TECHNISCHE UNIVERSITEIT DELFT

MASTER OF SCIENCE THESIS IN COMPUTER SCIENCE

Automated Discovery of Chemical
Reaction Networks using Program
Synthesis

Author:
Richard WIERS

Supervisors:

Dr. Sebastijan DUMANCI
Ir. Reuben GARDOS REID

¢

Oth July 2025

]
TUDelft

Delft University of Technology


mvanadrichem
Doorhalen





Automated Discovery of Chemical Reaction
Networks using Program Synthesis

Master’s Thesis in Computer Science

Algorithmics group
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

Richard Wijers

9th July 2025



Author
Richard Wijers

Title
Automated Discovery of Chemical Reaction Networks using Program Synthesis

MSc presentation
16th July 2025

Graduation Committee
Dr. Jasmijn Baaijens Delft University of Technology

Dr. Neil Yorke-Smith Delft University of Technology
Ir. Reuben Gardos Reid  Delft University of Technology



Abstract

This thesis explores the automated construction of Chemical Reaction Networks
(CRNs) from incomplete experimental data, a task traditionally dependent on ex-
pert knowledge and manual effort. CRNs model the interactions between chemical
species through a network of reactions and are essential in fields such as medicine
and chemistry. However, many real-world systems include unobserved or unmeas-
urable species, making CRN construction challenging. To address this, this thesis
frames CRN discovery as a program synthesis problem, using grammars and con-
straints to define the space of possible CRNs. A modular synthesis pipeline is
developed that incrementally builds candidate molecules, reactions, and networks
given a problem definition. Experimental results demonstrate that constraints ef-
fectively reduce the search space and that the solver is capable of identifying the
correct reaction networks. Moreover, a scoring mechanism ranks the expected
CRN highly among generated candidates.



v



Contents

(I__Introduction| 1
2 Background| 3
2.1 _Chemical Reaction Networks| . . . . .. ... .... ... .... 3
2.1.1 Basi rel ... 3

RI2  SMILESNOM@EON - - « « « v v v vve e e e e e e e 4

213 Simulations| . . . .. ... ... 0oL 5

[2.2° Program Synthesis| . . ... ... ... ... ... ... .... 6
21 Gramman . . . . . . . ... 7

222 Searchl. . . .. ... ... .. 9

223 Constraintsl . . . . . ... ... 9

3 Related workl 11
[3.1  Simplest Mechanism Builder Algorithm| . . . . . . .. ... ... 11
[3.2  Automated Discovery of Kinetic Rate Models| . . . . . ... ... 11
[3.3  Nested Evolutionary Algorithm for CRN Design| . . . . ... .. 12
3.4 Syntax-Guided Synthesis for CRNs| . . . . .. .. ... ... .. 12

4 Problem Definition| 13
4.1  Example Problem| . . . . . .. ... ... ... .. ... .... 14
5 Methods 15
[5.1 Problem Analysis| . . . . . ... ... ... ... ......... 15
[5.2° Molecule Synthesiser{ . . . . . ... ... ... ... ....... 16
B2T Grammard . . . .. .. ... . 16

522 Constraintsl . . . . . ... Lo 17

[5.3 Reaction Synthesiser] . . . . ... ... ... ... ... ... 19
B3.1 Grammars|. . . . . . ... 19

B32 Constraints . . . . . . ... 20

[5.4 Network Synthesiser] . . . .. .. ... ... ... ........ 21
D41 Grammars|. . . . . . ..o 21

B42 Constraints] . . . . ... ... ... 22

[5.5 Synthesizer Pipelines| . . . . . ... ... oo 23
5.6 CRNevaluationl . . . ... ... .. ... oL 24



{6 Results and Discussion| 25

[6.1  Experimental Setup| . . . . .. ... ... ... ... ....... 25
6.1.1 WaterReactionl . . . . ... ... ... .......... 25
6.1.2 Methane Combustion|. . . . . . ... ... ... ..... 26
[6.1.3  Ethylene glycolf . . . . .. ... ... ... .. ..., 26
[6.1.4 Esterification Reaction| . . . . . . .. .. ... ... ... 26
[6.1.5 Synthesizersteps| . . . . . ... .. ... ... ...... 27

[6.2 Search Space Reduction| . . . ... ... ... ... ... .... 27
[6.2.1  Molecule Synthesis|. . . . .. ... ... ... ...... 27
[6.2.2  Reaction Synthesis| . . . . .. ... ... ......... 28
[6.2.3  Network Synthests| . . . ... ... ... ... ...... 29

6.3 Feasibility| . . . . . ... ... ... 30

6.4 ACCUTACY| . . . . . . . . e 31

[7__Conclusions and Future Workl| 35

(/1 FutoreWorkl. . . . ... .. ... . 36

Vi



Chapter 1

Introduction

Many advancements in medicine and chemistry rely on accurate models of chem-
ical systems to ensure that they behave in a predictable and stable way. For ex-
ample, in medicine development a requirement could be that the working substance
should not react with other medicine or herbs taken by the patient [Zhou et al.,
2021]]. By improving our understanding of how all the substances react together,
more precise adjustments can be made with better results. [Wen et al., [2023]]

Since in reality systems, for example of the just discussed medicine, can become
very complex, they are modelled in a simplified system. One type of model used
to represent these systems is a chemical reaction network (CRN), which contains
a list of reactions describing how the substances (called species) interact with each
other. However, building such models is a difficult task, especially when some
parts of the system are not directly observed or measured.

For example, when a scientist is performing experiments to understand more
about underlying CRN, it might not be possible to measure every species that is act-
ive in the network. Completing the missing information in those networks is often
labour intensive and relies mainly on expert insights. However, recent advances in
technology allow for the opportunity to research chemistry beyond the limitations
of manual exploration [Unsleber and Reiher| 2020]. This thesis explores using
program synthesis techniques to automate this construction of chemical reaction
networks.

To illustrate this idea, consider the following simple reaction for creating water:
2H, +0y — 2H,0. Given that we are only able to measure O, and H,O, can we
without knowing the reaction, deduce that H, was also present in the network and
what its concentration over time looks like? This problem is depicted in figure|1.1]
where the measured molecules are the bold lines, and the concentration line, which
we have to find, is displayed with a dashed line.

In this example we have a problem with two known molecules, where O, is
decreasing and H,O is increasing, with their corresponding concentration profiles.
And we have to find the CRN that describes this behaviour as closely as possible.



H:0
o

—

Concentration

Time

Figure 1.1: Example concentration graph for water synthesis. The red and orange
lines represent the known species water and oxygen. The green dashed line indic-
ates the unknown specie, hydrogen.

Since this is a small example, we can easily fill in the missing information
7?7+ 0, —— 2H;0 with 2H, to complete a reaction. However, when the mo-
lecules become more complex and there are multiple and bigger reactions in the
network, there are many options to consider, and manually finding and evaluating
these networks becomes impractical.

To address this, we can turn to automated approaches where this big search space
is explored. One of these approaches is program synthesis, where using a set of
input-output examples, a program is synthesized that satisfies the example. [David
and Kroening, [2017]

By framing the chemical reaction as a ’program”, we can leverage this program
synthesis method. This thesis investigates how such techniques can be applied
to automate the construction of chemical reaction networks, particularly in cases
where data is incomplete.

This will be done by answering the following questions:

* Do constraints successfully narrow down the search space?
* Is the solver able to find the correct chemical reaction network?

* Does the expected solution receive the highest score?



Chapter 2

Background

This chapter covers the two main concepts that this thesis makes use of: Chemical
Reaction Networks (CRNs) and Program Synthesis. Understanding these concepts
is important for following the rest of the work as they form the basis of the methods
and contributions discussed later on. The goal here is to give enough background
so that the thesis can be fully understood without separate knowledge. This chapter
will start with an introduction to CRNs; what they are, how they are represented,
and how they can be simulated. After which, program synthesis will be explained,
including grammars, search strategies, and constraints.

2.1 Chemical Reaction Networks

Chemical Reaction Networks (CRNs) provide a formal way to describe how differ-
ent substances, called species, interact through reactions. This section first intro-
duces the basic components of a CRN and its reactions. Since in this thesis species
mainly refer to molecules, we will also briefly explain the SMILES notation used
to describe these molecules. Finally, an outline of what a simulation of a CRN
looks like will be discussed.

2.1.1 Basic structure

A chemical reaction network consists of:

* Species: The different entities (molecules) involved in the reactions, such as
oxygen or water molecules.

* Reactions: Processes that describe the change of one set of species into
another, for example, oxygen and hydrogen combining to create water.

Each reaction can be represented in the general form:

rra; X1 +asXo+...— B1 Y1 +62Y0 + ...



where:
¢ 1 is the rate at which this reaction occurs.

* X1, Xo,... are the reactant species (inputs) and Y7, Y>, ... are the product
species (outputs).

* ap,Qa,...and B, fBa, ... are the coefficients indicating the number of each
species involved.

CRNs are widely used in fields such as chemistry and biology to describe com-
plex systems. By analysing the structure of a CRN, researchers can gain insights
into the underlying mechanisms.

2.1.2 SMILES Notation

Two molecules with the same number of atoms can have a different effect based
on the structure. Therefore, a notation is needed that can reflect this structure.
In this thesis the SMILES (Simplified Molecular Input Line Entry System) nota-
tion is chosen, a widely used string-based format for describing molecular struc-
tures. For instance, the water molecule H,O can be represented in SMILES as
[H]-[O]-[H]. There are many ways to use implicit notation in SMILES, how-
ever this thesis focusses on a smaller subset of explicit rules.
The following rules are used:

* Atoms are written in square brackets, e.g., [C], [O].
* Bonds between atoms are denoted using characters like — (single), = (double).

* Branches are denoted with parentheses, allowing more than two connections
to a single atom. For instance NH3 can be writtenas [H] - [N] (- [H]) —[H]

* Rings are encoded using matching digits to indicate connection points. If
there are multiple rings in a molecule, different digits can be used for each
ring connection.

Each atom can form a specific number of bonds. For instance, a carbon atom
(C) typically forms four bonds, oxygen (O) forms two, nitrogen (N) forms three,
and hydrogen (H) forms only one. These bonding rules must be respected when
constructing valid molecular structures. For example, a carbon atom written as
[C] must be connected to a total of four other atoms or bonds, such as in methane
[H]-C(=[H]) (=[H])-[H].



To visualize how the SMILES notation maps to a molecular structure, consider
the molecule [H]-[C] (=[0])—-1[0]—-[H], which corresponds to:

O—H

For a small ring example, the SMILES string [C]=1=[C]=[C]=[C]=[C]=1
is a ring of carbon molecules where the first and last atom are connected with the
digit 1. results in the following structure:

C
| e

=
C\

o\ /o

The SMILES notation supports multiple different properties that are not used in
this thesis. For more information you can check the OpenSMILES speciﬁcation

2.1.3 Simulations

A simulation of a CRN gives an overview of how the concentrations of molecules
change over time. Take for instance the small system for synthesizing water:
0.1,2Hs + O —— 2H50. This system describes that every unit of time, 10
percent of the molecules will undergo this reaction of hydrogen and oxygen react-
ing into water. The reaction will be limited by the lower concentration, meaning
that if there is an infinite amount of hydrogen, but only 100 molecules of oxygen,
the reaction will only occur 10 times at the first time slot. Note that for a single
reaction, two hydrogen molecules are needed, thus to get the same number of re-
actions in the first time slot 200 molecules of hydrogen are needed. An example of
how the concentration would look over time is in figure [2.1

As discussed before, not always will everything be completely known. To solve
this, parameter estimation can be used. Given a CRN without the reaction rates and
initial concentrations, we can use a solver to tune these to match a measurement. To
illustrate this example, just a few points are measured and we can find the closest
matching line as seen in ﬁgure These simulations are done using Catalyst.jl

'OpenSMILES specification: http://opensmiles.org/
2Catalyst.jl: https://docs.sciml.ai/Catalyst/stable/



Concentration

Time

Figure 2.1: Concentration profile of the water reaction: 0.1,2 Hy+0Oy — 2H50

a4
‘ s Fitted H20
s Fitted O
s Fitted Ha
@ Measured H:0
@ Measured Oz
3+ —
- =_— 7 L ] q
c \ Lo @
2 <
=} ~—
m
= N ~
c P S
o —
v o — .
1k — — —
/ @ "'--...
BT e—
= r— e— g o
0 1 1 1 1 ]
1] 2 4 6 B 10

Time

Figure 2.2: Measurements denoted as dots and a simulation with fitted parameter
optimization results displayed as a dashed line.

2.2 Program Synthesis

Program synthesis is the task of automatically generating programs that satisfy a
given specification [Gulwani et al., [2017]. There are multiple ways to approach
program synthesis, however since this thesis makes use of Herb.jl EL this sec-
tion will go more in depth specifically about the functionality of this framework.
For more information, the thesis Constraint Propagation in Program Synthesis

2024] also describes these properties very well.

3Herb.jl: https://herb-ai.github.io/



A Program Synthesis Problem requires the following components:

* Input-output examples: A set of examples that the target program must
satisfy.

e Grammar: A formal specification of the program search space.

Constraints: Additional conditions that restrict the program space.
* Search procedure: An algorithm that explores the grammar-defined space.

Consider for instance the task of synthesizing a simple arithmetic function that
increments a variable x by 1. Firstly, we can describe this behaviour as a small set
of input-output examples, such as [1 — 2,10 — 11]. Next, a grammar is needed
that specifies a search space of programs, including a program that increments its
input. A grammar consists of rules in the form of type = expansion , where a
expansion can be an end point or contain reference to types to be expanded further.
The example grammar [2.1|includes operations like addition and multiplication, as
well as constant values and the variable x.

[1] Number = Number * Number
[2] Number = Number + Number
[3] Number = 1
[4] Number = 2
[5] Number = x

Listing 2.1: Example grammar for increment function synthesis

Since the variable x is expected to appear at least once in the program (as it is
part of the input-output example), a constraint can be added that ensures rule 5 will
be included in every candidate program.

With these components in place, an iterator can now search through all possible
programs, evaluating them against the input-output examples. The synthesis pro-
cess continues until one or more programs are found that satisfy all examples.

In this case, the synthesizer will eventually return the expression:

z+1

which satisfies both 1 +— 2 and 10 — 11, and respects the constraint that  must
be present in the program.

2.2.1 Grammar

The grammar defines the search space of the synthesizer, the set of all program
candidates that can be generated. It consists of a collection of rules that describe
how programs can be built.

Each grammar rule has the following properties:



» Type: Every rule is associated with a type, specified on the left-hand side
of the rule using the syntax Type = Expansion. A rule can only be
expanded into other rules that match its type.

* Terminal vs. Non-terminal: Rules are either terminal or non-terminal. Ter-
minal rules cannot be expanded further. Non-terminal rules reference other
rules that will expand further until terminal nodes are reached.

[1] Number = Number Operation Number
[2:4] Number =1|2]|x
[5:6] Operation = + | x

Listing 2.2: Example grammar for increment function synthesis with multiple
types

Consider the following grammar that defines simple arithmetic expressions
similar to the previous grammar, however now using multiple types. In this ex-
ample:

* Rules are grouped using the | (or) operator. For example, instead of writing
individual rules for each constant or variable, the second line represents three
rules.

* The first rule is non-terminal: it defines how a new Number expression can
be formed by combining two Number expressions with an Operation.

* The other rules are all terminals: they either define constant values, a variable
or operators that can appear in an expression.

In Herb,jl, a program is usually represented using a tree structure, where each
node corresponds to a grammar rule and its children correspond to its expan-
sions. For example, the program x + 1 can be generated from the rule Number =
Number Operator Number with its children being a z, + and 1 respectively
as shown in figure 2.3

Figure 2.3: Tree example of a program x + 1



2.2.2 Search

Herb.jl uses tree-based representations to explore the search space. Each tree cor-
responds to a set of candidate programs, and the synthesis process involves con-
structing and refining these trees based on the grammar and constraints.

There are two types of trees in Herb.jl: generic and uniform trees.

* Generic Tree: A tree that contains nodes that have a non-terminal type, but
are not expanded with children nodes yet.

* Uniform Tree: A tree where the structure is fixed: every node has a determ-
ined number of children, and the shape is now constant.

At the start of a search procedure, as shown in figure a root node will be
created with a domain of all grammar rules. Next, the solver will partition the do-
main into different groups based on the rule types and child structure. For instance,
with the previous grammar[2.2] there are three different groups. One with only rule
1, since there is no other rule that expanses into tree children. One with rules 2-4
and another with rules 5 and 6, since these are two groups with their own differ-
ent types. Since the second tree and third trees are now uniform, the iterator will
construct a uniform tree for them. These uniform trees will then be exhaustively
used to extract all possible programs that satisfy the constraints. The generic tree
will try to expand its children and start again with partitioning their domains into
different groups.

G G2
Figure 2.4: Tree partitioning

2.2.3 Constraints

Searching all the possibilities exhaustively has an extremely large search space.
To make a problem feasible, good constraints have to be applied. In Herb.jl, con-
straints describe properties that a (partial) tree should adhere to.

For instance, in the increment problem, a constraint might be to require that
the candidate program includes the variable . To make sure that this rule is in
the candidate tree, we can influence the options for each node during the search.
For example, when constructing the generic tree, during each decision we will go



through the tree and make sure that there are nodes in the tree that either contain the
variable x or can expand to contain this required rule. If there are multiple nodes
that still have to be expanded, the propagation cannot make a deduction yet about
which (or both) of those nodes will contain the variable rule, however when there
is only one hole and the variable z is not anywhere else in the tree yet, this hole
can be restricted to only allow rules that will satisfy the constraint. For example,
considering the tree partitioning described before in figure[2.4] the first domain will
only be split in a node with rule 1 and a node with rule 4 (the variable ) since the
other options will never be able to result in a candidate program that contains the
variable z.

If the iterator has an uniform tree, the constraint still works mostly the same,
however note that the structure of the uniform tree does not change any more, so
the constraint can keep information stored. For example, by keeping track of the
position of the available holes (nodes with multiple possible rules), the whole tree
does not need to be searched again.

Constraints are not limited to the full tree, each node can get its own local con-
straints with its own local logic defined. For example, the + and * operators are
commutative, and thus we could add a constraint that will prevent candidate pro-
grams that will have the same output. To implement this, we can add a local con-
straint to each node with rule 1 and enforce that its children nodes with type Num-
ber are ordered: For example, the right Number rule is greater or equal to the left
Number rule. Thus preventing the candidate 2 4 1 from ever being attempted.

10



Chapter 3

Related work

The automated discovery of Chemical Reaction Networks (CRNs) has received
growing interest across computational chemistry, systems biology, and machine
learning. In this chapter, we discuss some notable approaches for CRN discovery.

3.1 Simplest Mechanism Builder Algorithm

The Simplest Mechanism Builder Algorithm (SiMBA) [Angel de Carvalho Servia
et al., 2025] is designed for automated microkinetic model discovery from kinetic
data, without requiring complete knowledge. Microkinetic models describe the
same problems as CRN. SiMBA employs a search procedure that incrementally
increases the complexity of the model and performs model evaluation via para-
meter estimation.

While SiMBA effectively predicts the presence of intermediates, it does not at-
tempt to discover the identity of unknown molecules. Necessitating expert input to
contextualize and refine the discovered network. In contrast, our approach explores
a discrete program space of chemical reaction networks, aiming to also recover un-
known molecules directly from data.

3.2 Automated Discovery of Kinetic Rate Models

This research proposes two methodological frameworks, ADoK-S and ADoK-W
[[de Carvalho Servia et al., [2024]], for the automated generation of kinetic models
from experimental concentration data. Both frameworks leverage genetic program-
ming for model generation and a sequential optimization step for model refinement.
ADoK-S employs a conventional approach, necessitating estimated rate measure-
ments for deriving kinetic rate models. In contrast, ADoK-W applies a weak for-
mulation of symbolic regression by directly constructing rate models from meas-
ured concentration data through an embedded integration step, thereby bypassing
the rate estimation step entirely.

11



3.3 Nested Evolutionary Algorithm for CRN Design

The research [Degrand et al., [2019] proposes an method for constructing Chem-
ical Reaction Networks based on evolution algorithms. It utilizes a nested search
algorithm, where a genetic algorithm evolves the CRN structure and a parameter
optimization function optimizes its kinetic parameters for the CRNs. At each gen-
eration, mutations to the CRNs are made to search for better options. This approach
aims to discover CRNs without requiring prior knowledge of their structure.

3.4 Syntax-Guided Synthesis for CRNs

This paper [Cardelli et al.,2017|] addresses the problem of finding CRNs by syntax-
guided synthesis. It introduces a sketching language that contains syntactic con-
straints that allows "holes’ for unknown species, rates, or stoichiometric constants.
The goal is to find a CRN that satisfies specified behaviour and minimizes a defined
cost function. The approach encodes the synthesis problem as a Satisfiability Mod-
ulo Theories (SMT) problem.

12



Chapter 4

Problem Definition

The main objective of this thesis is to use program synthesis to automatically con-
struct complete chemical reaction networks that explain experimental observations
or a given set of requirements given for the CRN. In many practical scenarios,
only partial observations of the system are available. The challenge is to infer the
underlying reaction network that could plausibly produce this behaviour.

More formally, the problem can be stated as follows:

Given:
* A set of observed molecules M = {my,...,my}.

* Corresponding concentration measurements over time C;(t) for each m; €
M.

Find:
* A set of additional (unobserved) molecules M" = {m,,;1,... }.

* A set of reactions R that define the interaction among the molecules in M U
M.

* A chemical reaction network N, as defined in section [2.1} such that sim-
ulations of N reproduce the observed concentration profiles C;(¢) for all
m; € M.

13



4.1 Example Problem

To illustrate the problem, consider an esterification reaction for which only the con-
centrations of the molecules C3H¢O,, C,H40,, and C,HgO have been measured.
These observed molecules represent the set M and their concentration measure-
ments, shown in figure as solid lines, represent C;(¢). Now the goal for the
solver is to find the full underlying chemical reaction network N, consisting of two
reactions R, complete with the missing molecules M’ = {CH204, CH4O, H,0}:

0.2,CH509 + CoHgO —— C3HgO9 + HoO
0.1,C3HgO9 + CH4O —— CoH409 + CoHgO

Using this synthesized network, the concentration profiles of the unmeasured
molecules can also be found, as shown with the dashed lines in figure 4.1]

Concentration

Time

Figure 4.1: Example esterification problem with in solid lines the measured mo-
lecules and in dashed lines the unobserved molecules

14



Chapter 5

Methods

This chapter describes the methodology developed to solve the problem outlined
in Chapter ] The approach consists of the following stages:

* Analyse the Problem: Given a problem definition, all available properties
are gathered. For example, from analysing the measured concentration pro-
files of the molecules, we can gather whether a molecule should be the input
or output of a reaction.

* Synthesize CRN candidates: Using the available information, complete
CRN candidates are synthesized. This can be done by creating a single
synthesis problem or by splitting the problem up into different stages for
synthesizing molecules, reactions, and networks separately. Each option re-
quires a different combination of constraints and grammar that will be ex-
plained more in the next sections.

* Evaluate the Networks: Given the synthesis step results in many possible
candidates, a ranking is required that defines properties that are more desir-
able than others.

5.1 Problem Analysis

The first step is to analyse the given problem, which contains information about
the molecules that are observed and their behaviour over time. It is assumed that
all the measured species are at least part of the target CRN. Furthermore, looking
at the corresponding concentration graphs for the measured species, increasing or
decreasing trends can be observed. This tells us if a species is required to be on
the input or output side of a reaction. For instance, when looking at figure the
molecule H,O can be seen to be increasing, thus we know that there should be at
least a single reaction in the CRN where that molecule is on the right side. Note
that a concentration graph could also, for instance, be a bell curve, meaning that
the species is both increasing and decreasing at some point. Thus, the CRN should

15



have a reaction with the species on the right side and another one with the species
on the left side. Allowing us to reduce the search space, since we know where the
measured species are located in the reactions.

Concentration

Time

Figure 5.1: Concentration profiles for the following reaction: 2Hs + Oy — 2H50

Furthermore, lists of possible molecules or reactions can also be passed on,
which are not necessarily measured in the CRN, but might be likely options. This
provided list of molecules or reactions can then be used by the solver to add con-
straints to make sure that they are indeed in the reaction network, again reducing
the search space.

5.2 Molecule Synthesiser

Some of the molecules that are needed to synthesize the target CRN might not be
known from the problem definition. Therefore, new molecules need to be syn-
thesized as part of the search process. This section will discuss the grammar and
constraints used to synthesize molecules.

5.2.1 Grammar

The grammar for the molecule synthesis is based on the OpenSMILES specifica-
tion m However, to have more control over the generated structures, the grammar
for our synthesizer requires all atoms to be explicitly specified. Which is denoted
by all the atoms in brackets. Furthermore, our grammar currently does not support
isotopes and charges, since in the proposed experiments this is not required. Fur-
thermore, some changes have been made to implicitly restrict some invalid outputs.
For instance, the OpenSMILES specification could create SMILES strings ending
in a branch, which the grammar below does not.

'OpenSMILES specification: http://opensmiles.org/

16



Terminal rules may be changed to suit the specific problem. Based on the all
the molecules gathered from the problem description, a set with all the atoms is
collected from which molecules structures can be constructed. In the example
below, the grammar is demonstrated with a four atoms and a maximum bond order
of three:

[1] molecule = chain

[2] chain = atom ringbonds

[3] chain = structure bond chain
[4] structure = atom ringbonds branches
[5] branch = ( bond chain )

[6] Dbranches = nothing

[7] branches = Dbranch branches

[8] ringbond = Dbond digit

[9] ringbonds = nothing

[10] ringbonds = ringbond ringbonds

[11] digit = 11213145 61| 71819
[12] bond = - | = | =

[13] atom = [H] | [O] | [N] | [C]

5.2.2 Constraints

The grammar described previously still requires additional constraints to ensure
that the generated molecules are valid. However, distilling the requirements to
create a chemically possible molecule into a few concrete constraints is more chal-
lenging than expected. Therefore, the current implementation only enforces that
each atom has the expected amount of bonds and that all the ringbonds are closed.
For example, a [H] atom must form exactly one bond, while an [O] atom must form
two. And a specific ringbond digit always has a corresponding closing connection.

Generic Atom

Since the generic tree can still further develop, the final structure is unknown. Nev-
ertheless, we can still make some deductions. The GenericAtom constraint is
posted on any node with the molecule type. Then, during propagation, it will gather
all the bond nodes while going down the tree and if an atom is found, restrict the
search space accordingly.

For example, if we find an atom node during propagation and we have determ-
ined that there are two bond nodes that connect to this atom, we can infer that the

17



atom should at least be able to have two connections. Furthermore, if, for example
the atom can have a maximum of 2 connections, we can also infer that for each
of the connected bond nodes, it cannot be more than a single bond. Using this
information, we can restrict the possibilities on the atom and bond nodes.

Branches

Figure 5.2: Partial tree with marked nodes that are constrained by the Atom Con-
straints

In the instance shown in figure [5.2] an atom with corresponding bonds is high-
lighted in orange. In this case the atom can be restricted such that it cannot be
a hydrogen atom. And assuming the atom would be an oxygen atom, the bonds
would both need to be a single connection.

Since the tree is not uniform yet, we also have to take holes into account that
can still expand into more bonds. If such a hole is found, we can infer that there is
at least a single bond in that expansion chain, however, for further information the
propagation will have to wait until the node has branched.

Uniform Atom

Once the tree becomes uniform, the structure of the tree will not change any-
more. Therefore, the constraints can store information about the structure. In-
stead of a single constraint at the node with type molecule, now all of the nodes
with type atom will get their own UniformAtom constraint imposed. Now, in-
stead of searching for all relevant bonds during each time the constraint is checked,
this UniformAtom constraint can gather the locations of all bond nodes that are
connected to the atom only once upon construction of the uniform tree. When
propagating, similarly to the generic atom constraint, the maximum and minimum
values of the bonds and atom, will both be checked and updated accordingly.

18



Uniform Ringbond
The UniformRingbond constraint imposes the following rules.

1. It prevents duplicate molecules that have the same structure with only the
ring number altered. For example, the molecules [O0]-1-[0]~-[0] -1 and
[0]-2-[0]-[0] -2 would result in the the same structure.

2. It makes sure that each used digit will be in the molecule twice to complete
the ringbond.

3. It will make sure that ringbonds do not connect two molecules that are
already connected to each other or to itself.

Restricting duplicate molecules is done by having the max ringbond be depend-
ent on the position of the ringbond. For example, the leftmost ringbond node can
only take the value 1, the second leftmost can take the values 1 or 2, and this
continues to increase until the last item. Also, if a single atom has multiple ring-
bond digits, these should be incrementing, since changing the order would create
identical molecules.

To make sure that ringbonds do not connect to themselves or have multiple ring-
bonds between the same two atoms, the notion of ringbond groups is introduced.
When constructing the constraint, the ringbonds are grouped based on where they
are connected two. During the propagation, uniqueness in these groups is imposed.

Take, for example, a molecule with four ringbond positions that need to be as-
signed ring digits: [C]-r1=[C]-[C]-r2-r3-[C]=[C]-r4. The first step
of the constraint is to limit the possibilities incremented by the position, thus
r1 € {1}, ro € {1,2}, r3 € {1,2,3} and r4 € {1,2,3,4}. Since each digit
should be twice in the molecule and there are a total of 4 places, we also know that
the limit should be 2, thus r; € {1}, 7o € {1,2}, r3 € {1,2} and r4 € {1,2}. By
making sure that ringbonds do not connect, we can also infer that ro # r3. Finally,
the second and third digit should be increasing to prevent duplicates, o < r3. By
combining these constraints, the only possible solution left is r; = 1, ro = 1,
rg=2andry =2: [C]-1=[C]-[C]-1-2-[C]=[C]-2

5.3 Reaction Synthesiser

The synthesis of reactions can be performed in two ways. Either by starting from
a predefined list of molecules or by combining the molecule grammar with the
reaction grammar, enabling the construction of complete reactions within a single
synthesis step.

5.3.1 Grammars

The reaction grammar consists of two lists of molecules, one for the inputs and one
for the outputs. In the example below the molecule rule is terminated with for ex-

19



ample pre-generated or given molecules. Note that this rule could also be replaced
with the full molecule grammar, thus creating a single iterator that synthesises re-
actions.

[1] reaction molecule_list — molecule_list

[2] molecule_list = molecule + molecule_list
[3] molecule_list = nothing
[4-6] molecule = HoO | Oz | Ho

Rule [1] defines a reaction as a list of input molecules and a list of output mo-
lecules, separated by a reaction arrow. The molecules in rule [4] can either be
a predefined list if synthesized earlier or be replaced with the molecule grammar
described in section[5.2]

Rules [2] and [3] represent the tail-ended molecule lists. Note that since chem-
ical reactions do not have a specific ordering required, therefore an ordering con-
straint is later applied to reduce symmetry duplicates.

When combining this grammar with the molecule grammar, each molecule node
can itself expand into a valid SMILES-like tree structure, resulting in a single pro-
gram synthesis problem.

5.3.2 Constraints

There are two main constraints that are imposed upon the reaction grammar. Firstly,
we will make sure that the reactions are atom balances. Secondly, we need a con-
straint to restrict the duplicates generated due to symmetry. Furthermore, there are
some simpler constraints that reduce the amount candidates that will be rejected
later in the process. For example, a forbidden constraint that makes sure that the
reaction is not the same at both sides and a forbidden constraint that makes sure
the molecule list at least contains a single molecule. However, those will not be
explained in depth.

Balanced Reaction

A reaction should have the same amounts of atoms in its input as its output. There-
fore, multiple constraints are in place.

Firstly, in the case when the molecules are predefined by a previous synthesizer,
atom balancing is done for each uniform tree found. Since it is quite difficult to
restrict possibilities in a situation where there are multiple holes in a reaction, the
choice has been made to pre calculate the intersection set of possible reactions.

For both of the reaction sides, all possible combinations of rules are gathered
and translated to their corresponding atom counts. Then by taking the intersection
of these atom count sets, we get all the atom balanced reactions. This makes it then
possible to restrict the uniform tree with the rules that contain in this possibility

20



set. While this does not add much functionality in the case of a synthesizer that
only synthesizes reactions based on a set of molecules, it does currently improve
the performance when you add more constraints in a synthesizer that does multiple
steps.

When the Grammar is extended with the molecule grammar, the Balanced Re-
action functions a bit different. Firstly, when the structure of the tree is not yet
uniform, it will make sure that the amount of atom holes is equal on both sides of
the reaction. Then, when a uniform tree is constructed, the propagation restricts
the possible atoms based on the current fixed holes until either the tree proves in-
feasible or a solution is found.

Ordered List

In a chemical reaction network, the order of the molecules on a side of the reaction
does not influence the outcome. For example, the reaction 2Hs + Oy — 2H50
is the same as Oy + 2H> — 2H50. To restrict these duplicate options, we intro-
duce an order constraint on the molecule list. Due to how the reaction grammar is
constructed, implementing this constraint can be done by adding a small local con-
straint on each node with rule type 2. If its right child node is also of type 2, then
between their respective molecules a comparison takes place. The lower molecule
list should have rules that are the same or higher as the higher molecule list as seen

Figure 5.3: Tail ended ordered list

5.4 Network Synthesiser

With molecules and reactions setup, the final step is to construct the complete
chemical reaction networks.

54.1 Grammars

The grammar for synthesizing a chemical reaction network is similar to the reac-
tion network. It is defined as a tail ended list of reactions, where each reaction

21



must be unique within the network. This grammar can again be given a list of syn-
thesized reactions or combined with the grammars and constraints of the previous
two sections to synthesize full networks with a single iterator. An example of the
grammar is given below:

[1] network = reaction_list

[2] reaction_list = reaction + reaction_list
[3] reaction_list = nothing

[4-5] reaction = 2Hs + O — 2Hy0 |

CH4 + 209 — 2H90

5.4.2 Constraints

Similar to the molecule list, this grammar again makes use of the ordered list. A
forbidden constraint is added to ensure that a reaction list cannot have multiple
reactions that are the same.

Contains Molecules

From analysing the problem definition, like mentioned in section a set of re-
quired molecules is already known with their expected place in the CRN. To incor-
porate this information, the synthesis process should only generate networks that
include all of these required molecules.

If the grammar is constructed using complete reactions, the constraint will make
sure that the reaction list will not have an ending rule for the list (rule 3) until all
the required molecules are in the list.

When using the combined reaction and network grammar, the reaction gram-
mar expands with a separate rule that just contains required molecules. The re-
action grammar also posts a constraint that will make sure that the network con-
tains enough nodes with the rule type “required molecule” as shown below. When
propagating over the complete tree, the constraint makes sure that all the required
molecules are at the right place before the reaction list is ended.

[5] molecule_list = required_molecule + molecule_list
HoO ’ O29 ’ Ho

[6] required_molecule

22



5.5 Synthesizer Pipelines

As mentioned in the previous sections, the grammars for the synthesizers can be
combined in multiple ways to create different pipelines. The following pipelines
are tested:

1. Problem Definition — Molecules — Reactions — Networks
2. Problem Definition — Molecules — Networks
3. Problem Definition — Reactions — Networks

4. Problem Definition — Networks

Each of these pipelines reflects a different level of synthesis modularity. Pipeline
1 has the most synthesizer steps, while Pipeline 4 has a single end-to-end synthesis
step.

While a single synthesis step is arguably the most elegant solution, this option
might contain duplicate searches depending on the underlying algorithm.

Each of the staged pipelines follows a similar principle of incrementing the can-
didate set of the previous options by one, then adding the synthesized candidate as
a Contains constraint to the next option and iterating the subsequent synthes-
izer until exhaustion. For example, pipeline 1 has the following flow as shown in

figure[5.4]

Exhausted

Problem Synthesize a Synthesize a Synthesize all Time Up

molecule reaction possible CRNs

Exhausted
Figure 5.4: Staged Pipeline

The pipeline starts with the problem analysis, after which a molecule synthesizer
is created. Then, for every molecule created by the molecule synthesizer, a reaction
synthesizer is created with all the collected molecules, and the newly synthesized
molecule is added as a required molecule. This makes sure that the synthesized re-
actions are different from previous generated candidates. With the list of reactions,
a network synthesizer is created, which will generate the final candidates that will
be used in scoring. Again, this will have the collected list of reactions, and the
latest reaction as a requirement. This process will continue until either a timeout
or complete exhaustion of the molecules occurs.

23



5.6 CRN evaluation

Synthesized candidate networks are not all equally useful. A scoring function is
used to evaluate and rank them based on a set of properties. The scoring func-
tion does not guarantee the correct solution, but helps prioritize the most likely
candidates.

The evaluation score for a network is the combination of the following proper-
ties:

* Profile matching: The most important score is based on how well the gener-
ated network reproduces the expected concentration profiles of the measured
molecules.

* Minimal change in a single reaction: Reactions are scored based on the
amount changes they cause to the molecules. Reactions that make minimal
modifications (e.g., forming or breaking a single bond) are preferred over
those that drastically alter molecular structures.

* Species count: Networks with fewer unique chemical species are preferred,
as this avoids unnecessary intermediates.

* Reaction count: Networks with fewer reactions are prioritized. This dis-
courages the inclusion of redundant or non-functional reactions.

The comparison to the expected species profiles is done using a simulator. The
network candidate is translated to a system of differential equations in Catalyst.jl
and using parameter tuning, parameters that are as close as possible to the expected
result are found.

The combination of all these scores is used to finally rank the reaction networks
and the best networks are returned back to the user.

24



Chapter 6

Results and Discussion

This chapter presents experiments designed to address the following research ques-
tions:

* Do the constraints successfully reduce the search space?

* Is the solver able to find the correct chemical reaction network?

* Is the expected solution one of the best scored options?

The sections below begin by detailing the experimental setup, followed by an
analysis of the search space reduction, feasibility, and solution accuracy.

6.1 Experimental Setup

The experiments are run on a system with an AMD 7950x and 128GB of ram
using the code from the CRNSynthesizer repository (v0.1.0). A timeout of 10
minutes is used per experiment. To evaluate different methods, this thesis considers
CRNs with varying levels of difficulty. The target CRNs used are described in the
following sections.

6.1.1 Water Reaction

The first test case is a simple CRN representing water formation. This example
provides a minimal baseline to verify whether the synthesis pipeline can recover
an expected CRN. Only the concentration profiles of O, and H,O are assumed to
be measured, meaning that the solver will have to find that the H, molecule is also
part of the CRN and finally has to find the following CRN:

r152H2+02 — 2H20

The correct molecules are:
e Hy: [H]-[H]
* 0: [O]=[0O]
* H>O: [H]-[O]-[H]

25


https://github.com/RichardWijers/CRNSynthesizer

6.1.2 Methane Combustion

Secondly, an experiment is set up for methane combustion. This experiment as-
sumes that only the methane and water molecules are known to take part in the
network. Therefore, the solver will have to synthesize the two molecules, oxygen
and carbon dioxide.

ri,CHy 4+ 209 — CO9 + 2H50

The correct molecules are:
e CHy: [H]-[C](-[HD(-[H])-[H]
* 0: [O]=[0O]
* H>O: [H]-[O]-[H]
* COy: [O]=[C]=[O]

6.1.3 Ethylene glycol

Next, an experiment is setup that requires a molecule with a ringbond to be syn-
thesized, namely ethylene oxide (C,H40). We assume that H;O and C,HgO, are
measured.

r1, CoH40 + HoO —— CoHgOo

The correct molecules are:
* CoH40: [H]-[C](-[O]-D)(-[H])-[C]-1(-[H])-[H]
e CoHgO,: [H]-[O]-[C](-[HD(-[HD-[C](-[H)(-[H]D-[O]-[H]
* H>O: [H]-[O]-[H]

6.1.4 Esterification Reaction

The following esterification process is a more complex test case involving two reac-
tions. For this chemical reaction network, we consider that only the concentration
profiles of the molecules C3HgO,, C;H40; and C,HgO are known.

r1, CHyO9 + CoHgO —— C3HgO9 + HsO
ro, C3HgOo + CH4O —— CoH4O9 4+ CoHgO

The correct molecules are:

¢ CH;0y: [H]-[C](=[O])-[O]-[H]
CoHeO: [CIC[CI-HD(-[HD-[OJ-[HD(-[HD(-[H])-[H]
C3HeOz: [H]-[C](=[OD-[O]-[CI(-[HD(-[HD-[CI(-[HD(-[H])-[H]
H,O: [H]-[O]-[H]
CH40: [C](-[HD(-[HD(-[H])-[O]-[H]
C2H4Oy: [CI(-[HD(=[OD-[O]-[CI(-[HD(-[H])-[H]

26



6.1.5 Synthesizer steps

As described in the methods chapter, the task of synthesizing a complete Chemical
Reaction Network can be split into three different subproblems.

* Molecule Synthesis: Given the input problem and any measured molecules,
generate plausible candidates for missing species.

* Reaction Synthesis: Given the known and synthesized molecules, construct
reactions that are atom balanced.

* Network Synthesis: Finally, using the synthesized reactions, combine them
into a CRN that produces simulation outputs that match the observed con-
centration profiles.

These synthesizer steps have their own constraints and they can be combined into
various pipelines described in section [5.5] Each of these steps will be separately
evaluated.

6.2 Search Space Reduction

The search space for the CRNs is enormous, that is why good constraints are very
important. To evaluate the impact of the constraints proposed, the total number
of program candidates has been tested with and without constraints until exhaus-
tion of the iterator at a certain depth. This will give an indication on how much
of the search space was marked unfeasible due to the constraint. Furthermore, the
runtime is also tracked, to ensure that the overhead introduced by constraints does
not outweigh their performance benefits from reducing the search space. To evalu-
ate the constraints, the synthesizer steps have been tested on the methane problem
with various constraints turned on and off. The expected unique candidates are
based on a manual check on the generated constraints.

6.2.1 Molecule Synthesis

The implementation of the molecule grammar constraints described in the methods
is all built into a single constraint called ValidsSmiles. To see how it influences
the search space, a comparison is made between a run with and without the con-
straint.

Setting Candidates | Time (s)
Expected Unique Molecules 7 -
With ValidSmiles 7 0.002
Without Constraint 18399 0.139

Table 6.1: Molecule Synthesis with depth 6 given the methane problem

27



The methane problem with a depth of 6 resulted in table Where we can see
that both the amount of candidates and the runtime have significantly decreased
when the constraint is applied.

Setting Candidates | Time (s)
Expected Unique Molecules 22 -
With ValidSmiles 33 0.031
Without Constraint DNF DNF

Table 6.2: Molecule Synthesis with depth 7 given the methane problem

However, when setting the depth to 7, table[6.2] shows that there are 33 candidate
molecules returned while only 22 of these are unique. Meaning that there are still
some symmetries that are not fully constrained. While it is difficult to compare
how much the search space is reduced in this test, the fact that without constraints
the synthesizer does not finish within the time limit, suggest the constraint is sig-
nificantly reducing the search space.

6.2.2 Reaction Synthesis

There are two synthesizer options for the creation of reactions. A synthesizer
that starts with molecules synthesized in a previous step and a synthesizer that
starts with atoms. For both of these synthesizers the effect of the Ordered and
BalancedReaction constraints have been tested.

Setting Candidates | Time (s)
Expected Unique Reactions 6 -
All Constraints 6 0.924
Without BalancedReaction 870 1.455
Without Ordered 136 0.916
Without BalancedReaction and Ordered 8190 2.130

Table 6.3: Reaction Synthesis from Atoms with depth 8 given the methane problem

In table the results of a reaction synthesis starting with atoms is displayed.
Which shows that the constraints do successfully decrease the search space. Al-
though the ordered constraint did not seem to reduce the runtime, the reduced num-
ber of candidates while keeping the synthesis runtime similar, could still improve
the overall performance of the solver due to not needing to evaluate as many can-
didate programs later in the process.

For the reaction synthesizer from molecules, 10 molecules have been given
as a starting point for the synthesizer to use. In table [6.4] the first indications
can be seen that the staged pipeline has significant performance benefits as the
staged pipeline is generating 160 candidates in less time than the combined syn-
thesizer takes to generate 6 candidates. This is likely because staging the pro-

28



Setting Candidates | Time (s)
Expected Unique Reactions 160 -
All Constraints 160 0.016
Without BalancedReaction 80940 2.779
Without Ordered 160 0.014
Without BalancedReaction and Ordered 1230990 45.797

Table 6.4: Reaction Synthesizer from 10 Molecules with depth 5 given the methane
problem

cess in this way can make sure that molecules do not have to be rediscovered for
each reaction and that both the molecules used in the construction of reactions are
unique. The implementation of the BalancedReaction constraint already en-
forces the order of the molecules. The logic of the ordered was added because
the constraint is much simpler and it might prune options before the more com-
plex BalancedReaction constraint logic has to trigger. However, the runtime
without the ordered constraint seems to be faster, suggesting that this currently is
not effective.

6.2.3 Network Synthesis

There are three ways to create the networks. Firstly, by merging all three grammars
into a single synthesizer step. Secondly, by using a list of generated molecules and
finally from a list of generated reactions.

Integrating all three stages into a single synthesizer appears conceptually ap-
pealing, since there is no need to set separate settings and limits for each stage.
However, in practice it led to very slow performance. For example, running until
exhaustion would never terminate before the time limit. Therefore, only the search
space of the staged synthesizers have been evaluated further.

Setting Candidates | Time (s)
Expected Unique Networks 417 -
All Constraints 417 7.332
Without ContainsMolecules 5142 7.556
Without Ordered 667 7.299
Without ContainsMolecules and Ordered 8623 10.023

Table 6.5: Network Synthesizer with depth 8 from 10 Molecules given the methane
problem

If we look at the results from the network synthesizer starting from molecules
in table[6.5] we can see that many options are generated. Interestingly, the runtime
improvements of this constraint are not as significant as you would expect from
a constraint, suggesting there is still room for improvement. Despite no improve-

29



ment in time in this step, evaluating just 417 CRNs will cost less runtime when
simulating the networks later in the solver process.

Setting Candidates | Time (s)
Expected Unique Networks 96 -
All Constraints 96 0.014
Without ContainsMolecules 20101 0.035
Without Ordered 192 0.018
Without ContainsMolecules and Ordered 40001 0.059

Table 6.6: Network Synthesizer with depth 4 from 200 Reactions given the meth-
ane problem

Finally, the table [6.6] shows the performance of the constraints on the synthes-
izer step from reactions to networks. In this table, the importance of the problem
analysis is visible. By applying the ContainsMolecules constraint, which
uses the information from the analysis, the search space is reduced from 20101
candidates to only 96 candidates.

6.3 Feasibility

While the constraints do prune a large part of the program space, there are still
many candidate programs that do not match the target network. For the feasibility
test, the stopping condition for all synthesizer steps will be when it finds the needed
candidates. For instance, with the water reaction, the molecule synthesis stage will
stop if it finds the missing O, molecule and the reaction stage will stop if the
reaction 2 H, + O, —— 2 H,0 is found.

Pipeline Time Until Found | Candidates Generated
Problem — Networks DNF DNF

Problem — Molecules — Networks 0.049 1

Problem — Reactions — Networks 502.236 2

Problem — Molecules — Reactions — Networks 0.007 2

Table 6.7: Feasibility of the water reaction

Table shows a significant performance difference between the pipelines.
Staging the pipeline with a molecule synthesis step finds the network within the
first second. This is likely due to that, when generating a reaction without the in
between step, each molecule in every reaction must be synthesized independently.
While the staged pipeline only has to synthesize each molecule once.

As shown in Table[6.8] similar trends are observed for the methane combustion
experiment. The fully combined pipeline and the pipeline that skips molecule syn-
thesis both fail to find the correct network within the time limit. In contrast, the
staged pipelines that include the molecule synthesis step succeed. Notably, the

30



Pipeline Time Until Found | Candidates Generated
Problem — Networks DNF DNF

Problem — Molecules — Networks 0.083 2

Problem — Reactions — Networks DNF DNF

Problem — Molecules — Reactions — Networks 0.024 2

Table 6.8: Feasibility of the methane experiment

full three-stage pipeline performs best, finding the correct network in just 0.024
seconds.

Pipeline Time Until Found | Candidates Generated
Problem — Networks DNF DNF

Problem — Molecules — Networks 4.280 3

Problem — Reactions — Networks DNF DNF
Problem — Molecules — Reactions — Networks 5.237 3

Table 6.9: Feasibility of the ethylene experiment

The ethylene experiment in table[6.9|similarly shows that only the staged pipelines
with the molecule step manage to find the solution in the time limit. However, in
contrast to the previous examples, this time the runtime of the fully staged pipeline
was significantly longer. This might be due to increased complexity of the miss-
ing molecule, resulting in many more molecules and therefore also reactions to
synthesize before the correct one is found.

Pipeline Time Until Found | Candidates Generated
Problem — Networks DNF DNF
Problem — Molecules — Networks DNF DNF
Problem — Reactions — Networks DNF DNF
Problem — Molecules — Reactions — Networks 24.939 2001

Table 6.10: Feasibility of the esterification reaction

For the esterification experiment only the fully staged pipeline has been
able to find the target network within the time limit. This is likely because this is the
only experiment with multiple reactions, allowing the performance improvements
of moving the synthesis of the reactions to a separate step to become apparent.

6.4 Accuracy

One of the challenges that comes with generating many options that might match
your result is to define what is the best. To differentiate between the candidates,
they are individually scored. This test will indicate how high the corresponding
target network was ranked. Based on the feasibility experiments, a limit is set on
the maximum number of networks.

31



Pipeline Total Networks | Target Rank
Problem — Networks DNF DNF
Problem — Molecules — Networks 1000 7
Problem — Reactions — Networks DNF DNF
Problem — Molecules — Reactions — Networks 1000 3

Table 6.11: Accuracy results for the Water Reaction

In table the result of a run can be found with the initial molecules set to 5
and the initial number of reactions to 10. Then using these parameters, the syn-
thesizer pipelines are run until either the time limit of 10 minutes or a limit of 1000
networks has been reached. While the target CRN is not evaluated as the best can-
didate, it still ranks very high. In both situations in the top 10 of the 1000 candidate
CRNE.

Pipeline Total Networks | Target Rank
Problem — Networks DNF DNF
Problem — Molecules — Networks 1000 12
Problem — Reactions — Networks DNF DNF
Problem — Molecules — Reactions — Networks 1000 3

Table 6.12: Accuracy results for the methane experiment

Table[6.12]presents the accuracy results for the methane combustion test. Among
the staged pipelines, the three-stage pipeline again ranks the correct network highest,
placing it 3rd out of 1000 generated candidates. The two-stage pipeline also ranks
the correct solution relatively well at position 16. Although there is a notable dif-
ference in ranking between the two pipelines, this discrepancy is not due to dif-
ferences in the underlying search space, since they have the same search space
available. Instead, the variation is likely due to the introduction of the reactions
step altering the search order.

Pipeline Total Networks | Target Rank
Problem — Networks DNF DNF
Problem — Molecules — Networks 1000 1
Problem — Reactions — Networks DNF DNF
Problem — Molecules — Reactions — Networks 1000 1

Table 6.13: Accuracy results for the Ethylene Reaction

Table [6.13] shows the results for the ethylene reaction test. Similar to the other
examples, only the pipelines without the molecules step fail to find the target net-
work within the time limit. Interestingly, the target network is ranked the best in
both cases. This is likely due to that the missing molecule has a larger structure
and that other CRN options would require using more smaller molecules or more
structural changes, which are penalized by the evaluation function.

Since for the esterification reaction, the reaction network that has to be synthes-

32



Pipeline Total Networks | Target Rank
Problem — Networks DNF DNF
Problem — Molecules — Networks DNF DNF
Problem — Reactions — Networks DNF DNF
Problem — Molecules — Reactions — Networks 3000 13

Table 6.14: Accuracy results for the Esterification Reaction

ized is more complex, the starting conditions for this experiment will be to start
with 70 molecules and 56000 reactions. Also, based on the feasibility benchmark,
the search is limited to 3000 networks. As seen in table [6.14] the target network
is in position 13 out of these 3000 candidates. This shows that for even a more

complex network, the solver is able to identify the target network.

33




34



Chapter 7

Conclusions and Future Work

This thesis explored the use of program synthesis techniques for the construction
of Chemical Reaction Networks (CRNs) from incomplete or partial concentration
data. This was done by first making a formalization of CRN discovery as a program
synthesis problem using grammars and constraints. Next, these grammars and con-
straints were combined into different modular solver pipelines capable of synthes-
izing molecules, reactions, and entire chemical reaction networks from (partial)
data. Lastly, an evaluation framework was created to test solver feasibility, per-
formance, and accuracy on multiple benchmark problems.

The results demonstrate that the solver can reliably generate valid CRNs for
problems of varying difficulty, including the esterification problem, which involves
synthesizing a network with three unknown molecules and two reactions. Across
all stages of the synthesis pipeline, the introduction of chemical constraints sub-
stantially reduced the search space. For example, in the methane experiment,
applying the ValidSmiles constraint alone decreased the number of candid-
ate molecules from over 18000 to just 7, significantly improving solver efficiency
without sacrificing correctness.

Secondly, the addition of constraints did not only reduce the number of candid-
ates, but also consistently reduced the total runtime of the solver. Meaning that
the addition of constraints did not introduce more computational overhead than the
time saved by pruning the search space.

Moreover, decomposing the synthesis task into separate stages consistently led
to faster runtimes and higher feasibility compared to a single end-to-end synthesis
approach. In fact, the fully integrated approach failed to terminate within the al-
lowed time limit across all test cases, while the staged pipeline often returned valid
solutions in under a second.

Finally, the solver was not only able to synthesize the correct CRNs for each
benchmark, but also consistently ranked them near the top. Demonstrating the
effectiveness of the scoring function in aligning synthesized network behaviour
with expected concentration profiles.

35



7.1

Future Work

While the current implementation provides a good foundation, it still is only able
to solve relatively small instances and several areas offer opportunities for future
research and development:

Different search heuristics: Larger networks quickly increase the runtime.
Future work could explore different search heuristics that guide the search
better. For example, not all molecules are as likely to take part in a reaction,
thus prioritizing certain molecules in the search might significantly improve
the runtime.

Expand problem analysis: Currently, the analysis step is still quite lim-
ited. An expansions could for example be to add more concentration pro-
files for each measured molecule (instead of the current single input-output
example). If a experiment is done with different starting concentrations, de-
pendencies between molecules could be found. Another expansion could be
to analyse the current concentration profiles further, like the speed in which
a concentration of a molecule increases or decreases.

Adding more constraints: Since the search space still increases very fast
when searching with a larger maximum depth. Incorporating more chemistry
rules, such as looking at the energy available in the network might reduce the
search space even further.

Attempting different simulators: The current scoring function is based on
a simulator that applies parameter tuning of the system of equations. How-
ever, this solver currently does not adhere to chemical properties, by incor-
porating a solver that is more physically accurate, the scoring of the networks
might be more accurate.

Use bottom-up search: While the staged pipeline works quite well, it is
difficult to decide on stopping conditions for all the separate iterators. For
example, if you move to the network synthesis stage before the previous
stage has generated all required reactions, now the networks stage has to
first exhaust all possible networks before you go back to the previous stage.
Unifying the grammars in a single solver is arguably a more elegant solution,
but does not have the required performance to solve the problems. Another
promising attempt was made to switch from top-down to bottom-up search.
However, during development of this thesis, the bottom up functionality un-
fortunately was still in development for the Herb.jl framework.

Expand the SMILES support: The current molecules are a simplified ver-
sion of SMILES. For example, atom isotopes and charge are not supported.
As the solver improves, it might become feasible to support more detailed
molecule descriptions. Adding this support might also create the opportunity
for different constraints to be added making use of the introduced properties.

36



Bibliography

L. Cardelli, M. Ce§ka, M. Frinzle, M. Kwiatkowska, L. Laurenti, N. Paoletti,
and M. Whitby. Syntax-guided optimal synthesis for chemical reaction net-
works. In Computer Aided Verification: 29th International Conference, CAV
2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part Il 30, pages
375-395. Springer, 2017.

C. David and D. Kroening. Program synthesis: challenges and opportunities.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 375(2104):20150403, 2017.

M. A. de Carvalho Servia, I. O. Sandoval, K. K. M. Hii, K. Hellgardt, D. Zhang,
and E. A. del Rio Chanona. The automated discovery of kinetic rate models—
methodological frameworks. Digital Discovery, 3(5):954-968, 2024.

E. Degrand, M. Hemery, and F. Fages. On chemical reaction network design by
a nested evolution algorithm. In Computational Methods in Systems Biology:
17th International Conference, CMSB 2019, Trieste, Italy, September 18-20,
2019, Proceedings 17, pages 78-95. Springer, 2019.

S. Gulwani, O. Polozov, R. Singh, et al. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1-119, 2017.

B. Swinkels. Constraint propagation in program synthesis. Master’s thesis, Delft
University of Technology, Delft, The Netherlands, June 2024. Supervised by Dr.
Sebastijan Dumanci¢ and Tilman Hinnerichs.

J. P. Unsleber and M. Reiher. The exploration of chemical reaction networks. An-
nual Review of Physical Chemistry, 71(Volume 71, 2020):121-142, 2020. ISSN
1545-1593. doi: https://doi.org/10.1146/annurev-physchem-071119-040123.
URL https://www.annualreviews.orqg/content/journals/
10.1146/annurev-physchem-071119-040123.

M. Wen, E. W. C. Spotte-Smith, S. M. Blau, M. J. McDermott, A. S. Krishnapriyan,
and K. A. Persson. Chemical reaction networks and opportunities for machine
learning. Nature Computational Science, 3(1):12-24, 2023.

37


https://www.annualreviews.org/content/journals/10.1146/annurev-physchem-071119-040123
https://www.annualreviews.org/content/journals/10.1146/annurev-physchem-071119-040123

X. Zhou, L. Fu, P. Wang, L. Yang, X. Zhu, and C. G. Li. Drug-herb interactions
between scutellaria baicalensis and pharmaceutical drugs: Insights from exper-
imental studies, mechanistic actions to clinical applications. Biomedicine &
Pharmacotherapy, 138:111445, 2021. ISSN 0753-3322. doi: https://doi.org/10.
1016/j.biopha.2021.111445. URL https://www.sciencedirect.com/
science/article/pii/S0753332221002304.

M. Angel de Carvalho Servia, K. Kuok, Hii, K. Hellgardt, D. Zhang, and E. A. del
Rio Chanona. Simplest mechanism builder algorithm (simba): An automated
microkinetic model discovery tool, 2025. URL https://arxiv.org/abs/
2410.21205.

38


https://www.sciencedirect.com/science/article/pii/S0753332221002304
https://www.sciencedirect.com/science/article/pii/S0753332221002304
https://arxiv.org/abs/2410.21205
https://arxiv.org/abs/2410.21205

	Introduction
	Background
	Chemical Reaction Networks
	Basic structure
	SMILES Notation
	Simulations

	Program Synthesis
	Grammar
	Search
	Constraints


	Related work
	Simplest Mechanism Builder Algorithm
	Automated Discovery of Kinetic Rate Models
	Nested Evolutionary Algorithm for CRN Design
	Syntax-Guided Synthesis for CRNs

	Problem Definition
	Example Problem

	Methods
	Problem Analysis
	Molecule Synthesiser
	Grammar
	Constraints

	Reaction Synthesiser
	Grammars
	Constraints

	Network Synthesiser
	Grammars
	Constraints

	Synthesizer Pipelines
	CRN evaluation

	Results and Discussion
	Experimental Setup
	Water Reaction
	Methane Combustion
	Ethylene glycol
	Esterification Reaction
	Synthesizer steps

	Search Space Reduction
	Molecule Synthesis
	Reaction Synthesis
	Network Synthesis

	Feasibility
	Accuracy

	Conclusions and Future Work
	Future Work


