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Abstract

The iterative Marchenko scheme is a recent development in the �eld of Geophysics and a
way to retrieve Green's functions at any point in the subsurface, called a focal point. To
achieve this, only the re�ection response measured at the Earth's surface and an estimation
of the �rst arrival at the focal point are required. If the amplitude of the re�ection response
is scaled incorrectly, the method will su�er from artifacts in the estimation of the Green's
function. The amplitudes of the re�ection response are unknown when the source strength
of the recording is unknown. To correct for source strength, a correction factor is used. The
correction factor can be retrieved by using a function that has its minimum at the required
correction factor, a so-called cost function. Additionally a scaling factor can be determined,
which is used to ensure that the �nal Green's function has the correct amplitudes. Three
cost functions are proposed. The �rst cost function minimizes the upgoing Green's function
and only works if no re�ectors are present below the focal point. The second cost function
minimizes the re�ection of a truncated medium that has no re�ectors above the focal point.
The second cost function can handle a focal point with re�ectors below it. However, it is
very computationally expensive, especially in 2D and 3D. Therefore the third cost function is
introduced. The third cost function is more e�cient than the second one and is based on the
minimization of the upgoing Green's function, with a source and receiver at the focal point. It
is less accurate, retrieving only very close approximations of the required correction factor in
case re�ectors are present below the focal point. The minimization of the cost functions fails
if there is an overlap in time of physical events and artifacts. In case physical events overlap
with each other, none of the cost functions works perfectly.
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Chapter 1

Introduction

An important subject in the �eld of geophysics is the practice of seismic imaging. Seismic
imaging uses seismic data that was recorded at the surface of a medium to generate an image
of the re�ectivity of this medium. An example of imaging is the boundary value migration
method from McMechan (1983) which uses the primary re�ections that are measured on the
surface of the medium. This requires a boundary on which receivers are located and re�ection
data that does not contain any multiples. In more recent years methods have been developed
which not only use the primary re�ection data but also the multiply scattered components
(Oristaglio, 1989), (Fleury, 2012). The problem with these methods is that they require
closed-boundary integrals. In other words they require receivers around the medium in order
to accurately function, especially in media with strong scatterers (Wapenaar et al., 2016). In
practice, receivers are only located on the surface of the Earth and not on a closed boundary.
It is possible to have receivers in boreholes, but this still does not create a closed boundary and
is expensive and di�cult. Alternatively Green's functions can be used at every image point
due to sources at the surface of the Earth to create an image. A Green's function describes
the response of a medium to an impulsive unit source (Stakgold and Holst, 2011). Green's
functions can be decomposed in an upgoing and downgoing part and by deconvolving the
upgoing Green's function with the downgoing Green's function, a seismic image can be created
(Wapenaar et al., 2016). This requires the Green's function to be known at every location
in the subsurface. These Green's functions can be retrieved using seismic interferometry
(Wapenaar and Fokkema, 2006), but this method also requires a closed boundary with receivers
placed on this boundary. Recently a new method has been developed to retrieve these Green's
functions at depth using only a re�ection response recorded at the surface, requiring no closed
boundary and no receivers in the medium. This method is based on the Marchenko equation
and was �rst proposed in 1D by Broggini and Snieder (2012) and further extended to also
be functioning in 2D and 3D by Wapenaar et al. (2014b). The method requires a re�ection
response recorded at the surface and an accurate estimate for the arrival of the �rst event at a
location in the medium, the so-called focal point. The deconvolution of the retrieved upgoing
and downgoing Green's functions will then describe the response of the medium at this focal
point. The �rst arrival can be obtained from a smooth velocity model which is a necessity
in seismic processing (Yilmaz, 2001). By using iterative substitution of the events in the
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Marchenko equation, the events after the direct arrivals i.e. the coda can also be recovered.
van der Neut et al. (2015a) gives a very nice overview of the implication of the method as well
as a more intuitive method to interpret the equations. In Figure 1-1 (a) the Green's function
has been retrieved for a simple model in 1D described in Table A-1 at a depth of 2000 meters
which will be called the focal depth. It shows a strong �rst arrival and a weaker coda after the
�rst arrival. The �rst arrival is not located a zero time due to the fact that the focal point is
located at depth and not at the surface. There are problems with the method however, which
prevents its widespread application on real data as of this thesis. The �rst arrival that can be
modeled needs to be accurate and the source signature needs to be known. An error in the
�rst arrival results only in an incorrect focal position. Using the incorrect source signature can
have much stronger e�ects. The phase and amplitude determine the signature of the source.
In Figure 1-1 the e�ect of correct phase and incorrect source amplitude (or strength as it will
be referred to) is shown. The re�ection series is scaled with an incorrect source strength q of
1.5 in Figure 1-1 (b) and a q of 2.0 in (c). When compared with the correction solution in
Figure 1-1 (a) it can be seen that the incorrect source strength causes wrong amplitudes for
correct events and introduces artifacts, which can have a stronger amplitude than the �rst
arrival. The problem is that the correct re�ection series R is scaled by an incorrect scaling
factor q such that:

R̃ = q · R, (1-1)

Figure 1-1: Green's function retrieved at a focal depth of 2000 meter for a simple model using a
source strength that was (a) unscaled, (b) scaled with a factor of 1.5 and (c) scaled
with a factor of 2.0. First arrivals are indicated in red and artifacts due to incorrect
scaling are indicated in green

where R̃ indicates that the re�ection series R has been scaled incorrectly with q. In this thesis
the goal is to �nd a correction factor b such that:

R = b · R̃ (1-2)
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To this extent, a cost function is used, based on the Green's functions that can be retrieved
with the Marchenko scheme, in order to �nd b. A cost function depends on one or more
parameters and has a minimum for these parameters. If implemented correctly, this minimum
is located at the desired value of the parameters. In this thesis, the only parameter is the
factor b. van der Neut et al. (2015b) proposed a cost function based on the minimization of
the upgoing Green's function. This method only functions if the area of interest is located
above very weak re�ectors when compared to strong re�ectors in the overburden. In case there
are strong re�ectors located below the focal point, the cost function fails. In this thesis, an
improved cost function that is capable of handling a focal point above the deepest re�ector will
be presented. To this end, in chapter 2 the basic theory of the Marchenko scheme will be used
to derive the old and the new cost function in order to �nd correction factor b. Furthermore,
a scaling factor a(x′f ) will be determined as well, where x′f = (xf , yf , zf ) is the location of
the focal point. This is done because the �rst arrivals are often modeled in smoothed velocity
models that do not produce the correct amplitudes for these �rst arrivals and could yield
incorrect results when the retrieved Green's functions are used. In chapter 3, the results will
show that the new cost function is more robust than the old cost function and is able to
handle re�ectors below the focal point. After this, an outlook will be given as this is only
the �rst step in the development of adaptive measures that could make the application of the
Marchenko scheme to real data easier.
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Chapter 2

Theory

In this chapter, the derivation of the equations used for the Marchenko scheme will be shown
as well as the theoretical idea behind it. The structure of these equations is similar to the one
found in van der Neut et al. (2015a) and Wapenaar et al. (2014b). An example of imaging is
the Reverse Time Migration (RTM) method (Amundsen and Robertsson, 2014), (McMechan,
1983). This method requires that the response of a source in the medium is recorded on
the surface around the medium. This recorded response is then backpropagated through the
medium, which can be done using Green's functions (Zhan et al., 2014). By cross-correlating
these events with the source wave�eld, the image is obtained. A problem with this approach
is that in real media the sources and receivers are not present around the target of interest,
but only at the surface of the Earth. The required Green's functions are usually computed
in a smooth velocity model, which is often not accurate enough to correctly represent the
actual medium and Green's functions. This leads to the emergence of artifacts (Wapenaar
et al., 2014b). This is due to the fact that the Green's functions retrieved by the back
propagation from the receiver side contain events that can only be canceled by the injection
of the wave�elds from all boundaries of the medium. Because there are only receivers at the
surface of the Earth this is not the case and this will lead to the development of artifacts. In
order to prevent this kind of artifacts, Wapenaar et al. (2014b) suggested so called focusing
functions. A Green's function describes how the wave�eld propagates from the source through
the medium and time-reversing it describes how the wave�eld back-propagates through the
medium to the source position. This again requires that the Green's function describes a
wave�eld that is injected from all sides of the medium. The focusing function is de�ned such
that when it is injected from only one side into the medium, it focuses to a speci�c location
in the subsurface called the focal point. This is because the focusing function is de�ned by
a speci�c focusing condition in a truncated medium, which is identical to the real physical
medium until the focal point, but after this point the medium is replaced with a re�ection-free
half-space. An important property of both the focusing functions and Green's functions is that
the functions can be separated in an upgoing and downgoing part at any depth. According to
Wapenaar et al. (2014a), a Green's function can then be expressed as the sum of its upgoing
and downgoing part:
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G(x,x′0, t) = L(zi)L(z0)
[
G+,+(x,x′0, t) +G−,+(x,x′0, t)

]
(2-1)

In this thesis, a general wave�eld in time is expressed as p(x, t), where x = (x, y, z) is the
location in space and t is the time. If a location is �xed in depth, it is de�ned with a subscript
such as x0 = (x, y, z0), where x and y can be variable. In case of a ′ the exact location is
intended such that x′0 = (x0, y0, z0). In Eq. (2-1) G(x,x′0, t) describes the wave�eld response
at any general location x = (x, y, z) at time t due to a source at speci�c point location
x′0 = (x0, y0, z0). The function G+,+(x,x′0, t) describes only the downgoing wave�eld response
and G−,+(x,x′0, t) describes the upgoing wave�eld response, both due to a downgoing source.
In Geophysics, it is convention to take the third axis z as pointing downward and positive with
increasing depth. As such, the positive is pointing downwards and the negative upwards. For
Green's functions the �rst superscript indicates the orientation of the wave�eld and the second
supercript the orientation of the source. The operator L gives a relation between the pressure-
normalized and �ux-normalized wave�elds, dependent on depth (Wapenaar and Grimbergen,
1996). In this thesis, the �ux-normalized wave�elds are used because the derivation is more
straight-forward. Eq. (2-1) shows how the full Green's function can be computed using its
�ux-normalized components. A visual clari�cation of the Green's function is given in Figure 2-
1 (a). A source at x′0 causes a wave�eld which then propagates throughout the medium to
di�erent locations in this medium. It can be separated into an upgoing and downgoing part.
The source is located on the boundary ∂D0 that separates the inhomogeneous medium from
the homogeneous half-space above it. No upgoing waves re�ect above the boundary ∂D0

so only the downgoing waves from the source can cause the Green's functions at depth, as
indicated by their superscripts. Note that in this setup there is no free-surface present. In the
Marchenko scheme that will be derived here, the free-surface multiples are not considered. In
case of data that does contain these multiples, the free-surface multiples need to be removed
by free-surface multiple elimination. Examples of this process can be found in Verschuur et al.
(1992) and Amundsen (2001). Two types of focusing function can be distinguished, indicated
by the subscripts 1 and 2. Each of these types can be written as the summation of the upgoing
and downgoing components:

f1(x,x
′
i, t) = f+1 (x,x′i, t) + f−1 (x,x′i, t) (2-2a)

f2(x,x
′
0, t) = f+2 (x,x′0, t) + f−2 (x,x′0, t) (2-2b)

The two types of focusing functions are di�erent in the way they focus. The focusing function
f1(x,x

′
i, t) focuses from above to a focal point x′i = (xi, yi, zi) after which it travels further

to deeper depths as only a downgoing function f+1 (x,x′i, t). Below the focal depth zi, there
are no re�ections present. This is due to the choice of medium. As can be seen in Figure 2-1
(b), the medium is chosen such that there is a re�ection-free half-space below the focal depth
zi. In the same way the focusing function of the second type f2(x,x′0, t) focuses to the focal
point from below and then continues above the focal point as the upgoing focusing function
f−2 (x,x′0, t). For the second type of focusing function the medium is a re�ection-free half-space
above the focal point as can be seen Figure 2-1 (c). These focusing functions can be used to
derive a scheme to recover the Green's function at the focal point.
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Actual inhomogeneous medium
Actual inhomogeneous medium

Actual inhomogeneous medium
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Actual inhomogeneous half−space Reflection−free reference half−space Reflection−free reference half−space

Homogeneous half−space

Figure 2-1: Visual clari�cation of Green's function and the two type of focusing functions. (a)
Green's function G(x, x′0, t) which describes the wave�eld response at any location
x due to a source at x′0. (b) First type of focusing function f1(x, x′i, t) that focuses
to the focal point at x′i from above and continues after that as the downgoing
function f+1 (x, x′i, t). (c) Second type of focusing function f2(x, x′0, t) that focuses
to the focal point at x′0 from below and continues after that as the upgoing function
f−2 (x, x′0, t). Modi�ed after Wapenaar et al. (2014a).
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8 Theory

2-1 Marchenko scheme

The derivation that will be shown closely follows the ones that can be found in Wapenaar
et al. (2014b) and van der Neut et al. (2015a). The Fourier transform is used to transform the
wave�eld to the frequency domain. This transform along with its inverse to transform back
to the time domain is:

p(x, ω) =

∫ +∞

−∞
exp(−jωt)p(x, t)dt (2-3a)

p(x, t) =
1

2π

∫ +∞

−∞
exp(jωt)p(x, ω)dω, (2-3b)

where p(x, ω) is the wave�eld in the frequency domain, j is the imaginary number and ω the
angular frequency. In order to derive the scheme, two reciprocity theorems for �ux-normalized
�elds are used which can be found in Wapenaar and Grimbergen (1996):

∫
∂D0

(p+Ap
−
B − p

−
Ap

+
B)d2x =

∫
∂Di

(p+Ap
−
B − p

−
Ap

+
B)d2x (2-4a)∫

∂D0

(p+Ap
+∗
B − p

−
Ap
−∗
B )d2x =

∫
∂Di

(p+Ap
+∗
B − p

−
Ap
−∗
B )d2x (2-4b)

Eq. (2-4a) is a reciprocity theorem of the convolution type for two wave�elds that are propa-
gating forward in time. It states that the two di�erent integrals carried out over the boundaries
∂D0 and ∂Di are equal for the wave�elds from two di�erent media as long as there are no
sources present between the boundaries and the media are identical in between the boundaries.
Eq. (2-4b) is a reciprocity theorem of the correlation type, where one wave�eld is propagating
forward in time and the other wave�eld backward in time. A wave�eld propagating back-
wards in the time domain is complex conjugated in the frequency domain, which is denoted
with a ∗. A limitation that this theorem imposes is that the medium between ∂D0 and ∂Di

needs to be lossless. Another limitation is that evanescent wave modes are ignored at the
boundaries. In order to use these theorems, a model is de�ned for a realistic situation as
shown in Figure 2-2. Di�erent medium parameters are used depending on the states. The
�rst state, shown in Figure 2-2 (a), is for the complete model, where the Green's functions at
depth zi need to be recovered. The upgoing and downgoing Green's functions G−,+(xi,x

′
a, t)

and G+,+(xi,x
′
a, t) can be seen. At the boundary ∂D0, a re�ection response can be recorded

due to the downward oriented source at x′a. This re�ection series is located just above the
boundary and can be written as R(x0,x

′
a, t). The medium in Figure 2-2 (b) is identical to

the one in (a) with the exception that the model is truncated with a re�ection-free half-space
below the boundary ∂Di. Thus there are no re�ections coming from below the boundary ∂Di.
There is only a re�ection series at the surface, which will be di�erent from R(x0,x

′
a, t) and

will be expressed as RB(x0,x
′
b, t). There is also a transmission series propagating from the

boundary ∂D0 to ∂Di denoted as TB(xi,x
′
b, t). The sources at x

′
a and x′b can be at the same

position but do not have to be. The only thing they always have in common is their depth,
just above the boundary ∂D0. The medium in Figure 2-2 (a) is de�ned as state A and the
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2-1 Marchenko scheme 9

medium in Figure 2-2 (b) as state B. The subscripts x′a and x′b indicate whether a source is
located in the medium associated with state A or state B. These subscripts are arbitrary and
only indicate a random source position.

) )
Reflection−free half−space

Actual inhomogeneous half−space

Reflection−free reference half−space

Reflection−free half−space

x ′ x ′

, (x , x ′, )
, (x , x ′, )

(x , x ′, ) (x , x ′, )

(x , x ′, )

Figure 2-2: Two di�erent states that can be used in the reciprocity theorems Eq. (2-4a) and
(2-4b). (a) Complete model with Green's functions at a depth zi along with the
complete re�ection series. Both models have no free surface but a homogeneous half-
space above depth z0. (b) Truncated model with no re�ection coming in from below
depth zi, such that there is only a transmission at the lower boundary. Modi�ed
after van der Neut et al. (2015a).

The wave�elds in these two states can now be substituted into Eq. (2-4a) and (2-4b). First
the wave�elds are de�ned. The sources at x′a and x′b are de�ned as two 2D delta functions
such that the downgoing wave�elds at boundary ∂D0 are both the direct result of these delta
functions. This results in p+A(x0, ω) = δH(x0− x′a) and p+B(x0, ω) = δH(x0− x′b). The sources
are indicated with an δH , where the H-subscript indicates that these are horizontal sources.
They have a �xed depth and only vary in horizontal directions. Furthermore, the upgoing
wave�elds at this boundary are in both cases the re�ection response and therefore it follows
that p−A(x0, ω) = R(x0,x

′
a, ω) and p−B(x0, ω) = RB(x0,x

′
b, ω). At the lower boundary ∂Di,

there is a clear di�erence between the two states. In state A, the wave�elds are the Green's
functions such that p±A(xi, ω) = G±,+(xi,x

′
a, ω). In state B, there is no upgoing �eld such

that p−B(xi, ω) = 0. The downgoing �eld consists of the transmission series at this depth:
p+B(xi, ω) = TB(xi,x

′
b, ω). If all these expression are inserted into Eq. (2-4a) and (2-4b) and
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the integrals are evaluated where possible, the result is:

R(x′b,x
′
a, t)−RB(x′a,x

′
b, ω) =

∫
∂Di

TB(xi,x
′
b, ω)G−,+(xi,x

′
a, ω)d2xi (2-5)

−
∫
∂Di

R∗(x′b,x
′
a, ω)RB(x′a,x

′
b, ω)d2x+ δH(x′b − x′a) =

∫
∂Di

TB(xi,x
′
b, ω)G+,+∗(xi,x

′
a, ω)d2xi

(2-6)

To evaluate these equations further, the focusing functions that were de�ned before are exam-
ined. These focusing functions work in a truncated medium exactly the same as the state B
that was de�ned earlier. As a way to de�ne the focusing function, the transmission response
is used. Similarly to van der Neut et al. (2015a) and Wapenaar et al. (2014b), the downgoing
part of the focusing function of the �rst type is de�ned as the inverse of the transmission
response such that:

δH(xi − x′F ) =

∫
∂D0

TB(xi,x
′
b, ω)f+1 (x′b,x

′
F , ω)d2x′b, (2-7)

where δH(xi − x′F ) is a spatially band-limited delta pulse at a location x′F on the lower
boundary ∂Di, which is de�ned as the focusing location. Using this focusing function, the
transmission response can be eliminated from Eq. (2-5) and (2-6) by applying f+1 to both
sides of the equations. Then the integrals can be evaluated over the boundary ∂D0 and by
using Eq. (2-7):

G−,+(x′F ,x
′
a, ω) =

∫
∂D0

[R(x′b,x
′
a, ω)−RB(x′a,x

′
b, ω)]f+1 (x′b,x

′
F , ω)d2x′b (2-8)

G+,+∗(x′F ,x
′
a, ω) = −

∫
∂D0

[R∗(x′b,x
′
a, ω)RB(x′a,x

′
b, ω) + δH(x′b−x′a)]f+1 (x′b,x

′
F , ω)d2x′b (2-9)

In order to further simplify these equations, a substitution is made. At the lower boundary,
there is an upgoing part of the focusing function present. This is the result of the re�ection
series of the truncated medium interacting with the downgoing focusing function:

f−1 (x′a,x
′
F , ω) =

∫
∂Di

RB(x′a,x
′
b, ω)f+1 (x′b,x

′
F , ω)d2x′b (2-10)

Substituting Eq. (2-10) into Eq. (2-8) and (2-9) yields:

G−,+(x′F ,x
′
a, ω) =

∫
∂D0

R(x′b,x
′
a, ω)f+1 (x′b,x

′
F , ω)d2x′b − f−1 (x′a,x

′
F , ω) (2-11)

G+,+∗(x′F ,x
′
a, ω) = −

∫
∂D0

R∗(x′b,x
′
a, ω)f−1 (x′b,x

′
F , ω)d2x′b + f+1 (x′a,x

′
F , ω) (2-12)
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2-1 Marchenko scheme 11

These equations state that in order to retrieve the Green's functions at the focal point, all
one needs are the �rst type of focusing function and a re�ection series recorded at the surface.
These two equations will be used to derive an iterative scheme to recover the Green's functions.
For this purpose, the transmission response that arrives at ∂D0 from ∂Di is used and it is
de�ned as the inverse of the upgoing focusing function of the second type, which results in a
similar equation to Eq. (2-7)

δH(x0 − x′G) =

∫
∂Di

TB(x0,x
′
i, ω)f−2 (x′i,x

′
G, ω)d2x′i (2-13)

In this case, there is a focal point x′G at the boundary ∂D0. The upgoing focusing function
of the second type re�ects at deeper depths, which can be expressed as a convolution with
the re�ection response from below. Using this, the downgoing focusing function of the second
type can be written as:

f+2 (xi,x
′
G, ω) =

∫
∂Di

R∩B(xi,x
′
i, ω)f−2 (x′i,x

′
G, ω)d2x′b, (2-14)

whereR∩B(xi,x
′
i, ω) is a re�ection series recorded at the lower boundary and contains re�ections

from the medium above. Furthermore, Wapenaar et al. (2014b) proved the relations

f+1 (x′G,x
′
i, ω) = f−2 (x′i,x

′
G, ω) (2-15)

− f+∗1 (x′G,x
′
i, ω) = f−2 (x′i,x

′
G, ω) (2-16)

These relations will be important later on. First, Eq. (2-11) and (2-12) are transformed to the
time domain:

f−1 (x′a,x
′
F , t) +G−,+(x′F ,x

′
a, t) =

∫ ∞
−∞

∫
∂D0

R(x′b,x
′
a, τ)f+1 (x′b,x

′
F , t− τ)d2x′bdτ (2-17)

f−1 (x′a,x
′
F , t)−G+,+(x′F ,x

′
a,−t) =

∫ ∞
−∞

∫
∂D0

R(x′b,x
′
a, τ)f−1 (x′b,x

′
F , t+ τ)d2x′bdτ, (2-18)

In Eq. (2-17) the re�ection series is convolved with the downgoing focusing function of the
�rst type. In Eq. (2-18) the re�ection series is cross-correlated with the upgoing focusing
function of the �rst type. To simplify these equations even further, van der Neut et al.
(2015a) proposed a discrete notation, where the focusing functions are stored in the vector
f±1 , the Green's functions are stored in the vector g±,+, the convolution with the re�ection
responses is described by the matrix R and the cross-correlation with the re�ection series is
stored in the matrix R∗. Using this discretization Eq. (2-17) and (2-18) can be rewritten as:

f−1 + g−,+ = Rf+1 (2-19)
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12 Theory

f+1 + g+,+∗ = R∗f−1 , (2-20)

where g+,+∗ indicates that the downgoing Green's function is the time-reversed version of
g+,+ in the time domain. Now there are two equations with four unknowns , g−,+,g+,+∗, f−1
and f+1 . The re�ection matrix R is acquired at the surface and therefore known. For R∗ the
re�ection series only need to be time-reversed so this matrix is also known. At this moment,
the system is underdetermined and therefore some adjustments have to be made. In order
to do this, the downgoing Green's function is considered to consist of a direct arrival, g+,+

d ,
and a coda, g+,+

m , arriving after the direct arrival. The Marchenko theory proposes a matrix
window Θ that removes the direct wave and the coda. Every event that arrives before this
direct arrival in time is preserved however. Θ is applied to Eq. (2-19) and (2-20). Some of the
terms can have events that arrive before the direct arrival of the downgoing Green's functions.
The direct arrival arrives at a time td so a time gate just before this time is chosen. The data
that is recorded is band-limited however and as such a wavelet needs to be applied to the data.
Assuming that this wavelet is zero-phase, the thickness of the wavelet requires the limit of Θ
to be shifted half the wavelet thickness to avoid muting part of the events. This means that
the truncation time of Θ is located at td − ε, where ε is at least half the wavelet thickness.
The time window is symmetrical in time and therefore acausal events that arrive in negative
time before the time of the time-reversed direct arrival are also muted. In this case, the
window limit is located at time −td + ε. This window e�ectively mutes the entire downgoing
Green's function. The upgoing Green's function's �rst arrival can never arrive earlier than the
downgoing Green's function. Thus Θ also completely mutes both the downgoing and upgoing
Green's function:

Θg−,+ = 0 (2-21)

Θg+,+∗ = 0 (2-22)

The question is what happens if this window is applied to the focusing function. The down-
going focusing function is the inverse of the transmission response as stated in Eq. (2-7).
TB is de�ned as a matrix that applies a convolution with the transmission response. By
transforming Eq. (2-7) to the time domain and using discrete notation, the result is:

i = TBf
+
1 , (2-23)

where i is a delta pulse at the location of the focal point x′F at zero time. Just like the
downgoing Green's function TB, can be split up in a matrix for a convolution with the direct
arrival, TBd, and a matrix for a convolution with the coda, TBm. A focusing function is
de�ned as the direct arrival of f+1 and is called f+1d. It can be separated from its coda, f+1m.
van der Neut et al. (2015a) de�ned that the inverse of the direct arrival of the transmission
response is equal to the direct arrival of the focusing function:

i = TBdf
+
1d (2-24)
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2-1 Marchenko scheme 13

Then Eq. (2-23) can be substituted in Eq. (2-24):

TBf
+
1 = TBdf

+
1d (2-25a)

(TBd +TBm)(f+1d + f+1m) = TBdf
+
1d (2-25b)

TBmf
+
1d = −(TBd +TBm)f+1m (2-25c)

Some important properties of the focusing functions can be derived from this result. Eq. (2-
24) states that the �rst arrival of the focusing function is the inverse of the �rst arrival of the
transmission response. The entire right side of Eq. (2-24) has to be causal as the left side is
causal. The coda of the transmission response arrives later than the direct arrival, so if TBm is
convolved with f+1d the result will be completely causal. As such, both the left and right side of
Eq. (2-25c) have to be causal. Therefore the convolution of TB with the coda of the focusing
function is causal. Consequently both the direct part and the coda of the focusing function
convolved with the transmission response are causal and the coda of the focusing function
cannot arrive earlier than the time-reversed direct arrival of the transmission response. f+1d is
also the time-reversed direct arrival of the downgoing Green's function. Using the fact that f+1d
arrives at the time of the time-reversed direct arrival, it follows from Eq. (2-15) that the �rst
arrival in f−2 is also arriving at the time of the time-reversed direct arrival. According to Eq.
(2-14) f+2 is related to f−2 by convolving it with a causal re�ection response. This means that
the events in f+2 are also all arriving after the time-reversed direct arrival. Then Eq. (2-16)
can be used to determine that f−1 arrives completely before the direct arrival. Using these
relations, it can be determined how the focusing functions react to the time window. The
direct arrival of f+1 arrives at the same time (but time-reversed) as the direct arrival of the
downgoing Green's function and will therefore be removed. The coda arrives later than the
time-reversed direct arrival and will be una�ected just like all of the events in f−1 . Therefore

Θf+1 = Θ(f+1d + f+1m) = f+1m (2-26)

Θf−1 = f−1 (2-27)

Using these results and by applying Θ to Eq. (2-19) and (2-20):

Θf−1 + Θg−,+ = ΘRf+1 (2-28a)

f−1 = ΘR(f+1d + f+1m) (2-28b)

f−1 = ΘRf+1d + ΘRf+1m (2-28c)

Θf+1 −Θg+,+∗ = ΘR∗f−1 (2-29a)

Θ(f+1d + f+1m) = ΘR∗f−1 (2-29b)

f+1m = ΘR∗f−1 (2-29c)
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Eq. (2-28c) and (2-29c) are the Marchenko equations, which can be used to derive the Green's
functions. In order to do this, two things are required, the re�ection series that was recorded
at the upper boundary and f+1d, which can be inserted into both equations. As stated before,
f+1d is the inverse of the direct arrival of the transmission response and can be approximated
by time-reversal as there is only one event in this response. This direct arrival can be recorded
with a receiver at depth or alternatively it can be estimated from a smooth velocity model. A
velocity model is necessary for seismic processing and therefore does not require extra e�ort
(Yilmaz, 2001). Assuming that f+1d is known and the coda f+1m needs to be recovered, Eq.
(2-28c) can be combined with Eq. (2-29c), yielding:

f+1m = ΘR∗(ΘRf+1d + ΘRf+1m) (2-30a)

f+1m −ΘR∗ΘRf+1m = ΘR∗ΘRf+1d (2-30b)

[I−ΘR∗ΘR]f+1m = ΘR∗ΘRf+1d (2-30c)

This is a Fredholm equation of the second kind and can be written as a Neumann series
(van der Neut et al., 2015a):

f
+(K)
1 =

K∑
k=0

Ωkf+1d (2-31)

In this equation, ΘR∗ΘR has been replaced by Ω. This equation can be inserted into Eq.
(2-28c), yielding:

f
−(K)
1 = ΘR

K∑
k=0

Ωkf+1d (2-32)

These two equations can be used to recover the complete focusing functions if the direct arrival
and the re�ection response are known. Using these results, it is also possible to determine
the Green's functions by using a di�erent �lter. For this purpose, the time gate Ψ is de�ned.
This gate �lters the complement of Θ. Hence Ψ �lters out the focusing functions except for
f+1d and does not �lter out the events of the Green's functions. Thus Ψ = I−Θ and this �lter
can be applied to Eq. (2-19) and (2-20)

Ψf−1 + Ψg−,+ = ΨRf+1 (2-33a)

g−,+ = ΨR(f+1d + f+1m) (2-33b)

g−,+ = ΨRf+1d + ΨRf+1m (2-33c)

Ψf+1 −Ψg+,+∗ = ΨR∗f−1 (2-34a)

Ψ(f+1d + f+1m)− g+,+∗ = ΨR∗f−1 (2-34b)

g+,+∗ = f+1d −ΨR∗f−1 (2-34c)
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2-2 Construction of Green's functions 15

Combining these results with Eq. (2-31) and (2-32) gives

g−,+(K) = ΨR
K∑
k=0

Ωkf+1d (2-35)

g+,+∗(K) = [I−ΨR∗ΘR
K−1∑
k=0

Ωk]f+1d (2-36)

These equations are valid for any K > 0, and the base values are de�ned as g−,+(0) = ΨRf+1d
and g∗+,+(0) = f+1d. These equations can be used instead of Eq. (2-31) and (2-32) to directly
calculate the Green's functions. It should be pointed out that this con�guration assumes that
there is no free surface present at the surface of the Earth. Extra terms can be included to
take a free surface into account (Singh et al., 2015), but that is not considered in the scope
of this investigation.

2-2 Construction of Green's functions

The cost functions that will be derived are based on the way the Green's functions are con-
structed and updated from direct arrival of the focusing function and the re�ection response,
when the Marchenko scheme is utilized. An overview of the construction of the Green's and
focusing functions is shown here. For a more detailed description it is advised to read van der
Neut et al. (2015a). In Figure 2-3 the Green's function and focusing functions are plotted
for a focal depth of 2000 meters for the model in Table A-1. In this case the re�ection series
is correct. The results were retrieved using a modeled delta pulse with an amplitude of 1
for the initial focusing function. The absolute amplitudes of the Green's functions retrieved
here are therefore not correct, but the relative amplitudes are correct. The scaling of the �rst
arrival can be corrected for afterwards to retrieve the correct absolute amplitudes. Figure 2-3
demonstrates properties of the Marchenko scheme. First of all the Green's function in Fig-
ure 2-3 (a) is located completely after the time gate that is used to compute the operator Θ
and is completely causal. From this �gure, it is easy to see that the time gate would mute the
entire Green's function as seen in Eq. (2-21) and (2-22). The �rst event is the direct arrival
of the Green's function that is downgoing and all the other events arrive at later times. This
�rst event should arrive at the focal depth divided by the velocity of the model, resulting
in 2000

2500 = 0.8s. As can be seen in Figure 2-3 (a), this event does indeed have its peak at
this time. Here the e�ect of the wavelet on the time gate is shown. The time gate has been
shifted by half the wavelet thickness i.e. ε to avoid overlapping with any part of the �rst event.
Furthermore, when studying the downgoing focusing function of the �rst type in Figure 2-3
(b), it can be seen that the �rst arrival is the same as the �rst arrival of the Green's function,
but time-reversed with a di�erent amplitude. The focusing function is almost completely re-
siding inside of the time gate Θ, meaning that the events are arriving in between the negative
and positive truncation times of Θ. Outside the time gate would mean that the events are
arriving before the negative truncation time and after the positive truncation time of Θ. The
direct arrival of the downgoing focusing function is not inside Θ, which is the condition in Eq.
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(2-26). The focusing function has both acausal and causal parts. The second type of focusing
function in Figure 2-3 (c) also only has the direct event located outside Θ. It should be easy to
see that the downgoing focusing function of the �rst type is exactly the same as the upgoing
focusing function of the second type as stated by Eq. (2-15). If the upgoing focusing function
of the �rst type is time-reversed and its polarity is reversed, the downgoing focusing function
of the second type is recovered as stated by Eq. (2-16). The events in the Green's function
are recovered by using the Marchenko method and are arriving at the correct times, but the
amplitudes are not accurate, as the �rst arrival has not yet been scaled.

Figure 2-3: Green's and focusing functions retrieved at a focal depth of 2000 meters for the model
in Table A-1 separated in the upgoing(dotted-red) and downgoing parts (solid-blue).
The time gate limits are indicated in dashed-black. (a) Green's function, (b) focusing
function of the �rst type and (c) focusing function of the second type

The results of the Marchenko scheme have been demonstrated. Now the construction of the
Green's functions and focusing function are considered in greater detail. In order to do this,
the re�ection series and a �rst arrival are needed, which are modeled and shown in Figure 2-
4. The �rst arrival was modeled using the velocity model by generating a delta pulse with
an amplitude of 1 at the correct time and convolving it with a Ricker wavelet with a peak
frequency of 30 Hz. The re�ection series was generated using an analytical code and does
not contain any noise. An important property that can be seen from the �gure is that no
re�ection events are overlying each other. If this were the case, it could cause problems for
the cost functions that will be derived later.

In Figure 2-5 the steps for the �rst update of the upgoing Green's function are outlined. This
is done according to Eq. (2-35). The �rst estimation of the Green's function is shown in
Figure 2-5 (a). It is obtained by convolving the estimation of the �rst arrival from Figure 2-4
(b) with the re�ection series in Figure 2-4 (a) and then muting all events arriving before the
estimated �rst arrival, which would be all the events inside Θ. This leads to a trace with
several events on it. There is a very weak �rst event, which is an artifact that arrives before a
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2-2 Construction of Green's functions 17

Figure 2-4: (a) Re�ection series and (b) �rst arrival of the downgoing focusing function of the
�rst type for the model in Table A-1 at a focal depth of 2000 meters. The events
are both convolved with a 30 Hz Ricker wavelet. The black dashed lines are the
time gate truncation times.

stronger event which is the true �rst arrival. This can be con�rmed by considering the model
in Table A-1 and the focal depth which leads to the conclusion that the �rst event should
arrive at 1.1s. Hence the earliest event needs to be removed. In Figure 2-5 (b) the result
from Figure 2-5 (a) is shown before Θ was applied. Essentially the events from the re�ection
response are shifted by the arrival time of the �rst arrival to construct this trace. Because the
�rst arrival is acausal, it shifts all the events from the re�ection series backward in time. Some
of them are shifted so much that they become acausal. Since the �rst arrival has an amplitude
of 1, the shifted events do maintain their amplitudes. The events arriving after the positive
time gate truncation time and before the negative time gate truncation time are identical
to the ones in Figure 2-5 (a). Maintaining these events and muting the other events is the
equivalent of applying Ψ. In case the �lter Θ is applied, the events in between the truncation
times are preserved and all the other events are removed. If this �lter is applied, the result
is the �rst estimation of the upgoing focusing function of the �rst type, as can be understood
from Eq. (2-32). The focusing functions can be retrieved �rst from the iterative scheme and
be used to compute the Green's functions as shown by Eq. (2-33c) and (2-34c). The �lter Θ
is applied to the trace in Figure 2-5 (b) and the result is convolved with the time-reversed
re�ection series which results in the trace shown in Figure 2-5 (c). The events are shifted
further backwards in time because the entire re�ection series is acausal. The amplitudes are
also changed because the events all have di�erent amplitudes than 1. In this case, the events
in between the truncation times are the �rst update for the downgoing focusing function of the
�rst type, as described by Eq. (2-31). Θ is applied to the trace and the result is convolved with
the re�ection series, which results in the trace seen in Figure 2-5 (d). The events on this trace
are very weak. If Θ were to be applied, the remaining events would be the �rst update to the
upgoing focusing function of the �rst type. If Ψ is applied, the remaining events are the �rst
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update to the upgoing Green's function. If the events after the positive time gate truncation
time are added to the trace in Figure 2-5 (a), the weak �rst event will be largely removed,
although not completely. The event at 1.7s is also updated. This does not remove the event
but rather adjusts it amplitude to the correct value. This �rst update improves the estimation
of the Green's function signi�cantly, however not all errors are completely removed. Further
updates are required. In Figure 2-6 (a) the initial upgoing Green's function is shown which
is identical to the one in Figure 2-5 (a). Figure 2-6 (c) shows the upgoing Green's function
after 8 iterations, the updates of which are shown Figure 2-6 (b). This trace is very similar
to the one in Figure 2-5 (d) after Ψ was applied, which contains only the �rst update of the
upgoing Green's function. There are some amplitude di�erences and a few additional events
with very weak amplitudes, which are due to further updates and were not present in the �rst
update in Figure 2-5 (d). An important property of the upgoing Green's function is seen here.
The updates only a�ect non-physical events that were present in the �rst estimation. No new
events are introduced. The upgoing Green's function can be assumed to have a minimum
energy after the updates have been applied. This is the basis on which all of the proposed
cost functions are based in this thesis. Most events are dampened by the updates, however in
this case there is one event at 2.4s which is strengthened by the updates. The cause for this
e�ect lies in the overlap of the arrival times of physical events and artifacts and is explained by
Figure 2-7. The red line in Figure 2-7 (a) indicates the wavepath of the wave�eld if the source
and receiver are located at the surface. This corresponds to an event in the re�ection series.
By convolving the time-reversed �rst arrival, which is indicated in green, the �nal part of this
wavepath is essentially removed. This is because this part of the path is subtracted by the
time-reversed direct arrival. In essence applying this operation is redatuming the receiver from
the surface to the focal depth which is indicated in blue. Only the events that have propagated
directly from the focal depth to the physical receiver on the surface are correctly redatumed
by this operation. This is because this path coincides with the time-reversed direct arrival.
Any event that is not coming directly from the focal depth, such as the one in Figure 2-7
(b), would be redatumed incorrectly to the focal depth and is therefore an artifact. When
considering the physical �rst-order multiple in Figure 2-7 (a) and the artifact in Figure 2-7
(b), it can be con�rmed that their traveltimes are exactly the same. The medium is from
Table A-1 and in 1D but visualized in 2D to indicate the wavepath and re�ections more
clearly. The event has a total travelpath of 4250 meters. For the physical multiple, this is
because from the surface it is 1500 meters down to the second re�ector, then 750 meters up
to the �rst re�ector, then 1625 down to the third re�ector and �nally 2375 meters up to the
surface. 2000 meters need to be subtracted because of the redatuming. For the artifact it is
2375 meters down to the third re�ector, then 1625 meters up to the �rst re�ector, then 750
meters down to the second re�ector and �nally 1500 meters back to the surface. In this case
too, 2000 meters need to be subtracted because of the redatuming. This means that in both
cases the arrival time is 4250

2500 = 1.7s. Looking back at the event arriving at 1.7s in Figure 2-6
it can be seen that this event was present in the initial estimation and was updated to have a
weaker amplitude than its initial estimate. It is not removed completely however. This means
that the adjustment in the amplitude is due to the removal of the artifact that is shown in
Figure 2-7 (b), but the physical multiple shown in Figure 2-7 (a) remains. The travelpath of
the event in Figure 2-6 that arrives at 2.4s is shown in Figure 2-8. Again this is a multiple but
this time it re�ects twice in between the layers making it a second-order multiple. Similarly to
the event in Figure 2-7 two di�erent travelpaths with the same arrival time can be determined
which are shown in Figure 2-8 (a) and (b). There is also a third possibility as indicated by
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Figure 2-8 (c), which actually is not a second-order multiple but a �rst-order multiple. Now
there are three events overlapping. Furthermore, when considering the re�ection points, it can
be concluded that the �rst-order multiple has the opposite polarity compared to that of the
second-order multiples. Because the Marchenko method removes the artifact from Figure 2-8
(b), this contribution is subtracted from the initial estimation. The transmission losses of the
�rst-order multiple are weaker than that of the second-order multiples, so the amplitudes of
the �rst-order multiples will be stronger than those of the second-order multiples. When the
artifact is removed this means that there is one event less that dampens the amplitude of the
�rst-order multiple, hence its amplitude increases. When considering these events separately
the minimization of the events is still in e�ect. Because the events are overlying each other
and interacting the result is that energy is actually added instead of removed. This will cause
problems for certain cost functions as will be shown later. Additional steps will be taken to
circumvent these problems.

Figure 2-5: (a) Initial estimation of the upgoing Green's function obtained by convolving f+1d with
the re�ection series and muting all events before the �rst arrival. (b) Convolution
of f+1d with the re�ection series with no muting applied. (c) Convolution of the
time-reversed re�ection series with the events in between the time gate truncation
times from (b). (d) Convolution of the re�ection series with the events in between
the time gate truncation times from (c). In (d) the events below the lower time
gate truncation time and above the upper one are the �rst update to the upgoing
Green's function and need to be added to the events in (a). All events are based on
the model found inTable A-1 and have been convolved with a 30 Hz Ricker wavelet
with a focal depth of 2000 m.

Similarly to the upgoing Green's function, the downgoing Green's function can also be de-
scribed by its updates. There are some di�erences in the way these updates behave. In
Figure 2-9 (a) the �rst estimation of the downgoing Green's function is shown, which is the
time-reversed estimation of the �rst arrival of the focusing function of the �rst type from
Figure 2-4 (b). Now according to Eq. (2-36) the �rst arrival needs to be convolved with the
re�ection series and this is shown in Figure 2-9 (b). This is the time-reversed version of the
trace in Figure 2-5 (b). Again this is done so that the events will yield a causal downgoing
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Figure 2-6: (a) Initial estimation of the upgoing Green's function, (b) updates of the upgoing
Green's function and (c) �nal upgoing Green's function after 8 iterations. All events
are based on the model found inTable A-1 and have been convolved with a 30 Hz
Ricker wavelet with a focal depth of 2000 m.

Figure 2-7: Schematic overview of re�ection events with an internal �rst-order multiple in the
medium of Table A-1 with a focal depth of 2000 meters and (a) a direct path from
the focal depth to the receiver and (b) an indirect path from the focal depth to the
receiver. The path of the wave�eld is given in red, the focal depth in dashed dark
blue and the redatuming from the receiver side in dashed green.
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Figure 2-8: Schematic overview of re�ection events with an internal second-order multiple in the
medium of Table A-1 with a focal depth of 2000 meters and (a) a direct path from
the focal depth to the receiver and (b) an indirect path from the focal depth to the
receiver. (c) indicates the wavepath of a �rst order multiple that also overlaps in
time with the events in (a) and (b). The path of the wave�eld is given in red, the
focal depth in dashed dark blue and the redatuming from the receiver side in dashed
green.

Green's function. By applying Θ to the trace, convolving it with the time-reversed re�ection
series and time-reversing the result the trace in Figure 2-5 (c) is retrieved. If Ψ is applied to
this trace the remaining events are the updates of the downgoing Green's function. Accord-
ing to Eq. (2-36), these updates need to be subtracted from the initial estimation instead of
added. Applying the �rst update to the initial estimation will decrease the amplitude of the
�rst arrival and at later times two close events with positive amplitudes will be introduced.
In Figure 2-10 (a) the initial estimation of the downgoing Green's function is shown, with its
updates shown in Figure 2-10 (b) and the �nal result after 8 iterations is shown in Figure 2-10
(c). In this �gure, it can be seen that the updates do indeed dampen the �rst arrival partially
and later events are added. Figure 2-6 and Figure 2-10 show the major di�erence between the
way the up- and downgoing Green's functions are retrieved. As mentioned before, the upgoing
Green's functions �rst estimation contains all the events as well as artifacts and subsequent up-
dates remove the artifacts and adjust incorrect amplitudes. The downgoing Green's functions
�rst estimation contains a single event, which is the �rst arrival and is very likely incorrectly
scaled and subsequent updates add other events to the function. These di�erences are the
reason that the downgoing Green's function cannot be used directly for the cost function,
whereas the upgoing Green's function can.

2-3 Correction factor in 1D

Eq. (2-35) and (2-36) will produce a Green's function in the physical medium, provided that the
re�ection series and modeled �rst arrival are accurate enough. As explained in the previous
section through the use of convolution and the time gate Θ, the Green's functions can be
retrieved by updating the �rst estimate. For the sake of convenience, Eq. (2-35) and (2-36)
are rewritten in 1D in order to make certain substitutions more straightforward:

“G−,+ (zf , 0, t) =
∞∑
i=0

“G−,+i (zf , 0, t) (2-37)
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Figure 2-9: (a) Initial estimation of the downgoing Green's function obtained by time-reversing
f+1d. (b) Time-reversed convolution of f+1d with the re�ection series with no muting
applied. This result is the time-reversed version of the one found in Figure 2-5 (b).
(c) Time-reversed convolution of the re�ection series with the events in between
the time gate truncation times from (b). In (c) the events below the lower time
gate truncation time and above the upper one are the �rst update to the downgoing
Green's function and need to be subtracted from the events in (a). All events are
based on the model found inTable A-1 and have been convolved with a 30 Hz Ricker
wavelet with a focal depth of 2000 m. All the events are time-reversed in order to
get a causal downgoing Green's function

Figure 2-10: (a) Initial estimation of the downgoing Green's function, (b) updates of the down-
going Green's function and (c) �nal downgoing Green's function after 8 iterations.
All events are based on the model found inTable A-1 and have been convolved with
a 30 Hz Ricker wavelet with a focal depth of 2000 m.
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“G+,+
m (zf , 0, t) =

∞∑
j=0

“G+,+
m,j (zf , 0, t) (2-38)

“G+,+
d (zf , 0, t) = “f+1d (zf , 0,−t) +

∞∑
k=0

“G+,+
d,k (zf , 0, t) (2-39)

Here, the Green's function that is recovered propagates from the surface, located at z = 0, to
the focusing depth zf in 1D. The downgoing Green's function is split into its direct arrival and
its coda. Furthermore, the components in Eq. (2-38) and (2-39) have been time-reversed so
that the resulting Green's function is causal. As a consequence of this choice, the direct arrival
of the focusing function has to be time-reversed before it enters the equations as symbolized
with the negative time symbol. The symbol “G means that a wavelet has been convolved with
the Green's function. The same can be done for any other wave�eld. This is the same wavelet
that was discussed earlier that is applied to the band-limited data and causes the shift in Θ.
Assuming that the source wavelet of the re�ection series has been deconvolved, the wavelet
that is applied can be freely chosen. The components of the Eq. (2-37), (2-38) and (2-39) are:

“G−,+i (zf , 0, t) =
{

Ψ (zf )RΩi (zf ) “f1d
}

(0, zf , t) (2-40)

“G+,+
m,j (zf , 0, t) = −

{
Ψm (zf )RΘ (zf )R∗Ω∗j (zf ) “f1d

}
(0, zf ,−t) (2-41)

“G+,+
d,k (zf , 0, t) = −

{
Ψd (zf )RΘ (zf )R∗Ω∗k (zf ) “f1d

}
(0, zf ,−t) (2-42)

Two new time gates have been de�ned. Ψd �lters out everything except the direct wave and
Ψm that does the same thing as the regular Ψ �lter except that it also �lters out the direct
arrival. These gates are used to split the downgoing wave into two seperate parts: the direct
part and the coda. Also the operator Ω∗ = ΘRΘR∗ is used. Thus again there is a series of
summation but this time exclusively in 1D.

2-3-1 Scaling of �rst arrival

The previous equations can be rewritten in order to derive a cost function. Before this can be
done, the amplitude of the �rst arrival has to be determined. As mentioned before, the �rst
arrival can be estimated in several di�erent ways, such as using receivers at the focal depth to
measure it directly (Liu et al., 2016) or using a macro velocity model to model it. In this thesis
the �rst arrival will always be modeled directly using synthetic models. This often means that
the �rst arrival is modeled with an amplitude of 1 or another incorrect amplitude. This is
because the modeled �rst arrival is computed using a smooth velocity model so transmission
losses are not always exact. In order to determine the scaling factor of the �rst arrival so that
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the Green's function has the correct amplitude, the following method is proposed. In 1D, the
�rst arrival and its frequency transform can be de�ned as:

“f+1d (0, zf , t) = a (zf ) “W (t+ td (zf )) (2-43a)
“f+1d (0, zf , ω) = a (zf ) “W (ω) exp (jωtd (zf )) (2-43b)

Here, td is the arrival time of the direct wave at focal depth zf , a(zf ) is a scaling factor
to compensate for transmission losses that occur while the waves are propagating through
the medium and “W (t + td) is a time reversed delta pulse occurring at time td which is then
convolved with a wavelet. In the frequency domain, the shift associated with td transforms
into the exponential exp(jωtd(zf )). An important point in Eq. (2-43a) is that a scaling factor
is present. This is needed in order to make sure that the Green's functions are correctly
scaled during their retrieval. This is due to the fact that at every boundary a wave passes
by the impedance contrast causes a transmission loss. The factor a(zf ) is the inverse of all
these transmission losses and is therefore always equal or larger than 1. In case the exact
background medium is known, the transmission losses can be calculated. In practice this is
often not possible so in this case it is calculated independently of such a background model.
In order to isolate the factor, the direct part of the downgoing Green's function is taken into
account, in case that no rescaling was applied:

“ξ (zf , 0, t) = “W (t− td (zf ))−
∞∑
k=0

{
Ψ (zf )RΘ (zf )R∗Ω∗k (zf ) “W

}
(t− td (zf )) (2-44)

This equation would contain the incorrect amplitudes, since there is no compensation for the
transmission losses applied. In order to make this part of the Green's function correct, the
scaling factor needs to be applied:

“G+,+
d (zf , 0, t) = a (zf ) “ξ (zf , 0, t) (2-45)

Eq. (2-24) states that the initial focusing function f+1d is the inverse of the direct arrival of
the transmission response or the direct part of the downgoing Green's function G+,+

d . The
frequency transform is used and after convolution with the wavelet Eq. (2-24) can be written
as:

“W (ω) = f+1d (zf , 0, ω) “G+,+
d (zf , 0, ω) (2-46)

In this case the wavelet is centered at zero time. Note there is no wavelet applied over f+1d
because that would produce a square of the wavelet on the left side of Eq. (2-46). Now Eq.
(2-46) can be combined with Eq. (2-43b) (2-44) and (2-45):

“W (ω) = a2 (zf ) exp (jωtd (zf )) “ξ (zf , 0, ω) (2-47)

Eq. (2-46) is assuming that the correctly scaled re�ection series is used. In case this is not true
or no preprocessing was applied, it can be assumed that the data has been incorrectly scaled
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with an unknown source strength q, which is causing problems for the Marchenko scheme.
The incorrect re�ection series R and R̃ are introduced that have been incorrectly scaled with
this unknown source strength just like in Eq. (1-1):

R̃ = q · R (2-48)

R̃∗ = q · R∗ (2-49)

The symbol R̃ indicates that the re�ection series has been incorrectly scaled. In order to
get the correct result the incorrect re�ection series have to be multiplied with an unknown
correction factor b as shown in Eq. (1-2)

R = b · R̃ (2-50)

R∗ = b · R̃∗ (2-51)

Now in Eq. (2-44) the re�ection series are replaced by substituting Eq. (2-50) and (2-51) to
take the incorrect scaling into account.

“ξ (zf , 0, t, b) = “W (t− td (zf )) +
∞∑
k=0

“U+
d,k (zf , 0, t) b

2(k+1) (2-52)

with

“U+
d,k (zf , 0, t) = −

{
Ψd (zf ) R̃Θ (zf ) R̃∗Ω̃∗j (zf )W

}
(0, zf ,−t) (2-53)

where

Ω̃ = ΘR̃
∗
ΘR̃ (2-54a)

Ω̃∗ = ΘR̃ΘR̃
∗

(2-54b)

The amount of times b is applied is equal to the amount of times R̃ was applied. Eq. (2-47),
(2-52) and (2-53) are combined to create an expression for the scaling of the direct wave:

a (zf , b) =

√√√√∣∣∣∣∣ “W (ω)

“W (ω) + exp (jωtd (zf ))
∑∞

k=0
“U+
d,k (zf , 0, ω) b2(k+1)

∣∣∣∣∣ (2-55)

This equation allows for the calculation of the scaling factor a(zf , b) at any depth zf in the 1D
medium given that the correct value for b is known. In higher order dimensions the horizontal
positions are also vital to obtain this factor.
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2-3-2 Scaling with single-sided redatuming

Having retrieved the correct scaling of the �rst arrival, a cost function for single-sided scaling
can be derived. This is based on the standard Marchenko scheme. The time-reversed �rst
arrival functions as a redatuming operator that subtracts the direct path from the focal point
to the physical receiver from the wavepath. This creates a so called virtual receiver at the
focal point, its name indicates that the receiver is not physically there but it is computed
using the equations. Certain multiples do not travel directly from the focal point and need to
be removed from the Green's function as they become artifacts such as the event in Figure 2-7
(b). Eq. (2-37), (2-38), (2-40) and (2-41) are rewritten to take into account the incorrect
scaling of the re�ection series:

“G−,+ (zf , 0, t, b) =

∞∑
i=0

“U−i (zf , 0, t) a (zf , b) b
1+2i (2-56)

“G+,+
m (zf , 0, t, b) =

∞∑
j=0

“U+
m,j (zf , 0, t) a (zf , b) b

2(j+1), (2-57)

where

“U−i (zf , 0, t) =
{

Ψm (zf ) R̃Ω̃i (zf ) “W
}

(0, zf , t+ td (zf )) (2-58)

“U+
m,j (zf , 0, t) = −

{
Ψm (zf ) R̃Θ (zf ) R̃∗Ω̃∗j (zf ) “W

}
(0, zf ,−t− td (zf )) (2-59)

Using these equations, the following objective function is proposed:

jI (b) =
|G−,+ (zf , 0, t, b) |2
|G−,+0 (zf , 0, t, b) |2

(2-60)

where the L2-norm is used and the denominator is de�ned as

“G−,+0 (zf , 0, t, b) = “U−0 (zf , 0, t) a (zf , b) b (2-61)

The idea behind this cost function is that if the series has been scaled correctly, the artifacts
will be suppressed and the desired events will remain. In case the source strength q is too
high, more artifacts will be introduced in Eq. (2-56) as seen in �gure 1-1. In case the source
strength q is too low, the opposite will happen and not enough energy will be removed from the
artifacts. Therefore the minimum of Eq. (2-60) should be at the correct scaling factor b. This
function is assumed to work when no re�ector is present below the focal point. Because there
are no re�ections coming from below the focal point, there is no upgoing �eld and therefore
the updated upgoing Green's function should approach 0.

For Eq. (2-60), it is assumed that there is no or very little overlap of physical events and
redatumed artifacts in the time-space domain. This assumption relates directly to having no
overlap of primaries and internal multiples, as is common to a variety of alternative internal
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multiple elimination algorithms (Berkhout and Verschuur, 2005) and free-surface multiple
elimination algorithms (Verschuur and Berkhout, 1997), (van Borselen et al., 2003). So Eq.
(2-60) can be used to �nd b, however as stated before the function behaves optimally only if
no re�ectors are present below the focal point. As will be demonstrated, the function does
not behave optimally in case these re�ectors are present. The reason for this can be seen in
Figure 2-7. As explained in section 2-2 the convolution with the time-reversed �rst arrival
redatums from the physical receiver to the focal point. The event in Figure 2-7 (a) is a physical
multiple in the Green's function but the event in Figure 2-7 (b) is an artifact and needs to be
removed. These events arrive at the same time, so when the second event is removed the �rst
event still remains. This was demonstrated by the events arriving at 1.7s in Figure 2-6 and
Figure 2-7 in section 2-2. Even more problems arise when di�erent order multiples are arriving
at the same time as shown by the events in Figure 2-8, that arrives at 2.4s in Figure 2-6. In
this case the updates actually increase the energy due to the interaction of the di�erent events.
This update works against the minimization of the upgoing Green's function and there are
more updates behaving just like it. The relevance of this interaction is model dependent but
it is present for most models, making it a serious problem in general heterogeneous media.

2-3-3 Scaling with double-sided redatuming

Because the �rst cost function is not functioning well in general heterogeneous media, another
cost function is proposed that applies double-sided redatuming. This means that redatuming
is applied at both the source and receiver side instead of only at the receiver side. The reason
for this is shown in Figure 2-11. The redatuming that is also applied at the source side ensures
that there is no consistent overlap between the physical events that should be preserved and
non-physical events that should be removed. By applying this methodology, the problems
that prevent the use of a focal point above the deepest re�ector are avoided.

Figure 2-11: Schematic overview of re�ection events with an internal multiple in a medium with
a focal depth above the deepest re�ector and (a) a direct path from the focal depth
to the receiver and (b) an indirect path from the focal depth to the receiver. The
path of the wave�eld is given in red, the focal depth in dashed dark blue and the
redatuming from the receiver side and source side in dashed green.

In order to apply double-sided redatuming and derive the cost function, equation 36 from
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Wapenaar et al. (2014b) will be used in the frequency domain. This equation can be written
in 1D as:

“G−,+ (zf , 0, ω, b) = R0 (zf , ω, b)
(

“G+,+
d (zf , 0, ω, b) + “G+,+

m (zf , 0, ω, b)
)

(2-62)

Here R0 is the re�ection series at focal depth zf as if the medium above it were re�ection
free. The subscript 0 is used to de�ne that this re�ection series is de�ned in this truncated
medium. This makes it di�erent from the re�ection series acquired at the surface which is
used in the operators R̃ and R̃∗. “f+1d can be applied to Eq. (2-62) and using the substitutions
in Eq. (2-43b) and (2-46) the result can be rewritten after deconvolution of the wavelet as:

“G−,+ (zf , 0, ω b) exp (jωtd (zf )) a (zf , b) =

“R0 (zf , ω, b)×
(

1 + “W−1 (ω) “G+,+
m (zf , 0, ω, b) exp (jωtd (zf )) a (zf , b)

)
,

(2-63)

where R0 was convolved with the wavelet which yields “R0. Because of this, the wavelet needs
to be removed from the “G+,+

m , which in this case is indicated by “W−1 (ω). The 1 in Eq. (2-63)
is the result of the direct downgoing Green's function being multiplied by its inverse. The
form of Eq. (2-63) is again a Fredholm integral of the second kind and can be solved for “R0

using iterative substitution:

“R0 (zf , ω, b) =
∞∑
k=0

(
− “W−1 (ω) exp (jωtd (zf )) “G+,+

m (zf , 0, ω, b) a (zf , b)
)k
×

exp (jωtd (zf )) “G−,+ (zf , 0, ω, b) a (zf , b)

(2-64)

In this equation, it is apparent why the wavelet needed to be removed. Due to the power k
the wavelet would be applied several times yielding an incorrect �nal result. From a physical
interpretation of the individual terms, it can be seen that in the �rst term of the series, all
physical re�ections and artifacts are constructed. In subsequent terms only artifacts are being
removed, similar to the series in Eq. (2-37). The �rst term can then be written out (by taking
k = 0) and taking the �rst terms of Eq. (2-56) and (2-57), yielding:

“R0,0 (zf , ω, b) = exp (jωtd (zf )) “U−0 (zf , 0, ω) a2 (zf , b) b (2-65)

Eq. (2-64) and (2-65) are combined to construct a double-sided cost function:

jII (b) =

∣∣∣ “R0 (zf , t, b)
∣∣∣
2∣∣∣ “R0,0 (zf , t, b)
∣∣∣
2

(2-66)

In this cost function, the re�ection series have been Fourier transformed back to the time
domain. The function also depends non-linearly on b. However the computation of this
function is more intensive than that of jI(b) in Eq. (2-60) due to the more complex nature.
This cost function is much more robust against re�ectors below the focal point than equation
2-60 however. Its one weakness is that this whole procedure is based on the redatuming of
the events arriving at the receiver and source side. This means that if an internal multiple is
coinciding in arrival time at the receivers with a physical primary, the procedure is not capable
of separating these events. This will induce errors when one is trying to �nd the minimum
(note that the equation for jI(b) has the same problem).
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2-3-4 Alternative scaling with double-sided redatuming

While jII is a robust cost function, it does require a large amount of focal points in order
to correctly evaluate, when applied in 2D or 3D. Eq. (2-63) contains a simple multiplication
in 1D but for higher order dimensions this multiplication transforms into an integral over
all the focal points needed to create a full Green's function. This means that this integral
will also be present in the Neumann series in Eq. (2-63). This would require an enormous
amount of memory space and computing power to implement. Therefore, an alternative cost
function using double-sided redatuming is introduced. To do this, the reciprocity theorem in
Eq. (2-4a) is used. The two states in Figure 2-12 are used. In state A, a downgoing source
is inserted at location x′S which is just below the boundary ∂Di. The wave�eld due to this
source can be split into an upgoing and downgoing part such that p+A = G+,+(x,x′S , ω) and
p−A = G−,+(x,x′S , ω). The downgoing wave�eld p+A at the upper boundary ∂D0 is zero because
of the re�ection-free half-space above this boundary. In state B, the focusing function of the
�rst type is substituted. At the lower boundary, it focuses downwards at the focal point
x′F such that p+B = δH(xi − x′F ). The medium is truncated so there is no re�ection coming
from below the boundary and therefore p−B = f−1 (x,x′F , ω) = 0. At the upper boundary,
the �rst type of focusing function is completely present such that p−B = f−1 (x,x′F , ω) and
p+B = f+1 (x,x′F , ω). These results are plugged into the reciprocity theorem of Eq. (2-4a) which
results into: ∫

∂D0

f+1 (x,x′F , ω)G−,+(x,x′S , ω)d2x = G−,+(x′F ,x
′
S , ω) (2-67)

G−,+(x′F ,x
′
S , ω) in this case is the upgoing Green's function at depth as the result of a source

at depth zi. G−,+(x,x′S , ω) is the upgoing Green's function at the surface as the result of a
source at depth. The latter can be rewritten using source-receiver reciprocity, meaning that
the source and receiver positions can be exchanged while the result remains the same, resulting
in the upgoing Green's function at depth as the result of a downgoing source at the surface.
Thus when the source is located on the surface and all the waves are oriented downwards:

G−,+(x,x′S , ω) = G−,+(x′S ,x, ω) (2-68)

This is the upgoing Green's function retrieved by Eq. (2-35). This substitution can be used
in Eq. (2-68): ∫

∂D0

f+1 (x,x′F , ω)G−,+(x′S ,x, ω)d2x = G−,+(x′F ,x
′
S , ω) (2-69)

Finally the source and focal point are set to the same position x′S = x′F∫
∂D0

f+1 (x,x′F , ω)G−,+(x′F ,x, ω)d2x = G−,+(x′F ,x
′
F , ω) (2-70)

The focusing function and the upgoing Green's function can be recovered using the Marchenko
scheme and be used to determine the upgoing response of the medium with respect to a
downgoing source at the same position. It is similar to the re�ection series that is de�ned by
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Actual inhomogeneous medium Actual inhomogeneous medium
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Actual inhomogeneous half−space
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Figure 2-12: Two di�erent states that can be used in the reciprocity theorems Eq. (2-4a) and
(2-4b) (a) Physical medium containing all the re�ections due to a simulated source
at the focal depth zi. (b) Truncated model with no re�ection coming in from below
depth zi with a focal point at x′F . Modi�ed after Wapenaar et al. (2014a).
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Eq. (2-64) but de�ned by a di�erent medium. R0 is de�ned in a medium that is homogeneous
above the focusing level and therefore no re�ections are coming from above this level. G−,+

in Eq. (2-70) is also operating at the same level, however the medium is the exact medium
so re�ections from above are still present. The di�erence with the upgoing Green's function
G−,+(x′F ,x, ω) is that in this case the source has been redatumed to the focal depth. This is
the solution for the cost function problems that was presented in Figure 2-11. Because the
physical medium is used, it is more likely that events will interfere with each other than if R0

is used. However this happens only with very few events. Eq. (2-70) can be rewritten to 1D,
where the integral becomes a simple multiplication

““G
−,+

(zf , zf , ω) = “f+1 (0, zf , ω) “G−,+(zf , 0, ω) (2-71)

Eq. (2-31) is used to write out a series for “f+1 in 1D. Similar to Eq. (2-56), the series can be
written as a function of the scaling factors b and a(zf , b):

“f+1 (0, zf , t, b) =
∞∑
k=0

“v+k (0, zf , t)a(zf , b)b
2k (2-72)

The updates of the focusing function can be retrieved with a function similar to Eq. (2-58):

“v+k (0, zf , t) =
{

Ωk(zf ) “W
}

(0, zf , t) (2-73)

By substituting these equations into Eq. (2-71) and by taking the �rst term of both series,
the �rst term of the physical response “G−,+ can be retrieved:

““G
−,+
0 (zf , zf , ω, b) = “U−0 (zf , 0, ω)exp(jωtd(zf )) “W (ω)a2(zf , b)b (2-74)

This is actually the same equation as Eq. (2-65) with the exception of one extra wavelet
applied. The wavelet can be removed with a deconvolution step, but this is not strictly
necessary. A third cost function is proposed that is very similar to Eq. (2-66)

jIII (b) =

∣∣∣∣““G−,+(zf , zf , t, b)

∣∣∣∣
2∣∣∣∣““G−,+0 (zf , zf , t, b)

∣∣∣∣
2

(2-75)

This cost function contains more events, however it is computationally a lot faster and it does
not require a deconvolution which is a nice feature. These properties are especially important
when the higher order dimensions are considered.
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2-4 Correction factor in 2D/3D

In this section the cost functions from the previous sections are extended to 2D and 3D. This
section will be brief in comparison with the previous as a lot of observations are very similar.
First the Green's function retrieval scheme is shown in the higher order dimensions with the
correction factors included similar to Eq. (2-56) and (2-57) but expressed in the frequency
domain

“G−,+
(
x′F ,xR, ω, b

)
=

∞∑
i=0

“U−i
(
x′F ,xR, ω

)
a
(
x′F , b

)
b1+2i (2-76)

“G+,+
m

(
x′F ,xR, ω, b

)
=
∞∑
j=0

“U+
m,j

(
x′F ,xR, ω

)
a
(
x′F , b

)
b2(j+1) (2-77)

“G+,+
d

(
x′F ,xR, ω, b

)
= “f+∗1d

(
xR,x

′
F , ω, b

)
+
∞∑
k=0

“U+
d,k

(
x′F ,xR, ω

)
a
(
x′F , b

)
b2(j+1) (2-78)

In this equation x′F denotes a focal point somewhere in the medium and xR is at a location
on the acquisition surface where the re�ection series is recorded. Depending on whether the
medium is in 2D or 3D x = (x, z) or x = (x, y, z).

2-4-1 Scaling the �rst arrival

In higher order dimensions, the �rst arrival is not a single trace but rather an entire wave
which is de�ned as “D(xR,x

′
F , ω). This arrival can be calculated from the velocity model and

after scaling it is assumed to be related to the �rst arrival of “f+1d

“f+1d
(
xR,x

′
F , ω, b

)
≈ a

(
x′F , b

)
“D(xR,x

′
F , ω) (2-79)

It should be pointed out that it is assumed that a(x′F , b) is a scalar and not angle dependent.
The impact of this assumption needs to be further examined when the cost functions are
implemented in 2D and 3D. In the scope of this study only the scalar case is considered. In
the future the idea might be extended to take into account these angle-dependent e�ects. The
�rst arrival can be modeled using the wavelet “W (ω) that was used before. If this is done, then
once again f+1d and G

+,+
d are each others direct inverse which has the important fundamental

property in higher order dimensions

∫
∂D0

“G+,+
d

(
x′F ,xR, ω, b

)
“f+1d
(
xR,x

′
F , ω, b

)
d2xR = | “W (ω)|2 (2-80)

The result of this property is the squared autospectrum of the wavelet, which is the result
of the wavelets that are applied over both “G+,+

d and “f+1d. When Eq. (2-78) and (2-79) are
substituted into Eq. (2-80) the scaling factor a(x′F , b) can be found
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““tL(x′F , ω)a2(x′F , b) = | “W (ω)|2 (2-81)

where

““tL(x′F , ω) =

∫
∂D0

“D∗
(
xR,x

′
F , ω, b

)
“D
(
xR,x

′
F , ω, b

)
d2xR+∫

∂D0

∞∑
k=0

“U+
d,k

(
x′F ,xR, ω

)
b2(j+1) “D

(
xR,x

′
F , ω, b

)
d2xR

(2-82)

Then by rewriting Eq. (2-81) the scaling factor for higher order dimensions is given as

a(x′F , b) =

√√√√∣∣∣∣∣ | “W (ω)|2
““tL(x′F , ω)

∣∣∣∣∣ (2-83)

2-4-2 Cost functions

The �rst type of cost function that only uses redatuming at the receiver side is the same as
the one found in Eq. (2-60) with the exception that the Green's functions are evaluated in
higher order dimensions according to Eq. (2-76)

JI (b) =
|G−,+ (x′F ,xR, ω, b) |2
|G−,+0

(
x′F ,xR, ω, b

)
|2
, (2-84)

where

“G−,+0

(
x′F ,xR, ω, b

)
= “U−0

(
x′F ,xR, ω

)
a
(
x′F , b

)
(2-85)

The JI indicates that the cost function is in either 2D or 3D and jI indicates it is in 1D. This
is again a cost function that only works well below the deepest re�ector. Thus the other cost
functions are required to account for re�ectors below the focal point. A 2D/3D expansion of
the second type of cost function jII would be most robust, however it is very computationally
expensive. As explained before this would require an integral over the focal points to be
applied several times resulting in very high memory cost. Thus the third type of focusing
function jIII is extended to the higher order dimensions instead. For this reason Eq. (2-70) is
repeated which is already in the higher dimensions

““G
−,+

(x′F ,x
′
F , ω) =

∫
∂D0

“f+1 (x,x′F , ω) “G−,+(x′F ,x, ω)d2x (2-86)

and the �rst term of the series in Eq. (2-86) can be obtained by using the �rst terms of “G−,+

and “f+1 :
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““G
−,+
0 (x′F ,x

′
F , ω) =

∫
∂D0

“D
(
x,x′F , ω, b

)
a2(x′F , b)b “U−0

(
x′F ,x, ω

)
d2x (2-87)

Finally the following cost function can be de�ned in 2D and 3D:

JIII (b) =

∣∣∣∣““G−,+(x′F ,x
′
F , t)

∣∣∣∣
2∣∣∣∣““G−,+0 (x′F ,x

′
F , t)

∣∣∣∣
2

(2-88)

This cost function is able to handle focal positions that are located above the deepest re�ector
in higher order dimensions. In the following chapter its behavior and that of the other cost
functions will be demonstrated.
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Chapter 3

Cost function results in 1D

This chapter will focus mainly on the results achieved by the cost functions and the reasons
why the cost functions do or do not function properly. Several di�erent models have been
tested with the cost functions. All of these models have the free-surface multiples removed
from the data, which is a requirement for the scheme that has been developed here. The �rst
model that is used is the model in Table A-1. This is a simple model with strong re�ectors
throughout the entire model and a constant velocity. Variations of this model have also been
tested and unless noted otherwise the results are similar to the results from this model. The
weak model in Table A-2 is very similar to the simple model, but the lowest re�ector has a much
weaker contrast than the re�ectors above it. And �nally the artifact model from Table A-3 is
considered. This model has been speci�cally developed to have overlapping re�ection events,
which will disrupt the calculation of the cost functions. In Figure 3-1 the re�ection series
for all of the models are shown, which were generated with a Ricker wavelet of 30 Hz. The
re�ection series in Figure 3-1 (a) and (b) have the same arrival times. In Figure 3-1 (b), later
events have much weaker amplitudes than the latet events in Figure 3-1 (a), to the point
where they are no longer visible on the trace anymore. The re�ection series in Figure 3-1 (c)
for the artifact model has regular intervals between all the events.

3-1 Scaling of the �rst arrival

First, the scaling of the �rst arrival is considered in order to account for transmission losses.
As seen in the previous chapter, the phase of the �rst arrival is modeled from the velocity
model and its amplitude is set to 1. While it is not impossible that this is the actual amplitude
of the �rst arrival, it is highly unlikely. The only case where this is possible is if there are no
re�ectors present in the overburden, so that there are no transmission losses. Using Eq. (2-55)
the transmission losses can be compensated for, in case the correct source strength q = 1 is
known or the correction factor b has been applied. In Figure 3-2 a(zf ) has been plotted for all
three of the models, with the layer contrast locations indicated in green. For every model, the
scaling factor starts out at a value of 1. This is because in this modeling only transmission
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Figure 3-1: Re�ection series without surface multiples retrieved at the surface for (a) the simple
model in Table A-1, (b) the weak model in Table A-2 and (c) the artifact model in
Table A-3. All of these series have been generated with a 30 Hz Ricker wavelet.

losses due to the re�ectors are considered and the medium itself is considered to be lossless.
At deeper depths, below boundaries, the factor increases in strength to account for the losses
from transmission of one layer to the next. In Figure 3-2 (b) the �nal contrast is very weak so
the value of a(zf ) does not change much. At the depth of a layer contrast, the factor starts to
behave erratically and takes a strong dip. This can be explained by the plots in Figure 3-3. In
Figure 3-3 (a), the modeled �rst arrival and time gate truncation times are correct and do not
interfere with each other, but in Figure 3-3 (b) where the convolution of the re�ection series
and the �rst arrival is shown the time gate truncation times overlies part of the event. When
the muting is applied, part of this event will be preserved and another part will be muted
out. Thus, an incomplete signal is left which causes problems when further convolutions are
applied which is visible in Figure 3-3 (c). Here the muted signal from Figure 3-3 (b) has
been convolved with the time-reversed re�ection series. The events are not complete pulses
but rather parts of it, which will cause incorrect values for a(zf ). In order to prevent this
from occurring the truncation times of Θ can be shifted to avoid overlap with the events.
In case there is an overlap, the limits is shifted both backwards and forwards and the value
for a(zf ) above and below the layer contrast are both determined. Depending on the shift
that was needed, a transition value is calculated using a cosine function. After applying this
methodology, the result of Figure 3-2 is improved to that in Figure 3-4. In this �gure the
transition is less erratic. The �nal change in a(zf ) for the weak model in Figure 3-4 (b) is not
noticeable on this scale. Applying this methodology has removed the erratic behavior from
the jumps. Going forward this methodology will be applied to a(zf ) whenever it is located
near a layer contrast.
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Figure 3-2: Scaling factor a(zf ) for the transmission losses at every 1 meter depth for (a) the
simple model in Table A-1, (b) the weak model in Table A-2 and (c) the artifact
model in Table A-3. The locations of the layer contrasts have been indicated in
dashed green.

Figure 3-3: (a) Modeled �rst arrival of the downgoing focusing function of the �rst type. (b)
Convolution of the re�ection series and the trace in (a). (c) Convolution of the
time-reversed re�ection series with the events in (b) after the muting window Θ has
been applied. All of these events were generated using the simple model in Table A-
1 at a focal depth of 1520 meters using a 30 Hz Ricker wavelet. The time gate
truncation times are indicated in dashed black. Note that the time gate truncation
time is overlying part of an event in (b) and that the events in (c) are distorted.
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Figure 3-4: Scaling factor a(zf ) for the transmission losses at every 1 meter depth for (a) the
simple model in Table A-1, (b) the weak model in Table A-2 and (c) the artifact
model in Table A-3. The transition over layer contrasts is smoothed using a cosine
function. The locations of the layer contrasts have been indicated in dashed green.

3-2 Single-sided redatuming cost function

The cost function jI from Eq. (2-60) is considered �rst. The simplest situation in which every
cost function should work is when the focal point is located below the deepest re�ector in
a medium. The simple model from Table A-1 is considered �rst and a focal depth of 2700
meters is used to avoid any problems with the interference of events. The value of q is set to
1 so that the re�ection series is correct and the value that should be recovered for b is also 1.
Figure 3-5 shows that in this case the minimum has a very strong dip and recovers the correct
value of b = 1 for the blue line. This strong dip is due to the fact that the upgoing Green's
function below the deepest re�ector should be zero so the di�erence between the initial and
�nal estimation is very strong. The strong dip around the correct value for b is also because
of this. In case b is incorrect, there will be events in the �nal trace instead of the empty
trace. This contrast is much weaker and therefore the cost increases quickly. In case the
re�ection series has been scaled incorrectly, the minimum is also found at the correct value
for b. The minima are comparable to the one found for q = 1, again because the upgoing
Green's function should be zero. The values for the cost are equal or less to 1 or when the
value of b is too low. This is due to the fact that the weaker the re�ection series, the less
amount of energy is removed from the initial estimation. So if the value for b is very low,
almost nothing is removed and the cost function approaches the value of 1. This can be seen
in Figure 3-6, where the solid blue line indicates the correct value for b and the �nal estimation
of the upgoing Green's function in Figure 3-6 (c) is indeed zero here. Each of the lines in this
�gure has been normalized with the L2-norm of the initial trace i.e. |G−,+0 |2. This is the same
normalization that is used for the cost function and ensures that all the initial estimates are
equal. This makes it easier to distinguish what e�ect incorrect updates have. The dashed red
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3-2 Single-sided redatuming cost function 39

line in Figure 3-6 shows what happens if the value for b is too low. The updates are much
weaker than those for the correct value for b as can be seen in Figure 3-6 (b) and therefore
the di�erence between the �nal and initial estimation is much smaller, resulting in a higher
cost. The L2-norm uses squares so calculating the cost always results in a positive value. The
cost decreases when the value of b goes from too low to the correct value and increases again
when the value of b increases. This can be gathered from the dotted black lines in Figure 3-6
where the correction factor for b is too high and therefore the updates are too strong, so they
do not remove the events but rather �ip the polarity. Because of the squares in the L2-norm
the polarity does not matter and the �nal value for the cost is positive. In case the value for b
is set even higher more energy is added to the events with reversed polarity, which causes the
energy in the �nal estimation to greatly increase. This energy can become greater than that
of the original estimate, which is why the value of the cost becomes greater than 1. Figure 3-7
shows the results for the weak model and Figure 3-8 does this for the artifact model. For
both models the correct values for b are recovered and the shape of the cost curve is similar
to that of the cost curve for the simple model. There are some di�erences in the value of the
cost. Figure 3-7 has an even lower value of the minimum for the weak model and the slope
of the cost for higher b is more gentle, while the artifact model has a much higher minimum
as Figure 3-8 shows and has a much steeper slope for higher values of b. This is just a model
dependent di�erence and not a fundamental property of the cost function. All of the models
do have a clear minimum at the correct values, which is the desired result.

Figure 3-5: Cost function jI using Eq. (2-60) for the simple model in Table A-1 at a focal depth
of 2700 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2. The
location of the correct value of b is indicated by the close-dashed vertical lines. The
y-axis is logarithmic.

In case there are re�ectors present below the focal point, the upgoing Green's function is
not equal to zero, so potential problems can arise. The focal depth is changed to a depth
of 2200 meters, which for all three of the models is above the deepest re�ector. The simple
model is considered �rst and the result is shown in Figure 3-9. In this case, incorrect values
for b are recovered by a signi�cant margin as the minimum of the curves are clearly at a
di�erent location than the correct values indicated by the vertical lines. As explained in the
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Figure 3-6: (a) Initial estimation of the upgoing Green's function, (b) updates of the upgoing
Green's function and (c) �nal upgoing Green's function after 8 iterations for a cor-
rection factor b of (solid blue) 1, (dashed red) 0.5 and (dotted black) 1.5. All events
are based on the model found inTable A-1 and have been convolved with a 30 Hz
Ricker wavelet with a focal depth of 2700 m and have been normalized with |G−,+0 |2
of the relevant re�ection series.

Figure 3-7: Cost function jI using Eq. (2-60) for the weak model in Table A-2 at a focal depth
of 2700 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2. The
location of the correct value of b is indicated by the close-dashed vertical lines. The
y-axis is logarithmic.
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3-2 Single-sided redatuming cost function 41

Figure 3-8: Cost function jI using Eq. (2-60) for the artifact model in Table A-3 at a focal depth
of 2700 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2. The
location of the correct value of b is indicated by the close-dashed vertical lines. The
y-axis is logarithmic.

previous chapter, the cost function jI is not good at handling strong re�ectors below the focal
point. The reason for this, as explained in Figure 2-7 and Figure 2-11, is that physical events
overlap in time with the events that will create artifacts and the updates cannot separate these
events. Figure 3-10 shows the upgoing Green's function for a source strength of q = 1 (which
corresponds to the blue line from Figure 3-9). The dashed red line is the correct value for b and
does remove the artifacts. A value of 1.2 used for b is very close to the actual minimum that
was found, but it does still contain incorrect events. There is very little di�erence between
the two lines, with some very subtle di�erences that can be found in Figure 3-10 (c), this is
also visible in Figure 3-9. The value of the minimum is very close to 1 and can only be made
apparent by using a logarithmic scale. This is due to the fact that the internal multiples that
are muted have very weak amplitudes compared to the stronger re�ections as can be seen
in Figure 3-10. The curve itself is also much smoother. Because of these small di�erences,
the cost function has its minimum at the wrong value of b. These di�erences are caused by
two things. The fact that an artifact and physical event overlap and the overlap of higher-
order multiples with lower-order multiples. In the �rst case, as demonstrated by the events in
Figure 2-7, one artifact is removed from the initial estimation and one physical event remains.
However, if the source strength is estimated too high, the amplitude of the update that should
only remove the artifact also removes the physical event. In case this happens for multiple
events the �nal trace contains less energy for a too high value of b than in case the correct
value of b is used. An example of this can be seen in Figure 3-10 at around 1.6s. The e�ect
of this can be seen in Figure 3-9, which clearly shows that in every case b is estimated too
high, not too low. The second case is demonstrated by the events in Figure 2-8. The higher-
order multiples have the opposite polarity of the lower-order multiples and they overlap in
time. When one of these higher-order multiples is an artifact and is removed, it causes the
amplitude of the combined event to go up, because this event does not oppose the amplitude
of the lower-order multiple. Because these e�ects are caused by di�erent-order multiples, the
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impact is much weaker than the �rst problem. An example of this problem is the event at
2.3s in Figure 3-10. These problems do not mean that jI does not work at all for re�ectors
below the focal point. In case the re�ectors are very weak such as for the weak model in
Table A-2 the function does recover acceptable values for b as can be seen in Figure 3-11.
The minima are still less pronounced and the curves are more smooth compared to the case
when the focal point is located below the deepest re�ector. Figure 3-12 shows that in case of
a very weak low re�ector, most of the events become so weak that they do not signi�cantly
contribute anymore. The reason for these small amplitudes is that the multiples lose more
energy every time they hit this weak re�ector. The problematic events are still present but
their impact is much weaker and the cost function is more accurate. However, the method
will never work as well as the case that the focal point is located below the deepest re�ector.
In case of the artifact model in Table A-3 the function clearly does not work. In this case not
only do physical events overlap with artifacts, they also overlap with other physical events.
From these results, it can be concluded that while the �rst cost function jI does work if the
focal point is located above the deepest re�ector in case of a general model like the simple
model from Table A-1. The cost function is not as robust as one would desire. In case of a
model like the artifact model from Table A-3, it is better not to apply the Marchenko scheme
if the source strength is unknown. The results of the cost function prove as much as the value
of b is indicated to be 0 which would not apply any updates. This states that in this case one
should not apply the Marchenko method at all and in case the re�ection series is assumed to
be scaled incorrectly this is actually good advice. The result states that in this case it would
be better to apply conventional methods.

Figure 3-9: Cost function jI using Eq. (2-60) for the simple model in Table A-1 at a focal depth
of 2200 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2. The
location of the correct value of b is indicated by the close-dashed vertical lines. The
y-axis is logarithmic.
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Figure 3-10: (a) Initial estimation of the upgoing Green's function, (b) updates of the upgoing
Green's function and (c) �nal upgoing Green's function after 8 iterations for a
correction factor b of (solid blue) 1.2, (dashed red) 1.0 and (dotted black) 1.4. All
events are based on the model found inTable A-1 and have been convolved with a
30 Hz Ricker wavelet with a focal depth of 2200 m and have been normalized with
|G−,+0 |2 of the relevant re�ection series.

Figure 3-11: Cost function jI using Eq. (2-60) for the weak model in Table A-2 at a focal depth
of 2200 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2. The
location of the correct value of b is indicated by the close-dashed vertical lines. The
y-axis is logarithmic.
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Figure 3-12: (a) Initial estimation of the upgoing Green's function, (b) updates of the upgoing
Green's function and (c) �nal upgoing Green's function after 8 iterations for a
correction factor b of (solid blue) 1.0, (dashed red) 0.5 and (dotted black) 1.5. All
events are based on the model found inTable A-2 and have been convolved with a
30 Hz Ricker wavelet with a focal depth of 2200 m and have been normalized with
|G−,+0 |2 of the relevant re�ection series.

Figure 3-13: Cost function jI using Eq. (2-60) for the artifact model in Table A-3 at a focal
depth of 2200 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2.
The location of the correct value of b is indicated by the close-dashed vertical lines.
The y-axis is logarithmic.
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3-3 Double-sided redatuming cost function

In this section, the second cost function jII from Eq. (2-66) is considered. This cost function
should be able to improve upon the results of the �rst cost function jI for the simple model. In
case of the artifact model from Table A-3, the same problems are to be expected. Figure 3-14
shows the results in case the focal point is located below the focal point for the second cost
function, similarly as how Figure 3-5 did this for the �rst cost function. The results are similar
to the ones found for the �rst cost function. The di�erences are due to the fact that in this
case the energy of the truncated re�ection series is minimized while for the �rst cost function
the energy of the upgoing Green's function was minimized. When studying Figure 3-15 (a)
the initial estimation contains incorrect events that all need to be removed. These estimates
have been normalized with the L2-norm of the �rst estimate of the truncated re�ection series
|R0,0|2. This is done to make the comparison between the di�erent scaling factors easier to
interpret. When the correct value for b is used, the updates remove these events and the
result is an empty trace. In case of an incorrect value of b, the updates behave similar for the
truncated re�ection series to those of the upgoing Green's function. As mentioned before the
upgoing Green's function has an initial estimate, which contains all the physical events and
artifacts. Subsequent updates remove the artifacts. The downgoing Green's function contains
a single �rst arrival initially and subsequent updates add the other physical events and adjust
the amplitude of the �rst arrival. The use of this updated downgoing Green's function helps to
remove the artifacts present in the truncated re�ection series. In case the acquired re�ection
series has been scaled too weakly, the amplitude of these events will be too weak. In case the
acquired re�ection series is scaled too strong, the amplitudes of the updates will be too strong.
Because the truncated re�ection series is retrieved by a frequency domain multiplication of
the upgoing and downgoing Green's function, both of these behaviors are a�ecting the �nal
result. Especially in case the value used for b is too large, a lot of artifacts are enhanced which
clearly distort the �nal result. The results for the weak and artifact model for the second cost
function in Figure 3-16 and Figure 3-17 are also very similar to those for the �rst cost function
in Figure 3-7 and Figure 3-8. This shows that the second type of cost function is as robust for
focal points below the deepest re�ector as the �rst type of cost function for all of the models.

The second cost function should be able to handle the problems that the �rst cost function
has if the focal point is located above the deepest re�ector. It is applied to the simple model
at a focal depth of 2200 meters and the results are shown in Figure 3-18. The minimum is not
very pronounced and the cost function is smoother than if the focal point is located below the
deepest re�ector. However the cost function does �nd the correct values of b for each of the
incorrect source strengths q. This is an improvement over the �rst cost function and makes
the application of this cost function more e�ective. This is the �rst cost function that does not
require all events to be removed from the initial estimation as is shown in Figure 3-19. In case
b is underestimated, these events are not removed, although the physical event is estimated at
the correct value. In case b is overestimated, the truncated re�ection series introduces a lot of
very strong artifacts. However the physical event is still estimated correctly. The weak model
produces similar results in Figure 3-20 but with stronger minima. The second cost function
also works for this model and is not inferior to the �rst cost function. Finally the artifact
model in Figure 3-21 does not produce the correct results. This is due to the unavoidable
overlap of events in time which makes the construction of the truncated re�ection response
di�erent. This can be seen in Figure 3-22 (a) where the events are at regular intervals. There
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Figure 3-14: Cost function jII using Eq. (2-66) for the simple model in Table A-1 at a focal
depth of 2700 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2.
The location of the correct value of b is indicated by the close-dashed vertical lines.
The y-axis is logarithmic.

Figure 3-15: (a) Initial estimation of the truncated re�ection series, (b) updates of the truncated
re�ection series and (c) �nal truncated re�ection series after 8 iterations for a
correction factor b of (solid blue) 1, (dashed red) 0.5 and (dotted black) 1.5. All
events are based on the model found inTable A-1 and have been convolved with a
30 Hz Ricker wavelet with a focal depth of 2700 m and have been normalized with
|R0,0|2 of the relevant re�ection series.
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Figure 3-16: Cost function jII using Eq. (2-66) for the weak model in Table A-2 at a focal depth
of 2700 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2. The
location of the correct value of b is indicated by the close-dashed vertical lines. The
y-axis is logarithmic.

Figure 3-17: Cost function jII using Eq. (2-66) for the artifact model in Table A-3 at a focal
depth of 2700 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2.
The location of the correct value of b is indicated by the close-dashed vertical lines.
The y-axis is logarithmic.
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are also multiples overlapping with physical primaries and other multiples. Thus when updates
are applied to these events they either increase or decrease the amplitude. A good example of
this is the �rst event that gets a very strong update, that increases the amplitude in case of
the correct value of b. If b is estimated too low, this update is much weaker and as such the
cost function value will be lower. The updates are still correct but it is no longer minimizing
the trace because of the interfering events. As a result, for the correct value of b, the energy
in the trace can be higher than for the correct b because the physical events are no longer
dampened by artifacts that have the opposite polarity. This is similar to the reason that the
�rst cost function does not work above the deepest re�ector: The overlap of artifacts and
physical events. However, in case of the artifact model this is a fundamental problem that
cannot be solved by the second cost function. A re�ection series with a lot of overlapping
events is therefore very hard to tackle using the cost functions, unless the focal point is below
the deepest re�ector. In case the source strength q is not known for such a model, it is best
not to apply the Marchenko scheme or to determine the source strength in a di�erent way. It
should be noted that conditions like this are very unlikely to occur in real media.

Figure 3-18: Cost function jII using Eq. (2-66) for the simple model in Table A-1 at a focal
depth of 2200 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2.
The location of the correct value of b is indicated by the close-dashed vertical lines.
The y-axis is logarithmic.

3-4 Alternative double-sided redatuming cost function

The third cost function jIII from Eq. (2-75) is similar to the second cost function jII in the
way that it can handle re�ectors below the focal point. It is not as computationally intensive
as the second cost function. In 1D this is not a real problem but the computational cost
increases greatly in 2D and 3D. First and foremost, the focal point below the deepest re�ector
is considered. As Figure 3-23, Figure 3-24 and Figure 3-25 show, the result is very similar
to the ones found for the previous two cost functions. The minimum is found with a very
strong dip at the correct value of b. This shows that for every cost function the correct value

August 19, 2016



3-4 Alternative double-sided redatuming cost function 49

Figure 3-19: (a) Initial estimation of the truncated re�ection series, (b) updates of the truncated
re�ection series and (c) �nal truncated re�ection series after 8 iterations for a
correction factor b of (solid blue) 1, (dashed red) 0.5 and (dotted black) 1.5. All
events are based on the model found inTable A-1 and have been convolved with a
30 Hz Ricker wavelet with a focal depth of 2200 m and have been normalized with
|R0,0|2 of the relevant re�ection series.

Figure 3-20: Cost function jII using Eq. (2-66) for the weak model in Table A-2 at a focal depth
of 2200 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2. The
location of the correct value of b is indicated by the close-dashed vertical lines. The
y-axis is logarithmic.
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Figure 3-21: Cost function jII using Eq. (2-66) for the artifact model in Table A-3 at a focal
depth of 2200 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2.
The location of the correct value of b is indicated by the close-dashed vertical lines.
The y-axis is logarithmic.

Figure 3-22: (a) Initial estimation of the truncated re�ection series, (b) updates of the truncated
re�ection series and (c) �nal truncated re�ection series after 8 iterations for a
correction factor b of (solid blue) 1, (dashed red) 0.5 and (dotted black) 1.5. All
events are based on the model found inTable A-3 and have been convolved with a
30 Hz Ricker wavelet with a focal depth of 2200 m and have been normalized with
|R0,0|2 of the relevant re�ection series.
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for b can be recovered if the focal point is below the deepest re�ector. This is the ideal case
that works for all three of the models. The energy of the physical response G−,+ that is used
minimizes in a similar way as the energy of the upgoing Green's function that was used for
the �rst cost function. The di�erence is that in this case the source is also redatumed to the
focal depth. This response is shown in Figure 3-26, where the blue line indicates that the
correct value of b was applied which results in the correct trace with no events. In case the
source strength is underestimated, the updates do not remove enough energy. In case the
source strength is overestimated, too much energy is removed as indicated by the dashed red
line and dotted black line, respectively. In these �gures the event contains a single wavelet
and not two wavelets convolved with each other. For these plots, the wavelet was deconvolved
once to make the events more clearly separated. This is a purely cosmetic reason and does
not seem to change the results of the cost function.

Figure 3-23: Cost function jIII using Eq. (2-75) for the simple model in Table A-1 at a focal
depth of 2700 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2.
The location of the correct value of b is indicated by the close-dashed vertical lines.
The y-axis is logarithmic.

In case the focal point is moved above the deepest re�ector, the results are di�erent. For the
simple model as shown in Figure 3-27 the minima are once again smooth and less pronounced.
However, their locations are not exactly correct. In each case the correction factor b is un-
derestimated. It is a very small di�erence of 0.01 in all of these cases. To see if this has any
signi�cant in�uence, this correction factor is tested. In Figure 3-28 (a) the Green's function
for the simple model in Table A-1 is plotted for the correct re�ection response. In Figure 3-28
(b) the same Green's function is plotted but the re�ection series was given an incorrect source
strength of q = 2. The correction factor of b = 0.49 that was recovered in Figure 3-27 was
used to compensate for this. When looking at these Green's functions, there is no visible dif-
ference. In Figure 3-28 (c) the di�erence between these two functions is shown which reveals
that there are some amplitude di�erences. These di�erences are several orders of magnitude
lower than the actual amplitude of the events and only a single very weak artifact is intro-
duced. This very weak di�erence shows that the recovered correction factors are within the
range of accuracy that is desired. However this is still a consistent problem with this model
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Figure 3-24: Cost function jIII using Eq. (2-75) for the weak model in Table A-2 at a focal
depth of 2700 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2.
The location of the correct value of b is indicated by the close-dashed vertical lines.
The y-axis is logarithmic.

Figure 3-25: Cost function jIII using Eq. (2-75) for the artifact model in Table A-3 at a focal
depth of 2700 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2.
The location of the correct value of b is indicated by the close-dashed vertical lines.
The y-axis is logarithmic.
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Figure 3-26: (a) Initial estimation of the physical response, (b) updates of the physical response
and (c) �nal physical response after 8 iterations for a correction factor b of (solid
blue) 1, (dashed red) 0.5 and (dotted black) 1.5. All events are based on the model
found inTable A-1 and have been convolved with a 30 Hz Ricker wavelet with a
focal depth of 2700 m and have been normalized with |G−,+0 |2 of the relevant
re�ection series.

and other models like it. This is related to the case of higher-order multiples overlapping
with artifacts such as the one shown in Figure 2-8. The third cost function is still operating
in the physical medium, unlike the second cost function that operated in a medium with a
re�ection-free half-space above the focal depth. The second cost function avoids problems of
overlapping events completely, while the third cost function is still a�ected by some of these
events. These higher-order multiples do have very low amplitudes compared to lower-order
multiples so their e�ect is limited in signi�cance. In Figure 3-29 the construction of the phys-
ical response is shown. The initial estimation of the physical response contains several events
but not all events that have updates are removed, such as the event at 1.4s which is enhanced
rather than suppressed. This error is due to the overlap of multiple events with artifacts. The
other problems that jI had is completely removed, because for the third cost function the
events in Figure 2-7 both need to be removed. So the updates in case of incorrect scaling can
no longer suppress the event more than in case the updates are computed using the correct
value of b. In case of the weak model, the results are better and acceptable estimates of b are
recovered using the cost function, as shown in Figure 3-30. When considering the construction
of the physical response as shown in Figure 3-31, the events on the trace are much weaker
when compared to the response in Figure 3-29 and some events are not visible because they
have very weak amplitudes. Due to this, the events where multiples overlap with artifacts
are less signi�cant for the calculation of the cost function. Finally, the artifact model does
still cause problems as shown in Figure 3-32. Compared to the results from the previous cost
functions in Figure 3-13 and Figure 3-17 the actual results are closer to the correct values of
b and are all located at a higher value of b than 0. Still the error is very signi�cant. This

August 19, 2016



54 Cost function results in 1D

shows that the artifact model cannot be handled by any of the cost functions if the focal point
is above the deepest re�ector. This shift in the cost function is due to the interaction of the
overlapping multiples and artifacts and is highly model-dependent. In Figure 3-33 the physical
response construction shows the problem. The events are all overlapping in time causing the
comparison between the �nal and intial estimation to be much smaller and therefore the entire
cost function shifts. This is only the case for this speci�c type of model and can be avoided
by locating the focal position below the deepest re�ector.

Figure 3-27: Cost function jIII using Eq. (2-75) for the simple model in Table A-1 at a focal
depth of 2200 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2.
The location of the correct value of b is indicated by the close-dashed vertical lines.
The y-axis is logarithmic.
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Figure 3-28: (a) Green's functions using the correct source strength of q = 1 and correction
factor b = 1, (b) Green's functions using the incorrect source strength of q = 2 and
correction factor b = 0.49 and (c) di�erence between the events in (b) and (a). All
events are based on the model found inTable A-1 and have been convolved with a
30 Hz Ricker wavelet with a focal depth of 2200 m . Notice that the amplitudes
of (c) are much weaker than the events in (a) and (b)
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Figure 3-29: (a) Initial estimation of the physical response, (b) updates of the physical response
and (c) �nal physical response after 8 iterations for a correction factor b of (solid
blue) 1, (dashed red) 0.5 and (dotted black) 1.5. All events are based on the model
found inTable A-1 and have been convolved with a 30 Hz Ricker wavelet with a
focal depth of 2200 m and have been normalized with |G−,+0 |2 of the relevant
re�ection series.

Figure 3-30: Cost function jIII using Eq. (2-75) for the weak model in Table A-2 at a focal
depth of 2200 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2.
The location of the correct value of b is indicated by the close-dashed vertical lines.
The y-axis is logarithmic.
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Figure 3-31: (a) Initial estimation of the physical response, (b) updates of the physical response
and (c) �nal physical response after 8 iterations for a correction factor b of (solid
blue) 1, (dashed red) 0.5 and (dotted black) 1.5. All events are based on the model
found inTable A-2 and have been convolved with a 30 Hz Ricker wavelet with a
focal depth of 2200 m and have been normalized with |G−,+0 |2 of the relevant
re�ection series.

Figure 3-32: Cost function jIII using Eq. (2-75) for the artifact model in Table A-3 at a focal
depth of 2200 meters with a source strength q of (black) 2

3 , (blue) 1 and (red) 2.
The location of the correct value of b is indicated by the close-dashed vertical lines.
The y-axis is logarithmic.
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Figure 3-33: (a) Initial estimation of the physical response, (b) updates of the physical response
and (c) �nal physical response after 8 iterations for a correction factor b of (solid
blue) 1, (dashed red) 0.5 and (dotted black) 1.5. All events are based on the model
found inTable A-3 and have been convolved with a 30 Hz Ricker wavelet with a
focal depth of 2200 m and have been normalized with |G−,+0 |2 of the relevant
re�ection series.
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Chapter 4

Conclusion and Discussion

It has been shown how the iterative Marchenko scheme can be derived, which allows for the
retrieval of Green's functions at a focal point in the subsurface, as if there was a receiver at
that focal point. A re�ection response at the surface and an estimation of the �rst arrival
at the focal point are required for this method. It has also been shown how the Marchenko
scheme can be used to derive several cost functions. These cost functions are able to retrieve
a correction factor b which can correct a re�ection response that has been scaled with an
unknown source strength q. Along with the correction factor b, a scaling factor a(x′f , b) can
be retrieved, which corrects the amplitudes of the retrieved Green's functions. The three cost
functions were �rst derived in 1D. The �rst cost function jI is based on the minimization of the
upgoing Green's function. The �rst estimate of the upgoing Green's function contains all the
physical events and artifacts. Subsequent updates remove the artifacts leading to an upgoing
Green's function which contains less events and therefore less energy. The �rst cost function
only retrieves the correct value of b if the focal point is located below the deepest re�ector. If
the focal point is above the deepest re�ector, physical events and artifacts can overlap in time
and create problems, a�ecting the minimization of the �rst cost function. The second cost
function jII is introduced because of this. It minimizes a truncated and redatumed re�ection
response that operates in a medium that contains no re�ectors above the focal point. Both
the source and receiver are redatumed to the focal position. jII works well above and below
the deepest re�ector. This cost function is computationally expensive to implement however,
especially in 2D and 3D. The more e�cient third cost function jIII was therefore introduced.
Just like jII , the third cost function redatums the source and receiver to the focal point.
Unlike jII , jIII operates in the physical medium which contains all the re�ectors above the
focal point. Once again the upgoing Green's function is minimized. Because of the double-
sided redatuming, which is applied to compute jIII , the problems with the overlap of physical
events and artifacts are greatly reduced, but not completely removed. While the estimates of
b are not exactly correct, the approximation of the values is very close. A lot of problems that
jI has are suppressed in jIII and the implementation is much more computationally e�cient
compared to jII . All of these results have been shown on a variety of models in 1D. In 1D,
the capabilities of all the cost functions have been shown and it has been concluded that the
cost function jII is the superior one of the three. It can handle re�ectors above and below the
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focal point. The one scenario where it fails is when physical events are overlapping in time
with each other. Although this is a serious problem when applying these cost functions in
practice, it is assumed to be an acceptable limitation. This limitation is also embedded in a
variety of external multiple-elimination schemes that have been proven to work on �eld data.
Two of the three cost functions have been extended to 2D and 3D. In order to distinguish
the dimensionality of the cost functions a lowercase j was used for the 1D cost function
and an uppercase J for 2D and 3D cost functions. The �rst cost function JI is again very
straightforward to derive but su�ers from the same problems in 2D and 3D as in 1D. The
third cost function JIII is more di�cult to implement in 2D and 3D than in 1D, but it is still
a much more e�cient function than the extension of jII would be. Again it is an improvement
over JI , however it also can still su�er from overlapping events. Because of the more complex
nature of the 2D and 3D models, it is expected that there is less potential overlap of physical
events with other physical events and with artifacts. Potentially the methods could yield
better results because of this. However, there are also various e�ects in 2D and 3D that do
not play a role in 1D. In the current implementation in 2D and 3D, the assumption is made
that a(x′f , b) is a scalar and angle-independent. In practice this assumption might not su�ce
and the accuracy of this assumption should be tested on 2D and 3D data.
The main problem when applying the cost functions to real data is the fact that there are
always re�ectors below the focal point. In practical cases where the methodology could be
applied (for example, complex overburdens or salt bodies), it is not uncommon for the re�ectors
below the focal point to be much weaker than those located in the overburden. It has been
shown that in such a case the approximation of b yields a more accurate estimation. In theory,
b is not dependent on the location of the focal point in the subsurface. However in practice
the e�ective value of b is likely to be depth-dependent due to attenuation, incorrect processing
of amplitudes and other factors that are not accounted for by the current theory. The severity
of these e�ects can vary, so determing b at every depth is not always necessary. The best
practice would be to determine b at several depths and use interpolation to determine b at the
depths in between. If b varies strongly then �ner sampling of b is necessary. Unlike b, a(x′f , b)
is always dependent on the location in the subsurface, so this factor has to be determined at
every individual focal point in theory too. The scaling factor a(x′f , b) is di�cult to retrieve
when the focal point is located near a layer contrast, which can be overcome by using a shift
in the time gate that is used in the Marchenko scheme. Furthermore, just like a(x′f , b), b is
assumed to be a scalar. If the source signature of the �eld data is not completely known, b
has to be extended to take multiple parameters into account, instead of the single parameter
that is considered in this thesis. If more parameters need to be estimated, the computation
is more extensive. Also if only approximations of the parameters can be retrieved, this may
lead to deterioration, rather than improvement, of the re�ection response. As such the study
in this thesis should be considered to be a �rst attempt to apply such corrections. Su�cient
care should be taken into account when these methods are applied in practice. The validity
of the derived cost functions has been proven. These cost functions could be expanded upon
to make the implementation of the Marchenko method to real data easier and more e�ective
in the future. It would be best to derive a cost function that similarly to jII can handle
re�ectors below the focal point, but is more e�cient to apply in 2D and 3D. Perhaps not a
single function could be minimized, but two or more to get a more solid base for determining
the value of b.
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Appendix A

Models

ztop(m) zbottom(m) c (m/s) ρ(kg/m3)

0 750 2500 1000
750 1500 2500 2000
1500 2375 2500 1000
2375 3000 2500 2000

Table A-1: Velocity and density distribution for the simple model

ztop(m) zbottom(m) c (m/s) ρ(kg/m3)

0 750 2500 1000
750 1500 2500 2000
1500 2375 2500 1000
2375 3000 2500 1050

Table A-2: Velocity and density distribution for the weak model

ztop(m) zbottom(m) c (m/s) ρ(kg/m3)

0 1000 2500 1000
1000 1500 2500 2000
1500 2000 2500 1000
2000 2500 2500 2000
2500 3000 2500 1000

Table A-3: Velocity and density distribution for the artifact model
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