method works by first splitting the double-helix structure of a
sequence in two. One of these strands, the template sequence, is replicated by an enzyme
called DNA polymerase which adds the complementary sequence to the template. It
does so by adding bases one by one. Each time a base is added, there is a chance that
this will be a specially engineered base, which will stop the replicating process. These
special bases are also luminescently marked. Each base type (A, T, C or G) has it’s own
unique color.

This will result in many copies of the template, each of different length, and each ended
by a luminescent terminating base. The strands are sorted by length, and irradiated by
a laser. The luminescent terminating bases are detected by a sensor, which identifies
the specific bases. When the above is performed with enough clones of the template
sequence, all bases can be determined.

2.1.2 Second & Third Generation Sequencing

The need for faster and cheaper sequencing techniques gave rise to the second and third
generation of sequencing techniques. Most of these techniques are variations and/or im-
provements on Sanger sequencing, mostly focused on sacrificing accuracy for speed. Vari-
ations include shortening templates, allowing for more parallel sequencing runs. Lower
accuracy can be compensated for by basecalling the same sequences multiple times, and
taking some sort of concensus between all results.

2.1.3 Fourth Generation: Nanopore Based Sequencing

Nanopore based sequencing was proposed in the nineties, but only recently popularized
by Oxford Nanopore (ONP) [5]. ONP Sequencing devices can be as small as a mobile
phone, and are lower cost than aforementioned techniques.

An ONP sequencing device consists of one or more flow-cells. Each flow cell contains up
to 2,048 nanopores. A solution containing pre-processed DNA samples is inserted into
the flow-cell. DNA Strands are allowed to diffuse towards the nanopores. Once at the
nanopores, one side of the DNA strand is pulled through the nanopore by an electric
field. As the strand moves through the pore, the current across it changes. The resulting
signal can be correlated to a sequence of bases.

There exist a multitude of tools to convert a current-over-time signal to a sequence of
bases. All of these are implemented in the form of artificial neural networks. The concept
of artificial neural network, and several of the available tools will be introduced in section
2.2 and 2.3 respectively.
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Figure 2.2: Oxford Nanopore sequencing process [1]

Figure 2.2 visualizes the process: So called motor proteins are attached to the DNA
samples before they are inserted into a flow-cell. These are the dark green shapes in
figure 2.2. These motor proteins flow down to the pores, where they are attached to
a nanopore. The DNA sequence then moves through the pore, changing the current.
When the entire sequence has passed through the nanopore, the process can start again
from the beginning.

2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational structures inspired by biological
neural networks. They are often used in applications where classical algorithms are hard
to design, or are intractable. Examples include image recognition, natural language
processing, and search engine optimizations.

In the first section below we will look at the simplest neural network type, and explain
the principles of inference and training. In subsequent sections additional layer types
and the related background will be gradually introduced.

2.2.1 Feed-forward Neural Network

One of the simplest example of an artificial neural network is the feed-forward neural
network. As the name suggests, in such a network signals flow in one direction through
the network layers, i.e.: there are no internal cycles.

An example of a feed-forward neural network with five layers is shown in figure 2.3. Here
we see five fully connected layers. These can be clasified as three types: The input layer,
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three hidden layers, and the output layer. Each layer contains several nodes, called
neurons. The input neurons only hold an input value, programmatically set to some
scalar value. For example, in an image-processing network these values might represent
pixel data. Each input neuron broadcasts its value to every neuron in the next layer
(hidden layer 1). In other words: Neurons in the input layer and neurons in the first
hidden layer are connected all-to-all. Neurons in the hidden layer perform a function on
their inputs, and present the output, again, to all neurons in the next layer. What kind
of function they perform will be explained in more detail in the next sub-section.

The last hidden layer gives outputs to the neurons in the outputs layer. Neurons in the
output layer do not perform any function, but simply contain the outputs of the previous
layer. These can be read out to obtain the result from the network. In the previously
mentioned example of image-processing, y1 could indicate the likelihood of the image
containing a cat, whereas y2 could indicate the likelihood of the image containing a dog.

(1,3)

(1,2)

(1,4)

(1,1)

(2,3)

(2,2)

(2,4)

(3,3) 

(3,2) 

(3,1)

(2,1)

Input 
layer 

Hidden 
layer 1 

Hidden 
layer 2 

Output 
layer 

y1

y2

y3

x1

x2

Hidden 
layer 3 

Figure 2.3: Example feed-forward network

Hidden Layers

Every neuron in each of the hidden layers takes the weighted sum plus some bias of

its inputs, to produce z
(L)
i (equation 2.1), where L is the layer number, i indicates the

i′th neuron in that layer, and NL is the amount of neurons in layer L. z
(L)
i then passes

through an activation function to produce the neuron’s output a
(L)
i (equation 2.2), which

pushes its argument to either zero or one, analogous to the neuron firing or not firing.
A popular activation function is the sigmoid function σ(x) = 1/(1 + e−x), illustrated in
figure 2.4.
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z
(L)
i =

NL−1∑
k

w
(L)
k a

(L−1)
k + b

(L)
k , i ∈ [1, NL] (2.1)

a
(L)
i = σ(z

(L)
i ) (2.2)

−4 −2 2 4

0.2

0.4

0.6

0.8

Figure 2.4: Plot of sigmoid function: σ(x) = 1/(1 + e−x)

These equations may be rewritten in a vectorized form, allowing us to think on the layer
level, rather than individual neuron level:

~z (L) = W (L)~a (L−1) +~b (L) (2.3)

~a (L) = ~σ(~z (L)) (2.4)

The weight matrices W (L) and bias vectors ~b (L) are initially unknown, and are obtained
by training the network.

2.2.2 Training

x (1) (2) (3) y

θ(1) θ(2) θ(3) 

a(0) a(1) a(2) a(3) 

Figure 2.5: Feedforward network vectorized

The network introduced in the previous section is visualized in its vectorized form in
figure 2.5. The parameters (weights and biases) for each hidden layer L are represented
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with θ(L). Training the network is done by initially setting all parameters (represented
by θ) to initial values. The network is then presented with training inputs ~x, with
which it will produce outputs ~y. These outputs are compared to reference outputs ~̂y,
and the parameters are updated such that the actual outputs become more similar to
the reference outputs. To make the outputs from the network converge to the reference
outputs, a cost function is defined, e.g., the mean squared error as shown in equation 2.5.
Training the network then becomes equivalent to solving the unconstrained optimization
problem of minimizing the cost function for all inputs in the training set.

C(θ) =
1

Nx

∑
~x

‖~̂y − ~y‖2 (2.5)

Gradient Descent

Gradient descent is a popular optimization method for minimizing cost functions in
neural networks. It tries to find the smallest possible value of C(θ) for some θ, thereby
finding the best parameters for the network. It does this by starting at some point θ0,
and taking a step in the direction such that the cost function decreases fastest. This
direction is given by the negative gradient (derivative) of the cost function. Our new
point can then be calculated using equation 2.6, where γ is some constant step-size.

θk+1 = θk − γ∇C(θk) (2.6)

This process is repeated until a minimum of the cost function is reached. The final vector
θk contains the learned weights and biases of the network. This process is illustrated in
figure 2.6.

2.2.3 Convolutional Layers

Convolutional layers are slightly different from the feed forward layer we have seen in
the last section, and are inspired by the visual cortex in human brains.

1D Convolution

In convolution layers, a window ~ki slides over an input sequence x, as shown in figure 2.7.
As the window slides of the input sequence, the values of the window at each position i
are combined into a single value yi. This is shown in equation 2.7, where ~c is a weight
vector, and b is a bias scalar. Both are obtained by training.
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Figure 2.6: Gradient Descent [2]

0 x0 x1 x2 x3 x4 x5 0 
Sliding window

0 

Input sequence:

Window 0:

y0 y1 y2 y3 y4 y5 Feature values:

Window 1:

Window 2:

x0 x1 

x0 x1 x2 

x1 x2 x3 

Figure 2.7: 1D Convolution

~yi = ~c T~ki + b (2.7)

~ki =


xi−(winlen−1)/2

...
xi
...

xi+(winlen−1)/2


It is possible to extract multiple features per window. The resulting operation can be
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written as a matrix-vector multiplication, followed by addition as shown in equation 2.8.
In this case, matrix C consists of parameters that should be learned by the network.


yi,0
yi,1

...
yi,m−1

 =


~c T0
~c T1
...

~c Tm−1

~ki +


b0
b1
...

bm−1

 ⇔ ~yi = C~ki +~b (2.8)

2.2.4 Gated Recurrent Units

Asside from feed-forward and convolutional layers seen in the previous sections, other
types of layers are used, such as Gated Recurrent Unit (GRU) layers [9]. These are a
type of recurrent neural network which implement a concept of memory.

A GRU layer has inputs ~x(t), and an output ~h(t). Note that inputs and outputs are
now a function of time step t, something we did not consider for feedforward layers. A
concept of time is important if we want to implement memory in these layers. To be
able to function as a type of memory, the output from last time-step h(t− 1) feeds back
into the layer.

Figure 2.8 shows the design of a GRU layer. The blue lines indicate new information,
which is combined with memory, effectively contained in the output of the previous time-
step h(t− 1). Aside from the input, output, and feedback signals, there are a number of
other important signals, namely the update gate and reset gate, which control how much
of the old memory to keep, and how much of new information to use to construct a new
memory h(t).

Update Gate

The update gate (equation 2.9) is a function of the input, and the previous “memory”
of the output that is mapped to a value between 0 and 1 by the sigmoid function.

~z(t) = ~σ(Wz~x(t) + Uz
~h(t− 1)) (2.9)

It is used as a factor that controls how much of past information h(t − 1) should be
remembered, i.e.: How much should be passed on to the current output h(t).

Reset Gate

The reset gate is very similar, and controls how much of the past information to forget.
It is defined as:

~r(t) = ~σ(Wr~x(t) + Ur
~h(t− 1)) (2.10)
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+ h(t)

⊙

⊙

1-

tanh

+

Wh'

Uh' ⊙

+

Wr

Ur

σ

σ

+

Wz

Uz

reset gate: r(t)

preliminary 
memory: 

h'(t)

x(t)

update gate: z(t)

h(t-1)

Figure 2.8: GRU Cell

The main difference is in the coefficients (Wr and Ur), and in the way it is used.

Final Memory

A preliminary memory is constructed from the input and the previous memory:

~h′(t) = tanh (Wh′~x(t) + [~r(t)� Uh′
~h(t− 1)]) (2.11)

where � is the element-wise product of two vectors. Here we can see that r(t) controls
how much to keep of h(t − 1). We also use a different activation function, namely the
hyperbolic tangent. This serves a similar purpose to the sigmoid function, only now the
argument is scaled between −1 and 1 rather than 0 and 1.

The final memory is formed as follows:

~h(t) = [~z(t)� ~h(t− 1)] + [(1− ~z(t))� ~h′(t)] (2.12)

Since z(t) is between 0 and 1, we get a weighed average between the previous memory
h(t− 1) and the preliminary memory h′(t), controlled by the update gate z(t). In other
words: The update gate controls how much to keep of the previous memory, and how
much of the preliminary memory, which in turn is a combination of new information and
old information.

In this type of layer all W and U matrices are determined by training the network. In
addition, the initially unknown memory ~h(−1) is set to zero.
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2.2.5 Conditional Random Fields

The outputs ayt(xt) of a neural network can be turned into a probability distribution
using the Softmax function (equation 2.13). The softmax function computes the proba-
bility that output yt has label L given input xt.

p(yt|~xt) =
exp( ayt(~xt) )∑Nlab
i=1 exp( ai(~xt) )

(2.13)

The probability of a sequence ofNseq outputs ~y is then simply the product of the probabil-
ities for each individual output yt as shown in equation 2.14. This product of exponentials
may be written as an exponent of a sum, divided by a normalization constant.

p(~y |X) =

Nseq∏
t=1

p(yt|~xt) =

Nseq∏
t=1

[exp(ayt(~xt)) / z(~xt)] (2.14)

= exp

Nseq∑
t=1

ayt(~xt)

 /

Nseq∏
t=1

z(~xt)

To model the probability of some label in position t being succeeded by another label in
position t+ 1, we introduce a new term Vyt,yt+1 in equation 2.15. Matrix V contains in
the yt’th row, yt+1’th column, the likelihood that label yt is followed by label yt+1.

p(~y |X) = exp

Nseq∑
t=1

ayt(~xt) +

Nseq−1∑
t=1

Vyt,yt+1

 / Z(X) (2.15)

The value in this is best explained using an example: Suppose our network takes images
of written characters as input, and outputs probabilities of the image being any character.
Without matrix V the network may conclude a sequence of, for example, two consecutive
I’s may be highly likely given two images that resemble an I. But in reality we know that
words in the English language rarely contain two consecutive I’s. Through training, the
network would learn to put a low probability in matrix V at the entry that represent
the letter I followed by another I.

The Normalizing Constant

The normalizing constant is computed by Z(X), and is defined in equation 2.16. Com-
puting this function in the naive way is intractable, since it involves computing Nseq

nested sums of size Nlab.
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Z(X) =
∑
y′1

∑
y′2

...
∑
y′Nseq

exp

Nseq∑
t=1

ay′t(~xt) +

Nseq−1∑
t=1

Vy′t,y′t+1

 (2.16)

A dynamic programming solution exists to compute the normalizing constant, given in
listing 2.1.

Listing 2.1: CRF Partition Function

1 function Z(X)

2 curr ←
[∑Nlab

i=1 exp(ai(~x1) + Vij)
∣∣∣ j ∈ [1, Nlab]

]
3
4 for each t ∈ [2, Nseq] do

5 prev ← curr

6 curr ←
[∑Nlab

i=1 exp(at(~x1) + Vij)× previ
∣∣∣ j ∈ [1, Nlab]

]
7 end

8

9 return
∑Nlab

i=1 exp(ai(~x1))× curri
10 end

Viterbi Algorithm

The most likely sequence of outputs ~y ∗ can be calculated, as shown in equation 2.17, by
the Viterbi algorithm (listing 2.2).

~y ∗ = arg max
~y

p(~y |X) = V iterbi(X̂) (2.17)

X̂ =
1

Z(X)
X (2.18)

For each observation t the probability of y having any label is computed, based on
the most likely previous label k. These probabilities are stored in matrix Prob. The
corresponding predecessor index k is stored in the trace-back matrix Trace. Note that
matrix V encodes transition likelihood, like explained before. Matrix X̂ contains the
likelihood of getting label i given input xt at row i, column t. When Prob and Trace
are completely filled, the most likely path of labels is selected by walking the trace-back
matrix backwards. This is visualized in figure 2.9, where the coloured lines indicate the
paths to the final states (t = Nseq).

Listing 2.2: Viterbi Algorithm

1 function V iterbi(X̂)
2 for each i ∈ [1, Nlab] do

3 Probi,1 ← InitProbi
4 end
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5
6 for each t ∈ [2, Nseq] do

7 for i ∈ [1, Nlab] do

8 Probi,t ← maxk{Probk,t−1 × Vk,i × X̂i,t}
9 Tracei,t ← argmaxk{Probk,t−1 × Vk,i × X̂i,t}

10 end

11 end

12
13 yNseq

← argmaxk{Probk,Nseq
}

14
15 for each t ∈ [Nseq, 2] do

16 yt−1 ← Traceyt,t

17 end

18
19 return ~y
20 end

Observations (t)

S
ta

te
s (i)

Figure 2.9: Viterbi Traceback Visualised

2.2.6 Residual Blocks

Adding more layers to a neural network typically increases its accuracy. Beyond a certain
point, however, accuracy drops. This is due to the fact that derivatives of the network
become smaller and smaller as the number of layers increases. This is known as the
vanishing gradient problem.

To understand the vanishing gradient problem, let us inspect the cost function of a neural
network with multiple hidden layer:

dC(θ)

dθ
=

1

Nx

∑
~x

d

dθ
C~x (2.19)

dC~x

dθ
=

∂C~x

∂a(NL−1)

(
∂a(NL−1))

∂a(NL−2)
∂a(NL−2)

∂a(NL−3)
...
∂a(1)

∂a(0)
∂a(0)

∂θ

)
(2.20)

∂a(L)

∂a(L−1)
= σ′(z(L))

∂z(L)

∂a(L−1)
(2.21)
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Figure 2.10: Plot of the derivative of the sigmoid function
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(b) Network with residual blocks

Figure 2.11: Example networks with and without residual blocks

By repeatedly applying the chain rule of differentiation, we get the partial derivative of
each layer, shown in equation 2.21, where σ′ is the derivative of the sigmoid function,
which is plotted in figure 2.10. Since each layer’s partial derivative contains a σ′, the
gradient of the cost function decays exponentially to zero. As the gradient goes closer
to zero, the steps taken in gradient descent becomes smaller and smaller, slowing down
training to the point of standstill.

One way to solve this problem is to have residual blocks in the network. In figure 2.11a
we see a neural network without residual blocks. In figure 2.11b we see the same network
but with residual blocks. By adding the input of a layer to its output, we effectively
allow signal to skip layers. The cost function of the residual net can then be written as:

dC~x

dθ
=

∂C~x

∂f (NL−1)

(
1 +

∂a(NL−1))

∂f (NL−2)

)
...

(
1 +

∂a(1)

∂f (0)

)(
1 +

∂a(0)

∂θ

)
(2.22)

f (L) = f (L−1) + a(L) (2.23)

Each factor is now at least 1, so the gradient will not go to zero, unless ∂C~x/∂f
(NL−1)

goes to zero.
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2.3 Oxford Nanopore Technologies Compatible Basecallers

There are several Oxford Nanopore Technologies (ONT) basecallers, some of which are
closed-source e.g., Albacore, Guppy, BasecRAWller, and Metrichor. These are not suit-
able candidates for acceleration, since we need access to the application source-code to
accelerate it. In addition, there are four open source ONT basecallers:

1. Nanonet;

2. DeepNano;

3. Chiron;

4. Scrappie.

Our comparison is based on a review of these basecallers published by R. Wick et al [3].

Nanonet is ONTs first neural network based basecaller, and is no longer under active
development. DeepNano [10] was developed at Comenius University, and also does not
seem to be maintained anymore. Chiron [11] was developed at the University of Queens-
land, and is based on Google’s TensorFlow: an open-source software library for machine
learning. Scrappie is ONTs research basecaller. It is completely written in C and only
relies on the BLAS library for its neural-network implementation.

2.3.1 Basecalling Accuracy

All open-source basecallers mentioned earlier are compared in terms of accuracy. Scrap-
pie implements several networks, named raw, raw R94, RGR R94, RGRGR R94, and
RNNRF R94.

Figure 2.12 shows read identities for different basecallers. This is a measure of how well
reads align to a given reference sequence. All measurements were made with the same
input data. DeepNano, Nanonet and Scrappie’s raw, and raw R94 networks perform
relatively poorly.

An arguably more important measure is how well a consensus between all reads of a
particular basecaller align to the reference. This is done by aligning all reads to the
reference. Then, where reads overlap, the best ones are selected based on their read
identity and length. The result is called an assembly, and the associated performance
metric the assembly identity. Figure 2.13 shows assembly identities. Chiron v0.3 is ahead
of most. However, note that the scale of the vertical axis goes from 98.5% to 100%.

2.3.2 Source-code Analysis

Since Nanonet and DeepNano are no longer being developed, and have relatively poor
accuracy, they will no longer be considered as candidates for acceleration. That leaves
us with several Scrappie networks, and Chiron.
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Figure 2.12: Read identities [3]

Chiron is written in Python, and relies heavily on TensorFlow. Because TensorFlow is so
heavily used, accelerating Chiron would mainly involve the acceleration of TensorFlow
functions. While TensorFlow is open-source, it is a very big and rather complicated
library. Analysing its many internal functions and abstraction layers, to then come up
with a hardware design performing the same function will most likely cost a lot of time.

Scrappie is written in C, and only relies on BLAS functions and some SSE intrinsics to
perform simple vectorized-arithmetic, matrix-vector multiplication, and matrix-matrix
multiplication. This is much easier to analyse, and subsequently design hardware for.

In Scrappie 1.4.0 (Jul. 12, 2019), support for the RGR R94 model was dropped. Figure
2.13 shows that the raw R94 model performs slightly worse than the other networks.
Mostly due to yielding reads that fail to align (0% read identity). This leaves us with
the RGRGR R94 and RNNRF R94 models. The main difference between the RGRGR
R94 and the RNNRF R94 models is in the way they decode results at the end. The
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RGRGR R94 models decode results with an algorithm that makes a lot of forewards
and backwards passes over the data. This doesn’t map well to a streaming architecture.
Each pass is similar but unique operations are performed on the data. Sharing resources
between passes is predicted to be difficult. Therefore mapping this algorithm to hardware
is expected to be inefficient.

2.3.3 Conclusion

Scrappie’s RNNRF R94 model has good accuracy and is well documented, and has
readable source-code. This makes it the best candidate for acceleration in hardware.

Figure 2.13: Assembly identities [3]

2.4 Related Work

The related work presented below consists of two parts: Neural networks accelerated
using FPGAs, and basecallers accelerated using GPUs. One additional basecalling also
deserves mention: EPI2ME [12]. EPI2ME is a cloud-based DNA analysis platform by
Metrichor, a company owned by Oxford Nanopore Technologies. They offer basecalling,
as well as secondary analysis services in the cloud, rather than a local machine. Nothing
else is known about the performance of EPI2ME.
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2.4.1 FPGA Accelerated Neural Networks

As will become clear in chapter 3, a large portion (93.9%) of time in the RNNRF R94
model is spent in GRU layers. Li et al [13] show how a GRU based recurrent neural
network can be accelerated on an FPGA using Vivado HLS [14]. In general, the network
works by loading weights into an on-chip buffer before processing input data. Matrix-
vector multiplications are tiled and mapped to smaller matrix-vector multipliers on the
chip. n by n multipliers are implemented with n parallel multipliers followed by an adder
tree. They claim a speedup of about 3.12 on a Xilinx UltraScale+ XCVU9P over an Intel
Xeon i5 CPU 650.

Another FPGA accelerated network developed by Zhang et al [15] is trained for video
content recognition. This network is similar to the RNNRF R94 model in the sense that it
also has a convolutional layer followed by recurrent layers. However, this design operates
on two dimensional input data rather than one dimensional data. Their major challenges
are in caching data on-chip to not go to off-chip memory to often. Development has been
done using HLS. Their implementation on a Xilinx Virtex-7 VC709 achieves a speedup
of 4.75X over an Intel Xeon E5-2630 CPU, and a 3.1X over an NVIDIA K80 GPU.

2.4.2 GPU Accelerated Neural Networks

One of the basecallers mentioned earlier, Chiron [11], is implemented using TensorFlow.
TensorFlow is a framework for machine learning by Google [16]. Neural Networks imple-
mented using TensorFlow can run on CPUs as well on GPUs. Chiron achieves a speed
of 2,657 bases per second on a NVIDIA GTX 1080 Ti.

Guppy is the most recent, fastest, and closed-source basecaller by Oxford Nanopore.
Not much is known about its implementation, except that they use alternating reverse
and forward GRU layers [3]. Guppy can run on GPUs to produce 1.5 million bases per
second. This is likely due to the fact that the network they implement is much smaller
then the RNNRF R9 network, or Chiron’s network.

After this thesis work was started, an successor of Scrappie has been made open-source by
ONP, named Flappie. According to Wick et al [3], Flappie can produce 14,000 bases per
second on the CPU. Flappie seems to use similar neural-networks included in Scrappie.
The biggest differences seem to be the use of Long short-term memory (LSTM) layers
instead of GRU layers, and updated decoding methods [17].

2.5 Maxeler Multiscale Dataflow Systems

Using MaxCompiler, developed by Maxeler Technologies, algorithms can be programmed
in a high-level language, called MaxJ, and mapped to hardware structures such as FP-
GAs. In the following sections, the idea behind the language, its compiler, and target
hardware platforms are explained.
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2.5.1 Dataflow Engines

Figure 2.14 shows the general layout of a Dataflow Engine (DFE). A DFE consists of an
FPGA which is connected to dedicated DRAM, and to the CPU through PCI express.
The host CPU contains a software layer called MaxelerOS, which allows the DFE to
communicate with software programs, typically written in C/C++.

MaxCompiler
White Paper

Maxeler Acceleration Technology
MaxCompiler is a compiler system for Maxeler
hardware acceleration solutions using FPGAs.
This white paper describes the components of
MaxCompiler and illustrates accelerator program-
ming using an example application.
Figure 1 sketches the architecture of a Maxeler
hardware acceleration system which equips one
or more FPGAs attached to a set of memories
and connected to a host CPU via PCI Express
channels. MaxRing interconnects (not shown in
Figure 1) establish high bandwidth communication
channels between the FPGAs on the accelerator.
Accelerating an application involves identifying the
runtime intensive parts and turning them into an
FPGA configuration. The FPGA configuration
comprises arithmetic data-paths for the computa-
tions (the kernels) and modules orchestrating the
data I/O for these kernels (the manager). Separat-
ing computation and communication into kernels
and manager is beneficial as it allows for deeply
pipelined kernels without data hazards which is
key to achieving high performance.
Speedups are further increased by exploiting par-
allelism between several independent computa-
tion pipelines within kernels and by using sev-
eral kernels. The number of pipelines and ker-
nels that can be mapped to the accelerator is lim-
ited only by the parallelism inherent in the appli-
cation and the size of the FPGA. While increas-
ing the speedup, the parallel execution of several
pipelines and kernels greatly stresses the mem-
ory system. Maxeler hardware acceleration solu-
tions deliver the required high memory bandwidth
by their customized memory architectures featur-
ing multiple memory ports and configurable mem-
ory controllers.

Development Tool Flow
Accelerating an application requires the user to de-
velop three program parts:

• Kernel(s)

• Manager configuration

• Host application

MaxCompiler includes tools to support all three
steps, the Kernel Compiler, the Manager Compiler
and MaxelerOS, Maxeler’s system for bridging be-

MaxCompilerRT

MaxelerOS

Memory

CPU

FPGA

Memory

Memory

M
em

ory

PCI Express

Kernels

*+

+

Manager

Host application

Figure 1: Maxeler accelerator architecture.

tween hardware and software. Figure 2 presents
the development tool flow with the main compo-
nents of MaxCompiler.
The developer directs both the Kernel and the
Manager Compiler by programs written in Java.
However, using the tools requires only minimal fa-
miliarity with Java. The Kernel and Manager Com-
pilers translate the kernels and the manager con-
figuration into a low-level hardware description and
target either a simulation of the design or a full
hardware build resulting in an FPGA configuration.
MaxelerOS connects the software and hardware
parts of an accelerated application and provides
the basis for C/C++ and Fortran interfaces avail-
able to the user. MaxCompiler is fully integrated
with CAD tools from the FPGA vendors to gen-
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Figure 2: Maxeler development tool flow.
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Figure 2.14: Maxeler DFE architecture

2.5.2 Dataflow Programming

Dataflow computing builds upon the idea of systolic arrays [18, 19]. Dataflow Graphs
(DFGs) are described in MaxJ: a high-level java based programming language. Max-
Compiler schedules DFGs on fixed, interconnected hardware structures on a DFE. These
structures are contained in Kernels. Kernels are internally synchronous, but communi-
cate with other hardware blocks such as other kernels and memory controllers asyn-
chronously. All the control and stalling logic for this asynchronous communication is
generated by MaxCompiler.

Motivational Example: Moving Average Filter

How all of this work together is perhaps best illustrated by example. Consider a moving
average filter defined as:

yt =
1

n

n∑
i=1

xt−i (2.24)

Suppose that we would like to implement this filter with an input xt, through which an
input value streams into the filter every time-step t. An n-point average is produced
every tick at output yt.

The kernel code for our n-point average filter is shown in listing 2.3 for the case of
n = 4. We start by defining a class that inherits from Kernel. In the constructor we first
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define inputs and outputs, which are represented by DFEVar’s. These can be thought of
as streams from which we can read data (in case of x), or to which we can write data (in
case of y). Subsequently we sum values at different times in DFEVar sum. stream.offset(

x, -i, 0.0) gets a value at an offset in stream x, namely at point −i. i.e.: from i ticks
ago, which effectively equals xt−i. The last parameter (0.0) to stream.offset is the value
returned when t− i becomes negative. Lastly we stream out sum

n to y, indicated by the
arrow operator (<==).

Figure 2.15 shows the Data Flow Graph (DFG) that is generated from listing 2.3. The
stream offsets are represented by diamond shapes containing the amount of ticks to
offset the stream by. When this graph is compiled to a hardware implementation, we
can imagine these shapes to be replaced by registers to delay the input stream x.

-1 -2

+ +

x

-3

+ y÷

'4'

Figure 2.15: Average Filter DFG

Listing 2.3: Average filter kernel code

1 public class AvgFilterKernel extends Kernel {

2 public AvgFilterKernel(final KernelParameters parameters) {

3 super(parameters);

4 final int n = 4;

5 DFEVar x = io.input("x", dfeFloat(8, 24));

6 DFEVar y = io.output("y", dfeFloat(8, 24));

7
8 DFEVar sum = x;

9 for(int i = 1; i < n; ++i) {

10 sum += stream.offset(x, -i, 0.0);

11 }

12
13 y <== sum / n;

14 }

15 }

Our kernel is instantiated and connected to PCIe input, and PCIe output in another
class, which is known as a manager. The manager code is presented in listing 2.4. In
the manager constructor the kernel is first instantiated, and subsequently connected to
streams from/to the CPU through PCIe.

Listing 2.4: Average filter manager code

1 public class AvgFilterManager extends MAX5CManager {

2 public AvgFilterManager(EngineParameters params) {
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3 super(params);

4
5 KernelBlock avgKernel = addKernel(new AvgFilterKernel(

6 makeKernelParameters("AvgFilterKernel")));

7 avgKernel.getInput("x") <== addStreamFromCPU("x");

8 addStreamToCPU("y") <== avgKernel.getOutput("y");

9 }

10 }

From the MaxJ code, a DFE configuration is generated, along with some c-code to
interface with the average filter from the CPU side through Maxeler’s proprietary driver
software, called MaxelerOS. Listing 2.5 shows some example c-code that can be used to
stream input values into our average filter, and obtain the results with a single call to
the generated function AvgFilter. AvgFilter takes as arguments:

1. The amount of ticks to run for,

2. input data for input x,

3. the size of the input data for input x,

4. a pointer to memory for output data from y, and

5. the expected size of data obtained from y.

Calling this function runs the DFE on the input data, and returns when it’s finished
producing all output data. There is also an asynchronous interface, but that is out of
the scope of this example.

Listing 2.5: Average filter CPU side code

1 #include "AvgFilter.h"

2
3 int main(void) {

4 const size_t n = 16;

5 float x[n];

6 float y[n];

7 size_t i;

8
9 for(i = 0; i < n; ++i) {

10 x[i] = i;

11 }

12
13 AvgFilter(n, x, n*sizeof(float), y, n*sizeof(float));

14
15 for(i = 0; i < n; ++i) {

16 printf("y[%lu] = %f\n", i, y[i]);

17 }

18
19 return 0;

20 }
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Finite State Machines

Finite State Machines (FSMs) can be implemented in MaxJ to control compute paths in
kernels. This is done by deriving a class from KernelStateMachine, and implementing the
methods updateState and setOutput. An example FSM implemented in MaxJ is shown
in listing 2.6. This example FSM has an input i_reset, an output o_count, and internal
state variables s_state and s_counter.

Listing 2.6: Example FSM code

1 class UpDownCounterFSM extends KernelStateMachine {

2 ...

3 @Override void updateState () {

4 IF(i_reset) {

5 s_counter.next <== 0;

6 s_state.next <== State.COUNTING_UP;

7 } ELSE {

8 SWITCH(s_state) {

9 CASE(State.COUNTING_UP) {

10 IF(s_counter === m_counterMax) {

11 s_state.next <== State.COUNTING_DOWN;

12 s_counter.next <== s_counter - 1;

13 } ELSE {

14 s_counter.next <== s_counter + 1;

15 }

16 }

17 CASE(State.COUNTING_DOWN) {

18 IF(s_counter === m_counterMin) {

19 s_state.next <== State.COUNTING_UP;

20 s_counter.next <== s_counter + 1;

21 } ELSE {

22 s_counter.next <== s_counter - 1;

23 }

24 }

25 }

26 }

27 }

28
29 @Override void setOutput () {

30 o_count <== s_counter;

31 }

32 }

2.5.3 Memory Controller

In addition to streaming data from/to PCIe connections, kernels may also stream data
to/from on-card DRAM. In MaxJ, DRAM is accessed by instantiating a Memory Con-
troller Pro (MCP) block, which is assigned any amount of available DIMMs. Using the
MCP, read and write ports can be instantiated. Both the read and write ports take a
stream of commands, which describe what range of memory addresses to read or write.
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Figure 2.16 shows an overview of the MCP and its connected parts. Each of the port
blocks can be either a read or write port. How the MCP and read-/write ports work,
will be explained in the following sub-sections.

The MCP arbitrates the read and write ports, and talks to vendor specific ip-cores to
talk to the DIMMs. In case of the MAX5C, these are the Memory Controller Interface
(MCI) blocks, which are wrappers around Xilinx ip-cores that talk to the DIMMs.

SLR0

DIMM

MCI

Port Port

SLR1

DIMM

MCI

Port Port

SLR2

DIMM

MCI

Port Port

MCP MCP

Figure 2.16: Memory Controller Pro (MCP)

Read/Write Ports

Read ports have the following streams connected to them:

• Commands (in);

• Data (out);

• Echoes (out, optional).

Operation is straightforward: The read port receives commands, reads the data, which
is then streamed out.

Write ports have the following streams connected to them:

• Commands (in);

• Data (in);

• Echoes (out, optional).

Data is streamed in and written to the address range described by the command stream.

Optionally the read and write port can produce echoes. An echo is produced by the port
when a command that has the SendEcho bit set is fully processed, i.e.: When it’s data is
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PCIe (full-duplex) DRAM

3 GB/s 45 GB/s

Table 2.1: MAX5C Data rates

BRAM URAM DRAM

9.3 MB 32 MB 45 GB

Table 2.2: MAX5C Storage capacity

LUTs FFs BRAMs URAMs DSPs

1,182,240 2,364,480 4,320 960 6,840

Table 2.3: MAX5C Resources [4]

fully read from, or written to DRAM. Echoes can be configured to either be copies of
the originating command, or just a single bit.

Command format

Commands streamed to the read/write ports have the following format:

• SendEcho (1 bit);

• Address (31 bits);

• Size (8 bits);

• Inc (8 bit);

• Stream (15 bits);

• Tag (1 bit).

Each command will make a port read/write Size amount of bursts, starting at address
Address with an increment of Inc between each burst address. Note that Address, Size,
and Inc are all expressed in bursts of 512 bits per DIMM.

If SendEcho is set, a copy of the command will be sent over an echo stream as a means of
acknowledging that the command has been processed. Optionally, a single high bit can
be streamed instead of a copy of the command. If Tag has been set, an interrupt will be
sent to the CPU, to let the host program know that the command has been processed.
The difference between SendEcho and Tag is that the former is used by kernels, whereas
the latter is used by the host CPU program. The Stream field can be used to multiplex
the command-stream between multiple ports, but this is not used in this work.

2.5.4 MAX5C Dataflow Engine

MaxCompiler can target several different FPGA based platforms. The target platform
used in this work the MAX5C. The MAX5C is a card developed by Maxeler that is
connected through PCIe to the motherboard. At the heart of the MAX5C is the Virtex
Ultrascale+ VU9P FPGA from Xilinx [4]. The VU9P consists of three dies, called Super
Logic Regions (SLRs), in a single package. Additionally, the MAX5C card incorporates
a large amount of on-card DRAM (called Large Memory or LMEM in the Maxeler tools).
Resources, bandwidths, and storage capacities are shown in tables 2.1, 2.2 and 2.3.
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Configurable Logic Blocks

The VU9P contains 147, 780 Configurable Logic Blocks (CLBs). Each CLB contains 8
Look-up tables (LUTs), and 16 flip-flops. The LUTs can be configured to have 1 output
and 6 inputs, or 2 outputs with 5 common inputs. CLBs also contain multiplexers
and carry generation logic to implement e.g., adders. CLBs are mostly used for logic,
addition, and divider circuits.

Digital Signal Processing Blocks

Digital Signal Processing (DSP) blocks contain 27 by 18 bit multipliers, followed by a
48 bit accumulator. One of the multiplier inputs also contains a 27 bit pre-adder. DSPs
are mostly used to implement multipliers.

On-chip Memory

The VU9P has two types of on-chip memory: Block RAMs (BRAMs), and UltraRAMs
(URAMs). These are refered to in the Maxeler tools as Fast Memory (FMEM). BRAMs
can be configured as 32k × 1, 16k × 2, 8k × 4, 4k × 9, 2k × 18, 1k × 36, or 512 × 72.
BRAMs can be used as a FIFO or a RAM with up to two write ports, and two read
ports. In addition, a BRAM block can be configured as two completely independent 18
kb memory blocks, called BRAM18’s. MaxCompiler counts memory as BRAM18 blocks
in its resource utilization reports.

UltraRAMs are a much bigger on-chip memory, with a capacity of 4K × 72 bits. In
addition, URAMs have a single read port and a single write port and cannot be used to
cross clock domains.

Dynamic Random Access Memory

The MAX5C contains three DIMMs of on-card DRAM, directly connected to the VU9P.
Each DIMM has a capacity of 16 GB, for a total of 48 GB.

2.6 Design Methodology

Over the years, a methodology for the design of data-flow applications using DFEs has
been developed [20]. The primary goal of this methodology is to do perform design
space exploration early at a high abstraction level to prevent spending a lot of time
and resources to develop an architecture that will not fit, not meet timing, or will not
provide satisfactory speedup. In this section we briefly discuss the most important steps
and techniques this method offers.

Figure 2.17 shows the five major parts and how they interact with each other.
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(1) Analysis

(a) Create hardware/software
partitioning

(2) Software Model

(3) Forecast System
Characteristics

(4) Architecture
Optimizations

(5) Hardware
Implementation

(b) Measure profiling results

(c) Refine model

(d) Define what to model

(e) Determine bottlenecks

(f) Refine architecture

(g) Start implementation
when all bottlenecks are

resolved

Figure 2.17: Design methodology breakdown and its five parts and seven steps

1. Analysis of target application;

2. Software modelling of the intended hardware design;

3. Predicting performance and resource utilization;

4. Development of hardware architecture;

5. Hardware Implementation.

The starting point in this process is step 1: Analysing the original program/algorithm,
in order to develop a software model of your architecture. However, the software model
is also needed to analyse the target program/algorithm. Further analysis of the software
model is done to refine the architecture, which in turn causes the need to update the
software model. The performance of the actual hardware implementation is calculated
in a performance model. In the performance model the speed and area usage of the final
implementation are approximated, before starting work on the actual implementation.
These steps can be iterated upon until a design is obtained that meets its requirements.
One thing that is not captured in figure 2.17, is the constant verification between software
model, hardware implementation, and performance model.

2.6.1 Application Analysis

The target program is benchmarked to identify compute-intensive tasks that should be
accelerated. This allows us to partition the program into a software and hardware part.
When partitioning the program it is also important to predict or measure the amount
of data that will be streamed between the DFE and CPU, and between the reconfig-
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urable chip and the off-chip memory on the DFE. This is to ensure that application-level
performance is not bottle-necked by PCIe/LMEM read/write speed.

Information should be collected about the DFE part in terms of data movement, number
of compute-operations, and in what order they are to be executed. In addition, data
movement between the DFE and off-chip memory should be carefully analyzed.

2.6.2 Software Model

The software model is essentially a re-implementation of the target application, where
the DFE part is written not for speed, but to represent the intended hardware imple-
mentation. The software model can be used to verify correctness of the design, to test
and to debug the DFE implementation in later stages.

2.6.3 Performance Model

With an initial design, a performance model can be constructed. In the performance
model, runtime and area usage are estimated. Because FPGAs consist of fully pre-
dictable building blocks, it is possible to model performance accurately without the need
for implementing and benchmarking your design. This allows for rapid design space ex-
ploration. Once a satisfactory design is obtained, the software model should be updated.

2.6.4 Hardware Implementation

Once the performance model indicates satisfactory performance, the hardware imple-
mentation can be started. While developing the hardware implementation, correctness
should continuously verified with the software model. In addition, resource utilization
and performance characteristics can be checked against the performance model.
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An overview of Scrappie’s RNNRF R94 network is given in figure 3.1. Data streams
through the network, one step at a time. Each edge in the diagram is annotated with
the width of the data flowing from one layer to the next. The raw sequence is read
from a file generated by an ONP sequencing device, and are streamed into the network.
Sequencing samples are streamed into a convolutional layer, which creates 112 features
per input element.

The stream of feature-vectors produced by the convolutional layer is passed to a sequence
of five GRU layers. The five GRU layers alternate between reading data streams forwards
and backwards, with the first one reading backwards. This means that all data from the
convolution layer, and each GRU layer must be processed entirely before the next layer
can begin, since it needs the last vector from the previous layer first.

After the final GRU layer, a feed-forward layer with 112 input neurons and 25 output
neurons creates a stream of size 25 vectors. These output vectors are interpreted as 5
by 5 matrices for use in the CRF decoding step, which follows next.

A modified CRF decoder is used to produce labels, which are represented by a stream
of integers. There are 5 possible labels: A, T, C, G, and b. A, T, C and G represent the four
nucleotides of DNA. The b label is the blank label. It is taken to mean ‘No change’.
In the Viterbi algorithm explained in section 2.2.5, a series of observations (matrix X),
and a transition probability matrix V are used to find the most likely sequence of labels
for the input data. In the RNNRF R94 network a slight variation is used. Instead of
a constant transition matrix V , there is one transition matrix Vt per time-step. These
matrices come from the previous layer. The X matrix is left out completely. Since
matrix X is left out, a normalization step for it is not needed, but the Vt matrices do
need to be normalized, so a normalization layer is still present.

The modified Viterbi algorithm layer produces a sequence that still contains blank labels.
To get the final result we simply remove all the blank labels in the sequence of labels.

In subsequent sections, we will characterize the performance of the CPU implementation
of this network in terms of speed and data movement.

3.1 Software & Hardware Partitioning

The original software implementation of Scrappie has been benchmarked in order to
obtain the time spent computing the results of each neural-network layer, and subsequent

29
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Figure 3.1: RNNRF R94 Model

decoding steps. The result of this is visible in table 3.1. The GRU layers take by far the
most time (93.87%), and is the only type of layer that should be accelerated considering
just the amount of time taken per layer.

Suppose we would accelerate just the GRU layers on the DFE. Data would enter and
leave the GRU layers through PCIe streams. From figure 3.1 we can see that GRU
layers take streams of vectors of 112 elements, and produce vectors of the same size. If
we assume a clock frequency of fclk = 300MHz, 1 DSP per multiplication, and 32 bits
per element, then the amount of elements that can be streamed in/out of a GRU layer
is given by equation 3.1. Note that PCIe bandwidth in both directions simultaneously
for a MAX5C is 24 Gb/s.
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Layer Single-threaded
time (seconds)

Multi-threaded
time (seconds)

% Of total
time

Convolutional Layer 7.09 1.12 1.46%
GRU Backwards / Forwards 455.11 52.51 93.87%
Feed-forward 3.68 0.58 0.76%
CRF Partition 17.49 2.77 3.61%
CRF Normalize 0.19 0.03 0.04%
Decode CRF (Viterbi) 1.25 0.20 0.26%

Total 484.82 76.86

Table 3.1: Profiling results and derived metrics

BandwidthPCIe = n×BitsPerElem× fclk (3.1)

⇒ n =
BandwidthPCIe

BitsPerElem× fclk
= 2.5 Elements/tick

In chapter 4, where the performance model is described, it becomes clear that the amount
of DSPs is the limiting factor in terms of hardware resources. From section 2.2.4 we know
that we need Nmatmul = 6 square matrix-vector multipliers, which will make up the bulk
of the computations of this layer. An m × m matrix-vector multiplication takes m2

multiplications per input vector of size m. If we process n < m elements per clock-tick,
rather than the whole vector, we need m ×Nmatmul multipliers per element, hence the
amount of DSPs needed is given by n×m×DspsPerMult×Nmatmul.

In the RNNRF R94 network, m = 112. If we assume 1 DSP per multiplication, and
we use all DSPs on the MAX5C (Ndsp = 6,840), then the amount of elements n we can
stream in/out is given by equation 3.2.

n =
Ndsp

Nmatmul ×m
(3.2)

≈ 10.18 Elements/tick

From equations 3.1 and 3.2 it is clear that we would be bottlenecked by PCIe speed.
Therefore it is advantageous to implement more layers on the DFE, if only to reduce the
input and output bandwidth requirements. The GRU layer would still have the same
bandwidth requirement, but would read from / write to DDR instead of PCIe, which
supports much higher bandwidths.

The layer before the GRU layers is the convolutional layer. It produces data of width
112, but only takes a single input element, thus effectively having a factor 112 lower
input rate. This would remove the PCIe bottleneck on the input side completely.

Similarly, the feed-forward layer after the final GRU layer compresses data by a factor
112
25 = 4.48, resulting in an output rate of approximately 2.27 elements/tick. We could
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further reduce the output rate by implementing (part of) the Viterbi algorithm, which
could reduce output size by another factor of 25, for an overall reduction of a factor 112
compare to the GRU layer output rate. The Viterbi algorithm has not been accelerated
in this work, due to the simple fact that it would take too much time to implement.

In the next chapter (chapter 4) the performance of the layers is modeled in more detail.

3.2 High-Level Design

To understand the manager-level design, let us first examine the steps the hardware has
to perform to implement the network:

1. Stream data from the CPU through the convolutional layer, to DDR;

2. Stream data from DDR through a GRU layer, to DDR again. This step is repeated
five times;

3. Stream data from DDR through the feed-forward layer, to the CPU.

Note that these are consecutive steps, therefore none of the layers run concurrently.

Figure 3.2 gives an overview of the manager-level design. The layer implementations
reside in the neural network kernel (red), which communicates with the CPU and DDR.
Since data from DDR has to be read in reverse order in the even numbered GRU layers,
data reordering kernels are added, which reorder bursts of data received from DDR before
they are forwarded to the neural network kernel. Read/write addresses for the DDR are
generated by the read- and write address generator kernels. The address generator
kernels are controlled by sending instructions from the CPU over PCIe, shown here in
green. The CPU and neural network kernel both need to be able to write to DDR, so
a write kernel is put into place to multiplex the corresponding data streams. Each of
these blocks will be explained in more detail in chapter 5.

3.2.1 Application of the Design Methodology

The performance aspects of the design were first modeled, the results of which are pre-
sented in chapter 4. Subsequently, the complete design is modeled in software. This
means that the layers that are accelerated have been rewritten to more closely resemble
their hardware implementation. The software model was tested for functional correct-
ness with the original application. Hardware blocks were gradually developed, and tested
against the software model implementations in simulation. The final hardware imple-
mentation was tested against the software implementation in simulation, and ultimately
in hardware.

The performance model will be discussed in the next chapter (chapter 4), and hardware
implementation details in chapter 5. The accuracy of predicated performance will be
evaluated in chapter 6.
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Performance Model 4
Before starting hardware implementation, system performance has been modeled in
terms of throughput, area utilization, and IO bandwidth utilization. We will consider
each layer separately in the following sections. In the last section we will combine all
information obtained in earlier sections to estimate how many copies of the design can
be instantiated on the chip. Total system performance can then be estimated.

4.1 Area Utilization

In this section, the area cost in terms of lookup tables (LUTs), flip-flops (FFs), Block
RAMs (BRAMs), and Digital signal processing blocks (DSPs) is estimated. We will do
so first for all major components individually, and add up the total in the end.

Some resources (except DSPs) will be used by MaxCompiler to generate logic, e.g.:
control logic, FIFOs between kernels, the MCP, PCIe controller etc. Experience has
shown that reserving about 20% of the chip (excluding DSPs) for compiler generated
logic is sufficient.

4.1.1 Elementary Blocks

There are some elementary modules (e.g., FIFOs, serial to parallel converters) and opera-
tions (e.g., additions, multiplications) that are used to build most of the hardware needed
for the neural network. The resource costs associated with each of these is approximated
by synthesis of a small representative design, or with an analytical formula.

Arithmetic Operations

Addition/subtraction, multiplication and division operations have been synthesized with
27-bit integer operands to get an approximation of the resources used per operation. 27-
bits were chosen since this seemed a reasonable upper bound to the amount of bits used
in the internal fixed point format at the time. Table 4.1 shows the cost of each type of
arithmetic operation.

35
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LUTs FFs BRAMs DSPs

Addition / subtraction 27 28 0 0
Multiplication 6 17 0 2
Division 824 4,702 0 0

Table 4.1: Resource costs per elementary operation

LUTs FFs BRAMs DSPs

Exponential function 4,653 9,477 9 54

Table 4.2: Exponential function area utilization

On-chip Memory

On-chip memory is implemented using BRAMs, which have a total size of roughly 18Kb.
BRAM usage is approximated using equation 4.1.

BRAMs ≈
⌈

BitsUsed

BitsPerBRAM

⌉
(4.1)

Serial to Parallel & Parallel to Serial

MaxCompiler lists only flip-flops as being used for serial to parallel converters. It might
be the case that it uses part of the LUTs in the same CLB, but the tools do not report
anything on it. Cost is approximated using equation 4.2.

FFs ≈ BitsUsed (4.2)

Parallel to serial converters are used a lot with an extra register so the parallel output
can be held for multiple ticks while new inputs are already shifted in. This effectively
doubles the cost. Otherwise the cost is the same as in equation 4.2.

Exponential Function

Exponential functions used in this design only operate on IEEE single precision floats.
As such, an exponential unit that takes and produces floats is synthesized to approximate
its cost, as shown in table 4.2.

4.1.2 Matrix-vector Multipliers

We need six 112× 112 matrix-vector multipliers, of which one is shared among multiple
layers. The cost of a single 112 × 112 matrix-vector multiplier is given in table 4.3.
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LUTs FFs BRAMs DSPs

112 multiplications 672 1,904 0 224
112 additions 3,024 3,136 0 0

Total 3,696 5,040 0 224

Table 4.3: Matrix-vector multiplier area utilization

LUTs FFs BRAMs DSPs

5 Serial to parallel convertors 0 15,120 0 0
5 streamHolds 0 15,120 0 0
16 to 112 serial to parallel 0 3,024 0 0
112 wide streamHold 0 3,024 0 0
1 to 112 serial to parallel 0 3,024 0 0
112 wide streamHold 0 3,024 0 0
11 wide MUX 297 0 0 0
112 wide MUX 3,024 0 0 0

Total 3,321 42,336 0 0

Table 4.4: Selection logic area utilization

The total cost of all matrix-vector multiplier is predicted by simply multiplying these
amounts by six.

The cost of the selection logic for the shared matrix-vector multiplier are approximated
analytically using the equations discussed before. The resulting area utilization is given
in table 4.4. The total resource utilization of 6 matrix-vector multipliers and selection
logic is given in table 4.5.

4.1.3 Weight & Bias Memory

The weight and bias memory sub-system contain three bias memory blocks, and six
weight memory blocks.

In addition, six serial to parallel converter and a parallel to serial converter are needed
to convert the input stream from DDR to the correct width of the memories. The cost
all of these components is given in table 4.6.

LUTs FFs BRAMs DSPs

6 Matrix-vector multipliers 22,176 30,240 0 1,344
Selection logic 3,321 42,336 0 0

Total 25,497 72,576 0 1,344

Table 4.5: Matrix-vector multipliers + selection logic total cost
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LUTs FFs BRAMs DSPs

6x weight memory 0 0 114 0
3x bias memory 0 0 3 0
Parallel to serial 0 3,024 0 0
6x serial to parallel 0 18,144 0 0

Total 0 21,168 117 0

Table 4.6: Weigh & bias memory area utilization

LUTs FFs BRAMs DSPs

5 Additions / subtractions 135 140 0 0
3 Multiplications 18 51 0 6
3 Exponential functions 13,959 28,431 27 162

Total 14,146 28,746 27 168

Table 4.7: GRU Layer resource utilization

4.1.4 GRU & Residual Layers

Most of the cost of the GRU layer is in the matrix-vector multipliers, which are not
counted here. All other operations are either addition, subtraction, multiplications,
divisions or exponential functions.

We simply count all the elementary operations in the GRU layer (excluding matrix-vector
multiplications), and the residual addition to get an estimate of its resource utilization,
which is shown in table 4.7.

4.1.5 Convolutional Layer

The convolutional layer uses a single matrix-vector multiplier, the cost of which is not
counted here. The window selection logic consists mainly of a set of multiplexers and a
FIFO. Resource usage for these parts is calculated as follows:

LUTsmux ≈ BitsPerElem×WindowSize (4.3)

FFsFIFO ≈ BitsPerElem× ILD (4.4)

Where BitsPerElem is the amount of bits of the internal fixed point type (27),
WindowSize is 11, and ILD is the interleave degree (5). The actual cost is shown
in table 4.8.

4.1.6 Feed-forward Layer

All resource costs associated with the feed-forward layer are considered part of the shared
matrix-vector multiplier, and are given in the corresponding section.
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LUTs FFs BRAMs DSPs

Multiplexers 297 0 0 0
FIFO 0 1,485 0 0

Total 297 1,485 0 0

Table 4.8: Convolutional layer cost

LUTs FFs BRAMs DSPs

Multiplexer 512 0 0 0
Burst memory 0 0 1 0

Total 512 0 1 0

Table 4.9: Reorder kernel resource utilization

4.1.7 Reorder Kernel

The reordering kernel consists mainly of a memory capable of storing two complete size
112 vectors, and a burst-size (512 bits) width multiplexer. Total predicted resource
utilization for the reorder kernel is given in table 4.9.

4.1.8 Overall Area Utilization

Area utilization of all parts are added up in table 4.10, along with percentages of total
resources used. These numbers will be used in section 4.5 to estimate how many instances
of the design can be put on the chip to run in parallel.

4.2 Bandwidth Utilization

This section presents the input and output bandwidth utilization of the different layers
in the network. We will characterize PCIe and DDR input/output rates per layer in the
following sub-sections. In the end, we will summarize the resulting bandwidths.

LUTs FFs BRAMs DSPs
Matrix-vector multipliers 25,497 (2.16%) 72,576 (3.07%) 0 (0%) 1,344 (19.65%)
Weight & Bias Memories 0 (0%) 21,168 (0.9%) 117 (2.71%) 0 (0%)
GRU & Residual Layers 14,112 (1.19%) 28,622 (1.21%) 27 (0.63%) 168 (2.46%)
Convolutional Layer 297 (0.03%) 1,485 (0.06%) 0 (0%) 0 (0%)
Reorder Kernel 512 (0.04%) 0 (0%) 1 (0.02%) 0 (0%)
Total 40,418 (3.42%) 123,851 (5.24%) 145 (3.36%) 1,512 (22.11%)

Table 4.10: Total area utilization
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4.2.1 Convolutional Layer

The convolutional layer reads data from PCIe, and writes results to DDR. Recall that
the convolutional layer performs the function:

~y = W~k + b (4.5)

~y is Ny × 1 (112× 1)

W is Ny ×Nk (112× 11)

~k is Nk × 1 (11× 1)

One element of the feature vector ~y is produced every tick, which means a new window
~k should be ready every 112 ticks. A window is updated by shifting one element into
the previous window. Therefore, the input bandwidth needed is given by equation 4.6.
The output bandwidth is given by equation 4.7.

PCIein =
1

Ny
× bitsPerElem× fclk (4.6)

DDRout = 1× bitsPerElem× fclk (4.7)

4.2.2 GRU & Residual Layer

The GRU layer takes a single element, and produces a single element each tick. Its input
and output bandwidth are therefore straightforward, and are given by equations 4.8 and
4.9. Note that the maximum bandwidth between the input and output to/from DDR is
shared. The total bandwidth is the sum of the two (equation 4.10).

DDRin = 1× bitsPerElem× fclk (4.8)

DDRout = 1× bitsPerElem× fclk (4.9)

DDRtot = DDRin +DDRout (4.10)

4.2.3 Feed-forward Layer

The feed-forward layer reads data from DDR and writes to PCIe. The layer performs
the following computation:

~y = W~x+ b (4.11)

~y is Ny × 1 (25× 1)

W is Ny ×Nx (25× 112)

~x is Nx × 1 (112× 1)
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PCIe in (Mb/s) PCIe out (Mb/s) DDR total (Mb/s)

Convolution 68.12 (0.3%) 0 (0%) 7,629.39 (2.22%)
GRU 0 (0%) 0 (0%) 15,258.79 (4.44%)
Feed-forward 0 (0%) 7,629.39 (33.33%) 34,179.69 (9.96%)

Max 68.12 (0.3%) 7,629.39 (33.33%) 41,809.08 (12.18%)

Table 4.11: PCIe/DDR Bandwidth utilization per layer

As discussed in the implementation section of this layer, one element is produced every
tick, and Nx

Ny
elements is read every tick. Input and output badwidth can therefore be

calculated using equations 4.12 and 4.13.

DDRin =
Nx

Ny
× bitsPerElem× fclk (4.12)

PCIeout = 1× bitsPerElem× fclk (4.13)

4.2.4 Bandwidth per Layer

The PCIe/DDR bandwidths of each layer is summarized in table 4.11. The last row
of the table is the maximum bandwidth among all layers. This information is used in
section 4.5 to estimate how the design will scale with multiple instances.

4.3 Memory Utilization

4.3.1 Weight & Bias Memory Utilization

Weights and biases are stored in DDR and are loaded into on-chip memory before a layer
starts processing sequence data. Each layer will need at most 6× 112× 112×BPE bits
of weight memory, and 3× 112×BPE bits of bias memory, where BPE is the amount
of bits per element in memory (32). This adds up to a total of 2.4Mb + 10kb ≈ 2.4Mb
of memory.

4.3.2 Layer Memory Utilization

At any time, only one layer is actively processing data. Data of the layer preceding layer
must be kept in memory until the active layer finishes processing. The active layer can
also produce data and write it to DDR. For each layer, we can compute the memory
utilization using equation 4.14. In this equation ILD is the interleave degree (5), and
BPE is the amount of bits per element (32). win and wout are the input and output
vector widths respectively. Since ILD sequences are interleaved, n is the length of the
longest of these sequences.
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Mlayer(n,win, wout) = n× ILD ×BPE × (win + wout) (4.14)

Mconv(n) = Mlayer(n, 0, 112) (4.15)

MGRU (n) = Mlayer(n, 112, 112) (4.16)

MFFL(n) = Mlayer(n, 112, 0) (4.17)

Equations 4.15–4.17 show the memory usage per layer. Note that the width of the input
to the convolutional layer and the output of the feed-forward layer have been set to zero,
since the data associated with these inputs/outputs are not stored in DFE memory, but
are streamed through PCIe. It is clear that the GRU layer will be the limiting factor.
To obtain the maximum sequence length, we solve MGRU = 48GB − 2.4Mb for n, and
obtain a maximum sequence length of nmax ≈ 10,714,218.

4.4 Throughput Prediction

4.4.1 Throughput per Layer

The network receives a raw sequence as input of length n. For each sample, a vector of
a layer-specific size is produced by any layer. In general, the amount of time spent by a
layer to produce all its output vectors (and thus its total runtime) is given by equation
4.18. In this equation n is the sequence length, fclk is the compute kernel clock frequency,
and TPO is the amount of clock ticks spent to produce a single output vector.

From our general equation, we can derive time spent for each layer, and the total amount
of time spent by the network on a sequence of length n. These are shown in equations
4.19–4.22.

Tlayer(n, TPO) = n× TPO

fclk
(4.18)

Tconv(n) = Tlayer(n, 112) (4.19)

TGRU (n) = 5× Tlayer(n, 112) (4.20)

TFFL(n) = Tlayer(n, 25) (4.21)

TDFE(n) = Tconv(n) + TGRU (n) + TFFL(n) (4.22)

Of the total time spent processing a sequence, we can derive the percentage of time
spent for each layer. Because the run-time of each layer is linear with respect to n, these
simplify to constant percentages as shown in equations 4.23–4.25.
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Tconv% =
100%× Tconv(n)

TDFE(n)
≈ 16.07% (4.23)

TGRU% =
100%× TGRU (n)

TDFE(n)
≈ 80.34% (4.24)

TFFL% =
100%× TFFL(n)

TDFE(n)
≈ 3.59% (4.25)

4.5 Total Resource Utilization Estimate

The FPGA on the MAX5C contains multiple SLRs as discussed in section 2.5.4. Because
SLR crossings are costly, and 1 DIMM is connected to each SLR, it is a good idea to
instantiate the entire design one or more times per SLR.

Table 4.12 shows resource utilization, bandwidth utilization per layer, and a speedup
compared to the profiling results in chapter 3. Taccel is the predicted time that the DFE
part of the application takes (in seconds). Saccel is the speedup of the accelerated part
over the same layers in software. Stot is the speedup of the complete accelerated system
compared to the original software implementation, and is approximated as follows:

Stot =
Taccel + Tprof,tot − Tprof,accel

Tprof,tot
(4.26)

where Tprof,tot is the total runtime of the profiling run and Tprof,accel is the runtime of
the part that is to be accelerated of the profiling run.

The feed-forward layer is bottle-necked by the PCIe output bandwidth at more than 3
instances, indicated by the percentages marked in red. Overall, the design is limited by
the amount of DSP blocks available at 4 or more instances. For an initial implementation,
we chose to instantiate 3 copies of the design, yielding a predicted speedup of 3.31 times.
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Table 4.12: Resources utilization for varying number of instances



Hardware Implementation 5
In this chapter, we will present hardware implementation of the complete system in
detail. In addition, we will discuss the software side of the system, namely reading
sequence data and streaming it do the DFE, and streaming the result from the final
layer back to the CPU.

5.1 Neural-Network Kernel

Figure 5.1 shows how the different layer implementations are connected to inputs and
outputs. The first layer is the convolutional layer. Data is sent from the CPU through
PCIe directly into the convolution layer. Convolution results are written to LMEM. The
subsequent GRU layers read from, and write to LMEM. After the final GRU layer, the
feed-forward layer reads data from LMEM and writes output data directly to the CPU
through PCIe.

Additionally, there is an on-chip memory block that is initialized with weights and biases
from LMEM just before any of the layers start processing data.

Not shown here is the control logic, and the shared matrix-vector multiplier. Control
logic is implemented as a finite state machine (FSM). The relevant parts of the FSM are
explained in their respective sections. Matrix-vector multipliers are used by all layers.

Weight 
memory 

Convolution 
layer 

GRU 
layer 

Feed-forward 
layer 

DDR input 0 DDR input 1 PCIe input 

PCIe output DDR output 

Bias 
memory

Figure 5.1: Neural-network kernel internal organization

45



46 CHAPTER 5. HARDWARE IMPLEMENTATION

5.1.1 General Layer Operation

All layers roughly take the following steps:

1. Read weights & Read biases;

2. Stream data through computation pipeline;

3. Flush.

Recall that many layers perform linear transformations (y = Wx), or affine transforma-
tions (y = Wx+ b), with constant weight matrices W and bias vectors b. These weights
and biases should be loaded into the on-chip weight/bias memory before the layer that
needs them can begin computation.

All weights and bias vectors are written to DDR by the CPU once. After that, Each
time a different layer start processing, the neural network kernel will read weights and
biases from DDR and store them in the on-chip weight/bias memory.

When weights and biases are loaded, computation can start. What happens here is
different per layer, and will become clear in subsequent sections.

When a layer finishes processing, all data is flushed from the kernel before the next layer
starts. To see why flushing is necessary, we consider the alternative: Suppose a layer
(layer 1) is processing input data, and is writing output data at the same time. When
layer 1 finishes, some data will still be in the internal pipeline of the neural network
kernel. The next layer (layer 2) wants to start reading data, but has to wait for layer
1 to write all its output data. Layer 1 will never write its output data because no new
data is entering the pipeline, since layer 2 is waiting. This results in a deadlock. The
solution is to flush data from the pipeline after any layer finishes processing.

5.1.2 Weight & Bias Memory

Figure 5.2 shows a diagram of the bias and weight memory system. There are three
bias memory blocks, and six weight memory blocks. Bias memory is one element wide,
whereas weight memory is 112 elements wide to match the 112 by 112 matrix-vector
multiplier input. Data from DDR arrives in the neural network kernel in bursts of 16
elements. Six serial to parallel converters, and one parallel to serial converter convert
the data to the correct width. All bias memories share the same write address, and the
same read address. Same goes for the weight memories. Read addresses are generated
by layer specific control logic. Write addresses are generated by the weight and memory
programming logic, which will be explained shortly.

Not shown here are several other control signals. The weight memory blocks are each
connected to a write enable line, contained in bit-vector weightMemoryEnables, where
weightMemoryEnables[i] write-enables the i’th memory block. The bias memories have
similar control signals, called biasMemoryEnables. In addition, the serial to parallel con-
verter has an enable signal serialToParallelEnable.
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Figure 5.2: Weight & bias memory

Programming the Weight Memory

Listing 5.1 shows the pseudo-code used to control the programming of the weight memory.
Memory blocks are programmed in sequence. For each memory block, rows are written
one after another. for each row, we have to wait burstsPerRow = 7 ticks until an entire
weight matrix row is in the serial to parallel register.

Listing 5.1: Weight memory programming control

1 for weightMemIndex = 0...weightMemCount do

2 for rowIndex = 0...weightMemWidth do

3 for 0...burstsPerRow do

4 matMemEnables← 0
5 end

6
7 matMemEnables← 1� memBlockIndex
8 weightWriteAddress← rowIndex
9 end

10 end

Programming the Bias Memory

The control logic for programming biases is very similar, and is shown in listing 5.2. The
only significant difference is that we do not have to wait for a serial to parallel register
to fill up.
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Name No. instances Input size Output size

Convolution 1 11 112
GRU 6 112 112
Feed-forward 1 112 25

Table 5.1: Matrix-vector multiplier input/output sizes

Listing 5.2: Bias memory programming control

1 for biasMemIndex = 0...biasMemCount do

2 for elemIndex = 0...biasMemDepth do

3 biasMemEnables← 1� biasMemIndex
4 biasWriteAddress← elemIndex
5 end

6 end

5.1.3 Matrix-vector Multipliers

Matrix-vector multiplications are used extensively in the network. All matrix-vector
multiplications are performed with constant weight matrices, which are stored in on-
chip memory.

Table 5.1 gives an overview of matrix-vector multiplications used in all the different
layers. The GRU layers need 6 matrix-vector multipliers that will be used simultaneously,
so they cannot share hardware. These multipliers are the biggest ones, with size 112 by
112. Convolution can effectively be implemented as a matrix-vector multiplication, as
seen in section 2.2.3, by multiplying a weight matrix with input windows to create feature
vectors. One of the multipliers used in the GRU layer is reused in the convolution layer.
Finally, the feed-forward layer uses a 25 by 112 multiplier. The same multiplier that is
reused in convolution is also reused here.

Square Matrix-vector Multiplier Design

Figure 5.3 shows the design of an n×n (with n = 4 in this case) matrix-vector multiplier
design. In this design, the matrix rows are stored in on-chip memory. The address to
this memory is incremented every tick, starting at 0, and going up to n− 1. The input
vector at the top should be kept stable for n ticks for the entire computation to complete.
Elements of the output vector are produced one element at a time.

Input Selection

Since one matrix-vector multiplier is shared between the convolution, GRU, and feed-
forward layers, input data has to be selected to the multiplier at the right time. Figure
5.4 shows the design for this selection mechanism.
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Figure 5.3: 4× 4 Matrix-vector multiplier design

Input to the matrix-vector multiplier from the GRU layer arrives element by element.
Since the multiplier needs a whole vector for 112 ticks, the serial data goes into a serial
to parallel converter, the output of which is held in by a register every 112 ticks.

Windows coming from the convolution layer can be selected by a multiplexer. Another
multiplexer can select feed-forward layer data. This data arrives in bursts of 16 elements,
and has its own serial to parallel converter and stream hold. The reason for this will be
explained in section 5.1.6.

The output from the matrix-vector multiplier is fanned out to all the different layers.

5.1.4 GRU & Residual Layers

Figure 5.5a and 5.5b show forwards and backwards layers respectively, as they are im-
plemented in the original application. The DDR nodes are annotated with the order in
which sequence data is stored (normal- or reverse order). Red edges mean that sequence
data is read in reverse, in contrast to the black edges.

In the original application, data is always stored in the same order, and is either read in
forwards order (forwards GRU layers), or in reverse order (backwards GRU layers). To
exploit pipelining between the GRU and residual layers, we would like to eliminate the
need for the memory block in between them. This is possible by changing the way that
data is read.

To understand the modified design, we first turn our attention to the backwards layer,
shown in figure 5.5d. We will assume that input data to a backwards layer is stored
in normal order, because this is the order in which the preceding convolution layer will
store it. Data is read in reverse order into the GRU layer. Output data is streamed
from the GRU layer directly into the addition node, which will need to add the original
input data to it. Since data from the GRU layer is reversed, so is the other input to
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Figure 5.4: Matrix-vector multiplier input selection

the addition. From the addition, data is streamed into memory again. This means that
data is stored in reverse order after a backward GRU layer.

Forwards GRU layers are always preceded by a backwards GRU layer in this design.
Therefore, its input data will be in reverse order. Since it needs its data in normal order,
it reads data in reverse. This means that the second input to the addition node also
needs to be read in reverse. Coincidentally, the forwards and backwards layers have the
same read/write characteristics. Note that the final GRU layer is a backwards layer.
Therefore, data is stored in reverse order, and must be read in reverse by the succeeding
feed-forward layer.

In the following sub-sections, we will look at the initial GRU layer design to explain
the basics of operation of a GRU layer. We will then introduce an improved GRU layer
design which improves on the shortcomings of the initial design.
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Figure 5.5: Original & modified GRU layer designs (red edges mean that data is read
in reverse order)

Initial Design

Recall that GRU layers produce output h(t) from inputs x(t) and h(t − 1). Figure
5.6 shows the design of the initial implementation of the GRU layer. Inputs xi(t) and
hi(t−1) denote the i’th element of vectors x(t) and h(t−1) respectively, i.e.: Inputs are
streamed in element by element. This is to match the way that data is streamed through
the major components of the layer: The matrix-vector multipliers. The feedback of hi(t)
is realized with a FIFO of depth vecSize, where vecSize is the size of vector x and vector
h. This way, h(t− 1) is effectively looped back as an input. Additionally, i is used as an
address to the on-chip weight memory to read rows from the weight matrices, which are
used by the matrix-vector multipliers.

Listing 5.3 shows pseudo-code that expresses the same computation as figure 5.6. Here
we can see clearly how the control signals i and t are generated. The control logic
implementing the loops is implemented in the neural network kernel FSM. The GRU
equations from section 2.2.4 are implemented in function gruStep.

Listing 5.3: Initial GRU implementation

1 function gru(x) ⇒ h
2 for t = 0...seqLen do

3 for i = 0...vecSize do

4 if t = 0 then

5 hPrev ← 0
6 else

7 hPrev ← streamOffset(h,−vecSize)
8 end
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Figure 5.6: GRU, non-interleaved

9 h← gruStep(hPrev, x, weights[i])
10 end

11 end

12 end

13
14 function gruStep(hPrev, x, weights) ⇒ h
15 z ← σ(weights.Wz × x + weights.Uz × hPrev)
16 r ← σ(weights.Wr × x + weights.Ur × hPrev)
17 h′ ← tanh(weights.Wh′ × x + r × weights.Uh′ × hPrev)
18 h← z × hPrev + (1− z)× h′
19 end

Interleaved Design

In order for h(t−1) to be valid at the start of the computation to produce h(t), we need
the total latency of the loop to be equal to vecSize:

Tfw + Tbw = vecSize

⇒ Tbw = vecSize− Tfw ≥ 0 (5.1)

Where the forwards latency Tfw contains the multiplexer and the GRU step block, and
the backwards latency Tbw contains just the FIFO.

Due to the amount of relatively time consuming arithmetic computations in gruStep,
the forward latency is greater than vecSize, causing Tbw to become negative. If Tbw is
negative, the design becomes unschedulable, since a FIFO of negative depth is impossible
to implement. The simplest counter measure would be to delay the arrival of input x(t)
until h(t − 1) becomes valid, introducing bubbles in the pipeline. This is visualized in
figure 5.7a. Another counter measure, is to interleave multiple input sequences.

The principle of interleaving is explained by example in figure 5.7. In the first case, three
different sequences are processed in sequence. Note that there are no data dependencies
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between the three sequences. Each colored rectangle in the figure represents a vector in
the sequence. Like explained in the last paragraph, we require bubbles in the pipeline
to wait for h(t− 1). In these bubbles we could, instead of waiting, take an input from a
different sequence and work in that in the meantime, like shown in figure 5.7b.

In the interleaving example, three sequences are interleaved, and the length of each
sequence is the same (4). In our actual design, Tfw is so big that the design becomes
schedulable only if we interleave at least five sequences. In addition, sequences are
not necessarily of equal length. This means that all but the longest sequence must be
padded to make interleaving possible. This also has implications for the other layers, as
will become evident in their respective sections.

Seq 0

Seq 1

Seq 2

Time

0 1 2 3

0 1 2 3

0 1 2 3

(a) Non-interleaved

0 1 2 3

0 1 2 3

Seq 0

Seq 1

Seq 2

Time

0 1 2 3

(b) Interleaved

Figure 5.7: Example of interleaved sequences

Modified pseudo-code for the interleaved version of the GRU layer is shown in listing
5.4. There is another for-loop to iterate over the ILD different interleaved sequences.
Sequence lengths are stored in the array seqLens, where seqLens[i] contains the length
of the i’th sequence. Since input data is read in reverse order in backwards GRU layers,
the i’th sequence length is stored at seqLens[ILD − 1− i] in this case. In addition, all
but the longest sequence is padded at the end in forwards layers. When data is read in
reverse order in the backwards layers, padding appears at the beginning of the reversed
sequence. Therefore the inputV alid signal is determined differently in the case of a
backwards layer.

Zeroes are streamed out as padding when the input is not valid, instead of the result of
gruStep. In the backwards case – when padding is at the front – this also serves as a
way to stream in zeroes at the h(t− 1) input. The design of the gruStep block does not
need to change.

Listing 5.4: Interleaved GRU implementation

1 function gruInterleaved(x) ⇒ h
2 for t = 0...paddedMaxSeqLen do

3 for interleaveIndex = 0...ILD do
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4 for i = 0...vecSize do

5 if isForwardsLayer then

6 seqLen← seqLens[interleaveIndex]
7 inputV alid← t < seqLen
8 else //backwards layer
9 seqLen← seqLens[ILD − 1− interleaveIndex]

10 inputV alid← t ≥ paddedMaxSeqLen− seqLen
11 end

12
13 if t = 0 then

14 hPrev ← 0
15 else

16 hPrev ← streamOffset(h,−vecSize× ILD)
17 end

18
19 if inputV alid then

20 h← gruStep(hPrev, x, weights[i])
21 else

22 h← 0
23 end

24 end

25 end

26 end

27 end

5.1.5 Convolutional Layer

Since the convolutional layer is followed by a GRU layer that expects interleaved input
sequences, we have two options:

1. Implement an interleaved convolutional layer; or

2. Read output from a non-interleaved convolutional layer in an interleaved fashion.

Reading non-interleaved data from DRAM results in a fragmented memory access pat-
tern, which is sub-optimal in terms of throughput. Interleaving the convolutional layer,
however, requires input to the convolutional layer to be interleaved. Luckily, input to the
convolutional layer comes from the CPU, which is in many cases more efficient with a
fragmented memory access pattern. For these reasons the convolutional layer is designed
to take and produce interleaved sequences to match the GRU layer input requirements.

In subsequent sub-sections, we will first explain a non-interleaved implementation by
example, before explaining the interleaved design.

Non-interleaved Design

As discussed in section 2.2.3, convolution can be implemented by multiplying a weight-
matrix with an input window that slides over the input sequence. The sliding window
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window(t) is implemented with a shift register, shown in figure 5.8a. In this example
the window size is 3. In the actual design, the window size is 11.

Zeroes can conditionally be set in right-most position (when zeroRight is high), or in
the remaining positions on the left (when zeroLeft is high). The entire window register
has a load-enable signal called winEn. The input x(t) is shifted into the window register
through PCIe. The PCIe stream can be enabled/disabled with the control signal pcieEn.

Recall that the first window must contain x(0) in the center, x(1) up to x(winLen−1
2 ) to

the right, and zeroes as padding to the left. This means that initially the left side of the
register must be set to zero, by setting zeroLeft high, while x(0) up to x(winLen−1

2 ) are
shifted in over the course of winLen−1

2 ticks to fill up the window. After these initial fill
steps, computations can be performed every subsequent time a new x(t) is shifted in. In
the last winLen−1

2 ticks, zeroRight is high to zero-pad windows on the right.

Every time the window is updated, a feature-vector is produced by performing a matrix-
vector multiplication, followed by an addition and ELU activation function (equations
5.2 and 5.3). Since a matrix multiplication takes multiple cycles, the window needs to
be held in the register for the time being. This is accomplished by setting the winEn
and pcieEn signals low during computation.

conv(window) = ELU(W × window + b) (5.2)

ELU(x) =

{
x, if x ≥ 0

ex − 1, otherwise
(5.3)

Interleaved Design

Figure 5.8b shows the interleaved convolution window design. In this design, the register
that was present is replaced with a feedback FIFO of depth a depth equal to the amount
of sequence we interleave (ILD). The control signal winEn is now connected to the new
FIFO’s input enable.

Control logic is implemented in the neural network kernel FSM, where it goes through
the following states:

1. Fill windows (listing 5.5);

2. Compute (listing 5.6);

3. Pad right & compute (listing 5.7).

The control logic is mostly the same as explained for the non-interleaved case, except
for the addition of the “for k = 0...ILD do ... end” loops to account for interleaving.

Listing 5.5: Fill initial windows state

1 for 0...padLen do

2 for k = 0...ILD do
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'0' '0' '0' 

[0][1]

[0][1]

window(t)

1 0 1 0 zeroRight 1 0 

winEn 

pcieEn 

x(t)

zeroLeft 

(a) Non-interleaved

'0' '0' '0' 

[0][1]

[0][1]

window(k, t)

1 0 1 0 zeroRight 1 0 winEn 

pcieEn 

x(k, t)

zeroLeft 

(b) Interleaved

Figure 5.8: Convolution window buffering

3 pcieEn← True
4 winEn← True
5 zeroLeft← (t = 0)
6 zeroRight← False
7 end

8 end

Listing 5.6: Process windows state

1 for 0...(maxSeqLen− padLen) do

2 for k = 0...ILD do

3 for i = 0...outputWidth do

4 pcieEn← (i = 0)
5 winEn← (i = outputWidth− 1)
6 zeroLeft← False
7 zeroRight← False
8 end

9 end

10 end

Listing 5.7: Process windows & pad right state

1 for 0...padLen do

2 for k = 0...ILD do

3 for i = 0...outputWidth do

4 pcieEn← False
5 winEn← (i = outputWidth− 1)
6 zeroLeft← False
7 zeroRight← True
8 end

9 end

10 end

5.1.6 Feed-forward Layer

The feed-forward layer takes an input stream of vectors of size 112. The output is a
stream of vectors of size 25. Since the shared matrix-vector multiplier can produce one
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element per tick, it takes 25 ticks to produce an output vector. In the same amount of
time (25 ticks), 112 input elements must be read

Input to the feed-forward layer comes from DRAM, which is read in bursts of 64 bytes,
which fits 16 elements. A burst can be read by the neural network kernel every tick.
Therefore we can read 112 input elements in 112

16 = 7 ticks, which fulfils our requirement
of reading 112 elements in at least 25 ticks.

Shift register

Register

Matrix-vector 
multiplier 

+

Weight 
memory 

Bias 
memory 

address 

inputEnable x(k,t)

y(k,t)

16

112

address = 0 

Figure 5.9: Feed-forward design

Figure 5.9 shows the design of the feed-forward layer. Bursts are read into a shift
register, which is clocked into the subsequent register only when a new matrix-vector
multiplication starts (when address = 0). Weights and biases are read from on-chip
memory. inputEnable is only set high for 7 of the 25 ticks it takes to produce an output
vector. The code that controls this process is shown in listing 5.8.

Listing 5.8: Feed-forward control code

1 for t = 0...maxSeqLen do

2 for k = 0...ILD do

3 inputSrCounter ← 0
4
5 for address = 0...elemsPerOutputV ec do

6 if inputSrCounter < burstsPerInputV ec then

7 inputSrCounter ← inputSrCounter + 1
8 inputEnable← true
9 else

10 inputEnable← false
11 end

12 end
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13 end

14 end

5.2 Address Generators

Recall from section 2.5.3 that in order to stream data from DRAM, commands for the
MCP must be generated. These commands are generated based on higher-level memory
read/write instructions which are sent by the CPU. In the following sections, the memory
instruction format will be explained. Subsequently, the read/write address generator
kernels that interpret these instructions are explained.

5.2.1 Memory Instructions

There are two types of memory instructions: Read instructions and write instructions,
each of which will be discussed below.

Read Instructions

Read instructions have the following format:

• address (31 bits);

• count (30 bits);

• reverse (1 bit);

• sync (1 bit);

• noop (1 bit).

The address field contains the address (in bursts) to read memory from. count is the
amount of bursts to read. When reverse is high, data should be read in reverse order.
When sync is high, the read address generator kernel should wait for an echo generated
by a write action. This effectively makes the system wait to read data until all previous
write actions are completed. When noop is high, this operations does nothing, except for
(possibly) waiting for an echo if sync is also high.

Write Instructions

Write instructions are very similar, but with a small difference:

• address (31 bits);

• count (30 bits);

• reverse (1 bit);

• sync (1 bit);
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• tagEnable (1 bit).

The fields it has in common with read instructions have a similar meaning. Write
instructions do not have the noop field, but instead contain the tagEnable field. When
tagEnable is high, an interrupt will be raised to the CPU to signify completion of the
write instruction. This is not needed during normal operation of the system, but instead
is used during testing.

5.2.2 Read Address Generator Kernel

Read address generator kernels take a stream of read instructions, and generate the
appropriate MCP commands from each instruction. Additionally, echoes are streamed
in to allow read actions to wait for write actions to complete.

Control

Figure 5.10a shows the FSM that controls the read address generator kernel. In the
Fetch state, a single instruction is read. If sync is high, the kernel stalls until an echo is
received. If noop is high, a new instruction is immediately fetched afterwards. Otherwise,
the kernel will start generating commands. After all commands have been generated,
the kernel flushes its command stream, and will go back to the Fetch state.

Fetch

Generate commands

Flush

/noop

(a) Read address generator

Fetch

Generate commands

Flush

(b) Write address generator

Figure 5.10: Address generator kernel FSMs

Generating MCP Commands

Recall the MCP command structure:

• sendEcho (1 bit);
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• address (31 bits);

• size (8 bits);

• inc (8 bit);

• stream (15 bits);

• tag (1 bit).

For each read instruction, one or more commands are generated as shown in listing 5.9.
Commands with size set to burstsPerCommand will be generated, up to the point where the
remaining amount of bursts to be read is less than burstsPerCommand. It is advantageous
to set burstsPerCommand as high as possible, since reading large amounts of bursts at once
increases memory throughput.

Listing 5.9: Process windows state

1 function generateCommands(instr)
2 offset← 0
3
4 while offset < instr.count do

5 cmd.address← if instr.reverse
6 then instr.address+ instr.count− 1− offset
7 else instr.address+ offset
8
9 cmd.size← if offset+ burstsPerCommand < instr.count

10 then burstsPerChunk
11 else instr.count− offset
12
13 cmd.inc← if instr.reverse
14 then −1
15 else 1
16
17 cmd.sendEcho← 0
18 cmd.stream← 0
19 cmd.tag ← 0
20
21 offset← offset+ burstsPerCommand
22 end

23 end

Reading sequence data in reverse is realized by setting cmd.inc to −1. This makes it
so that bursts are read from high to a low address. Data within bursts will still be in
forward order. Reordering this data is done in the reorder kernel, which is explained in
section 5.4.

While designing the memory sub-system, negative increments were not yet supported by
MaxCompiler. As part of this work, we changed the MCP to accept increments between
-128 and 127, rather than between 1 and 255.
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5.2.3 Write Address Generator Kernel

The write address generator kernel is very similar to the read address generator kernel,
but with some key differences.

Control

Figure 5.10b shows the write address generator kernel FSM. Like the read address gener-
ator, the write address generator fetches a memory instruction, but never has to wait for
another write to complete. Subsequently, commands are generated, the kernel is flushed,
and the process starts over again.

Generating MCP Commands

Write command generation pseudo-code is shown in listing 5.10. The difference to the
read command generation is in the last couple of lines. sendEcho is set high in the last
iteration if sync is enabled, to make only this last write command generate an echo.
Similarly, tag is set high in the last iteration if tagEnable is set high, to instruct the MCP
to interrupt CPU when the last command has finished processing.

Listing 5.10: Generating MCP write commands

1 function processInstruction(instr)
2 offset← 0
3
4 while offset < instr.count do

5 cmd.address← if instr.reverse
6 then instr.address+ instr.count− 1− offset
7 else instr.address+ offset
8
9 cmd.size← if offset+ burstsPerCommand < instr.count

10 then burstsPerChunk
11 else instr.count− offset
12
13 cmd.inc← if instr.reverse
14 then −1
15 else 1
16
17 isLastCmd← (offset+ burstsPerCommand ≥ instr.count)
18
19 cmd.sendEcho← instr.sync ∧ isLastCmd
20 cmd.stream← 0
21 cmd.tag ← instr.tagEnable ∧ isLastCmd
22
23 offset← offset+ burstsPerCommand
24 end

25 end
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5.3 DRAM Write Kernel

To on-card DDR

Float to
fixed-pointFrom CPU

From neural network kernel

selectCpu

Figure 5.11: DRAM Write kernel design

Figure 5.11 shows the design of the DRAM write kernel. The DRAM write kernel writes
either data from the neural network kernel, or data from the CPU to DRAM, selected by
the control signal selectCpu, which is set by the CPU. Addresses for these write actions
are generated by the write address generator kernel.

The CPU can stream weights and biases for the different neural network layers in single
precision floating point numbers. The write kernel converts these to the internally used
fixed-point format, and forward the data to DRAM.

5.4 Reorder Kernel

As discussed in section 5.1.4, GRU layers require sequence data to be read in reverse
order. The input to a GRU layer is a stream of vectors of 112 elements, each of which is
4 bytes in size. This makes for a total of 448 bytes per vector. Since DRAM bursts have
a size of 64 bytes, a vector fits in exactly 7 bursts. The layout of this sequence data in
DRAM is shown in figure 5.12.

0 1 2 3 4 5 6

0 112

7 8 9 10 11 12 13

0 112

14 15 16 17 18 19 20

0 112

Bursts:
Vectors:

Figure 5.12: GRU sequence data memory layout with a sequence length of 3

When bursts are read in reverse order, the order of the data within vectors is also
reversed, which is not what we want. To solve this problem, vectors are buffered in
the reorder kernel, and reversed again to obtain the correctly ordered vectors. This
is visualized in figure 5.12, where the large double-sided arrow indicates reversing the
sequence of bursts that constitute a sequence, and the small double-sided arrows indicate
reversing the vectors.
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The reversal of vectors happens in the reordering kernel by buffering vectors in on-
chip memory and forwarding them in reverse to the neural network kernel where the
GRU layers are implemented. In the following sub-sections we will first see how on-chip
memory is utilized to reorder vectors. Subsequently, we will look at the control logic of
the reorder kernel.

5.4.1 Buffering & Reordering

Figure 5.13 shows the design of the buffering and reordering logic. The Burst memory
block is an on-chip memory where vectors are double-buffered. Double buffering is
implemented by alternating between:

• Writing to odd-numbered addresses and reading from even-numbered addresses;

• Writing to even-numbered addresses and reading from odd-numbered addresses.

The Remove padding block removes padding from individual vector elements. In the current
implementation, elements are of a 27 bit fixed-point type, which is padded to 32 bits.
The reverse control signal can be set low to disable reversing vectors, in case sequence
data is read in forward order from DRAM. inputEnable and outputEnable can be set to
fill/flush the burst memory at appropriate times.

The actual reversal of vector elements is implemented by generating increasing write
addresses, and decreasing read addresses.

 

writeAddr

writeData

readAddr

readData

Burst 
memory 

Remove 
padding 

writeAddr

readAddr

0  1

inputEnable

outputEnable

reverse

inputBurst

outputBurst

Figure 5.13: Reorder kernel design
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Control

Figure 5.14 shows the state machine that controls the reorder kernel. First, a memory
instruction is fetched. These are the same instructions that are received by the address
generator kernels. In the decoding state, the reorder kernel remembers the amount of
data that should be read, and goes to the Forwards state, or to the Backwards fill state
based on the reverse bit in the memory instruction. The forwards state is straightforward:
The reverse signal is set low and the inputEnable and outputEnable signals are set high.
This allows data to stream directly from the input to the output.

In the Backwards fill state, only the inputEnable is set high to fill the burst memory with
one vector. Then we transition to the Backwards stream state. In this state data is both
read and written to/from the burst memory. When all but the last vector of data are
processed, we transition to the Backwards flush state, in which only outputEnable is set
high to flush the last vector from the burst memory without writing new data to it.

In any case (forwards or backwards) the last state before looping back to Fetch is the
Flush kernel state, which flushes all data out of the kernel.

Fetch

Decode

Forwards Backwards fill 

Backwards stream 

Backwards flush 

Flush kernel 

Figure 5.14: Reorder kernel FSM

5.5 Host Application

To fill up the chip, three instances of the complete design are instantiated (for reason-
ing, see chapter 4) which can process sequences independently. Each instance takes 5
interleaved sequences, which means that batches of 15 sequences are processed at a time.

The complete process of basecalling an arbitrary amount of raw sequences contained
in files is described in listing 5.11. In the following sub-sections we will explain the
additional software that was developed to facilitate DFE acceleration.
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Listing 5.11: Complete basecalling program

1 function basecall(sequenceF ileNames)
2 writeWeightsAndBiasesToDRAM()
3 sortedSequenceInfo = sortSequenceF ileNamesByLength(sequenceF ileNames)
4
5 while there are sequences left to process do

6 dfeInputBatch = readBatch()
7 dfeOutputBatch = dfeRun(dfeInputBatch)
8 finalSequenceData = decodeCRF (dfeOutputBatch)
9 writeToF iles(finalSequenceData)

10 end

11 end

12
13 function dfeRun(inputBatch)
14 initializeMemoryPrograms(inputBatch)
15 setInputStream(inputBatch)
16 setOutputStream(outputBatch)
17 run()
18 return outputBatch
19 end

Most of the software of the above process already existed as part of Scrappie. Software
developed to facilitate DFE acceleration include: Reading sequence data, interleaving,
and un-interleaving. Each of these steps will be described in the following sections.

5.5.1 Reading Sequence Data, Interleaving & De-interleaving

Before reading raw sequences, they are first sorted by length. Batches of sequences are
then created with similar-sized raw sequences. This is necessary because, as explained
in section 5.1.4, when sequences are interleaved, padding is inserted at the end of the
shorter sequences. The greater the difference between the sequence length, the more
padding is inserted. The more padding is inserted, the more time is wasted by the DFE.

The batches of raw sequences are interleaved, and streamed to the DFE. As the DFE
processes that batch of raw sequences, data is streamed back to the CPU. This data is
un-interleaved for further processing.

5.5.2 Initializing Memory Programs

Recall from section 5.2.2 that the CPU provides the DFE with a stream of memory
operations in order for the address generators to generate the correct MCP commands.
Listing 5.12 shows how these instructions are generated.

Listing 5.12: Initializing memory programs

1 function initializeMemoryPrograms(inputBatch)
2 // convolution

3 read convolution weights and biases

4 write result , synchronize with GRU layer 0
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5
6 // GRU layers

7 for i = 0...5 do

8 read GRU layer i weights

9 read GRU layer i input in reverse , synchronize with last layer

10 write GRU layer i result , synchronize with next layer

11 end

12
13 // feed -forward

14 read feed -forward weights and biases

15 read feed -forward input in reverse , synchronize with last layer

16 end

The convolutional layer does not have a read operation, since it takes data from PCIe.
Every layer synchronizes its writes with the next layer’s read operation. In addition,
every layer has a separate read operation to load weights and biases before it starts
processing. The last layer (feed-forward) does not have a write operation, since it will
send its output data back to the CPU through PCIe.



Experimental Results 6
In this chapter predicted performance and area utilization are compared to the measured
performance and area utilization of the final implementation. In addition, performance
of the system is compared to server-grade CPUs with several different workloads.

In addition, power usage of power efficiency of the accelerated implementation and orig-
inal CPU-based implementation is compared.

6.1 Performance & Area

In the following subsections, the time taken by the accelerated layers (as opposed to total
run-time) is hard to measure in a multi-threaded program. Therefore, it is approximated
by assuming constant speedup S for each layer. S is calculated by measuring the total
run-time in multi-threaded mode Tmt,tot, and the total run-time in single-threaded mode

Tst,tot. We then determine that S =
Tmt,tot

Tst,tot
. In single-threaded mode, the time per layer

Tst,layer can be measured. The time taken by this layer in multi-threaded mode can then

be approximated: Tmt,layer =
Tst,layer

S .

6.1.1 Comparison with the Performance Model

In order to asses the accuracy of our predicted performance and area utilization, the
same workload used in chapter 3 is run again on the final system. Table 6.1 shows
the predicted area usage and run-time of the system, derived from the profiling run
presented in chapter 3 and the performance model (chapter 4, table 4.12). Note that
the area-percentages in the “Predicted” column include the 20% overhead of resources
for compiler generated logic mentioned in the performance model.

The third column shows the actual area utilization, as reported by MaxCompiler, and
run-times measured using the same workload. Taccel is time spent in the layer that are
accelerated, whereas Ttot is the total runtime, including software layers. The fourth
column shows the percentage of the values of the “Actual” column, compared to the
“Predicted” column.

The fourth column is the percentage of the actual utilization/run-time vs the predicted
utilization/run-time, and serves as a metric of accuracy of the predictions.

In terms of area utilization, the amount of BRAMs and URAMs are used a lot more than
predicted. This is thought to be mostly due to long and wide pipelines in the design.

67
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Predicted Actual % of prediction

LUT% 30.26 % 22.24 % 73.50 %
FF% 35.71 % 33.41 % 93.55 %
DSP% 66.32 % 61.32 % 92.47 %
BRAM% 30.07 % 50.63 % 168.38 %
URAM% 20.00 % 35.63 % 178.15 %

Taccel 19.25 s 19.44 s 100.99 %
Ttot 24.06 s 28.04 s 116.52 %

Table 6.1: Predicted metrics vs. actual metrics

If we were to scale up the amount of instances of the design on the chip, this would
certainly require further investigation.

In terms of runtime, the accelerated run-time is predicted to within 1% accuracy. The
total run-time is slightly longer than expected. This is most likely due to the fact that the
performance model does not take into account the time needed to interleave sequences
before they are streamed to the DFE. In addition, there is an un-interleaving step after
data is streamed out of the DFE.

6.1.2 Comparison with Server CPUs

The final system is compared against a server with two Intel Xeon Processor E5-2643
v4 CPUs. Each package contains 6 cores each with hyper-threading. This makes for a
total of 16 physical cores, i.e.: 24 logical cores, each running at a peak frequency of 3.4
GHz. The final DFE based system is compared to the CPU implementation in terms of
performance and accuracy.

Accuracy is determined by comparing the basecall produced by the original CPU im-
plementation, and the basecall produced by the accelerated version. The two DNA se-
quences are aligned using the NCBI Basic Local Alignment Tool (BLAST) [21]. BLAST
will find the best alignment between two sequences, and determines a score for this align-
ment. By default, 1 point is added to the score if two bases match, whereas a penalty of
-2 is added if bases do not match.

Figure 6.1 shows an example of two aligned sequences. In this example the query se-
quence has 32 matches, 1 mismatch and a gap of size 2. The gap is scored as if it were
2 mismatches, giving this alignment a total score of 26 out of a maximum of 35 (the
subject sequence length).

CGTTAATGCTACCTGCAGAATAACTTCATCCTCGT

CGTTAATGGTACCTGCAGAA--ACTTCATCCTCGT
GapMismatch

Subject:

Query:

Figure 6.1: Example BLAST alignment of two sequences
(1 mismatch, 2 gaps, and 32 matches)
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Input size Mean Score Wall-clock time Accelerated part time kbps
(millions) score stdev CPU DFE Speedup CPU DFE Speedup

21.5 0.9986 0.00150 47.53 36.15 1.31 38.02 20.21 1.88 66.34
50.9 0.9911 0.08150 115.07 79.64 1.44 92.26 47.91 1.92 59.39
81.0 0.9947 0.05756 181.12 125.01 1.44 144.90 76.12 1.90 59.37
111.0 0.9978 0.00219 251.43 170.56 1.47 201.14 104.30 1.93 57.50
141.0 0.9970 0.01386 315.05 217.11 1.45 252.04 132.53 1.90 57.49
171.2 0.9975 0.00277 375.22 262.69 1.42 300.18 160.86 1.86 56.22
201.2 0.9969 0.01335 438.5 305.36 1.43 350.80 188.99 1.86 55.30
230.9 0.9975 0.00239 513.65 348.54 1.47 410.92 216.92 1.89 54.65
262.1 0.9975 0.00213 593.9 395.43 1.50 475.12 246.33 1.93 53.25
295.7 0.9958 0.02369 675.64 445.18 1.51 540.51 278.43 1.94 50.87

Table 6.2: Benchmarking results table

In our comparisons, scores are normalized, i.e.: divided by the maximum sequence length.
This gives us a normalized score between zero and one.

Table 6.2 shows CPU and DFE runtimes of the whole program, and just the accelerated
part for several different input sizes. In addition, the speedup of both parts is listed. Each
run is performed with 300 input sequences of different sizes. The mean and standard
deviation of the scores of the sequences is given in column 2 and 3 respectively.

The mean accuracy is nearly perfect, with low standard deviations for all tested input
sizes. The reason the system does not produce identical results, is because the CPU
implementation implements all arithmetic using IEEE floating point numbers, whereas
the DFE implementation does so mostly in fixed point.
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Figure 6.2: Benchmarking results graph

Figure 6.2 visualizes the results from table 6.2. Total run-time as well as time taken by
the accelerated part increases approximately linearly with input size.
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6.1.3 Comparison to Related Work

The speedup of the accelerated part of the network is 1.9x. This is slightly lower than the
the related work by Li et al [13] (3.12x), and Zhang et al [15] (3.1x). However, a speedup
of 3.8x is thought to be possible (see section 7.2) when some further optimizations are
made to this work.

The mean output rate of the accelerated system is 57.04 kbps (kilo bases per second).
This is faster compared to other opens-source basecallers. e.g., Chiron (2.7 kbps), and
Flappie (14 kbps). Guppy outperforms this work with an output rate of 1.5 Mbps, but
will most likely consume a lot more energy, since it uses high-performance GPUs to
accelerate computation.

6.2 Power Efficiency

To make a fair comparison in terms of energy efficiency, we introduce the metric Energy
per Sample (EPS), given in equation 6.1. Power was measured on a machine with an Intel
Xeon W3565 and a MAX5C, running both the original CPU based implementation, and
the DFE implementation. Since the Xeon W3565 is an older CPU (from 2009), power
was also measured on a workstation with a newer CPU (Intel Core i7-7800X, from 2017).
Power measurements over a period of two minutes are presented in figure 6.3.

EPS =
Power × Time

#samples
(6.1)

Power usage of the DFE based implementation fluctuates significantly more than the
CPU based implementation. This is thought to be because of the fact that more work is
done on the DFE than on the CPU. This causes the CPU to have to wait for the DFE
at times, at which point the power usage drops briefly. 1

Using these measurements we can calculate the EPS for each run, and make a comparison
in terms of energy efficiency. This is summarized in table 6.3. We can conclude that the
DFE based implementation uses only 9.66% of the energy per sample as compare to the
CPU based implementation on the same machine. Compared to the i7-7800X, the DFE
implementation uses 50.44%.

1Depending on the amount of idle time available to the CPU, this means you could service multiple
DFEs with a single CPU.
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Figure 6.3: DFE Power usage graph

CPU+DFE CPU CPU
(Xeon W3565) (Xeon W3565) (i7-7800X)

Average power usage 190.8 W 247.5 W 214.4
Running time 358.6 s 2,863.15 s 77.15 s
No. input samples 169.9e6 169.9e6 20.7e6
EPS 0.4028 mJ 4.1711 mJ 0.7985 mJ

Table 6.3: EPS per implementation
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Conclusion & Future Work 7
In this thesis a neural-network based ONP basecaller was accelerated using dataflow
programming. To do this, a design has been rigorously modeled, implemented, and
tested. The final system provides roughly 1.5 times speedup over a CPU based two-
socket server using a single FPGA accelerator card, providing nearly perfect accuracy
when compared to the results of the original CPU based implementation. The design
presented here is predominantly bound by the amount of available DSPs. We have clear
indications that reducing the number of DSPs, and/or using a chip with more DSP
resources in favour of generic reconfigurable logic will improve performance. In addition,
our final system uses up to 90.27% less energy compared to the original implementation.

7.1 Answers to the Research Questions

Which existing basecalling algorithm is best suited for FPGA acceleration?
According to our research ONPs Scrappie was most suited to implementation on an
FPGA. This was decided because of the following reasons:

1. Scrappie is open-source;

2. Scrappie had promising speed and accuracy to begin with;

3. It is easily readable self-contained source-code;

4. The neural network topology is suitable for FPGA implementation.

Can FPGAs provide an interesting alternative for accelerating
basecalling/neural-networks in terms of throughput and power consumption
as compared to CPUs and GPUs?
The accelerated system has an output rate of 57.04 kbps, which is 1.5x faster than a
CPU implementation of the same network. The fastest GPU based basecaller produces
1.5 Mbps. However, this was produced by Oxford Nanopore using a closed-source
implementation that is expected to be drastically different from Scrappie.

In any case, the reason that GPUs can be so fast here is that many neural-network layers
are implemented using big matrix multiplications. This is something GPUs excel at. It
should be noted however, that we can only speculate how Guppy is implemented.

In terms of power efficiency FPGAs could be an interesting alternative. Especially when
power efficiency is an important design criterion. Regrettably, energy-efficiency numbers
on Oxford Nanopore’s Guppy are not publicly available.
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Is there a way to achieve maximum DRAM read and write bandwidths in
the context of an FPGA basecalling application?
Because data is accessed always in a linear (increasing or decreasing addresses) fashion,
DRAM can efficiently be used by the FPGA to store intermediate results, without the
need for an elaborate cache system. This is achieved with separately clocked memory
address generators and sufficiently deep FIFOs to and from the DRAM.

7.2 Future Work

If we can reduce the width of the fixed-point variables, we will be able to use one DSP per
multiplication instead of two DSPs as in the current design. If we also manage to reduce
the amount of on-chip memory usage, the amount of instances may be increased to six,
doubling the throughput of the GRU layers. Since the GRU layers take roughly 80% of
the running time (see section 4.4), that would result in a 2.5x speedup of the accelerated
part of the design. The accelerated part takes about 70% of the total running time in our
benchmarks. This means that the overall speedup for the complete application would
be a 2.05x.

The convolutional and feed-forward layers share only one matrix-vector multiplier with
the GRU layers. Using a more sophisticated hardware sharing mechanism, matrix-vector
multipliers can be shared and hence the throughput of these layers will increase. However,
the feed-forward layer will then be bottle-necked by the PCIe output speed. To alleviate
this, we may implement the first part of the CRF decoding layer, which reduces output
bandwidth requirements by a factor of 25.

The accelerator card used in this work (the MAX5C) uses PCIe gen 3 by default. There
is experimental support for PCIe gen 4, which delivers double data-rates. Using PCIe
gen 4 would also remove the output bottleneck of the feed-forward layer, until six or
more instances are instantiated.
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