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GNSS/Multisensor Fusion Using Continuous-Time
Factor Graph Optimization for Robust Localization

Haoming Zhang , Member, IEEE, Chih-Chun Chen , Graduate Student Member, IEEE,
Heike Vallery , Member, IEEE, and Timothy D. Barfoot , Fellow, IEEE

Abstract—Accurate and robust vehicle localization in highly
urbanized areas is challenging. Sensors are often corrupted in those
complicated and large-scale environments. This article introduces
gnssFGO, a global and online trajectory estimator that fuses global
navigation satellite systems (GNSS) observations alongside multi-
ple sensor measurements for robust vehicle localization. In gnss-
FGO, we fuse asynchronous sensor measurements into the graph
with a continuous-time trajectory representation using Gaussian
process (GP) regression. This enables querying states at arbitrary
timestamps without strict state and measurement synchronization.
Thus, the proposed method presents a generalized factor graph for
multisensor fusion. To evaluate and study different GNSS fusion
strategies, we fuse GNSS measurements in loose and tight cou-
pling with a speed sensor, inertial measurement unit, and LiDAR-
odometry. We employed datasets from measurement campaigns in
Aachen, Düsseldorf, and Cologne and presented comprehensive
discussions on sensor observations, smoother types, and hyper-
parameter tuning. Our results show that the proposed approach
enables robust trajectory estimation in dense urban areas where a
classic multisensor fusion method fails due to sensor degradation.
In a test sequence containing a 17-km route through Aachen, the
proposed method results in a mean 2-D positioning error 0.48 m
while fusing raw GNSS observations with LiDAR odometry in a
tight coupling
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I. INTRODUCTION

SAFE and reliable autonomous driving operations in urban
areas require accurate and consistent vehicle localization

that infers a smooth trajectory estimate for planning and control
tasks. Autonomous vehicles may use global navigation satellite
systems (GNSS) to achieve global positioning in large-scale
environments. However, the performance of GNSS is highly de-
graded when a vehicle passes through tunnels or urban canyons,
where GNSS signal loss can be expected, greatly penalizing
positioning availability. Moreover, the error dynamics of GNSS
observations grow increasingly complex due to multipath and
nonline-of-sight effects, resulting in inconsistent error models
used in state estimation [1].

Many previous works fuse information from local optical
sensors (e.g., LiDARs or cameras) for vehicle localization. They
can typically be categorized into pose retrieval using a given
map [3] and simultaneous location and mapping (SLAM) [4].
Generally, landmarks in sensor frames are extracted and asso-
ciated to acquire either frame-to-map global pose constraints or
frame-to-frame local motion increments. Lacking high-quality
maps for vehicle pose retrieval in many areas, approaches relying
on local sensors can often only achieve satisfactory localization
if the ground is even and sufficient loop-closure constraints help
eliminate drift. However, these requirements cannot always be
met for long-term autonomous operations in large-scale envi-
ronments [5].

In recent years, combining local sensors with GNSS has been
investigated as a robust way to enable accurate and precise vehi-
cle location in challenging areas. Incremental batch estimation
implemented as factor graph optimization (FGO) is often supe-
rior to classic filtering-based algorithms in terms of localization
performance and consistency [6], [7]. Unlike Bayesian filters,
a factor graph fuses prior information and sensor measure-
ments associated with the to-be-estimated state variables into
probabilistic representations. A maximum-a-posterior problem
(MAP) can be formulated from the factor graph and solved in
a batch configuration using iterative Gauss–Newton-like algo-
rithms [8]. In general, this optimization procedure is activated
only if new sensor observations are available. Thus, previous
works that use FGO generally rely on a primary sensor that
schedules the optimization procedure [2], [9], [10], [11], [12].
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Fig. 1. Demonstration of multisensor fusion for vehicle localization of test
sequence C02 in the city of Cologne. (a) LiDAR map and trajectory using tightly
coupled gnssFGO (ours). The proposed method provides robust trajectory
estimation and clear LiDAR maps in GNSS-corrupted areas. (b) LiDAR map
and trajectory using LIO-SAM [2]. This approach fused with GNSS positioning
failed due to faulty scan registrations while crossing a tunnel and degrades
dramatically with corrupted GNSS measurements. (c) Measured and estimated
trajectories. Fisheye images show challenging areas where GNSS observations
are blocked or strongly corrupted.

By this means, the primary sensor that is expected to ef-
fectively constrain the vehicle states coordinates the creation
of new to-be-estimated state variables and initiates the solver
for the MAP problem. To fuse additional sensor modalities,
asynchronous measurements must be synchronized with the
primary sensor, leading to information loss and inefficient fusion
mechanisms. Furthermore, classic FGO approaches degrade if
the primary sensor is compromised or fails, which is likely in
challenging environments. In this case, state variables cannot
be effectively constrained by other sensor observations if the
graph is not constructed in time. Fig. 1 exemplifies this problem,

where a state-of-the-art LiDAR-centric SLAM approach di-
verges due to scan registration failures while driving in a tunnel.1

In fact, as discussed in [13], [14], and [15], commonly used
sensors in localization deteriorate under challenging environ-
mental conditions, complicating robust and long-term vehicle
localization.

In this work, we address the degradation problem of GNSS-
based localization approaches by translating classic FGO for
multisensor fusion into an approach where the graph associated
with all to-be-estimated state variables is constructed determin-
istically based on a priori chosen timestamps. It thus presents
a time-centric factor graph construction that is independent of
any particular reference sensor (e.g., GNSS). To achieve this,
we represent the vehicle trajectory in continuous time using a
GP. This approach incorporates a motion prior using the white-
noise-on-jerk (WNOJ) motion model, as originally proposed
in [16]. The algorithm feeds new observations from each sensor
independently into the factor graph without measurement-to-
state synchronization. If a measurement cannot be temporally
aligned with any state variable, we query a GP-interpolated
state corresponding to the measurement used for the error
evaluation.

To retrieve a robust global trajectory estimation while the
GNSS measurements are strongly corrupted, we implemented
the time-centric factor graph to fuse GNSS observations with
measurements of an inertial measurement unit (IMU), optical
speed sensor, and LiDAR for vehicle localization in challenging
urban scenarios. We propose two factor graph structures for both
loosely and tightly coupled fusion of GNSS observations along-
side other local sensor measurements, demonstrating the flexi-
bility of the proposedgnssFGO. For the graph that considers the
GNSS positioning solution of a low-grade GNSS receiver in the
loose coupling, we fuse the preintegrated IMU measurements,
2-D velocity measurements, and LiDAR odometry. In tightly
coupled fusion, we replace GNSS solution factors with GNSS
pseudorange and Doppler-shift factors, which are expected to
provide more effective constraints compared to inconsistent
GNSS positioning in urban areas [6].

We used raw data from measurement campaigns in the cities
of Aachen, Düsseldorf, and Cologne to evaluate the proposed
approach by benchmarking with a well-known LiDAR-centric
SLAM approach [2], [17]. This LiDAR-centric SLAM has been
shown to perform best for vehicle localization tasks in large-
scale environments and can be configured to fuse GNSS mea-
surements [18], which presents an equivalent fusion mechanism
as our loosely coupled gnssFGO.

In contrast to our previous study [7], which focused only on
trajectory smoothness using an offline FGO, we now address
online multisensor fusion for vehicle localization.

The contributions of this work are summarized as follows.
1) We propose a flexible, online, continuous-time FGO

framework that can accommodate common multisensor
fusion problems. The flexibility comes from the fact that

1Same noise models and smoother were used while benchmarking the LiDAR-
centric approach with tightly coupled gnssFGO. The same illustration settings
(e.g., point size) were used in Fig. 1(a) and (b).
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a) we can accommodate asynchronous measurements and
b) we choose estimation timestamps independent of any
particular sensor frequency. This latter feature, as well as
the smoothing effect of a motion prior, provides robustness
in the presence of any particular sensor dropout.

2) We implement the proposed method for vehicle localiza-
tion in challenging scenarios and conduct comprehensive
studies on loosely coupled and tightly coupled fusion
mechanisms to fuse GNSS measurements with other local
sensors to present extensive evaluations and discussions
on accuracy, robustness, and run-time efficiency.

3) We evaluate the GP motion prior, which is imple-
mented using the white-noise-on-acceleration (WNOA)
and WNOJ models, to study the accuracy of the interpo-
lated states.

4) We introduce a scalable and modular estimation frame-
work gnssFGO2 that can be extended for arbitrary robot
localization using continuous-time FGO.

The rest of this article is organized as follows. Section II
presents a comprehensive literature review on multisensor fu-
sion. Section III introduces the proposed continuous-time FGO
in detail. The mathematical background for factor formulations
is presented in Section IV, whereas the graph implementations
are introduced in Section V. We verify our method in Section VII
and conduct further experiments on the precision and consis-
tency of estimated trajectories. Finally, Section VIII concludes
this article. We release our code and raw data in our experiments.
A demonstration video is also available.3

II. RELATED WORK

A. Graph Optimization for GNSS-Based Vehicle Localization

In recent years, fusing GNSS observations using FGO for
robust vehicle localization has drawn great attention. Compared
with filtering-based approaches, FGO conducts batch optimiza-
tion, where all measurement models are relinearized and reeval-
uated iteratively, resulting in a more robust state estimation even
with measurement outliers. Previous work demonstrated robust
localization in urban areas only by factoring pseudoranges with
robust error models [19], [20]. Later, Wen et al., [6] and Zhang
et al., [7] showed that FGO generally outperforms Kalman filters
with respect to the precision and smoothness of the estimated
trajectory.

GNSS data can be integrated into the graph using a loosely or
tightly coupled schema [21]. While the loosely coupled fusion
incorporates GNSS positioning solution into the graph, prepro-
cessed raw GNSS observations, such as code or carrier-phase
measurements can be fed into the estimator in a tight coupling
as state constraints. As the to-be-estimated state variables can
be directly observed in GNSS solutions, fusing GNSS data in a
loose coupling enables quick convergence and elevated accuracy
if high-quality real-time-kinematic (RTK)-fixed GNSS solutions
are available.

2[Online]. Available: https://github.com/rwth-irt/gnssFGO
3[Online]. Available: https://youtu.be/JhxJc1NFN7g

In contrast, the integration of raw GNSS observations
contributes to multiple state constraints associated with re-
ceived satellites, which has been shown to be more robust
than loose coupling [6], [22], [23]. Wen et al. [24] in-
cluded double-differenced pseudorange (DDPR) and double-
differenced carrier-phase measurements (DDCP) in FGO, re-
sulting in performance improvement. Later, this work was ex-
tended to efficiently model carrier-phase constraints between
multiple satellite measurement epochs within a time win-
dow [25]. In [26], time-differenced carrier-phase (TDCP) was in-
tegrated with the cycle-slip estimation, which achieved accurate
localization while presenting substantial availability compared
to DDCP if satellites can be continuously tracked. Congram
and Barfoot [27] also proposed a global positioning system
(GPS) odometry using TDCP with more prominent cycle slip
detection and showed an effective drift reduction compared to
visual odometry. However, since carrier-phase observations are
also disturbed in deep urban areas, the robustness of the state
estimation cannot yet be guaranteed.

As FGO presents a convenient tool for robust error model-
ing [28], several works employ m-estimators to reject faulty
GNSS observations [7], [20], [26], [29]. Recently, FGO has
been explored in the context of vehicle location based on
GNSS for noise distribution identification or adaptive rejection
of outliers [30], [31], showing a positive impact on consistent
trajectory estimation using FGO.

B. Graph Optimization for Multisensor Fusion

While the aforementioned works have particularly explored
graph optimization for GNSS observations, they may still suffer
from performance degeneration in complex scenarios if GNSS
measurements are lost or present outliers. Therefore, another
research domain focuses on fusing more sensor modalities (more
than two) alongside GNSS observations into the graph, with
applications predominantly in SLAM.

A pose graph that fuses GPS position measurements and
LiDAR odometry with loop-closure constraints for outdoor
scenarios improved both runtime efficiency and performance
compared to LiDAR-only approaches [9]. In [2], feature-based
LiDAR odometry and loop-closure constraints were merged into
a factor graph with synchronized GPS position measurements to
achieve a drift-free pose estimate, which was forwarded to an-
other graph optimization with preintegrated IMU measurements
for high-frequency and real-time state estimation. In addition to
integrating feature-based LiDAR odometry into FGO, the Li-
DAR map can also be used for GNSS visibility assessment [11].
Some works also introduce camera-centric sensor fusion, where
other sensor observations are synchronized with camera data
and fused on the graph [10], [12], [32]. In [33], camera, LiDAR,
and wheel odometers were fused into the graph along with the
GNSS positioning solution and IMU measurements, presenting
consistent localization in featureless environments for long-term
runs. Similar works also conduct multisensor fusion without
GNSS and propose a carefully managed fusion architecture [34],
[35]. However, these works still require well-handled data
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synchronization and careful graph construction to fuse hetero-
geneous sensor measurements.

Many recent approaches introduce multigraph structures to
achieve flexible and compact sensor fusion. In [36], IMU, GNSS,
and LiDAR observations were separately integrated into multi-
ple graphs in parallel with a switching mechanism. When the
GNSS receiver lost its signal, the LiDAR-centric graph was
activated. Another work aimed to confederate loosely and tightly
coupled fusion schemes to ensure estimation performance [37].
Each sensor modality is associated with a separate graph and
proposes odometry factors to the IMU-centric graph that pro-
vides final estimated states in real time. However, incorporating
multigraph structures introduces redundant and complex system
architectures that may require well-managed engineering work.
Moreover, these works did not address challenging environ-
ments where sensor observations can be highly corrupted with
inconsistent noise distributions.

Other works exploit high-frequency IMU measurements to
coordinate multisensor fusion. In [38] and [39], asynchronous
global pose measurements (e.g., GNSS measurements) are prop-
agated into timestamps of visual-inertial factors using prein-
tegrated IMU measurements. The same concept has been ex-
tended to a forward–backward IMU preintegration mechanism
in order to precisely associate asynchronous measurements with
keyframes [40]. Nevertheless, these methods still depend on the
noisy IMU sensor, which introduces uncertainty.

C. Continuous-Time Trajectory Representation

One essential requirement for flexible graph-based multi-
sensor fusion is the ability to query the states associated with
the observations within the iterative optimization process. This
requirement can be fulfilled if the trajectory is represented
in continuous time. In [41], B-splines were proposed as a
parametric approach to represent the trajectory in continuous
time. This method was later used to propose stereo-inertial
odometry [42]. Another approach utilizes exactly sparse GP
regression by assuming that system dynamics follows a linear
time-varying stochastic differential equation (LTV-SDE) [43].
The system dynamics is typically modeled as WNOA. This
approach was verified in [44], [45], and[46], where the reliability
of this proposed surrogate dynamics model was demonstrated.
Recently, Tang et al. [16] proposed an improved system dynam-
ics model, which assumed a WNOJ model in LTV-SDE. They
showed that the WNOJ could model the vehicle dynamics more
accurately, and thus, was appropriate for systems with more
complicated dynamics. As discussed in [47], continuous-time
trajectory using GPs should be used if the measurement times
match the estimation times. Thus, we follow this aspect and
adapt the GP-WNOJ model proposed in [16] as between-state
motion constraints and state interpolator to fuse asynchronous
measurements. Although continuous-time trajectory represen-
tation is studied for localization and mapping problems by
extending incremental smoothing using sparse GP interpolation
to reduce computation time [45], fusing GNSS observations with
multiple heterogeneous sensor measurements for online vehicle
localization has not yet been presented or discussed.

D. Modular Estimation Framework

As the aforementioned approaches share similar procedures
to solve estimation problems, the idea of a modular estimation
framework that unifies the system design for different applica-
tions has emerged. Labbé and Michaud [48] originally proposed
a real-time mapping framework to manage the memory of the
internal map for loop closure detection. This framework was
continuously extended by the same authors in [49] to enable
multisensor fusion and benchmarking. Due to its modularity
and scalability, many works based on this framework can be
performed [50], [51]. A similar framework for a plug-and-play
SLAM system was presented in [52]. Recently, Solà et al. [53]
inherited this design with a tree-based estimation framework,
which formulates all the necessary robot entities in different
branches, including hardware, trajectory, and map management.
Sensor measurements and prior information are fused using a
decentralized strategy in which primary sensors are selected
in the configuration file to actively create new keyframes (aka
state variables). However, none of the modular frameworks men-
tioned above represents the trajectory in continuous time, which
still requires measurement alignment to keyframes, making a
loss of sensor observations inescapable.

Inspired by abovementioned works, we address the problem
of multisensor fusion for GNSS-based vehicle localization us-
ing continuous-time trajectory representation, which enables a
fusion of asynchronous sensor observations in a single factor
graph. Our hypotheses of the contributions presented above
are: 1) factor graph construction in continuous time generalizes
multisensor fusion and enables consistent trajectory estimation
that incorporates effective state constraints from multiple sensor
modalities in challenging scenarios; 2) in this spirit, a natural
and efficient modular estimation framework can be presented
thanks to the ability of querying state at arbitrary times, in
which different applications and experiments can be configured
directly using configuration files; and 3) the GP-WNOJ motion
model presents a larger capacity to represent complicated system
dynamics, such as driving in urban areas.

III. TIME-CENTRIC FACTOR GRAPH OPTIMIZATION

In this section, we introduce an implementation of
continuous-time trajectory estimation, as proposed in [16] and
[43]. Generally, fusing multiple heterogeneous sensor observa-
tions into a state estimator incorporates different timestamps due
to asynchronous measurements and unpredictable delays. In this
work, we assume that the state estimator and all measurements
have the same clock. Compared to the estimated states in contin-
uous time, all sensor observations are sampled and processed in
asynchronous timestamps, as illustrated in Fig. 2. Here, we use
the variable τ = tmeas. − txi

to define the time offset between
a nondelayed measurement and the last state variable xi prior
to this measurement. If a measurement is delayed with the
timestamp ťmeas., we use the given time delay td to calculate
the nondelayed measurement timestamp tmeas. = ťmeas. − td.

We employ GP motion priors that enable a continuous-time
trajectory representation. In this way, constructing a factor graph
can be deterministic and time-centric, bypassing asynchronous
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Fig. 2. Continuous-time state estimation with asynchronous measurements.
A time offset τ can be calculated with respect to a former state variable xi at
timestamp ti for each asynchronous measurement. The variable td denotes a
measurement delay that is assumed to be given.

Fig. 3. General time-centric factor graph. The state variables xt are created
and constrained with GP motion prior factors on time while all asynchronous
measurements are fused by querying a state with a time offset τ between the
measurement and the former state variable. The queried states (in dashed circles)
are thus not to-be-estimated state variables. We assume that the measurement
delay td is known to correct the measurement timestamp for querying a state.

sensor frequencies and timing issues. We show the general
structure of a time-centric factor graph in Fig. 3, where the
to-be-estimated state variables xt are presented in solid line
circles on a continuous-time trajectory. Queried states in dashed
line circles are not to-be-estimated state variables and, therefore,
are only queried between two successive state variables using
the time offset τ between the sensor timestamp and the previous
state variable.

Algorithm 1 explains one optimization procedure from graph
construction to iterative optimization. Assume that the time-
centric factor graph is extended withn new to-be-estimated state
variables in each procedure. We extend the graph with n state
variables and create GP motion prior factors that constrain the
relative state transitions between two successive state variables.
In doing so, the timestamps of all state variables are chosen deter-
ministically. While solving the iterative optimization problem,
an initial prediction x−

k ∈ X− must be provided for each state
variable. These predictions can be acquired using prior motion
models (e.g., GP state extrapolation [54]). In this work, we
utilize state propagation using IMU measurements to calculate
the initial estimate of future states at high frequency.

As new sensor observations are received at different times-
tamps in parallel to estimation times, we retrieve the cached
m observations from each sensor s ∈ S in a second loop. We
define a time threshold tsync for state-observation alignment to
query the index of related state variables. If state variables can
be associated with sensor observations within this threshold,
normal sensor factors are added to the graph. Otherwise, we

Algorithm 1: Time-Centric Factor Graph Optimization.

construct the measurement factors by querying a GP interpolated
state aligned with the measurement timestamp. In this case, two
successive state variablesxi andxj , j = i+ 1 are obtained with
a time offset τ between the measurement and the former statexi.

After graph construction, we employ a Gauss–Newton-like
optimizer to solve the MAP problem [55]. The optimized state
x+
k and marginalized uncertainties P+

k are returned for further
state propagation, as introduced in Section V-F.

IV. MATHEMATICAL BACKGROUND

A. Frame and Frame Transformation

Starting with GPS in 1987, GNSS typically provides a ve-
hicle’s position in the World Geodetic System (WGS84) frame
using geodetic ellipsoidal (aka geodetic) coordinates (latitudeϕ,
longitude λ, and height h, LLH) [56], as shown in Fig. 4. Geode-
tic coordinates can be transformed into the Earth-centered,
Earth-fixed (ECEF) frame that is defined at the center of the
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Fig. 4. Coordinate frames used in this work.

Earth’s mass, denoted as (·)e. As many estimation and control
approaches require a Cartesian frame in a local tangent plane, the
North-East-Down (NED) frame and the East-North-Up (ENU)
frame are commonly introduced as navigation frames (·)n to
present the vehicle’s velocity and orientation. In this work,
we present the pose and velocity of the vehicle in the ECEF
frame. A transformation from frame e to frame n is used to
formulate factors and calculate error metrics. We also introduce
a local-world frame (·)w following [10] that rotates by the initial
yaw angle of the vehicle in frame n. The body frame is denoted
as (·)b. In the following, we briefly introduce the related frame
transformations.

1) Transform Between Geodetic and Cartesian Coordinates:
A geodetic coordinate pLLH = [ϕ λ h]T can be transformed
to the ECEF frame using [21]

xe
b = (Re + h) cosϕ cos λ (1)

yeb = (Re + h) cosϕ sin λ (2)

zeb = [Re(1− ecc2) + h] sinϕ (3)

where the constant ecc = 0.08181919 is the eccentricity4 of the
ellipsoid. The transverse radius of curvature given the latitude
ϕ is calculated as Re(ϕ) =

a√
1−ecc2 sin2(ϕ)

, where the scalar

a = 6378137m denotes the equatorial radius4 of the Earth.
However, transforming a Cartesian coordinate in frame e back

to LLH using the inverse of (1)–(3) can only be solved iteratively
due to the nonlinearity [21]. Although many closed-form alter-
natives for this transformation are available, we use Heikkinen’s
solution [57] in this work considering its high precision [58].
Due to limited space, see [57] or our code2 for more details on
the implementation.

2) Transform Between Frame e and Frame n: Given a point
in the e frame pe

0 as origin, a fixed navigation frame (aka
local tangent plane) can be determined by two plane rotations
associated with longitude λ0 and latitude ϕ0 of pLLH

0 . Fig. 4
illustrates this transformation from the frame e to the NED frame

4The eccentricity and the Earth’s equatorial radius in different satellite systems
vary slightly depending on the ellipsoid and the satellite geometry. In this work,
we follow the parameter definitions from WGS84 [59].

using the direction cosine matrix (DCM)

Rned
e (pLLH

0 )=

⎡
⎣− sinϕ0 cos λ0 − sinϕ0 sin λ0 cosϕ0

− sin λ0 cos λ0 0
− cosϕ0 cosϕ0 − cosϕ0 sin λ0 − sinϕ0

⎤
⎦ .

(4)

The DCM from frame e to the ENU frame is given as

Renu
e (pLLH

0 ) =

⎡
⎣ − sin λ0 cos λ0 0
− cos λ0 sinϕ0 − sin λ0 sinϕ0 cosϕ0

cos λ0 cosϕ0 sin λ0 cosϕ0 sinϕ0

⎤
⎦ .

(5)

B. Notation

To present the state variables in different frames, we useRe
b ∈

R3×3 and pe
b ∈ R3 to denote the rotation matrix and position

vector of frame b relative to frame e. This notation is extended
to Re

b,t to represent the states with respect to time t. For motion
increments in the same frame, we simplify the notation as Δpij

to represent the translational offset of two timestamps i and
j. We follow the pose representation T e

b = [R
e
b pe

b
0 1 ] ∈ SE(3)

to calculate the motion increment [60]. For high-dimensional
transition matrices in GP motion models (e.g.,Λ(τ) ∈ R18×18),
we denote the subblocks Λmn ∈ R6×6 associated with different
state components for linear state querying in (21).

C. Continuous-Time Trajectory Representation Using GP

Barfoot et al. [43], [61] originally proposed a continuous-time
trajectory representation using GP regression, which presents
an exactly sparse kernel by assuming that the system dynamics
follow a linear time-invariant SDE (LTI-SDE):

γ̇(t) = Aγ(t) +Bu(t) + Fw(t)

w(t) ∼ GP(0,Qc · δ(t− t′)) (6)

where the vector γ(t) represents a local state variable. The
time-varying system matrices are denoted as A,B , and F ,
respectively. The input vector u(t) is set to 0. The process
noise w(t) is given as a zero-mean GP with the kernel function
formulated with the power spectral density matrix Qc ∈ R6×6

and the Dirac delta function δ [60].
In discrete time following [61], this state-space model can be

furthermore interpreted to interpolate an arbitrary state γ(ti+τ )
at timestamp ti+τ = ti + τ between two successive local states
γ(ti) and γ(tj), where the state timestamps ti < ti+τ < tj ,
using

γ(ti+τ ) = Λ(ti+τ )γ(ti) +Ω(ti+τ )γ(tj) (7)

where

Λ(ti+τ ) = Φ(τ)−Ω(ti+τ )Φ(tj − ti+τ ) (8)

Ω(ti+τ ) = Q(τ)Φ(tj − ti+τ )
TQ−1(τ). (9)

The system transition matrix Φ in (8) and (9) can be defined
using a WNOA, aka constant-velocity prior, as demonstrated
in earlier works [43], [61]. Later, Tang et al. [16] introduced a
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WNOJ prior that presents third-order system dynamics with the
system transition function

Φ(Δt) =

⎡
⎣1 Δt1 1

2Δt21
0 1 Δt1
0 0 1

⎤
⎦ . (10)

The time-varying covariance matrix Q(Δt) ∈ R18×18 and its
precision matrix Q−1(Δt) are computed as

Q(Δt) =

⎡
⎢⎣

1
20Δt5Qc

1
8Δt4Qc

1
6Δt3Qc

1
8Δt4Qc

1
3Δt3Qc

1
2Δt2Qc

1
6Δt3Qc

1
2Δt2Qc ΔtQc

⎤
⎥⎦ (11)

Q−1(Δt) =

⎡
⎢⎣ 720Δt−5Q−1

c −360Δt−4Q−1
c 60Δt−3Q−1

c

−360Δt−4Q−1
c 192Δt−3Q−1

c −36Δt−2Q−1
c

60Δt−3Q−1
c −36Δt−2Q−1

c 9Δt−1Q−1
c

⎤
⎥⎦.

(12)

Compared to other approaches, trajectory representation
(interpolation) using GP regression effectively incorporates
physics-driven models to retrieve realistic vehicle motion by
scaling the transition function with the time-varying covariance
matrix Q. As the hyper-parameter Qc can be tuned for different
applications [62], this approach can be extended for nonlinear
problems (see Section IV-D) and enables more accurate state
interpolation [7], [46].

D. GP-WNOJ Motion Prior Model

Following the approach in [16], a GP motion prior for SE(3)
can be defined as

Ṫ (t) = �(t)∧T (t)

�̇(t) = w(t) (13)

where the vehicle pose in the global frame is denoted as T (t),
which can be calculated as T (t) = exp (ξ(t)∧) with local pose
ξ(t) = [ρ(t)T φ(t)T ]T ∈ R6. The vectors ρ(t) and φ(t) rep-
resent the position and orientation of a local pose (e.g., in the
body frame) [63].

A local pose can be converted to se(3) by applying the opera-
tor (·)∧. The operator (·)∨ is the inverse of (·)∧ [60]. The vector
�(t) = [ν (t)T ω(t)T ]T ∈ R6 represents the body-centric ve-
locity. With this motion prior, the state of the GP motion model
in a global frame is given as

x(t) = {T (t) �(t) �̇(t)} ∈ SE(3)× R12. (14)

However, the GP motion prior in (13) cannot be implemented
directly using (6) due to nonlinearity of the system dynamics.
To address this problem, Anderson and Barfoot [61] showed
that a local linear GP prior can be defined between each state-
timestamp pair ti and ti+1 by transforming the global pose T (t)
into the local tangent frame, where a local pose ξ(t) can be
calculated as

ξi(t) = ln(T (t)T−1
ti
)∨, ti ≤ t ≤ ti+1 (15)

where we consider the pose T ti
at the timestamp ti as a fixed

parameter while formulating the local pose ξi(t) for an arbitrary
pose T (t) for t > ti.

Because the motion between state-timestamp pairs, which are
usually associated with high-frequent measurement timestamps
(e.g., LiDAR at 10 Hz), is generally small, this local GP prior
approximately represents an LTI SDE, which can be driven from
(6) by assuming the system matrices remain constant. Thus, a
local state variable of GP-WNOJ prior for SE(3) can be defined
as

γ(t) = [ξ(t)T ξ̇(t)T ξ̈(t)T ]T (16)

and propagated using (7)–(9). The time derivatives of the local
pose can be calculated as

ξ̇(t) = J (ξi(t))
−1�(t) (17)

ξ̈(t) = −1

2
(J (ξ(t))−1�(t))��(t) +J (ξ(t))−1�̇(t)

(18)

where the matrix J is the left Jacobian of SE(3) [60]. To

calculate d(J −1)
dt in closed form for (18), we approximately

formulate J −1 ≈ 1 − 1
2ξ

� [16].
The operator (ξ)� represents the adjoint of ξ∧ ∈ se(3) [60],

which can be calculated as

ξ� =

[
ρ
φ

]
=

[
φ∧ ρ∧

0 φ∧

]
. (19)

Because the left Jacobian requires several matrix calculations, it
can be approximated as an identity matrix 1 over small intervals
to improve the computation efficiency [64].5

Given a local state variable that represents the origin system
state for each state-timestamp pair, we can retrieve the WNOJ
motion model for two successive local state variables in the local
frame as

γi(ti) = [0�(t)T �̇(t)T ]T

γi(ti+1) =

⎡
⎣ ln(T i+i,i)

∨

J −1
i+1�i+1

− 1
2 (J −1

i+1�i+1)
��i+1 +J −1

i+1�̇i+1

⎤
⎦ . (20)

Using the GP-WNOJ prior, a state at an arbitrary time τ ∈ (i, i+
1) can be queried as

T τ = exp

{[
Λ12(τ)�i +Ω13(τ)�̇i +Σ11(τ) ln(T i+1,i)

∨

+Ω12(τ)J −1
i+1�i+1

+Ω13(τ)

(
−1

2
(J −1

i+1�i+1)
��i+1 +J −1

i+1�̇i+1

)]∧}
T i

(21)

where Λ and Ω are vehicle transition matrices obtained from
(7)–(11).

5We implement this trick as a configuration in the proposed gnssFGO.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 21,2024 at 10:40:49 UTC from IEEE Xplore.  Restrictions apply. 



4010 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Remark 1: Hyperparameter of GP-WNOJ model: As dis-
cussed in [16], representing a realistic system transition using
the GP motion priors requires proper tuning of the power spectral
density matrix Qc. In this work, we assume that Qc is a constant
diagonal matrix defined as Qc = diag(qc) with a 6-D hyperpa-
rameter qc. The qc was manually tuned for the experiments. For
more details, see Section VII-E.

E. Measurement Models

1) GNSS Observations: Generally, a single antenna GNSS
receiver can provide both position, velocity, and time (PVT)
solutions and raw observations. A GNSS receiver equipped
with multiple antennas or an inertial sensor can also produce
a position, velocity, and altitude (PVA) solution. In this work,
we only use the GNSS-PVT solution from a low cost in the
loosely coupled fusion because it does not require additional
hardware components. The altitude in the GNSS-PVA solution
is taken as a reference. As the pose and velocity of the GNSS
solution can be directly associated with the state variables in
the FGO, we only present the measurement models for the raw
GNSS observations: pseudorange ρ and Doppler-shift Δfk in
this section.

In localization approaches that tightly fuse the GNSS obser-
vations, pseudorange and Doppler shift are commonly used and
well studied [21]. The pseudorange ρ represents a geometric
distance between the phase center of the GNSS antenna and the
associated satellite, which contains several range delays due to
satellite orbit bias and atmospheric delays. The pseudorange can
be modeled with respect to the antenna position as

ρk =
∥∥pe

ant − pe
sat,k

∥∥︸ ︷︷ ︸
1-D geometric range

+cb − cb,sat + T + I +M + wρ,k (22)

where the vectors pe
a and pe

sat,k represent the positions of the
GNSS antenna and the kth satellite in ECEF frame,6 respec-
tively. The variables cb and cb,sat represent the bias due to
receiver clock delay and satellite clock delay. The tropospheric,
ionospheric, and multipath delays are denoted as T (t), I(t), and
M , respectively. The pseudorange noise is wρ.

The Doppler-shift7 Δfk measures the difference in frequency
between the original and received carrier signal of a satellite,
which is usually obtained in the carrier-phase tracking loop [21].
With this observation, the vehicle velocity related to the satellite
velocity can be represented as

−λcΔfk = (usat
ant )

T (ve
ant − ve

sat,k)︸ ︷︷ ︸
1-D range rate

+cd − cd,sat + wΔfk
.

(23)
In (23), the constant λc is the wavelength of the GNSS signal.
The unit vector usat

ant represents the direction from the antenna to
the kth satellite. We denote the satellite and antenna velocities in
the ECEF frame6 by ve

sat,k and ve
ant, respectively. The receiver

6We represent the vehicle and satellite position in the ECEF frame instead
of the Earth-centered inertial frame for clarity by assuming that the GNSS
preprocessing has calibrated the earth rotation during GNSS signal propagation.

7In some literature, the Doppler-shift is also formulated as deltarange or
pseudorange rate measurement [21], [65]. A positive Doppler shift denotes that
the receiver is approaching the tracked satellite.

clock drift and the satellite clock drift are given as cd and cd,sat.
We use the scalar wΔfk

to denote the noise of the measured
Doppler shift.

To formulate the pseudorange and Doppler-shift factors, we
assume that the satellite clock delay cb,sat and drift cd,sat are
eliminated using the received navigation messages in a GNSS
preprocessing process [7]. We used well-calibrated correction
data from a reference station to cancel the tropospheric and
ionospheric interference. The multipath error M is not explic-
itly modeled in this work as m-estimators are used to reject
measurement outliers, see Section V-E. We filter out all GNSS
observations from satellites with an elevation angle less than
15◦.8

2) IMU Preintegration: In graph-optimization-based state
estimation approaches, the IMU preintegration, introduced
in [66], is generally utilized to integrate high-frequency IMU
measurements as between-state factors for the optimization
procedures running at a lower rate. The preintegrated IMU
measurements represent the relative motion increments on man-
ifold. These relative motion increments can be assumed un-
changed while relinearizing the consecutive state variables in
the optimization iterations, resulting in efficient computation.
Due to limited space, see [66] for more details. We use this
IMU mechanism to formulate the IMU factor, as presented in
Section V-B1.

3) LiDAR Odometry: We adapt the feature extraction and
matching methods from a feature-based LiDAR odometry [2],
[17] to obtain the relative motion increments between two laser
keyframes. The coordinates of raw LiDAR points acquired
in different timestamps are recalibrated using the IMU mea-
surement to the original timestamp of the LiDAR scan. We
classify the calibrated points into edge and planar features,
F t = {F e

t F p
t }, based on the smoothness metric shown in [17]

and [67]. In scan registration, allk features inF t+1 of the current
scan are associated with pose priorsTw

t+1,1:k and used to find the
best transformation ΔTw

t,t+1 from the last laser scan by solving
an optimization problem that takes the distance between the
corresponding features in F t using a Gauss–Newton algorithm.

In [2], a LiDAR-centric SLAM approach is presented that
optionally fuses the GNSS positioning solution. This approach
can only present accurate state estimates if the scan registration
converges and sufficient global references (e.g., GNSS position
or loop closure) are available. In contrast to [2], we query
the vehicle states at scan timestamps from a previously built
time-centric graph and integrate the transformation ΔT̃

w

t,t+1

as between-pose constraints, which is used to formulate the
between-pose factor (see Section V-B2). After the graph op-
timization, we query the optimized states again using the GP
motion model and update LiDAR keyframe poses in frame w
using the following transformation:

Tw
l,t = T e,−1

l,ancT
e
l,t (24)

where the transformation matrices T e
l,t and Tw

l,t denote LiDAR
poses in frame e and framew , respectively. As LiDAR odometry

8This is an ad-hoc choice, generally used in ground vehicle navigation
approaches and GNSS receivers.
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requires a state-space representation in a local-world (aka local-
tangent) frame w , where the z-axis is gravity aligned, we query

an anchor pose T e
l,anc = [

Re
l,anc pe

l,anc

0 1
] of the LiDAR sensor

on first scan and initialize a local-world frame of the LiDAR
odometry by setting the anchor pose as its origin. In contrast
to [10], a coarse orientation estimate is unnecessary in our work
to align the local-world frame and the navigation frame because
a prior vehicle heading is provided by the dual-antenna GNSS
receiver.

4) Optical Speed Sensor: We employ a high-grade vehicle
optical speed sensor that provides unbiased 2-D velocity ob-
servations v̄b

t in the body frame at 100 Hz. The 2-D velocity
observations can be associated with the vehicle velocity in the
state vector using

ṽb
t =

[
ṽbt,x
ṽbt,y

]
=

[
1 0 0
0 1 0

]
·Rb

ev
e
b (25)

where the vector ṽb
t represents the observed 2-D velocity com-

ponents in frame b, which can be evaluated with the vehicle
velocity variable ve

b transformed with the inverse rotation matrix
Rb

e back to frame b.

V. FGO FOR VEHICLE LOCALIZATION

This section presents our implementation of the proposed
gnssFGO for two sensor fusion schemes. In loosely coupled
fusion, we fuse the PVT solution from a low-cost GNSS receiver
with the IMU measurements, the observed 2-D vehicle velocity
from a high-grade speed sensor, and the LiDAR odometry. To
defend the superiority of fusing raw GNSS observations for
vehicle localization, we propose a tightly coupled fusion of
raw GNSS observations with IMU measurements and LiDAR
odometry, which is evaluated with the baseline trajectory. In this
section, we introduce all probabilistic factor formulations and
the proposed factor graph structures.

A. State Variables

The state variable at timestamp t in this work is defined as

xt � {T e
b,t ve

b,t bab,t bgb,t crt}. (26)

We estimate the vehicle pose T e
b,t ∈ SE(3) and 6-D velocity

ve
b in frame e. The vectors bab,t and bgb,t denote the 3-D biases of

the accelerometer and gyroscope, respectively. The 2-D vector
crt = [cb,t cd,t]

T represents the GNSS receiver clock bias cb,t
and drift cd,t, which is only estimated by the tightly coupled
fusion of raw GNSS observations.

Remark 2: Acceleration of GP-WNOJ: Unlike [16], we do
not estimate 6-D accelerations in GP motion models to reduce
the dimension of the state vector. Instead, we consider the vehicle
accelerations measured by the IMU as inputs to the WNOJ
model.

B. Factor Formulations

1) Preintegrated IMU Factor: Following [66], we define the
error function of the IMU factor between two consecutive state

variables at timestamps ti, tj as

∥∥eimu
ij

∥∥2 =

∥∥∥∥[rTΔRij
rTΔvij

rTΔpij

]T∥∥∥∥2
Σimu

(27)

where

rΔRij
= Log(ΔR̃ij(b

g
i ))R

T
i Ri (28)

rΔvij
= RT

i (vj − vi − gΔtij)−Δṽij(b
g
i , b

a
i ) (29)

rΔpij
= RT

i

(
pj − pi − viΔtij −

1

2
gΔt2ij

)
−Δp̃ij(b

g
i , b

a
i ).

(30)

In (28)–(30), we omit the bias derivatives that can be ig-
nored between two state variables. The motion increments
{ΔR̃ij Δṽij Δp̃ij} are provided by the IMU preintegration
with

ΔR̃ij =

j−1∏
k=i

Exp((ω̃k − bgi − ηg
k)Δt) (31)

Δṽij =

j−1∑
k=i

ΔR̃ik(ãk − bai − ηa
k)Δt (32)

Δp̃ij =

j−1∑
k=i

[
ΔvikΔt+

1

2
ΔR̃ik(ãk − bai − ηa

k)Δt2
]

(33)

where the raw vehicle acceleration ã and rotation rate ω̃ from the
IMU are integrated. The predefined noise parameters {ηa ηg}
are propagated to acquire the covariance matrix Σimu [66]. The
gravity vector is updated according to the current position in the
e frame for each preintegration.

As in [66], we estimate the accelerometer and gyroscope
biases with the Brownian motion model by formulating the bias
error function as∥∥ebij∥∥2 =

∥∥baj − bai
∥∥2
Σba +

∥∥bgj − bgi
∥∥2
Σbg . (34)

2) Between-Pose Factor: For the relative odometry obser-
vations ΔT̃

e

i,j = {ΔR̃
e

i,j Δp̃e
i,j}, we follow the original im-

plementation in [68] and formulate the between pose factor
represented as∥∥∥ebp

i,j

∥∥∥2 =
∥∥∥ln(T e,−1

i T e
jΔT̃

e

i,j)
∨
∥∥∥2
Σbp

(35)

where the pose T e
i and T e

j are queried using timestamps asso-
ciated with two successive LiDAR scans.

3) Velocity Factor: We use the 2-D observations ṽb
t to for-

mulate the navigation velocity factor. As the measured velocity
can be directly associated with the velocity in state variables, as
denoted in (25), we formulate the error function for the velocity
observations considering the lever arm lb,vel from the body frame
to the sensor center as

∥∥evel
i

∥∥2 =

∥∥∥∥
[
1 0 0
0 1 0

]
· (Rb

e,iv
e
b,i + ωb∧

i lb,vel)− ṽb
i

∥∥∥∥2
Σvel

.

(36)
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4) GNSS-PVT Factor: We propose a generalized implemen-
tation of the GNSS-PVT factor for the observed antenna position
p̃e

ant and the velocity ṽn
ant. Taking into account the lever arm lbant

from the IMU center to the phase center of the GNSS antenna,
we calculate the antenna position at timestamp ti as pe

ant,i =

pe
b,i +Re

b,il
b
ant and velocity as ve

ant,i = ve
b,i +Re

b,i(ω
b
i )

∧lbant.
Thus, the error function can be derived as∥∥∥epvt

i

∥∥∥2 =
∥∥∥[rTpi

rTvi
]T
∥∥∥2
Σpvt

(37)

with

rpi
= pe

ant,i − p̃e
ant,i (38)

rvi
= Rn

e,iv
e
ant,i − ṽn

ant,i (39)

where the rotation matrix Rn
e,i is given in (4) by substituting the

geodetic coordinate of the main antenna pLLH
ant,i as the origin. We

use the measured standard deviations in the GNSS solutions to
formulate the covariance matrix Σpvt.

5) Pseudorange and Doppler-Shift (PrDo) Factor: We
derive the error function for the preprocessed pseudorange and
Doppler-shift observations with (22) and (23) as∥∥ePrDo

i

∥∥2 =
∥∥[rPr

i rDo
i ]T

∥∥2
ΣPrDo (40)

where

rPr
i =

∥∥pe
ant,i − pe

sat,k,i

∥∥+ cb,i − ρk,i (41)

rDo
i = (usat

ant,i)
T
(
ve

ant,i − ve
sat,k,i

)
+ cd,i + λcΔfk,i. (42)

We consider a scaled carrier-to-noise ratio (C/N0) with hyper-
parameters λρ and λΔfk to represent the variance of pseudorange
and Doppler-shift observations, which is denoted as

η2ρ = λρ10
−C/N0

10 and η2Δf = λΔf10
−C/N0

10 . (43)

6) GNSS Receiver Clock Error Factor: In the tight coupling
of the raw GNSS observations, the unknown receiver clock bias
and drift (cbd) are estimated in the state variable by assuming a
constant drifting model, which can be fused as

∥∥ecbd
i

∥∥2 =

∥∥∥∥
[
1 Δt
0 1

] [
cb,i−1

cd,i−1

]
−
[
cb,i
cd,i

]∥∥∥∥2
Σcbd

. (44)

7) GP-WNOJ Motion Prior Factor: We implement the GP-
WNOJ motion model as between-state factors, similar to [45].
The error function was originally given in [16] using (20). We
summarize this error function for convenience as∥∥egp

ij

∥∥2 =
∥∥∥[rTΔγij

rTΔ�ij
]T
∥∥∥2
Σgp

(45)

where

rΔγij
= ln(T j,i)

∨ − (tj − ti)�i −
1

2
(tj − ti)

2�̇i (46)

rΔ�ij
= J −1

j,i�j −�i − (tj − ti)�̇i. (47)

As introduced in Section V-A, we used the measured accelera-
tions of the IMU in our GP motion models. Thus, only the 6-D
pose and the 6-D velocity are evaluated in GP-WNOJ motion
factors, so that egp

ij ∈ R12. The analytical Jacobians of the GP
motion models can be found in [16] and [69].

Fig. 5. General graph of loose coupling in gnssFGO.

C. Loosely Coupled FGO

Although the loosely coupled fusion with GNSS and IMU
measurements has been shown to be less performant compared
to tight coupling [6], we implemented a loosely coupled fusion
of sensor observations, including the 2-D speed sensor and the
LiDAR odometry, to 1) study the performance gain by fusing
multiple sensor observations; 2) evaluate the loosely and tightly
coupled fusion for GNSS-based vehicle localization in challeng-
ing areas; and 3) demonstrate the flexibility and scalability of
the proposed method.

The proposed factor graph is shown in Fig. 5. The states x1:t

are created deterministically on the graph independently of any
measurement. If a measurement cannot be associated with any
state variable, a state x̂i+τ between two state variables x̂i and
x̂i+1 (where ti < τ < ti+1) is queried for the error evaluation.

The optimization problem can then be formulated as

x̂ = argmin
x

(∥∥e0∥∥2
Σ0

+

M∑
i=1

∥∥eimu
i

∥∥2
Σimu +

M∑
i=1

∥∥egp
i

∥∥2
Σgp +

+

N∑
i=1

∥∥evel
i

∥∥2
Σvel +

K∑
i=1

∥∥∥epvt
i

∥∥∥2
Σpvt

+

J∑
i=1

∥∥∥ebp
i

∥∥∥2
Σbp

)
(48)

where the error terme0 represents the prior factor obtained at ini-
tialization or from marginalization. Because sensor observations
are received asynchronously other than estimation timestamps
M , we use different index notations N,K, and J to indicate the
number of sensor observations in (48).

D. Tightly Coupled FGO

In contrast to the loosely coupled fusion approach, a tightly
coupled fusion of raw GNSS observations contributes more
constraints with multiple observed satellites to state variables, as
illustrated in Fig. 6. Unlike Fig. 5, we include the pseudorange
and Doppler-shift factors in the graph, providing redundant con-
straints to each state variable. To improve the robustness while
GNSS observations are degraded or lost in challenging areas,
we include LiDAR odometry as between-state constraints to
improve the consistency of the estimated trajectory. The receiver
clock error factor is also added to the graph. In this fusion mech-
anism, we do not fuse the measurements from the 2-D velocity,
which is not commonly used in vehicle localization approaches,
aiming to highlight the robustness of the tightly coupled fusion
[see discussion in (Section VII-B2) and (VII-B3)].
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Fig. 6. General graph of tight coupling in gnssFGO with k raw satellite
observations at each timestamp t denoted as Satkt .

The optimization problem with sensor observations from
different time domains becomes

X̂ = argmin
x
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. (49)

E. Noise Models

In this work, we formulate the covariance matrices of the
GNSS-related factors using noise values provided in GNSS
observations, as presented in Section V-B4 and V-B5. The
IMU noise is characterized by the Allan noise parameters,9

which is used to calculate Σimu ∈ R6×6, Σba ∈ R3×3, and
Σbg ∈ R3×3. Because there are no noise indicators for LiDAR
odometry, speed sensor, and receiver clock errors, we formulate
the covariance matrices Σbp ∈ R6×6, Σvel ∈ R2×2, and Σcbd ∈
R2×2 manually as diagonal matrices using ad-hoc parameters.
Noise models of different factors can be configured to use
m-estimators [60]. In our experiments, we use the m-estimator
with Cauchy loss [70] in the factors, such as GNSS-PVT factors,
which may be affected by outlier measurement due to strong
corruption in urban areas.

F. System Overview

The system overview with the implementation of Algorithm 1
and all data interfaces is shown in Fig. 7. The sensor data are
received and preprocessed in separate processes. We construct
the time-centric factor graph in a two-stage process, as intro-
duced in Algorithm 1. The first stage (line 4–10 of Algorithm 1)
includes between-state factors and delay-free IMU factors to
build a deterministic graph on time. Subsequently, asynchronous
sensor observations are fused into the deterministic graph by
aligning the timestamps between the measurement and the state
variables (line 11–24 of Algorithm 1). For measurements that
cannot be aligned with any state, two successive state variables

9[Online]. Available: https://github.com/ori-drs/allan_variance_ros

Fig. 7. System overview showing all data interfaces and factor types by
implementing Algorithm 1.

are queried to construct a GP-interpolated state for measure-
ment evaluation in optimization procedures. The time-centric
graph can be optimized using a fixed-lag batch optimizer [71]
or a fixed-lag incremental smoother iSAM2 [72] at a lower
frequency. In the experimental results, the estimated trajectories
in the error metrics are optimized using iSAM2. We also evaluate
both smoothers with respect to both estimator performance and
computation efficiency, as presented in Section VII-D. After
each optimization procedure, we forward the optimized state
variables to a state publisher and sensor preprocessing modules.
The state publisher is associated with the IMU sensor and
provides high-frequent state estimates at 200 Hz.

Remark 3: Near-Zero-Velocity Detection: While the vehicle
is stationary, the state estimation exhibits random pose drift.
This is a known problem in vehicle localization using inertial
measurements [73]. In this case, the state observability de-
grades dramatically due to insufficient IMU excitation, leading
to unbounded error accumulation. Thus, we follow the idea
proposed in [73] to detect near-zero velocity motion by voting
through multiple sensors that provide velocity information. If
the vehicle is voted to be stationary, we temporally pause the
graph optimization and state propagation.

Remark 4. Optimization Frequency: By default, we extend
and optimize the time-centric graph at 10 Hz in our experiments
to achieve a good balance of accuracy and runtime efficiency.
Although these frequencies can be flexibly configured in the
proposed estimation framework, we found that optimizing the
graph at 5 Hz is a threshold to avoid discontinuities (jumps)
of the estimated trajectory in our application. For applications
restricted by low-performance computing devices, choosing a
higher frequency to extend the graph and a lower frequency for
optimization can be considered.

G. Implementation

We implemented our approach in C++ using Robot Operating
System ROS2.10 The open-source software library GTSAM11

was extended to implement the graph and factor formulations.

10[Online]. Available: https://docs.ros.org/en/humble/index.html
11[Online]. Available: https://gtsam.org
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Fig. 8. Sensor setup and frames on the test vehicle.

We adopted the software solution for LiDAR odometry from
LIO-SAM,12 where only the front-end feature extraction and
association were adapted in our work. We used the positioning
and orientation estimation solution from a dual-antenna GNSS
setup to initialize the state variable x0. In this work, we used a
laptop with an Intel i9-9900K, 16 cores at maximum 4.7 GHz and
64 GB memory for sensor preprocessing and graph optimization
in experimental studies.

VI. MEASUREMENT SETUP AND TEST SEQUENCES

A. Measurement Setup

In the measurement campaigns, we recorded sensor data of
long-range routes in different areas of Aachen, Düsseldorf, and
Cologne. Our sensor setup included two GNSS receivers, a
Microstrain 3DM-GX5 IMU, and a Velodyne VLP-16 LiDAR.
Both the high-grade GNSS receiver (NovAtel PwrPak7D-E1)
and the low-grade GNSS receiver (ublox f9p) were equipped
with dual GNSS antennas and served with RTK correction
data received from a base station. A high-grade optical speed
sensor, Correvit S-Motion DTI from Kistler, was mounted
on the trailer hitch on the vehicle’s rear side. The sensor-
equipped test vehicle is shown in Fig. 8. We have manually
calibrated the static transformations between different sensors
mounted on the roof rack of the test vehicle. Static transfor-
mation of the speed sensor to other sensors was measured
using a Leica total station. These static transformations are
assumed to be constant in all experiments. For more details, see
our code.2

The IMU data were acquired at 200 Hz, while LiDAR point-
clouds were recorded at 10 Hz. GNSS observations from the
NovAtel and ublox receiver were recorded at 10 and 5 Hz,
respectively. We used the high-grade GNSS receiver Novatel
PwrPark7D-E1 with a dual constellation of GPS and Galileo
satellite systems as a reference source. In addition to the sensor
data, we received the pulse-per-second signal (1PPS) from the
NovAtel receiver at 1 Hz to calculate the measurement delays.
The RTCMv3 (RTK) correction data from the German satellite

12[Online]. Available: https://github.com/TixiaoShan/LIO-SAM

TABLE I
TEST SEQUENCES DEFINITION

positioning service SAPOS13 was also stored at about 1 Hz for
GNSS preprocessing.

B. Test Sequences

Our dataset contains different driving scenarios: open-sky,
semi-/dense-urban, and high-speed track. For a clear evalua-
tion, we define different test sequences throughout multiple
measurement campaigns and analyze the driving conditions for
each sequence, as shown in Table I. The test sequences include
lengthy runs with a maximum 17-km route, aiming to evaluate
the estimation performance for long-term operations. For test
sequences in urban areas, we chose data from scenarios with dif-
ferent urbanization rates containing tunnel and bridge crossings
to evaluate the limitations of the proposed fusion approaches. In
addition, we also considered open-sky areas on the high-speed
track, where a maximum vehicle speed of 170 km/h was reached,
creating significant motion distortion in the LiDAR point clouds.

C. Reference Trajectory and Metrics

To evaluate the proposed fusion strategies, we employ the
RTK-fixed GNSS-PVA solution associated with low uncertain-
ties (σpos < 0.05m and σrot < 1◦) to calculate the absolute root
mean square error. Besides the error metrics, we employ the
Pythagoras’ theorem implemented in the Open Motion Plan-
ning Library14 (OMPL) to calculate the trajectory smoothness
(contrary to trajectory roughness) for all test sequences, aiming
to provide a relative performance metrics. The smoothness is
given as the sum of angles between all path segments in the
local-world frame, as denoted in (50), where the variables ai,
bi, and ci are the length of the trajectory segments containing
three successive vehicle positions in the Euclidean frame. For the
same test sequence with k vehicle positions, a smaller s shows
a high smoothness of the trajectory. In this work, we used the
propagated states from the state publisher at a high frequency to
calculate the smoothness s

s =

k−1∑
i=2

(
2
(
π − arccos

a2
i+b2i−c2i
2aibi

)
ai + bi

)2

. (50)

13[Online]. Available: http://www.sapos.nrw.de
14[Online]. Available: https://ompl.kavrakilab.org/
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VII. EXPERIMENTS AND RESULTS

A. Experiment Design

To evaluate the proposed gnssFGO, we first benchmark the
loosely coupled fusion of the GNSS solution with the IMU,
2-D speed sensor, and a LiDAR-centric SLAM approach LIO-
SAM [2], aiming to evaluate the robustness of the proposed
method. Compared to other multisensor fusion approaches,
LIO-SAM represents a classical multisensor fusion framework
performing well in outdoor scenarios where LiDAR odometry
is the primary sensor. For a fair evaluation, we have adapted
the LIO-SAM implementation6 using the same robust error
models and parameterizations as in our method. We also en-
able the loop-closure detection in LIO-SAM to maximize state
estimation performance. We follow the implementation in [2]
to eliminate motion distortions in LiDAR points using the IMU
measurements.

Furthermore, we evaluate two fusion mechanisms with differ-
ent sensor modalities. In the loosely coupled fusion, we conduct
fusion configurations of the IMU and the GNSS-PVT solution
with and without multisensor including a 2-D speed sensor and
LiDAR odometry (w. and w/o. MultiSensor). Later, we propose
similar experiments by fusing raw GNSS observations and IMU
measurements with and without LiDAR odometry in a tight
coupling (w. and w/o. LiDAR), which is expected to present a
more robust trajectory estimation in challenging areas compared
to the loose coupling.

Finally, we discuss the smoother type and computation time
using different lag sizes. We also evaluate the GP-WNOJ prior
and the GP-WNOA prior.

B. General Error Metrics

With predefined test sequences in Table I, we present the
general error metrics for all experiments in Table II by taking
the RTK-fixed GNSS-PVA solution as the ground truth. Because
an RTK-fixed solution is not available in challenging areas,
we denote the solution rate used as a ground-truth reference to
calculate the error metrics of each test sequence as a percentage
in the column “Seq.” Due to limited space, figures cannot be
presented on a full scale; we thus upload all interactive figures
in GitHub.15

1) LiDAR-Centric Fusion: As shown in Table II, the LiDAR-
centric SLAM approach LIO-SAM failed in several test se-
quences even when the same factors with robust error modeling
were used and loop-closure detection was enabled (see video
demonstration2). The most frequent reason is that the scan reg-
istration fails due to an invalid feature association, which can be
observed in all failed test sequences. Another possible reason for
the failure can be associated with corrupted GNSS observations
that show inconsistent noise values, resulting in a divergence in
optimization. Fig. 1(b) demonstrates this result, where the esti-
mate diverged and cannot be recovered after the vehicle entered
a tunnel. In Seq. HS, the LiDAR-centric approach cannot even
be properly initialized while the vehicle moves very fast, which

15[Online]. Available: https://github.com/rwth-irt/gnssFGO/tree/ros2/
online_fgo/plots_tro

was not observed in the proposed gnssFGO. Furthermore, the
estimated velocities and orientations using LIO-SAM show
large variation and therefore less robustness compared to both
fusion mechanisms in gnssFGO [see Fig. 10(c) and (d)].

Discussion: We observe that because graph construction trig-
gered by the LiDAR odometer in [2] requires strict timestamp
synchronization of GNSS measurements with LiDAR times-
tamps, asynchronous GNSS measurements are dropped. Al-
though LiDAR odometry and detected loop closures are still
available, dropping GNSS measurements results in a loss of
effective state constraints, so graph optimization becomes more
sensitive to inaccurate scan registration. Therefore, the trajec-
tory’s smoothness and the estimate’s accuracy are dramatically
penalized (see Table II). This hypothesis is supported in the
test sequences DUS and C01 (see Figs. 10 and 11), where
the estimated height, orientation, and velocities were frequently
diverted. Therefore, it can be observed that trajectory drift cannot
be effectively eliminated using the classic sensor-centric local-
ization approach LIO-SAM. Even worse, the robustness and
reliability of sensor-centric approaches cannot be guaranteed in
challenging areas once the primary sensor is compromised. As
online applications raise computation time and resource require-
ments, sensor degradation due to, e.g., insufficient data process-
ing becomes nontrivial. The proposed gnssFGO presents an
effective workaround while fusing multiple sensors to eliminate
the dependence on a single sensor, enabling the fusion of lossless
information and improving the robustness of the estimate if
sensor failure can be expected.

2) Loosely Coupled (LC) Fusion: It can be observed in
Table II that the accuracy of the low-grade GNSS receiver,
especially in the vertical dimension (height), is dramatically de-
graded compared to the high-grade GNSS receiver. Furthermore,
this receiver does not characterize its noise values, so the stan-
dard deviations provided are strongly inconsistent with the real
noise. Therefore, fusing the PVT solution from the low-grade
GNSS receiver significantly downgrades the performance of the
loosely coupled fusion in all test sequences, even when multiple
sensor observations are fused. In a less challenging environment
(Seq. AC) [see Fig. 9], the proposed loosely coupled fusion
generally outperforms the original PVT solution. However, the
same improvement cannot always be expected in challenging
environments when comparing the error metrics of other test
sequences. The primary reason for this result is caused by incon-
sistent noise values and highly inaccurate height measurements
in the PVT observations. Another interesting phenomenon is
that the loosely coupled fusion of the PVT solution with other
sensors can present a degraded performance (see Seq. C01 and
Seq. HS). Due to inaccurate height measurements that present
high variations [see Figs. 10(b) and 11(b)], the pose of the
LiDAR keyframes cannot be stably optimized, so the keyframes,
which are used to calculate the relative motion of each scan,
present different height values. In such cases, the estimated
LiDAR odometry is associated with incorrect relative motion
increments, which degrades graph optimization [see height in
Fig. 11(b) and Vd in Fig. 11(d)].

To improve the robustness of the estimation by acquiring
redundant state constraints, we used the high-grade speed sensor
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TABLE II
GENERAL TRAJECTORY ESTIMATION METRICS

in this fusion approach, expecting it to effectively constrain the
unobserved states once the GNSS solutions are compromised.
However, our experiments indicate that the 2-D velocity mea-
surements provided by the 2-D speed sensor cannot sufficiently
constrain the state space, especially when vehicle orientation
cannot be observed.

Discussion: Although the loosely coupled fusion using the
proposed gnssFGO did not fail in our test sequences, we can
observe the same conclusion, as shown in [6], that loosely

coupled fusion cannot serve as a robust state estimator in
challenging areas where GNSS solutions present inconsistent
uncertainties. However, we indicate that this fusion mechanism
can present fast estimation convergence as long as accurate
GNSS-PVT solutions are available. This is because the state
variables (position and velocity) can be directly observed in the
GNSS-PVT solution, where the measurement model does not
present high nonlinearity, and thus, effective state constraints
are presented.
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Fig. 9. Trajectory plot (700–1400 s) in urban areas in Aachen. We plot the GNSS single point position (SPP) if the RTK-fixed solution is unavailable.
(a) Trajectories of Seq. AC. (b) Coordinates in the WGS84 frame. (c) Estimated rotation in the NED frame. (d) Estimated velocity in the NED frame.

3) Tightly Coupled (TC) Fusion: Compared to loosely
coupled sensor fusion, fusing preprocessed GNSS observations
in a tight coupling contributes to redundant state constraints.
Thus, the tightly coupled fusion can generally present more
robust trajectory estimations with a smaller maximum position
error and larger trajectory smoothness in lengthy runs, except
in the high-speed scenario (Seq. HS). In challenging urban
areas, such as Seq. C01 and C02, fusing the LiDAR odometry
as between-state constraints generally improves the estimation
performance and trajectory smoothness. This conclusion can
also be drawn when referring to Figs. 10(b) and 11(b), where
more accurate height and velocity estimations can be observed
by fusing LiDAR odometry in the graph. In high-speed
scenarios, LiDAR scans suffer from serious motion distortion,
and no sufficient features can be extracted compared to urban
areas. Therefore, a limited performance improvement can be
observed by fusing LiDAR odometry in the graph.

Discussion: Based on the experimental results presented
above, a robust trajectory estimation can be achieved in chal-
lenging scenarios using the proposed approach by fusing mul-
tiple sensor measurements in a tight coupling, which supports
our hypothesis proposed in Section II. In contrast to the loose
coupling, the tightly coupled multisensor fusion presents a more
robust trajectory estimation in our experimental studies. The
same conclusion has also been shown in [6] and [10]. However,
acceptable accuracy cannot be achieved, especially in dense
urban scenarios. For instance, although all estimated trajectories

using the proposed gnssFGO in Fig. 1 remain consistent, a
large drift is presented using the proposed sensor integration.
Possible reasons to explain this phenomenon can be traced back
to LiDAR degradation, insufficient GNSS observations, and in-
consistent sensor noise models due to the presence of outliers. As
gnssFGO provides a flexible fusion mechanism, this problem
can be addressed by integrating more effective state constraints
into the graph.

C. Challenging Scenarios

In this part, we propose experimental studies regarding GNSS
observations, LiDAR odometry, and solver settings. We also
evaluated the GP-WNOA and GP-WNOJ priors and discussed
the hyperparameter tuning for Qc.

1) Loss of GNSS Observation: Generally, losing GNSS ob-
servations in a short time interval does not lead to immediate
divergence or trajectory drift if multiple state constraints, such as
LiDAR odometry or motion prior factors are still presented. This
conclusion can be drawn from our experiment in Seq. C01, where
the vehicle crossed a large bridge at the central train station in
Cologne, as shown in Fig. 11. It is also interesting to observe
that the loss of GNSS observations is frequently accompanied by
highly corrupted GNSS observations due to multipath effects.
For example, fusion approaches can diverge when the vehicle
approaches or leaves a tunnel. In this case, robustness can be
significantly affected even if no local sensors are fused.
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Fig. 10. Trajectory plot (450–1350 s) in challenging areas in Düsseldorf. (a) Trajectories of Seq. DUS. (b) Coordinates in the WGS84 frame. (c) Estimated
rotation in the NED frame. (d) Estimated velocity in the NED frame.

Furthermore, fusing GNSS observations in a tight coupling
extends the state variables with receiver cbd cr = [cb cd]

T ,
which become unobservable if less than four satellites are
visible. Fig. 12 shows the estimated clock bias cb with respect to
the number of tracked satellites. The estimated clock bias drifts
dramatically in the graph where only GNSS observations and
IMU measurements are integrated. Even if the observability of
the clock bias can be recovered, it takes some time until the
state variable cr converges (see Fig. 12), which downgrades the
overall estimation performance. Similar results can be observed
in other experiments where unobservable state variables can lead
to estimation divergence and an ill-posed optimization problem.
Fortunately, this problem can be eliminated in the graph fused
with LiDAR odometry. Thanks to the between-state constraints
that prevent other state variables (e.g., position and rotation)
from divergence, robust trajectory estimation can be guaranteed.
In addition, a large trajectory drift can be expected if the global
reference (e.g., GNSS observations) is lost over a long time
interval, such as when crossing a long tunnel.

2) Highly Corrupted GNSS Observations: Compared to the
temporary loss of GNSS observations, we emphasize that in-
cluding highly corrupted GNSS observations in the graph has a
greater impact on estimation performance. This conclusion can
be supported by Seq. C02, where the accuracy of our proposed
fusion paradigms is significantly degraded in GNSS-corrupted
areas, as shown in Fig. 1. In Fig. 13, we plot the estimated tra-
jectories in this scenario by transforming the coordinates in the

navigation frame (ENU). A large trajectory drift up to 25 m can
be observed in tightly coupled fusion without LiDAR odometry
(see Fig. 13). Although fusing relative motion constraints, such
as odometry, can effectively constrain divergence, trajectory
drifts cannot be eliminated until valid global references are
acquired.

3) LiDAR Odometry Degradation: As discussed in [74],
traditional LiDAR odometry algorithms suffer from dramatic
degradation in unstructured environments and high-speed sce-
narios. This problem can also be observed in our experiments.
Fig. 14 illustrates three scenarios in which the accuracy of the
LiDAR odometry is penalized if the vehicle is driving in feature-
less areas or in high-speed mode with an average vehicle speed
of 125 km/h. In low-speed driving mode and open-sky areas,
LiDAR degradation does not reduce the estimation performance,
while high-quality GNSS measurements are available. How-
ever, if the vehicle moves at high speed, the LiDAR odometry
becomes inaccurate because of motion distortion. Therefore,
including LiDAR odometry factors in the graph can decrease
localization accuracy, as Table II of Seq presents HS. In scenarios
with long tunnels, trajectory drifting can always be expected
due to the loss of global reference. This presents the major
limitation of classic LiDAR odometers that calculate only pose
increments. Another crucial aspect to be mentioned is the uncer-
tainty of LiDAR odometry used in fusion approaches. Because
no covariance is provided by classic scan matching algorithms,
the predefined noise parameters (see Section V-E) may be
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Fig. 11. Trajectory plot near the central station of cologne (Seq. C01). For the tightly coupled fusion, we omitted the near-zero velocity detection to present
trajectory drifting while the receiver clock error is unobservable. (a) Trajectories of Seq. C01. (b) Coordinates in the WGS84 frame. (c) Estimated rotation in the
NED frame. (d) Estimated velocity in the NED frame.

Fig. 12. Estimated GNSS receiver clock bias of Seq. C01 without near-
zero-velocity detection. The receiver clock error is unobservable during tunnel
crossing. In this scenario, fusing raw GNSS observations without LiDAR odom-
etry cannot constrain the state estimation, resulting in trajectory drifting. The
corresponding trajectories of both fusion approaches are presented in Fig. 11.

overconfident. Therefore, we emphasize the importance of ac-
quiring realistic uncertainty quantification for LiDAR odometry
in future work.

D. Smoother Type and Computation Time

To study the impact of different smoother types and lag
sizes, we evaluated batch and incremental smootheriSAM2with
different lag sizes for Seq. DUS. The performance metrics are
presented in Table III. Compared to an incremental smoother,
solving the optimization problem with a batch optimizer does
not show a considerable improvement in accuracy. This happens

Fig. 13. Coordinates in the ENU frame of Seq. C02. The estimated trajectories
become unsmooth if the GNSS observations are strongly corrupted in urban
areas.

because the graph structure becomes more similar to a Markov
chain in large-scale localization applications with fewer loop-
closure constraints. In this scenario, relinearizing all past state
variables does not contribute more information that improves
the accuracy. For loosely coupled fusion, the batch smoother
presents a smoother trajectory. However, this advantage is absent
with the incremental smoother when fusing GNSS observations
in a tight coupling.

Furthermore, the batch optimizer requires more computa-
tional resources than the incremental smoother (see Fig. 15),
especially in urban areas with more measurement outliers. In on-
line applications, estimation accuracy and trajectory smoothness
can be penalized once optimization takes longer. This conclusion
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Fig. 14. Examples of LiDAR odometry degradation in three scenarios. (a)
Unstructured feature-less area. (b) High-speed scenario. (c) Long tunnel (400 m).

TABLE III
ESTIMATION PERFORMANCE OF SEQ. DUS USING DIFFERENT SOLVER

CONFIGURATIONS

Fig. 15. Computation time with different configurations of Seq. DUS.

is supported by referring to the tightly coupled fusion in Table III.
Similarly to the optimizer type, considering a large lag size
does not contribute significantly. Moreover, even the incremental
smoother with a large lag size frequently violates the desired
optimization frequency, resulting in inefficient optimization pro-
cedures.

E. GP-WNOA/WNOJ Motion Model

In this section, we evaluated the continuous-time trajectory
representation using the GP interpolation with both WNOJ and
WNOA models. For a fair evaluation, the hyperparameterqc was
manually tuned by penalizing the vehicle pose in Qc with the

Fig. 16. Histogram of whitened state errors of GP models in an open-sky area.

same parameterization for pose weighting, aiming to evaluate
the effect between the third-order and second-order dynamics
models.

Compared to the GP-WNOJ model, a GP-WNOA model
assumes that the system transition follows a constant velocity
model [7], [43]. As discussed in [16], representing vehicle
trajectories with an approximately constant-velocity model may
be insufficient in urban driving scenarios where the vehicle
accelerates and brakes frequently. To evaluate the performance
of both GP models, we chose a part of Seq. AC containing 200 s
test run in open-sky areas, where the PVT solution from the
high-grade GNSS receiver presents the ground-truth trajectory.
We calculate the whitened error of the vehicle pose and the
linear velocity in the body frame and plot the results on the
histogram in Fig. 16. Because the GP-WNOJ model represents
second-order system dynamics, it shows smaller errors in all
linear velocity components. Both models perform similarly in
position estimation, where the GP-WNOJ is more accurate in
the main motion direction x−axis. For rotation, the GP-WNOJ
does not present considerable improvements compared to the
GP-WNOA. One possible reason supporting this result can be
traced back to rotational acceleration that cannot be observed
directly using the IMU (see Section V-A).

We have validated that the GP motion model formulates a
valid continuous-time trajectory representation. However, tun-
ing the power spectral matrixQc that scales the system transition
in the GP kernel has a large effect on numerical stability and
estimation performance [16]. Although the GP-WNOJ model
presents reliable velocity estimates compared to the GP-WNOA
model, it shows higher sensitivity on the power spectral matrix
Qc [16], which therefore requires more careful parameter tuning
when incorporating accelerations in state propagation.

Remark 5. Tuning of Qc: In this work, we did not explicitly
investigate parameter tuning for the power spectral matrix Qc.
As discussed in the original works [16] and [61], this hyperpa-
rameter can be calibrated using supervised-learning approaches.
Recent works also explored this idea and showed the possibility
of learning this parameter without ground-truth labels using
variational Bayesian approaches [62], [75]. However, vehicle
dynamics presents a high variation in real-world driving scenar-
ios, the parameter Qc should be dynamically tuned in an online
process, which remains our future work.
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VIII. CONCLUSION

This article proposes an online factor graph optimization that
generalizes multisensor fusion for robust trajectory estimation
focusing on GNSS. The vehicle trajectory is represented in con-
tinuous time using a GP motion prior that enables arbitrary state
querying, presenting a sensor-independent graph optimization.
We successfully fused asynchronous sensor measurements into
the proposed method for robust vehicle localization in chal-
lenging environments. The experimental studies show that the
proposed method is robust, flexible, accurate, and works online
with multiple datasets collected from challenging scenarios. All
our FGO configurations succeed in all test sequences, whereas
the classic state-of-the-art LiDAR-centric method [2] failed in
some situations. Observed from the experimental results, the
GP-WNOJ motion prior enables accurate trajectory representa-
tions in continuous time with properly tuned hyperparameters.

In this work, we did not fully exploit the GNSS observations,
such as carrier-phase, which requires complicated techniques
to resolve the ambiguities and detect the satellite cycle slips.
Our framework can also utilize advanced techniques to exclude
multipath and non-line-of-sight GNSS observations. We also
neglected the hyperparameter tuning of the GP-WNOJ model
and sensor noise identification, which can be solved online
using learning-based methods. In addition, additional sensor
modalities, such as visual odometry, can be utilized in the fusion
framework to improve performance. In summary, these research
objectives formulate our future work.
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