

Delft University of Technology

An experimental and numerical investigation of coarse aggregate settlement in fresh concrete under vibration

Cai, Yuxin; Liu, Qing feng; Yu, Linwen; Meng, Zhaozheng; Hu, Zhe; Yuan, Qiang; Šavija, Branko

DOI 10.1016/j.cemconcomp.2021.104153

Publication date 2021 **Document Version** Accepted author manuscript

Published in Cement and Concrete Composites

Citation (APA)

Cai, Y., Liu, Q. F., Yu, L., Meng, Z., Hu, Z., Yuan, Q., & Šavija, B. (2021). An experimental and numerical investigation of coarse aggregate settlement in fresh concrete under vibration. *Cement and Concrete* Composites, 122, Article 104153. https://doi.org/10.1016/j.cemconcomp.2021.104153

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

An experimental and numerical investigation of coarse aggregate settlement in fresh concrete under vibration

Yuxin Cai, Qing-feng Liu, Linwen Yu, Zhaozheng Meng, Zhe Hu, Qiang Yuan, Branko Šavija

PII: S0958-9465(21)00221-3

DOI: https://doi.org/10.1016/j.cemconcomp.2021.104153

Reference: CECO 104153

To appear in: Cement and Concrete Composites

Received Date: 21 April 2021

Revised Date: 10 June 2021

Accepted Date: 21 June 2021

Please cite this article as: Y. Cai, Q.-f. Liu, L. Yu, Z. Meng, Z. Hu, Q. Yuan, B. Šavija, An experimental and numerical investigation of coarse aggregate settlement in fresh concrete under vibration, *Cement and Concrete Composites* (2021), doi: https://doi.org/10.1016/j.cemconcomp.2021.104153.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd.

	ISSN CORPORE
Cement & Concrete	
Compo	sites
	Audato value et une samuelleure son. ScienceDirect
Editor: N. Banthia Associate Editors: D.P. Bentz: J.E. Bolander and D. Kayali	
http://www.elsevier.zom/toutscioemconcomp	

An experimental and numerical investigation of coarse aggregate

settlement in fresh concrete under vibration

Yuxin Cai^{a,b}, Qing-feng Liu^{a,b,*}, Linwen Yu^c, Zhaozheng Meng^{a,b}, Zhe Hu^{a,b}, Qiang Yuan^d, Branko Šavija^e

^a State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

^b Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, Shanghai 200240, China

^c College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China

^d School of Civil Engineering, Central South University, Changsha 410075, China

^e Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628CN, the Netherlands

* Corresponding author.

E-mail address: liuqf@sjtu.edu.cn (Q.-F. Liu).

Abstract

Fresh concrete needs vibration to compact, fill the mould and reach a dense state. During the compaction process, coarse aggregates (CAs) tend to settle, affecting the homogeneity and eventually the long-term durability of hardened concrete. In this study, a 3-D, multi-phase numerical model for fresh concrete is developed for better understanding the CA settlement under vibration. The settlement rate of the CA in vibrated concrete is considered based on the Stokes law, and the calibrated rheological parameter of mixtures is determined by the segmented sieving method. The model prediction shows that the vibration time has the greatest effect on CA settlement, followed by the particle size of CAs, whereas the density of CAs and the plastic viscosity of mixtures contribute a little compared with the aforementioned factors. Through experimental tests, the validity of prediction results is well verified. The proposed model provides a new method to understand and estimate the settlement behaviour of CAs.

Keywords: CA settlement; Fresh concrete; Vibration; Rheology; Numerical model; Grey relational analysis

1 **1. Introduction**

2 In general, concrete comprises cement as a binder, natural sand and gravel as aggregates, and mixing water together with chemical admixtures. With the hydration 3 reaction of cementitious materials, fresh concrete will gradually develop from a 4 5 viscoplastic cohesive process to a viscoelastic hardening process [1]. The stability of 6 fresh concrete refers to its ability to maintain the uniform distribution of constituents 7 during transport, casting and compacting [2]. In the process of consolidation, vibration helps to remove entrapped air voids and improve the compactness of 8 concrete, but also causes the relative movement and redistribution of various 9 10 components of mixtures due to the insufficient cohesion and density difference [3,4]. Notably, high-frequency vibration-induced settlement of coarse aggregates (CAs) 11 greatly increases the heterogeneity of fresh concrete [5–7]. At present, among various 12 types of concretes, only self-compacting concrete with optimum flowability and 13 viscosity does not need to be vibrated during placement [8]. It can be seen that the 14 vibrating process still remains a necessary step in most cases. 15

The rheological behaviour of vibrated fresh concrete has been reported in some previous studies. Tattersall and Baker [9,10] held the view that fresh concrete no longer behaved as a Bingham model when exposed to vibration, but approximately followed a power-law pseudoplastic model with zero yield value. When the shear rate was rather low, it could be considered as a Newtonian fluid. Hu and de Larrard [11] pointed out that vibration greatly decreased the yield stress, and sometimes even made it practically disappear, which caused the CAs to settle. Nevertheless, the plastic

viscosity was reduced a little or seemed unaffected sometimes by external vibration.
Esmaeilkhanian et al. [12] indicated that vibration would decrease the "internal
friction" of concrete mixtures, which promoted sinking of CAs under the action of
gravity. Pichler et al. [13] highlighted again that the apparent flowing behaviour of
fresh cement-based materials under vibration could be described using a power-law
model with shear-thinning nature.

The settlement of CAs has an adverse impact on the surface appearance, design 29 strength and durability of hardened concrete. This may cause significant problems, 30 such as the decline in mechanical strength, increased shrinkage and cracking, and the 31 32 reduction of chemical erosion resistance, all of which are detrimental to the performance of reinforced concrete structures [14–21]. However, due to the opacity of 33 concrete, the direct observation of CA settlement with naked eye is impossible. 34 Therefore, some special experimental techniques have been proposed to characterize 35 the settlement phenomenon. Petrou et al. [22] introduced a radioactive element 36 labelling method that utilized nuclear medicine technology to monitor the deposition 37 of CAs in vibrated concrete. Koch et al. [23] and Tian et al. [24] used carbomer gel to 38 prepare a transparent paste, and visually observed the settlement and segregation of 39 fresh concrete. After concrete hardening, Barbosa et al. [25], Navarrete and Lopez 40 [26], and Nili et al. [27] cut the specimen and analysed the CA distribution through 41 image processing. Benaicha et al. [28] proposed a method based on the ultrasonic 42 velocity to estimate the homogeneity and quality of concrete at early age. Through the 43 electrical conductivity method, Khayat et al. [29] inserted the electrode pairs at 44

45 46

47

different heights of concrete specimen to assess the uniformity of CA content. Furthermore, a technique of gamma-ray attenuation was adapted by Vanhove et al. [30] and Gokce et al. [31] to measure the distribution of CAs in concrete.

In summary, the instability caused by vibration is a critical issue in fresh concrete, and it is necessary to present a convenient and visual methodology to reveal the problem of CA settlement in vibrated concrete. In recent years, the theoretical models of rheological properties of cement-based materials have been extensively studied [32–37]. However, these developments have not been applied on the evaluation of CA settlement, and most knowledge is still based on experimental observations described above.

Therefore, the main objective of this study is to develop a rational and reliable 55 numerical model to investigate the settlement of CAs. Experiments are also designed 56 to verify the validity of the model prediction, based on the segmented sieving method. 57 Parametric studies of influencing factors such as the vibration time, the properties of 58 CAs and the plastic viscosity of mixtures on CA settlement are performed and 59 discussed, and grey relational analysis is put forward to compare the influence level of 60 these factors. The proposed model for CA settlement can not only save time, workload 61 and raw materials, but also provide a potential approach to visualize the CA 62 movement and a complementary tool to adequately understand and estimate the 63 settlement behaviour of CAs in vibrated concrete. 64

66 **2. Experimental details**

67 2.1. Materials and mixtures

P.O 42.5R ordinary Portland cement (OPC) conforming to Chinese standard GB 68 175-2007 with a density of 3020 kg/m^3 and a Blaine specific surface area of 340 69 m^2/kg was used to prepare the concrete mixtures. Silica fume (SF), with a density of 70 2200 kg/m³ and a Blaine specific surface area of 22205 m²/kg, was used to replace a 71 certain amount of OPC. The chemical compositions of OPC and SF determined by 72 X-ray fluorescence (XRF) are given in Table 1. River sand was used as the fine 73 aggregate, with the apparent density of 2690 kg/ m^3 , and the fineness modulus of 2.9. 74 75 Crushed limestone with a particle size of 5-20 mm was used as the CA, with an apparent density of 2670 kg/m³ and approximately regular spherical shape. Particle 76 size distribution of raw materials is presented in Fig. 1, where OPC and SF were 77 measured by laser granulometry, and river sand and limestone CA were measured by 78 sieving method. High-performance polycarboxylate superplasticizer was used in the 79 mixtures to adjust the workability. Its specific gravity, water reduction rate, solid 80 content and pH were equal to 1.09, 40%, 42% and 6.7, respectively. 81

- 82
- 83

Table 1 Chemical compositions of OPC and SF (wt%).

Cementitious	CaO	SiO	41.0	E ₂ O	MaQ	50	Alkali	Loss on
materials	CaO	51O ₂	AI ₂ O ₃	Fe ₂ O ₃	MgO	303	content	ignition
OPC	58.99	22.02	6.19	2.65	2.53	2.67	0.70	3.08
SF	0.76	87.42	0.29	1.75	2.49	0.48	_	3.30

84

Fig. 1. Particle size distribution of raw materials.

86

87

Prior works [9–11] showed that vibration could change the rheological behaviour 88 of fresh concrete from a thixotropic fluid with yield stress to a non-thixotropic fluid 89 with a very low or even negligible yield stress value. At this time, the CA settlement 90 91 mainly depended on the plastic viscosity of mixtures and had no relation to the yield stress [8,22,38,39], and a higher viscosity helped decrease the settlement velocity of 92 CAs [40,41]. Hence, three concrete mixtures with different plastic viscosities were 93 designed by adjusting the dosage of SF. The mix proportions of concrete shown in 94 95 Table 2 were obtained through multiple experiments. Among them, the first was normal concrete (NC), and the second and third added SF to replace 5% and 10% of 96 OPC by mass, respectively, to obtain mixtures with higher plastic viscosities. The 97 water to binder ratio (w/b) was controlled at 0.40, and the dosage of superplasticizer 98 99 was 0.5% of cementitious materials by mass.

Table 2 Mix	proportions of c	oncrete $(k\sigma/m^3)$	
Table 2 MIX	proportions of C	oncrete (kg/m)	•

Group	w/b	OPC	SF	River sand	Limestone	Water	Superplasticizer
NC	0.40	400.0	-	736.0	1104.0	160.0	2.0
NC-5%SF	0.40	380.0	20.0	736.0	1104.0	160.0	2.0
NC-10%SF	0.40	360.0	40.0	736.0	1104.0	160.0	2.0
2.2 Propert	ics of t	frash a	marat	a	< C	9.	

102

2.2. Properties of fresh concrete 103

The main properties of these three groups of concrete mixtures are listed in Table 104 3. The apparent density, air content, slump, slump flow and bleeding rate were tested 105 according to the Chinese standard GB/T 50080-2016. The rheological parameters of 106 107 fresh concrete were measured by the ICAR concrete rheometer produced in Denmark. In the flow curve test, the initial speed is 0.50 rps, the final speed is 0.05 rps, the 108 number of testing points is 7, and the duration of each point is 5 s. The yield stress 109 110 and plastic viscosity of concrete mixtures were calculated from the flow curve based on the Bingham model, as shown in Eq. (1). 111 112 $\tau = \tau_0 + \eta_p \dot{\gamma}$ (1)

where τ is the shear stress, τ_0 is the yield stress, η_p is the plastic viscosity, and $\dot{\gamma}$ is 113 114 the shear rate.

	Apparent	Air	Chuma	Slump	Bleeding	Yield	Plastic
Group	density	content	Siump	flow	rate	stress	viscosity
	(kg/m^3)	(%)	(mm)	(mm)	(%)	(Pa)	(Pa·s)
NC	2410	2.5	185	530	5.7	<mark>466.2</mark>	<mark>45.0</mark>
NC-5%SF	2400	2.3	175	510	<mark>4.9</mark>	<mark>527.9</mark>	<mark>48.4</mark>
NC-10%SF	2395	2.2	160	490	<mark>4.3</mark>	<mark>560.5</mark>	51.3

Table 3 Main properties of fresh concrete.

117

2.3. Evaluation of CA settlement 118

A method of segmented sieving was put forward to evaluate the settlement of 119 120 CAs in the experiment. The schematic diagram of experimental steps is exhibited in Fig. 2. Here, a prismatic wooden mould with a cross section of 150 mm \times 150 mm 121 122 and a height of 500 mm was customized. The wooden boards were fixed by bolts, and 123 the joints were coated with silicone gel to prevent leakage. A poker vibrator was used 124 for vibrating and compacting, and its basic parameters are given in Table 4. The 125 specimens were vibrated for 5 s, 15 s and 25 s, respectively. Note that the effective 126 working radius of the vibrator used in experiment is 500 mm, which is much larger 127 than the cross-sectional size of specimen, and the vibrating rod moves across the 128 entire cross section to work during the vibration. Therefore, it is assumed that the 129 vibration energy does not attenuate within the range of specimen, that is, the vibration amplitude and frequency of all particles in fresh concrete are approximately the same. 130 131

In the test, the right amount of fresh concrete was poured into the mould. After

132 the vibration, the top of the mould was covered with a wooden board and fastened with bolts. Then the mould was slowly rotated by 90° from the original position, and 133 134 the side wall was taken off. Next, four pieces of metal slides were inserted vertically 135 along the designed iron grooves. The concrete mixtures were equally divided in five 136 layers along the casting direction. Subsequently, the cover and partitions were 137 removed in proper order. Concrete mixtures of each layer were poured into a 4.75 mm sieve to rinse to remove mortars. Finally, the residual CAs were dried and weighed to 138 139 calculate the CA mass percentage of each layer in the specimen (see Eq. (2)).

140
$$p_i = \frac{m_i}{M} (i = 1, 2, 3, 4, 5)$$
 (2)

141 where P_i is the mass percentage of CAs in the *i*-th layer, m_i is the mass of CAs in the 142 *i*-th layer, and *M* is the total mass of all CAs in the specimen.

Fig. 2. Testing procedure of segmented sieving method.

Tuno	Rod length	Rod diameter	Power	Amplitude	Frequency
Туре	(mm)	(mm)	(W)	(mm)	(Hz)
YFY-01-35	1000	35	900	0.8	230

148

149 2.4. Analysis of experimental results

Fig. 3 illustrates the results of CA distribution along casting direction measured 150 by the segmented sieving method. In order to eliminate the experimental errors and 151 ensure the repeatability of this method, each test result was determined by the average 152 of multiple groups of fresh concrete mixtures. It could be observed that, during the 153 154 vibrating procedure, CAs were gradually deposited to the bottom layer of concrete mixtures under the action of gravity. At the same time, cement pastes and bleeding 155 water migrated upwards because of the buoyancy. After vibrating, settlement caused a 156 significant decrease in CA content of the top two layers. For the bottom part of 157 158 specimen, the content of CAs increased, but the variation was not as obvious as the 159 reduction in the top part. It was because a part of CAs gradually formed the close 160 packing in the bottom area after settling for a certain distance. The subsequent CAs accumulated in the middle part of specimen, causing the CA mass percentages of the 161 second and third layers to be close to that of the first layer. The usage of SF could 162 increase the plastic viscosity of fresh cementitious materials [42–44]. It improved the 163 stability of fresh concrete and mitigated the settlement of CAs to a certain extent. 164

Besides, the larger dosage of SF had a more significant mitigation effect onsedimentation phenomenon.

168

169

The degree of CA settlement is defined by the standard deviation of the CA mass
percentage of each layer in the specimen, calculated according to Eq. (3). It can reflect
the overall distribution of CAs, and the higher value indicates that the settlement and
heterogeneous distribution of CAs are more significant.

$$S = \sqrt{\frac{\sum_{i=1}^{n} \left(P_i - \overline{P}\right)^2}{n}} \times 1000 \tag{3}$$

175 where *S* is the degree of settlement, P_i is the mass percentage of CAs in the *i*-th layer, 176 \overline{P} is the average of CA mass percentage of each layer, which is 20%, and *n* is the 177 number of layers, which is 5.

The variation of the settlement degree of CAs with vibration time is displayed in 178 179 Fig. 4. It could be clearly understood from the figure that once vibration started, CAs appeared unevenly distributed along the casting direction, and the heterogeneity of 180 181 CA distribution progressively increased. Adding SF into the concrete mixtures could 182 enhance the plastic viscosity, and reduce the settlement degree by 12.67%-45.33% compared with NC. In addition, a part of CAs formed the dense packing and stopped 183 moving in the bottom part of specimen after a certain period of vibrating, thereby the 184 185 increase in the degree of CA settlement gradually weakened with the vibration time.

186

174

187 188

Fig. 4. Experimental results of the degree of CA settlement.

190 **3. Numerical model**

191 *3.1. Modelling approach*

192 Numerical studies can provide accurate models at multiple scales to reflect the material compositions and meso/micro structures of concrete [45–47]. In this study, a 193 3-D fresh concrete model is established at mesoscopic level, as shown in Fig. 5(a). 194 The concrete is considered as a two-phase composite comprising CAs and mortars to 195 facilitate the understanding of the settlement behaviour of CAs. The size of geometric 196 model of the prismatic concrete specimen is 150 mm \times 150 mm \times 500 mm. The 197 198 particle size of spherical CAs in the model is 5–20 mm, which is randomly generated according to the Fuller curve, and the volume fraction of CAs is 45%. These 199 parameters are the same as the experiments. 200 Due to the relatively large size of the model, it contains too much CAs, which 201

will block each other in the line of sight. For easier direct observation of the process
of CA settlement, we extract some 2-D slices from the 3-D model along the vertical
direction and find that the CA settlement in each slice is similar. In consequence, a
slice in the middle of 3-D model is extracted vertically for the visual analysis (see Fig.
5(b)). Of course, the calculation of CA content distribution is still based on the 3-D
model. It can be seen from the figure that after casting and before vibrating, CAs are
randomly and uniformly distributed in concrete.

211

Fig. 5. Schematic diagram of geometric model (all dimensions in mm).

It is generally believed that the yield stress can prevent CAs from settling in an undisturbed mortar matrix [22,39], but the yield stress is known to decrease to a very low value or even disappear at vibrating state and the plastic viscosity plays a decisive role in the settlement of CAs at this time [9–11,48,49]. Assuming that the yield stress is reduced to zero, a single CA particle is mainly subjected to three forces: gravity, buoyancy and viscous resistance in vibrated mortars. The force analysis of the CA is presented in Fig. 6.

Fig. 6. Force analysis of the CA in vibrated mortars.

223

225

224 Gravity (*G*) and buoyancy (*B*) can be expressed as:

$$G = \rho_a V g = \frac{1}{6} \pi \rho_a d^3 g \tag{4}$$

$$B = \rho_m Vg = \frac{1}{6} \pi \rho_m d^3 g \tag{5}$$

Here, ρ_a and ρ_m are the apparent densities of CAs and mortars, respectively. In the experiment, ρ_a is 2670 kg/m³. ρ_m is measured on a mortar sample, which is extracted from fresh concrete using a 4.75 mm sieve immediately after the completion of the mixing procedure. The apparent densities of mortars corresponding to the three groups of concrete mixtures are 2285 kg/m³, 2270 kg/m³ and 2260 kg/m³, respectively. *d* is the diameter of CA particle in the range of 5–20 mm. And *g* is the acceleration due to gravity, which is 9.8 N/kg.

Stokes law describes the viscous resistance of a spherical object in the viscous fluid. The following assumptions hold: (1) the liquid extends infinitely, that is, the influence of container wall on the fluid movement is not considered; (2) the object is spherical and moves in a straight line with a constant velocity without deformation

during the movement; (3) the velocity of liquid on the surface of the sphere relative to
the centre is zero; (4) when the Reynolds number (Re) is small, the inertial effect can
be ignored. Here, Re is a dimensionless parameter that distinguishes the flow type of
fluid and it can be calculated as:

242

$$\operatorname{Re} = \frac{\rho_l v d}{\eta} \tag{6}$$

243 where ρ_l is the fluid density, *v* is the sphere velocity, *d* is the sphere diameter, and η is 244 the fluid viscosity.

When Re is less than 1, the flow is considered to be streamlined; when Re is greater than 10^3 , the flow is turbulent; when Re is between the two, the flow is transitional. In concrete mixtures, the movement velocity of CA particles is extremely slow, and Re is much lower than 1. So the flow around the CA particles is streamlined, and the expression of the viscous resistance (*D*) is:

 $D = 3\pi\eta v d \tag{7}$

From the above analysis, it can be seen that when the density of the CA is greater than that of the mortars, the CA will move downwards with acceleration, and the viscous resistance also increases because of the increased CA velocity. When the resultant force of viscous resistance, gravity and buoyancy reaches an equilibrium, the CA will settle at a constant velocity. The final velocity can be demonstrated as:

256
$$v_s = \frac{d^2 g \left(\rho_a - \rho_m\right)}{18\eta_{pl}} \tag{8}$$

257 where v_s is the final velocity of the CA, and η_{pl} is the plastic viscosity of mortars.

258 The CA in vibrated mortars can be divided into a varying accelerated motion 259 with a decreasing acceleration and a uniform motion. Through integral calculation, the

260 relationship between the vertical settlement height and vibration time can be derived

262

$$\Delta h = \frac{d^{2}g(\rho_{a} - \rho_{m})}{18\eta_{pl}} \cdot t - \frac{d^{4}g\rho_{a}(\rho_{a} - \rho_{m})}{324\eta_{pl}^{2}} \cdot \left[1 - \exp\left(-\frac{18\eta_{pl}}{d^{2}\rho_{a}} \cdot t\right)\right]$$

$$= \frac{d^{2}g(\rho_{a} - \rho_{m})}{18\eta_{pl}} \cdot \left\{t - \frac{d^{2}\rho_{a}}{18\eta_{pl}} \cdot \left[1 - \exp\left(-\frac{18\eta_{pl}}{d^{2}\rho_{a}} \cdot t\right)\right]\right\}$$
(9)

263 where Δh is the settlement height of the CA, and t is the vibration time.

264 Since the particle size of CAs in this study is 0.005–0.02 m, the constant and exponential terms in Eq. (9) are much smaller than the linear term. It can be seen that 265 266 the CA will accelerate to the final velocity in a rather short time, which can be ignored. 267 Moreover, Petrou et al. [39] find that, after the vibration, the yield stress of mortars is restored immediately, and the dynamic CA will stop moving with a great acceleration 268 and stabilize in a static state. Hence, the distance of this deceleration motion can also 269 270 be ignored. It means that the CA settlement can be approximately regarded as a uniform motion in the whole process of vibration, and its movement distance is 271 272 expressed as:

273
$$\Delta h = \frac{d^2 g \left(\rho_a - \rho_m\right)}{18\eta_{pl}} \cdot t \tag{10}$$

Eq. (10) shows the settlement height of a single CA in vibrated mortars. But, in fact, each CA particle is also subjected to the interaction from other ones. In this case, the plastic viscosity of mortars can be approximately replaced by that of concrete mixtures, so as to consider the interaction between the CA particles [50–52]. Furthermore, the plastic viscosity of fresh concrete measured in Section 2.2 needs to be calibrated, because the Bingham model is no longer completely suitable to

characterize the rheology of fresh cement-based materials under the action ofvibration. Consequently, the settlement height of the CA can be revised to:

282
$$\Delta h' = \frac{d^2 g \left(\rho_a - \rho_m\right)}{18 k \eta_{m'}} \cdot t \tag{11}$$

In Eq. (11), $\Delta h'$ is the actual settlement height of the CA, η_{pl} is the plastic viscosity of fresh concrete, and *k* is the non-dimensional calibration coefficient for η_{pl} . The specific value of *k* will be determined in Section 3.2, which is related to the raw materials and experimental conditions.

287

288 *3.2. Model calibration*

289 Theoretically, the final height position of a single CA after settlement can be290 expressed by Eq. (12) through the previous calculation and derivation.

291
$$h' = h - \frac{d^2 g \left(\rho_a - \rho_m\right)}{18k\eta_{pl}} \cdot t$$
(12)

where *h* is the initial height position of the CA, and *h*' is the final height position ofthe CA after settlement.

It should be noted that the CAs with different particle sizes have a different settlement rate, which will cause some of them to intersect in the model. To this end, the whole vibration process is divided into many short-time parts, and the vibration time of each step is set as 0.05 s. The final settlement model is generated by superposition of each part step by step, until the expected vibration time is reached. At the end of each part, if the CAs intersect, the involved ones are randomly bounced to the nearby empty space and ensure that they will not intersect with other CAs again.

Considering that the CAs will be wrapped with a layer of pastes (interfacial transition zone) with a thickness of 20–50 μ m [53–55], the minimum distance between the CA 302 surfaces is set as 100 µm in this study. 303

In the model, the parameter information of every CA particle can be easily 304 305 determined at any time and any position. The 3-D model is equally divided into five 306 layers along the height direction, and all CAs are distributed in each layer based on the final position of the centre height of them. According to Eq. (13), the CA volume 307 percentage of each layer in the model can be calculated. 308

309
$$P_i' = \frac{V_i}{V} (i = 1, 2, 3, 4, 5)$$
(13)

310 where P_i is the volume percentage of CAs in the *i*-th layer, V_i is the volume of CAs in the *i*-th layer, and *V* is the total volume of all CAs in the model. 311

Since the density of all CAs is the same, the volume percentage of CAs in each 312 layer (P_i) can be fitted with the mass percentage (P_i) according to the experimental 313 results of Fig. 3 to calculate the calibration coefficient (k) used in Eq. (11). The 314 algorithm flow chart of k and correlation coefficient (\mathbb{R}^2) is presented in Fig. 7. \mathbb{R}^2 is 315 316 calculated by the linear fitting function of software. It can be predicted that the value of \mathbb{R}^2 will increase firstly and then decrease with the increase of k, that is, there is a 317 peak value of R^2 . When R^2 reaches its maximum value, the algorithm ends. It is found 318 that when k is 0.62, the results of numerical model and experiment are in the best 319 agreement. In that case, R^2 is 0.9865. The original data comparison between the 320 model and experimental results is shown in Table 5, and the fitting result is shown in 321 Fig. 8. The fitting function is self-set as y=x, and the abscissa and ordinate represent 322

- 323 the results of experiment and numerical model, respectively. Note that *k* is less than 1.
- 324 It means that vibration reduces the plastic viscosity of fresh concrete compared to that
- in the stable state.
- 326

330

327

Table 5 Comparison of the percentage of CA distribution between the model and experiment.

Viluetien time	Layer	NC		NC	C-5%SF	NC-10%SF	
vibration time		Model	Experiment	Model	Experiment	Model	Experiment
	1	20.99%	20.66%	20.56%	20.28%	20.28%	20.15%
	2	20.73%	20.53%	20.37%	20.48%	20.31%	20.36%
5 s	3	20.39%	20.47%	20.10%	20.36%	20.11%	20.23%
	4	19.48%	19.71%	20.04%	19.87%	20.03%	20.07%
	5	18.41%	18.63%	18.93%	19.01%	19.27%	19.19%

	1	22.51%	22.25%	21.71%	21.78%	21.38%	21.39%
	2	22.03%	21.75%	21.23%	21.47%	21.05%	21.45%
15 s	3	21.40%	21.41%	20.86%	21.10%	20.72%	21.01%
	4	18.47%	18.98%	19.47%	19.26%	19.77%	19.28%
	5	15.59%	15.61%	16.73%	16.39%	17.08%	16.87%
	1	23.72%	23.38%	22.81%	22.93%	22.27%	22.71%
	2	22.87%	22.57%	22.37%	22.35%	21.92%	22.18%
25 s	3	21.78%	22.03%	21.41%	21.66%	21.67%	21.43%
	4	18.06%	18.29%	18.70%	18.55%	18.67%	18.47%
	5	13.57%	13.73%	14.71%	14.51%	15.47%	15.21%

331

333

Fig. 8. Fitting between numerical model and experimental results.

Taking the group of NC as an example, firstly, a 3-D geometric model was generated, and then a 2-D slice was extracted to facilitate the visual observation of CA settlement, as depicted in Fig. 9. As the vibration progressed, CAs gradually deposited to the bottom part of specimen, and the distribution profiles presented an increased content of CAs towards the bottom layer. For a single CA, the CA with a larger

340 particle size showed a more notable settlement distance.

341

342 343

Fig. 9. Visual analysis of CA settlement under vibration (all dimensions in mm).

344

It was noteworthy that the CA content in the top part of specimen was 345 significantly decreased, especially when the vibration time reached 25 s, there were 346 347 most of mortars and only few of small-sized CAs in the top 50 mm-height area (see 348 Fig. 9(c)). Megid and Khayat [56] observed similar phenomena in their experiment. 349 The settlement of CAs led to the formation of a porous surface layer enriched in 350 cement pastes in the top part of concrete specimen, where might be prone to experience shrinkage and cracking [57,58]. In addition, it could be clearly seen from 351 352 the figure that CAs in the bottom part indeed formed a close packing in the local 353 space, which confirmed the previous interpretation of the experimental results.

354

On the basis of the 3-D model, the volume percentages of CAs in the five layers

355 were calculated, as illustrated in Fig. 10. Evidently, as the vibration time increased, the heterogeneity of CA distribution along casting direction was gradually 356 357 strengthened, which was reflected in the obvious decrease of CA content in the top 358 part and the increase of that in the bottom part. This was consistent with the direct 359 observation shown in Fig. 9. Besides, for concrete mixtures having different w/b or 360 mix proportions, as long as the relevant rheological parameter of mixtures and raw material information were input into the model, the CA settlement behaviour could 361 also be easily displayed. The proposed methodology had potential application 362 363 prospects in large-scale structural concrete cast in practice and 3-D printed concrete.

364

Fig. 10. The CA volume percentages of these five layers in NC.

367

368 **4. Prediction and discussion**

The settlement of CAs is a common phenomenon in fresh concrete due to vibration, and the visually method can provide an important and effective way to reveal the settlement behaviour of CAs. Based on the numerical approach proposed in

372 this study, a corresponding 3-D model can be established to predict the degree of CA settlement under different influencing factors, for example, the vibration time, the 373 374 apparent density and particle size of CAs, and the plastic viscosity of mixtures. It not 375 only has the advantages of convenience and visualization, but also can further make a 376 theoretical explanation for such a rheological problem in vibrated concrete.

377

4.1. Influence of vibration time

The distribution of CAs along casting direction under different vibration time is 378 shown in Fig. 11. The orange, green, purple, yellow and blue histograms in the figure 379 380 represent the volume percentages of CA content from the first layer to the fifth layer 381 of the total, respectively. And the line chart shows the standard deviation of the CA 382 volume percentages of these five layers to characterize the degree of CA settlement (like Eq. (3)). An obvious impact of vibration time on CA settlement could be 383 observed. As the vibrating duration became longer, the heterogeneity of CA 384 distribution gradually increased. After vibrating for a certain period of time, due to the 385 dense packing of some CAs in the bottom part of specimen, the growing trend of 386 387 settlement degree became slower. It should be noted that the addition of SF would 388 delay the initial time of that a part of CAs in the bottom area formed a close packing.

In engineering practice, long-time vibration should be avoided, because 389 excessive vibration would aggravate the settlement, segregation and bleeding of fresh 390 391 concrete. On the contrary, too short vibration time might make it difficult for each component in mixtures to combine closely and entrapped air voids could not be 392 completely removed from the surface of specimen, which also might affect the quality 393

of hardened concrete. Therefore, when casting fresh concrete, the vibration timeshould be strictly controlled, usually 20–30 s.

396

397

398

Fig. 11. Influence of the vibration time on CA settlement.

399

400 4.2. Influence of CA apparent density

The properties of CAs, such as apparent density, particle size distribution and 401 appearance shape, may all have a certain influence on the degree of settlement 402 [12,38,59–66]. Considering that the laboratory could offer additional CAs with 403 apparent densities of 2520 kg/m³ and 2790 kg/m³, a numerical model of the influence 404 of apparent density on settlement was carried out, and the vibration time was set as 25 405 406 s. From Fig. 12, it showed that the CAs with a larger apparent density presented a higher difference between the densities of the CA and the mortar matrix, resulting in a 407 greater sedimentation tendency. This was in line with the finding of Navarrete and 408 409 Lopez [59], who believed that the settlement rate had a linear relationship with the density difference between CAs and mortars for a given mixture. Furthermore, Chia et 410

- al. [60] and Ke et al. [61] studied the settlement behaviour of lightweight CA concrete
- 412 under vibration. They claimed that when the density of CAs was less than that of the
- 413 mortars, the CAs would appear to float.
- 414

415 416

Fig. 12. Influence of the apparent density of CAs on settlement.

417

418 *4.3. Influence of CA particle size*

In Fig. 13, three particle size distributions of CAs were designed, namely 5–16 419 mm, 5–20 mm and 9.5–20 mm, and the vibration time was also 25 s. The reason for 420 421 distinguishing the range of particle size in this way was that it could be easily obtained through the sieves of 9.5 mm and 16 mm sizes in the laboratory, which was 422 423 beneficial to the subsequent experimental verification. Under the action of vibration, the mixtures which contained more large-sized CAs had a greater degree of settlement 424 for the same CA volume fraction, that was, the distribution of CAs in concrete 425 presented a more evident non-uniformity. This was consistent with the results of 426 Safawi et al. [38]. In their experiment, the CAs with particle sizes of 5–13 mm and 427

13–20 mm were used to prepare fresh concrete mixtures, respectively. The results
showed that the large-sized CAs were more affected due to vibration than the
small-sized ones. It meant that the larger-sized CAs were more dominant in
determining the settlement degree compared with smaller ones. Similarly,
Esmaeilkhanian et al. [12] and Shen et al. [62] also found that concrete mixtures with
lower maximum size CAs tended to settle and segregate less.

Moreover, compared with the particle size distribution of CAs which increased from 5–20 mm to 9.5–20 mm, the increase in the settlement degree of the particle size from 5–16 mm to 5–20 mm was more obvious. It was because, although the particle size of CAs increased in both cases, the CAs with a larger particle size were more likely to form a dense packing when they deposited in the bottom part of specimen, which could prevent the settlement movement to a certain extent.

440

442

Fig. 13. Influence of the particle size of CAs on settlement.

444 *4.4. Verification of prediction results*

In Sections 4.1-4.3, the numerical model was used to predict the influence of 445 446 vibration time, apparent density and particle size of CAs on settlement degree in the three groups of concrete mixtures. Next, the validity of the proposed model based on 447 448 experimental results would be discussed in this section. Although the vibration time of fresh concrete usually did not exceed 30 s, the tests of vibrating durations of 35 s and 449 450 45 s were still carried out to validate the previous prediction. In addition, the limestone with apparent densities of 2520 kg/m³ and 2790 kg/m³ prepared in the 451 laboratory could be used to test the influence of the CA density on settlement. For the 452 experiment of the effect of the CA particle size, the CAs with diameters of 5–16 mm 453 and 9.5–20 mm could be obtained from original particle size (5–20 mm) through 16 454 455 mm and 9.5 mm size sieves, respectively.

The experimental results determined by the segmented sieving method were used 456 to verify the prediction results of numerical model, as presented in Fig. 14. For the 457 vibration time, the model prediction was in good agreement with the experimental 458 results as evident in Fig. 14(a). With the vibration time going on, both the settlement 459 degree and heterogeneity distribution of CAs were more pronounced. When the 460 vibration time reached a certain value, the increase of settlement degree became 461 slower due to the close packing of some CAs in the bottom layer. Similarly, when the 462 463 numerical method was used to predict the influence of the apparent density and particle size of CAs on settlement, it also showed a good correlation with the 464 experimental results (see Fig. 14(b) and (c)), which indicated that the model was 465

Fig. 14. Experimental verification of the prediction results.

470 *4.5. Grey relational analysis*

The grey relational analysis table of different influencing factors is summarized in Table 6. Here, this method is used to characterize the contribution of each factor to CA settlement. The settlement degree is taken as the reference sequence. The influencing factors such as vibration time, apparent density and particle size of CAs, and plastic viscosity of mixtures are taken as the comparable sequences.

476

477

Table 6 Grey relational analysis table of different influencing factors.

0	Vibration	Apparent density	Particle size of	Plastic viscosity of	Degree of
Group	time (s)	of CAs (kg/m ³)	CAs (mm)	mixtures (Pa·s)	settlement
1	5	2670	5-20	<mark>45.0</mark>	9.4484
2	15	2670	5-20	<mark>45.0</mark>	26.1419
3	25	2670	5-20	<mark>45.0</mark>	37.5106
4	35	2670	5-20	<mark>45.0</mark>	44.6035
5	45	2670	5-20	<mark>45.0</mark>	48.8770
6	5	2670	5-20	<mark>48.4</mark>	5.6692
7	15	2670	5-20	<mark>48.4</mark>	17.9724
8	25	2670	5-20	<mark>48.4</mark>	30.0583
9	35	2670	5-20	<mark>48.4</mark>	38.7519
10	45	2670	5-20	<mark>48.4</mark>	43.3282
11	5	2670	5-20	<mark>51.3</mark>	3.7958
12	15	2670	5-20	<mark>51.3</mark>	15.5593
13	25	2670	5-20	<mark>51.3</mark>	26.0454
14	35	2670	5-20	<mark>51.3</mark>	34.1547
15	45	2670	5-20	<mark>51.3</mark>	39.2495
16	25	2520	5-20	<mark>45.0</mark>	31.8085
17	25	2790	5-20	<mark>45.0</mark>	41.6522
18	25	2520	5-20	<mark>48.4</mark>	23.2047
19	25	2790	5-20	<mark>48.4</mark>	35.6362
20	25	2520	5-20	<mark>51.3</mark>	18.9375
21	25	2790	5-20	<mark>51.3</mark>	31.9706
22	25	2670	5-16	<mark>45.0</mark>	28.0206
23	25	2670	9.5–20	<mark>45.0</mark>	42.8769
24	25	2670	5-16	<mark>48.4</mark>	20.3044
25	25	2670	9.5–20	<mark>48.4</mark>	36.6233
26	25	2670	5-16	<mark>51.3</mark>	16.4197
27	25	2670	9.5–20	<mark>51.3</mark>	32.7796
Grey relational	0 7202	0.6201	0 6425	0 6222	
grade	0.7392	0.0291	0.0455	0.0222	_

478

479 Assuming the reference and comparable sequences are respectively denoted as 480 $X_0(k)$ and $X_i(k)$. Before conducting a grey relational analysis, the original reference 481 and comparable sequences need to be normalized by data pre-processing, as follows:

482
$$x_{0}(k) = \frac{X_{0}(k)}{\frac{1}{n}\sum_{k=1}^{n}X_{0}(k)}$$
 (14)

483
$$x_{i}(k) = \frac{X_{i}(k)}{\frac{1}{n} \sum_{k=1}^{n} X_{i}(k)}$$
(15)

484 where $x_0(k)$ and $x_i(k)$ are the sequences after data pre-processing, and i=1, 2, ..., m and 485 k=1, 2, ..., n.

When the dimensionless data are prepared, the grey relational coefficient can bederived by Eq. (16).

488 $\varepsilon_i(k) = \frac{\Delta_{\min} + \rho \Delta_{\max}}{\Delta_{0i}(k) + \rho \Delta_{\max}}$ (16)

Here, the absolute difference between each evaluated comparable sequence and the corresponding element of reference sequence is calculated in turn, and then Δ_{\min} , Δ_{\max} and $\Delta_{0i}(k)$ can be obtained by Eqs. (17)–(19). Moreover, ρ is called the resolution coefficient, and the smaller ρ indicates the greater resolution. In general, the value of ρ is 0.5.

494
$$\Delta_{\min} = \frac{\min}{i} \frac{\min}{k} |x_0(k) - x_i(k)|$$
(17)

495
$$\Delta_{\max} = \frac{\max}{i} \frac{\max}{k} |x_0(k) - x_i(k)|$$
(18)

496
$$\Delta_{0i}(k) = |x_0(k) - x_i(k)|$$
(19)

As the calculated relational coefficients are not only large in quantity, but also
discrete, it is impossible to directly compare them. It needs to average the relational
coefficients to convert each sequence into a relational grade, as shown in Eq. (20).

500
$$\gamma_i = \frac{1}{n} \sum_{k=1}^n \varepsilon_i(k)$$
(20)

501 where γ_i is the grey relational grade.

502	On the basis of the principle of grey relational analysis, a larger value of γ_i
503	implies that the related influencing factor has a greater impact on CA settlement. After
504	calculation, it is found that the grey relational grades of the influencing factors are γ
505	(vibration time) = 0.7392, γ (apparent density of CAs) = 0.6291, γ (particle size of
506	CAs) = 0.6435, and γ (plastic viscosity of mixtures) = 0.6222, respectively. It means
507	that the order of these four influencing factors for the contribution of CA settlement in
508	this study is vibration time > particle size of CAs > apparent density of CAs > plastic
509	viscosity of mixtures. This supports the general observation that vibration time should
510	be limited in practical applications.
511	
512	5. Conclusions
513	In this study, an experimental and numerical work of CA settlement in vibrated
514	fresh concrete was investigated. Based on the previous results and discussion, the
515	following conclusions could be drawn:
516	1) The distribution profiles of CAs in vibrated concrete presented a growing
517	tendency towards the bottom layer with vibration time. After a certain period of
518	vibrating, some CAs in the bottom part formed the close packing, and the growth
519	of the non-uniform distribution gradually began to weaken.
520	2) Due to the opacity of concrete, the proposed 3-D model for fresh concrete could
521	be used as a potential approach to visualize the CA movement. For the top part of
522	specimen, the visual analysis showed that a surface layer enriched in cement
523	mortars formed in this area, where only contained few of small-sized CAs.

524	3)	The heterogeneity of concrete had a positive correlation with the density
525		difference between CAs and mortars and the particle size of CAs. SF, as a mineral
526		admixture to improve the plastic viscosity of mixtures, could effectively reduce
527		the settlement and segregation of fresh cement-based materials.
528	4)	The segmented sieving method was performed to assess the validity of numerical
529		model. The results indicated that the model prediction was well verified by the
530		experimental results. The methodology proposed in this study provided an
531		effective tool to further understand the settlement behaviour of CAs.
532	5)	Grey relational analysis demonstrated that the vibration time had the greatest
533		influence on CA settlement, followed by the particle size of CAs. Compared with
534		the former two influencing factors, the apparent density of CAs and the plastic
535		viscosity of mixtures contributed a little to the settlement.
536		
537	Ac	knowledgments
538		This work was funded by the National Natural Science Foundation of China
539	[51	978396] and the Shanghai Rising-Star Program, China [19QA1404700].
540		
541	Re	ferences
542	[1]	K. Kovler, N. Roussel, Properties of fresh and hardened concrete, Cem. Concr. Res. 41 (7)
543	(20	11) 775–792.
544	[2]	N. Roussel, A theoretical frame to study stability of fresh concrete, Mater. Struct. 39 (1) (2006)

545 81–91.

- 546 [3] D. Jiao, C. Shi, Q. Yuan, X. An, Y. Liu, H. Li, Effect of constituents on rheological properties
- of fresh concrete-A review, Cem. Concr. Compos. 83 (2017) 146–159.
- 548 [4] G. Torelli, J.M. Lees, Fresh state stability of vertical layers of concrete, Cem. Concr. Res. 120
- **549** (2019) 227–243.
- 550 [5] W.S. Alyhya, S. Kulasegaram, B.L. Karihaloo, Simulation of the flow of self-compacting
- concrete in the V-funnel by SPH, Cem. Concr. Res. 100 (2017) 47–59.
- [6] J. Zhang, X. Gao, Y. Su, Influence of poker vibration on aggregate settlement in fresh concrete
- with variable rheological properties, J. Mater. Civ. Eng. 31 (7) (2019) 04019128.
- 554 [7] W. Yan, W. Cui, L. Qi, Effect of aggregate gradation and mortar rheology on static
- segregation of self-compacting concrete, Constr. Build. Mater. 259 (2020) 119816.
- [8] M.I. Safawi, I. Iwaki, T. Miura, A study on the applicability of vibration in fresh high fluidity
- 557 concrete, Cem. Concr. Res. 35 (9) (2005) 1834–1845.
- 558 [9] G.H. Tattersall, P.H. Baker, The effect of vibration on the rheological properties of fresh
- 559 concrete, Mag. Concr. Res. 40 (143) (1988) 79–89.
- 560 [10] G.H. Tattersall, P.H. Baker, An investigation into the effect of vibration on the workability of
- fresh concrete using a vertical pipe apparatus, Mag. Concr. Res. 41 (146) (1989) 3–9.
- 562 [11] C. Hu, F. de Larrard, The rheology of fresh high-performance concrete, Cem. Concr. Res. 26
- **563** (2) (1996) 283–294.
- 564 [12] B. Esmaeilkhanian, K.H. Khayat, A. Yahia, D. Feys, Effects of mix design parameters and
- 565 rheological properties on dynamic stability of self-consolidating concrete, Cem. Concr. Compos.
- 566 54 (2014) 21–28.

- 567 [13] C. Pichler, R. Rock, R. Lackner, Apparent power-law fluid behavior of vibrated fresh
- 568 concrete: Engineering arguments based on Stokes-type sphere viscometer measurements, J.
- 569 Non-Newtonian Fluid Mech. 240 (2017) 44–55.
- 570 [14] W. Zhu, J.C. Gibbs, P.J.M. Bartos, Uniformity of in situ properties of self-compacting
- 571 concrete in full-scale structural elements, Cem. Concr. Compos. 23 (1) (2001) 57–64.
- 572 [15] A. Leemann, B. Munch, P. Gasser, L. Holzer, Influence of compaction on the interfacial
- transition zone and the permeability of concrete, Cem. Concr. Res. 36 (8) (2006) 1425–1433.
- 574 [16] D.K. Panesar, B. Shindman, The effect of segregation on transport and durability properties
- of self consolidating concrete, Cem. Concr. Res. 42 (2) (2012) 252–264.
- 576 [17] X. Gao, J. Zhang, Y. Su, Influence of vibration-induced segregation on mechanical property
- 577 and chloride ion permeability of concrete with variable rheological performance, Constr. Build.
- 578 Mater. 194 (2019) 32–41.
- 579 [18] Y. Cai, W. Zhang, L. Yu, M. Chen, C. Yang, R. François, K. Yang, Characteristics of the
- 580 steel-concrete interface and their effect on the corrosion of steel bars in concrete, Constr. Build.
- 581 Mater. 253 (2020) 119162.
- 582 [19] W. Zhang, R. François, Y. Cai, J.-P. Charron, L. Yu, Influence of artificial cracks and
- 583 interfacial defects on the corrosion behavior of steel in concrete during corrosion initiation under a
- chloride environment, Constr. Build. Mater. 253 (2020) 119165.
- 585 [20] Y. Cai, W. Zhang, C. Yang, R. François, L. Yu, M. Chen, H. Chen, H. Yang, Evaluating the
- 586 chloride permeability of steel–concrete interface based on concretes of different stability, Struct.
- **587** Concr. (2020) 1–14.

- 588 [21] C. Wu, C. Chen, C. Cheeseman, Size effects on the mechanical properties of 3D printed
- 589 plaster and PLA parts, J. Mater. Civ. Eng. 33 (7) (2021) 04021152.
- 590 [22] M.F. Petrou, K.A. Harries, F. Gadala-Maria, V.G. Kolli, A unique experimental method for
- 591 monitoring aggregate settlement in concrete, Cem. Concr. Res. 30 (5) (2000) 809–816.
- [23] J.A. Koch, D.I. Castaneda, R.H. Ewoldt, D.A. Lange, Vibration of fresh concrete understood
- through the paradigm of granular physics, Cem. Concr. Res. 115 (2019) 31–42.
- 594 [24] Z. Tian, X. Li, F. Zhu, Z. Peng, Experimental simulation study on aggregate motion of
- 595 rheological concrete, J. Build. Mater. 19 (1) (2016) 22–28.
- 596 [25] F.S. Barbosa, A.L. Beaucour, M.C.R. Farage, S. Ortola, Image processing applied to the
- analysis of segregation in lightweight aggregate concretes, Constr. Build. Mater. 25 (8) (2011)
 3375–3381.
- 599 [26] I. Navarrete, M. Lopez, Understanding the relationship between the segregation of concrete
- and coarse aggregate density and size, Constr. Build. Mater. 149 (2017) 741–748.
- 601 [27] M. Nili, M. Razmara, M. Sadeghi, M. Razmara, Automatic image analysis process to
 602 appraise segregation resistance of self-consolidating concrete, Mag. Concr. Res. 70 (8) (2018)
- **603 390–399**.
- 604 [28] M. Benaicha, O. Jalbaud, X. Roguiez, A.H. Alaoui, Y. Burtschell, Prediction of
- 605 Self-Compacting Concrete homogeneity by ultrasonic velocity, Alex. Eng. J. 54 (4) (2015) 1181–
- **606** 1191.
- 607 [29] K.H. Khayat, T.V. Pavate, J. Assaad, C. Jolicoeur, Analysis of variations in electrical
- 608 conductivity to assess stability of cement-based materials, ACI Mater. J. 100 (4) (2003) 302–310.

- [30] Y. Vanhove, C. Djelal, G. Schwendenmann, P. Brisset, Study of self consolidating concretes
- 610 stability during their placement, Constr. Build. Mater. 35 (2012) 101–108.
- 611 [31] H.S. Gokce, B.C. Ozturk, N.F. Çam, O. Andiç-Çakir, Gamma-ray attenuation coefficients
- and transmission thickness of high consistency heavyweight concrete containing mineral
- 613 admixture, Cem. Concr. Compos. 92 (2018) 56–69.
- 614 [32] F. Mahmoodzadeh, S.E. Chidiac, Rheological models for predicting plastic viscosity and
- 615 yield stress of fresh concrete, Cem. Concr. Res. 49 (2013) 1–9.
- [33] J. Peng, D. Deng, Z. Liu, Q. Yuan, T. Ye, Rheological models for fresh cement asphalt paste,
- 617 Constr. Build. Mater. 71 (2014) 254–262.
- [34] V. Mechtcherine, S. Shyshko, Simulating the behaviour of fresh concrete with the Distinct
- Element Method Deriving model parameters related to the yield stress, Cem. Concr. Compos. 55
 (2015) 81–90.
- [35] K. Vance, G. Sant, N. Neithalath, The rheology of cementitious suspensions: A closer look at
- 622 experimental parameters and property determination using common rheological models, Cem.
- 623 Concr. Compos. 59 (2015) 38–48.
- 624 [36] B. Il Choi, J.H. Kim, T.Y. Shin, Rheological model selection and a general model for
- 625 evaluating the viscosity and microstructure of a highly-concentrated cement suspension, Cem.
- 626 Concr. Res. 123 (2019) 105775.
- 627 [37] Y. Liu, C. Shi, Q. Yuan, X. An, L. Zhu, B. Wu, The rotation speed-torque transformation
- 628 equation of the Robertson-Stiff model in wide gap coaxial cylinders rheometer and its applications
- 629 for fresh concrete, Cem. Concr. Compos. 107 (2020) 103511.

- 630 [38] M.I. Safawi, I. Iwaki, T. Miura, The segregation tendency in the vibration of high fluidity
- 631 concrete, Cem. Concr. Res. 34 (2) (2004) 219–226.
- [39] M.F. Petrou, B.L. Wan, F. Gadala-Maria, V.G. Kolli, K.A. Harries, Influence of mortar
- rheology on aggregate settlement, ACI Mater. J. 97 (4) (2000) 479–485.
- [40] Y.A. Abebe, L. Lohaus, Rheological characterization of the structural breakdown process to
- analyze the stability of flowable mortars under vibration, Constr. Build. Mater. 131 (2017) 517–
- **636** 525.
- [41] T.R. Muzenda, P. Hou, S. Kawashima, T. Sui, X. Cheng, The role of limestone and calcined
- clay on the rheological properties of LC3, Cem. Concr. Compos. 107 (2020) 103516.
- [42] D. Kong, D.J. Corr, P. Hou, Y. Yang, S.P. Shah, Influence of colloidal silica sol on fresh
- properties of cement paste as compared to nano-silica powder with agglomerates in micron-scale,
- 641 Cem. Concr. Compos. 63 (2015) 30–41.
- [43] J.J. Assaad, Correlating thixotropy of self-consolidating concrete to stability, formwork
- pressure, and multilayer casting, J. Mater. Civ. Eng. 28 (10) (2016) 04016107.
- 644 [44] S. Zhuang, Q. Wang, Inhibition mechanisms of steel slag on the early-age hydration of
- 645 cement, Cem. Concr. Res. 140 (2021) 106283.
- 646 [45] L.-X. Mao, Z. Hu, J. Xia, G.-L. Feng, I. Azim, J. Yang, Q.-F. Liu, Multi-phase modelling of
- 647 electrochemical rehabilitation for ASR and chloride affected concrete composites, Compos. Struct.
- **648** 207 (2019) 176–189.
- 649 [46] Q.-F. Liu, M.F. Iqbal, J. Yang, X.-Y. Lu, P. Zhang, M. Rauf, Prediction of chloride
- diffusivity in concrete using artificial neural network: Modelling and performance evaluation,
- 651 Constr. Build. Mater. 268 (2021) 121082.

- 652 [47] C.-L. Zhang, W.-K. Chen, S. Mu, B. Šavija, Q.-F. Liu, Numerical investigation of external
- 653 sulfate attack and its effect on chloride binding and diffusion in concrete, Constr. Build. Mater.

654 285 (2021) 122806.

- [48] F. de Larrard, C. Hu, T. Sedran, J.C. Szitkar, M. Joly, F. Claux, F. Derkx, A new rheometer
- for soft-to-fluid fresh concrete, ACI Mater. J. 94 (3) (1997) 234–243.
- [49] P.F.G. Banfill, Y. Xu, P.L.J. Domone, Relationship between the rheology of unvibrated fresh
- 658 concrete and its flow under vibration in a vertical pipe apparatus, Mag. Concr. Res. 51 (3) (1999)
- **659** 181–190.
- [50] Z. Li, G. Cao, Rheological behaviors and model of fresh concrete in vibrated state, Cem.
- 661 Concr. Res. 120 (2019) 217–226.
- 662 [51] J.-Y. Petit, E. Wirquin, Y. Vanhove, K.H. Khayat, Yield stress and viscosity equations for
- 663 mortars and self-consolidating concrete, Cem. Concr. Res. 37 (5) (2007) 655–670.
- [52] A. Leemann, F. Winnefeld, The effect of viscosity modifying agents on mortar and concrete,
- 665 Cem. Concr. Compos. 29 (5) (2007) 341–349.
- [53] S. Diamond, J.D. Huang, The ITZ in concrete a different view based on image analysis and
- 667 SEM observations, Cem. Concr. Compos. 23 (2–3) (2001) 179–188.
- 668 [54] Q.-F. Liu, D. Easterbrook, J. Yang, L.-Y. Li, A three-phase, multi-component ionic transport
- model for simulation of chloride penetration in concrete, Eng. Struct. 86 (2015) 122–133.
- 670 [55] Q.-F. Liu, G.-L. Feng, J. Xia, J. Yang, L.-Y. Li, Ionic transport features in concrete
- 671 composites containing various shaped aggregates: a numerical study, Compos. Struct. 183 (2018)
- **672** 371–380.

- [56] W.A. Megid, K.H. Khayat, Effect of concrete rheological properties on quality of formed
- 674 surfaces cast with self-consolidating concrete and superworkable concrete, Cem. Concr. Compos.

675 93 (2018) 75–84.

- [57] J.J. Assaad, J. Harb, Surface settlement of cementitious-based materials determined by
- 677 oedometer testing, Mater. Struct. 44 (2011) 845–856.
- [58] B.M. Aïssoun, J.-L. Gallias, K.H. Khayat, Influence of formwork material on transport
- 679 properties of self-consolidating concrete near formed surfaces, Constr. Build. Mater. 146 (2017)

680 329–337.

- 681 [59] I. Navarrete, M. Lopez, Estimating the segregation of concrete based on mixture design and
- vibratory energy, Constr. Build. Mater. 122 (2016) 384–390.
- [60] K.S. Chia, C.C. Kho, M.H. Zhang, Stability of fresh lightweight aggregate concrete under
- 684 vibration, ACI Mater. J. 102 (5) (2005) 347–354.
- [61] Y. Ke, A.L. Beaucour, S. Ortola, H. Dumontet, R. Cabrillac, Influence of volume fraction and
- 686 characteristics of lightweight aggregates on the mechanical properties of concrete, Constr. Build.
- 687 Mater. 23 (2009) 2821–2828.
- 688 [62] L. Shen, H.B. Jovein, Q. Wang, Correlating aggregate properties and concrete rheology to
- dynamic segregation of self-consolidating concrete, J. Mater. Civ. Eng. 28 (1) (2016) 04015067.
- 690 [63] M.F. Iqbal, Q.-F. Liu, I. Azim, X. Zhu, J. Yang, M.F. Javed, M. Rauf, Prediction of
- 691 mechanical properties of green concrete incorporating waste foundry sand based on gene
- expression programming, J. Hazard. Mater. 384 (2020) 121322.
- [64] J.J. Assaad, Influence of recycled aggregates on dynamic/static stability of self-consolidating
- 694 concrete, J. Sustainable Cem.-Based Mater. 6 (6) (2017) 345–365.

- 695 [65] W. Cui, W.-S. Yan, H.-F. Song, X.-L. Wu, DEM simulation of SCC flow in L-Box set-up:
- 696 Influence of coarse aggregate shape on SCC flowability, Cem. Concr. Compos. 109 (2020) 697 103558.
- 698 [66] M.F. Iqbal, M.F. Javed, M. Rauf, I. Azim, M. Ashraf, J. Yang, Q.-F. Liu, Sustainable
- 699 utilization of foundry waste: Forecasting mechanical properties of foundry sand based concrete
- 700 using multi-expression programming, Sci. Total Environ. 780 (2021) 146524.

of f.

HIGHLIGHTS

- A rheological problem of cement-based materials has been studied both experimentally and numerically.
- The numerical method is developed for the first time to investigate the settlement behaviour of CAs in vibrated concrete.
- The validity of the model prediction is verified by the experimental results, based on the segmented sieving method.
- Grey relational analysis is performed to study the influence of related factors on the settlement of CAs.

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Qing-feng LIU