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Abstract

In the fast-paced field of quantum computing, identifying the architectural characteris-
tics that will enable quantum processors to achieve high performance across a diverse
range of quantum algorithms continues to pose a significant challenge. Given the exten-
sive and costly nature of experimentally testing different designs, this paper introduces
the first Design Space Exploration (DSE) for quantum-dot spin-qubit architectures.
Utilizing the upgraded SpinQ compilation framework, this study explores a substan-
tial design space comprising 29,312 spin-qubit-based architectures and applies an
innovative optimization tool, ArtA (Artificial Architect), to speed up the design space
traversal. ArtA can leverage 17 optimization configurations, significantly reducing
exploration times by up to 99.1% compared to a traditional brute force approach
while maintaining the same result quality. After a comprehensive evaluation of best-
matching optimization configurations per quantum circuit, ArtA suggests specific as
well as universal architectural features that provide optimal performance across the
examined circuits. Our work demonstrates that combining DSE methodologies with
optimization algorithms can be effectively used to generate meaningful design insights
for quantum processor development.
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1 Introduction

As the field of quantum computing rapidly advances, different qubit technologies
exhibit unique hardware and performance characteristics. It still remains to be seen
which one (e.g., superconducting, trapped ions, quantum dots, photonics, defect based
on nitrogen vacancy diamond centers) will succeed in scaling up quantum comput-
ing systems with high-quality qubits [1, 2]. Among them, spin qubits in quantum
dots emerge as a compelling avenue for achieving scalability for practical quantum
computation [2]. To this day, spin qubits are at an early stage in their development,
with Intel’s Tunnel Falls chip currently boasting the highest count of twelve spin
qubits [3]. Despite this, their inherent scalability advantages suggest that a robust
two-dimensional design [4—10] could be scaled up relatively easily once fabrication
techniques and quality improve up to a certain level. Designing a chip, however,
involves multiple architectural design choices whose impact in the future can only be
fully assessed through experimental studies post-scaling the technology. Exploring all
these design possibilities simultaneously can be expensive, time intensive, and imprac-
tical. Therefore, simulating how different design choices can affect performance in a
range of quantum applications is crucial to assist the development. This process facil-
itates highlighting architectural insights that can guide the technology forward and
will allow quantum researchers to make more informed decisions, streamline efforts,
and hasten the development of these devices.

Recognizing the intricate challenges of designing quantum processor architectures,
this study initiates the first Design Space Exploration (DSE) for quantum-dot spin-
qubit architectures, both from a current technological perspective and a future one.
Therefore, in this work, we have identified a wide range of representative architectural
features and abstracted them into usable input variables, resulting in 29, 312 different
architectures. To facilitate this exploration, we have enhanced the compilation capa-
bilities of SpinQ compilation framework [11] to handle all these input variables and
updated the definition of the Estimated Success Probability (ESP) metric to include
not only operational errors but also crosstalk and decoherence errors. These transfor-
mations, and many more, establish SpinQ as the first compilation and DSE framework
for spin-qubit architectures.

Standard DSE processes [12, 13], however, will be impractical time-wise, especially
for such large spaces, as they rely on a brute force approach to traverse and subsequently
analyze the design space. To address this, our approach employs ArtA (Artificial
Architect), a built-in tool containing multiple optimization methods for automating
the DSE process of SpinQ, thus taking less time than the brute force approach with the
same quality of results. The abilities of ArtA are (a) to suggest which of the seventeen
optimization configurations can find the architecture with the desired ESP the fastest
compared to the brute force approach and (b) which architectural design characteristics
are key for building high-performance spin-qubit devices per quantum circuit.
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Our results demonstrate ArtA’s ability to compare all optimization techniques for
each quantum circuit and obtain a solution up to 99.1% faster, on average, than brute
forcing. Then, equipped with these insights, we move on to conduct a DSE analy-
sis of 29, 312 spin-qubit architectures and provide valuable insights into best design
practices. Firstly, we highlight the critical need to maximize the parallelization of
quantum gates rather than minimizing crosstalk between qubits. Secondly, we find
that the communication method via shuttle operations is achieving higher ESP in
large-scale circuits than SWAPs, but for single-qubit gates, pulse-based rotations are
preferred over shuttle-based ones. Finally, a universal recommendation based on all
tested circuits indicates that the likelihood of success increases when prioritizing the
parallelization of single-qubit gates over two-qubit gates. This demonstrates that the
combination of DSE techniques and optimization algorithms can effectively guide
quantum processor designers with meaningful recommendations in the current and
future stages of spin-qubit technology. Notably, we also observe that certain quantum
circuits achieve optimal performance even with reduced hardware capabilities. This
highlights the capability of our approach to uncover optimal architectural configura-
tions without relying on highly complex or resource-intensive hardware designs.

The main contributions of this paper are:

1. The design space definition which comprises five main characteristics of current
and, potentially, future spin-qubit architectures.

2. The upgraded SpinQ, the first compiler and DSE framework for spin-qubit archi-
tectures. In this version, we have updated the ESP formula to include operational,
crosstalk, and decoherence-induced errors.

3. ArtA, the first tool consisting of seventeen optimization method configurations
automating the DSE process of spin-qubit architectures.

4. Evaluation of best-matching optimization configurations per quantum circuit.

5. Evaluation of best-matching architectural characteristics per quantum circuit and
universally (i.e., for all used circuits) in terms of ESP.

The remainder of this paper is structured as follows: In Sect. 2, we discuss the scal-
ability potential of quantum-dot spin qubits as well as the importance of addressing
engineering challenges while taking into account the performance of the resulting
architecture. Then, in Sect. 3, we motivate the need for an automated DSE analysis
for spin-qubit devices and formulate four research questions for this work. After that,
in Sect.4, we define the design space consisting of various input architectural vari-
ables and establish the new functionalities of SpinQ. Another upgrade in SpinQ is
the enhanced ESP metric, described in Sect.5, which is used as the figure of merit
for our exploration. In Sect. 6, we introduce ArtA and two new metrics to evaluate
its performance. In the results Sect.7, we first evaluate ArtA’s performance across
all used quantum circuits and determine the best optimization method configuration.
Then, we conduct a detailed analysis of the best architectural designs for each quantum
circuit and form valuable insights. We conclude our work and provide ideas for future
directions in Sect. 8.
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2 Challenges for scaling up spin-qubit devices

Spin-qubit technologies are distinguished by their unique physical features, which
position them as a highly scalable solution for quantum computing. The advantages
of spin qubits include a significantly smaller size—up to a thousand times less than
other qubit technologies—combined with decades of semiconductor manufacturing
expertise, long coherence times coupled with short gate durations, and high operational
temperatures [2, 4, 6, 14-20]. At the core of this technology lies the quantum dot,
which can contain a trapped electron(s) or hole(s) to form a physical qubit [21]. Spin
qubits are manipulated electromagnetically using multiple precision-engineered gate
electrodes that facilitate either single- or two-qubit operations through exact timing of
pulse sequences across various quantum-dot configurations. Studies have expanded
these systems into one-dimensional and two-dimensional arrays [6—10], exploring
different structures and material combinations.

Despite the mentioned advantages, spin-qubit quantum processors are not as
advanced as other qubit technologies in terms of qubit counts and device availability.
Major technological hurdles are related to the so-called interconnect bottleneck [4]
and various fabrication challenges toward scaling up [22-25]. On the upside, there
have been significant efforts [4, 5, 26-32] to tackle these challenges.

However, solving them can not guarantee successful quantum algorithm executions.
This is because the quality and quantity of qubits are not the only factors determining
a high-performing quantum processor. The architectural constraints qubits need to
comply with in how they are operated are equally important. For instance, the benefits
of qubits with excellent operational fidelity can easily be outweighed by low qubit
connectivity and limited natively supported quantum gates. Similarly, high-quality
qubits with low crosstalk interference are not enough when they can not be addressed
in parallel. These, and many more, are interlinked architectural trade-offs that affect
the actual performance of the quantum processors.

During the Noisy Intermediate-Scale Quantum (NISQ) era [33], predicting which
architectural features and trade-offs will facilitate successful quantum circuit execu-
tions while maintaining reasonable hardware requirements remains challenging. To
date, there has not been a systematic study exploring spin-qubit architectures through
this prism of providing concrete guidelines for future development. Therefore, in this
study, we exploit such an opportunity and alleviate the need for time-consuming,
expensive, and technology-dependent experimental studies.

3 Problem statement

The need to apply DSE techniques for designing and optimizing full-stack quantum
computing systems, or components thereof, has been emphasized in previous work
[34-36]. These techniques and similar ones have been successfully applied across dif-
ferent levels of the quantum computing stack which predominantly rely on brute force
exploration (i.e., exhaustive search). This is largely due to the inherently small design
spaces in current quantum computing systems, which renders brute force evaluation
computationally feasible. For instance, DSE methodologies have been used to explore
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ion-trap quantum processors [37] and evaluate compilation techniques [38] and qubit
connectivities [39—41] for superconducting qubits. Such techniques can abstractly con-
vert architectural characteristics into design variables and, in this way, quantize the
design space, expressing current and future design possibilities that otherwise would
be impossible or too time-consuming to physically realize. Starting from there [12,
13], the steps for a proper DSE: i) Describe the problem in terms of input variables
or parameters (design choices), ii) select the performance metrics, iii) choose a global
cost function as a figure of merit that combines different performance metrics, and iv)
find models (behavioral, analytical, from experimental data) that connect input param-
eters with metrics or directly to the figure of merit. Applying these DSE techniques
allows researchers to uncover performance trends, model current and future multidi-
mensional design spaces, and identify optimal design points across a wide range of
application use cases.

Although this methodology is well established and understood in many disciplines,
it can be challenging to implement in such early stages for spin-qubit technologies.
One of the most difficult aspects is the development of a simulation framework incor-
porating a range of representative architectural variables with a large-scale perspective.
Firstly, it is difficult to predict which architectural features will be relevant for many
generations of devices to come, and secondly, the framework itself has to be flexible
to incorporate new ones easily.

In practice, performing exhaustive exploration can be highly time-consuming; thus,
even in classical systems, the design space is typically constrained to a manageable size
by applying simplifying technological assumptions. While optimization algorithms
have been successfully employed to efficiently explore significantly larger design
spaces in classical computing domains [42—49], such techniques remain largely unex-
plored in quantum computing DSE applications. As spin-qubit technology rapidly
advances, the design space continues to grow with new considerations, making ear-
lier explorations quickly outdated. Even assuming a brute force approach already
exists, the exponential growth in possible configurations can soon make it impractical
to evaluate thousands of designs. Therefore, there is a clear need for an automated
framework capable of efficiently managing this DSE process, significantly reducing
the exploration time across current and future spin-qubit architectures.

To capture the challenges of the above problem statement, we ask the following
four research questions:

1. What characteristics of spin-qubit architectures are representative, and how can
they be incorporated in a DSE framework? Answered in Sect. 4

2. How can a DSE framework for investigating preferred spin-qubit architectural
characteristics be constructed? Answered in Sect. 4

3. Which optimization methods are most effective for automating the DSE process for
each quantum circuit individually, as well as across all used circuits collectively?
Answered in Sect. 7.1

4. Which architectural characteristics in the selected design space are key for building
high-performance spin-qubit devices for the specifically given quantum circuits?
Answered in Sect.7.2
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Table 1 Summary of values of the considered architecture variables

Variable Values
\y 7 0 > No parallelization
- 1 - Parallelization
Xy_tqg idem
Z_tqg idem
Xy_z_tqg idem
-1 - Non applicable
1 - No parallelization
xyD 25 > X/Y gate parallelization
capped at 25% of qubits per cycle
50 - idem, 75 = idem, 100 = idem
zD idem
P S <
1 - No parallelization 32
tqeD 25 - two-qubit gate parallelization
capped at 25% of qubits/2 per cycle
50 - idem, 75 - idem, 100 =2 idem
1 - No parallelization
<D 25 -> Shuttle parallelization capped
at 25% of qubits per cycle
50 - idem, 75 = idem, 100 = idem
0 - Sequential
single_qubit_impl ; z é?gﬁ;l
3 - Semi-global
2 rot_impl 0 - Shuttle-based $ 2
- - 1 - Pulse-based ©n =
router 0 > Shuttle-based SWAP router $ (;
1 > beSnake router iz~
4 - Square grid connectivity a
degree 6 > One extra diagonal ez
8 > Two extra diagonals -
0 > SWAP replacement used s =
SWAP_opt 1 > SWAP replacement is not used -

4 SpinQ and the design space

To answer the first two research questions, we conducted an analysis of relevant spin-
qubit architectural properties with a long-term view and distilled them into numerous
variables. These properties were selected to be representative of spin-qubit devices
as well as to be able to form performance-related trade-offs between them. The latter
will prevent “maximizing” one without causing a performance penalty through another
(refer to Sect.5). The defined design space is summarized in Table 1, including their
possible values. An architecture is then characterized by one (valid) combination of
variable values. Below, we describe the considered design space analytically. It should
be noted that the DSE analysis in this work uses either discrete or categorical variables
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[50], as we aim to provide performance trends and rankings between optimization
methods and architectures.

4.1 Operational gate constraints

The set of gate constraints can be vast; therefore, we decided to abstract them into the
following variables that affect which (a) gate types can be executed simultaneously
and (b) how many of them can be parallelized at the same time step.

a)

b)

c)

Combinations of gate types that can be parallelized:

(xy_z, xy_taqg, z_tag,xy_z_tag=0, )

As the names suggest, these variables are boolean and signify whether specific
gate types can be executed in parallel. For example, xy_ z defines if X or Y gates
can be executed simultaneously with Z gates.

Constraints affecting the parallelization per gate type expressed in percentage:
(xyD, zD, tqgD, sD=-1, 1, 25%, 50%, 75%, 100% )

These variables indicate how many gates of each type can be parallelized, expressed
as a percentage relation to the total number of qubits. For example, xyD = 25 in
a 40-qubit architecture means that at most ten X or Y gates can exist in a single
cycle. Note that the notion of a cycle refers to the basic unit of time representing
one step in a sequence of gates of a quantum circuit, and each step may contain
multiple gates. The zD and sD variables indicate the same for Z rotations and
shuttle operations, respectively. The tqgD variable indicates the parallelization
amount for two-qubit gates. As these always involve two qubits, they are expressed
as a percentage of half of the total number of qubits. A value of —1 means that
the parallelization degree is not user defined but dictated by a specific single-qubit
gate implementation explained next.

Single-qubit gate implementation:

(single_qubit_impl =0 — Sequential, I — Local, 2 — Global, 3 — Semi-
global)

This variable indicates in what manner single-qubit gates are carried out. A Global
single-qubit gate implementation means the same rotation axis and angle are
applied to all qubits. For qubits that do not participate in a cycle, locally applied
disable instructions prevent their rotation. Then, the Semi-Global implementation
is considered with the same rotation scheme asin [51] and [11], which is essentially
equivalent to the implementations of the crossbar architecture proposed in [5]. In
this implementation, qubit rotations are implemented semi-globally, meaning that
either all qubits in odd or even column parities can be rotated at a time with the
same axis and angle, and unwanted qubit rotations have to be reversed afterward
by additional instructions [11]. A Local implementation enables arbitrary parallel
execution of single-qubit gates, allowing any combination of rotation axes and
angles to be applied simultaneously within a single cycle. Finally, a Sequential
single-qubit gate implementation does not allow parallelizations, meaning that
every cycle will be occupied by one gate only. It should be noted that depending
on the single_qubit_impl value, only certain combinations of categories
(a) and (b) are possible. For instance, in the Global and Semi-Global implemen-
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tations, the xyD variable is not applicable as these implementations predetermine
the upper limit of single-qubit gates allowed during a cycle.

4.2 Implementation of Z rotations

(z_rot_impl =0, 1)

This boolean variable stipulates the hardware-level implementation of Z rotation
gates. The first option is a high-fidelity shuttle-based Z rotation, which is achieved
with two time-sensitive qubit shuttles to and from a neighboring column [5, 11, 51,
52]. This single-qubit manipulation belongs to the so-called “hopping spins” type [53],
and it is possible to achieve an arbitrary rotation axis, but in this work, we only assume
the aforementioned variety for simplicity. The second option is a regular pulse-based
Z rotation, where Z gates are implemented similarly to X/Y gates by magnetic pulse
interactions. With the first choice being a unique characteristic of spin qubits, we are
interested in exploring which one of the two provides better performance across many
quantum circuits. Similar to the variables mentioned earlier, only certain combinations
are possible depending on single_gubit_impl values. For example, with a Semi-
Global single-qubit gate implementation and a pulse-based Z rotation gate, the zD
variable is not applicable for the same reason the xyD variable is not applicable, as
we explained before in category (b).

4.3 Connectivity of the device

(degree =46, 8)

This variable stipulates the considered coupling graphs by addressing them through
their average node degree. A coupling graph is a graph of possible direct interactions
(edges) between qubits (nodes). The first coupling graph we used is a square grid
(degree =4). The second is identical to the first but adds one diagonal connection in
each square (i.e., each qubit is coupled with six neighboring qubits and with three at
the corners, degree = 6). Finally, the third adds the second diagonal in each square
(i.e., each qubit is coupled with eight neighboring qubits and with three at the corners,
degree = 8). Figure la presents the coupling graphs considered with color-coded
edges for each of the three types. The actual dimensions of each coupling graph, and
thus the overall size of the quantum architecture, are determined by the number of
qubits required by the quantum algorithm under execution.

To further ease the understanding of the architectural landscape of the design space,
in Fig. 1b, we depict the crossbar architecture [5] as a real-world example of an archi-
tecture represented in the design space. In this figure, the operational lines confine
sixteen quantum dots, eight of which are occupied by spin qubits. The operational
gate constraints in this architecture arise from the shared control lines and other phys-
ical properties as described in [5, 11, 51, 52]. Among these constraints, the coupling
connectivity is particularly relevant, as it corresponds to a square grid with degree
= 4 in this implementation. Consequently, the topology of the crossbar architecture
can be abstracted as a two-dimensional grid, as depicted in Fig. lc.
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Fig. 1 a Different coupling graphs considered in the design space. The coupling graph consists of the black
line edges when degree =4, black and green edges when degree = 6, and all edges when degree = 8.
b Schematic overview of the crossbar architecture, taken from [11], with various shared operational control
lines: vertical (column line, CL), horizontal (row line, RL), and diagonal (qubit line, QL). These lines are
used with precise pulse sequences and shared among multiple sites, sixteen quantum dots in this figure,
to perform operations on qubits [5, 51, 52] under specific operational constants. Here, the qubits (green
circles with numbers) are initialized in a checkerboard pattern. ¢ Abstraction of the crossbar architecture
taken from [54] representing the coupling graph between qubits with degree = 4. Each circle represents
a quantum dot, and each edge represents a coupling link signifying allowed interactions

We have now reviewed all variables that pertain solely to the hardware. Next, we
examine two additional variables that influence the compilation process. Specifically,
these variables can alter the routing methodology based on the underlying hardware
communication constraints.
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1 0
tqgD =1,
xy_tqg =0,
single_qubit_impl # 3 z_tqg =0,
Xy_z_tqg=0,
SWAP_opt =0,
degree =4
single_qubit_impl single_qubit_impl
0 1 2 0 1 23
waso W=,
e Xy_tqg=0, xyD=1 D
Xy_tag =0, Xy_z_tqg=0
xy.7_tqg="0 AR
z_rot_impl z_rot_impl 2 rot_impl 2_rot_impl 2 rot_impl 2 rot_impl

A A A A AN

xy z=1, xy z=0, xy_z=1,
xy_z=0 z_tqg= degree = z_tqg=0, Xy z=0
Xy_tqg 4 zD =-1

xy_z=0, _ _ _ xy z=1,
D=1 Xy z=0 xy z=1 xy_z=0 D=-1

Fig.2 Tree of valid architectural configurations that SpinQ handles

4.4 Routing methods via shuttling

(router = 0 — Shuttle-based SWAP, 1 — beSnake)

There are two available algorithmic options. The first one, introduced in [11, 52],
is a shuttle-based SWAP routing algorithm. In particular, this algorithm was tailored
around the unique constraints of the crossbar architecture [5], which necessitated the
maintenance of the checkerboard physical qubit pattern to achieve a time-efficient
compilation process. One of the advantages of this algorithm is, in fact, the mainte-
nance of the checkerboard pattern, which in turn keeps the crosstalk interference low
and exclusively enables the Semi-Global rotations scheme. The second routing option
is called beSnake [54], and it is capable of freely shuttling qubits around any topology
and in any direction, handling complex routing scenarios involving parallelized gates.

4.5 SWAP replacement

(SWAP_opt =0, 1)

This binary variable concerns an optional functionality of the beSnake routing
algorithm, which can replace a sequence of shuttles with a SWAP gate under certain
conditions [54]. These conditions are satisfied when the accumulated fidelity of a
parallelized shuttle sequence exceeds the fidelity of only executing a SWAP on that
particular location. This variable is useful for creating insights for architectures that
support SWAPs compared to others that do not support them.

4.6 Design interdependencies and verification
All these variable values act as input into the upgraded SpinQ housing its new con-
figurable compiler, making it the first compilation and DSE framework for spin-qubit

architectures. After this upgrade, we are able to provide SpinQ with multiple combina-
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tions of variable values, compile each input circuit iteratively for all valid architectures,
and calculate and store multiple performance metrics, such as the ones used in [11].
These are gate overhead, circuit depth overhead, and ESP of the compiled quantum
circuit(s).

As mentioned, not all combinations of variable assignments are valid, as there are
interdependencies between them; hence, SpinQ automatically filters the design space
to allow only valid combinations. If all combinations were allowed, presented in Table
1, there would be a total of 1, 105, 920 architectures, but the valid ones used in this
work amount to 29, 312. Figure 2 shows the interdependences tree that SpinQ uses to
filter valid architectures.

Another significant component of SpinQ is the compiler verification tool [11].
This tool is crucial, given the absence of real devices for testing. For this work, the
verification functions have been enhanced to handle all valid architectures via our two-
step method [11], which thoroughly scrutinizes circuits at each compilation stage.

5 Figure of merit

The selection of an appropriate figure of merit is a critical step to ensure fair and
objective evaluation of quantum processor architectures. It must reflect how specific
design features influence circuit performance, allowing each architecture to be char-
acterized based solely on its inherent trade-offs and capabilities. To achieve this, each
design variable must contribute directly to the final metric, such that the interplay
between performance gains and associated costs (e.g., crosstalk or decoherence) is
properly captured. This prevents the optimization tool ArtA (introduced in Sect.6)
from disproportionately favoring certain architectures by, for instance, maximizing
the degree of gate parallelization without accounting for the negative effects it may
introduce, such as increased crosstalk. To highlight an example of a design trade-off,
we note that the higher the degree of parallelization, the shorter the circuit depth will
be, and therefore, the shorter the algorithm execution time, but it will result in higher
crosstalk. Such considerations also express more accurately design decisions in real
experimental quantum processors.

When a quantum processor is not physically available, a common method for esti-
mating its performance is to compute the Estimated Success Probability (ESP) [55-57],
derived from the compiled quantum circuit. This method is significantly more compu-
tationally efficient than alternatives such as Schrédinger—Feynman simulation, tensor
network contraction, or noise model simulations, all of which scale poorly with increas-
ing circuit size and qubit connectivity [11, 57]. In this work, we build upon the ESP
definition introduced in [11], shown in Eq. 1, and extend it to incorporate all previ-
ously discussed architectural considerations. The revised figure of merit, presented in
Eq. 2, now consists of three components: a gate operations term, a crosstalk term, and

a decoherence term.
ESP=[][]Fu €]
ki
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where k represents the kth time step and i the ith gate in the kth time step. F is the
fidelity of the corresponding gates.

ESP=([T]1Fx)-(TTT1Cix ~(e<*f/Tz*>)N 2)
ki k i)

where C denotes the crosstalk between the ith and jth gates during the kth time step.
The last term, adapted from [51], introduces the decoherence-induced errors, which
represent the probability of all qubits staying coherent during the execution of the
circuit’s execution. T2* is the decoherence time, ¢ the total duration time of the circuit,
and N the total number of qubits. We will discuss each of the terms in detail in the
next three subsections.

5.1 Gate operations term

The selection of typical operational fidelities for each gate, denoted by the F; j term,
plays a significant role in determining the success probability of quantum circuits. In
our analysis, we consider these fidelities to be constants within the design space, rather
than variables. This is because determining the optimal fidelity value for increasing
the figure of merit (i.e., ESP) is straightforward; higher operational fidelity invariably
leads to improved performance. Since we are conducting an exploration, we take a
highly optimistic approach to the state-of-the-art [S8—60] values for each gate type':

Fsingle—qubit = 0.9999, Ftwo—qubit = 0.9998 3)

5.2 Crosstalk term

Crosstalk in spin-qubit systems has received limited attention in the literature, primar-
ily due to the complexity of accurately modeling the effects that arise when multiple
gates are executed simultaneously in close physical proximity [61-63]. Nonetheless,
the presence of crosstalk is expected to have a large influence on quantum computer
performance in the future, and current proposals are already suggesting techniques to
mitigate it in simple occurrences [61]. For our purposes, crosstalk creates necessary
trade-offs between architectural variables, and, as explained before, this is essential
for a fair ESP calculation across architectures. For these reasons, we have devised a
model to help us discover relative categorical differences between architectures, rather
than accurate predictions of crosstalk effects. Our overall aim is not to approximate
the actual performance of designs but to pronounce their differences by creating a
performance order between them. We further assume that crosstalk should depend on
local hardware characteristics, and since this information is already included in the

' Another reason we do so is to avoid numeric underflows where there is a loss of accuracy in numerical
calculations if ESP becomes smaller than the smallest positive representable value in a programming
language’s floating-point arithmetic.
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operational fidelity of each gate type, our crosstalk definition is a function of those.
Below, we summarize our assumptions:

e Nearest neighbor crosstalk only (i.e., a pair of qubits that are directly connected
by an edge in the coupling graph)

e Crosstalk occurs for each edge connecting qubits, which are operated in parallel
by different gates

e There should be some correlation between the fidelity of gates and crosstalk effects,
as they are both influenced by the same quality of fabrication

e The crosstalk occurring between neighboring qubits on which two different quan-
tum gates are applied should not be higher than the combined operational error of
these two gates

Based on these assumptions, we calculate the crosstalk effect as follows:

n

B @

2
Cijk=|-73
Fr T Fx

where n is the number of the total direct links (i.e., nearest neighbors) on the
topology between the ith and the jth operation. Similar to before, F' corresponds to
the operational fidelity.

A schematic overview of crosstalk effects is presented in Fig. 3. The diagram illus-
trates two two-qubit gates, represented by red ovals, acting between qubits Q-1 and
Q-2, and Q-3 and Q-4, respectively. In this hypothetical architecture with degree =
4 connectivity, crosstalk arises along the three edges marked with a lightning symbol,
as the involved qubits are directly connected to one another.
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Table2 Overview of all gate duration and the decoherence time used

Operation Shuttle X/Y/Z (Pulse) Z (Shuttle) VSWAP Ty

Duration (ns) 10 100 20 200 1,000,000

5.3 Decoherence term

The last term of Eq.2 represents the decoherence of quantum information, which
creates a strong architectural trade-off between parallelization and crosstalk effects.
Since N and T2* are given, we need to define the duration time of the circuit #:

M
t = Zmax(Di,k) 5

k=1

where D; i is the duration of the ith operation in the kth time step. In Table 2,
we present the gate duration and decoherence time used. The motivation behind this
selection of durations, once again, is for purposes of architectural comparisons. We
took reference for our two-qubit gate (i.e., v SW A P) from [59, 60], for the shuttle
from [51] which is half the shuttle-based Z rotations [11], for the pulse-based single-
qubit gates from [58], and for T, from [64].

6 ArtA: Artificial Architect

From the aforementioned transformation of the SpinQ compilation framework to a
fully functional DSE framework, we are able to brute force through all valid com-
binations of the input variable values. However, as we discussed, this can be a
time-consuming process, especially when the defined design space is large. There-
fore, a specialized tool is needed to automate the DSE process by traversing the space
in a clever and faster way. As a result, fewer design iterations will be tried to achieve
the same ESP (range) or other specified performance metrics.

To do that, we introduce ArtA, a tool integrated into the SpinQ framework that
incorporates multiple optimization techniques. Its purpose is twofold: (a) to determine
which optimization method is most effective at identifying architectures that achieve
the desired ESP for each quantum circuit and (b) to identify the architecture that yields
the highest ESP both on a per-circuit basis and across all circuits collectively (i.e., a
universal architecture).

The abstracted ArtA process is depicted in Fig.4. The initialization of ArtA starts
with one or more quantum circuits, a design space such as the one described in Sect. 4,
the optimization method(s) to traverse the space, and an (optional) termination condi-
tion. Inside the optimization stage, ArtA provides an architecture and circuit to SpinQ
for compilation, gets the ESP value, and, based on a policy of the optimization method,
selects the next architecture in the form of input variable values from the available
“population” of architectures—a subset of design space selected by the optimization
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Fig.4 Schematic overview of the initialization, optimization, and output cycle when using ArtA (red box)
together with the upgraded SpinQ framework (blue box)

algorithm itself. This process repeats until a specific termination condition (TC) (e.g.,
elapsed time) is met or a desired range/value of a specific metric is reached (ESP
in this work). Upon termination, the resulting architecture, its ESP calculation, and
ArtA metrics are stored. In the following sections, we will describe the TCs and ArtA
metrics in more detail.

In Appendix B, we analytically discuss the five optimization methods used and their
hyper-parameter variations, totaling seventeen different optimization configurations.
Also, in Appendix A, we present the seven benchmark quantum circuits and their
different sizes in terms of qubit counts.

To answer the last two research questions, we will use ArtA’s (a) and (b) capabilities.
With the first one, we will answer the third research question, in Sect. 7.1, by testing all
the implemented optimization methods to determine which finds the highest ESP the
fastest for each quantum circuit. Therefore, first we need to compile each circuit for all
29, 312 architectures and store their ESP for later use. Then, we can run each method
and determine the methods’ performance based on two new metrics introduced in
Sect. 6.2, evaluating ArtA’s overall performance. With the second capability of ArtA,
we will only use the best-performing optimization method, but expand our circuit
selection to concretely answer the last research question, in Sect.7.2.

6.1 Termination condition

During each optimization cycle, a specific TC is checked to reduce further computa-
tional time based on which way, (a) or (b), ArtA is used. Since we first obtain the ESP
values for all architectures during the third question, as mentioned before, the highest
ESP is known and can work as a TC. Additionally, we observed in practice that most
runs reach the highest ESP sooner than 40 min; hence, this can be another TC. More
specifically, our analysis revealed that over 95% of processes are completed earlier,
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while a minority extends significantly longer. Given that our evaluation focuses on
runtime, omitting these prolonged instances won’t affect the overall assessment, as
their inclusion would lead to unfavorable evaluations regardless.

Therefore, the TC when answering the third research question is:

o If the highest ESP value is found.
e If the method’s run time exceeds 40 min.

For the second use of ArtA, which answers the last research question, we investigate
the returned architectural designs by using the best optimization method derived from
answering the third question. As discussed in Sect. 7.1, we find that the corresponding
chosen optimization algorithm did not exceed 23.4% of the total 29, 312 architectures
in the worst case before finding the one with the highest ESP.

Therefore, when answering the last research question, the TC triggers:

e When the number of evaluated architectures exceeds 23.4% of the total 29, 312.

6.2 Metrics evaluating ArtA

To determine the performance of ArtA, in the context of replying to the third research
question, we need to define some relevant metrics. The optimization methods that will
eventually determine ArtA’s performance should return a solution faster compared to
searching with the native brute force approach of SpinQ. Otherwise, ArtA will be of
no practical interest. We thus use the relative time to solution as a metric in Eq. 6. The
numerator includes the total runtime of both the optimization method and compilation
until the desired result is reached (or the TC is triggered), and the denominator refers
to the total runtime to brute force the entire design space.

time-to-solution
— . 100 (6)

time-to-solution ejative =
TBrute force

When the average compilation time increases due to larger quantum circuits, the
execution time of the optimization method becomes relatively less significant in the
total runtime. This happens because, as circuits grow in size, the compilation time
per architecture dominates the total runtime, while the time taken by the optimization
method remains approximately constant regardless of circuit size. Therefore, time to
solution is not sufficient in evaluating ArtA’s performance, as it becomes increasingly
influenced by compilation time, rather than the efficiency of the optimization method
itself. To address this, we also introduce a relative calls-to-solution metric in Eq.7.
With calls to solution in the numerator, we refer to the total number of times SpinQ is
called to compile for each new architecture. In case the optimization method attempts
the same architecture twice or more, the circuit compilation will be skipped since the
results are already stored from the first call. Finally, the denominator represents the
brute force approach and is the total number of architectures in the design space, which
essentially equals 29, 312.

calls-to-solution
Narchitectures = 29, 312

calls-to-solutionyejative = 100 @)
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7 Results and evaluation

In this section, we will attempt to completely answer the third and fourth research
questions. In both questions, we will focus on finding the architecture that obtains the
highest ESP among all within the design space. Since all optimization methods are
inherently probabilistic, multiple runs are required to create robust conclusions. Due
to limited computational resources,” we ran each method for each hyper-parameter
combination ten times alongside the TCs. Besides the mean performance, we will
also report the worst performing results for reference.

7.1 Comparison of optimization methods

In this first part of our results, we will address the third research question stated in
Sect.3, which is about finding the best performant optimization method according
to our ArtA metrics defined in Sect.6.2. The results of the relative time-to-solution
metric for finding the architecture with the highest ESP are given in Table 3. This table
also provides insights into matching different optimization method configurations
(described in Appendix B) with specific quantum circuits. We observe overall that for
each quantum circuit, on average, all optimization methods find the solution in less
time than brute forcing (values under 100). For a better interpretation of the numbers
on the table, a 50 means the particular optimization configuration of ArtA takes half
the time of brute forcing all architecture, and 100 means that it takes the same time.

Multiple optimization methods greatly outperform the random sampling (RS col-
umn), as expected. The best performance is at 0.9% on average for QV10 with SA
[20, 3], meaning that ArtA, with this optimization method configuration and quantum
circuit, takes only 0.9% relative time to solution, on average, of the total brute force
time to find the architecture with the highest ESP.

We calculated based on Table 3 that, on average, for all optimization methods, ArtA
was able to decrease the exploration time by 80.6%. Overall, different optimization
methods clearly show varied performance across their respective columns. However,
the performance differences among various hyper-parameter settings within a single
optimization method are less distinct. In a performance order, we can observe GA
being first, followed by BO, ACO, and, lastly, SA. More specifically, GA, with a
population size of 100 and a mutation probability of 0.2, finds the highest ESP the
fastest at 11.9% relative time-to-solution, on average, with BO [EI, Ma] coming close
at 12.1%. Lastly, in 86.7% of the cases, a top 5 optimization method configuration
in the worst row is also a top 5 optimization method configuration in the mean row,
which indicates the consistency of the results across the ten runs. To further support
our findings, next, we will assess the relative calls-to-solution metric.

The results of the relative calls-to-solution metric for reaching the highest ESP are
given in Table 4. We observe overall that for each quantum circuit, all optimization
methods were able to find the highest ESP architecture in fewer compiler calls than
brute forcing through all 29, 312 architectures. Once again, for a better interpretation

2 All time metrics were retrieved by running ArtA with Python 3.10.8 single threaded on a 2017 MacBook
Pro, using a 3.1 GHz Quad Core Intel i7 processor and 16 GB of RAM.
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Table 3 Relative time-to-solution metric (the lower, the better) for finding the architecture with the highest
ESP from the design space

RS SA BO GA ACO

20 | 20 | 50 | 50 |JUCB| EI | EI ([UCB| 50 | 50 | 100 | 100 | 50 | 100 | 100 | 50
2 3 3 2 |Ma|Ma|Ga|Ga|015]/0.2 0.2 [0.15]0.1 03] 0.1]03

mean|53.9|145.4 61.8 45.2 54.9(22.5 15.0 22.6 17.0/30.3 33.8 21.4 44.5(24.4 40.5 28.1 28.6
worst| 98.2 1 87.6 99.8 98.9 100.4|55.0 354 385 - - 88.7 46.1 132.8] 58.7 96.9 58.6 60.6
mean|47.3|17.8 44.6 47.4 33.6(/10.9 108 115 6.9 | 63 6.8 9.2 54 [36.5 48.7 31.9 42.6
worst| 96.8 | 50.5 84.2 931 57.0|256 258 282 214|157 128 156 166|592 879 608 80.7
mean|35.7(38.0 41.8 36.5 27.0/16.2 10.0 143 7.1 | 84 6.8 4.8 52 |155 11.5 182 149
worst| 58.1 | 67.1 93.0 71.8 64.6|61.0 274 339 221|169 145 92 126|335 266 731 43.0
mean(37.3| 8.4 22.6 258 28.7| 42 11.3 8.1 125|43 35 50 3.9 |241 11.7 247 183
worst| 86.0 | 37.5 72.2 89.8 768|124 283 21.7 30.0| 80 76 128 95 |614 278 635 414
mean|52.3|10.0 24.9 18.3 11.8[104 9.2 9.0 74|31 58 59 4.5 (156 12.6 18.0 22.8
worst| 80.2 1 23.6 56.5 31.2 299|217 223 199 291 | 85 122 13.8 106|385 428 619 44.7
mean|46.7 |33.4 46.9 52.1 38.0| 54 5.0 8.0 3.7|92 94 89 7.2 (28.1 262 324 474
worst| 98.3 1 70.4 79.5 81.6 79.8|12.8 159 215 71 |154 158 185 17.1|59.6 522 796 759
mean|40.0| 79 24 55 49 |16.0 17.0 56.3 74.4|29.0 40.5 29.6 379| 11 13 13 1.8
worst| 71.4 1 26.0 7.9 209 19.6 - 38.6 - - - 749 726 - 21 30 19 67
mean| 63.7| 3.4 0.9 2.8 2.6 [21.6 13.3 32.2 67.4|204 194 125 19410 13 1.1 13
worst| 91.3 | 104 2.7 11.0 94 - 339 554 - |428 379 395 396\ 18 24 22 34
mean|43.2 [56.8 46.0 51.8 46.6|42.1 30.6 30.6 45.5)27.0 14.2 26.8 32.1|23.3 18.1 34.2 27.8
worst| 80.4 | 98.3 97.4 101.1 91.6 |81.7 70.4 594 103.6] 583 33.0 42.6 742|792 418 651 525
mean| 62.146.1 59.6 34.3 46.5|11.5 12.1 11.8 7.1 | 7.5 89 11.7 13.0(30.4 24.2 269 324
worst| 96.1 | 85.6 92.2 84.6 857|344 334 253 174|174 232 219 259|576 526 815 80.6
mean|48.5| 24 29 32 23|87 60 59 47|11 14 18 16|24 45 3.0 28
worst| 84.8 | 86 6.2 103 68 284 188 143 15620 21 23 22149 75 70 72
mean|56.4(29.2 19.2 389 14.7| 74 46 7.1 52|58 68 55 7.8[22.6 24.0 199 24.2

worst| 99.2191.5 62.7 87.6 60.7129.7 18.9 14.6 16.0(20.6 20.2 18.7 29.5149.9 69.9 67.7 44.4

average
mean
average
worst

Circuits\Method
s

10

QFT
20

5b

cA
10b

5b

VA
10b

Qv
10

10

20

10

48.9124.9 31.1 30.2 26.0|14.7 12.1 18.1 21.6(12.7 13.1 11.9 15.2|18.8 18.7 20.0 22.1

86.7 | 54.8 629 652 569|363 308 302 291|206 286 261 337|422 426 519 451

A minus symbolizes that there was at least one run (out of the ten) in which the top ESP value was not reached
in time (TC =40 min). These results are colored red, as well as runs where the time taken exceeds the brute-
force time (values over 100). The green cells indicate the top five configurations of optimization methods
for a given quantum circuit. The mean and worst performing configurations from a sample of ten runs
are shown for each quantum circuit (block of rows). QFT: Quantum Fourier Transformation, cA: Cuccaro
Adder, vA: vbe Adder, QV: Quantum Volume, G: Grover’s, RC: Random Circuit, RS: Random Sampling,
SA: Simulated Annealing (Top: Start Temperature, bottom: Step Size), BO: Bayesian Optimization (Top:
Acquisition function, bottom: Kernel), GA: Genetic Algorithm (Top: Population Size, bottom: Mutation),
ACO: Ant Colony Optimization (Top: Population Size, bottom: Exploitation Rate)

of the numbers on the table, 50 means the particular optimization configuration of
ArtA needs to go through half the architectures in the design space, and 100 means it
needs to go through all the architectures.

The best optimization method only takes 1% of the total compiler calls, on average,
for QV8 and QV10 with ACO [50, 0.1]. We calculated based on Table 4 that, on
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Table 4 Relative calls-to-solution metric (the lower, the better) for finding the architecture with the highest
ESP from the design space

Circuits\Method RS SA BO GA ACO

s 20 ‘ 20 ‘ 50 ‘ 50 [ucs[ EI | EI [uCB| 50 ‘ 50 ‘100‘100 50 ‘100‘100‘ 50
213 |3 |2 |Ma|Ma|Ga|Gal015/02]0.2][0.15/01]03]0.1]03

mean|53.9146.1 61.8 452 553|9.0 6.4 9.0 7.6 [23.1 289 23.1 22.0|24.9 38.3 29.3 26.8
worst| 98 | 87.2 985 975 989|186 128 138 - - 631 435 512|568 795 586 544
mean|47.3|18.7 44.7 47.7 352 9.7 9.6 106 6.4 |81 8.8 11.8 6.9 |38.4 49.3 34.0 42.6
worst| 96.8 | 51.6 84.2 92.9 591|213 225 242 188|196 163 194 202|618 84.7 639 77.1
mean| 35.7139.0 42.2 36.7 28.1|83 56 7.0 3997 86 6.5 6.7]162 12.1 18.8 15.0
worst| 58.1 | 67.9 925 71.6 657 33 15 137 99 178 17.7 121 153|351 28 724 41
mean|37.4( 9.0 22.8 26.0 29.6/ 3.8 86 65 9.7 |58 47 6.7 52245 12.0 255 18.7
worst| 85.9 | 39.2 724 89.8 7731104 21.9 159 24.2|10.6 10.1 165 12.3]62.8 294 66.1 42.1
mean|52.3(10.7 24.9 18.2 12.6(7.1 58 59 50|41 7.6 7.8 59167 13.6 19.2 234
worst| 80.2'| 24.9 56.5 31.1 311|160 123 115 158|108 154 18.0 132|420 46.0 643 443
mean| 46.7|34.6 46.5 51.7 39.0( 55 4.9 7.9 43 |12.0 125 11.5 9.3 [29.2 27.1 33.5 475
worst| 983 | 71.5 79.1 81.1 80.5|12.1 147 19.5 7.5 | 189 201 23.0 209|615 539 808 734
mean|40.0| 8.1 24 56 5.0 (11.0 12.0 35.2 48.3|21.1 37.3 28,6 28.1| 1.0 13 13 2.0
worst| 71.3 | 26.4 82 214 198| - 300 - - - 661 659 - 20 33 21 77
mean{63.7 3.5 09 29 2.7 [18.6 11.1 259 55.4|20.8 20.6 134 199( 1.0 12 1.0 1.2
worst| 91.1 1 10.8 2.8 113 9.7 - 285 433 - | 405 395 413 389 20 23 21 29
mean|43.1|57.3 46.1 51.7 47.6|16.3 11.6 11.6 17.1|22.4 16.5 29.5 26.1|24.0 19.2 36.3 27.0
worst| 80.4 |1 97.0 96.4 994 91.3|31.8 234 202 342|396 371 441 479|732 433 656 486
mean| 62.0|46.8 59.6 34.5 474192 9.0 93 6.2 9.7 113 15.1 155|329 25.6 28.6 32.5
worst| 96.2 | 85.7 91.7 845 856|259 224 179 132|207 281 275 285|60.6 543 822 749
mean|48.4)| 2.8 32 34 27|74 55 53 44|15 19 24 21|34 62 42 37
worst| 84.7 | 94 63 11.0 76 |21.7 172 113 13629 29 31 31| 69 104 101 98
mean| 56.4129.9 19.7 39.1 155|72 44 68 53|67 85 6.8 89249 25.6 21.5 259
worst| 99.2 | 91.6 63.2 87.6 619|266 171 129 149|231 239 225 310|535 706 710 462

10

QFT
20

5b

cA
10b

5b
VA

10b

Qv
10

10

20

10

average
mean
average
worst

48.9125.5 31.2 30.2 26.7| 94 7.9 11.8 14.5(12.1 13.9 13.6 13.1]|19.8 19.3 21.1 22.2

86.7| 553 627 649 574|217 198 18.6 169|205 284 281 257|432 421 533 435

A minus with red color cells symbolizes that there was at least one run (out of the ten) in which the top
ESP value was not reached in time (TC = 40 min). The green cells indicate the top five configurations of
optimization methods for a given quantum circuit. The mean and worst performing methods from a sample
of ten runs are shown for each quantum circuit (block of rows). QFT: Quantum Fourier Transformation, cA:
Cuccaro Adder, vA: vbe Adder, QV: Quantum Volume, G: Grover’s, RC: Random circuit, RS: Random
Sampling, SA: Simulated Annealing (Top: Start Temperature, bottom: Step Size), BO: Bayesian Optimiza-
tion (Top: Acquisition function, bottom: Kernel), GA: Genetic Algorithm (Top: Population Size, bottom:
Mutation), ACO: Ant Colony Optimization (Top: Population Size, bottom: Exploitation Rate)

average, ArtA’s optimization method configurations can decrease the compiler calls
by 79.9%. We can observe, once more, that BO, followed by GA, obtained the best
performance compared to other optimization methods. Lastly, in 91.7% of the cases, a
top 5 optimization method configuration in the worst row is also a top 5 optimization
method configuration in the mean row, showing results consistency again.
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From different variants of the GA and BO used, we focus on GA [100, 0.2] and
BO [EI, Ma], as they have the best performance and did not reach our TC in any of
the ten runs. By comparing the two tables, we can observe that BO [EI, Ma] needs
marginally more time to evaluate fewer architectures compared to GA [100, 0.2]. Since
the compilation time per architecture is the same between methods, this points to a
slightly (0.2% on average) longer execution time of BO [EI, Ma] compared to GA [100,
0.2]. This can be explained based on the algorithm’s reliance on matrix multiplication
and several other linear algebra operations, which are computationally more expensive
than the more simple operations of GA (see Appendix B). However, the actual total
runtime of ArtA will depend on the ratio between compilation and optimization time,
which can change for large circuits. Based on their small relative time-to-solution
difference, we can predict that BO [EI, Ma] will outperform GA [100, 0.2] for larger
circuits as the latter has, on average, 58% higher relative calls-to-solution. Therefore,
we conclude that BO [EI, Ma] is a better candidate for automating the DSE process
for large-scale circuits, as it can traverse the design space faster.

Having said that, making a more detailed analysis for each circuit where internal
circuit characteristics are correlated [11, 65] to optimization methods can improve the
performance of ArtA by picking methods more accurately. This promising avenue is
left for future work when more progress in circuit characterization is made.

7.2 Architecture analysis

We move on to address the last research question after having selected the best-
performing optimization method in the previous section. Here, we use ArtA to create
architectural insights into spin-qubit devices for each circuit category and suggest a
universal architecture for all executed circuits.

In Table 5, we present the values of the architectural variables, introduced in Sect. 4,
that were found by ArtA having the highest ESP with the BO [EI, Ma] optimization
method alongside their respected ESP values. These circuits are organized by class and
number of qubits within the rows of the table. Subsequent columns present the ESP
of the best architecture discovered, followed by color-coded architectural parameter
categories as delineated in Sect.4. The use of color accents in the table serves to
enhance visual clarity, with each corresponding to the values of each variable.

Before focusing on the architectural insights, we should comment on the low ESP
values observed, especially in larger circuit sizes. Although such low values do not
have any physical meaning after a certain small number, ESP still remains a reliable
way to rank architectures. It is important to understand ESP is not inherently random,
regardless of how low it gets. For instance, slight variations between two architectures
causing a single gate difference will consistently and reliably be reflected through their
ESPs. As long as numeric underflows are not caused, ESP remains a robust figure of
merit for our purposes.

Observing the data presented in Table 5, it becomes evident that there is a discernible
structure to the values of architectural variables. Notably, many or all circuits exhibit
strong preferences for certain variables. Following an implications discussion on the
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Table5 Architectures returned by BO [EI, Ma] optimization method for a range of quantum circuits (refer
to Appendix A)

[ circuit_[Gate count| EsP
QFT10 205 58.02
QFT20 810 112

QFT40 4072 3.54E-15
QFT50 5025 1.50E-32
QFT60 7230 6.37E-59
QFTI00 20050  6.80E-123
G10 278 64.37
G20 668 12.31
G50 1838 1.11E-05
G80 3008 9.55E-18
G90 3398 2.28E-23
G100 3788 3.88E-30
G150 5738 2.71E-75
G200 7688 1.56E-144

cAl2 31 61.51 0

cA22 61 19.29 0

cA42 121 0.13 0

cA62 181 2.24E-05 0

cAS82 241 1.54E-10 0
cA100 295 3.82E-16 0
cA130 385 4.67E-30 0
cA258 769 1.56E-137 0

vAl6 36 41.06 0

VA3l 76 3.03

VAG61 156 2.90E-05 0

VA9l 236 3.97E-13 0
vAI21 316 1.46E-25 0
vA148 388 3.57E-40 0
vA193 508 5.42E-71 0

QVvs 889 50.50 0

Qvi1o 1111 38.55 0

QV20 4408 435 0

QV30 9939 1.42E-03 0

QV40 18863 3.87E-11 0

bV11 24 97.61 0

bV21 44 95.22 0

bV30 62 92.73 0

bv40 82 89.84 0

bV50 102 86.68 0

bV65 132 81.86 0
bv129 261 46.57 0 25
bv257 519 3.78 0 25 25

| Average (universal architecture) 0.2 742 711 52,6 66.7

Results are color coded, with color schemes following the categories introduced in Sect.4. Final-row
averages omit -1 values

circuit performance of these strong architectural preferences, we will explore areas of
weaker preference where there is more variability in value choices.

Strong preference

First, we observe a unanimous preference for the Z rotation implementation
(z_rot_impl) in the zri column, with a pulse-based rotation being preferred. Note
that previously, we have assumed in Sect. 5.1 that a shuttle and a pulse-based Z rotation
share the same single-qubit gate fidelity, but because the latter requires two shuttles, it
can benefit the ESP more than the other type. Moreover, as a shuttle operation involves
two quantum dots while a pulse-based operation only involves one, the shuttle-based Z
rotation will have a higher chance of incurring crosstalk errors based on our crosstalk
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definition. Given these two reasons, BO has favored the pulse-based version. This
indicates that shuttle-based single-qubit rotations are not sustainable compared to
pulse-based ones for large-scale circuits as they progressively contribute more noise.

Moving on, since the X, Y, and Z gates are implemented the same way hardware-
wise, xy_z automatically is assumed 1 based on the interdependencies detailed in
Sect.4.6. Consequently, xy_tgg and z_tqgg are equivalent, taking either 0 or 1
from the optimization method of ArtA (i.e., BO [EI, Ma] in this case), as we can
observe in the table. Additionally, xy_z_tqgg can also be conceptually equivalent
to xy_tag and z_tgg since pulse-based Z rotations are selected. Therefore, when-
ever xy_z_tqggislorxy_ tqggand z_tqggis 1, it means the architecture(s) which
allow(s) parallelization of all single- and two-qubit gates obtains the highest ESP. In
that sense, one would expect xy_z_tqg, xy_tag and z_tgg to be synchronized.
However, since such exploration freedom was given in the design space, the reasons for
the mismatches could be explained by the internal characteristics of the circuits them-
selves. For example, in QFT100, the parallelization of all gate types occurs more often
than in QFT60, as observed from their gate parallelization constraints xy_z_tgg =
0,xy_tgg=1,and z_tgg=1.

Conversely, when applying the same reasoning to QV8, QV10, and QFT20, it
appears that hardware support for parallel execution of single- and two-qubit gates is
not essential. This highlights that the success of real quantum circuits can stem from
different architectural “angles,” even under reduced hardware capabilities [57]. This
exemplifies the strength of our approach: it enables the identification of optimal archi-
tecture configurations without requiring the most complex or fabrication-intensive
hardware designs.>

Another strong preference appears in the beSnake router, observed by the dark
green 1 values in the router column. This result shows that the crosstalk implications
of using the beSnake router (which gives more shuttling freedom) over the shuttle-
based SWAP router (which minimizes crosstalk) are not as important as the other two
components in Eq. 2. Similarly, the degree variable is mostly maximized, indicating
again that the additional possibility of crosstalk does not outweigh other benefits, such
as having more connections to perform two-qubit gates and shuttling operations.

Lastly, there is a strong preference for a local single-qubit gate implementation
(single_qubit_impl). A local implementation, on the one hand, provides the
highest parallelization possibilities, but on the other, it is the most demanding to
achieve experimentally on real hardware.

Based on all the above conclusions, we can summarize that the crosstalk effect
is not as strong even though ArtA suggests architectures with high crosstalk factors
(the highest connectivity and parallelization and the most dense routing strategy). In
fact, the decoherence-induced errors increase more severely (exponentially) with time,
based on Eq.4, than crosstalk, especially in circuits with high qubit and gate counts,
which explains the prevailing preference for maximizing parallelization.

The same can be observed in our universal architecture recommendation in the
last row when rounding the numbers, which performs best on average for all the

3 Ultimately, each circuit profile has specific architectural traits that can be leveraged to achieve optimal per-
formance without the need for excessively advanced hardware features (achieving a balance in architectural
characteristics).
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circuits examined. Additionally, the operational fidelity, which is directly linked to
the gate overhead of compilation, can also severely impact the final ESP for circuits
with high gate counts, which in turn explains the need to add the least additional
gates possible during compilation through the use of beSnake [54] and local single-
qubit implementation. Having said that, Bernstein Vazirani, QV8, and QV 10 circuits
preferred the global implementation, as these circuits consist of a significant number
of single-qubit gates (with the same angles) being executed at the same time step.

Weak preference

Overall, we can observe that the single-qubit operations and shuttling prefer a higher
degree of parallelization than the two-qubit gates. Considering that xyD and zD have
the same meaning due to zri = 1, their combined averages from the last row of Table 5
are 72.7%. This compares to an average of 52.6% for the two-qubit gates and 66.7%
for sD. Therefore, prioritizing the simultaneous operation of single-qubit gates (and
shuttling) over two-qubit gates is more important.

The swap_opt variable seems to show a preference for supporting SWAP gates
for lower qubit counts. A possible explanation for this is that SWAP operations take
a longer time than a parallelized sequence of shuttles [54]. As we explained before,
the effects of having longer circuit execution times become more severe with larger
circuits; hence, the extra SWAPs can outweigh the gained fidelity they initially offer.
Combining this conclusion for large-scale circuits with the observed strong preference
for shuttling flexibility, enabled by the beSnake router, suggests that shuttle operations
constitute a key communication mechanism in spin-qubit architectures for the future.

8 Conclusion

In this paper, we propose a comprehensive exploration of the current and future archi-
tectural design space for quantum-dot spin-qubit quantum processors. Our research
focuses on assessing the critical architectural characteristics that could be key in ensur-
ing high performance on such devices. To this end, we present an upgraded version of
the SpinQ compilation framework [11] for spin-qubit architectures in which architec-
tural variables can configure internal compilation passes, resulting in the first Design
Space Exploration (DSE) framework. After defining our design space, consisting of
29, 312 architectures, we propose a multi-optimization-based tool, ArtA (Artificial
Architect), to automate the DSE process. The goal of ArtA is twofold: (a) to identify
which of the seventeen optimization configurations can most efficiently discover the
architecture that achieves the highest ESP, compared to brute force exploration; and
(b) to determine the architectural design characteristics that are critical for construct-
ing high-performance spin-qubit devices across different circuit categories. We have
shown up to 99.1% improvement in computation times compared to brute forcing,
showing that it is possible to easily explore a vast number of designs. We have also
provided insights into matching different optimization methods with specific quantum
circuit categories.

It should be noted that the underlying goal of our study was not to exhaustively
benchmark all possible optimization methods, but rather to introduce the concept of
applying Design Space Exploration to quantum computing systems—with a particular
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focus on spin-qubit architectures—by employing a diverse and representative selec-
tion of methods from different optimization families. Bayesian optimization with an
Expected Improvement acquisition function and a Matérn kernel was chosen as the
best method due to its effectiveness in managing higher qubit counts. After that, we
proceed to automate the DSE process for 44 quantum circuits of up to 258 qubits within
the 29,312-architecture design space. Our findings reveal the importance of minimiz-
ing the circuit duration by maximizing parallelization whenever possible instead of
selecting architectural characteristics that minimize crosstalk errors. Crosstalk is cur-
rently a significant concern in experiments, but our long-term considerations deem
decoherence more crucial. Lastly, the shuttle operation is preferred over costly SWAP
operations for communication purposes, especially for large-scale circuits. Contrary to
that, shuttle-based single-qubit gates such as Z rotations are not preferred over pulse
based. Furthermore, our universal architecture suggestion places higher priority on
parallelizing single-qubit gates rather than two-qubit gates. Overall, our work demon-
strates how the integration of DSE methodologies with optimization algorithms can
uncover valuable architectural insights that would be difficult, if not impossible, to
foresee while suggesting points of optimality with reduced hardware complexity.

However, it is important to acknowledge that while these findings highlight promis-
ing architectural directions, several of these design choices —such as high degrees of
parallelization, connectivity, and flexible shuttling strategies—currently pose signifi-
cant engineering challenges. Implementing fully local control, for instance, demands
high fabrication uniformity and precise calibration, which is non-trivial at larger scales.
Likewise, extensive shuttling flexibility requires precise individual gate addressing,
which is experimentally demanding. Nonetheless, the purpose of this work is to chart
aclear path forward, identifying architectural features that, while ambitious, can guide
future efforts toward scalable and performant spin-qubit processors.

As for future improvements, a broader range of hyper-parameter combinations and
circuit variations could enhance ArtA’s effectiveness. Then, with advancements in
spin-qubit device fabrication, new architectural possibilities could potentially expand
the design space, and such integration will be relatively straightforward owing to the
modularity of the internal functions of SpinQ and ArtA. Moreover, introducing non-
architectural constraints such as development costs and time into ArtA’s design space
could help make real-world predictions regarding developing spin qubits. For instance,
this would allow for operational fidelities to become variables.

Also, some of the assumptions made in this work could be fine-tuned as the field
progresses. It is crucial to acknowledge the impact of these assumptions on the obser-
vations presented. For instance, we assumed the fidelity of pulse-based Z rotations
to be equivalent to that of a single shuttle operation. This assumption should not be
construed as either favorable or unfavorable; rather, it is a foundational premise upon
which ArtA bases its architectural “recommendations.” Should empirical evidence
later demonstrate that shuttle operations exhibit significantly higher fidelity compared
to pulse-based Z rotations or the crosstalk model depends on more factors, it may
necessitate a reevaluation of preferences.

Further analysis of architectural patterns associated with specific quantum circuit
characteristics may reveal additional trends and enable systematic categorization. For
example, circuits with a high proportion of two-qubit gates (e.g., 90% or more) may
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exhibit optimal performance only when the qubit connectivity exceeds a certain thresh-
old. Insights like these, based on various circuit properties [11, 65], can inform the
construction of a generalized lookup table that maps algorithmic profiles to architec-
tural configurations. Such a resource would enable rapid prediction of high-performing
architectures for new circuits, eliminating the need to re-run the full DSE process.

Appendix A: Quantum circuits

Quantum circuits are defined as a sequence of gates to be executed on qubits (single-
qubit gates) or between qubits (two- or multiple-qubit gates). Such quantum circuits
are often given in a hardware-agnostic form. This means there are no considerations
for device-specific restrictions, such as connectivity of qubits or the set of executable
gates. Therefore, a compiler [11, 66—74] is necessary to transform a hardware-agnostic
circuit into a circuit that is executable on a given device architecture.

We have selected a wide range of representative quantum circuits of different qubit
counts from Qlib [75] and gbench [65] libraries to thoroughly test SpinQ and ArtA.
Table 6 summarizes all the quantum circuits used in this work.

Appendix B: Optimization methods

We introduce the five optimization methods, four of which have four different hyper-
parameter configurations, totaling seventeen configurations. Our goal was not to
exhaustively benchmark all possible optimization methods, but rather to introduce the
overall concept of applying optimization to the DSE process for quantum computing
systems, with a focus on spin-qubit architectures, using a diverse and representative
selection of methods. More specifically, from the family of nature-inspired evolu-
tionary algorithms, we selected the well-established Genetic Algorithms (GA); from
the class of physics-inspired metaheuristics, we chose the widely used Simulated
Annealing (SA); from surrogate-based optimization methods, we included Bayesian
Optimization (BO); and from the Swarm Intelligence class, we incorporated Ant
Colony Optimization (ACO). In the following sections, we will introduce each method,
describe the policy it uses to select a new architecture in each iteration loop of ArtA,
give additional details, and finally describe the hyper-parameters used. Several of the
optimization methods rely on a notion of distance between architectures. Since our
design parameters include categorical variables, we begin by outlining how a mean-
ingful distance metric can be defined in this context

B.1 Distance measure
The notion of distance is hard to apply to values of categorical variables because a

categorical variable is defined by having no order between the possible values. For
example, the set ¢ = {apple, pear, banana} is categorical, as the “<" or “>" signs
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hold no value when applied to this set. Consequently, no order means no distance can
be introduced.

There is only one variable that is categorical: single_qubit_ impl. To solve
this, we postulate an ordering of values by the maximum amount of gates that would
be theoretically executed during the same time step. The ordering we used in this
work is then sequential < semi-global < local < global. This means, for instance, the
distance between sequential and semi-global is 1, but the distance between sequential
and local is 2.

The second challenge is how to combine the distance measured between values of
one variable with the distance measured between values of a different variable. To
describe this, we define d as the distance between two values of the same variable
and D as the distance between architectures such that the relation between D and d is
given in Eq. B1. This implies that the distance between two architectures is the sum of
the distances between the corresponding variable values. Finally, we decided to count
all distances in units of 1 and have the distance equal to the difference in indices if we
were to order the set of allowed values of one variable. This holds for all values, such
that d(degree = 4, degree = 6) = 1, d(degree = 4, degree = 8) = 2, etc.

Darchy,archy) = Y dach variable(archy, archy) (B1)

arch_variable

B.2 Random sampling

Random sampling is used as our baseline to compare other optimization methods.
It traverses the design space by randomly selecting architectures to investigate. The
policy comprises assigning one randomly sampled architecture as the population.

B.3 Simulated annealing

SA [82] is inspired by the metallurgical process of heating and then slowly cooling
a material, which minimizes defects and thus approximates its lowest energy state.
SA is a mix of a greedy strategy for selecting the best-performing architecture while
trying to escape local optima to find the global optimum. A more detailed overview
of simulated annealing can be found in [83]. The policy is as follows:

1. Start with a random architecture, called architecture;, which has ESP;, where i is
the iteration number. It should be noted SA only works with a population size of
one, which is the architecture;.

2. Set a starting temperature 7; = Ty (hyper-parameter set to either 50 or 20).

3. Find arandom candidate architecture. ; which has distance D; to architecture;. We
assume that D; is randomized but remains greater than O to avoid picking the same
architecture. Then, D; = max(Normal(1, 1) - step_size, 1), with step_size used
as a hyper-parameter equal to either 2 or 3, and Normal(1,1) indicates a normal
distribution with mean and standards deviation equal to 1. In case no architecture,. ;
with distance D; to architecture; is found, a new D; is generated, and this step
repeats until an architecture,. ; is picked.
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4. Calculate the selection probability: C; = exp((ESP.; — ESP;)/T;).

5. Accept the candidate architecture as current architecture if C; > u, where u is a
random number between 0 and 1.

Update temperature 7; (linear cooling process) as T; = (Tstart/i)

7. Repeat steps 3—6 until the TC is met.

o

The temperature regulates the probability of accepting a candidate architecture
with a lower ESP. Specifically, with higher temperatures, there are higher chances
of accepting candidate architectures even if they have worse ESP values. However,
as temperature decreases, the algorithm only accepts architectures with higher ESP.
This mechanism prevents getting stuck in local maxima at the start of the optimization
method while gradually becoming greedy at the end by selecting the top-performing
architectures only.

B.4 Bayesian optimization

BO [84, 85] uses conditional probabilities based on previously sampled data points
to predict the function value and uncertainty of subsequently sampled data points. It
typically assumes a Gaussian Process (GP) as the statistical model that governs the
relation between the function values of points. Our policy for BO is as follows:

e We assume the ESP function has been observed at n,, architectures at iteration i.

o The last ngample history (set to 300 in this work) of the sampled architectures is
selected. We call them ay.

e From the unsampled architectures, 7¢andidate amount (S€t to 1000) architectures are
selected. We call them a,.

e a, is used to build a surrogate function for a.. The surrogate function predicts the
mean and standard deviation for each architecture in a.. This surrogate function
is constructed with a mean function |1 and a covariance matrix by evaluating a
kernel X,,.

e Given the surrogate function, we compute the acquisition function. This acquisition
function uses each architecture’s mean and standard deviation in a. to determine
whether an architecture should be evaluated. It balances a high expected value
(exploitation) with a high uncertainty (exploration). As explained later, there are
many acquisition functions, each with its own approach to making this exploita-
tion/exploration trade-off.

e From a, we choose 7ize pop (set to 50) architectures, namely those with the highest
value of the acquisition function.

For discrete functions in the BO algorithm, all non-integer valued points are first
rounded to integers before calculating their expected value [86]. Additionally, since
not all combinations of architecture variables constitute valid architectures, we use a
BO formulation for constrained problems [87]. Therefore, we only sample from valid
architectures, which automatically satisfy the constraints and only contain the integer
values for variables that are of interest to our problem.
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For each architecture a € a., our GP assumption lets us compute the conditional
distribution of ESP using Bayes’ rule [88].

ESP(a)|ESP(a;) ~ Normal(uy(a), o's2 (a)) (B2)
where
15(2) = To(a, a;) To(ay, a5) " (ESP(ay) — wo(ay)) + 140(2) (B3)
and
07 (a) = Zo(a, a) — Zo(a, ag) To(ay, a,) "' To(ay, a) (B4)

For the mean function, we use the arithmetic mean as:
1 N
po(x)lay = = (ESP;) (BS)
§ i=1

Two different Kernels are used, namely the Gaussian Kernel and the Matérn Kernel
[88] with v = 1.5, both of which are commonly used for BO problems. They are
defined as follows:

Gaussian:
2
exp(—|lag — apl[7)
Matérn:

(14 +/3]lag — ap|]) - exp(—+/3]lag — ap])

Xo(aq, ap) = (B6)

Given this surrogate function, an acquisition function (AF) is calculated to determine
which points will be sampled next. To this end, we use Expected Improvement (EI)
and Upper Confidence Bound (UCB) as AF, defined as:

EIL
(us(a) — max(ESPy)) - CDF(Z) + o5(a) - PDF(Z)
UCB:

us(a) + o (a)

AF(a) = (B7)

with Z = (us(a)—max(ESP;))/ (o5 (a)). CDF and PDF are the Cumulative/Probability
Density Functions, respectively. Variable max(ESP;) equals the highest ESP value
found for all architectures present in a;. ArtA then picks the new architectures with
the highest acquisition function values to sample in the new iteration until the TC is
met.

B.5 Genetic algorithm

GA [89] is modeled after the biological evolution of genes to arrive at a near-optimal
solution for an optimization problem. The GA changes the architectural variables of

@ Springer



184 Page300f36 N. Paraskevopoulos et al.

high-performing architectures to explore and discover even better-performing archi-
tectures with the use of three operations: selection, mutation, and cross-over. The GA
policy works as follows:

e Every generation’s iteration, i, considers a population of size n (hyper-parameter
set to either 50 or 100). The population at generation i + 1 consists of elite, cross-
over, and mutation children. These are explained next.

e From these n architectures, ngjje individuals (set to 15% of n) with the highest
ESP value are selected and automatically included in our population of the next
generation.

o Additionally, 7parent (set to 50% of n) out of n architectures are selected iteratively
by randomly considering 7nourament architectures (set to 5) from the population
and selecting the one with the highest ESP value. There are no duplicate parents.

e Two parents of this group are selected randomly. Cross-over is performed by
picking a random cross-over point ¢ with 1 < ¢ < k, where k is the total number
of architectural variables of the design space. A new architecture is formed by
combining the architectural variables of the two parents, with ¢ indicating the
index separating the two halves of the variable list. The process is repeated if this
is not a valid architecture. n¢pogs-over (S€t to 30% of n) architectures are created in
this way.

e The remaining new generation is populated with 7y, architectures (set to 55% of
n). For this operation, some children (from before) alter each of their architectural
variable values with probability ppy,: (hyper-parameter set to either 0.15 or 0.2).
The process is repeated if this is not a valid architecture until one is found.

e The algorithm repeats until the TC is met.

Note that in GA (as in SA), it is possible to have the same architecture in multiple
populations.

B.6 Ant colony optimization

The fundamental concept behind the ACO [90] is based on how ants find the shortest
route from their colony to a food source. Ants lay down pheromones along their path,
and the intensity of the pheromone trail guides other ants to the food source. Over
time, the pheromone trail evaporates, reducing its strength. However, the shorter the
path, the more frequently traveled by ants, and thus, more pheromone is deposited.
This positive feedback eventually leads the colony to converge on the shortest path.
To implement ACO in the context of finding the highest ESP architecture, we need
to explicitly pre-create the graph (in this case, a tree) on which ants are walking during
the run. The four steps involved are as follows. (i) A “start" node is created. (ii) After
a random valid architecture is selected, the next node after “start" is created with the
first architectural variable value. The subsequent node includes the first and second
variable values of this valid architecture. The tree continues to be constructed all the
way until the last node contains the variable values. (iii) Sample the rest of the valid
architectures of the design space and repeat the same process. Use the same node if
the generated node with the same variable values already exists; otherwise, create a
bifurcation to a new node. (iv) The ants traverse this tree, and the node at which they
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end will always be a valid architecture. Having constructed this tree, the policy is as
follows:

e Pheromone deposition is initialized on all edges of the tree.

e A population of n architectures (hyper-parameter set to either 50 or 100) is con-
sidered at every time step i.

e The tree is traversed n times (each time by an ant) from the top until the end for all

n architectures. A selection rule is applied to a node with multiple outgoing nodes

based on its pheromone concentration. With probability pexploit (hyper-parameters

set to either 0.1 or 0.3), the outgoing edge with the highest pheromone concentra-

tion is taken. Otherwise, exploration is performed with selection probability for

each edge, which is the ratio of the pheromone concentration for the edge to the

total pheromone amount on the entire tree.

Pheromone concentration on each edge of an ant path is updated with Eq. B8 [91].

Pheromones decay (set to 10% rate) for all edges.

The new population at i 4 1 consists of the n architectures these ants arrive at.

The algorithm repeats until the TC is met.

if AESP; < 0: min_ph

phij = (elseif AESP_avg < 0: max_ph (B8)

else : min(min_ph + (max_ph — min_ph) - %ﬂ"vg, max_ph)

Here, ph;; is the pheromone deposited on the edge between node i and node ;.
max_ph is the maximum pheromone deposition (set to 6) and min_ph the minimum
(set to 1). AESP; = ESP,,; — max(ESP), with max(ESP) being the maximum ESP
observe so far. AESP_avg = %(AESP,-,I + AESP;_»+ AESP;_3). This was included
to make large gains in the discovery of high ESP architectures relatively easy at an
earlier stage, while at a later stage, increases in ESP will be smaller. Weighing the
increase in ESP with this rolling average reflects this.
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