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Summary

The use of distributed space systems, among them formation flying satellites, is increasing rapidly and these
formation flying missions often require the use of precise orbital control in order to fulfil their mission goal.
With this trend, a need is created for fast and robust fault detection and isolation (FDI), which can detect faults
in the formation keeping control before the fault can lead to mission failure, either through a break-up of the
formation or a collision. As the formation is made up of a spatially separated spacecraft, the information
flow in between the satellites should be kept to a minimum in order to reduce cost and requirements on
inter-satellite communication links.

In this thesis, the implementation of a distributed FDI methods based on multiple recurrent neural networks
which utilize the already available relative positioning and velocity data is shown and these methods are
tested on a representative formation flying mission. Specifically, so called Long Short-Term Memory (LSTM)
networks were trained on data gathered from a formation simulation implemented in MATLAB. They are
compared to a more traditional centralized Kalman filter based approach, which uses the entire formation
state, in terms of their detection capability, isolation capability and their robustness.
Two separate neural network approaches were trained and tested; the first is a single network that was trained
on the data of each satellite, while the second is the combination of six networks that each were only trained
on the data coming from a single individual satellite. The former is called the ’naive’ network, while the latter
is called the ’combined individual’ network.
Two types of thruster faults were investigated in particular. The first represents a blockage in a thruster valve,
leading to a reduced output thrust, called the ’closed’ fault for short. The second type of fault is a valve that
cannot shut correctly, thereby always enabling propellant to leave the thruster, causing a constant force on
the satellite, called the ’open’ fault.

While the naive networks performed poorly both in almost all cases in detection and isolation, the combined
individual network showed comparable performance to the Kalman filter in terms of isolating open thruster
faults. The combined network isolation accuracy, precision and recall exceeded 99.9% for open faults. How-
ever, in regards to the closed fault type the performance was significantly worse with only a 22% detection
recall and 50% isolation accuracy, compared to the 96% and 99.3% for the Kalman Filter. Furthermore, all
networks were less robust and less capable of detecting low-intensity faults.
On the other hand, the Kalman filter was only capable of isolating thruster pairs, rather than individual
thrusters. The networks also have the advantage of being less dependent on inter-satellite communication
links. If the communication between satellites breaks down, the Kalman filter cannot cope with the lack of
information, while the neural networks can still function as a de-centralized system. They also require less
computational resources to make a decision, especially compared to a Kalman filter with time-varying inno-
vation gain.

The performance on the closed faults can be explained by two factors. The first is the relative impact of closed
faults compared to open. Due to their very nature, the closed faults are only having an impact on the system
performance when the thruster is supposed to fire. This is not the case for the open faults which continu-
ously impact the performance. A smaller impact will lead to a worse FDI performance and this was seen for
all implemented methods.
The second is due to the training data pre-processing for closed faults. Due to the intermittency of the fault,
the networks were sometimes trained on data that was indistinguishable from faultless data, but that was
labeled faulty. This can cause confusion for the network and reduce the performance.
Overall, the neural network performed poorly in comparison the the centralized Kalman filter. A pre-processing
procedure for the neural network training data that takes into account the individual faults and their impact
on the network input is recommended and is expected to improve the performance to acceptable levels.
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1
Introduction

In this chapter the main topics of the thesis are introduced. First, the relevance of the work is explained in
Section 1.1, followed by the the goals of the thesis and the research questions which this thesis aims to answer
in Section 1.2. Finally, an overview of the thesis structure is given in Section 1.3.

1.1. Relevance
Planning, launching and operating a space mission is a difficult endeavor. Challenges arise from the envi-
ronment via the radiation both from the Sun and other sources, the difficult thermal conditions as well as the
physical distance to Earth. Due to these difficulties, machines and circuitry experience increased wear and
require specific designs in order to cope with these conditions, and this is not to mention the difficulty that is
presented for human space travel. This, in combination with the large launch and equipment costs, leads to
space missions which need to be robust and reliable to avoid a mission failure.

In order to ensure the safety and reliability of space missions, spacecraft contain additional redundant sys-
tems and components to be able to cope with faults or failures in any part of the system. A fault in this case
is defined as the deviation from the design parameters of any part to the detriment of the entire system [7].
For example a single bit-flip in a digital circuit, a mechanical component getting stuck or a sensor no longer
updating its measurements. It is distinguished from a failure, which describes the "inability of a system or
component to accomplish its function" [8, p.7] and is irrecoverable even with a system in place that can han-
dle faults.
In addition to physical redundancies, there are also analytic or software redundancies which change the be-
havior of a system experiencing a fault to maintain the safe system operation.
However, all of these redundancies require the capability of detecting when a fault has occurred in the sys-
tem in order to recover and return to the original safe design conditions. The consequences of these faults
can range from benign, as in the case of a bit flip in an image file, slightly altering the color of one pixel, to
catastrophic, for example in the explosion of the Ariane 5 rocket due to a software bug [9].

A complete fault-tolerant system generally can detect, isolate, identify and recover from faults. First a few
definitions are given:

Fault Detection: the binary decision (’yes’ or ’no’) on whether or not a fault has occurred anywhere
in the system.

Fault Isolation: determining the location of a fault in the system.
Fault Identification: determining what kind of fault has occurred and how severe it is
Fault Recovery: taking appropriate action to eliminate or mitigate the fault.

These systems are used in almost all fields of engineering, ranging from industrial [10], chemical [11], robotics
[12], maritime [13] and of course aerospace engineering [14]. Their importance in ensuring the proper per-
formance of system cannot be overstated.
Furthermore, in the field of aerospace engineering in particular there has been a trend towards distributed

1
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systems. This includes both satellite formations which generally consist of few satellites in relative proxim-
ity and satellite constellations which generally are made up of many satellites spread over a large distance.
According to Scharf et al, formation flying missions are characterized by their dynamics being "coupled by a
common control law" [15]. This is in opposition to satellite constellations where the satellites keep their orbit
independent of other satellites.
The amount of distributed space systems has steadily increased over the past years (see Figure 1.1[1]) with rel-
atively small formations of satellite finding use in e.g. the Magnetospheric Multiscale Science (MMS) mission
[16], the GRACE and GRAIL gravimetry missions [17, 18] or the planned PROBA-3 mission [19].

Figure 1.1: Cumulative formation flying mission launches classified based on their primary objective [1].

These distributed systems have distinct advantages: the spatial separation of the spacecraft can enable unique
measurements. For example, the gravity recovery and climate experiment (GRACE) mission used two satel-
lites in the same orbit in order to map Earth’s gravity field [17]. A similar mission (GRAIL) was performed to
determine the gravitational field of the Moon with unprecedented accuracy [18]. The PROBA-3 mission will
use two satellites in order to perform coronagraph measurements of the sun, one satellite blocking the main
body so that the other can image the outer layers of the Sun [20].
However, this approach also comes with downsides. The spacial separation introduces new risks, most
prominently the risk of collision, which is especially important for close formations and would result in com-
plete mission failure. To avoid this risk, the spacecraft need a well-functioning orbit control system, which
in turn requires well functioning control thrusters. In order to ensure the functionality of the orbit control
thruster, an FDI system is necessary.
Traditional FDI methods have access to all the information that is desired, however in a distributed system
the exchange of information is associated with additional energy costs and time delays, as well as require-
ments on having a stable inter-satellite communication link. In this thesis, the following definitions for the
terms centralized, de-centralized and distributed in the context of an information exchange are used, and will
be illustrated using the example of a fleet of ships:

Centralized In a centralized system, all information is gathered at a single system which makes decisions
(control or diagnosis) about all components of the system. For example, a fleet of ships all send the
information to a central location (e.g. a central mothership or another location), which in turn makes
a decision concerning every ship in the fleet.

De-Centralized In a de-centralized system, a system is broken up into several sub-system which have access
to a subset of the information and independently make decisions using the available information. In
such an approach, each ship in the fleet would make decisions based on the available information on
the ship.

Distributed In a distributed system, several sub-systems only have access to a subset of the available infor-
mation but communicate in order to reach a common goal. In this approach, each ship in the fleet
would communicate some or all of its information or decisions which the other ships would incorpo-
rate in their own decision making.
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Figure 1.2: Graphical illustration of the difference between centralized, de-centralized and distributed systems.

These distinctions are graphically illustrated in Figure 1.2.
In a satellite formation, the communication between satellites is more complicated. This in turn makes a
centralized system less appealing and makes it more advantageous to have a de-centralized or distributed
system which can detect and isolate faults. The use of distributed FDI systems has been a topic in research
for the past years for formation flying satellites [21–24] as well as other distributed systems, e.g. mobile robots
or industrial systems [25–27].

The use of so called artificial neural networks has gotten significantly more attention in research and in gen-
eral media in recent years, This is in part due to the impressive achievements made by deep learning systems
such as Google’s Deepmind [28, 29]. The advancement in computer hardware has allowed for handling larger
amounts of data, which in turn generally improve the performance of a neural network [30, chp. 1].
The use of neural networks can also be seen in FDI systems, especially those for which faults are difficult to
handle otherwise [31–33]. In addition to the capability of neural network to handle faults which are difficult
to model, the neural networks also have benefits specific to spacecraft applications. Due to the low compu-
tational requirements the neural network can be evaluated very quickly after it has been trained.
The fact that neural networks tend to work best for large amounts of data may make it seem counter-intuitive
to use them in an environment where sharing data is cost prohibitive, such as in a satellite formation. How-
ever, the satellites do already have the relative position and velocity data locally available as it is needed for
the formation control system. This data can be used to train the network and in operation be used for the
evaluation of the trained network. Sharing the resulting output then enables distributed FDI.

1.2. Thesis Goals and Research Questions
The topic of this thesis lies at the intersection of all the previously mentioned topics. In the previously con-
ducted literature study it was found that the use of neural networks in distributed FDI is sparse, especially
for formation flying satellites. This could be due to the limitations inherent to neural networks, the relative
straightforwardness of their applications, or a lack of performance.
However, a neural network based system has several advantages. They are fast to compute once they have
been trained. This is especially relevant for space applications which have limited computational resources.
Furthermore, they can tackle problems which are difficult to solve otherwise.
This research aims to close the gap in knowledge regarding the use of neural network based distributed FDI
compared to a more traditional centralized approach, in order to determine the efficacy of neural networks
for this application. There are two main goals this thesis is trying to address: (1) to propose a solution to
the problem of formation flying FDI for thruster faults by designing a new distributed FDI method based on
neural networks and (2) to evaluate its performance by comparing it to a centralized model-based method in
multiple fault detection and isolation performance parameters, when applied to a realistic formation flying
scenario.
This leads to the main research question:

How does a distributed, neural-network based FDI architecture for thruster faults compare to a
centralized model-based architecture in terms of detection capability, isolation capability and

robustness in a close formation flying mission?

By considering the various aspects of this main question, it can be broken up into several sub-questions:

• How does the detection and isolation performance (accuracy, precision and recall) compare between the
centralized and distributed approaches?
The main point of comparison should be the performance of the methods. The three mentioned per-
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formance parameter are often used to determine the quality of a classification system. The accuracy
measures the overall percentage of correct classifications. The precision quantifies how often the sys-
tem is correct on a positive decision (in this case, the presence of a fault). On the other hand, the recall
determines how often a positive occurrence (the presence of a fault) is detected as such.

• How quickly and consistently do the methods respond to the faults?
Two more important measures, unrelated to the classification performance itself, are the time it takes
for the system to come to a decision and if the system sticks with its decision.

• How robust are the FDI methods to scenarios they were not designed for?
In practice, the system will encounter situations for which they were not designed. Testing the robust-
ness of the developed approaches to such scenarios is crucial in determining their value.

• What is the influence of model uncertainties and disturbances on the detection and isolation?
One of the issues of neural networks is their sensitivity to noise. Even small changes can radically
change the output of a network [34]. As such, it is important to determine how the effect of model
uncertainties and various disturbance forces affect the systems.

• What is the effect of distributing the FDI system on the computation time, bandwidth usage and time
until fault detection?
As one of the systems will be distributed, it will be interesting to see the effect this has on the parame-
ters, which are affected by the distribution. This includes the computation time, bandwidth usage and
(due to communication delays) time until fault detection.

Answering these questions should give insight into the quality of neural-network based systems for FDI.
The scenario that will be used to achieve this aim and answer the research questions was identified during the
literature study. A so-called Virtual-Rigid-Body (VRB) formation, similar to the formation used in the MMS
mission, will be simulated in MATLAB. VRB formations require active control and therefore have a stronger
need for an FDI system for the orbital control thrusters of the satellites in the formation.
Two types of thruster faults will be considered: a fault causing a reduction in the thrust (imagine a valve that is
jammed, reducing the mass flow of the thruster) and one causing a constant thrust from the affected thruster
(imagine a valve that suddenly fails and causes constant mass flow). For this scenario, the performance of the
implemented FDI approaches will be analyzed and compared.

1.3. Thesis Outline
The thesis is structured as follows: First, the relevant theoretical background is explained in Chapter 2. Here,
the necessary background is provided on satellite formation flying, neural networks as well as FDI basics in
order to understand the remainder of the thesis.
After the necessary background has been explored, the set-up of the simulation required to meet the research
aims and enable the data generation that the networks will be trained on is explored in Chapter 3. This chap-
ter introduces the specific simulated mission, how the mission parameters were determined, the simulation
structure and its verification as well as the set-up for generating the necessary training data.
This is followed by the specific fault detection and isolation methodology, detailed in Chapter 4. This chapter
contains the set-up, structure, platform and training of the neural network as well as the model-based FDI
comparison method.
After this, the two approaches are analyzed, compared and these results presented in Chapter 5. This analy-
sis includes the detection and isolation performance as well as an investigation into the robustness of both
methods.
Finally, conclusions and recommendation are presented in Chapter 6.



2
Background Information

In this chapter the relevant theoretical background for the thesis is explained. First, the relevant reference
frames in this thesis are explained in Section 2.1. Then, a short survey of formation flying missions in gen-
eral is presented in Section 2.2, followed by the relative dynamics of formations in Section 2.3. The topic of
particular formation control is explored in Section 2.4. Furthermore, the basics of neural networks and their
training are shown in Section 2.5. Finally, the Kalman filter is explained in Section 2.6.

2.1. Reference Frames
Four main frames of reference are used in the thesis, and they are listed below

• Earth-Centered Earth-Fixed (ECEF) frame (shown in Figure 2.1a)

• Earth-Centered Inertial (ECI) frame (shown in Figure 2.1b)

• Euler-Hill frame (shown in Figure 2.2, left)

• Satellite Body-Fixed frame (shown in Figure 2.2, right)

(a) Illustration of the Earth-Centered Earth-Fixed (ECEF) reference frame. (b) Illustration of the Earth-Centered Inertial (ECI) reference frame.

The Earth-Centered frames have their origin at the center of the Earth. The ECEF rotates with the Earth and
is constructed by taking the x-axis radiating out from the center of the earth along the 0-longitude line at the
equator, the z axis out of the north pole and letting the y axis complete the right-handed frame.
The Earth-Centered-Inertial frame shares the origin of the ECEF frame, but it does not rotate along with the
Earth. Instead its axes stay fixed relative to the distant stars. The specific ECI frame in this thesis is chosen to

5
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be the one where the axes of the ECEF and ECI coincide at the beginning of the simulation.
As such the conversion from the ECI to the ECEF frame is

T EC I
EC EF = Tz (ωE ar th t ) (2.1)

Where ωE ar th is the rotational speed of the earth and t is the time that has passed since the start of the
simulation.

Figure 2.2: Illustration of the Euler-Hill reference frame (left) and the satellite body reference frame (right).

The Euler-Hill frame is a non-inertial reference frame fixed on a point in orbit. Its axes are defined as follows:
the x-axis lies on the line connecting the orbiting point and the center of the Earth, pointing radially outward.
The z-axis points in the direction of the angular momentum, i.e. it is perpendicular to the orbital plane. The
y-axis completes the right handed frame. These x,y and z directions are also called the ’radial’, ’along-track’
and ’cross-track’ direction, respectively. The direction cosine rotation matrix from the ECI frame to the Hill
frame is constructed from these definitions. This can be achieved by normalizing the unit vector belonging
to the frame and computing the matrix shown in Equation (2.2).

T EC I
Hi l l =

x̂Hi l l · x̂EC I x̂Hi l l · ŷEC I x̂Hi l l · ẑEC I

ŷHi l l · x̂EC I ŷHi l l · ŷEC I ŷHi l l · ẑEC I

ẑHi l l · x̂EC I ẑHi l l · ŷEC I ẑHi l l · ẑEC I

=
x̂T

Hi l l
ŷ T

Hi l l
ẑT

Hi l l

 (2.2)

It should be noted that due to the short time scales involved in this thesis, the precession and nutation of the
Earth’s rotational axis are not taken into account.

Due the rotation of the frame, the conversion of velocity from the ECI to the Hill frame the derivative of the
rotation matrix needs to be taken into account, as shown in Equations (2.3) to (2.5).

rHi l l = T EC I
Hi l l

(
p2 −p1

)
EC I (2.3)

→ .
r Hi l l = T EC I

Hi l l

( .
p2 − .

p1

)
EC I +

.
T

EC I
Hi l l

(
p2 −p1

)
EC I (2.4)

vHi l l = T EC I
Hi l l (v2 −v1)EC I +

.
T

EC I
Hi l l

(
p2 −p1

)
EC I (2.5)

For any rotation matrix its time derivative can be expressed by Equation (2.6) [35, 36].

.
R

A
B =−S(ωB )R A

B (2.6)
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Where R A
B is the rotation matrix from frame A to frame B and S is a skew-symmetric matrix corresponding to

the angular velocity vectorω, expressed in frame B. Hence the conversion between the two frames is given by
Equations (2.7) and (2.8).

rHi l l = T EC I
Hi l l

(
p2 −p1

)
EC I (2.7)

vHi l l = T EC I
Hi l l (v2 −v1)EC I −S (nz)T EC I

Hi l l (Ω)
(
p2 −p1

)
EC I (2.8)

2.2. Formation Flying Missions
According to Scharf et al, formation flying missions are distinguished from the other common type of dis-
tributed space system, a constellation, by the fact that the dynamics of the spacecraft are "coupled through
a common control law" [15]. Formations of satellites can furthermore be divided into so called ’passive’ and
’active’ formations. The former requires no active control to keep the formation close, as the orbits them-
selves are designed to keep the formation from drifting apart. ’Active’ formations on the other hand follow
non-Keplerian orbits and as such require constant orbit corrections in order to keep the formation. An exam-
ple of an active formation using the so-called Virtual-Rigid-Body concept is the Magnetospheric Multiscale
Science Mission (MMS) [16]. In this mission, the satellites used active control to stay in fixed position relative
to each other for a portion of each orbit [37].
An overview of formation flying missions that were surveyed in the literature study can be found in Table 2.1.
As can be seen, most formation flying missions that have already been launched consist of only a small num-
ber of satellites (less than 5). However, ambitious concepts such as the Stellar Imager (SI) missione exist which
proposes the use of 30 satellites. Table 2.1 shows that, while many formation missions only involve a small
amount of satellites, the number of satellites is expected to increase as the technology for precise formation
flying matures.

2.3. Formation Relative Dynamics Model
The first attempts made at describing the relative dynamics of bodies in an orbital environment were made by
G.W. Hill in 1878 [54], specifically in the lunar environment. During the 1960s the same equations for orbital
rendezvous were derived independently by W.H. Clohessy and R.S. Wiltshire [55]. The so called Hill-Clohessy-
Wiltshire (HCW) Equations are very useful tools for describing the relative motion in close formations, and
are given in Equations (2.9) to (2.11).

ẍ −2n
.
y −3n2x = ux (2.9)

ÿ +2n
.
x = uy (2.10)

z̈ +n2z = uz (2.11)

Where x, y, z are the relative distances in radial, along track and cross track direction respectively, n is the
mean orbital motion of the reference satellite, and ux ,uy and uz are additional accelerations in the directions
indicated by the subscript. These directions are based on the Hill coordinate frame, which is defined as
follows: the radial direction is in the direction of the vector from the center of the orbited body (in this case
the Earth) to the satellite, the cross-track direction is in the direction of the angular momentum vector of the
satellite and the along-track direction is chosen to complete the right-handed frame. For a circular reference
orbit, the along-track direction is parallel to the velocity vector of the reference satellite.
The assumption used to derive these equations are as follows: The object in a circular reference orbit (e = 0)
and no disturbances such as drag, solar radiation pressure or gravitational disturbances are present. The

1https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Proba_Missions/About_Proba-3 accessed
16.07.2020

2https://www.nasa.gov/directorates/spacetech/small_spacecraft/cpod_project.html accessed 16.07.2020

https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Proba_Missions/About_Proba-3
https://www.nasa.gov/directorates/spacetech/small_spacecraft/cpod_project.html
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Table 2.1: Overview of surveyed formation flying missions.

Mission Name Description No. of Satellites Launch Year Relative Distance [km]

PROBA-3 A technology demonstration mission to
validate high accuracy formation flying and
to gather coronagraph measurements [19,
20, 38]

2 20221 0.025-0.25

TanDEM-X A scientific mission that generated a digital
elevation map of the Earth using synthetic
aperture radar techniques [39, 40]

2 2010 20

PRISMA Technology demonstration mission to act
as "an in-orbit test bed for Guidance, Nav-
igation and Control (GNC) algorithms for
advanced closed-loop formation flying and
rendezvous" [41]

2 2010 0.15-2.7

CanX-4/ CanX-5 A technology demonstration mission to
showcase high accuracy formation flying
with nano-satellites [42–44]

2 2014 0.05-2

MMS Investigating the tail of Earth’s magnetic
field using four satellites to approximate its
gradient [16]

4 2015 10-400

GRACE Studied Earth’s gravitational field using the
relative separation of two satellites in or-
der to generate spherical harmonics model
[45]

2 2002 250

GRAIL Studied the Moon’s gravitational field us-
ing the relative separation of two satellites
in order to generate spherical harmonics
model (see GRACE) [18]

2 2011 200 (40)

FASTRAC Student-run technology demonstration
mission to show formation flying capabili-
ties of nano-satellites [46, 47, 47]

2 2010 n/a

AAReST Technology demonstration mission that
aims to demonstrate the in-orbit assembly
and reconfiguration of a space telescope
from micro-satellites [48]

3 n/a n/a (docking)

CPOD Mission to demonstrate docking and close-
proximity operations with CubeSats [49]

2 2021 2 n/a (docking)

XEUS Scientific mission to study the early uni-
verse by use of an x-ray telescope com-
prised of two spatially separated spacecraft
[50]

2 n/a 0.05

Exo-S Scientific mission to gaher direct images of
exo-planets [51]

2 n/a 250

Stellar Imager (SI) Scientific mission concept to capture the
surface of distant stars [52]

30 n/a 0.5

UIUC-JPL Missions Two separate mission concepts that aim
to show advanced formation flying using a
group of four or six nano-satellites [53]

4/6 n/a 0.05
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HCW equations have analytical solutions, shown in Equations (2.12) to (2.14) [6, p.130].

x(t ) = ( .
x0/n

)
sin(nt )− (

3x0 +2
.
y0/n

)
cos(nt )+4x0 +2

.
y0/n (2.12)

y(t ) = (
2

.
x0/n

)
cos(nt )+ (

6x0 +4
.
y0/n

)
sin(nt )− (

6nx0 +3
.
y0

)
t −2

.
x0/n + y0 (2.13)

z(t ) = ( .
z0/n

)
sin(nt )+ z0 cos(nt ) (2.14)

Where the subscript "0" indicates the initial conditions.
In order to use these linearized dynamics in the controller it will be useful to express them in the state space

form, consisting of the state vector x = [
x y z

.
x

.
y

.
z
]T

, and the input vector u = [
ux uy uz

]T

.
x =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0

x +



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

u (2.15)

These equations assume not only the absence of disturbance forces but also the homogeneity of the gravi-
tational field. Various adaptions exist which take into account elliptical reference orbits or the various irreg-
ularities in the Earth’s shape and size. The most prominent of these irregularities is the bulging around the
equator, with the resulting acceleration known as the J2 effect [56]. A variation of the relative dynamics is
shown in Equation (2.16) which takes into account the average effect of this additional material around the
equator over one orbital period [57].

A J2 =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(5φ2 −2)n2 0 0 0 2nφ 0
0 0 0 −2nφ 0 0
0 0 −(3φ2 −2)n2 0 0 0

 (2.16)

φ=
√

1+ (1+3cos(2i ))
3J2R2

E

8r 2 (2.17)

Where i is the orbital inclination r is the radius of the circular orbit, RE is the radius of the Earth and J2 is the
second zonal coefficient with a value of approximately 1082.645e−6 [58].

2.4. Formation Control
The control approach used in this thesis is based on the state space model representation of a system. Specif-
ically, that of a discrete system which is shown in Equations (2.18) and (2.19)

x (k +1) = Ax (k)+Bu (k) (2.18)

y =C x (k)+Du (k) (2.19)

Where x is the state vector of the system, u is the input vector, y is the output or measurement vector, A is
the state transition matrix, B is the input matrix, C is the measurement matrix, D is the feed-through matrix
and k is the discrete time step.
The general approaches to formation control are shown in Section 2.4.1 and the use of the linear-quadratic
regulator as a means to derive a control gain is explained in Section 2.4.2. The formation-flying specific
control concept called "virtual-center-control" in shown Section 2.4.3.

2.4.1. Control Architectures
The architectures used to control the formation can be divided into five categories: Multiple-Input Multiple-
Output (MIMO), Leader/Follower, Virtual Structure, Cyclic and Behavioral [59], although it should be men-
tioned that there is significant overlap between the different categories. Similar architecture distinctions were
made by G.P. Liu and S. Zhang [60].
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• The MIMO assumes the entire formation to be a single system with multiple inputs and outputs. This
requires extensive information exchange between the different spacecraft as every single spacecraft will
require information about the entire formation to make control decisions. However, the high amount
of available information generally enables higher accuracy. Additionally, the general stability of such
systems can easily be guaranteed.

• In the Leader/Follower (L/F) (also called target/chaser) architecture, the leader spacecraft are used as
a reference for the follower spacecraft. When each follower spacecraft can only have one leader, this is
also referred to as single-leader L/F. This approach is currently the most common, as it highly suited for
missions with two or three satellites [59]. The leader(s) can also be virtual, i.e. non-existent, in which
case this approach becomes similar to the virtual structure approach.

• The Virtual Structure (VS) or Virtual-Rigid-Body (VRB) architecture treats the spacecraft as vertices
embedded in a larger, virtual rigid body. The motion of this body is specified according to the needs of
the mission, and the motion of the vertices is then used to generate reference-trajectories. A distinction
between the control and the guidance has to be made here [59]: the VRB guidance has the the same
property, which gets used to determine the trajectories of each satellite. If the satellite merely follows
the trajectory, it is not strictly speaking a control architecture. However, if the VRB is kept via relative
navigation, the states do depend on the other members and as such it can be considered a distributed
control architecture.

• A Cyclic architecture is similar to the L/F in the sense that some spacecraft directly depend on the states
of others. Unlike L/F however, the cyclic architecture allows for loops to form in the directed graph of
the control dependencies. This avoids the single point of failure of the L/F architecture, which fails if
the leader satellites breaks down.

• In a behavioral architecture, there are multiple goals, each of which has its own controller and whose
outputs get combined to result in a specific behaviour. These multiple goals are dependent on the
specific constraints of the system, but can include goals like collision avoidance, formation keeping or
moving to a specific goal location. This is the most abstract of the control architectures, as the individ-
ual goals themselves can be achieved through various control strategies.

The control dependencies of the different architectures can be visualized using directed graphs, with the
direction of the connections indicating a dependency. Examples for the L/F and the cyclic architecture are
shown in Figure 2.3.

Figure 2.3: Examples of directed graphs of the Leader/Follower architecture (left) and the Cyclic architecture (right).

2.4.2. Linear-Quadratic Regulator
A Linear-Quadratic Regulator (LQR) is a control approach from the field of optimal control. This approach
aims to minimize a quadratic cost function for a linear system as seen in Equations (2.18) and (2.19). The cost
function is a weighted quadratic sum of the control error and the control effort. It is shown in Equation (2.20)
[61, p.306].

J (u) = 1

2
xT

t1
St1 xt1 +

1

2

∫ t1

t0

xT Qx +uT Ru dt (2.20)

Where J is the quadratic performance index, x and u are the state and input vectors, respectively, S,Q and R
are the weight matrices, and t0 and t1 are the start and end times, respectively.
The solution to minimizing the performance index J is given by the control input u shown in Equation (2.21)
[61, p.309].

u =−KLQR x =−R−1B T P x (2.21)
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Where KLQR is the LQR gain and P is the solution to the Algebraic Ricatti equation (ARE) shown in Equa-
tion (2.22) [61, p.309].

− .
P = P A + AT P −P B R−1B T P +Q (2.22)

Since the system at hand is not continuous, the discrete LQR controller is used in the simulation. The dis-
cretized LQR problem is very similar to the continuous case. In the discrete case, the discrete performance J
(given by Equation (2.23)) can be minimized by using the control input shown in Equation (2.24)[62, p.49]

Jk =
k∑

i=0
xT (i )Qk x(i )+uT (i )Rk u(i ) (2.23)

u(k) =−(
B T SB +R

)−1
B T S A x(k) (2.24)

Where the k is the discrete time and as a subscript indicates the discrete versions of the parameters shown
in Equation (2.20). The matrix P in that equation is the solution to the discrete algebraic Ricatti equation
(DARE) shown in Equation (2.25)[63, p.69].

AT P A −P − AT P B
(
B T P B +R

)−1
B T P Ak +Q = 0 (2.25)

The steady state linear gain is then given by Equation (2.26) [63, p.69]

KLQR = (
B T P B +R

)−1
B T P A (2.26)

2.4.3. Virtual Center Formation Control
The virtual center method is a formation flying control architecture for virtual structure formations [2]. In-
stead of controlling the formation relative to a leader-spacecraft or a propagated orbit, the control error is
calculated based on the estimation of the central location of the formation. For a given geometry, this cen-
ter can be estimated by the relative positioning measurements taken on each satellite. This is graphically
illustrated in Figure 2.4 [2].

Figure 2.4: Illustration of the control error calculation in the Virtual Center approach [2].

For the octahedral case, this is especially simple as the center of the formation in nominal conditions is the
mean value of the four edges of any vertex. Therefore, the mean of the relative distance measurement should
give the current relation to the center position.
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This method has an advantage over an approach that is based on propagating a reference point, or using a
leader-follower type architecture where the position of one spacecraft in the formation is taken as the refer-
ence. This advantage is the inclusion of the actual mean motion of the spacecraft which includes model errors
and disturbances, as this allows for correcting them without having to explicitly model the disturbances [2].
Another advantage specific to virtual-structure formation types is that they require the measurement of the
relative positions in order to achieve their scientific objective. This means that these measurements can then
also be used to control the formation, obviating the need for further measurements or communication.

Certain drawbacks exist as well. For example, this approach assumes that the center is stationary over the
planned control action. However, this is not the case as each member of the formation acts via this control
scheme and as such the relative measurements change.

2.5. Neural Network Basics
Artificial neural networks (ANN) are a powerful tool for generating models of complex systems. Inspired by
the structure of biological nervous systems, these networks consist of nodes, called artificial neurons. These
neurons have a certain activation value based on their connection to other neurons. In this section, the ba-
sics of ANNs are explained to the extent necessary to understand the thesis topic, starting with the motivation
for and ideas behind neural networks Section 2.5.1. Then, the general structure of neural networks and two
prominent adaptions is shown in Section 2.5.2. This is followed by the activations functions used in the net-
work in Section 2.5.3. Finally, the back-propagation algorithm for finding the parameters of a neural network
("training" the network) is explained in Section 2.5.4.
A specific type of recurrent neural network called the "Long short-term memory" (LSTM) network is particu-
larly useful in the application of time-series input data and is used for the fault detection and isolation of the
thruster faults. As such, it is explained in more detail in Section 2.5.5.

2.5.1. Motivation behind Neural Networks
Neural network were first developed in the 1940’s, in an effort to emulate the way biological neural pathways
work [64, chp.2]. Neural networks are a general computational framework, capable of computing any con-
tinuous function [65, chp.4]. They contain many parameters that will be explained in Section 2.5.2, but these
parameters fully define how the network computes an output for a give input.

Determining these parameters can be done through many procedures. Crucially however, they do not need
to be picked manually. If a dataset exist that contains a relationship between a desired input and output,
this dataset can be used to determine the sets of parameters that will produce a function for the desired
relationship. For example, imagine a set of images and a set of labels for whether these images feature a bird.
It would be very difficult to write an algorithm by hand that can detect whether or not a bird is visible in an
image. However, such image recognition problems are easy to approach with neural networks.
Various algorithms exist that can determine the desired relationship, any relationship (as long as it can be
represented as a continuous function), as long as a sufficiently useful dataset exists.

The process of determining the set of parameters that will yield the desired function is called "training" the
network, and the network is said to "learn" to perform a task. However, in the end a neural network is simply
a complex computational framework and the supposed "learning" process is very different from the way
humans learn.

The property, that neural networks can approximate any function and that the necessary parameters can be
picked by an algorithm, is a benefit and a drawback at the same time. It is advantageous, because the function
to be approximated can be very complicated. They can be so complicated in fact, that no other approach for
achieving the problem is known (like in the example of image recognition of birds).
Furthermore, the networks are computationally relatively simple, once they have been trained. This makes
them attractive in situations where the computational resources are limited.
However, the drawback is the fact that the neural networks, once trained, are black-boxes. It is almost im-
possible to understand the interactions in such networks, and as such their behavior is difficult to fix, if the
networks do not show sufficient performance.

Nonetheless, the achievements of neural networks in recent years have been impressive and their use should
be explored further.
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2.5.2. Network Elements & Structure
The most basic structure for a neural network is the so-called feed-forward structure. In this structure, the
neurons are organized in layers with one sided connections which go from the input layer through the so
called "hidden layers" to the output layer (see Figure 2.6) [30, 65]. Each neuron has a connection with every
neuron in the past layer which influences its activation value, and as such these layers are also called "fully
connected".
The elements making up an ANN and their functionality will be illustrated based on a very simple example
with only a single neuron in each layer, shown in Figure 2.5.

Figure 2.5: A simplified example structure of a neural network.

The input to the network (in this case a single real number) is multiplied by the weight w1 and serves as the
input to the first neuron N1. This neuron has a certain bias, b1, which indicates how easily it can be activated.
The activation z of this neuron can then be found by computing the so called activation function with the
input coming from the previous layer, shown in Equation (2.27).

a1 = f (w1 · x +b1) (2.27)

Where a is the output of the neuron, f is the activation function, w is the connection weight, x is the value
of the input layer and b is the neuron activation bias.
The activation of the first neuron N1 is then passed through the next connection, gets multiplied by the weight
w2 and added to the bias, forming the input for the next neuron. This forms the basis for neural networks.
In more complex networks, the neurons receive weighted inputs from multiple neurons of the previous layer.
In that case, the equation for the activation of each neuron can easily by summarized in a single vector equa-
tion by using a matrix of weights W , a vector of neuron activations a, and a vector of biases b.

a l = f
(
W l a l−1 +bl

)
(2.28)

In this equation, the function f is assumed to act on each element of the vector z = W a +b separately and
the superscript l indicates the l th layer of neurons. Here, a word on notation is in order. The weight element
w l

j k is associated with the connection from node k in the l −1th layer to the node j in the l th layer.

Figure 2.6: Exemplary feed-forward network structure with two hidden layers.
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Table 2.2: Overview of the most common adaptions to the dense feed forward structure.

Network Type Principal Advantages

Fully Connected Connect all neurons to every other neu-
ron to create a dense structure

Most general structure suitable for many
applications

Convolutional Connect only some neurons to the next
layer with equal weight to detect spatial
patterns

Specifically suited for grid-organized
data such as images

Recurrent Feed the network state back with a time
delay to create time dependencies

Very useful for networks with time series
as input or output

Adaptions of this static feed-forward structure exist for various purposes, a few of which are presented in Ta-
ble 2.2. The above described network structure is unchanging, which can guarantee stability under certain
conditions, but also means that the system is completely independent of time. For the purpose of modeling
dynamic systems, it can be useful to enable feedback in the network, i.e. letting states in later layers affect the
previous ones, with a time delay, illustrated in Figure 2.7a.

(a) Recurrent network example.

(b) Convolution network example.

Figure 2.7: Adaptations of the feed-forward structure.

Another variation which is often used in the analysis of images (e.g. for computer vision) is the convolutional
neural network. In this approach, the input is a two-dimensional grid, which gets subdivided into smaller
grids of a fixed size n x n, called the kernel size. Each of the sub-grids is then linked to a single output neuron
in the next layer, with the only connections being from the sub-grids. Additionally, all of the connections to
the next layer in that manner have the same weight, i.e. each kernel has a single weight rather than n x n
ones. This obviously reduces the number of parameters that need to be determined and therefore speeds up
training.
Another type of layer are the so called pooling layers, which are similar to convolutional layers in the sense
that they are only dependent on a sub-grid of neurons from the previous layer and have no connections
to neurons outside that sub-grid. However, their activation is not the result of an activation function like
the sigmoid or step function, but one which "condenses" the information of the previous layer into fewer
neurons. A simple example of this is an averaging pool in which the activation of a neuron in the pooling
layer is the average activation of its kernel from the previous layer. This type is often combined with the
convolutional layers [66, 67].
Of course, the designer is not limited to a single type of network. These kinds of layers can also be chained
together, e.g. two convolutional layers followed by two regular feed-forward layers. An example of a network
with one convolutional layer and one fully connected layer can be seen in Figure 2.7b. In this example. the
input layer contains 4 x 4 neurons for illustration purposes, with each sub-grid of 3 x 3 being connected to a
neuron in the next layer. In real images, the number of inputs are generally much larger while the the size of
the sub-grid is comparatively smaller.
These kinds of structures can be motivated by the specific nature of the problem to be solved. For example in
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(a) Step function.
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(b) Sigmoid function.

Figure 2.8: Activation functions.

image processing it can be argued that the first convolutional layer detects small scale features, the next layer
can determine larger scale features and the remaining layers determine the desired result from the detected
features. However, whether a network actually performs in the manner that is envisioned before the training
process is usually not discernible later on, due to the very large number of connections (which scale with
m ·n, where m and n are the number of neurons in the connected layers).
These meta-parameters of the network, (number of layers, number of neurons per layer, layer structure, type
of activation function) depend on heuristics related to the problem at hand as well as practical factors which
can influence the time it takes to train the network.

2.5.3. Activation Functions
There are many available options for the activation function f An intuitive activation function is the step
function which outputs either 0 if the input is negative or 1 if the input is positive (seen in Equation (2.29)).

step(z) =
{

0 if z < 0

1 if z ≥ 0
(2.29)

This is very similar to the way actual neurons behave in the brain, which are either resting or firing with no
in-between states.
However, this activation function is problematic. Ideally, small changes in the input should correspond to
small changes in the output (i.e. the output is continuous over the input), as this enables differentiating the
network output with respect to the input (which will become important in training). However this is not the
case with the step function. It can easily be seen that causing a tiny change to the input in a more complex
network could cause a series of neurons to flip in difficult to predict ways which can completely alter the
outcome. This can be remedied by choosing a smoothed out version of the step function, called the sigmoid
function, given in Equation (2.30).

si g (z) = 1

1+e−z (2.30)

This function is close to 0 for very large negative values of the input z and close to 1 for very large positive input
values. Both the step function and the sigmoid function can be seen in Figure 2.8. The sigmoid function solves
the problem of a discontinuous output, but more practical activation function exist and will be mentioned
later on.

In addition to the activation functions mentioned above, two other functions are commonly used. The hy-
perbolic tangent function and the rectifier function, shown in Figure 2.9 and Equations (2.31) and (2.32).
The hyperbolic tangent is very similar to the sigmoid when comparing their shape and algebraic form (in fact
(1+ tanh(x))/2 = si g (2x) ), so it might not be obvious why one would be more useful then another. However,
the key difference is the fact that the sigmoid function is strictly positive. No input to the function can cause
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the output to be 0. But in a complex network there might be many neurons which should not activate, de-
pending on the given input. This leads to very large valued weights in the training of the network and can
make the network unstable. Choosing the tanh function is hence preferred for practical reasons [68].

rect(z) =
{

0 if z < 0

α · z if z > 0
(2.31)

tanh(z) = ez −e−z

ez +e−z (2.32)
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(a) Hyperbolic tangent function.
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(b) Rectifier function (with α= 1/5).

Figure 2.9: Activation functions.

Furthermore, there is another activation function in the case of classification problems with more than two
categories. In those cases, it might be desirable to express the output as a probability distribution. This gives
a direct interpretation to the network output as a certain "confidence" in its result.
One commonly used function for this purpose is the softmax function, shown in Equation (2.33)[65, p.70].

rect(zi = ezi∑n
j ez j

(2.33)

Where z is now a vector of inputs, i and j are indices ranging from 1 to n, where n is the amount of elements
in the input vector.
As can be easily checked, the sum of the components of this output function is 1.

2.5.4. Backpropagation Training Algorithm
Determining the network parameters, i.e. the weights and biases of the network, is in essence an optimization
problem with many free variables: Given the training data, find the sets of weights and biases that minimize
a certain cost function expressing the quality of the network output.

min
W ,b

C (W ,b)

Where C is the chosen cost function, W is the set of weights and b is the set of biases. The choice of cost
function is another parameter that needs to be determined based on the problem at hand. Examples of
cost functions are the quadratic cost shown in Equation (2.34) or the cross-entropy cost function shown in
Equation (2.35). Depending on the problem at hand, other cost functions may be chosen.

Cquad(W ,b) = 1

n

∑
n

(
y −a

)2 (2.34)

Cce(W ,b) =− 1

n

∑
n

y ln a + (
1− y

)
ln(1−a) (2.35)
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Where a is the vector of outputs, n is the number of training samples used to determine the cost and y is the
desired outcome.
A very common approach which lends itself to neural networks specifically are gradient-based methods to
find the minimum, e.g. gradient descent or conjugate gradient methods. In these approaches, the gradient of
the cost function is determined w.r.t the weights and biases and the parameters are adjusted in the direction
of that gradient.
Due to the nature of the neural network, a simple way to determine the gradients of the weights and biases
is through a technique called "backpropagation". The partial derivatives making up the gradient (sometimes
also called sensitivities) are first calculated for the last layer. Following this, a recursive relationship is estab-
lished which allows for calculating the partial derivatives going back one layer at a time.

This is summarized in Equations (2.36) to (2.40), which will not be derived here, but can be easily determined
through the application of the chain-rule [65, chp. 2].

δl
j := ∂C

∂z l
j

(2.36)

δL
j =

∂C

∂aL
j

σ′(zL
j ) (2.37)

δl
j =

∑
k

w l+1
k j δ

l+1
j σ′(zL

j ) (2.38)

∂C

∂bl
j

= δl
j (2.39)

∂C

∂w l
j k

= al−1
k δl

j (2.40)

(2.41)

Equation (2.36) defines the sensitivity δl
j as the partial derivative of the cost function with respect to the

input z of the j th node in the l th layer. Equation (2.37) gives the sensitivities of the last layer L, as the partial
derivative of the cost function with respect to the output of the neuron j mutipied with the derivative of the
activation function. Equation (2.38) then gives the relationship to determine the sensitivity of j th node in the
l th layer as a function of the sensitivities of all nodes in the layer l +1.

Finally, Equations (2.39) and (2.40) relate the sensitivity to the desired quantities: These are the partial deriva-
tives of the cost function with respect to the bias and weights. This back-propagation algorithm can be sum-
marized in the following steps.

(0. Initialize the network parameters W ,b)

1. Select a training sample x

2. Go forward through the network by calculating the activations al
j of all layers up to the last using Equa-

tion (2.28)

3. Calculate the sensitivities of the final layer using Equation (2.37)

4. Move backwards through the network layer by layer by calculating the sensitivities using Equation (2.38)

5. Determine the elements of the gradient vector with Equations (2.39) and (2.40)

These steps give the gradient for a single training example. In practice, this process is performed for a batch
of samples (batch-learning) and the resulting gradients are averaged for a step of the optimization algorithm,
which adjusts the network parameters.
This continues until all batches in the dataset have been used to compute a step in the optimization algo-
rithm. Going over the dataset in its entirety is called an epoch. In most cases, a single epoch is not enough
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to have reached a minimum in the cost function, so the process starts over in the next epoch. The decision
to stop the training is usually not evaluated based on the value of the cost function over the training set, as
the networks can be prone to over-fitting. Instead, a separate validation dataset is used. This dataset is only
used to evaluate the performance of the network at a certain point during the optimization process, usu-
ally once per epoch. As the training algorithm is not using the validation to compute the gradient, it can be
used to judge whether the network is beginning to specialize on the training data. When the performance on
the training set continues to improve, but the performance on the validation set stagnates or decreases, the
training is stopped. This avoids over-fitting the network parameters to the training dataset,

Various adaptions of this simple training method exist. For example, for recurrent neural networks which fea-
ture a dependence on time, the computational graph is "unrolled" up to a certain point in time. From there,
the computation of the gradient can commence. This adapted approach is called backpropagation through
time (BPTT).

2.5.5. Long Short-Term Memory Networks
A specific type of recurrent neural network called the "Long short-term memory" (LSTM) network is particu-
larly useful in the application of time-series input data and is used in the development of the neural network
model in this thesis[69].
It differs from the usual network structure by its basic unit not being composed of a neuron with a single
activation value and an output. Instead, the basic LSTM unit is made up of a central neuron which holds the
value of the cell, an ’input’ gate which regulates whether the value in the central neuron can be altered by
input, an ’output’ gate which in turn regulates to what extent the value in the central neuron gets passed on
to the next layers and a ’forget’ gate which regulates how quickly the value in the central neuron decays. This
is illustrated in Figure 2.10[3].

Figure 2.10: Illustration of the basic Long Short-Term Memory (LSTM) network unit [3].

The figure shows that a single LSTM cell has four locations where the collected input either from previous
layers or recurrent layers is used. The first is the input modulation, which is similar to a regular neural network
cell. This is followed by a multiplication with the value of the input gate. The resulting values is added to the
cell value. This is a crucial difference to other recurrent networks as it makes the network resistant to the
vanishing gradient problem which occurs in other recurrent neural networks [70]. The current value of the
cell is then multiplied with the output of the forget gate. This combined cell value is then passed through an
activation function, most commonly the hyperbolic tangent function. Finally, the cell output is multiplied
with the value of the output gate.
As a network with LSTM units effectively has four cells which require a weighted sum of the input and each
have their own biases, the total amount of parameters is four times greater than for a regular dense network
with the same amount of units.
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2.6. Kalman Filter
The Kalman filter is an observer for a stochastic system that is based on the system model given by Equa-
tions (2.18) and (2.19). The filter aims to give an estimate of the system state with minimal error covariance
in the least-squares sense. This is achieved by combining the model-prediction with the state measurement
in an optimal way.
The discrete Kalman filter works in a predictor-corrector fashion. That means, the next state is estimated
based on the current state using the system model, resulting in the so called a priori estimate. Using the next
measurement the a priori estimate x̂−(k+1) is improved upon, resulting in the a posteriori estimate x̂+(k+1).
This is done by combining the a priori estimate with a weighted combination of the measurement and mea-
surement estimate, called the innovation, in such a way as to minimize the variance Pk of the error in the new
estimate in the least squares sense [71, p.22]. The algorithm for the discrete Kalman filter works according to
the following steps [72]:

1. Given the previous estimate for the mean and the error covariance, compute the a priori estimate for
the next state

x̂−(k +1) = Ax̂+(k)+Bu(k) (2.42)

2. Compute the a priori estimate for the next error covariance by Equation (2.43)

P−(k +1) = AP+(k)AT +Qx (2.43)

3. Compute the Kalman filter gain by Equation (2.44)

K (k +1) = P−(k +1)C T (C P−(k +1)C T +Qy )−1 (2.44)

4. Compute the a posteriori state estimate

x̂+(k +1) = x̂−(k +1)+Kk (k +1)
(

y(k +1)+C x̂−(k +1)
)

(2.45)

5. Update the error covariance matrix by Equation (2.46).

P+(k +1) = (I −K (k +1)C )P−(k +1)(I −K (k +1)C )T +K (k +1)Qy K (k +1)T (2.46)

The blending of new and old information is called the innovation and is given again in Equation (2.47).

r (k +1) = y(k +1)− ŷ(k +1) = y(k +1)+C x̂−(k +1) (2.47)

A sub-optimal version of the filter which does not require recomputing the gain can be used, since the re-
cursive update equation usually converges to a constant. The steady state Kalman filter gain is shown in
Equation (2.48) where the constant error covariance matrix is given by the solution of the discrete algebraic
Ricatti equation shown in Equation (2.49).

K = (
APC T )(

C PC T +R
)−1

(2.48)

P = AP AT +Q − (
APC T )(

C PC T +R
)−1 (

C P AT )
(2.49)





3
Simulation & Data Generation

Because there is little real data from formation flying missions which fit the parameters of the thesis, a rep-
resentative simulation of the satellite formation and the relative dynamics was created. The most important
sections of the code can be found in Appendix B.2, but in this chapter, the simulation is explained. First, the
mission setup is detailed in Section 3.1, followed by an overview of the separate parts of the simulation in
Section 3.2. Then, the implemented forces are explained in Section 3.3 and the Guidance, Navigation and
Control (GNC) system of the formation is shown in Section 3.4. Finally, the verification of the simulation is
shown in Section 3.5.

3.1. Simulated Mission Scenario
In this section the mission scenario that is used for the analysis is detailed. Section 3.1.1 gives information
on the type of the formation, followed by a description of the process used to determine some of the mission
parameters in Section 3.1.2.

3.1.1. Mission Overview
In order to fulfill the aims of the thesis, a close formation is necessary. In addition, a formation with active
use of thrusters is preferable as thruster faults are to be investigated. Therefore, the chosen formation type
is a virtual structure (i.e. a formation in which an exact shape is maintained by the spacecraft), specifically
that of a regular polyhedron with satellites at the vertices. The number of satellites was chosen to be 6, as
the resulting shape (octahedron, shown in Figure 3.1) is the first regular polyhedron (based on amount of
vertices) where not every vertex has a connection to every other vertex, thus allowing for investigating the
case of missing connections and their effect on the FDI performance.

Of course not only the formation type has to be decided but also the satellites making up that formation have
to be characterized. Of particular importance are the properties pertaining to the behavior in the orbit. The
spacecraft parameters can be seen in Table 3.1. The spacecraft is assumed to be a micro-satellite with a wet
mass of 100 kg and is modelled as a completely rigid, solid cube with a side length of 1 meter. The thruster
are assumed to be similar to the orbital control thrusters of the MMS mission, which were mono-propellant
thrusters capable of a 1 lbf thrust, approximately 4.5 N [73]. While additional data beyond the thrust could
not be found for this particular thruster, a brochure by arianegroup lists a similar 5N monopropellant thruster
with a specific impulse range of 206 to 226 s and a minimum impulse bit from 0.03 Ns to 0.1 Ns [74]. For this
simulation, the numbers were rounded to 4N for the thruster, 0.1 Ns for the minimum impulse bit and 200 s
for the specific impulse.

In addition to the parameters mentioned above, the configuration of the control thrusters needs to be de-
cided. In order to keep the thrust allocation problem simple, a configuration of 6 thruster per satellite was
chosen, with a pair of thruster per principal axis of the satellite. This means a thruster pointing away from
any face of the cube-like satellite. It is assumed that the thrust vector points through the center of mass of the
satellite. The chosen configuration is illustrated in Figure 3.2.

21
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Figure 3.1: Illustration of the satellites’ numbering and relative positioning.

Table 3.1: Spacecraft parameters for MATLAB simulation.

Spacecraft Parameter Value Unit

Mass 100 [kg]
Dimensions 1 x 1 x 1 [m]
Moment of Inertia 16.6 [kgm2]
Thrust 4 [N]
Minimum Impulse Bit 0.1 [Ns]
Specific Impulse 200 [s]

3.1.2. Mission Parameters
In addition to the type of formation, a particular orbit has to be selected. There have not been many uses of
the virtual structure formation type in flown missions, but the MMS mission used a highly eccentric orbit in
order to study the reconnection of the magnetic field [75]. Such an orbit would complicate the guidance and
control of the implemented mission. As this is not the topic of the thesis, a simplified approach is taken. A
circular, low-Earth orbit was chosen.
The exact mission parameters such as orbital height, the orbital inclination, the size of the formation (i.e. the
distance between satellites) and the orientation of the virtual octahedron were determined through a simple
optimization routine in order to find a sensible mission parameters.
The cost function in this routine is based on the required ∆V that needs to be expended in order to maintain
the formation over one orbital period. Specifically, the cost function is a weighted sum of the average∆V over
all satellites in the formation and the standard deviation of the ∆V . This can be seen in Equation (3.1).

C (∆V ) =α · ∆̄V

n
+ (1−α) · std(∆V )

¯∆Vi
(3.1)

Where α is the weighting factor, ∆̄V is the average velocity increment for the formation, std(∆V ) is the stan-
dard deviation of the velocity increments of the formation, and n is a normalization factor. In this case n was
chosen to be 0.9 after some trial and error, as it yielded good results.
This optimization was done in order to both reduce the overall effort necessary to maintain the formation as
well as keep the effort balanced across the formation. This is important for the lifetime of the mission as the
spacecraft are assumed to be identical. As such the formation will not be able to be maintained, as soon as
the first member runs out of propellant.
Furthermore, a balanced ∆V across the formation corresponds to an equal amount of thrust expended over
one orbit, which has implications for the fault detectability and potential biases for the training data.
The optimization considered 7 variables comprised of the four components of the orientation quaternion, the
orbital altitude, the inclination and the formation size. As the quaternion component are naturally restricted
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Figure 3.2: Illustration of the chosen thruster configuration.

to range of [-1,1], the other components need to be normalized to a similar range for proper performance of
the optimization algorithm. The variables are constrained within these bounds as to not get results above LEO
or formations whose satellites are too far apart. There is another constraint as the quaternion is restricted to
a 4d unit-vector, if it is meant to represent an orientation. The fmincon() function from the MATLAB Op-
timization Toolbox was used for the optimization process. The bounds and the resulting parameters can be
seen in Table 3.2.

Table 3.2: Mission parameters determined by fmincon() optimization script.

Mission Parameter Bounds Final Value Unit

Inter-satellite distance [100,1000] 142.39 [m]
Inclination [0,90] 62.811 [◦]
Altitude [350,1000] 687.48 [km]
Formation orientation (Quaternion) [-1,1] [0.9328,-0.0854,0.0314,0.3488] [-]

3.2. Simulation Overview
The satellite formation is implemented in MATLAB, making use of some of its object-oriented programming
features. The simulation is started in a main file, creating objects of two custom classes, formation and space-
craft. The methods of the classes as well as separate functions are used to propagate the formation through
time. A graphical overview of the connections between various parts of the simulation can be found in Fig-
ure 3.3. The classes involved in the simulation are elaborated on in Section 3.2.1, while the functions are
detailed in Section 3.2.2. An overview of the dependencies of the simulation can be seen in Figure 3.3.

3.2.1. Classes
Two classes are used in the simulation of the formation. The first is the ’spacecraft’ class with relevant pa-
rameters such as its position, velocity, thruster configuration, etc. (detailed below) and the second is the
’formation’ class, which contains multiple objects of the spacecraft class and information such as the orbital
parameters of the formation reference orbit.

Spacecraft The spacecraft class contains the following methods

• Constructor spacecraft()
The constructor of the spacecraft class initializes the object with all relevant parameters. These include
the starting position and velocity, its attitude and spin, an array of additional parameters as well as an
array of parameters characterizing the formation.
The spacecraft parameters given in the array spacecraftParameters consists of 17 values, including
the mass, dimensions as well as thruster parameters. The formationParameters array contains the
size of the formation (i.e. the distance between the satellites), the orientation of the formation struc-
ture with respect to the ECI frame, and the orbital parameters of the reference orbit the formation is
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iterate over spacraft
perform navigation
calculate control command
assign thrusters and calculate
opening times
calculate actual control force

Update Kalman filter
Perform FDI 
update positions based on forces

initialize satellites

navigation()

set satellite state
calculate control gain
calculate Kalman gain

start parallel computing worker pool
specify simulation parameters
for loop over planned simulations

initialize formation object
set fault in thruster
for loop over simulation time

propagate the formation state
get formation state

post process data
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access neighbors position and velocity
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compute control error
transform into Hill Frame
multiply with LQR gain matrix
return commanded Impulse

controlCommand()

transform impulse into body frame
determine opening times through thruster
configuration pseudo-inverse
set thruster open for duration of opening times 

thrustAlloc()

check which thrusters are currently open
calculate thrust exerted by open thrusters
transform thrust into ECI frame
return thrust force

controlForce()

calculate a priori estimate based on last Kalman
state
combine into innvoation with state measurement
update Kalman estimate
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loop over all thruster in formation
calculate value of CUSUM test
check if CUSUM test exceeds threshold, if yes:
trigger detection
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Figure 3.3: Overview of the numerical simulation.
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intended to follow.
The constructor uses this data to assign it to the corresponding object parameters. In addition to this
simple assignment, the constructor also computes various matrices relating to the LQR controller and
the Kalman filter FDI method.

• updatePos() and updateAtt()
The update functions take a deviation in either the position and velocity (updatePos()) or the attitude
as a quaternion and rotation vector ( updateAtt()) and apply the given change to the satellite. This
function is used during the Runge-Kutta 4 propagation function of the satellite formation.

• getState() and setState()
getState() returns the satellite position and velocity vector. while setState() takes a position-
velocity pair as input and sets them as the satellite’s position and velocity.

• navigation(), selfNav(),relNav() and relNavDistAngle()
The navigation functions simulate the measurement procedure that would take place in a real satellite,
in a very simplified manner. The functions selfNav() and relNav() give the absolute position and
velocity of the satellite itself, and the relative position and velocity of its four neigbors in the ECI frame,
respectively. A random-direction bias as well as Gaussian noise in every component is added to both
the absolute and relative navigation, depending on the parameters set in the object.
The relNavDistAngle() function works similarly to relNav(), however implementing a different
navigation approach. Instead of the noise being added to the component of the relative position, a
noise component is added to the range and the relative angles instead, emulating a range-based navi-
gation method.
The navigation() function calls the aforementioned functions and sets the current estimate of the
relevant satellite parameters to the returned values. Furthermore, navigation() also calculates the
transformation matrix to the current Hill frame and its derivative, as they are used in various other
methods.

• kalmanUpdate()
The Kalman filters functions implements the regular Kalman Filter discussed in Section 2.6.

• fdi()The fault detection function uses the innovation of the Kalman filter for fault detection purposes.
The exact algorithm is described in Section 4.2.

• guidance()
The guidance function propagates the reference orbit using Keplerian Dynamics and uses the solution
of Lambert’s Problem [] to determine the necessary instantaneous ∆V commands to reach the next
position in the correct time. This function is not used in the propagation itself, but was used during the
determination of the mission parameters, discussed in Section 3.1.2.

• errVirtualCenter() and errTrackedCenter()
The err[...]() functions calculate the control error based on two separate approaches, used for test-
ing. errVirtualCenter() uses a control approach based on [2], while errTrackedCenter() uses an
approach where the center of the formation is propagated on-board of each satellite.

• controlCommand(),thrustAlloc() and controlForce()
The three control functions controlCommand(), thrustAlloc() and controlForce() each perform
a separate step of the control system. The function controlCommand() takes the current relative po-
sition to the formation center calculated from errVirtualCenter() to determine the current con-
trol acceleration. Then, thrustAlloc() determines based on the current control acceleration which
thrusters need to open and the corresponding opening times. Finally, controlForce() determines
which thrusters are currently open and calculates the force that is acting on the satellite. This force is
fed back into the propagation of the state.

Formation The formation class contains a number of satellite objects making up that formation, as well as
general information such as information about the reference orbit. The following functions are used in the
simulation



26 3. Simulation & Data Generation

• Constructor formation()
The constructor of the formation class takes the following input: the number of spacecraft, the type
of the formation, the position and velocity of the virtual center (which define the reference orbit), the
formation size and orientation, the array of spacecraft parameters that are passed on and information
on the navigation method. In addition, it also takes the mean of the residual vector for the Kalman filter
based FDI method.

• rk4Prop()
This is the main function of the formation class and is used to propagate the state of the entire forma-
tion by one time step ∆t using the Runge-Kutta 4 Integration scheme with the dynamics() function.

• getStates(),setStates() and getRelStates()
The functions getStates() and getRelStates() return the true position and velocity in the ECI
frame, and the measured relative position and velocity from each satellite, respectively. The setStates()
on the other hand takes a set of positions and velocities and assigns them to the satellites in the forma-
tion.

• getAbsoluteMeasurement()
This function returns the measured positions and velocities of the satellites in the formation, in the ECI
frame.

• getControlCommands()
This function returns the current commanded control acceleration in the Hill frame of each spacecraft
in the formation.

• setFault()
This function sets a particular fault (open or closed) in the given satellite and thruster.

3.2.2. Functions
Multiple stand-alone functions have been used, which do not require direct access to object properties or are
simple functions used for improved code-readability. The following list explains the important stand-alone
functions used in the simulation.

• dynamics()
The dynamics() function calculates the derivative of the position and velocity. It in turn calls the
various functions which calculate the forces acting on the body in order to determine the acceleration.

• rotX(),rotY(),rotZ(),rotZdot()
These functions are used to determine the rotation matrices around the X,Y and Z axis, as well as the
time derivative of the Z axis, as it is used in the determination of the Hill Frame.

3.3. Forces Model
In this section the models for the various forces involved in the simulation are detailed. First, the gravity
model is shown in Section 3.3.1, followed by the disturbance forces in Section 3.3.2.

3.3.1. Gravity
The EGM 2008 Model is used in the calculation of the gravitational acceleration. An appropriate function
implementing this model exists in MATLAB already and is called gravitysphericalharmonic(). It takes
the position of an object in the ECEF frame and returns the acceleration in the ECEF frame based on the EGM
2008 model. This function was slightly modified to be able to change the degree of the model by a value in
the Constants file.

3.3.2. Disturbances
Four disturbances are simulated [76, chp. 20]:

1. Aerodynamic drag in the upper atmosphere

2. Gravitational influence of the Sun and the Moon

3. Lorentz force due to the movement through Earth’s magnetic field
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4. Radiation pressure from Sun- and Earth-emmitted radiation

Aerodynamic Drag The remaining atmosphere at the orbital altitude will produce some drag from the col-
lisions with air molecules. It is modelled similarly to the aerodynamic force in Aeronautics, shown in Equa-
tion (3.2) [76, p.534].

Faer o =−CD
1

2
ρA|vr el |vr el (3.2)

Where Faer o is the aerodynamics force, CD is the drag coefficient, ρ is the atmospheric density, A is the cross-
sectional area and vr el is the velocity vector relative to the air. In this case it is assumed that the air rotates
with the Earth. Furthermore it is assumed that the exposed area is constant, regardless of the orientation. A
worst case estimate is taken in order not to underestimate the effect.
As such, a drag coefficient of 3 is assumed and the atmospheric density is assumed to be constant and equal
to 1e−12 kgm−3 [76, p.538].

Gravitational Influence of Sun and Moon The most influential gravitational bodies for an orbit around the
Earth are the Sun and Moon. Their disturbance acceleration is modelled by Equation (3.3) [76, p.540].

Fg r av = m ·µg

(
r j − ri

|ri j |3
− rj

|r j |3
)

(3.3)

Where Fg r av is the perturbing acceleration of a third body, µg is the standard gravitational parameter of said
body, ri r j , and ri j are the position vector of the orbiting object, the perturbing body and the distance be-
tween the orbiting body and the perturbing body, respectively.
In order to know the gravitational influence of the Sun and the Moon, their positions have to be known for
a given time. The scripts createMoonPositions() and createSunPositions create arrays of these posi-
tions using the planetEphemeris() function (a part of the Aerospace Toolbox for MATLAB), which are then
linearly interpolated during the simulation in order to find the approximate location and determine the in-
fluence according to Equation (3.3).

Lorentz Force Due to the presence of ions in the atmosphere, a spacecraft can pick up an electric charge.
This in combination with the movement through Earth’s magnetic field can create a force on the satellite,
shown in Equation (3.4)[76, p.534].

Fmag = qsat v×××Bmag (3.4)

Where Fmag is the force due to the magnetic field, qsat is the charge of the spacecraft, v is the velocity of the
charged particles (the spacecraft in this case) and Bmag is the magnetic field vector.
The charge accumulated by a sphere is given by Equation (3.5)[76, pp.548-549].

q =U ·4πε0Rs (3.5)

Where U is the electric potential difference between the satellite and the surrounding plasma, ε0 is the per-
mittivity of free space with a value of 8.854e−12 Fm−1, and Rs is the radius of the sphere. In estimating the
charge accumulated by the spacecraft a few assumptions are made: It is assumed that a conservative estimate
is achieved by a sphere with a diameter of the diagonal length of the spacecraft and the electric potential dif-
ference is 100 V. With these assumptions, the accumulated charge is equal to 1.9271e−8 C.
The model of the magnetic field that is used in the simulation is the "International Geomagnetic Reference
Field" (IGRF) model, which already has an implementation in MATLAB’s Aerospace Toolbox [77].

Radiation Pressure The radiation coming from the sun and that reflected from the Earth create a force on
the satellite. This disturbance force is modelled by Equation (3.6) [76, p.534].

Fr ad =CR
W A

c

ri j

|ri j |
(3.6)

Where Fr ad is the disturbance force due to the radiation pressure, CR is the satellite’s reflectivity, W is the
energy flux of the incoming radiation, A is the exposed area, c is the speed of light and ri j is the position
vector from the radiating body i and the receiving body j . This also requires knowing the position of the
Sun. The energy flux of the Sun’s radiation in LEO is approximately equal to 1360 Wm−2. The earth itself
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radiates approximately 240 Wm−2 over a cloud covered area and it is assumed that 32% is reflected, yielding
approximately 428 Wm−2 [76, p.542]. The reflectivity of the satellite is assumed to be 0.9 for the entire range
of wavelengths that the satellite receives. 1

3.4. Simulation Navigation and Control
The formation navigation and control are described in this section.

Navigation The navigation of the formation is heavily simplified. Two navigation methods are used, abso-
lute and relative navigation. Each method only adds a constant but random direction bias vector of a certain
size as well as normally distributed noise to each component of the position and velocity information. The
sizes of the bias vectors as well as the standard deviations of the Gaussian noise for both absolute and relative
positions and velocities are shown in Table 3.3.

Table 3.3: Navigation noise and bias sizes for absolute and relative measurements [6, chp 6-7] [1].

Absolute position Relative position Relative velocity

Bias size 1 m 0.05 m 0.0005 ms−1

Standard deviation size 2 m 0.02 m 0.0005 ms−1

Control A linear-quadratic regulator using the Hill-Clohessy-Wiltshire dynamics was selected, the theoreti-
cal background of which is described in Section 2.4. The actual implementation in the simulation is achieved
in the functions errVirtualCenter(), controlCommand(), thrustAlloc() and controlForce().
While the control error is calculated simply by the deviation from the nominal position in the Hill frame, the
command is then achieved by multiplying said error with the control gain, derived from the LQR control,
shown in Section 2.4.2.
The discrete system describing the relative dynamics was achieved by discretizing the continues HCW equa-
tions, which were shown in Section 2.3. The discretization time-step was chosen to be 60 s. This was deemed
a good balance between firing the thrusters too often (which might require constant attitude adjustments)
and not firing them often enough (which might degrade the performance). Furthermore, as was seen from
the analytical solutions to the HCW equations, the uncontrolled system has a frequency of the inverse orbital
period. This means that the discretized controller should not run into problems due to information loss from
under-sampling with a time step of60 s. The discretization method used is the impulse matching method,
which preserves the impulse response of the system. Considering that the controller activates the thruster in
short bursts, rather than extended periods of time, this method should result in the best control performance.

The thruster allocation problem (i.e. which thruster to fire and for how long) is solved by utilizing the pseudo-
inverse of the thruster configuration matrix, shown in Equations (3.7) and (3.8).

Tcon f i g =
1 −1 0 0 0 0

0 0 1 −1 0 0
0 0 0 0 1 −1

 (3.7)

T−1
con f i g =



0.5 0 0
−0.5 0 0

0 0.5 0
0 −0.5 0
0 0 0.5
0 0 −0.5

 (3.8)

As the delivered impulse over a certain time period is given by Equation (3.9), the pseudo-inverse can be used

1https://laserbeamproducts.wordpress.com/2014/06/19/reflectivity-of-aluminium-uv-visible-and-infrared/,
last accessed 25.09.20

https://laserbeamproducts.wordpress.com/2014/06/19/reflectivity-of-aluminium-uv-visible-and-infrared/
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to deduce the opening times as shown in Equation (3.10).

Icontr ol = fthr uster Tcon f i g · topen (3.9)

topen = 1

fthr uster
T−1

con f i g · Icontr ol (3.10)

Where Icontr ol is the delivered impulse over a certain time period, fthr uster is the net force delivered by the
thruster and topen is the vector of the opening times for the thruster.
However, using Equation (3.10) can result in negative opening times due to the negative signs in the pseudo-
inverse. This can be remedied by simply adding the absolute value of the thruster with the negative opening
time to the one opposite it, which results in the same effective impulse.
Finally, the actual force at a given time is then calculated by controlForce() based on the opening times.

3.5. Verification
In this section the verification efforts for the simulation are shown. The largest unit tests are described here
as well as the system tests applied to the entire simulation. The orbit propagation verification is shown in
Section 3.5.1, the verification of the reference frames is shown in Section 3.5.2, the control system verification
is shown in Section 3.5.3, the Kalman filter verification is shown in Section 3.5.4 and finally a few system tests
are presented in Section 3.5.5.

3.5.1. Orbit Propagation
The Earth Gravitational Model (EGM) 2008 is used in the calculation of the gravitational acceleration [78]. As
the related function is available from mathworks, the model itself will not be verified here, but the orbit prop-
agation will be verified using a test case. For a satellite in a Kepler orbit the orbital period can be calculated
by Equation (3.11)[79, p.81].

T = 2π

√
a3

µg
(3.11)

Where T is the orbital period, a is the semi-major axis (in this case the radius of the circular orbit) and µg is
the standard gravitational parameter of the body that is orbited.
For a satellite with a height of 400 km, in orbit around the Earth, the values on the right hand side of the
equation, taken from the EGM model, are [78]

r = 6378.137+1200 = 7578.137 km

µg = 0.39860 ·106 km3

s2

Which leads to an orbital period of T = 6565.3013 s. When a satellite is placed at a radius of 7578.137 km and
given the appropriate velocity to achieve a circular orbit (shown in Equation (3.12)[79, p.81]), the time until
the satellite returns to its original location can be determined from the numerical simulation.

vci r c =
√
µg

r
(3.12)

Where vci r c is the velocity of an object in a circular orbit, which for the figures specified above amounts to
7252.499 ms−1. This velocity is imparted horizontally (i.e in the x-y plane) in the ECI frame on the satellite,
which should result in an equatorial orbit. Since a time-step of 1 second is used in the simulation, by con-
sidering the position output only, the period could only be determined up to 1 s. However, for the purposes
of the verification, the time step is reduced to 0.001 seconds, which enables checking the model consistency
of the error up to 0.0005 seconds. The minimum distance from the initial position of the satellite occurs at
6565.301 s, which is off by 0.0002 s, within the predicted error range of less than 0.0005 s. A three-dimensional
plot of this orbit is shown in Figure 3.4a.
In order to further verify the orbit propagation, a non-circular, non-equatorial orbit will be propagated for
a given eccentricity e and inclination i . If the initial position of the satellite is solely in the x-direction (i.e
r = [r0,0,0] and the velocity v of the satellite is directed in the y and z directions as such

v =
 0
‖v‖ ·cos(i )
‖v‖ · sin(i )
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The orbital plane should be inclined by the angle i , i.e. the inclination. To determine the magnitude of the
initial velocity ‖v‖, the vis-viva equation can be used, shown in Equation (3.13)[79, p.89].

1

2
‖v‖2 − µg

‖r ‖ =−µg

2a
(3.13)

Where r is the position vector of the satellite. The definition of the semi-major axis and the eccentricity can
be used to relate the semi-major axis and the distance at periapsis as follows [79, chp. 2]

a = rp + ra

2
(3.14)

e = rp − ra

rp + ra
(3.15)

→ ra = rp
1+e

1−e
(3.16)

→ a = rp
1

1−e
(3.17)

For an eccentricity of 0.5 it follows that a = 2rp and hence the magnitude of the initial velocity (i.e. the velocity
at periapsis) should equal

‖vp‖ =
√
−µg

a
+ 2µg

rp
=

√
− µg

2rp
+ 2µg

rp
=

√
3µg

2rp

Which in this case with a height of 1200 km results in a velocity at periapsis ‖vp‖ = 8882.461 ms−1. In addition
to the orbital period, which for this elliptical orbit case using Equation (3.11) amounts to 18569.476 s, the
maximum distance, i.e. the distance at apoapsis can be checked for accuracy. For an eccentricity of 0.5 and
using

e = rp − ra

rp + ra
→ ra = rp

1+e

1−e

The distance at apoapsis should be three times the size of the distance at periapsis, i.e. the initial distance of
7578.137 km, and therefore be 22734.411 km.
The numerical simulation distance at apoapsis shows a difference of only−3.0696e−6 m and an orbital period
of 18569.476 s, verifying the orbit propagation.

(a) Circular test orbit with hp = 1200,e = 0, i = 0◦. (b) Elliptical test orbit with hp = 1200, e = 0.5,i = 60◦.

Figure 3.4: Test orbits to verify the simulated orbit propagation, Earth sphere created with [4].

It should be noted that due to the need for analytical solutions, only the first degree of the EGM 2008 model
was used for the orbit propagation. It is assumed that the gravitational acceleration calculation from the
remaining degrees of the model is correct.
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3.5.2. Reference Frame Conversion
There are four main frames which are used in the simulation, the Earth-Centered-Inertial (ECI) frame, the
Earth-Centered-Earth-Fixed (ECEF) frame, the Hill frame and the Satellite-Body frame. As the ECI frame is
used for performing the main orbital propagation, all positions are initially expressed in the ECI frame. For
certain calculations however, they need to converted to some of the other frames.

ECI to ECEF In the calculation of the gravitational acceleration it is important to determine a satellite’s posi-
tion relative to the fixed geometry of the Earth, as it determines the acceleration that the satellite experiences.
As the ECI frame and the ECEF frame share a common z-axis, this conversion is simply a time based rotation
around the z-axis. This angle of the rotation is dependent on the rotation of the Earth. In this simulation it
is assumed that this rotation is constant. To test this rotation, a single point in space was chosen that stays
fixed in the ECI frame, 1000 km above the 0-longitude line at the equator at an initial time. This point should
rotate westward and return to its initial location after one full Earth rotation, or exactly 23 hours, 56 minutes
and 4.2 seconds [80]. A plot of the movement due to the rotation of the Earth can be seen in Figure 3.5, where
the conversion from ECI to ECEF has been calculated from t = 0 to t = 18 hours to see the rotation.

Figure 3.5: Movement in the ECEF frame of a fixed point in the ECI frame.

As can be seen, the point moves westward in the ECEF frame, as expected. The time until it returns to its
original location is 23 hours, 56 minutes and 4.2 seconds, verifying the transformation.

ECI to Hill frame The Hill frame is used in the Clohessy-Wiltshire equations, and therefore in the control
subsystem. As the Hill-frame is non-inertial, there are additional terms that need to be taken into account.
The general formulation of this transformation was already seen in Section 2.1 and is repeated here for refer-
ence.

rHi l l = T EC I
Hi l l

(
p2 −p1

)
EC I

vHi l l = T EC I
Hi l l (v2 −v1)EC I −S (nz)T EC I

Hi l l (Ω)
(
p2 −p1

)
EC I

The following test case is constructed: consider a chief satellite at a position of [0,r0,0] and a deputy satellite
at [0,r0 +1,0] (one meter further out), both in circular orbits with an inclination of i = 60◦ and with an initial
height h0 =400 km.
First, the two rotation matrices that are involved are checked. From the definition of the Hill frame it is clear
that at that point, the rotation matrix between the Hill and ECI frame is a simple 90◦ rotation around the z axis,
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followed by a rotation around the x axis by the inclination, i.e. 60◦. More generally, the frame transformation
can also be constructed from Equation (3.18).

T EC I
Hi l l = Tz (θ)Tx (i )Tz (Ω) (3.18)

As the Hill frame is a rotating reference frame, also the time derivative of the rotation matrix needs to be
checked. Taking the time derivative of Equation (3.18) yields

.
T

Hi l l
EC I = .

T z (θ)Tx (i )Tz (Ω)+Tz (θ)
.

T x (i )Tz (Ω)+Tz (θ)Tx (i )
.

T z (Ω) (3.19)

In a Kepler orbit neither inclination nor the RAAN are functions of time and such the rotation matrices based
on them are both zero matrices. As such only the first term remains, containing the rotation matrix

.
T z (θ) = d

dt

cos(θ) sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

=

−sin(θ)
.
θ cos(θ)

.
θ 0

−cos(θ)
.
θ −sin(θ)

.
θ 0

0 0 0

= .
θ

−sin(θ) cos(θ) 0
−cos(θ) −sin(θ) 0

0 0 0

= .
θ

d

dθ
(Tz (θ))

Inserting this expression back into Equation (3.19) yields Equation (3.20), the analytical equation for the
derivative of the rotation matrix.

.
T

Hi l l
EC I = .

θ
d

dθ
(Tz (θ)) Tx (i )Tz (Ω) (3.20)

As explained in Section 2.1, the time derivative of any rotation matrix where RRT = I holds can also be ex-
pressed by [35, 36]

.
R

A
B =−S(ω)R A

B

Where R A
B S is a skew-symmetric matrix constructed from the angular velocity vector ω expressed in frame

B. This enables checking the rotation matrix derivative.
As the chief satellite is at a circular orbits with radius r0 = Re +h0 = 6778.1 km, the mean motion is n = 2π

T =
0.00124 rads−1 [79]. Furthermore, θ = 0, i = 60◦ andΩ= π

2 .
Using Equations (3.18) and (3.20) as comparisons for the methods presented in Section 2.1, the differences
in the two approaches could be calculated. The components of the matrix only differed by less than 1e−16,
verifying the matrices.
Second, the computation of the relative position and velocity is verified. The position of the deputy satellite
relative to the chief satellite is simply 1 meter in the radial direction, i.e. x direction of the Hill frame, while the
relative velocity will be made up from two terms, one from the relative velocity in the inertial frame and one
from the rotation of the Hill frame. The first is simply the difference in the ECI frame rotated by 90◦, which in
this case equals

vr el = v2 − v1 =
√

µg

r0 +1
−

√
µg

r0
= 0.0062ms−1

which will be in the along-track direction, i.e. y component of the Hill frame only. The term due to the rotation
of the frame is the relative position multiplied by the time derivative of the rotation matrix. As the rotation
of the Hill Frame is always around the local z-axis, this component will only be in the x-y plane of the Hill
frame. In addition, as the relative position is only in the positive radial direction, the resulting velocity due to
the rotation will only be in the negative along-track direction.
As such the relative velocity in the Hill frame is given by

vr el =
[

0,

√
µg

r0 +1
−

√
µg

r0
−n,0

]
= [0,−0.0019,0]ms−1

Computing the relative position and velocity using the matrices and comparing the difference to the state as
well as in the matrices, the differences are less than 1e−12, again verifying the simulation.

ECI to Satellite frame The attitude of the satellites is represented with a quaternion, and conversions be-
tween the two frames are performed using the quatrotate() function from MATLAB’s aerospace toolbox.
Two checks are performed to verify this frame transformation. The first is using a reference quaternion while
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the second is converting a test vector back and forth using the inverse quaternion.
The reference quaternion is constructed using a set rotation axisω and angle γ by Equation (3.21).

q =


cos

(γ
2

)
ω1 sin

(γ
2

)
ω2 sin

(γ
2

)
ω3 sin

(γ
2

)
 (3.21)

Usingω= [0,1,0] and γ= π
2 , the resulting quaternion represents a 90◦ rotation around the y axis of the frame

to construct the new frame. Four test vectors were rotated using this quaternion and the output can be seen
in Table 3.4. As can be seen, the output corresponds to the desired 90◦ rotation around the y-axis. The sec-

Table 3.4: Frame conversion tests using the quaternion function.

Vector in frame A (input) Vector in frame B (output)

[1,0,0] [0,0,1]
[0,1,0] [0,1,0]
[0,0,1] [-1,0,0]
[3,4,5] [-5,4,3]

ond tests involves the quaternion inversion function quatinv(). The vector p = [3,4,5] is rotated around a
random quaternion and then rotated back by the quaternion inverse. The euclidean norm of the difference
between the original and the twice rotated vector is 2.03e−15, verifying that the quaternion inverse can be
used as the reverse transformation.

3.5.3. LQR Control
First it is checked whether the linear gain matrix K is correctly computed from MATLABs discrete algebraic Ri-
catti equation (DARE) solver. According to the documentation the idare() function with inputs A,B ,Q,R,S
and E , it produces the computes the unique stabilizing solution X , state-feedback gain K , and the closed-
loop eigenvalues L of the discrete algebraic Ricatti equation given by Equation (3.22). Note that the input
matrices here are given the subscript M in order to differentiate them from similarly named matrices from
Equation (2.25).

AT
M X AM −E T

M X EM − (
AT

M X BM +SM
)(

B T
M X BM +RM

)−1 (
AT

M X BM +SM
)T +QM = 0 (3.22)

The DARE resulting from the LQR problem which was shown in Equation (2.25) is repeated here for reference
[63, p.69].

AT S A −S − (
AT SB

)(
B T SB +R−1)(B T S Ak

)+Q = 0

It can be seen that the there are a few additional terms in the MATLAB input (EM and SM ) which are not
present in the discrete Ricatti equation resulting from the LQR problem. However, it can be easily seen that
if EM = I is the identity matrix of appropriate size and SM = 0 is the zero matrix of appropriate size, the two
equations match.
A simplified example from [63] is reproduced here to verify the correctness of the LQR controller. Consider
the system given by Equation (3.23)

xk+1 = axk +buk (3.23)

With the cost function given by Equation (3.24).

J = 1

2

∞∑
k=0

(
qx2

k + r u2
k

)
(3.24)

According to [63, p.75], the corresponding steady state gain is given by

k = abs

b2s + r
(3.25)
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Where s is the positive solution to Equation (2.22), which can be solved as shown below to result in Equa-
tion (3.28).

s = a2s − a2b2s2

b2s + r
+q (3.26)

s · (b2s + r
)= a2s · (b2s + r

)−a2b2s2 +q · (b2s + r
)

(3.27)

b2s2 + r s = a2b2s2 +a2sr −a2b2s2 +qb2s +qr

0 = a2b2s2 +a2sr −a2b2s2 +qb2s +qr −b2s2 − r s

0 = (−b2) s2 + (
a2r +qb2 − r

)
s +qr

→ s1,2 =
(
a2r +b2q − r

)±√(
a2r +b2q − r

)2 −4
(−b2

)(
qr

)
2b2 (3.28)

For the example values a = 0.1,b = 5, q = 5 and r = 0.1, the positive solution to Equation (3.26) is s = 5.1002
and the corresponding value of the gain k = 0.0981. Using MATLAB to solve the problem using the idare()
function, the difference in the value of s is 4.44e−16, which is small enough to be acceptable.

3.5.4. Kalman Filter Verification
The Kalman filter will be verified on a simple one dimensional example, similar to the verification of the LQR.
Consider the one dimensional system described in Equations (3.29) and (3.30)

xk+1 = axk +buk + vk (3.29)

yk = cxk +duk +wk (3.30)

Where vk and wk are normally distributed noise with variances q and r , respectively.
As the computation of the Kalman steady state gain matrix is also handled by the idare() function of MAT-
LAB, a similar approach to the verification of the LQR controller is taken. For reference, the Ricatti equation
for the steady state error covariance is repeated here:

P = AP AT +Q − (
APC T )(

C PC T +R
)−1 (

C P AT )
By comparing this to Equation (3.22) it can be seen that the inputs to the function have to be AT ,C T ,Q ,R ,0
and I .
The steady state Kalman filter gain that is shown in Section 4.2, in the one dimensional case amounts to
solving the same quadratic equation as shown in Equation (3.26).

k = cp

c2p + r
(3.31)

p = a2p − a2c2p

c2p + r
+q (3.32)

p1,2 =
(
a2r + c2q − r

)±√(
a2r +qc2 − r

)2 −4
(−c2

)(
qr

)
2c2 (3.33)

Taking a = 0.6703,c = 1, q = 0.2 and r = 3, the resulting steady state error covariance is p = 0.3356 Again, the
difference between this and the solution from MATLAB’s idare function is less than 1e−16. The system state,
measurement and resulting Kalman output for the simplified test case described above can be seen in Fig-
ure 3.6. It can be seen that the Kalman estimate follows the state quite closely, only being influenced strongly
by large excitations in the noisy measurement.
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For the ideal Kalman filter, the residual normally distributed, with zero mean and variance C PC T +R. The dis-
tribution of the simulated residual can be seen in Figure 3.7, for n = 10,000 discrete time steps. The resulting
residual follows a normal distribution very well as can be seen from the figure. The mean of this distribution is
4.36e−4 with a standard deviation of 1.8238. This matches closely with the expected mean of 0 and standard
deviation of

p
C PC T +R =

√
c2p + r = 1.8264.
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Figure 3.6: One dimensional test system response, measurement
and Kalman filter output.

Figure 3.7: Distribution of Kalman residual in the simplified test
case with Gaussian fit.

In addition to the one-dimensional example seen above, the residual vector in the for the relative positions
of satellite 1 in the full simulation can be seen below.
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Figure 3.8: Residual vector for position components of formation state vector.

It can be seen that there is still time dependent variation in the residual signal. The ideal Kalman filter has a
mean of 0, however the Clohessy Wiltshire equations are a linearization of the full non-linear relative motion
model. One would expect this deviation from the zero mean to decrease with a smaller formation size, as it
makes the assumptions of the linearization more close to valid. The residual for a closer (14.2 m distance,
rather than 142 m) formation can be seen in Figure 3.9. In addition, the noise was reduced by a factor of 10 in
order to see the variation of the mean more closely.
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Figure 3.9: Residual of the Kalman filter for a closer formation with less measurement noise.

As expected, the mean is much closer to zero, indicating that the deviation seen in Figure 3.8 is due to the
linearization. With this, the Kalman filter is verified.

3.5.5. System Tests
Three overall system tests will be performed to see if the simulation works as expected For the mission pa-
rameters of a nominal distance of 143 m formation size, the relative distances are shown in Figure 3.10.

Figure 3.10: Relative distances over time for the default formation size.

If the satellites are placed five times further apart and the corresponding formation size that the satellites aim
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to keep is increased, the control should hold the formation at the greater distance as well. The only difference
should be the error in keeping the formation, which should increase as the spacecraft will drift further apart
from their natural orbits for an increased distance. The resulting distance plots can be seen in Figure 3.11

Figure 3.11: Relative distances over time for a five-fold increased formation size.

As can be seen, the formation still holds, albeit with the expected increase in the error. Whereas in the default
formation size the error varies approximately sinusoidally with an amplitude of around 1 m, it can be seen
that in the increased formation size the error amplitude is up to 6m.
The second system test is a tenfold decrease in the thrust value. A decreased thrust should increase the burn-
times of each thruster. The corresponding relative distances can be seen in Figure 3.12. Furthermore it was
found that the mean thruster duration increased from 0.1143 s to 1.1378 s, approximately a factor of ten in-
crease. This is not surprising considering that the control system still aims to deliver the same change in
momentum each thrust period. With a tenfold reduced thrust value, the opening duration has do increase by
a factor of ten.
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Figure 3.12: Relative distances over time for a tenfold decreased thrust capability.

Finally, the last system test is reducing the time in between corrective bursts from 60 s to 10 s. It would be
expected that the error in the relative distances goes to zero as the control system has more opportunities to
counteract the build-up of errors. The resulting relative distances can be seen in Figure 3.13.

Figure 3.13: Relative distances over time for a decrease in the time between thrusts to 10 s.

As can be seen, the deviation in the relative distances from the nominal distance of 142.39 m is severely
reduced. The previous amplitude of the error was around 1 m, which has now reduced to less than 10 cm.
The positioning error still shows sinusoidal behavior, however it is now even more clear that the mean of that
oscillation is offset from the nominal distance by a certain bias. These biases in the control error are the result
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of the measurement biases and disappears if the size of the biases is reduced to zero.
With this, the simulation is considered verified. It has given correct results for all unit tests and intuitive
behavior when the behavior of the entire simulation is tested against various conditions.

3.6. Fault Modeling
Two types of faults will be considered in this thesis both relating to the operation of orbital control thrusters.
The first is a fault in some of the valves in the cold-gas thruster which prevent the valves from opening fully,
thus reducing the effective thrust that is delivered and the second is a valve stuck in an open position allowing
propellant to escape and thus creating an unintended force on the satellite. The first is called a closed fault
and the second an open fault for brevity.
The exact implementation of either fault in the simulation is discussed in Section 3.6.2, while the impact of
the faults on the relative positioning is explored in Section 3.6.2.

3.6.1. Implementation
Both faults are categorized by a fault parameter φ, which specifies their intensity. This parameter can range
from 0 to 1, 0 representing no fault and 1 representing the most intense the particular fault can be. For a
closed fault, a fault parameter of 1 represents a complete closure of the valve, the thruster cannot produce
any more thrust. For an open fault, a fault parameter of 1 means a complete opening of the thruster, the
thruster fires at full thrust for the entire time.
The implementation in the code is achieved by the function setFault() of the formation class. It sets the
type and location of the fault, as well as the value of the fault intensity in the correct satellite. Then, in the
satellite function controlForce(), the calculation of the actual force resulting from the thruster openings
is adjusted based on the fault type. For a closed fault, the thrust output is reduced according to the fault
intensity, while for the open fault an additional term is added.

3.6.2. Fault Impact
The faults will have an impact on the relative motion in the formation, as the formation keeping is dependent
on the control forces.

Figure 3.14: Relative distances of satellite 1 to its neighbors under
the influence of a closed thruster fault in S1T2.

Figure 3.15: Relative distances of satellite 1 to its neighbors under
the influence of an open thruster fault in S1T1.

The impact of the closed and open fault can be seen in Figure 3.14 and Figure 3.15, respectively. When com-
pared to the behavior seen in Figure 3.10, it can be seen that the response of the formation is quite different.
While the closed thruster type fault results in a temporary deviation from the typical sinusoidal pattern, the
open fault results in a constant deviation with a higher frequency oscillatory behavior around this new nom-
inal distance.
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These effects are not surprising as the closed faults are only apparent when the faulty thruster is scheduled
to fire. When this is not the case, the formation recovers and returns to its usual performance. The open
fault on the other hand causes a constant disruption which requires much more control action to maintain
the formation. This can also be seen in the required ∆V over one orbital period for the two fault cases. For
a fault intensity of 1 (i.e. a complete failure of the thruster), the closed fault increases the average ∆V from
1.00 ms−1 to 1.08 ms−1, while an open fault of intensity 0.1 already increases ∆V to 4.96 ms−1. The satellite
experiencing the open fault shows the largest increase, as the open thruster continuously emits propellant,
thereby increasing the imparted momentum on the spacecraft. However, the other spacecraft in the forma-
tion also experience an increase up to a ∆V of 3.14 ms−1.
As such it can already be seen that the open faults are much taxing on the formation than a closed fault with
the same fault intensity.

3.7. Data Generation
In this section, the process of generating the training data is detailed. First, the setup for the data generation
in MATLAB will be described in Section 3.7.1, followed by a discussion on the influence of the disturbance
forces on the relative positioning in Section 3.7.2. Them the format of the saved data will be explained in
Section 3.7.3. Finally, a small issue regarding the dataset with regards to compatibility with the Kalman filter
method is mentioned in Section 3.7.4.

3.7.1. Setup
The data for the training will be generated by the simulation described in this chapter. In order to create
a varied dataset, certain options are randomized for each simulation run. These include the time of fault
inception, the fault intensity and the initial position deviation from the nominal positions, in addition to the
already random noise and bias that are added to the measurements.
As the response to a particular fault will differ based on the position in the orbit, which varies with time, the
inception time of the fault should be randomized. As can be seen in Figure 3.10, there is a periodic variation
in the relative distances which repeats twice per orbit. In order to still be able to see the effects of a fault in
the remaining simulation time, the fault should be injected well before the end of the first orbit.
In addition to the fault time, the initial positions are randomized as well. This is achieved by not placing the
satellites at the exact distance of the octahedron, but also adding a normally distributed variation to each
component of the position, with a standard deviation of 1 m. This has the consequence that the formation is
not immediately in the proper relative positioning and needs some time to properly establish the formation
and reach the nominal relative positioning. It was seen that this takes approximately 300 s. The network
should not be given the data during this time as it might be confusing to see large deviations from the nominal
values without a fault present.
The fault time is therefore randomly distributed in the interval [300s, T

2 +300s]. This should ensure that no
bias with respect to the fault time is present in the final dataset.
Furthermore, in the final dataset each class should be represented equally. For the detection networks this
means an equal amount of faultless and faulty samples, while for the isolation network this means an equal
amount of open and closed fault types across all thrusters in the formation. In order to have a sufficiently
representative sample, each fault type is simulated one thousand times for all thrusters in the formation,
amounting to 72000 simulations. As these simulations contain both a certain amount of faulty and faultless
data, the average fault time needs to be taken into account when determining the amount of purely faultless
simulations that will be necessary to balance the classes out. The expected value of a uniform distribution
over the interval [a,b] is x̄ = a+b

2 . As the fault time is uniformly distributed over the interval [300s, T
2 +300s],

the expected average value is t̄ f aul t = T
4 +300 = 1777.78. Therefore in any simulation run there are on average

30.08% faultless time steps. As 72000 runs are performed, approximately 21654 runs worth of data contain
no faults. In order to balance this with the 50346 simulation worth containing faulty time steps, roughly an
additional 28700 faultless simulation runs are needed to balance out the faultless and faulty data. This results
in approximately 100,000 simulations, with a total size of around 700 GB.
The fault intensity is randomly generated on the interval [0.1,1]. The lower bound of 0.1 was selected as to
not generate data that is too similar to the faultless case, as this can cause confusion in the network training
process.
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3.7.2. Influence of Disturbance Forces and Discretization Time Step on Relative Positions
For proper performance of the neural networks, they need to be trained on a large amount of data. As there
is only a limited amount of time available, it is crucial that the simulation runs are short. Therefore, the code
needed to be optimized to decrease the run time. In particular, the components of the simulation which
take the longest time need to be reduced, this being the the gravity model and the disturbance forces. For
the gravity model, this is due to the need to compute the Lagrange polynomials involved in the spherical
harmonics. Similarly for the disturbances, the Earth’s magnetic field model needs to be accessed (which also
involve spherical harmonics), slowing down the simulation.
However, it may not be necessary to use the complete model to generate the data, as the networks will be fed
noisy measurement data. In order to determine what degree of accuracy is necessary for the generation of the
data, the impact of computing the disturbance forces as well as the degree of the spherical harmonic gravity
model were determined.
Table 3.5 shows the error between various simplified models and the highest fidelity model that the model
allows (120 degrees of the spherical harmonic model and all disturbances). In addition, the absolute error
over one orbital period for all the considered models is shown in Figure 3.16.

Table 3.5: Comparing the performance of various models in terms of maximum absolute and relative position error as well as
computation time.

Model Description Absolute position
error

Relative position
error

Time per run Shown in

Basic Keplerian Orbit (n = 1, no
disturbances)

28 m 0.38 m 37.0 s Figures 3.16a
and 3.17a

Gravity model including J2 Ef-
fect (n = 2, no disturbances)

0.38 m 5.2e−3 m 49.8 s Figures 3.16b
and 3.17b

J2 Effect and active distur-
bance forces (n = 2, with dis-
turbances)

0.38 m 5.2e−3 m 60.6 s Figures 3.16c
and 3.17c

Up to 10th spherical harmonic
and active disturbance forces
(n = 10, with disturbances)

8.4e−3 m 5.5e−4 m 161.7 s Figures 3.16d
and 3.17d

What can be seen is that for the Kepler orbit (see Figure 3.16a), the absolute position error is very large with
a maximum deviation of approximately 28 m from the best model. However, by simply accounting for the
J2 effect by increasing the degrees of the gravity model, this error drops to 0.36 m, shown in Figure 3.16b.
Increasing the degree of the gravity model to 10 gives another significant decrease in the error, decreasing it
to 8.4e−3 m, shown in Figure 3.16d. The positioning error when the disturbance forces are included can be
seen in Figure 3.16c. By comparing Figure 3.16b and Figure 3.16c, it can clearly be seen that including the
disturbances makes little difference in the accuracy of the model, as the error barely changes.
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(a) Absolute error for no disturbances and n = 1 (i.e. Keplerian orbit).
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(b) Absolute error for no disturbances and n = 2.

0 1000 2000 3000 4000 5000 6000

Time [s]

0

0.1

0.2

0.3

0.4

A
b

s
o

lu
te

 p
o

s
it
io

n
 e

rr
o

r 
o

f 
J
2

 

a
n

d
 d

is
tu

rb
a

n
c
e

 f
o

rc
e

s
 [

m
]

(c) Absolute error for all disturbances and n = 2.
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(d) Absolute error for all disturbances and n = 10.

Figure 3.16: Absolute position error of satellite 1 for various simulation settings and degrees n of the spherical harmonic gravity model
(EGM 2008).

While the absolute accuracy positioning is important for the simulation as a whole, the accuracy of the rel-
ative motion is a more relevant parameter for the neural networks. The neural networks receive the relative
positions and velocities as input to determine whether or not a fault has occurred, and where a fault has oc-
curred. The reason for this is the fact that they can be measured more accurately than the absolute quantities.
As such, a better evaluation criteria is the error in the relative distances. These are shown in Figure 3.17. As
can be seen, the relative distance errors are much smaller in magnitude compared to the absolute position
errors, as already for the Kepler model (shown in Figure 3.17a) the maximum relative distance error is only
0.12 m. By including the J2 effect, shown in Figure 3.17b, the maximum error drops to 5.2e−3 m. It is also
notable that for most of the orbit the error stays below 2e−3 m.
By inspecting Figure 3.16c it can be seen that, again, the inclusion of the disturbances makes no visible differ-
ence in the error. Another order of magnitude decrease in the maximum error can be achieved by increasing
the degree of the gravity model, visible in Figure 3.17d, where the maximum error reaches 5.8e−4 m.
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(a) Relative error for all disturbances and n = 1 (i.e. Keplerian orbit).
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(b) Relative error for no disturbances and n = 2.
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(c) Relative error for all disturbances and n = 2.
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(d) Relative error for all disturbances and n = 10.

Figure 3.17: Relative position error of the distances of satellite 1 to its neighbors for various simulation settings and degrees n of the
spherical harmonic gravity model (EGM 2008).

Considering that the noise level for the positions will be in the centimeter to decimeter range, having a sim-
ulation which produces relative distances with an error below the millimeter scale is not worth it given the
time increase that comes with the higher accuracy models.
As such, for the generation of the data, the J2 model with no disturbances will be used.

The time step used for the numerical simulation is an important variable that mainly controls how long the
simulation takes to run and how accurate the numerical simulation is. A time step of 1 second is used for
various reasons; The first is that for orbit propagation this should result in a reasonable amount of accuracy.
At the same time, this allows for relatively fast computation time for each simulation run. Considering the
amount of runs that need to be performed, this is crucial.
The error that builds up over time due to the time step is shown in Figure 3.18. The orbit was propagated
using a time step of 0.001 s to serve as a comparison to the much faster case where the time step is at 1 s. As
can be seen, the error does build up over time but does not exceed 9e−6 This error is considered acceptable
for the purposes of training the network, considering the much larger noise in the measurements.

3.7.3. Data Format
The MATLAB script saves each simulation in a CSV (comma seperated value) text file which is formatted in
the following manner. The first line gives information about the fault, specifically the fault time, the faulty
satellite number, the number of the faulty thruster on said satellite,the fault type (closed [0] or open [1]), and
the fault intensity parameter.
What follows is the relative positioning data in blocks of 24 lines. Each line gives the relative position errors,
i.e. the difference between the measured relative position and the intended relative position and velocities
in the ECI frame. The first four lines of each block correspond to the relative positions of the neighbors of
satellite 1, i.e. satellites 2, 3, 4 and 5, to satellite 1. The next four correspond to the neighbors of satellite 2 and
so on.
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Figure 3.18: Numerical error in the position due to discretization time step.

Figure 3.19: Connection graph of the Formation.

The ordering of these connections is summarized in Table 3.6. They are also graphically illustrated in Fig-
ure 3.19. For example, the first neighbor of satellite 4 is satellite 3 and as such its data is the first row for
satellite 4, making it the 13th row for a particular block. After the last connection of satellite 6, the next block
corresponding to the next time step starts.
As one file consists of one simulation run, amounting to 5902 time steps, the final files consist of 147551 lines
of text, with an approximate file size of 7.4 MB.

Table 3.6: Ordering of satellite connections.

Satellite Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Not connected

1 2 3 4 5 6
2 1 5 6 3 4
3 1 2 6 4 5
4 3 6 5 1 2
5 4 6 2 1 3
6 5 4 3 2 1

The connection graph in Figure 3.19 shows a certain projection of the connections of an octahedron onto
a two-dimensional plane. This particular figure shows well, which satellites do not have a connection. The
outermost two satellites (1 and 6), as well as the pairs which are beside each other in the center (2 and 4, 3
and 5).

3.7.4. Issue with Network Dataset
Due to the considerable size of the dataset that was created for the purpose of training and evaluating the
neural network, only the relevant input (being the deviation of relative position and velocities from the de-
fault) and relevant data for classification purposes (fault type, fault intensity, fault time, etc) was saved to files.
As the Kalman filter requires the control input as additional information, as well as requiring absolute posi-
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tion and velocity information in order to compute the Hill-Frame, it cannot be evaluated on the exact same
dataset as the neural networks.
However, the filter will be tested on a representative dataset with equal distribution of faultless, fault 1 and
fault 2 cases as well as equal fault intensity distribution. This enables a base of comparison.

3.8. Simulation & Data Generation Summary
The simulation that was designed to test the FDI approaches has been introduced in this chapter. One of its
main goals is to generate data that can be used to train the neural network approaches. In this thesis, the
necessary data is the relative positioning and velocity of the satellites in the formation. To achieve this aim,
the simulated mission, faults and the specifics of the data generation were shown.

The simulated mission scenario is a virtual-rigid-body type formation, in low Earth orbit with six satellites
in an octahedral shape. The satellites maintain a constant distance to each other, and the orientation of the
formation stays fixed. The formation is maintained through shorts corrective bursts every minute, which are
determined through a control-system based on a linear-quadratic regulator making use of the Hill-Clohesssy-
Wilthire equations.
This mission is simulated in MATLAB, making use of its object-oriented features. Two custom classes were
written, one for the formation as a whole and one to represent the individual spacecraft.
The simulation uses a Runge-Kutta 4 integration scheme, where each time-step the relevant forces are cal-
culated and used to determine the next state. The forces involved include the gravity of the Earth, simulated
by making use of the EGM 2008 model, as well as the most prominent disturbance forces. These are: The
aerodynamic drag, the Lorentz force, the radiation pressure and the effect of the Sun’s and Moon’s gravity.

To investigate the efficacy of the fault detection and isolation system, two types of thruster faults are simu-
lated in this thesis. The first results in a blockage of propellant, leading to a reduction of the available thrust.
The second results in a propellant leak, leading to a constant thrust force. Both are integrated into the sim-
ulation and can occur with varying intensity, characterized by a parameter ranging from 0 to 1. A value of 0
represents no fault, while a value of 1 represents the most intense the fault can be. For the closed faults this
means a complete blockage, meaning no thrust can be produced. For an open fault on the other hand, this
means a full opening of the thruster, resulting in maximum thrust at all times.

These faults are simulate to determine the response of the formation. The necessary relative position and
velocity data is then generated by repeatedly simulating the formation, with random starting conditions,
under the effects of one of the two faults. To generate a sufficiently large dataset, 1000 simulations were
performed for each of the possible locations of a thruster fault. Together with the faultless simulations, this
resulted in approximately 100,000 simulations, amounting to approximately 700 GB of data. For this data
generation, it was found that the higher degrees of the EGM 2008 gravity model and the disturbance forces
provide very little improved accuracy while rapidly increasing the amount of time spent on each simulation
run. Due to the amount of simulation runs, the disturbances are not used for the data generation, and the
gravity model is limited to the second degree of the spherical harmonics, J2.
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Fault Detection and Isolation Methodology

In this chapter, the methods used for detecting and isolating the considered thruster faults are described.
First, the distributed approach via artificial neural networks (ANNs) is shown in Section 4.1, followed by the
the centralized, model-based Kalman Filter Section 4.2.

4.1. Neural Network Approaches
The considered approach for FDI using ANN is elaborated on in this section. First, the selected architecture of
the neural network based method is presented and motivated in Section 4.1.1, with the selection of the hyper-
parameters in Section 4.1.2. This is followed by a description of the training environment and organization
in Section 4.1.3. After this, the required data processing of the simulation data is given in Section 4.1.4. The
conversion from a continuous output to a discrete detection is explained in Section 4.1.5. Then the training
and pre-procesing is verified in Section 4.1.6. Finally, the process for the network evaluation for the analysis
in the next chapter is elaborated on in Section 4.1.7.

4.1.1. Neural Network Architecture
The structure of the neural networks, or their architecture, is comprised of various elements. This includes
the type of neurons that are used in the network, the connections between the neurons, and the way the input
and output to the network is handled. All of these points will be addressed in this section, starting with the
type of network.

Motivation for choosing RNNs Of all the various types of neural networks described in Section 2.5, a suit-
able type has to be selected. In general, there are many types of possible networks, with varying numbers
of forward or backward connections and layer structures. However, only the standard choices will be con-
sidered as the expertise to decide on a more specific structure is not available. These standard networks are
the densely connected feed-forward networks, convolutional neural networks and recurrent neural networks.
Convolutional neural networks (CNN) are mainly used in applications involving the analysis of grid-organized
data, e.g. images or pictures, as the connections involved mimic the two dimensional convolution operation.
According to Jiuxiang Gu et al, most of the areas of application in recent years involve image processing to
some extent, for example image classification, object detection, or object tracking, among others [81]. In
these visual-based applications, the CNNs show very good performance [82, 83]. Only a few attempts are
made to use CNNs on time dependent data and in those cases the CNN is used in conjunction with other
methods, such as using a character level CNN as input to a series of LSTM layers for natural language pro-
cessing [84].
Densely connected neural networks on the other hand are potentially good at many tasks, due to the general-
ity of their setup. As dense neural networks are not set up to take advantage of any structure in the input data,
they can potentially be used for any task. However, they have the disadvantage of having to make a decision
based only on a snapshot of data in time. Especially for a dynamic system which is constantly changing its
state, this is undesirable.
Recurrent Neural Networks (RNN) are especially suited towards modeling dynamic systems and other time-
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series prediction problems [30, 85]. They are furthermore used in natural language processing as well as
control systems [86, 87]. Compared to the other methods presented, RNNs have the unique advantage of
having ’memory’, i.e. a state that can persist over time. This can enable better predictions for data that is
time-dependent. They are also used in the field of FDI [32, 88]. As the scenario investigated in this thesis
involves the analysis of a dynamic (i.e. time-varying) system, the use of RNNs is intuitively advantageous.
The ability to learn time-dependencies and using this in the diagnosis of the system makes it more beneficial
compared to the use of only CNNs or simple dense networks.

Of the various RNNs the simplest method to use and implement is the LSTM network, which was presented
in Section 2.5.5. According to Hochreiter and Schmidhuber, the LSTM type network can learn connections
over up to a thousand time-steps [69]. This also makes it useful for the problem at hand, as depending on
the fault type and severity, the effect of a fault may only be visible in the measurements after some amount of
time.
For this thesis, the specific type of RNN chosen is the Long Short-Term Memomry units (LSTM) introduced
in ??. Many more types of RNNs exist, e.g. the Gated Recurrent Unit (GRU) networks or the Bidirectional Re-
current Neural Networks (BRNN) [89], and some have better performance than an LSTM network for certain
applications. However, a network with LSTM units can achieve performance close to the optimal architec-
ture when a constant bias is added to the ’forget’ gate [90]. This particular procedure is applied to the LSTM
networks trained in this thesis, in order to enhance the performance of the networks.

After deciding on the general type of neural network, the layer amount and structure have to be decided.
It was decided to use three hidden layers in total, made up of two layers of LSTM units and one densely
connected layer, illustrated in Figure 4.1.

Long Short-
term Memory

Network
Input Output

Long Short-
term Memory

Network
Dense

Network

[y units][x units] [x units]

Figure 4.1: General architecture of the networks considered in this thesis.

As can be seen in Figure 4.1, the processed input to the neural networks is fed into a layer of LSTM units,
followed by another LSTM layer, followed by a third layer of densely connected neurons (with a different
amount of units, generally) which then connect to the output layer. Only three hidden layers are used as
increasing the amount of layers drastically increases the training time. The reason for including a dense layer
in between the LSTM layers and the output is twofold. First, it increases the depth of the network which can
result in better performance for complex problems [91]. Second, it is reasonable to assume that the output of
the LSTM layers requires additional processing before it can lead to a decision on detection or isolation of a
fault.
In principal, even more diverse and complex architectures could be tested, but are not investigated in this
work due to time-constraints and a lack of experience with the structuring of neural networks. Ideas for
adaptations of this structure are given in the recommendations in Chapter 6.

Application to Detection and Isolation As the problem at hand, fault detection and isolation, is comprised
of two distinct activities, the question arises whether the same network should be used for both detection
and isolation at once, or whether two networks should be trained, one for detection and one for isolation.
The latter approach has several advantages. First, detection and isolation differ vastly in their complexity.
Having a dedicated, smaller network to first detect a fault and only then run the fault isolation network could
improve computational time, as the detection network would not necessarily need to be as large or deep.
Second, it is advantageous to be able to distinguish the nominal case (no fault) from the group of faulty
scenarios independently. This split allows for training the isolation network only on data which is in fact
faulty, which makes the problem clearer and should reduce the amount of false positives [92].
Third, it makes the system more modular. The detection network could be easily adjusted to account for
more faults, if their effect on the input signal is different enough from the nominal case.
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Therefore, the problem of fault detection and isolation with ANNs is approached by training one dedicated
network for detection and one network for isolation.

Between the two approaches, the activation functions of the final layers differ. The reason for this is the dif-
ferent goals the networks have to fulfill. The output of the detection network should represent the likelihood
of a fault according to the neural network. As such, the output is a single value between 0 and 1. A good acti-
vation function which can map the weighted input that the final neuron receives to this interval is the simple
sigmoid function which was presented in Section 2.5.
As the output of the isolation networks should be a vector of probabilities, the sum of which is 1 (as the sum
of the probability of all events must equal 1), a set of sigmoid neuron is no longer appropriate. Instead, the
softmax function is used, which results in the desired outcome.
One downside of the softmax activation function is the tendency to amplify the largest component in a vec-
tor and diminish the rest. This is disadvantageous in the case where multiple faults need to be detected. An
illustration of this effect can be seen in Figure 4.2. This figure shows the relative size of the input (in this case
the vector [5, 0.5, 0.5, 0.5, 0.5, 2]) and the output when passed through the softmax function. As can be seen,
the relative sizes of of the elements are exaggerated. The largest element becomes even larger and the rest
becomes smaller.
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Figure 4.2: Illustration of the softmax activation function showing the impact on the relative size of the input.

Handling the Input Data The data that is available has to be processed before it is usable as input to a neu-
ral network. Furthermore, the question of what exact subset of the relative position and velocity data of the
entire formation should be given to the network has to be answered. Three different methods for handling
the relative position and velocity data are distinguished.
The first is to simply give the network all the relative position and velocity data that could be available on
any given satellite. That is to say, a single network for all the satellites in the formation is trained, on a mixed
dataset comprised of the data of all the satellites. This method will be called the ’naive’ approach in this thesis,
as no particular care is given to how the network might react to differing sets of data. While it is not expected
that this will yield very good results, the capabilities of deep learning methods for learning complicated rela-
tionships between the input and output might still result in a network capable of isolation or detection.
The second approach is to separate the data from all the satellites and train a different network for each of the
satellites in the formation. This comes with the disadvantage of having to train additional networks. How-
ever, it is also expected that the training time per network will be shorter, as the relationship between input
and output is clearer, compared to the naive approach. This method will be called the ’individual’ approach.
The final approach is to only train a single network for all the satellites, as in the naive approach, but trans-
form the data in some way in order to achieve a more consistent relationship between the input and the FDI
decision. This approach was ultimately discarded due to time constraints, as no easy transformation (e.g.
rotation or swapping data indices) could be found that resulted in similar data patterns.

Therefore, multiple networks each are trained and evaluated with varying parameters. The distinction be-
tween the naive and individual approach is graphically illustrated in Figures 4.3 and 4.4.



50 4. Fault Detection and Isolation Methodology

Naive Network

Individual
Network 1

Network Output

Individual
Network 3

Individual
Network 2

Individual
Network 4

Individual
Network 6

Individual
Network 5

Individual
Output 1

Individual
Output 3

Individual
Output 2

Individual
Output 4

Individual
Output 6

Individual
Output 5

Combined OutputPosition & Velocity Data

Zeroing

Pre-processing

Selecting Valid
Indeces

Selecting Data
from one satellite

Satellite 1 
Measurements

Satellite 2 
Measurements

Satellite 3
Measurements

Satellite 4 
Measurements

Satellite 5 
Measurements

Satellite 6 
Measurements

Gathering into
batches

(Shuffling
Batches)

Gathering
consecutive
timesteps

Position & Velocity Data

Zeroing

Pre-processing

Selecting Valid
Indeces

Gathering into
batches

(Shuffling
Batches)

Gathering
consecutive
timesteps

Mixed satellite
measurements

Figure 4.3: Illustration of overall architecture of naive networks.
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Figure 4.4: Illustration of overall architecture of individual networks.

One thing all LSTM networks have in common is the need to gather consecutive time steps to pass them to
to the network. The reason for this is the training algorithm for recurrent neural networks, the Backpropa-
gation through time (BPTT) algorithm. Similar to the regular backpropagation algorithm, the gradients are
computed backwards starting from the finely layer. However, as the networks receive input not only from
previous layers, but also from a previous time instant of themselves, the computation of the gradient not
only goes backwards through the layers, but also backwards in time. Of course, this process cannot go on
indefinitely. Therefore, a limit is set and the data of consecutive time steps is bundled together for easier
computation. This process is further explained in Section 4.1.4. This results in an input to the network that is
three-dimensional and has the shape (batch size, time steps, size of vector).

Combining the Network Output In order to reach a common diagnosis across the formation, the isolation
network outputs (representing the probability of a particular fault) are shared across the formation. These
fault probabilities are then combined using a simple weighted sum, resulting in a single consistent fault iso-
lation across the formation. In order to reduce the communication requirements, these outputs are only
shared after a fault is detected by any of the detection networks, which are running independently on the
satellites. This process is illustrated inFigure 4.5. Of course, it is possible that a fault is not detected quickly
enough, resulting in a break-down of the communication link before the local isolation results can be shared.
In that case, the satellites have to rely on their local isolation network output to make a decision.

The relevant weights used to combine the local network output are different for each of the satellites and are
based on a priori knowledge of each individual networks performance. In this particular case, the normal-
ized confusion matrix is chosen as the method of choice. The confusion matrix is a natural description of
a networks performance as it categorizes probabilities that a network prediction is accurate. With a small
adjustment this can be used to combine the network output: The correct diagnoses of the network lie on
the diagonal of the confusion matrix. This is where the output of the network matches with the correct fault
location. All off-diagonal terms are incorrect isolations. In order to distinguish between correct and incorrect
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Figure 4.5: Illustration of the entire neural network based FDI system for the formation.

isolation, the off-diagonal terms are multiplied by -1. In the weighted sum, this means that a particular di-
agnosis of a network that has often been wrong in isolating that particular fault will be discouraged. This is
shown in Equation (4.2).

p f or mati on =
n∑

i=1
C∗

i ·pi (4.1)

C∗[l ,m] =
{

1 ·C [l ,m] if l = m

−1 ·C [l ,m] if l 6= m
(4.2)

Where p f or mati on is the probability vector for the entire formation, n is the number of satellites in the forma-
tion, Ci is the confusion matrix for the i th satellite, C∗ is the adjusted confusion matrix where all off-diagonal
terms have been multiplied by -1, and pi is the probability vector for the occurrence of faults, i.e. the network
output of the i th satellite.
Combining the output of the networks in this way results in a unified isolation across the formation and com-
pensates for shortcomings in the individual networks. For example, if satellite 1 always misdiagnoses faults
in satellite 5, its output should not be taken into account for a general diagnosis. This is achieved by this
method.

Summary In total, four different kinds of neural networks are trained in this thesis. All of them have the
same basic structure of three hidden layers, two of them made up of LSTM units and one regular densely
connected layer.
Two distinctions are made. The first is a matter of which output is desired of the network. Two of the network
types will be used for fault detection purposes only, while the other two are dedicated to fault isolation. The
detection networks use a simple sigmoid as the final layer activation, while the isolation networks use the
softmax function.
The second distinction is made according to what input the networks are trained on. In practice, all the
networks will receive the relative measurement data from the satellite they run on, but the naive networks
will be trained on input data from all satellites. On the other hand, the individual networks are trained on
only the data belonging to a single satellite, resulting in 6 different networks.

4.1.2. Selecting Neural Network FDI Parameters
Various so called hyper-parameters affect the performance of a network. These parameters include the
number of neuron-layers, the amount of neurons per layer, the type of neurons in a layer, etc. There is no
general method for choosing the hyper-parameters of the network, and while certain approaches for hyper-
parameter optimization exist [93], these are not feasible with the computational resources that were available.
As such, the hyper parameters were selected by trial and error. In general, the two networks for detection and
isolation differ only in the amount of units per layer, rather than the amount or type of layers. The reasons for
the increased amount of units per layer in the isolation networks is the hope of better performance consider-
ing the increased complexity of the problem, compared to the detection case.
The amount of units per layer is summarized in Table 4.1. For most of the networks tested, the amount of
neurons per network is a power of two. This is due to a supposed increase in performance, as the processors
can make use of some internal optimizations, as they most often handle powers of two. However, as can be
seen for the isolation networks, the amount of neurons in the dense layer is not a power of two and this did
not severely affect the training speed or performance.
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Table 4.1: Amount of units and layers per network approach.

Networks Naive Detection Naive Isolation Individual Detection Individual Isolation

Layers & Units [128, 128],[64] [256, 256],[100] [128, 128],[64] [256, 356],[100]

Furthermore, the amount of time-steps that are gathered into one input for the LSTM networks was chosen
to be 50, with a sampling period of 1 s. This is a trade-off, as more data can mean better performance for the
network, but also means longer training times as well as a need to store more measurements in the on-board
computer (OBC). In the end, the amount was chosen to be slightly less than the time between thruster firings,
which is 60 s.

4.1.3. Training Environment
Due to the amount of computations involved in training a neural network of considerable size, the local
computing resources are not sufficient to complete the training in a reasonable amount of time. However,
the online platform "Google Colab" is suitable for performing the training, for various reason [94]. First, the
platform is integrated with Google’s "Drive" cloud data storage system, making it easy to access the training
data as soon as it is on the "Drive". Secondly, Colab offers access to hardware accelerators such as GPU and
the specifically for networks designed TPUs (tensor-processung unit). The interface of Colab allows running
Jupyter notebooks on a virtual machine on the Google servers, which can run tensorflow, Google’s library for
training and evaluating neural networks.
The training of the neural networks is performed with the Keras API of the Tensorflow package, due to its ease
of use. This allows to easily set up and customize the chosen network architectures.

The training of the network requires a data pipeline in order to efficiently load the training data into the
virtual machine running the training program. Due to the integration of Colab with the "Drive" cloud service,
all the training data was uploaded to the Google servers and then loaded from there onto the virtual machine.
A special tensorflow class, called Dataset, can be used to programmatically load, process and integrate the
data into the training process. The construction of the dataset was the same for all networks which were
trained. First, a list of all training files was generated. This was used as an input to an initial Dataset object,
only containing the file paths. This list of files then was decoded from its binary format into usable data. Then,
a user-made pre-processing function was used to slice the data correctly (the pre-preocessing procedure is
further explained in Section 4.1.4). The result is the input to the network. The dataset containing these inputs
could then be batched, shuffled and pre-loaded using functions from the tensorflow library.

Furthermore, the use of distributed training was attempted but ultimately discarded. The reason for this
was mainly the inability of the distributed program to handle the data pipeline from Google drive, as the
services were not intended to load data from Drive. Switching to a different service (Google cloud storage
(GCS) buckets) would have fixed this problem, however it is a paid service intended for use by businesses,
which made it infeasible for use in this project at the time.

One particular training approach which has proven to be very useful in certain areas of application is "Rein-
forcement Learning", the driving force behind impressive endeavours, including Google’s Alphastar project
[29]. While the results speak for themselves, it is important to understand the limitations of this approach.
Reinforcement learning is only applicable in situations where the best output of the network at a given time is
either unknowable or too difficult to compute. An example is determining the best move in the board-game
"Go" [28]. There is no feasible way to define a cost function which only takes into account the current state of
the game due to the sheer amount of possible moves. However, the network output can be judged on whether
the resulting move causes the network to eventually lose the match. Another example is teaching new skills
to a robot which are difficult to model analytically, where the result however can easily be evaluated, such as
flipping a pancake [95].
Transferring this analogy to the field of FDI, the use of Reinforcement Learning for detection and isolation is
not beneficial, as the correct output of the network (the state of the system) is known when creating the train-
ing dataset. However, if the step after isolation, ’reconfiguration’, is taken into account, the network does have
an impact on the system, which is not easily assessable. In such a case, reinforcement learning techniques
could be investigated for FDIR.

Instead, a standard stochastic gradient-descent algorithm was used for the training, the so called Adaptive
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Moment Estimation (Adam)-optimizer [96]. A learning rate of 0.001 was chosen, as it produced good results
during the training. The cost function that was selected for the training was the categorical cross-entropy
function, a generalized version of the cost function described in Section 2.5. The reason for choosing this
function is the improved performance in training compared to the simple quadratic cost function [65, p.65].
Furthermore, it is particularly suited for classification tasks (especially when there are multiple classes) and
is the primary choice when using an output layer with the softmax activation function, as minimising it cor-
responds to the maximum-likelihood estimation between two distributions. [30, p.193].
The cut-off point was selected to be 3 epochs of no improvement on the validation cost function. It was seen
often during the training that due to the randomness of the stochastic gradient descent, the performance
on the validation set decreased for one or two epochs, only to increase again above its previous best perfor-
mance. In principle it is also possible that the performance on the validation set decreases for longer, only to
increase again afterwards. However, due to the long training times, 3 epochs was chosen as it presents a good
trade-off between the amount of time wasted (as no there is no performance gain for the last 3 epochs) and
the potential gain in performance if the network starts to perform better again.

There are four different types of network that need to be trained: naive detection, individual detection, naive
isolation and individual isolation. The training of these networks is split over four "Colab Notebooks", i.e. the
Jupyter Notebooks that are run on the Google servers. There are four different pre-processing functions, as
each type of network requires a different dataset. An overview of the entire workflow involving the Google
Colab platform can be seen in Figure 4.6.
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Figure 4.6: Interaction within and Interface of Google Colab.

In the figure, it can be seen that the data from the simulation is uploaded and stored in the Google Drive.
From there it is re-written to the appropriate data format that will ease handling and speed up the training.
In the program this TFRecord data is loaded and decoded into usable data, as well as pre-processed, accord-
ing to the procedure described in Section 4.1.4.
A separate script was used for evaluating the trained models. The neural network output was then down-
loaded again for further analysis in Python.
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4.1.4. Processing the Simulation Output
The output of the simulation data needs to be pre-processed before it can be used as the input for the neural
networks. The process of pre-processing the simulation output is illustrated in Figure 4.7. As can be seen in
the figure, the data is first organized into individual slices: successive relative position measurements in time.
The relative measurements which are vectors of size 4(amount of neighbors) x 6(position and velocity) = 24
are then gathered into a two-dimensional array of size 24 x n where n is the amount of time steps.
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Figure 4.7: Illustration of the data pre-processing: slicing and batching; red slices are invalid and discarded.

Not all slices in the data generated this way are valid. Some would contain data from two different satellite
perspectives or different simulation runs. In order to avoid such slices, the following condition is evaluated
on the index to be sliced: The time at the start of the index i , i.e. t [i ], must be less than the time at the index
at the end of the slice, i.e. t [i +n]. In the case of the individual network, an additional condition needs to be
met and that is that the data comes from a single satellite source.
Additionally, the pre-processing function assigns a label to each slice, representing the correct detection or
isolation output. In the case of the detection, where the output is only a single number, a faultless slice
receives a label of ’0’, while a slice containing data from a fault receives a ’1’. The isolation case is slightly
different as the output is a vector rather than a single value. As such, the corresponding label is a vector of
35 zeroes with a single ’1’ in the location of the fault (1-6 corresponding to satellite 1, 7-12 to satellite 2, etc.).
This can easily be done by using the tf.one_hot() function, which creates a tensor of such vectors from a
tensor of integers. The slices are then gathered into batches for training purposes. A batch size of 4096 was
selected after some trial and error as a good amount.

During the training it was found that going over the entire dataset was too time-consuming. Even with the
use of hardware accelerators such as the available GPUs or TPUs, the time for a single epoch over the dataset
exceeded 10 hours, which made it completely infeasible. Attempts were made to speed up training by pre-
loading the data onto the local drive of the virtual machine, but this did not increase the training speed.
The second attempt involved rewriting the training data from CSV text files to the custom tensorflow binary
data format called "TFRecord". This format not only reduces the disk space required (by approximately a
factor of three), but also increased training speed for three reasons. First, the decreased file-size reduces the
amount of data that needs to be downloaded to the virtual machine working memory. Secondly, the TFRecord
format gives tensorflow the opportunity to exclusively use Tensorflow based functions, which utilize C++
and C code for optimization as opposed to needing to use NumPy functions for pre-processing the data.
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Finally, pre-fetching data in the training process works best with files that are on the order of hundreds of MB
large, as this reduces the amount of times a request for downloading the file has to be issued, reducing the
overhead associated with downloading the files. The simulation runs are gathered into groups of 100 files for
the detection and 200 files for the isolation, which makes the resulting TFRecord files large enough to see a
difference in this respect.

While this sped up the training, it still amounted to very large training times. The networks were therefore
only trained on a subset of the generated data. As the relation between the faulty input data and the fault
diagnosis should be clearest for the most intense faults the network should learn this relationship the quickest
with high intensity fault data. However, the networks should also learn to detect or isolate the least intense
faults. As such, they need to be represented in the dataset as well. Therefore, the dataset was structured
around the most and least intense faults. Instead of an even distribution, 40% of the training set were taken
from the intensity range [0.8,1], another 40% was taken from the range [0.1,0.3], the lower end of the intensity
range. The remaining 20% were spread over the interval [0.3,0.8]. The reduced training dataset was gathered
by randomly selecting data from the full set, to match the above fault intensity distribution. It should be noted
that this does not affect the validation data, which still contains a uniform distribution of the fault intensity.

Furthermore, a subset of the data has to be reserved for validation purposes, i.e. to judge when the training
of the networks transitions from improving to overfitting. A 90/10 split was chosen, i.e. the networks will be
trained on 90% of the data, while 10% of the data is reserved for validation purposes.

4.1.5. Converting Continuous Output to Discrete Decision
Another aspect that needs to be addressed is the process of turning the output of the networks (a single con-
tinuous number in [0,1] in the detection case or a vector of such numbers in the isolation case) into a decision
on the classification. This output can be interpreted as the networks confidence in a particular class, seen as
a probability. In the detection case this is the probability of the occurrence of any fault, whereas the isolation
is a vector of probabilities, whose component sum is 1.
During the network training, the value used to calculate the accuracy and therefore the value of the loss func-
tion in the detection case is 0.5 or 50 %, the center of the range of possible values [0,1]. However, this might
not be the optimal threshold as the performance could potentially be increased with a higher or lower thresh-
old. The question then becomes how to judge the performance of the classifier. Two common performance
characteristics in the field of machine learning are the precision (the proportion of correct positive predic-
tions out of all positive predictions) and the recall (the proportion of correct positive predictions out of all
occurrences of the positive case). This distinction is also graphically illustrated in Figure 4.8[5]. The former
gives a measure of how often a positive occurrence is classified, while the latter gives a measure of how often
a positive prediction of the network is actually correct.

Figure 4.8: Graphical illustration of the definitions of recall and precision [5].

A commonly used performance measure is the Fβ-measure, which is the weighted harmonic mean of the



56 4. Fault Detection and Isolation Methodology

precision and recall, shown in Equation (4.3).

Fβ = (1+β2) · precision · recall

β2 ·precision
(4.3)

This measure can be used to judge the overall performance of a classifier and will be used to determine the
threshold.
In the case of fault detection, a lower threshold will mean more faults get detected (higher recall), however the
amount of false positives will also go up (lower precision). As the predictive value and therefore the precision
of an fault detection system is important, the F measure should be weighted in favor of precision. In this case,
a weighting factor β= 1

2 was chosen, i.e. precision is weighed twice as important as recall. This F 1
2

measure

will be optimized over the range of possible thresholds.
In the isolation case, this approach does not work as there are many more available classes. For isolation,
simply the maximum element of the output vector (i.e. the option with the highest confidence) is chosen.

4.1.6. Training Verification
In this section the Dataset structure and data pipeline is verified. As it is assumed that the tensorflow fit()
works correctly when providing the right input, i.e. a network and a properly labelled dataset, the training al-
gorithm itself is considered verified when the data is constructed correctly. This will be shown in this section.
The first part that is verified is the generation of the TFRecord files from the CSV data output of the simu-
lation. Secondly, the pre-processing of the TFRecord files into dataset objects such that they can be used
for the detection and isolation networks is checked, which require different labels and structure. Finally, the
selection of only the subset of data belonging to a single satellite viewpoint is verified.
The relevant code sections for all procedures described here can be found in Appendix B.1.

Writing and Decoding the TFRecord Files The TFRecord functions are tested by comparing the data from
the original CSV file against the decoded content of the written TFRecord file. A separate Jupyter notebook
was used to perform this operation. By comparing the numerical values it was found that there were small
differences, on the order of 1e-9, which are considered acceptable for training purposes as they are far below
the noise floor.

Network Model Generation The neural network generation function can be easily checked by using the
function tf.keras.utils.plot_model(), that generates a figure of the network model. Such a graphic for
the individual detection network can be seen in Figure 4.9.

Figure 4.9: Illustration of individual detection network model.

As can be seen, the input of shape (batch size, time steps, data size) is correctly passed through two successive
layers of LSTM units, followed by a dense layer which condenses the output into the shape (batch size, 1).

Pre-processing the Detection and Isolation files The pre-processing output was checked manually to see
if the correct shape was achieved. A shape of (time steps,data size) is expected, in this case (50.24) with either
a label of size 1 or a vector of size (36,1), which is exactly the shape that is provided by the pre-processing
function.
Another test to verify the pre-processing is performed by comparing the output of the pre-processing function
against manual slices of the original data. As the original data contain slices which are not valid (as they go
from one simulation run into the next), there should be a specific amount of discrepancies in between the
pre-processing output and the manual slices, i.e. there should be more slices in the unprocessed data. For a
single simulation run, a total number of 5 ·50 = 250 discrepancies are expected. In the verification procedure,
these discrepancies were counted for the file of a single simulation run and 250 were found at the correct
indices (close to multiples of the simulation run-time).
Furthermore, the fault labels were also compared, and no discrepancies were found for the correct slices. This
verifies the data pre-processing.
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Selecting data only from a single satellite The selection of only data from a single satellite viewpoint is
achieved by comparing the decoded data against the output of the individual pre-processing function. If
only the data of the selected satellite remains after processing, this functionality is verified.
After comparing the output, similar to the procedure for verifying the pre-processing in general, it was found
that the only output that remained was from the selected satellite. The only difference to the above procedure
is that with only a single satellite, only 50 incorrect slices are expected in the comparison, which is exactly
what was found, regardless of the satellite selected.
This verifies this part of the pre-processing.

4.1.7. Network Evaluation
The network evaluation is performed on the complete validation dataset that was set out at the generation of
the simulation data. Due to the size of this dataset, the evaluation was performed in two steps. First, the data
is given to the network and the output of the network is saved, and then the data is analyzed.
Due to the need to be able analyze the performance of the network with respect to the various parameters of
the dataset (fault location, fault type, fault time, fault intensity), each simulation file was separately written
into a TFRecord file. During the evaluation, a dataset object was constructed from a single file and the net-
work tested on the resulting dataset. The output of the network for each time-step was then written to a CSV
file, together with identifying information of the file for debugging purposes, as well as the fault parameters
and the correct output.
These CSV files (one for each network) could then be downloaded and loaded into a pandas dataset object in
Python. This then allowed for offline analysis.

4.2. Kalman Filter approach
One standard method for performing FDI is through the use of an observer or a filter, for a deterministic or
stochastic system, respectively [97]. The Kalman filter specifically is a fairly simple method that can still yield
good results for linear systems. As the non-linearities in the relative dynamics of satellites depend on their
distance and the formation considered here is very close, a standard Kalman filter was chosen due to its ease
of implementation. First, the combined system model that is used to capture the dynamics of the formation
is shown in Section 4.2.1. The detection and isolation procedure for the Kalman filter is presented in Sec-
tion 4.2.2. Finally, the selection of two tunable parameters of the Kalman filter is presented in Section 4.2.3.

4.2.1. Combined Formation Model
The general structure of the centralized Kalman filter is shown in Figure 4.10. The relative position and veloc-
ity measurements that are taken by each satellite in the formation are transformed into the Hill-Frame and
then sent to the diagnosing satellite, in this case satellite 1. The gathered data is then used in the Kalman
filter to generate the residual vector, which can then be analyzed statistically in order to detect changes in the
distribution of the residual vector. As the residual is distributed in a bell-curve, changes in the residual distri-
bution would indicate a fault. This decision can then be broadcast back to the formation for reconfiguration
purposes, but that is beyond the scope of this thesis.

In order to have a centralized Kalman filter, a state space model of the entire formation is needed. It is as-
sumed that the satellites are close enough, such that the differences in the state matrix A for each of the
satellite connections are negligible. As each of the relative distances have no interconnection, the use of a
block-diagonal state space matrix, as shown in Equation (4.4), is possible.

A f or mati on =


A 06x6 06x6 . . .

06x6 A 06x6 . . .
06x6 06x6 A . . .

...
...

...
. . .

 (4.4)

There are only 12 unique edges in an octahedron and therefore only 12 unique connections in the formation,
and each connection is characterized by a relative position and velocity vector. Therefore, the state vector
of the entire formation will have size 12 x (3 + 3) = 72. More specifically, the states are arranged as seen in
Equation (4.5).

x f or mati on = [
xT

12 xT
13 xT

14 xT
15 xT

23 xT
34 xT

45 xT
52 xT

65 xT
64 xT

63 xT
62

]T
(4.5)



58 4. Fault Detection and Isolation Methodology

Relative Position &
Velocity Measurements

Satellite 1
Transform into

Hill frame

Transform into
Hill frame Relative

Measurements of
Entire Formation

Kalman Filter
Estimate of Entire

Formation

Residual Vector
Statistical Analysis
(CUSUM Change

Algorithm)
Detection and

Isolation Decision

Relative Position &
Velocity Measurements

Satellite 2

Relative Position &
Velocity Measurements

Satellite 3

Relative Position &
Velocity Measurements

Satellite 4

Relative Position &
Velocity Measurements

Satellite 5

Relative Position &
Velocity Measurements

Satellite 6

Transform into
Hill frame

Transform into
Hill frame

Transform into
Hill frame

Transform into
Hill frame

Figure 4.10: Flow-chart of centralized Kalman filter FDI scheme.

Where x f or mati on is the state of the combined formation model and xi j is the state vector (i.e. relative posi-
tion and velocity in the Hill frame) of the connection from satellite i to satellite j . This ordering is illustrated
in Figure 4.11.

Figure 4.11: Illustration of formation state ordering.

The specific ordering is arbitrary as it does not change the underlying dynamics. This particular ordering of
the relative distances flows from satellite 1 to satellite 6, first covering all the connections of satellite 1 (shown
in shades of red), then all the connections not concerning satellite 1 or 6 (shown in shades of green) and then
all connections of satellite 6 (shown in shades of blue).

Similarly, the formation control input u f or mati on is the vertically stacked control input of every satellite in
the formation as seen in Equation (4.6).

u f or mati on = [
uT

1 uT
2 uT

3 uT
4 uT

5 uT
6

]
(4.6)
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The corresponding input matrix can be seen in Equation (4.7), resulting in a 72x18 matrix.

B f or mati on =



−−−B B 06x6 06x6 06x6 06x6

−−−B 06x6 B 06x6 06x6 06x6

−−−B 06x6 06x6 B 06x6 06x6

−−−B 06x6 06x6 06x6 B 06x6

06x6 −−−B B 06x6 06x6 06x6

06x6 06x6 −−−B B 06x6 06x6

06x6 06x6 06x6 −−−B B 06x6

06x6 B 0 06x6 −−−B 06x6

06x6 06x6 06x6 06x6 B −−−B
06x6 06x6 06x6 B 06x6 −−−B
06x6 06x6 B 06x6 06x6 −−−B
06x6 B 06x6 06x6 06x6 −−−B



(4.7)

As each satellite involved in a connection has an influence via the control forces on the relative state, the B
matrix appears twice for each connection. For example, the connection x12 involves both the control input
from satellite 1 and 2, and such both these position have a copy of the B matrix. The negative signs can be
deduced from the Clohessy-Wiltshire equations.
While the formation state is captured accurately by the 12 unique connections, there are 4x6 = 24 measure-
ments available, i.e. each connection is measured twice. The connections are arranged in the ordering shown
in Equation (4.10).

y f or mati on = [
y T

1 y T
2

]T
(4.8)

y1 =
[

xT
12 xT

13 xT
14 xT

15 xT
23 xT

34 xT
45 xT

52 xT
65 xT

64 xT
63 xT

62

]T
(4.9)

y2 =
[

xT
21 xT

31 xT
41 xT

51 xT
32 xT

43 xT
54 xT

25 xT
56 xT

46 xT
36 xT

26

]T
(4.10)

y2 =
[−xT

12 −xT
13 −xT

14 −xT
15 −xT

23 −xT
34 −xT

45 −xT
52 −xT

65 −xT
64 −xT

63 −xT
62

]T

As xi j =−x j i . This results in the measurement matrix shown in Equation (4.11).

C f or mati on =
[

I72x72

−I72x72

]
(4.11)

4.2.2. Detection and Isolation
The standard Kalman filter can be used as a method to generate fault residuals by using the innovation vector
as described in the equations in Section 2.6, which are repeated here for ease of reading.

x̂− (k) = Ax̂+ (k −1)+Bu (k)

P− (k) = AP+ (k −1) AT +Q

x̂+ (k) = x̂− (k)+K
[

y (k)−C x̂− (k)−Du (k)
]

r (k) = y (k)−C x̂− (k)−Du (k)

P+ (k) = [I −KC ]P− (k) [I −KC ]T +K RK T

The resulting innovation vector r can be used as a fault residual since in the ideal case the innovation is
a randomly distributed vector with mean 0 and covariance Q = C PC T +R . A change in the mean of this
distribution would indicate a fault.
In order to detect if a change in the mean of the the residual vector has occurred, a log-likelihood ratio test



60 4. Fault Detection and Isolation Methodology

is implemented. This test aims to detect if a vector quantity is sampled from one particular distribution or
another. In the scalar case, this test is given by Equation (4.12).

s(z) = ln
pθ1(z)

pθ0(z)
(4.12)

Where s is the so called log-likelihood ratio, z is a particular observation from a certain distribution and pθ is
the probability of that particular observation occurring under the distribution θ. If more information about
the distribution is known, this expression can be simplified. For example. if the two distributions θ0 and θ1

are both normal distributions with means µ0 and µ1, respectively, the log-likelihood ratio can be simplified
to equation Equation (4.16)

pµ(z) = 1p
2πσ

exp

(
−

(
z −µ)2

2σ2

)
(4.13)

s(z) = ln


1p

2πσ
exp

(
− (z−µ1)2

2σ2

)
1p

2πσ
exp

(
− (z−µ0)2

2σ2

)
 (4.14)

s(z) = ln

(
exp

(
−

(
z −µ1

)2

2σ2 +
(
z −µ0

)2

2σ2

))
(4.15)

s(z) =
(
z −µ0

)2 − (
z −µ1

)2

2σ2 (4.16)

One algorithm that uses this ratio to detect a change is the so called cumulative sum (CUSUM) algorithm [8,
chp.7].
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(a) Observations drawn from normal distribution; a change in the mean
occurs at t = 500.
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(b) Cumulative sum of the log-likelihood.

Figure 4.12: Illustration of the CUSUM method: observations drawn from normal distributions and the cumulative sum of the
log-likelihood test.

An illustration of this method is seen in Figure 4.12 (reproduced from [8, chp.7]). The figure on the left shows a
series of observations, first drawn from a normal distribution with mean µ0 = 0 and standard deviation σ= 2,
but after 500 s the distribution shifts to a new mean of µ1 = 4. The right figure shows the cumulative sum of
the log-likelihood computed from Equation (4.16). As can be seen, the cumulative sum shows as distinctive
change after the distribution changes. The slope of the cumulative sum changes from negative to positive.

A decision function g (k) can then be established and recursively computed by Equation (4.17).

g (k) = max
(
0, g (k −1)+ s (z(k))

)
(4.17)
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If this decision function exceeds a chosen threshold hk , a detection is triggered.

In the vector case, where the probability of a certain observation vector z is drawn from a normal distribution
with mean µ and covariance Q is given by.

pµ(z) = 1√
(2π)ndetQ

exp

(
−1

2
(z −µ)T Q−1(z −µ)

)
(4.18)

Again, assuming only a change of the mean in the two distributions p0 and p1, and inserting Equation (4.18)
into the expression for the log-likelihood shown in Equation (4.12), Equation (4.19) is the result after a small
amount of algebra [8, p.297].

s(z) = (
µ1 −µ0

)T Q−1
(

z − 1

2

(
µ0 +µ1

))
(4.19)

Determining the Change in Mean In the case of a deterministic fault inserted into a linear system, the resid-
ual will experience a change in mean, but not in the the covariance [8, p.327]. As such, for a known change
in the mean, Equation (4.19) can be used to detect a fault. In order to determine the change of the mean for
particular faults, the transfer function between a fault signal and the residual needs to be determined.
For a general system, the transfer function between the input of a discrete state space system and the output
is given in Equation (4.23).

z X (z) = AX (z)+BU (z) (4.20)

Y (z) =C X (z)+DU (z) (4.21)

→ Y (z) = [
C ((zI − A)−1 +B )+D

]
U (z) (4.22)

→Vyu(z) =C ((zI − A)−1 +B )+D (4.23)

Combining the Kalman filter equations into a recursive a priori time-update form [63, p.74], using the residual
as the measurement equation, the following system is acquired.

x̂− (k +1) = [A − AKC ] x̂− (k)+ [B − AK D]u(k)+ AK y (k) (4.24)

r =−C x− (k)−Du(k)+ y(k) (4.25)

As the faults considered have the same impact on the residual as the control input (they act on the system
like a control force from a thruster would), the transfer function between the control input u and the residual
is the same as the fault signal f and the residual.
Comparing Equation (4.23) and Equations (4.24) and (4.25), the transfer function between the input and the
residual can be deduced to be Equation (4.26).
The steady state change in the mean can then be determined from Equation (4.27), for a steady state value of
the fault signal f̄ .

Vr u (z) =−C (zI − A + AKC )−1 (B − AK D))−D (4.26)

µ f =Vr f (1) · f̄ = [−C · (I − A +KC )−1 · (F f − AK E f
)−E f

]
f̄ (4.27)

This value can be calculated for all thrusters by changing the value of f̄ in Equation (4.27) to match the faulty
thruster. Then, the value of the log-likelihood ratio can be computed by iterating over all thrusters using
Equation (4.19), resulting in a statistical test-vector s, the aggregate of all individual tests. When any of them
exceed the detection threshold hk , a fault detection is triggered and the component of this vector with the
largest value is isolated. The output of this vector in a simple fault case in thruster 1 of satellite 1 is shown in
Figure 4.13.

As can be seen, the vector shows a response in the appropriate component.
There are two drawbacks to this method. First, as the system that the Kalman filter is applied to here is not
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Figure 4.13: Test vector components in a scenario with a thruster fault in satellite 1 thruster 1.

linear in nature, but only an approximation of a non-linear system, there are both transients and deviations
from the 0 mean present in the residual vector. In order to account for this, the mean in the faultless case (µ0)
was determined via the simulation by averaging the residual over one orbital period (after settling down).
This value is used instead of a zero mean in Equation (4.19).
And second, as the deviation from the mean is essentially determined by a force, it will be impossible to
distinguish between the absence of a force in a positive direction and the presence of a force in the negative
direction, or vice versa. This has implications for the fault isolation, as an open fault is a presence of an
unwanted force and a closed fault is the reduction of an intended force.

4.2.3. Selecting Kalman Filter FDI Parameters
A few parameters of the simple Kalman filter can be adjusted to affect the performance of the filter. Two
parameters were tuned to reach the final performance, the first of which is the detection threshold hk . The
second is the process noise value of f̄ in the computation of the change in the meanµ f with Equation (4.27).
Both have to be selected together as the former is the cut-off point for the value of the statistical test s, while
the second influences how easily s changes from 0. These values were selected through a trial and error
process, testing the Kalman filer on simulation runs without faults and observing the peaks in the values
of the statistical test vector. In the end, a value of hk = 20 and f̄ = 5e−4 were selected. This ensured that
no detection of the Kalman filter is a false positive, as the values were chosen such that the statistical tests
remain below the threshold for faultless simulations.

4.3. Methodology Summary
In this chapter, the two approaches that are to be compared have been presented. They consist of an ap-
proach utilizing neural networks, which only have access to a limited amount of information, and a Kalman
filter, which is centralized and hence has access to all the information in the formation.

The neural network based approach makes use of so called Recurrent Neural Network (RNN), which feature
connections with a time-delay, allowing the network to have a time-dependency. Specifically, Long Short-
Term Memory (LSTM) units were selected, due to their near optimal performance compared to other RNN
architectures and their ease of implementation. The networks were chosen to have three hidden layers, the
first two of which use LSTM units, while the last hidden layer is a regular, fully-connected layer.
The problem of fault detection is much simpler than the problem of fault isolation. Due to this, it was decided
to train two separate networks, one type for detection and one for isolation. This split allows for training the
isolation network only on the truly faulty data, which should result in a performance increase.
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In addition to the splitting the networks along the lines of detection and isolation, the question has to be
answered whether there should be a single network running on all spacecraft, or each spacecraft should make
use of its own neural network. Both approaches will be evaluated in this thesis.
The two approaches differ in the training. For a network to be able to run on any satellite, it needs to be
trained on the data from all of the spacecraft. This makes sure that the network will be able to handle data
from satellites with different viewpoints. This will be called the "naive" network as no further considerations
to the data handling are given.
The second approach involves training six separate networks, each trained on the data of one satellite only.
This approach will be called "individual", as the trained networks will differ for each spacecraft.

Regardless of the approach, during operation the satellites may come to different decisions regarding the
location of a fault. To remedy this, the following procedure is proposed: Once any detection network triggers
a detection, the isolation network is started and the decision of the isolation network is broadcast. The other
satellites then start their own isolation networks and share the results. These results are combined using a
weighted sum, resulting in a combined, unified fault isolation. This method does rely on quick and reliable
detection, as it requires an active communication link between the satellites, which may break up for certain
faults. However, if the link does break down between some satellites, the other can still use the available
measurements to come to a common diagnosis among themselves.

These neural networks need to be trained on the generated simulation data. The training platform used is
Google Colab, making use of the tensorflow library. Specifically, the adaptive moment estimation algorithm,
a variation of stochastic gradient descent, is used to find the network parameters. During training it was found
that the dataset generated resulted in very large training times. Despite efforts to speed up training, this made
using the entire dataset infeasible. Instead, the networks are only trained on a subset of the generated data.

The networks will be compared in their performance to a centralized method. This comparison method, the
Kalman filter, has access to the entire formation state. The state space model it uses to generate a residual
is the combined model of all individual connections. The innovation resulting from this filter is analyzed
statistically using the cumulative sum of the log-likelihood ratio. The faults considered cause a deviation
in the mean of the residual, thus allowing for detection. The fault isolation is achieved by determining the
direction of change in the high-dimensional residual space and using a vector based version of the cumulative
sum of the log-likelihood test in order to determine the fault location.





5
Evaluation and Analysis

The approaches described in Chapter 4 based on the data generated by the simulation described in Chapter 3
will be analyzed and compared in this chapter. First, the impact of the size of the training dataset on the per-
formance on the ANNs will be evaluated in Section 5.1. This is followed by the analysis of the categorization
accuracy of both the ANNs as well as the Centralized Model-based approach in Section 5.2. Then, the robust-
ness of both approaches to various scenarios is analyzed and the results compared in Section 5.4. Finally, the
results are summarized in Section 5.6.

5.1. Dataset Size
For neural networks the size of the dataset has a considerable impact on the final output accuracy. Generally,
the larger and more diverse the dataset, the better the resulting performance of the network will be. In this
section the impact of the size of the dataset is evaluated. Due to the considerable training duration, only 4
training session with varying dataset sizes were performed. The results can be seen in Table 5.1. This data
only reflects the performance of the individual isolation network described in Section 4.1, specifically the
individual network for satellite 1.

Table 5.1: Network categorical accuracy for varying sizes of the training dataset

Qualifier 0.5% Dataset 1% Dataset 2% Dataset 4% Dataset

Maximum categorical accuracy on train-
ing set

59.14% 61.20% 64.89% 66.02%

Categorical accuracy on validation set at
minimum loss

59.86% 62.16% 66.34% 66.33%

Minimum loss for validation set 1.4072 1.2305 1.1587 1.1354
Number of epochs trained 11 16 17 17

As can be seen from the table, the performance of the network does increase with a larger dataset, as expected.
However, there are diminishing returns. As the dataset size is doubled, the performance in terms of accuracy
on the training and validation set seem to increase at roughly 2%, while the loss drops at smaller and smaller
increments, only showing a decrease of 0.0233 or 2.01% for the last doubling. The simplest explanation for
this is that the networks ’learn’ better from a varied dataset and at some point the subset accurately reflects
the distribution of the full dataset.
Furthermore, it can be seen that the amount of epochs that the network was trained before the stopping con-
dition was met is 16 to 17, except for the smallest dataset. Given the smaller dataset size, this means that the
network reach their highest potential sooner the less data they are trained with, as 16 epochs of a dataset that
is half as big are only amount to only half the computation steps in the optimization process. This is even
more obvious for the smallest dataset tested, which reached the stopping criteria after only 11 epochs. While
this number is influenced by the randomness of the stochastic gradient descent, the equivalent number of
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epochs should be twice that of the next larger dataset to reach the same amount of optimization steps. If
the equivalent amount of training steps is compared (i.e. at half the epochs of the smaller dataset), it can
be seen that the network with the larger dataset actually show a larger value of the cost function, i.e. worse
performance. That means that per training step, which is equivalent to per unit of time, the smaller sets learn
more quickly. However, their performance limit is considerably lower than for the larger datasets. In that
respect, the hypothesis that the networks reach better performance when trained on a larger dataset is true,
however they take considerably longer to reach this limit and in fact learn slower in a per optimization step
comparison.
For practical reasons, 2% of the full set were used for training the networks for the evaluation that follows.
This allows for having multiple uninterrupted epochs of training to see the progression of the network per-
formance as well as being able to evaluate a stopping criteria for the networks. Due to internet connectivity
issues or an automatic disconnect from the virtual machine on the Google servers, there are frequent inter-
ruptions in the training process. The larger dataset, while giving a better performance has the drawback of
very long training epochs, which make it impossible to reliably train over multiple epochs, and therefore to
see if the network has reached the ’memorization’ (i.e. overfitting) stage of training.
Similar tests with respect to the impact of the dataset size were performed for the naive isolation network,
which showed little to no change in its performance depending on the amount of data it was trained on. The
reason for this will be clear when the performance of the naive isolation network is evaluated in Section 5.2.2.

In order to better understand the training process, the performance over the training period is plotted in
Figure 5.1, showing both the categorical accuracy as well as the value of the loss function on the training and
validation set.
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(a) Plot of satellite 1 network categorical accuracy over the course of training.
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(b) Plot of satellite 1 network categorical cross-entropy over the course of
training.

Figure 5.1: Plots of the performance of the individual isolation network for satellite over the training period.

The categorical accuracy of the network on both the training and validation dataset can be seen on the left
in Figure 5.1a, while the value of the loss function (categorical cross-entropy) is shown on the right in Fig-
ure 5.1b. As expected, the value of the accuracy increases over the training period while the loss function
decreases. The minimum of the loss on the validation set is reached at epoch 14, after which it starts to in-
crease while the loss on the training set continues to decrease. As discussed in Section 4.1.3, the point after
which there is no further improvement on the validation set for three epochs is chosen as the cut-off point.
Occasionally, it can be seen that the loss or the accuracy become worse after completing an epoch. This is a
feature of the stochastic gradient descent, as the cost function value shown in Figure 5.1 is determined over
the entire dataset (training or validation) that is used, but for each optimization step the gradient is only ap-
proximated using the data in one sample batch.
An observation that could be made during training that is not reflected in Figure 5.1 is the progress during the
first epoch. The starting accuracy of the network is between 2% and 3%, as would be expected of a random
set of weights, which will produce essentially random output. Therefore, the chance of a correct isolation is
1

36 or approximately 2.78%. The biggest progress is made during the first epoch, where the accuracy rises to
approximately 53% for the selected dataset, corresponding to the start of the graph shown in Figure 5.1.
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5.2. Performance
The quality of either approach is judged by comparing a few relevant performance parameters, including the
detection rates. A compact way to visualize a classifier performance is the confusion matrix. It is a represen-
tation of the amount of correctly and incorrectly classified data. The position on the vertical axis represents
the true state, in the detection case with only two options: fault or no fault. The horizontal axis on the other
hand shows the output of the classifier. Therefore, the diagonal of this representation (i.e. when true state and
classifier are the same) shows the correct classification, while the off-diagonal elements show the incorrect
classifier decisions. This is illustrated in Figure 5.21.

Figure 5.2: Example confusion matrix for explanatory purposes1.

In the example confusion matrix, there are 50 instances where the classifier and the data agreed on the label
’NO’, while there are 10 instances where the classifier incorrectly labeled a sample as ’YES’. Similarly, there
are are 100 instances where the classifier correctly identified a sample as ’YES’, and only 5 instances when it
predicted the label ’NO’ when it should have been ’YES’.
In the detection case, the incorrect decisions are the false positive (detection of a fault in the actually faultless
case) and the false negative rate (missed detection of a fault in the faulty case), in the top right and bottom
left of the confusion matrix, respectively.
All confusion matrices that are shown in this chapter are normalized to the true occurrences of a certain class
(e.g. fault in a particular thruster), i.e. divided by the sum of the entries in each row (row normalized). This
means, that the values represent the fraction of the classifier decisions that match the true state out of all
occurrences of that state, rather than the the fraction of times the true state matches a particular classifier
output out of all occurrences of that output. In the binary case, the former is also called the recall an the
latter is called the precision, explained in Section 2.5.
For example, when considering the matrix in Figure 5.2, the normalized entries would read 0.833 and 0.167
for the top row, and 0.048 and 0.952 for the bottom row.

As mentioned before in Section 4.2, the Kalman filter approach is not evaluated on the exact same dataset
due to a lack of absolute position information in the saved dataset. However, the Kalman filter was tested on
a representative dataset, with the same distribution of faultless and faulty scenarios and the same (uniform)
distribution of fault intensity as for the network data.
It should be noted that the Kalman filter has additional information compared to the neural networks in both
the control input as well as implicit information about the position and velocity of the formation via the Hill-
Frame. This means that from a purely systematic view, the Kalman filter has a higher potential for accuracy,
as it has a higher amount of available information.
First, the approaches are compared on detecting faults in Section 5.2.1 and then on isolating a fault to a
specific thruster in Section 5.2.2.

5.2.1. Detection
Before the detection network can be evaluated, a detection threshold has to be determined.

Selecting a Detection Threshold As discussed in Section 4.1.5, the weighted F measure will be used to select
a threshold above which the network is counted as having detected a fault. The performance of the networks
was evaluated with various thresholds, the results of which can be seen in Figure 5.3 and Figure 5.4, for the

1https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/ last accessed 25.09.20

https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
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naive network and the individual network, respectively. These figures show various quality measures, includ-
ing the precision, recall and F measure.
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Figure 5.3: Classifier quality measures for naive detection network,
black dot marks the maximum of the F measure.
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Figure 5.4: Classifier quality measures for the individual detection
network, black dot marks the maximum of the F measure.

As expected, the higher the threshold, the more precise the network evaluation is and the lower the recall. It
can be seen that the optimum F measure for the naive network is reached at the highest checked threshold
of 0.99, whereas the individual network reaches the maximum at a threshold of 0.67. This is indicative of
the naive network having a generally higher output value compared to the individual network, as for a good
performance its threshold needs to be much higher. Considering the almost flat region seen in Figure 5.3, it
appears as though the network almost never occupies states in the range of 0.2 to 0.7, as the change in the
threshold there makes little difference in its performance. This is not the case for the individual network,
which shows much smoother progression in all the performance measures. However it can be seen that the
accuracy and the F measure flatten towards the higher threshold values.
Having chosen a threshold value for both networks, the detection performance can be evaluated. The confu-
sion matrices in the detection case for the various classifiers can be seen in Tables 5.2 to 5.4. As mentioned
before, these matrices are row normalized, i.e. the number of incidences are divided by the total amount of
occurrences of the no fault and fault case. This means the entries show the proportion of true states matching
the prediction out of all occurrences of that true state.

Table 5.2: Naive network detection rates in percent, row
normalized.

Predicted No Fault Predicted Fault

True No Fault 74.63 25.37
True Fault 13.19 86.81

Table 5.3: Individual network detection rates in percent, row
normalized.

Predicted No Fault Predicted Fault

True No Fault 99.62 0.38
True Fault 37.12 62.88

The detection confusion matrices for the naive and individual detection network specifically can be seen in
Table 5.2 and Table 5.3, respectively. The individual network performs much more reliably than the naive
detection network, as seen by the much lower percentage of false positives (25.37% vs 0.38%). However, it
also detects fewer faults with a 62.88% true positive rate compared o the 86.81%. While the recall of the naive
network is higher, this could simply be due to a much higher activation in general, leading to more positive
decisions. Considering that the threshold for the naive network was selected at 0.99, there seems to be little
distinction between the output in a faulty situation versus a faultless one.

Conversely, the confusion matrix for the centralized Kalman filter be seen in Table 5.4. As can be seen from the
table, the Kalman filter works very well for detecting the considered faults. In fact, all faults were detected,
the only difference is how long it took for the filter to detect them after the fault inception. Furthermore,
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Table 5.4: Kalman filter detection rates in percent, row normalized.

Predicted No Fault Predicted Fault

True No Fault 100 0.0
True Fault 1.67 98.32

there is no instance of the filter miscategorizing the faultless state, shown by the entries in the upper row of
Table 5.4. The false positive rate is 0, meaning no fault is supposedly detected when in fact the system is in fact
faultltess. The false negative rate of 1.67% is due to the delay in detection time that will be further addressed
in Section 5.3.1.

Comparing the three approaches, it can be immediately seen that the networks perform worse across the
board. True positive and true negative rates are both considerably lower in the networks. The true positive
rate is at 86.81% and 62.88% for the naive and individual network, compared to the 99.49% for the Kalman
filter. While there are no false positives in the Kalman filter approach, the naive network approach has a
considerable amount of false positive detections with 25.37%. The individual network performs much better
in this regard with a true negative rate of 99.62%, and therefore only 0.38% false positives. However, the false
negative rate is much higher compared to the Kalman case with 13.19% for the naive network and 37.12%,
indicating that the time until detection is larger, or that certain faults are completely missed.

While the average performance of the classifiers is interesting to consider, it is also worthwhile to inspect the
performance on the two fault types separately. The performance of all three fault detectors split according to
the fault type is summarized in Table 5.5.

Table 5.5: Average accuracy (Acc.), precision (Prec.) and recall (Rec.) for each detection network split by fault type, in percent.

Dataset Naive Network Individual Network 1 Kalman

Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.
Closed Faults 61.85 70.20 72.58 48.51 99.29 21.57 98.22 100 96.48
Open Faults 82.73 81.18 99.51 99.74 99.89 99.76 99.96 100 99.94
Complete Dataset 80.56 76.47 86.81 81.72 99.37 62.88 99.09 100 98.32

As can be seen for all detectors, the performance is worse on the closed faults compared to the open type
faults. The only exception in this regards is the precision of the Kalman filter, which remains at 100%.
The reasons for this difference in performance in the detectors is in the relative impact that closed and open
fault have on the relative positioning. This is inherent to the nature of these respective faults. The closed
faults are only visible when a thruster is scheduled to fire, as only then its function is impaired. In this setup,
the time in between thrust windows is 60 s. Compared to the constant effect of an open fault, which causes
the thruster to continuously fire, this is a much smaller time frame in which the fault can have an effect on
the relative positioning. In addition, with the considered thruster on the satellite, the average opening time
of a thruster is only 0.115 s, leading to an even smaller impact of that fault type.
Furthermore, it can be seen that the difference between the open and closed faults is much bigger for the
neural network based detectors compared to the Kalman filter. This difference could be due to fact that the
Kalman method has information about the thruster commands which are supposed to be executed, and the
effect they should have on the relative positioning. A deviation from this predicted effect will raise the statis-
tical tests and therefore cause a detection. The second reason for the Kalman filter much higher performance
is the availability of the entire set of formation data, as opposed to only a subset of the data corresponding to
the neighbors of only a single satellite.

Another aspect to consider is the performance variation by fault intensity. In order to get a representative
average, the data was split into buckets of width 0.1, e.g. all faults in the half open interval [0.1, 0.2) were
gathered. The accuracy, precision and recall averaged over a 0.1 fault interval can be seen in Figures 5.5 to 5.7.
As can be seen in Figure 5.5b, the quality measures for the open fault cases show almost no change over the

fault intensity. The same cannot be said for the closed faults, which show decreases in the accuracy and recall
from approximately 99% and 98%, to 96% and 92.5%, respectively. The precision of the Kalman filter stays
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(a) Kalman filter detection quality measures for closed faults.
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(b) Kalman filter detection quality measures for open faults.

Figure 5.5: Kalman filter detection quality measures of there fault intensity interval [0.1, 1].
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(a) Naive network detection quality measures for closed faults.
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(b) Naive network detection quality measures for open faults.

Figure 5.6: Naive network quality measures over the fault intensity interval [0.1, 1].

at 100%, meaning that no false positives are present. The general drop in recall and accuracy indicates an
increase in the detection time for the closed faults with lower fault intensities.

The naive network shows little change over the considered fault intensities for both closed and open fault
cases. This is surprising as the impact of (especially the closed) faults can vary considerably based on the
fault intensity and therefore one would expect a drop in detection quality towards the lower end of fault
intensities. This indicates that the naive network does not react properly to the data.

The individual detection network of satellite 1 shows similar trends to the Kalman filter. For the open faults,
shown in Figure 5.7b, the performance stays close to optimal, with accuracy, precision and recall staying
above 99.5%. However, unlike the Kalman filter, there does appear to be a downwards trend towards the
lower fault intensities.
The performance on the closed faults show an even clearer trend, as the recall drops from around 40% at a
fault intensity of 1.0 to less than 5% at a fault intensity of 0.1. It seems the individual network is approach its
lower limit of the detectability for the closed faults. The precision stays above 95% up until the fault intensity
drops to 0.2.

Finally, it may be possible that the detection differs based on the location of the fault. Especially for the indi-
vidual network this may be the case, as it was only trained on a subset of the data corresponding to the neigh-
bors of satellite 1. In addition, the naive network, if it were to actually run on the satellites would only have
access to the relative distance measurements of that satellite’s neighbors. Therefore, the question of whether
the accuracy, precision or recall of the detectors varies by fault location should be investigated. These quality
measures averaged over the thrusters of each satellite are illustrated as bar plots in Figures 5.8 and 5.9. As can
be seen from the figures, there is only little difference (1-2 percent points) in accuracy, precision and recall
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(a) Individual network of satellite 1 detection quality measures for closed
faults.
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(b) Individual network of satellite 1 detection quality measures for open
faults.

Figure 5.7: Individual network of satellite 1 detection quality measures over the fault intensity interval [0.1, 1]

based on the location of the fault. This is interesting considering that both the naive and individual networks
only have access to a subset of the full formation information, but (at least in terms of fault detection) can
make detections for a fault in any part of the formation with almost equal performance. For the Kalman filter,
there is similarly no difference in detection performance based on the fault location, as expected.
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Figure 5.8: Bar plot of the quality measures per fault location for the naive network.
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Figure 5.9: Bar plot of the quality measures per fault location for the individual network of satellite 1.
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5.2.2. Isolation
The problem of isolating the fault is, in this case, the determination of which thruster experiences either the
closed or open valve fault. This is a substantially harder problem to solve than the issue of fault detection.
Not only does isolation necessitate prior detection, but the networks also needs to determine based on the
relative motion alone where a fault has occurred. As mentioned before, the confusion matrices will be the
main tool to investigate the isolation performance of the methods.
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Figure 5.10: Kalman filter isolation confusion matrix, numbers in percent.

The full isolation confusion matrix for the Kalman filter can be seen in Figure 5.10. One interesting observa-
tion is that the the filter only appears to misisolate the thrusters which are mounted in opposite directions,
e.g. thrusters 1 and 2, 3 and 4, or 5 and 6 of any given satellite. No other misisolations take place.
Due to the fact that the isolation is based on the assumption of an external force in a certain direction which
influences the residual mean, the reduction or absence of a force in one direction cannot be distinguished
from a present force in the opposite direction from the residual alone. This is illustrated in Figures 5.11a
and 5.11b, which shows the residual in the case of a closed fault in thruster 1 of satellite 1, and the residual in
the case of an similarly intense open fault in the opposing thruster 2 of satellite 1.
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(a) Kalman innovation for a closed fault in thruster 1-1.

(b) Kalman innovation for an open fault in thruster 1-2.

Figure 5.11: Kalman filter innovation for the two considered fault types to showcase their similarity.

As can be seen when comparing the two figures, both faults show a deviation in the residual vector in the
exact same direction. The only difference is that the open fault causes the fault residual to constantly deviate
from the 0 mean, due to the fact that the open fault causes the thruster to continuously fire. This is not the
case for the closed fault, whose impact can only be seen when the thruster is supposed to be firing. Since
thruster 1 is completely inactive for a period of time, the fault signal returns to the 0 mean and only starts
deviating again when the thruster is scheduled to fire again.

The performance of the Kalman filter when only considering the problem of isolating the fault in a thruster
pair can be seen in the confusion matrix in Figure 5.12. As can be seen, the performance in that aspect is
perfect, with no thruster pair being misisolated. This is very good performance and shows that when the
filter flags a faulty thruster, one can at least be certain that one thruster in that pair is faulty.

As for the performance of the networks, the isolation matrix of the naive network is shown in Figure 5.13,
the complete confusion matrix for the individual network of satellite 1 is shown in Figure 5.16 and the con-
fusion matrix for the combined networks is shown in Figure 5.19. The remainder of the individual networks
complete isolation matrices are omitted here for space reasons, but can be found in Appendix A.

It can be seen that the naive isolation network has not learned to isolate faults at all. Instead, it only gives one
of two possible responses to any input: either satellite 2 thruster 6 is flagged or satellite 4 thruster 5. This could
be due to the dataset being too inconsistent or "confusing" for the network to learn any particular features
which could allow for isolation of a fault. The naive network is supposed to be able to isolate any particular
thruster when given the relative positioning data of any satellite in the formation, but it is trained on the
relative positioning data of the entire formation. This leads to inconsistent labeling of data. At one point the
network receives relative positioning data from the perspective of satellite 1, which will have a completely
different fault signature than the relative positioning data from the perspective of any other satellite, yet the
true label that is used to compute the loss function is the same for both vastly different sets of input. This lack
of clear correlation between the input and fault label of said input is most likely the cause for the failure to
train the naive network.
This explains the behavior of the naive neural networks during the training period, where the naive network,
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Figure 5.12: Kalman filter thruster pair (TP) isolation confusion matrix.
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Figure 5.13: Naive network isolation confusion matrix for thruster isolation.
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despite changes to the size of the dataset or the values of its hyper-parameters did not show any significant
change to its performance.
As for why these two outputs seem to be the one that the network selects, there could be a few reasons.
The first is that the training set might be biased slightly towards one of these two fault scenarios. While the
overall dataset was constructed so that every fault occurs equally often in every thruster, the networks were
not trained on the complete dataset, but a reduced one, containing only 2% of the data. As described in
Section 4.1, the way this reduced dataset was produced was through selecting the simulation runs with the
highest and lowest fault intensity. The individual runs were seleted randomly, therefore the selected reduced
dataset contained some variation in the amount of certain fault types and locations. In addition, there is a
smaller effect which may have exacerbated this issue. The time of the fault occurrence was also determined
randomly during the simulation. Hence, there is an inherent imbalance in the distribution of the fault data.
This imbalance in the distribution of the fault labels together with the lack of a clear correlation between input
and output could lead the network to only output a single value as that could represent a local minimum in
the cost function.
Investigating the true distribution of faults for this reduced dataset resulted in Figure 5.14 which shows the
distribution of fault labels for this training dataset.
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Figure 5.14: Distribution of the frequency of the fault labels in the naive training set, numbers in percent.

It can be seen that there is a variation in the distribution of the fault labels, ranging from 3.6% as the most
to 1.9% as the least common. However, the three labels which occur the most (satellite 1 thruster 4, satellite
3 thruster 6 and satellite 5 thruster 2) are not the ones which the network favors. Furthermore, two other of
naive networks with a different set of hyper-parameters were tested against the validation set. The first is a
network with double the amount of LSTM units per layer. It showed a similar problem, only that it always se-
lected satellite 2 thruster 6. Similarly, the other tested network with three layers of hidden LSTM units always
selected satellite 6, thruster 6.
In order to investigate this behavior further, the network weights saved at each training epoch were investi-
gated. The same behavior of solely selecting a single fault location all the time was seen at every step of the
training. The most commonly selected locations can be seen in Figure 5.15. Unfortunately, the weights for
epochs 4-10 were lost and so that data is missing from the graph.

As can be seen from the figure, the network changes its preferred output almost every epoch. The outputs
chosen most often are satellite 1 thruster 4 and satellite 2 thruster 6. As was seen in Figure 5.14, the fault
location that is most common in the naive training set is in fact satellite 1 thruster 4, so it is not surprising
that the network seems to favor this output as it will be more correct on average than the other options.
However, this does not explain why the network is seemingly incapable of learning the patterns in the data
and sticks to only selecting a single output. Due to the stochastic nature of computing the gradient for each
step in the training, there is some randomness involved. The computation of the gradient relies on a small
batch of the data rather then the full training set. This could explain why the network does not converge to
a specific output and frequently changes its preferred output, as the most common fault label in a batch is
likely to not be the same as the one that is most frequent in the entire dataset.
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Figure 5.15: Most selected fault location for the naive network versus the training epoch.

Overall it is likely that the naive network’s performances is in part due to the imbalance in the training set, in
part due to the inconsistent relation between the input of the network and the desired output, and the type
of network approach chosen.

The individual networks show much better isolation performance, as seen in Figure 5.16. While only the
complete isolation matrix for satellite 1’s individual network is shown here, the remainder can be seen in Ap-
pendix A. The majority of isolations is correct which can be seen from the high-valued entries in the diagonal
of the matrix, which range from the low value 8 % for the isolations of satellite 6 thruster 3, up to 91 & of
satellite 3 thruster 6. There is furthermore a pattern here that is not easy to spot but can be seen more clearly
when the isolation is reduced to simply the satellite itself, rather than the thrusters of the entire formation.
The confusion matrices for this case are shown in Figure 5.17.

The biggest area of misisolation lies in the satellite itself and the one it has no direct connection to, e.g. satel-
lite 1 is poorest in isolating faults in itself and satellite 6 on the other end of the formation. This trend can be
seen with every satellite of the formation. On the one hand, it is intuitive why the network’s performance is
poorest in isolating the satellite of which no direct information is given to the network. On the other hand,
its seeming inability to determine faults in itself is surprising. The fault signature of a fault in any particular
thruster of itself is distinct from that of a fault in its neighbors, and it is clearly visible in the relative motion,
at least for the more intense faults.
However, the situation becomes more clear when the effect of a particular fault on the relative positioning
is investigated. The relative distances of all 12 unique satellite connections after a thruster fault in the first
thruster of satellite 1 are shown in Figure 5.18. It can be seen that the effect of this thruster fault is largest on
the connections of satellite 1 (1-2, 1-3, 1-4, and 1-5), while the connections among those satellites (i.e. 2, 3, 4
and 5) are relatively undisturbed. But surprisingly, the effect of a thruster fault in satellite 1 can also be seen
very well in the the relative connections of satellite 6. The precise reason for this propagation of the fault is
complex as the control system itself takes into account the relative distances, but this explains why the net-
work has difficulty in distinguishing between faults in itself and the opposing satellite in the formation. The
fault signature is similar, only weaker for a fault in the opposing satellite.
If the confusion matrix shown in Figure 5.16 is looked at more closely, it can be seen that the misisolations
affect the opposite thruster on opposing satellite in the formation. For example, a fault in satellite 1 thruster
1 is most misisolated as a fault in satellite 6 thruster 2. Conversely, a fault in satellite 6 thruster 1 is most often
misisolated as a fault in satellite 1 thruster 2.

There is an additional observation to be made, as the network often misisolates faults as belonging to satellite
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Figure 5.16: Satellite 1 isolation confusion matrix for thruster isolation, numbers in percent.
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(a) Satellite 1 network confusion matrix.
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(b) Satellite 2 network confusion matrix.
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(c) Satellite 3 network confusion matrix.
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(d) Satellite 4 network confusion matrix.
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(e) Satellite 5 network confusion matrix.
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(f) Satellite 6 network confusion matrix.

Figure 5.17: Satellite isolation confusion matrices for each individual network.
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Figure 5.18: Relative positions of all satellite connections after the occurrence of an open fault in satellite 1, thruster 1 (S1T1).



5.2. Performance 81

5 thruster 6, seen by the light blue strip on the right hand side of the confusion matrix. This behavior can also
be seen in the other individual networks. Considering the output behavior of the naive networks, it is likely
that this is a remnant of the training phase. The networks, due to the initial random assignment of weights
and biases, start selecting an output at random and over the training period the network starts to separate
the faults.
One way to get around the issues of a single network is to combine the network predictions as described in
Section 4.1.1, using the confusion matrices as a way to quantify the uncertainty of a prediction. The confusion
matrix for this combined output can be seen in Figure 5.19.

S1
, T

1
S1

, T
2
S1

, T
3
S1

, T
4
S1

, T
5
S1

, T
6
S2

, T
1
S2

, T
2
S2

, T
3
S2

, T
4
S2

, T
5
S2

, T
6
S3

, T
1
S3

, T
2
S3

, T
3
S3

, T
4
S3

, T
5
S3

, T
6
S4

, T
1
S4

, T
2
S4

, T
3
S4

, T
4
S4

, T
5
S4

, T
6
S5

, T
1
S5

, T
2
S5

, T
3
S5

, T
4
S5

, T
5
S5

, T
6
S6

, t1
S6

, T
2
S6

, T
3
S6

, T
4
S6

, T
5
S6

, T
6

Predicted label

S1, T1
S1, T2
S1, T3
S1, T4
S1, T5
S1, T6
S2, T1
S2, T2
S2, T3
S2, T4
S2, T5
S2, T6
S3, T1
S3, T2
S3, T3
S3, T4
S3, T5
S3, T6
S4, T1
S4, T2
S4, T3
S4, T4
S4, T5
S4, T6
S5, T1
S5, T2
S5, T3
S5, T4
S5, T5
S5, T6
S6, t1
S6, T2
S6, T3
S6, T4
S6, T5
S6, T6

Tr
ue

 la
be

l

67 0 0 2 2 2 0 0 0 0 4 0 0 1 3 0 1 1 1 1 0 1 0 1 3 0 1 0 0 0 0 3 0 1 0 1
0 85 0 1 0 2 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 3 0 0 0
0 2 62 1 2 2 0 0 0 0 2 0 0 1 4 1 1 1 2 1 1 1 0 1 4 0 2 0 0 0 0 0 2 2 0 1
0 0 0 84 1 1 0 0 0 0 3 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1
0 1 1 1 71 0 0 0 0 0 1 0 0 1 3 0 1 1 1 1 0 1 0 1 3 0 1 0 0 0 0 0 1 0 0 5
0 0 0 1 0 90 0 0 0 0 2 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 2 2 3 63 0 1 0 3 1 0 1 2 1 1 1 1 2 0 1 1 1 2 1 2 0 0 1 1 1 1 1 0 0
0 0 1 1 2 0 0 75 0 0 1 0 1 0 4 0 0 1 3 1 0 1 0 0 3 0 1 0 0 0 0 0 0 0 0 1
0 1 0 3 3 1 0 0 70 0 3 0 0 1 3 0 1 0 1 1 0 2 1 1 3 0 1 0 0 0 0 0 0 1 0 1
0 1 0 1 0 2 0 0 0 80 3 0 0 0 2 0 0 1 0 0 1 0 0 1 2 0 1 0 0 0 0 0 1 0 0 0
0 0 0 2 1 1 0 0 0 0 84 0 0 2 1 0 1 1 0 0 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 1
0 2 1 1 2 1 0 0 0 0 1 69 1 0 3 1 1 1 2 1 0 0 2 0 3 2 1 0 0 0 0 0 1 0 0 1
0 0 0 1 1 1 0 0 0 0 3 0 82 1 2 0 0 0 0 0 0 1 0 2 1 0 0 0 0 0 0 0 0 0 0 1
0 2 0 1 2 2 0 0 0 0 1 0 0 69 2 1 1 1 2 1 1 0 1 0 5 0 2 0 0 0 1 0 1 1 0 1
0 1 0 1 1 0 0 0 0 0 0 0 0 0 84 0 0 1 2 0 0 0 0 0 3 0 1 1 0 0 0 0 1 0 0 0
0 2 0 2 2 4 1 0 1 0 3 0 1 2 2 64 1 1 0 1 1 1 1 1 2 0 3 0 0 1 1 1 1 1 0 1
0 0 0 2 2 1 0 0 0 0 4 0 0 2 3 0 73 0 1 1 0 1 0 1 4 0 0 0 0 0 0 0 0 1 0 1
0 0 0 1 0 1 0 0 0 0 2 0 0 0 1 0 0 91 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 1 0 0 0 0 0 1 0 0 1 2 1 0 0 82 1 0 1 0 0 3 1 1 0 0 0 0 0 0 0 0 1
0 2 0 2 2 3 1 0 0 0 3 0 1 1 3 1 1 1 1 66 1 1 0 1 3 0 3 0 0 0 1 0 1 0 0 1
0 1 0 1 0 1 0 0 0 1 2 0 0 0 1 0 0 0 0 0 85 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0
0 0 0 2 2 2 1 0 1 0 4 0 0 1 3 0 1 1 2 1 0 68 1 1 4 0 1 0 0 0 0 0 1 1 0 1
0 2 0 1 2 1 0 0 1 0 1 0 0 1 3 0 0 1 3 1 0 0 72 0 3 1 1 0 0 0 1 0 2 0 0 1
0 0 0 1 1 1 0 0 0 0 4 0 0 1 0 0 1 0 0 0 0 1 0 83 1 0 0 0 0 0 0 0 0 0 0 1
0 2 0 1 2 2 0 0 1 0 0 0 0 1 2 0 0 1 3 1 0 0 1 0 72 2 2 0 0 0 1 0 1 1 0 1
0 0 0 1 1 1 0 0 0 0 3 0 1 1 0 0 0 0 0 0 0 1 0 1 1 82 0 0 0 0 0 0 0 0 0 0
0 2 0 2 2 3 0 0 1 0 3 0 1 1 2 1 1 1 0 1 1 1 1 1 2 0 68 0 0 0 1 0 1 0 0 1
0 1 0 0 1 0 0 0 0 0 1 0 0 0 3 1 0 1 2 1 0 0 0 0 4 0 1 79 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 91 0 0 0 0 0 0 0
0 1 0 2 2 2 0 0 0 0 4 0 0 1 3 0 1 0 1 1 0 1 0 1 4 0 0 0 0 69 0 0 0 1 0 1
0 2 0 0 1 1 0 0 0 0 2 0 1 1 2 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 82 0 1 0 0 0
0 0 0 2 2 2 0 0 0 0 4 0 0 1 2 0 1 0 2 1 0 1 0 1 3 0 1 0 0 0 0 70 0 0 0 1
0 0 0 3 1 1 0 0 0 0 3 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 82 1 0 1
0 2 2 1 2 3 0 0 1 0 2 0 0 0 3 1 1 1 2 1 0 0 0 0 5 0 2 0 0 0 0 0 1 64 0 1
0 0 0 1 0 3 0 0 0 0 2 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 85 0
0 2 0 1 2 1 0 0 0 0 1 0 0 0 3 0 1 1 1 0 0 1 1 0 3 0 1 0 0 0 0 0 1 1 0 74

0.0

0.2

0.4

0.6

0.8

1.0

Combined Satellite Output Isolation Confusion Matrix, row normalized

Figure 5.19: Combined network output confusion matrix for thruster isolation, numbers in percent.

Overall, the effect of combining the network output is a performances improvement. The misisolation seen
in the individual networks disappear, although the results are still far from perfect. While the overall perfor-
mance of the classifiers is interesting to consider, it is also worthwhile to inspect the performance on the fault
types and fault intensities. The performance of the isolation approaches is summarized in Table 5.6. As the
quality measures such as precision and recall are only defined for scenarios with merely 2 cases, the values in
Table 5.6 are the mean value of each individual fault precision and recall. That is to say, for each fault location
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(e.g. satellite 2 thruster 3), a precision can be calculated as the ratio of correct isolations of said thruster di-
vided by all occurrences of that particular network output. Similarly, the recall for each fault location can be
calculated as the ratio of correct isolations of said thruster divided by all time steps which contained a fault
in that thruster. The isolation accuracy is simply the amount of correct isolations divided by all isolations.
These values are averaged over all fault locations to reach the figures in Table 5.6.

Table 5.6: Average isolation accuracy (Acc.), isolation precision (Prec.) and isolation recall (Rec.) for each isolation network split by fault
type, in percent; Individual networks are averaged.

Dataset Naive Network Individual Networks Combined Networks Kalman

Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.
Closed Faults 2.57 2.49 2.71 35.74 52.77 35.11 49.61 54.19 48.63 99.30 99.27 99.33
Open Faults 2.73 1.37 2.78 89.98 91.54 90.01 99.97 99.97 99.97 0.87 0.85 0.87
Complete Dataset 2.66 2.46 2.76 64.46 72.84 64.38 76.28 78.93 76.08 45.98 47.30 46.61

As expected, the naive network shows little to no change in its performance. The accuracy remains at ap-
proximately 2.5%, close to the value of 1

36 one would expect when a dataset contains 36 different classes and
the output is always the same regardless of input. The little variation there is between the open and closed
faults can be traced back to different fault times, leading to different amount of time steps per simulation and
therefore an imbalance in the dataset, despite there being an equal amount of simulations for either case.
The individual networks show a clear difference in the isolation of closed and open faults in all quality mea-
sures. the closed faults are much more difficult to isolate, with only an average isolation accuracy of 35.74%
for the individual neural networks. The precision and recall are not much better, with the precision reaching a
value of 52.77% and the recall 35.11%. For the open faults on the other hand, the networks show significantly
better performance. The performance measures are close to 90% for accuracy, precision and recall, with the
precision reaching up to 91.54%.
From Table 5.6, the quantitative increase due to the combination of the individual network output into a sin-
gle output can be seen. For the closed faults, this mainly corresponds to an approximate increase of 15% for
isolation accuracy and an almost 20% increase in isolation precision. For the open faults, the combination
leads to an approximate increase of 10% across all quality measures, raising all of them to 99.97%. This shows
that at least for the open faults, this isolation method is very reliable.
The table also shows the performance of the Kalman filter split across the fault types. As expected and ex-
plained in Section 4.2.2, almost all closed faults are correctly isolated, while almost all open faults are incor-
rectly isolated. It is not clear, why there are a few cases which do not follow this general trend.
The quality of the isolation networks also depends on the fault intensity. The isolation accuracy of the com-
bined network for either fault can be seen in Figure 5.20.

0.2 0.4 0.6 0.8 1.0
Fault Intensity Parameter [-]

0

20

40

60

80

100

Iso
la

tio
n 

Ac
cu

ra
cy

 [%
]

Combined Satellite Output Isolation Accuracy

Closed Fault Isolation Accuracy
Open Fault Isolation Accuracy

Figure 5.20: Combined satellite isolation accuracy split by fault type vs fault intensity.

It can be seen that the isolation accuracy for the open faults seems to not depend on the intensity. However,
despite a very noisy signal, the closed fault isolation accuracy shows a clear downwards trend, dropping below
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10% isolation accuracy at the lower fault intensity bound of 0.1.
The Kalman filter in fact does not show a decrease with the fault intensity for either closed or open faults,
hence a figure is omitted.

5.3. Time Response
In addition to the overall measures of accuracy, it is also important to evaluate the behavior of the FDI meth-
ods over time. That includes how fast a fault is detected, see Section 5.3.1, as well as how consistent the
detection and isolation signals are, see Section 5.3.2. Finally, a very brief consideration to the computation
time of the two methods is given in Section 5.3.3.

5.3.1. Detection Time
The detection time is defined as the duration between the occurrence of a fault and its detection by the fault
detection system. The way detections are derived for each of the methods is described in Sections 4.1.5
and 4.2.2 and the results when evaluated on the test sets are presented here.
Box plots of the detection time for the Kalman filter in relation to the fault intensity parameter can be seen
in Figure 5.21a and Figure 5.22a, while line plots of the detection time averaged over all thrusters versus the
fault intensity can be seen in Figure 5.21b and Figure 5.22b. Overall, the median detection time for the closed
thruster faults is 61.0 s, while for open faults the median time is only 1.5 s. For the closed fault cases a down-
ward trend of the detection time with increasing fault intensity can be seen. This is to be expected as the
effect on the residual is directly dependent on the magnitude of the fault. Thus, the likelihood ratio test takes
longer to reach the predefined threshold necessary for detection to occur when the intensity is lower.
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(a) Box plot of Kalman FDI response time to closed thruster faults.
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(b) Line plot of Kalman FDI response time to closed thruster faults.

Figure 5.21: Kalman filter response times to closed thruster faults.

This is especially prevalent in the case for closed faults, as seen in Figure 5.21, where the detection time ranges
from close to 1 second, i.e. immediately after the fault occurrence up to 400 s. On the other hand, almost all
detections of the open faults occur within 1 or 2 time steps. While a very slight downward trend can also be
seen for the open faults, considering the box plot in Figure 5.22a, it is possible that this is simply the result of
random chance.

For the naive detection network, a false detection occurs somewhere before the fault actually begins for the
vast majority of simulations, and therefore by the method to determine the detection time described in Sec-
tion 4.1, the closed fault median detection time is -1653.0 s, while the open fault median detection time is
-1172.0 s. Considering that almost 25% of the naive network output are false positives, this is not particularly
surprising. This shows further that the naive network seems to not react to a change in the input in the way
one would expect and simply seems to ’guess’, leading to a high recall, but very poor performance in the de-
tection time and precision.
The detection times of the individual networks are shown in Figure 5.24. The overall median detection time
for the closed Faults of the Individual Detection Network is 257.5 s, while it is only 11.0 s for the open faults.
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(a) Box plot of Kalman FDI response time to open thruster faults.
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(b) Line plot of Kalman FDI response time to open thruster faults.

Figure 5.22: Kalman filter response time to open thruster faults
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(a) Box plot of the naive network FDI response time to closed thruster faults.

[0.
1,0

.2)

[0.
2,0

.3)

[0.
3,0

.4)

[0.
4,0

.5)

[0.
5,0

.6)

[0.
6,0

.7)

[0.
7,0

.8)

[0.
8,0

.9)

[0.
9,1

.0]

Fault Intensity Interval [-]

3000

2000

1000

0

1000
De

te
ct

io
n 

Ti
m

e 
[s

]
Distribution of Open Fault Detection Time

(b) Box plot of the naive network FDI response time to open thruster faults.

Figure 5.23: Naive network box plot of response times.
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(a) Box plot of the individual network FDI response time to closed thruster
faults
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Figure 5.24: Individual network box pot of response times.
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The detection times with regards to the open faults show decreasing trend of the detection times with increas-
ing fault intensity, with most detections occurring between 6 and 24 seconds. Almost all detections times are
positive, meaning that there are few false positive detections. The closed fault behavior on the other hand
is peculiar at first glance. While for the highest fault intensities (i.e. > 0.9) the detection times are generally
above or at least close to 0 with a median of around 200 s and a relatively tight distribution, there is both an
increase in the median detection time as well as a widening of the distribution for the lower fault intensities,
with the lowest fault intensities having a difference between the upper and lower quartile bounds of approx-
imately 2000 s. This indicates an increase of false positives with decreasing fault intensity. However, as these
false positives are flagged before a fault has occurred, i.e. before the fault could have had any impact on the
input data to the networks, there should be no reason as to why the network shows a difference based on
the fault intensity. The fault intensity should only have an impact after the fault occurred, potentially in an
increase in the detection time, as seen for the Kalman filter in Figure 5.21a.
However, there is an explanation of this behavior. As could be seen in Figure 5.7, the performance drops
significantly towards the lower fault intensities. This is due to increasing detection times, to the point where
a lot of faults are not detected at all. These undetected faults are not included in Figure 5.24 (as without a
detection there can be no detection time) and therefore the amount of samples in each of the box-plots is
not equal. In fact, the uppermost intensity range of 0.9 to 1.0 contains 182 cases where the network detects a
fault. However, the lowest range from 0.1 to 2.0 only contains 30 supposed detections.
As Figure 5.25 shows. The number of false detections which result in a negative detection time does not in-
crease as the fault intensity decreases, unlike what Figure 5.24a would imply. However, the relative amount of
false detections goes up, to the point where below some fault intensities only detections due to random fluc-
tuations are left. This results in the detection times being negative for a large percentage of the detections.
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Figure 5.25: Scatter plot of detection times of individual detection
network for closed faults vs fault intensity.
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Figure 5.26: Time response of the individual detection to a closed
fault with low fault intensity.

Figure 5.26 shows one example of such random false positive detections. As can be seen, there are multiple
spikes which exceed the detection threshold. the first of these is at approximately 60 s, but there are more
before and after the fault actually occurs. It is impossible to say why the network spikes at these particular
times, but they are the cause of the false positive detections.

5.3.2. Signal Stability
Another important measure is how stable the detection or isolation signal is over time. Ideally, the signal
perfectly reflects the true state. The stability of the detection network is mainly dependent on the way the
continuous output of the network is interpreted into the discrete decision of "fault" or "no fault". The actual
response of the two trained detection networks can be seen in

As can be seen in Figure 5.27, there are fluctuations in the signal, especially for the closed fault case. The main
reasons this occurs for the close faults is due to the nature of the fault: the effect of a thruster that cannot
open fully can only be detected when the thruster is supposed to fire. Due to the attitude of the satellites and
their positions in the orbit, there are large periods of time (up to 15 minutes) where any particular thruster
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(a) Naive network output in the faultless case
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(b) Satellite 1 individual network output in the faultless case
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(c) Naive network output in the closed fault case
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(d) Satellite 1 individual network output in the closed fault case
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(e) Naive network output in the open fault case
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(f) Satellite 1 individual network Output in the open fault case

Figure 5.27: Network output and fault status for the detection networks
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does not have to fire. In those time frames the control system corrects for the initial deviation and the fault
becomes effectively invisible. This can be seen when looking at the relative distance between satellite 1 and
its neighbors in the case of a closed thruster fault in satellite 1, shown in Figure 5.28.
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Figure 5.28: Closed fault impact on relative positioning of satellite 1’s neighbors, zeroed around nominal distance. The vertical black
line marks the occurrence of a fault.

The vertical black line marks the inception of the fault. Immediately it can be seen that the distances start to
differ from the usual behavior. However, at approximately the 3000 seconds mark, the relative distance have
returned to their usual states. The fault is still in the system, only the effect is no longer visible because the
thruster is not scheduled to fire in that window. At around 4900 seconds, almost 3000 seconds (roughly half
an orbital period) after the initial fault inception, the thruster is again supposed to fire and the effect of the
fault becomes visible again.
However, while this explains the behavior of the individual network response, seen in Figure 5.27d, the naive
network response is much more constant, even before the fault occurs in the first place. When comparing
Figures 5.27a, 5.27c and 5.27e, it can be seen that this is only the case in the closed and open fault case.
And while these three runs may be outliers, the same effect can be seen when inspecting other simulation
runs and when considering the detection times of the networks, shown in Figure 5.23. It appears as though
the network memorized the closed fault runs and instead of learning how to respond to this fault, instead it
aimed for a very high output in the hopes of it being good enough. This is surprising as the same cannot be
seen in the faultless cases and the open fault cases, where the network does respond appropriately.
In terms of the isolation capability the Kalman filter is very constant. There are no changes in the isolation
of a thruster; as soon as one is isolated, that thruster is the choice of the network for the remainder of the
simulation.
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The isolation networks, however, do show changes over time. Only the time behavior for the combined neural
network is presented here as the naive network always shows the same behavior. As could be seen from Fig-
ure 5.20, the isolation accuracy of the combined network shows almost no dependence on the fault intensity
when it comes to isolating the open type faults. However, a clear dependence was visible for the closed faults.
Figure 5.29 shows the response (i.e. the highest probability fault location) of the combined neural network
output so a closed fault in thruster 3 of satellite 3.

0 1000 2000 3000 4000 5000
Time [s]

S1, T1
S1, T2
S1, T3
S1, T4
S1, T5
S1, T6
S2, T1
S2, T2
S2, T3
S2, T4
S2, T5
S2, T6
S3, T1
S3, T2
S3, T3
S3, T4
S3, T5
S3, T6
S4, T1
S4, T2
S4, T3
S4, T4
S4, T5
S4, T6
S5, T1
S5, T2
S5, T3
S5, T4
S5, T5
S5, T6
S6, T1
S6, T2
S6, T3
S6, T4
S6, T5
S6, T6

Se
le

ct
ed

 fa
ul

t l
oc

at
io

n 
[-]

Closed Fault in Satellite 3 thruster 3, intensity 0.11

(a) Combined network output for a low intensity closed fault in satellite 3
thruster 3
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(b) Combined network output for a high intensity closed fault in satellite 3
thruster 3

Figure 5.29: Combined network most likely fault location over time in the case of a low and high intensity closed fault

As can be seen on the left, in Figure 5.29a, the network is changing its output very often and even for stretches
of time where the signal is more constant, there are still occasional isolations outside the apparent line. For
example, the apparently ’constant’ stretch of identifications of satellite 1 thruster 2 from 1300 s to 2200 s is
comprised of segments of varying lengths where the isolation is indeed "S1, T2" in a row, interrupted by out-
liers in other thrusters. These segments can be up to 200 s long, however.
The right side, Figure 5.29b shows the response of the combined networks to a more intense fault in the same
thruster. It can be seen that the network is correct in its isolation for much longer periods of time. There ap-
pear to be two distinct regions where the network becomes less certain. The first starts at approximately 500
s after fault occurrence and lasts until 1300 s, after which the network continuously isolates the fault correctly
until the next period of uncertainty. This second period occurs almost 3000 s or half an orbital period later,
starting at 3500 s and ending at 4300 s. This periodic behavior is reminiscent of the fault detection networks,
which also showed a period of no fault detection for the closed faults. It is interesting however, that despite
the relatively short effect of a closed fault, shown in Figure 5.28, which lasts only for approximately 1200 s the
isolation network is continuously isolating the correct thruster for a longer period of time.
However, these two examples only show the performance on a single run each. In order to quantify the signal
stability, the segment length of continuous isolations for over the fault intensities was determined and can
be seen in Figure 5.30. This was only performed for the closed faults. as the combined network has very high
performance (>99.9% accuracy) on open faults which is independent of the fault intensity (> 0.1).
As can be seen from Figure 5.30, the lower the fault intensity, the more changes there are on average and
therefore the less consistent the output is. This leads to the next question: if the signal changes more often,
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is the signal more correct the longer it stays on a single thruster? This can be answered by considering Fig-
ure 5.31, which show the isolation accuracy on a single simulation run plotted versus the longest continuous
isolation output, normalized to the total simulation time.
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Figure 5.30: Scatter plot of amount of changes in the isolation
signal versus fault intensity for the combined network output,
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Figure 5.31: Scatter plot of isolation accuracy on a single
simulation run versus the longest isolation segment for that

simulation for the combined network output

Immediately it is clear that the longer the signal goes on, the more likely it is to be correct. Furthermore, the
figure shows a clear lower bounding line for the accuracy. This line represents cases where the output stays
on the correct thruster for the longest time compared to any other thruster output, but then never returns
back to the correct output after switching. All points above that line show cases where the longest continuous
isolation is correct, there were some switches to other values, and then another period where the isolation
was correct.
There are two outliers above the 40% range, but in general this trend only starts to break down below the 30%
line and then completely unreliable below 10% of the time. This can be used to get a measure of reliability of
the isolation. By simply keeping track of the longest continuous isolation so far and the total amount of time,
it is very likely that the isolation of the so far longest continuous stretch is correct if it is longer than 40% of
the time so far. This will of course only become accurate for longer stretches of time.

5.3.3. Computation Time
The computation time for the two methods is also an important measure, especially in the space engineering
context, where every bit of performance matters.
The times for the networks and the Kalman filter were compared on the local laptop PC, with an Intel i7-4910
MQ processor. The isolation networks take approximately 550 ms for a full batch of 4096 sets of input data,
averaging to 0.13 ms for a single input evaluation. The Kalman filter, on the other hand, takes 8.96 ms for a
single evaluation.
This shows that the networks are considerably faster than the Kalman filter. However, such a comparison
should only be taken as an indication of the relative times (i.e. which one is faster), as there are multiple flaws
with this comparison. First, the programs, while run on the same hardware, used different programs (Python
vs MATLAB) with differing levels of code optimization. Also, the hardware used in an actual spacecraft might
be optimized to handle different operations compared to a consumer processor, thus affecting the computa-
tion times.
A further investigation of these times is recommended before a definitive, quantitative answer on the relative
computation time can be given. This could include an exhaustive bench-marking test or an in-depth analysis
of the precise computations involved in each method.

5.4. Robustness
In addition to checking for the expected fault cases which were used to train the ANN approach as well as tun-
ing the Kalman Filter, additional fault scenarios will be examined to judge the robustness of both approaches.
The following scenarios are examined:

1. Decreased fault intensity (Section 5.4.1). In order to test the lower limits of detectability and isolability
a dataset of 100 runs for both the closed and open fault type was generated to cover the range of fault
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intensities of 1e−5 to 1e−1. Due to time restrictions, this was only performed for a single thruster,
specifically satellite 1 thruster 1.

2. Lower maximum-thrust capability (Section 5.4.2). A lower thrust changes the thrusting behavior of
the satellites in the formation and therefore might present a challenge to isolate for a network which is
used to short bursts of thrust. In this scenario, the thrust was reduced by a factor of 100. Similar to the
low fault intensity scenario, 100 runs each were conducted for both closed and open faults, but only for
satellite 1 thruster 1.

3. Increased noise level (Section 5.4.3). Neural networks often have issues with noisy inputs and the
Kalman filter is also dependent on the noise level. In order to see the effect of the noise on the FDI
quality, the biases and standard deviations of the noise distribution were increased tenfold. Five runs
were performed for each thruster on each satellite with fault intensities at [0.2, 0.4, 0.6, 0.8, 1.0], for a
total of 360 runs.

4. Range based navigation (Section 5.4.4). As the current simulation of the navigation is very simplified,
the noise follows a Gaussian distribution in each direction of the ECI coordinate system, with a constant
bias vector. This is not necessarily accurate, as the noise in all directions is equal and uncorrelated. In
this scenario, the navigation is based on range and angle measurements which are subject to biases and
noise and from which the relative position is reconstructed. Five runs were performed for each thruster
on each satellite with fault intensities at [0.2, 0.4, 0.6, 0.8, 1.0], resulting in 360 simulation runs.

5. Multiple simultaneous faults (Section 5.4.5). Currently, both the neural network based methods and
the Kalman filter are only designed to detect and isolate a single fault. In this scenario, an open fault
is injected into thruster 1 of satellite 1 at a random time and 100 seconds later another open fault is
injected into another thruster. The output of the networks and the Kalman filter will be analysed in
more detail than before to see if the methods are easily extensible to a multi-fault scenario. Ten runs
were performed for each thruster and satellite, except for the first thruster on satellite 1 as it contains
a fault anyway in all scenarios. This results in 350 simulation runs. The fault intensity here is spaced
evenly in the range [0.5, 1].

As it was found that the naive isolation network does not respond any differently to any of the scenarios, it
will not be analyzed beyond a general overview in Table 5.9, found in Section 5.4.6.

5.4.1. Decreased Fault Intensity
An interesting aspect to investigate is the lower bound of detectability and isolability for each considered
fault type. In order to investigate this, another set of data was generated with fault intensities going below the
threshold of 0.1 of the regular dataset. The fault intensities in this set are logarithmically spaced from a lower
value of 10−5 to 10−1, for a total of 100 simulation runs for either fault type. Due to the need for a relatively
fine spacing, the dataset only considers a single faulty thruster for both closed and open faults, in this case
the first thruster of satellite 1. The detection quality measures (accuracy, precision, recall) versus the fault
intensity for the detectors can be seen in Figures 5.32 to 5.34.

The open network quality measures as shown in Figure 5.32 demonstrate this network’s overall poor perfor-
mance. The figure show those quality measures evaluated over the single simulation run with that particular
fault intensity. For both the closed faults (shown on the left) and the open faults (shown on the right), the
recall of this detector is close to 0, with an overall average of 0.02%. Therefore, in almost all cases the network
does not trigger a detection and hence the accuracy is merely a representation of the proportion of faultless
states in the dataset. The precision in the few cases where the fault actually gets detected is close to 100% ,
with a few outliers in the range from 45% to 85%, but there seems to be no pattern as to whether the fault is
detected or not. The average precision for the naive network is 97.24%.
The quality measures for the individual network are shown in Figure 5.33. It can be seen that there is a no-
ticeable change in the detection behavior over the fault intensities when considering the open thruster faults.
It can be seen that there is a change in all the detection quality parameters over the range 4 ·10−3 to 1.5 ·10−3

where the recall drops from close to 100% to below 10% and then stays below or around 5% for the lower
intensities. Over the same time frame the accuracy drops in a similar fashion to around 50%. The precision
stays near 100% for slightly longer, until approximately 2 ·10−3, but then also drops and is very inconsistent
for the intensities lower than 10−3, similar to the naive network shown above. This same erratic behavior can
be seen for the detection of the closed faults. It seems that this low recall with high precision erratic behavior
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(a) Closed fault quality measures versus fault intensity
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Figure 5.32: Naive network quality measures (accuracy, precision, recall) versus fault intensity for the low fault intensity scenario
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(a) Closed fault quality measures versus fault intensity
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Figure 5.33: Satellite 1 network quality measures (accuracy, precision, recall) versus fault intensity for the low fault intensity scenario
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(a) Closed fault quality measures versus fault intensity
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Figure 5.34: Kalman filter quality measures (accuracy, precision, recall) versus fault intensity for the low fault intensity scenario
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is present when the fault is not intense enough to be detected.
In general it can be said that below 10−3, the network output only very rarely reaches above the detection
threshold and therefore is unable to detect the open faults below that threshold reliably. Consequently, the
accuracy is approximately 50% as the faulty and faultless cases are approximately equally well represented in
the dataset.
The Kalman filter performs considerably better for the low fault intensities, as visible in Figure 5.34. For the
closed faults the recall drops to 0 at a fault intensity of approximately 2.1e−2, considerably lower than for the
neural networks. After this value, the Kalman filter does not produce any positive results and as such, the
precision is not defined and therefore the line ends. For the open faults, this point is at a much smaller value.
There is an initial drop in performance at 1.2e−4, but the point where the detection actually stop is at 3.9e−5.
This is almost two orders of magnitude lower than for the better of two tested neural networks. In terms of its
detection times, for the faults it does detect, they rose considerably. For closed faults, the median time rose
to 369.0 s, while for open faults it rose to 21.1 s.
The networks on the other hand, the naive network in particular, showed much worse in performance in
terms of detection times. The naive network detects no closed faults and of the open faults it detects, the
median detection time is 452.5s. The individual network shows many false positives for the closed faults,
resulting in a median detection time of -631.0s. Comparatively, the open faults median detection merely in-
creased to 35.0 s.
In terms of isolation capability, the combined network output isolation accuracy compared to the fault inten-
sity is shown in Figure 5.35, while the Kalman filter isolation accuracy can be seen in Figure 5.36.
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Figure 5.35: Combined network isolation accuracy versus fault
intensity for closed thruster faults from the combined networks, in

the low fault intensity scenario
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Figure 5.36: Kalman filter isolation accuracy versus fault intensity
for open thruster faults from the combined network, in the low fault

intensity scenario

The combined network shows a smooth decrease for the closed fault isolation until it reaches 0 at approxi-
mately 3e−2. The closed faults on the other hand continue the trend that was already visible in Figure 5.20
and reach 0% isolation accuracy at a fault intensity of 6e−2. Below these threshold, there are only a few out-
liers during which the faults are still correctly isolated, at least for a small fraction, i.e. only 1% to 10%, of the
time.
The Kalman filter isolation performance can be seen in Figure 5.36. It can be seen that even at the lowest de-
tectable fault intensities, the Kalman filter does not change its isolation behavior. Closed faults are correctly
isolated until they become undetectable, while the open faults are incorrectly isolated, except for a few out-
liers. While the open faults are still detectable, the Kalman filter isolates them as belonging to the opposite
thruster, as was mentioned in Section 5.2.2.

5.4.2. Decreased Thrust Capability
The main satellite characteristic affecting the control performances is the thrust output. In order to see the
effect of a lower thrust on the FDI performance, the maximum possible thrust of the satellites was reduced
from 4 N to 0.04 N, a factor of 100 lower. With regards to the FDI performance there are two effects to consider:
the first is the overall lessened effect of the fault intensity parameter. As said parameter is a measure relating
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the faulty condition to the nominal one (as described at in Section 3.6), reducing the effect of the nominal
thruster value also reduces the effect of the fault for the same fault intensity parameter. For example, a fault
intensity parameter of 0.5 for an open thruster fault in the regular 4 N case effectively means an additional 2
N of continuous thrust from the faulty thruster, while in this reduced case it only means an additional 0.02 N
of thrust. This effect should reduce the performance of the FDI system in a similar way as the low intensity
scenario shown above. Due to this, a relatively fine spacing is necessary to properly account for the reduction
in the thrust and therefore this set also only contains faults in a single thruster.
The second effect is the change in the formation dynamics. Due to the lower thrust, the thrust times increase
to deliver the same amount of∆V . The average opening time per firing increases from 0.114 s to 11.3 s. While
in the faultless case, this effect is not too large, since the thrust times are very small to begin with, the effect
in the faulty case is more noticeable as the formation is less capable of accommodating an additional force
disturbing the formation. This effect should increase the impact of any given fault, as recovering from it is
more difficult.

0.0 0.2 0.4 0.6 0.8 1.0
Fault Intensity Parameter [-]

0

20

40

60

80

100

[%
]

Naive Network Closed Fault Quality Measures

Recall
Accuracy
Precision

(a) Closed fault quality measures versus versus fault intensity for the low
thrust scenario
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Figure 5.37: Naive network quality measures (accuracy, precision, recall) versus fault intensity for the low thrust scenario
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(a) Closed fault quality measures versus fault intensity
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Figure 5.38: Satellite 1 network quality measures (accuracy, precision, recall) versus fault intensity for the low thrust scenario

When analysing the detection performance, it was seen that the accuracy of the naive approach dropped to
47.7% while the recall dropped to 0.02%, meaning only a very small percentage of faults ever get detected
here. Similar to the scenario with the low fault intensities, the precision rose, in this case to 97.2%. This be-
havior is not surprising as the overall intensity of the thrust decreased by a factor of 100, making them more
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difficult to detect. The one simulation run in which a fault does get detected by the naive network it is after
2133 s.
The same pattern can not be seen in the individual network. Not only its accuracy, but also its precision and
recall dropped. Comparing the two networks, the individual network has the lesser drop in performance,
seemingly adapting better to the low thrust scenario. While it still manages to detect a large percentage of
the faults (56.72%), the detection times for the closed faults vary wildly . The open faults show a more steady
behavior, however most of the "detections" are registered before the fault has actually occurred, i.e. they are
false positives. This was already seen in the behavior of the naive network in the regular dataset where due
to the seemingly random fluctuations of the network output signal, it crossed the threshold for a significant
amount of time which then registers as a detection.
The detection quality measures for the naive detection network can be seen in Figure 5.37, for closed and
open faults respectively, while the individual network detection output can be seen in Figure 5.38.As ex-
pected, the naive network detects almost none of the faults and as such the accuracy which it does exhibit is
a reflection of the proportion of faultless time steps among all time steps.

For the individual network an interesting behavior can be seen in Figure 5.38. Generally, the decreased thrust
capability also reduces the lack of force acting on the satellite in absolute terms, but spreads it over a longer
time. This seems to not affect the individual network much, considering that the decrease in recall towards
the lower fault intensities is very similar compared to the performance on the regular dataset, which is shown
in Figure 5.7a. While for the closed faults the recall drops steadily as the fault intensity decreases, this effect is
much more sudden for the open faults (shown on the right). This can be explained by the fact that this fault
does not change in its behavior (unlike the closed fault) and as such it is simply a 100 times less intense version
of the faults. The point where the performance drops below 10% is at an intensity parameter of 0.1, which
approximately corresponds to the same intensity where the drop-off in the low intensity scenario occurred.
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Figure 5.39: Kalman filter quality measures (accuracy, precision, recall) versus fault intensity for the low thrust scenario

The Kalman filter also shows a decrease in accuracy and recall (albeit much smaller), but not in precision.
The performance of the filter versus the fault intensity can be seen in Figure 5.39. For the closed faults the
performance shows an erratic behavior, due to some of the simulations going either completely undetected
or having a very high detection time. For the open faults there is almost no change in the performance until
the smallest tested fault intensity, which shows a drop in the recall and accuracy.
A similar behavior could also already be seen in Figure 5.34, which is not surprising considering the open
faults with low thrust behave very similarly to the open faults with low fault intensity. However, the points
where the drop off occur are not simply related by a factor of 100, as might be expected. In the low thrust
scenario the first fault intensity parameter where the recall drops significantly is at 0.03. An equivalent fault
intensity with the regular thruster is a 100 times smaller, putting the value at 3e−4. When compared to the
fault intensity where detections ceased in the default case, which was at 3.9e−5, another order of magnitude
is missing.
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The decrease in recall indicates that only the time until fault detection increases. In fact, the median detection
times for the Kalman increased to 67.0 s and 10.9 s for closed and open faults, respectively. This is a quite
considerable increase for the open faults, but only a small increase for the closed faults. This could be due
to the effects mentioned at the start of this section. While the fault impact is smaller in absolute terms, the
relative effect of the closed faults also increases due to the longer thruster firing time. A more detailed view
of the detection times can be seen in Figures 5.40 and 5.41. Interestingly, the time until fault detection for
the closed thruster faults shown on the left is quite similar to the detection times in the regular dataset. This
behavior is reflected in the recall and accuracy Figure 5.39a. The open thruster faults however show a clear
and growing increase as the fault intensity decreases. Considering that the time until fault detection in the
regular set was very consistent, this implies that the Kalman filter is starting to reach the lower limits of its
detectability.
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Figure 5.40: Box plot of Kalman FDI response Time to closed
thruster faults, in the low thrust scenario

[0.
1,0

.2)

[0.
2,0

.3)

[0.
3,0

.4)

[0.
4,0

.5)

[0.
5,0

.6)

[0.
6,0

.7)

[0.
7,0

.8)

[0.
8,0

.9)

[0.
9,1

.0]

Fault Intensity Interval [-]

5

10

15

20

25

30

De
te

ct
io

n 
Ti

m
e 

[s
]

Distribution of Open Fault Detection Time

Figure 5.41: Box plot of Kalman FDI response Time to open
thruster faults, in the low thrust scenario

The detection neural networks performed considerably worse. As the naive detection network was only able
to detect a handful of faults at all, analyzing the detection times in detail is not very fruitful. Of the few fault it
detected, the median time for the closed faults was 2725.0 s and for the open faults 3141.0 s.
The individual network, while detecting overall more faults, showed more false positives, indicated by the
lower precision. This led to faults being ’detected’ before the true fault occurrence, making the median detec-
tion times negative. For closed faults the individual network showed a median detection time -1528.5 s, while
for open faults this value is at -929.0 s.

Similar to the low fault intensity scenario, the combined network output isolation accuracy can be seen in
Figure 5.42, while the same for the Kalman filter can be seen in Figure 5.43.

For the combined neural networks a clear downward trend can be seen for the closed fault isolation accuracy
as it reaches 0% at a fault intensity of 0.3. When taking into account that the thruster value is much lower,
this made the closed faults actually more isolatable compared to regular simulation. The open fault isolation
accuracy reaches this point at a much higher fault intensity, namely at approximately 0.9. Considering the
parallels between the low thrust and low fault intensity effects for the open faults, the poor performance
with regards to open faults is not surprising. However when comparing against the point where it reached
0% accuracy in the low intensity case (3e−2) against the low thrust equivalent fault intensity which is 0.9 ·
0.01 =9e−3 it can be seen that the lower thrust made the fault more detectable.
The Kalman filter in comparison shows very stable behavior, with only 3 outliers which break the pattern of
perfect isolation for the closed and the false isolation of open faults. However, despite almost always mis-
isolating open faults, when they are not correctly isolated they are always attributed to the other thruster of
the thruster pair. The thruster pair isolation remains at 100% for the entire low thrust scenario.

5.4.3. Increased Noise Level
A few observations can be made when the noise level experienced by the sensors is increased by a factor of
10. First, the Kalman filter innovation has a greater variance, compared to the nominal case, as can be seen
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Figure 5.42: Combined network isolation accuracy versus fault
intensity for closed thruster faults from the combined networks, in

the low thrust scenario.
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Figure 5.43: Kalman filter isolation accuracy versus fault intensity
for open thruster faults from the combined network, in the low

thrust scenario.

from Figure 5.44. Since the FDI based on the Kalman filter residual was only enabled after a certain time, the
statistical tests on the signal picked up on many faults which were not in fact present due to higher variance.
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Figure 5.44: Kalman Innovation Vector in the high noise scenario.

This is the cause for the loss in precision of the Kalman filter (dropping from 100% to 69.5%) and the simul-
taneous increase in the recall, which rose to 100%. Since the Kalman filter now immediately starts detecting
faults and never resets to a zero state, it always returns a detection. This raises the recall (no faulty state is
missed anymore) but lowers the precision as any positive detection is no longer as reliable as before. Overall,
the effect of this on the detection accuracy is a decrease to approximately 75% from 99% and a decrease from
45% to 30% in term of the isolation accuracy.
Furthermore, the detection time cannot be evaluated since the filter tests exceed their threshold soon after
it is turned on, leading to negative detection times, similar to the networks. For the Kalman these median
detections times are -1910.5 and -1532.4 for closed and open faults, respectively. As the fault inception time
for the scenarios are spread over a half period of the orbit, with a 1000 s offset, the median time will be at 1000
+ 1

2 · T
2 , where T is the orbital period. With an orbital period of 5902 s, this median time is 2475.5 s. Given

that the Kalman FDI needs to settle for 1000 s, the expected median detection time if it immediately ’detects’
a fault would be -1475.5 s. This of course only holds for the open faults, as the closed faults are not uniformly
distributed. Given that the actual median for the open faults is 100 s less, this means that the true median for
the fault distribution must be greater. Indeed, when investigating the overall median of the fault inception
time, it was found to be 2567.3 s. This confirms that the Kalman filter detects a fault almost as soon as it is
turned on.
The neural networks overall experienced a decrease in correct detections. Both detection networks experi-
enced decreased in detection accuracy, but the behavior with respect to recall and precision differs between
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the two. The naive network showed an increase in precision compared to the regular set (up to 86%) and
a decrease in recall (down to 48%), whereas the opposite is true for the individual network. This network
showed a precision decrease to 60% and a recall increase 99%. This pattern is similar to the Kalman filter and
it can be interpreted as the network activating much more easily as a result of the increased noise. While this
leads to an increase in recall (since fewer faults are missed) the precision drops because more false positives
are recorded. Interestingly, the naive network which already showed this kind of behavior for the default set
seems to be more difficult to activate, resulting in an increase in the precision and a decrease in recall. This is
consistent with the hypothesis that the naive network ’memorized’ the regular set to some extent and actually
produces more valuable output in a slightly different dataset.
The detection times were also affected by the change in the noise. The naive network median detection times
for closed and open faults are at -1307.0 and -692.0, both still negative indicating a false positive long before
the actual fault occurrence. The individual network, which generally responded after the fault occurence now
also has negative median detection times. For closed and open faults the individual network these values are
-2054.0 and -1977.0.
The isolation quality also decreased. An example of the impact of the high noise on the confusion matrix can
be seen in Figure 5.45, depicting the differences in the confusion matrix compared to the regular dataset of
the individual network of satellite 4. Blue corresponds to an increase in the isolations of that particular field
while red denotes a decrease. While all satellites showed a decrease in the correct isolations (i.e. the diagonal
of the matrix), there was also a systematic decrease in the wrong isolations for satellites 1, 4 and 6 which for
the regular dataset showed a similar pattern of isolations to the naive network, i.e. a consistent misisolation
towards a particular thruster. this can be seen in the red streak in the column of the matrix shown in Fig-
ure 5.45. However, the incorrect isolations also increased, spread over the remaining thrusters. This led to
an overall decrease in the isolation quality. The combined network output decreased in accuracy to 60.61%,
while precision and recall dropped to 62.47% and 60.55%, respectively. The increase in incorrect isolations
seems to not follow any pattern. It is also not quite clear, why the incorrect isolations of a single thruster
systematically decreased.

5.4.4. Range-Based Navigation
In the training setup the noise of the measurement is Gaussian in every direction in the ECI frame, for both
the relative position as well as the relative velocity. This is an approximation which does not hold for most
navigation methods. For example, in a range-based navigation approach, the relative distance is measured
as well as the relative position angle. This causes the noise to both be distributed differently compared to
the simple model used in the simulation, as well as to be dependent on the distance, as the relative position
is reconstructed from the relative distance and angle measurements. Even small changes in the input can
in certain cases radically change the output of neural networks [34, 98], so a change in the noise size and
distribution might produce interesting results.
This change in the navigation is simulated as follows. The true distance and angles are calculated from the
satellites true relative position. Then, a bias is added to the distance and thw two relative angles, in addition to
Gaussian noise. The standard deviation for the radial measurement was selected to be 1.1·10−4 m, while the
standard deviation for either angular measurement was 9.8·10−5 radians [99, 100]. The size of the bias was
selected to be equal to one standard deviation, randomly selected whether the bias is positive or negative.
From this, Equation (5.1) is used to determine the relative position relative to the body frame, which then is
transformed to the ECI frame by the known rotation matrix.x

y
z

= r ·
sin(θ)cos

(
ψ

)
sin(θ)sin

(
ψ

)
cos(θ)

 (5.1)

Where x, y an z are the distances in the body frame, r is the measured distance between the satellites, θ is the
relative polar angle and ψ is the relative azimuthal angle.
This change overall leads to a decrease in the average error experienced by the navigation system, as shown
in Figure 5.46. In addition, the noise is now no longer uncorrelated in the axes of the ECI coordinate system.
Finally, the noise is now dependent on the distance, which changes quite drastically in some of the intense
fault scenarios and therefore might influence the FDI performance. It should be noted that this only effects
the relative position measurement and not the relative velocity measurement.
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Figure 5.45: Satellite 4 Network Difference in confusion matrix in the increased noise level scenario, numbers in percent.
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Figure 5.46: Comparison of average root mean square of the distance error of the changed navigation scenario compared to the default
simulation.

The effect of this change for the detection networks is varied. The naive detection network experienced a 13
percent point drop to a detection accuracy of 67.33% and an almost 40 percent point drop in recall to 48.74%.
while the precision of the naive network to 87.55%.
The individual isolation network shows a different pattern. While its overall accuracy dropped slightly to
80.29%, both the precision and recall rose slightly, rising to 99.94% and 64.94%. One might wonder how
it is possible that both recall and precision increase, while the overall accuracy decreases. This can be ex-
plained by the fact that the scenarios do not include faultless runs, therefore the proportion of faultless states
is smaller. If more correct states are identified as such, recall and precision can rise, but without taking the
faultless states into account, these increases do not necessarily imply an increase in the accuracy as they do
not incorporate the true negative rate directly.

The Kalman filter shows almost the same performance as for the default set. The accuracy is at 99.01% while
the precision is still at 100% and finally the recall is at 98.17%, showing a minimal increase. This almost im-
plies that the detection times are similar and by inspecting the response time, the median detection time for
closed faults was found to be still 61.0 s, and for open faults it is still at 1.6 s.
The detection networks however show changes in the detection times. The naive detection network median
detection time for closed faults is 3713.0 s, while the open fault median detection time is -609.5 s. This is
particularly poor behavior as either the network has a false positive long before a fault, or a correct detec-
tion more than 10 times later than the centralized method. The individual network performs better in this
regard. Its closed fault median detection time is at 223.0 s and the open fault median detection time is 10.0 s.
This performance is not very different compared to the default case. In fact it present a slight improvement
consistent with the improvement of the quality measures.

In term of the isolation capability, the overall effect is positive. The difference in the isolation confusion
matrices for the individual networks with respect to satellite isolation can be seen in Figure 5.47 and the
combined network output in Figure 5.48. The mean of the individual networks in terms of isolation accuracy
rose to 66.97% while precision and recall rose to 75.66% and 67.05%, respectively, an average increase of
approximately 3%. For the combined network this increase led to an accuracy of 78.82%, precision of 83.39%
and 78.63% recall. In the confusion matrices it can be seen that to a large extent the increase in isolations
is due to a decrease in isolations in the opposite satellite. However, for satellites 1, 4 and 5 there are also
systematic decreases in the false isolations for one particular satellite. As was seen in Section 5.2.2, the naive
network and some of the individual networks showed a bias towards one particular output. This seems to
decrease with a change in the noise size and distribution. Considering that the combined isolation network
already accounted for this bias using the confusion matrix, it is not surprising that this trend does not appear
for this network. However, since the reason for this particular bias was unclear in the first place, the reason
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for its reduction due to the change in navigation is unknown.

5.4.5. Multiple Simultaneous Faults
While the methods as described are not intended to diagnose multiple faults at once, their output can be
analyzed to see if they could easily be extended to include multi-fault scenarios. For the Kalman filter this
involves analysing the vector of likelihood tests and comparing relative magnitudes for the faults involved,
whereas for the network the output vector can be evaluated.

The evaluation of the detection performance for this scenario is more straightforward. The accuracy of the
naive detection network for the multi-fault case is at 85.43% with a precision and recall of 85.60% and 91.62%,
respectively. Considering that this dataset only contains open faults which are generally easier to detect, this
represents a performance increase in precision and accuracy, but a decrease in recall compared to the default
set. This is surprising as the presence of a second fault intuitively should cause an increase in the recall. This
implies that the network does not stay at or near its maximum output as often as was seen in the default case.
The individual network performs very similarly to the default dataset when comparing the open fault detec-
tion performance. The accuracy is at 99.47% with a precision of 99.70% and a recall of 99.43%, which overall
are slight decreases (less than half a percent point), which could simply be due to random variation.
The detection times are also very similar to the default case. The naive network again experiences many false
positives, resulting in a negative median detection time of -528.5 s. The individual detection network per-
forms better than the default case with a median detection time of 4.0 s. Interestingly, the Kalman filter also
experienced similarly sized decreases to its detection performance. The accuracy of the Kalman filter is at
99.70%, the precision still at 100% while the recall dropped slightly at 99.48%.

However, investigating the performance of the various isolation methods was the primary reason for creating
this dataset. Due to the setup of this investigation, every simulation contains a fault in the first thruster of
satellite 1. Therefore, in the confusion matrices presented in this section the vertical axis represents the loca-
tion of the secondary fault, except for the very first label. The label for true fault in "S1, TP1" in the Kalman
confusion matrix or "S1, T1" for the neural network confusion matrix refers to the time steps where the sec-
ondary fault has not yet occurred. In addition, the question of how to evaluate the quality measures (such as
accuracy, precision and recall) now that there are more than one true fault state have to be answered. In this
section, an isolation is considered correct if it isolates either of the two faulty thrusters after the occurrence
of the secondary fault. For the precision and recall measures, this means a change of the categories which
the isolations are divided into. Instead of calculating the isolation precision or recall for a single thruster fault
category, it is calculated for the category "fault in thruster X OR thruster 1 in satellite 1".
First, a general analysis with regards to the selected most likely fault location, similar to the analysis on the
default dataset, will be performed, followed by a more detailed analysis of the actual output of each of the
methods.
The Kalman filter output is a vector of 36 tests, each of which is based on the fault signature of a specific fault
in any of the 36 thrusters, as explained in Section 4.2.2. When a deviation from the mean of the vector signal
occurs, these tests will differ from zero and once they exceed a certain threshold a fault detection is triggered.
At the same time, the largest of these test values is the most likely location of the fault and is isolated.
The confusion matrix for the thruster pair isolation of the Kalman filter output can be seen in Figure 5.49. As
the behavior of the Kalman filter on misisolating the open faults is known, the pair isolation confusion matrix
is selected instead of the full isolation matrix.
As can be seen from Figure 5.49, the Kalman filter mainly isolates the fault that occurred first, i.e. the one in
satellite 1 thruster 1. This can be seen by the vertical blue strip on the left of the matrix. The diagonal is also
inhabited, with the most correct isolations occurring for the thruster pair 2 (i.e. thruster 3 and 4) on satellite
1. Interestingly, the thruster pairs belonging to satellite 6 are completely ignored. No isolations are made for
that satellite.
In terms of its overall performance the isolation quality measures for this scenario are 5.16%,54.50% and
6.01% for accuracy, precision and recall, respectively. These low values are due to the known misisolation
for the open fault case. However, all of these quality measures are considerably higher than in the singular
open fault case. While a few outliers were also correctly isolated in the default dataset, it is not clear why this
percentage increased with the addition of a second fault.
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(a) Satellite 1 network difference in confusion matrix.

Sa
t 1

Sa
t 2

Sa
t 3

Sa
t 4

Sa
t 5

Sa
t 6

Predicted label

Sat 1

Sat 2

Sat 3

Sat 4

Sat 5

Sat 6

Tr
ue

 la
be

l

0.03 0.00 0.01 -0.01 -0.02 -0.02

-0.02 0.03 0.00 0.01 -0.02 -0.01

-0.01 0.00 0.04 -0.00 -0.01 -0.02

-0.00 0.06 0.01 -0.01 -0.03 -0.02

-0.01 0.01 0.02 0.01 -0.02 -0.01

-0.02 -0.00 0.01 0.02 -0.01 0.01 0.4

0.2

0.0

0.2

0.4

Satellite 2 Satellite Isolation Confusion Matrix

(b) Satellite 2 network difference in confusion matrix.
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(c) Satellite 3 network difference in confusion Matrix.
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(d) Satellite 4 network difference in confusion Matrix.
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(e) Satellite 5 network difference in confusion matrix.
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(f) Satellite 6 network difference in confusion matrix.

Figure 5.47: Satellite isolation differences in the confusion matrices for each individual network for the change in navigation scenario.
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Figure 5.48: Combined network output difference in confusion matrix for satellite isolation.
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Figure 5.49: Kalman filter confusion matrix for thruster pair isolation in the multiple fault scenario.
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The isolation matrix of the combined network output approach can be seen in Figure 5.50. The response
seems to be generally similar. The network mainly isolates the fault which occurred first and only selects the
secondary fault for a select group of particular thrusters. For satellite 1 thruster 5, satellite 5 thruster 2 and
satellite 6 thruster 2 the isolation recall is higher than 90%. Similar to the Kalman filter, the thrusters in satel-
lite 6 are almost ignored in the isolation, except for the aforementioned thruster 2. However, the thruster on
satellite 2 and 4 are isolated even less. Only the thrusters in satellite 1 itself are consistently isolated in addi-
tion to the original fault. The isolation quality measures are at 97.74%, 98.19%, 97.89% for accuracy, precision
and recall. Considering that only open faults are represented in this dataset, this is a decrease of 1 to 2 percent
points from the default set. This could be due to the fact that the network is faced with a new signature in the
relative positioning data is has not been trained on.
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Figure 5.50: Combined network confusion matrix for the multiple fault scenario.

A more detailed analysis involves the components of the output vector of either method. This was done by
not only considering the maximum value, but also the next highest components of the output vector. For
the Kalman filter, it was found that on average 19.92% of the time the secondary faulty thruster was in the
two highest components of the isolation vector. This could be due to the fact that when a fault occurs, the
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component for the statistical test corresponding to that fault starts increasing quite fast. The longer the gap
between the faults, the more time this value has to increase. Then, when the secondary fault occurs, the test
for that fault starts to increase as well or if it had been increasing before it will do so more quickly. However,
other components of the test vector also increase at the fault occurrence. They grow more slowly compared
to a correct case, but they do have a head-start on the correct test of the secondary fault. This could be the
reason for the relatively small percentage of times the secondary fault is within the two highest components
of the test vector.
For the combined neural network approach the thruster which experienced a fault second was within the two
largest components 75.25% of the time, a considerably larger percentage.

While this is better than guessing a secondary fault, it is not a reliable method to determine if a secondary
fault has occurred. Indeed, it is not clear when to consider the second largest component or when to ignore
it. In order to see if there is a distinct difference in the relative sizes of the largest component relative to the
second largest, their ratio was determined for each time step and split into two groups: The first contains
only the time steps with a single fault, while the second group contains all time steps with two simultaneous
faults. Box plots of these ratios can be seen in Figures 5.51 and 5.52.
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Figure 5.51: Box plot for Kalman filter ratios of largest output to
second largest.
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Figure 5.52: Box plot for combined network output ratios of largest
output to second largest.

For the Kalman filter (Figure 5.51) there is a distinct difference in the ratios between the two cases, with a
clear gap in between the two distributions. Given two time steps, it should be possible to distinguish between
a case where there is a single fault as opposed to multiple faults. However, this evaluation should be repeated
for more simulation runs, different fault types and intensities as well as fault locations before a definitive
statement with regards to his performance can be made. This analysis also does not take into account a
possible natural decrease of this ratio over time. As only the first 100 seconds after the occurrence of the
first fault contain a single fault, a potential natural decrease over time could be hidden having a fixed time
between the faults.
The combined neural network Figure 5.52 on the other hand has considerable overlap between the two cases.
The lower quartile line for the single fault case lies below the upper quartile line of the multiple fault case.
While it is still possible to say which of the two cases would be more probable given a ratio of the largest
fault probabilities, a definite distinction can only be determined with much less confidence compared to the
Kalman case.

Overall, while the Kalman filter has a better distinction between the single and multiple fault case by virtue of
having a much lower ratio between the two largest components, the chance of isolating the secondary fault
as well is much smaller. On the other hand, the combined neural networks show a lot more overlap in terms
of the ratios between the single and multiple fault case but have a much higher chance of actually having the
secondary fault be within the two largest components of the output vector.
It should also be mentioned here that it would be much easier to adapt the Kalman filter by simply adding
another set of statistical tests where the tested deviation from the mean is the sum of the deviation of two
thrusters. Re-training the neural networks to correctly put out two isolations would be much more time
intensive, both in the generation of the datasets as well as the training time itself. Furthermore, the final acti-
vation function for the isolation networks, the so called ’soft-max’ function, is not well suited for the isolation
of two or more simultaneous faults. This is due to the tendency of this function to amplify differences in the
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Table 5.7: Average accuracy (Acc.), precision (Prec.) and tecall (Rec.) for each detection network for all robustness scenarios, in percent

Dataset Naive Network Individual Network 1 Kalman

Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.
Regular Dataset 80.56 76.47 86.81 81.73 99.37 62.88 99.09 100 98.00
Low Thrust 47.71 97.24 0.02 75.09 92.88 56.72 92.66 100 95.74
Low Intensity 45.18 94.16 0.08 57.04 98.27 22.09 73.18 100 49.67
High Noise 64.55 85.76 48.04 59.95 59.78 98.71 73.01 67.5 100
Navigation Change 67.33 87.55 48.74 80.29 99.94 64.94 99.01 100 98.17
Multiple Faults 85.43 85.60 91.62 99.47 99.70 99.43 99.70 100 99.48

final vector, leading to a single preferred output. A different activation function of the final layer would be
more appropriate, e.g. a simple sigmoid function or the hyperbolic tangent. These function would yield bet-
ter results in the multiple fault case as the output of a single neuron is not dependent on the activation value
of the other neurons in that layer.

5.4.6. Robustness Conclusion
Through all the scenarios investigated here, a trend was very visible. The naive networks performed poorly,
the individual networks performed much better and the Kalman filter was robust to almost any scenario that
it was used in. A tabular comparison of the performance of the detection approaches can be seen in Table 5.7.
As can be seen from the table, both network experience significant reductions in their performance due to
the scenarios they were not trained on. The Kalman filter on the other hand shows very similar performance
to the default dataset, with two exceptions: the performance drops at the lower fault intensities and in the
high noise scenario. In the former case this is due to the detection limits of the filter, when the difference in
the residual signal between the faulty and faultless state falls below the noise floor. For the latter this is due
to the slower decay of the residual to the steady state. The slower decay means that the filter perceives the
higher residual as a deviation from the known steady state mean and therefore the statistical tests start giving
positive results. This is not the case in the default set as the Kalman filter is only turned on after a certain
amount of time, when the signal has reached the steady state.
The naive neural network approach shows 15% to 35% decreases in accuracy for all scenarios except for the
multiple fault scenario. These decreases are mainly due to a drop in the recall, i.e. less faults are positively
detected. The precision of this network actually increases for all scenarios above the default set. Considering
the amount of false positives that this network shows, it is likely that this increase in precision is due to the
omission of the completely faultless cases, which can be a source of false positive detections.
The individual network a filter also has decreased accuracy in almost all scenarios. Again, this is mainly due to
the drop in recall low intensity and low thrust scenarios as as fewer faults get detected. For the high noise, the
same effect as for the Kalman filter occurs. The increase noise leads to more detections overall, which raises
the recall, but also increased the amount of false positives, hence lowering the precision. There is similar
or better performance on the range based navigation scenario as well the scenario involving multiple faults.
This is not very surprising for either, as the range based navigation has an overall smaller error, while the
multiple faults only contained open thruster faults, which were easier to detect for all detection methods.

The detection times for both the closed and open faults across all scenarios are shown in Table 5.8. As would
be expected for both the lower maximum thrust and the low intensity scenarios, the detections decrease and
the detection times increase. For the neural networks this means that the overall median is strongly affected
by outliers or false positives, resulting in negative detection times for the individual network. The Kalman
filter only experiences increases in the median detection time.
For the higher noise size scenario the detection times are in fact all negative. This is due to to higher exci-
tation of the signal, whether it is the input to the networks or the residual from the Kalman filter, leading to
more false positive detections.
It is quite surprising in fact that the naive network ever achieves a median detection time above 0. For both
the low thrust and low fault intensity scenario, this is pure chance as only very few positive detection (whether
false or true positive) are ever achieved. However, this is also the case for the range based navigation. Con-
sidering that the open thruster fault median detection time is still negative, however, this appears to also be
a due to the partially random behavior of the naive network.
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Table 5.8: Comparison of median detection time for all detectors over all robustness scenarios, in seconds.

Dataset Naive Network Individual Network 1 Kalman

Closed Fault Open Fault Closed Fault Open Fault Closed Fault Open Fault
Regular Dataset -1653.0 -1172.0 257.5 11.0 61.0 1.6
Low Thrust n/a 452.5 -631.0 35.0 67.0 10.9
Low Intensity 2725.0 3141.0 -1528.5 -929.5 369.0 21.1
High Noise -1307.0 -692.0 -2054.0 -1977.0 -1729.0 -1545.1
Navigation Change 3713.0 -609.5 223.0 10.0 61.0 1.6
Multiple Faults n/a -528.5 n/a 4.0 n/a 1.6

Table 5.9: Average isolation accuracy (Acc.), isolation precision (Prec.) and isolation recall (Rec.) for each isolation network, split by
scenario, in percent; Individual networks are averaged.

Dataset Naive Network Individual Networks Combined Networks Kalman

Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.
Regular Set 2.66 2.76 2.46 64.45 72.84 64.38 76.28 78.93 76.08 45.98 47.30 46.61
Low Thrust 0.00 0.00 0.00 5.84 2.87 5.84 8.70 2.94 8.70 45.33 50.00 45.33
Low Intensity 0.00 0.00 0.00 2.84 2.83 2.84 3.82 2.78 3.82 10.53 50.00 10.53
High Noise 2.46 2.77 1.27 53.25 56.61 53.09 60.61 62.47 60.55 30.86 33.02 44.30
Navigation Change 2.67 2.77 2.67 66.97 75.66 67.05 78.82 83.39 78.63 45.47 45.21 45.21
Multiple Faults 3.42 2.79 2.39 79.41 86.94 79.75 97.74 98.19 97.89 5.16 54.50 6.01

The individual network only has negative median detection time in the cases where few faults are detected
in the first place, i.e. the scenarios with low fault impact, and the high noise scenario. For the range based
navigation and the multiple fault scenario the detection times are mostly positive.
However, despite having good performance compared to the naive network, the Kalman filter shows much
smaller detection times. Especially in the higher fault intensities, this fast response time is important in order
to make sure that the appropriate response can be taken quickly to ensure the safety of the mission.

When considering the isolation capability, summarized in Table 5.9, the Kalman filter again proves to be very
resilient against changes in the setup of the simulation. The comparatively low initial values for the regular
dataset are due to the fact that open faults are almost always misisolated as the opposite thruster. So while
the average detection of thrusters is lacking, the thruster pair isolation is perfect in every scenario except
the higher noise floor. This is especially apparent in the multiple fault scenario which only contains open
faults, which consistently get misisolated as the thruster opposite to the faulty one. However, these values are
unusually high for the open faults, which are generally below 1% accuracy, precision and recall. It is not clear,
why the presence of a second fault would increase the correct isolation rate for the Kalman filter.

Since the naive network only select one of two possible outputs, there is no performance to evaluate on the
scenarios where the fault is always in the first thruster of satellite 1, as is the case for the low thrust and low
fault intensity scenarios. It is clear that the network does not change its output based on the input and as
such it is not analyzed further.
The individual naive networks show a severely decreased performance for the scenarios with low fault im-
pact. In general it seems that the isolation is much more dependant on a clear fault signature than only the
detection. The high noise scenario did not impact the fault isolation as much as the detection. This could
be due to the fact that the detection network see a deviation from the standard signal to be a sign of a fault,
leading to an activation. However, the isolation networks were already trained on the cases which included
faults and therefore deviations from the faultless case. The higher noise still impacts the isolation quality
by approximately 15% to 17% in all quality measures. In the navigation multiple failure scenario the perfor-
mance increased on average, which for the former could be attributed to a decrease in the noise level. For the
latter, the network has essentially two ’correct’ choices, the initial and secondary fault. Since both are present
in the input, it is sensible that the network has increased performance when either faulty thruster counts as
a correct isolation.
The same trends as for the individual networks can be seen for the combined output, which is unsurpris-
ing as it is made up of the output of each individual network. The performance increase that is achieved by
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combining them is however diminished for almost all scenarios except for the multiple fault case, where the
combined network performs better by larger margin than for any other scenario.
The overall performing with regards to the robustness of the scenarios can be summarized as follows: In both
detection (accuracy, precision, recall and detection time) and isolation, the Kalman filter exceeds the neural
network based approaches in all categories. Only for open thruster faults can the combined neural network
come close in terms of isolation quality.
What was also cemented is that the closed faults are both harder to detect and harder to isolate. This could
be determined by their higher threshold for detectability and isolability for all methods, although the Kalman
filter detected them for lower fault intensities compared to the networks.
Another observation that can be made is that for the default scenario, the detection threshold lies lower than
the isolation threshold for both the individual neural network as well as the Kalman filter. This is however
not the case for the low thrust, where both the isolation and detection for the closed faults specifically de-
crease together towards the limit. This is no issue for the Kalman filter as the detection limit also represent
the isolation limit.

5.5. Response of Individual Networks to Mismatched Dataset
In Section 4.1.1, the possibility of a third training approach was mentioned, which was ultimately discarded
due to time constraints. This approach envisioned training a single network for all satellites while transform-
ing the input or the output or both such that the network can still properly learn the dependencies.
While such a network was not trained, an interesting behavior of the individual networks was found. When
these networks were not given the data they were trained on (the data from that particular satellite) but that
of satellite 1, there was a consistent mis-isolation. This can be seen in Figure 5.53, showing the confusion
matrices on a satellite level for the satellites 2, 3, 4 and 6.

As can be seen in the figure, the isolation is not as consistent as when the networks are given the correct data.
However, the presence of the patterns that can be see in the various networks suggest that if the output were
adjusted, only a single network would need to be trained.
For example, when the output of the individual network of satellite 6 is inspected (see Figure 5.53d, there’s a
clear diagonal trend. That is to say, satellite 1 is most often misisolated as satellite 6, satellite 2 is misisolated
as satellite 4 and so on. More specifically, this trend is not only satellite wide, but also seen on the thruster
level. This can be seen in Figure 5.54.

More generally, a fault in satellite 2 (the first neighbor of satellite 1) will in most cases be isolated as the first
neighbor of the satellite that is running the network. This can be seen for all the networks. The network of
satellite 2 isolates a fault in satellite as belonging to satellite 1 (its first neighbor), the network of satellite 3
isolates is as belonging to 1 (its first neighbor) and so on. Furthermore, the faults in satellite 1 itself are mostly
isolated as belonging to the satellite that runs the individual network, and satellite 6 (the one satellite 1 does
not have a connection to) is isolated as the satellite the individual network does not have a connection to.
It appears as though Table 3.6 can be used as a cypher to predict the network output. As an example, the
following procedure could be implemented in order to make use of this pattern. the network for satellite
6 could be trained not only on data from its relative measurements, but also with the data from all other
satellites with their labels adjusted so the output matches the networks intended output. For example, the
output network of satellite 6 when given data from satellite 1 should be inverted so that an isolation in satellite
6 thruster 1 is interpreted as a fault in satellite 1 thruster 1. Then, when the network is given that data during
operations, the (incorrect) output of the network can be transformed to represent reality again.

However, it is not clear how well this would work in practice as the network in question could also become
confused from the input data. As such, this is a recommendation for further work.
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(a) Satellite 2 network confusion matrix.
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(b) Satellite 3 network confusion matrix.
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(c) Satellite 4 network confusion matrix.
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Figure 5.53: Satellite isolation confusion matrices of individual network when given data from satellite 1.
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Figure 5.54: Satellite 6 column normalized confusion matrix when given data from satellite 1, numbers in percent.
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5.6. Analysis Summary
Through all the evaluation techniques and criteria applied in this chapter it can be seen that the Kalman
filter is the method with the better performance, across almost all categories. The Kalman filter has higher
accuracy in detecting faults, lower detection times, perfect thruster pair isolation in the nominal cases, and
overall good performance in the robustness scenarios.
First, the performance with regards to the detection capability is compared in Section 5.6.1, followed by the
isolation capability comparison in Section 5.6.2. Furthermore, the performance in the robustness scenarios
is discussed in Section 5.6.3.

5.6.1. Detection Comparison
The Kalman filter performed best with an accuracy of 99.09%. The neural networks on the other hand showed
significantly worse performance with 80.56% and 81.73% for the naive and individual network, respectively.
Similar differences could be seen in the recall. While the Kalman filter was able to detect 98.32% of all faults,
this was only the case for 86.81% for the naive and only 62.88% for the individual detection network. In terms
of precision however, the Kalman filter and the individual network are quite close, with a precision of 100 %
for the filter and 99.37 % for the individual network. With these approaches a detection is almost certainly
correct. The naive network on the other hand only reached a precision of 76.47%, meaning an incorrect de-
tection in almost a quarter of the cases, making this method very unreliable.
Overall, the naive network appeared to be quite unstable given a set of input. In some cases it reacted as
one would expect, with a generally low activation in the output layer followed by a sudden rise after the fault
injection. However in many cases the naive network output hovered at very high values above 0.98 for the
entire simulation duration. In these cases, the correct detections seem almost like pure chance rather than a
response to a different input.
The individual network performed much better and more consistently. While overall its recall is lower, this is
due to a much increased precision, making its output more reliable.
The Kalman filter performed best of the detection methods. Its detection output was consistent and swift,
but more importantly there was not a single false positive detection. This makes the Kalman filter even more
reliable than the individual network, even with the close to perfect recall.
For all methods a clear difference in performance could be seen based on the fault type. Closed valve faults
were much more difficult to detect, while open faults were detected very consistently. The biggest difference
is present for the individual network, which shows a recall of 99.76% for the open faults but only 21.57% for
the closed faults. For the Kalman filter, this difference is only 3.5%. The naive network shows a difference in
recall of approximately 27% between the fault types.
In terms of precision, the difference between the two fault types is not very large. Only the naive network
shows a difference of approximately 10%, while the individual network shows only a 0.5% difference and the
Kalman filter none whatsoever.

For the individual network and Kalman filter there was furthermore a trend visible based on the fault in-
tensity. For the closed fault type, the detection quality of either approach decreases with decreasing fault
intensity.
The limits of fault detectability for the networks were also at considerably higher fault intensities. The indi-
vidual detection network dropped below 5% recall at a fault intensity of 0.1 for the closed faults and approx-
imately 0.002 for open faults. The Kalman filter on the other hand was capable of detecting faults until fault
intensities of 0.025 and 4e−5, for closed and open faults respectively.

5.6.2. Isolation Comparison
In term of the isolation performance, the Kalman filter shows one of its weaknesses, that is almost always
misisolating open thruster faults. However, for the closed faults the Kalman filter continues to have a very
high performance, with quality measures above 99%.
The naive networks always produced one of two possible output, leading to very poor performance. This is
most likely due to the the fact that the naive network received too different input data with the same output,
leading to confusion during the training. The individual networks however show better performance. Es-
pecially the combined network output even exceeds 99.9% in all quality measures, when considering open
faults. For the closed faults however, the performance is significantly worse, with only 49.61% accuracy,
54.19% precision and 48.63% recall.



5.6. Analysis Summary 111

The isolability also decreases with the lower fault intensities. For the Combined networks, the closed fault
isolation accuracy dropped below 10% at a fault intensity of 0.1, while for open faults this occurred at a fault
intensity of 0.05. For the Kalman filter the isolability limit coincides with the detectability limits mentioned
above.

5.6.3. Robustness Comparison
In terms of robustness, the naive detection network also showed almost no detections in the scenarios where
the fault impact is lower, either through low fault intensities or lower thrust values. It also showed decreased
performance where one would expect better performance (and for the other methods do show better perfor-
mance), such as the range based navigation scenario which entailed a net decrease in the noise. The naive
isolation network failed to learn during training and as such is no better than random chance. This approach
was not very successful.
The individual networks, while being better than the naive networks, still had some difficulties. The individ-
ual detection network is almost on par with the Kalman filter for the detection of open faults. For closed faults
however, accuracy, precision and recall are considerably worse. While only 20% of closed faults are detected,
more than 99% of the detections of the closed faults were accurate. The detection limits for the individual
detection network were also at considerably higher fault intensities compared to the Kalman filter. The recall
dropped below 5% at 0.23 for closed faults and 1.8e−3 for the open faults. While the decline is gradual for the
individual detection network and there are occasional correct detections even below this limit, the Kalman
filter has a hard line separating the detectable and undetectable faults. These lie at 0.022 and 4e−4 for closed
and open faults, respectively.
The individual isolation networks show the same trend in the difference between open and closed faults.
While the performance measures for the open faults all lay around 90%, the isolation accuracy and recall lay
only around 35% for the closed faults.
Overall, the combination of the network output proved to be a significant increase in the isolation accuracy.
The isolation on open faults is very good, with the mean isolation accuracy, isolation precision and isolation
recall being above 99.9% for the open faults. The closed fault isolation performance also increased. However,
while this performance is good on the open faults, it has to be considered that the isolation networks necessi-
tate prior detection through a detection network. Therefore. the true performance will be worse, considering
that the evaluation presented in this chapter assumed immediate detection. This effect will most likely be felt
much more strongly for the closed faults, as the median detection time is much higher compared to the open
fault detection time. As the limit of the isolability for the open fault is also at much higher fault intensities (as
would be expected) than the corresponding detection limit, there should only be little difference if the com-
bined system of detection networks and isolation network were to be tested on the open faults. However, the
individual detection recall for closed faults drops below 10% much sooner than the corresponding isolation
recall. This would lead to an even worse performance on the closed faults.





6
Conclusions and Recommendations

Having presented the results of the analysis in Chapter 5, the conclusions drawn from the analysis are pre-
sented in this chapter in Section 6.1, followed by a set of recommendations for further work and improve-
ments in Section 6.2

6.1. Research Questions
From the previous chapters the research questions posed at the start of the thesis will be answered. First, the
sub questions will be addressed before an answer of the main research question is attempted.

How does the detection and isolation performance (accuracy, precision and recall) compare between the
centralized and distributed approaches?

The Kalman filter outperformed all networks by a considerable margin. The only downside of the Kalman
filter implemented here is the misisolation of open faults as being faults of the opposite thruster. However,
beside this disadvantage the performance was very good, with no false positive detections and no false isola-
tion of a thruster pair.
Out of the tested distributed approaches, the individual networks performed the best, both for detection and
isolation. The naive networks seemed to not learn the relation between the input and output data properly,
as for the naive detection the output was very unstable, and the naive isolation network failed to learn any
relation at all, merely isolating the same thruster for every time step. The most likely explanation for the dif-
ference in these two network approaches is the consistency of the training data. When the network receives
very similar input data with different classification output, the network can get confused. This can lead to
little to no training progress. Proper data pre-processing is key in getting the correct training behavior.
In addition, the combination of the individual isolation network output significantly increased the perfor-
mance, showing more than 99% accuracy on the open faults. Each individual network showed weaknesses in
isolating faults in itself and the satellite directly opposite in the formation, but these were removed due to the
combination process.
The detectability and isolability limits were both considerably lower for the Kalman than for the neural net-
works with a difference of almost two orders of magnitude difference, showing a greater sensitivity to faults
of the Kalman filter compared to the neural networks.

How quickly and consistently do the methods respond to the faults?

The response times for the naive network were almost always negative due to the large amunt of false negative
detections. As such, it cannot be said that the naive network responded to the fault at all. The consistency of
this network was also lacking, showing little distinction between a faultless and faulty categorization.
The individual network on the other hand did show proper responses, at least for the higher fault intensities.
However, with a median detection time of 257.5 s and 11.0 s for closed and open faults, respectively, it took
much longer to respond compared to the Kalman filter, whose median detection times are 61.0 s and 1.6 s.
Both the Kalman filter and the individual network show consistent responses to the open faults, while for the
closed faults there are intermittent dropouts in the network, due to the effect of the fault disappearing.
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How robust are the FDI methods to scenarios they were not designed for?

The Kalman filter showed very consistent results for the various scenarios it was subjected to. The only signif-
icant drops in performance were for the low intensity scenario for which the Kalman filter eventually reached
its detection limit and the high noise scenario. The drop in performance in the latter case is unsurprising
considering that the statistical testing on the residual assumes a certain variance which is no longer the case
for a higher noise floor, which led to premature detections. However, it should be said that after the fault was
injected, the isolation soon consistently returned to the faulty thruster pair.
The robustness of the neural networks showed quite poor robustness. For the low intensity faults as well the
low thrust scenario the detection and isolation capability dropped significantly, with the naive detection net-
work detection barely any faults correctly (0.02%), and the individual detection network experiencing a drop
in recall of 40% for the low intensity faults. The high noise also affected the individual network similarly to
the Kalman filter, indicating a response based on the size of the relative positioning vector.
In terms of isolation robustness the networks showed a similar pattern, with very low performance for low
intensity faults and a drop for the higher noise floor.
Overall, the Kalman filter responded much more robustly to the scenarios compared to the neural networks.

What is the influence of model uncertainties and disturbances on the detection and isolation?

Due to the setup of the data generation and training, this could not be investigated. Generating the data
required optimized code and therefore the simulation was adapted to provide sufficiently accurate results.
Increasing the accuracy of the model further or including the disturbances would change the relative po-
sitioning by less than 6e−3 m, whereas the simulated measurement noise already has a standard deviation
more than an order of magnitude greater. The effect of model uncertainties could only be seen if the simu-
lated relative navigation would be considerably more accurate.

What is the effect of distributing the FDI system on the computation time, bandwidth usage and time until
fault detection

As can be seen in the response time, the distributed approaches take up to five times longer to respond to
faults compared to the Kalman filter. However, there is less of a communication requirement as the isolation
networks, whose output are shared, are only activated after the detection of a fault, whereas the Kalman filter
requires a constant exchange of information.
The computation time is also considerably less for the networks than for the Kalman filter, as the only com-
putation necessary is a series of matrix operations and application of simple non-linear functions, which can
be performed very quickly. The isolation networks take approximately 550 ms for a full batch of 4096 sets of
input data, averaging to 0.13 ms for a single input evaluation. The Kalman filter, on the other hand, takes
8.96 ms for a single evaluation. However, it should be said that this comparison used times from tensorflow
compared to MATLAB, which have differing levels of code optimization. Nonetheless, this gives an indication
that the neural networks are indeed very fast in computation.
Furthermore, the use of on-line matrix inversion is avoided in the Kalman filter, opting instead to use the
steady state matrices, which significantly speeds up the computation. This is not to mention the increased
computational cost if the Kalman filter were to be adapted to deal with the errors due to the linearization of
the non-linear relative motion.

Having addressed the sub question, the main question can be answered.

How does a distributed, neural-network based FDI architecture for thruster faults compare to a
centralized model-based architecture in terms of detection capability, isolation capability and

robustness in a close formation flying mission?

This main question can be answered by summarizing the answers to the sub-questions listed above and
through the various differences that were explored in Chapter 5. The naive approaches were not able to reli-
ably perform the functions of an FDI system as the naive detection network had a false positive rate of almost
25% of all positive detections, while the naive isolation network only put out a single thruster consistently.
But while the individual network approaches were capable of reliably detecting and isolating faults, they
showed significantly worse performance compared to the Kalman filter approach, especially for the more
complicated closed valve fault. In addition, the neural networks were not particularly robust to changes in
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the parameters which affect the relative positioning.
However, from this it cannot be concluded that the Kalman filter (or another model-based method) is categor-
ically preferable to the neural network approach. Especially for open faults the individual detection network
together with the combination of the isolation networks had comparable performance and would require less
computing time. In addition, the centralized Kalman filter requires constantly sharing the relative position-
ing data and therefore requires more bandwidth. This need for constant information exchange also makes
the system less robust if that link breaks down due to a fault in the telecommunication system. If one or more
communication links become unavailable, the Kalman filter will not be able to handle the missing measure-
ments and therefore not be able to perform any FDI.
On the other hand, if the distributed approach is implemented, and a communication link is broken, the
remaining satellites can still combine the probability output that they do have access to in order to come to
a better diagnosis. If all links break down, but the relative positioning measurements are still available, the
satellite can still use the results from the on-board individual network, albeit with worse performance than
the Kalman filter.

In conclusion, the currently implemented neural networks show worse performance than the centralized
method, but are comparable in performance in certain situation and even have certain advantages over the
centralized method. When the fault is difficult to implement in a state-space model, the neural network might
be able to outperform the model-based approaches.

6.2. Recommendations
In this section, recommendations for further work and possible improvements to the presented work are
given. First, recommendations regarding the FDI methodology are presented in Section 6.2.1 and Section 6.2.2,
followed by improvements to the numerical simulation in Section 6.2.3. Finally, recommendations for the
analysis of the networks are given in Section 6.3

6.2.1. Neural Networks
Several aspects of the neural network side of the thesis can be improved upon. These recommendation can
be broadly split into comments on the training platform, Google Colab, and comments on the structure of
the networks.

Training Platform Due to various restrictions of the platform used to train the network, only a small frac-
tion of the data that was generated for training could actually be used. This has affected the results as a larger
dataset tends to yield better results, as shown in Chapter 5.
Furthermore, the various hyper-parameters of the networks (number of layers, number of units, learning
rate, etc), while investigated, were not optimized for the problem at hand. If a faster training process could
be achieved (e.g. through the use of a super-computer), it is possible that a much better set of network and
training parameters could be found.
The use of Google Colab as a platform can also not be recommended for a project such as this. From the ex-
periences with this service, only the training of a single network with a small amount of layers and units per
layer can be done with any sort of consistency. Frequent crashes of the virtual machine on Google’s servers
due to disconnects or running out of ram (sometimes for inexplicable reasons) disrupt training and mean
having to restart at the last completed epoch, which in this project involved losing a few minutes of progress
at best, to losing up to two hours at worst. In addition, the use of hardware accelerators (TPUs or GPUs) is
capped for a regular user, while a professional subscription is only available for users in North America. This
results in days where no hardware accelerator is allocated, making training effectively impossible as the time
required for a single epoch can exceed 4 hours on a regular CPU with even just a small fraction of the dataset.
Combining this with the regular disruptions due to disconnects or RAM issues and this can extend the re-
quired training time by days.

Network structure While a network based on the Long Short-Term Memory units was presented due to
their use in time-series modeling, there are many other types of neural networks architectures which could be
suited for this purpose. More general Recurrent Neural Network (RNN) structures have also shown to provide
useful results. Furthermore, a multitude of variants exist, each with their own benefits and shortcomings
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which makes them suited for specific problems. A more suitable set of parameters could investigated to
improve the performance of the network approach. This includes increasing the number of layers (if the
computational resources allow) or using a different combination of recurrent and non-recurrent layer types.

6.2.2. Kalman Filter
The Kalman Filter implemented here, as was seen in Section 3.5.4, still suffers from errors due to the non-
linearity. While this most likely made little difference for the noise level considered in the analysis, it would
become significant if the noise level drops significantly.
Implementing and testing a filter better capable of dealing with these non-linearities such as an Extended
Kalman Filter (EKF) or an Unscented Kalman Filter (UKF) would be preferable in that case.
Furthermore, a comparison between the distributed neural networks and a distributed filter would make for
a easier evaluation of the difference between knowledge-based and model-based methods.

6.2.3. Simulation
The simulation of the satellite formation is improvable in various ways. A general simulator of any satellite
formations could be very useful in their design or qualitative study. As of right now, only octahedral virtual
structure type formations are to usable, with easy extension to other geometric shapes. However, passive for-
mations, deep space formations or more complicated formation types would be difficult to implement with
the current structure. In addition, the simulation only considers circular orbits around the Earth. However,
many satellite formations, are on elliptical orbits (especially the virtual structure type) or in the vicinity of a
Lagrange point. Also, ideas exist for formations around other bodies in the solar system. Adjusting the simu-
lation for different orbits would take significant effort, but could be useful for future research.
Apart from expanding the functionality of the simulation, the runtime could be optimized, as a simulation
over a single orbital period can take from on average 13 seconds when using the parallel computing features
of MATLAB to up to 40 seconds. An additional avenue for optimization is the gravity field calculator which
still takes a significant amount of time during the simulation. Another approach would be to use a lower-level
programming language such as C or C++, which would also allow for integration with Tensorflow directly in
order to enable the use of online learning.

6.3. Analysis
One practical limitation of using the Colab environment is that the evaluation of the individual networks on
the validation part of the dataset takes a considerable amount of time and is subject to the same issues as
with training the networks that are described above. Due to this, determining the output of the networks was
performed separately from the subsequent evaluation and creation of the plots. However, the output of the
individual isolation network is a 1 by 36 vector of floating point numbers, which makes it infeasible to save
the entire output of the network to a file and then perform the analysis, as the file-size would simply be too
big. Only the maximum value of the network (i.e. the thruster the network identifies as faulty) was saved to a
file. A consequence of this is that more in-depth analysis on the network output could not be performed and
there is no distinction being made between a network output where the maximum value was 0.3 and an out-
put where the maximum value is 0.99, despite there being a large difference in confidence of the network. A
more in depth analysis of the isolation network output could give more insight into the behavior and possible
issues resulting from the way the network was trained.
Furthermore, in the analysis it was seen that the individual networks, when given the data of a satellite they
were not trained on, systematically miscategorized the fault location, corresponding to their difference in
neighbor ordering. This could be used to reduce the training effort as only a single network needs to be
trained, if the fault label is consequently adjusted. Potentially, this could also increase the network perfor-
mance as it is trained with more diverse data.

6.3.1. Comparison Case
While the Kalman filter is a standard method for FDI purposes one of the features of the Kalman filter is the
assumption of known control input to the system. This gives it an edge compared to neural network based
methods, which do not have the control input as a network input. While the Kalman filter also assumes ad-
ditional information in the form of the state and measurement equation, which are used in the design of the
filter, the network should be able to extract certain aspects of the dynamic system model through the rela-
tionship of input to output data. However, the control input is not present in the networks.
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A possible remedy for this problem is to consider unknown-input-observers, which can work without hav-
ing completel knowledge of the control-input. Alternatively, the commanded control input could be another
input to the network. Training with this additional input compared to the networks presented in Section 4.1
could give insight into what information the network draws from the relative positioning and velocities alone.





A
Additional Confusion Matrices

In this chapter, the additional confusion matrices for the individual network of satellites 2 to 5 can be found.
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Figure A.1: Satellite 2 isolation confusion matrix for thruster isolation.
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Figure A.2: Satellite 3 isolation confusion matrix for thruster isolation.
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Figure A.3: Satellite 4 isolation confusion matrix for thruster isolation.
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Figure A.4: Satellite 5 isolation confusion matrix for thruster isolation.
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Figure A.5: Satellite 6 isolation confusion matrix for thruster isolation.



B
Project Code

The entirety of the code written for this thesis can be found at
https://github.com/MHenkel6/thesis-project-code/.

B.1. Neural Network Code
This appendix contains some of the code for the verification of the neural networks.
A large percentage of the code for training the networks was re-purposed from code written by Sander Voss
for his MSc Thesis "Application of Deep Learning for Spacecraft Fault Detection and Isolation" [92]. The code
in this section requires the use of Tensorflow version 1.15.0, and might behave unexpectedly if a different
version is used.

1 ## V e r i f i c a t i o n of TFRecord writer
2 # Setup
3

4 """ Package Import and Dependencies """
5 import tensorflow as t f
6 import tensorflow . t r a i n as t f t
7 import numpy as np
8 import pandas as pd
9 import io

10 import os
11 import s h u t i l as sh
12 import pickle
13 from pathlib import Path
14 import random
15 # Authentication for Managing Data
16 from google . colab import drive
17 drive . mount( ’ / content / drive ’ )
18 t f . enable_eager_execution ( )
19

20 rootPath = ’ / content / drive /My Drive / ’
21 r e g i s t e r = np . zeros ( 1 )
22 while not np . any ( r e g i s t e r ) :
23 t r y :
24 with open( rootPath + ’DataRaw/ Detection / Training /DataNoFault4N_32 . csv ’ , ’ r ’ ) as f :
25 r e g i s t e r = np . genfromtxt ( f , del imiter = " , " )
26 except :
27 pass
28 np . shape ( r e g i s t e r )
29

30 """ Function Definit ions """
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31 def process ( fileName ) :
32 # Load correct F i l e
33 with t f . io . g f i l e . GFile ( fileName , ’ r ’ ) as f :
34 data = np . genfromtxt ( f , del imiter = " , " )
35 # Seperate Relat ive Position & Velocity data
36 info = data [ 0 , : ]
37 sett leIndex = 300
38 faultTime = np . c e i l ( info [ 0 ] )
39 i f faultTime <1:
40 faultTime = 1e10
41 f a u l t S a t = info [ 1 ]
42 faultThruster = info [ 2 ]
43 faultType = info [ 3 ]
44

45 posvelData = data [ 1 : , : ]
46 noRows = np . s i z e ( posvelData , 0) //24 − sett leIndex
47 noCols = 6
48 dataSat1 = np . zeros ( [ noRows, 4*noCols ] )
49 dataSat2 = np . zeros ( [ noRows, 4*noCols ] )
50 dataSat3 = np . zeros ( [ noRows, 4*noCols ] )
51 dataSat4 = np . zeros ( [ noRows, 4*noCols ] )
52 dataSat5 = np . zeros ( [ noRows, 4*noCols ] )
53 dataSat6 = np . zeros ( [ noRows, 4*noCols ] )
54

55 faultLabel = np . zeros ( [ noRows, 1 ] )
56 faultLabel [np . where (np . arange (noRows) >faultTime−sett leIndex ) ] = 1
57 s e t t l e O f f s e t = sett leIndex * 24
58 dataSat1 [ : , 0 * noCols : 1 * noCols ] = posvelData [ s e t t l e O f f s e t + 0 : : 2 4 , 0 : noCols ]
59 dataSat1 [ : , 1 * noCols : 2 * noCols ] = posvelData [ s e t t l e O f f s e t + 1 : : 2 4 , 0 : noCols ]
60 dataSat1 [ : , 2 * noCols : 3 * noCols ] = posvelData [ s e t t l e O f f s e t + 2 : : 2 4 , 0 : noCols ]
61 dataSat1 [ : , 3 * noCols : 4 * noCols ] = posvelData [ s e t t l e O f f s e t + 3 : : 2 4 , 0 : noCols ]
62

63 dataSat2 [ : , 0 * noCols : 1 * noCols ] = posvelData [ s e t t l e O f f s e t + 4 : : 2 4 , 0 : noCols ]
64 dataSat2 [ : , 1 * noCols : 2 * noCols ] = posvelData [ s e t t l e O f f s e t + 5 : : 2 4 , 0 : noCols ]
65 dataSat2 [ : , 2 * noCols : 3 * noCols ] = posvelData [ s e t t l e O f f s e t + 6 : : 2 4 , 0 : noCols ]
66 dataSat2 [ : , 3 * noCols : 4 * noCols ] = posvelData [ s e t t l e O f f s e t + 7 : : 2 4 , 0 : noCols ]
67

68 dataSat3 [ : , 0 * noCols : 1 * noCols ] = posvelData [ s e t t l e O f f s e t + 8 : : 2 4 , 0 : noCols ]
69 dataSat3 [ : , 1 * noCols : 2 * noCols ] = posvelData [ s e t t l e O f f s e t + 9 : : 2 4 , 0 : noCols ]
70 dataSat3 [ : , 2 * noCols : 3 * noCols ] = posvelData [ s e t t l e O f f s e t + 1 0 : : 2 4 , 0 : noCols ]
71 dataSat3 [ : , 3 * noCols : 4 * noCols ] = posvelData [ s e t t l e O f f s e t + 1 1 : : 2 4 , 0 : noCols ]
72

73 dataSat4 [ : , 0 * noCols : 1 * noCols ] = posvelData [ s e t t l e O f f s e t + 1 2 : : 2 4 , 0 : noCols ]
74 dataSat4 [ : , 1 * noCols : 2 * noCols ] = posvelData [ s e t t l e O f f s e t + 1 3 : : 2 4 , 0 : noCols ]
75 dataSat4 [ : , 2 * noCols : 3 * noCols ] = posvelData [ s e t t l e O f f s e t + 1 4 : : 2 4 , 0 : noCols ]
76 dataSat4 [ : , 3 * noCols : 4 * noCols ] = posvelData [ s e t t l e O f f s e t + 1 5 : : 2 4 , 0 : noCols ]
77

78 dataSat5 [ : , 0 * noCols : 1 * noCols ] = posvelData [ s e t t l e O f f s e t + 1 6 : : 2 4 , 0 : noCols ]
79 dataSat5 [ : , 1 * noCols : 2 * noCols ] = posvelData [ s e t t l e O f f s e t + 1 7 : : 2 4 , 0 : noCols ]
80 dataSat5 [ : , 2 * noCols : 3 * noCols ] = posvelData [ s e t t l e O f f s e t + 1 8 : : 2 4 , 0 : noCols ]
81 dataSat5 [ : , 3 * noCols : 4 * noCols ] = posvelData [ s e t t l e O f f s e t + 1 9 : : 2 4 , 0 : noCols ]
82

83 dataSat6 [ : , 0 * noCols : 1 * noCols ] = posvelData [ s e t t l e O f f s e t + 2 0 : : 2 4 , 0 : noCols ]
84 dataSat6 [ : , 1 * noCols : 2 * noCols ] = posvelData [ s e t t l e O f f s e t + 2 1 : : 2 4 , 0 : noCols ]
85 dataSat6 [ : , 2 * noCols : 3 * noCols ] = posvelData [ s e t t l e O f f s e t + 2 2 : : 2 4 , 0 : noCols ]
86 dataSat6 [ : , 3 * noCols : 4 * noCols ] = posvelData [ s e t t l e O f f s e t + 2 3 : : 2 4 , 0 : noCols ]
87

88 sats = np . arange ( 6 )
89 sats = np . repeat ( sats , noRows)
90 sats = sats . reshape (−1 ,1)
91 time = np . arange ( sett leIndex , noRows+sett leIndex )
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92

93 time = np . t i l e ( time , 6 ) . reshape (−1 ,1)
94

95 data = np . concatenate ( ( dataSat1 , dataSat2 , dataSat3 , dataSat4 , dataSat5 , dataSat6 ) , 0 )
96 l a b e l s = np . concatenate ( ( faultLabel , faultLabel , faultLabel , faultLabel , faultLabel , faultLabel

) , 0 )
97 data = np . concatenate ( ( data , labels , time , sats ) , ax is = 1)
98

99 return data # ds3 .map(lambda a , b , c : ( a , b) ) , ds3 .map(lambda a , b , c : c )
100

101 def create_tfrecord ( f i lePath , fileName , data ) :
102 # Create tfrecord
103

104 header = [ ’ x1 ’ , ’ y1 ’ , ’ z1 ’ , ’ vx1 ’ , ’ vy1 ’ , ’ vz1 ’ ,
105 ’ x2 ’ , ’ y2 ’ , ’ z2 ’ , ’ vx2 ’ , ’ vy2 ’ , ’ vz2 ’ ,
106 ’ x3 ’ , ’ y3 ’ , ’ z3 ’ , ’ vx3 ’ , ’ vy3 ’ , ’ vz3 ’ ,
107 ’ x4 ’ , ’ y4 ’ , ’ z4 ’ , ’ vx4 ’ , ’ vy4 ’ , ’ vz4 ’ ,
108 ’ l ab el ’ , ’ time ’ , ’ sat ’ ]
109 # Create d i c t
110 x1 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 0 ] ) )
111 y1 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 1 ] ) )
112 z1 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 2 ] ) )
113 vx1 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 3 ] ) )
114 vy1 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 4 ] ) )
115 vz1 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 5 ] ) )
116

117 x2 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 6 ] ) )
118 y2 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 7 ] ) )
119 z2 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 8 ] ) )
120 vx2 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 9 ] ) )
121 vy2 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 1 0 ] ) )
122 vz2 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 1 1 ] ) )
123

124 x3 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 1 2 ] ) )
125 y3 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 1 3 ] ) )
126 z3 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 1 4 ] ) )
127 vx3 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 1 5 ] ) )
128 vy3 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 1 6 ] ) )
129 vz3 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 1 7 ] ) )
130

131 x4 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 1 8 ] ) )
132 y4 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 1 9 ] ) )
133 z4 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 2 0 ] ) )
134 vx4 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 2 1 ] ) )
135 vy4 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 2 2 ] ) )
136 vz4 = t f t . Feature ( f l o a t _ l i s t = t f t . F l o a t L i s t ( value = data [ : , 2 3 ] ) )
137

138 l a be l = t f t . Feature ( i n t 6 4 _ l i s t = t f t . I n t 6 4 L i s t ( value = data [ : , 2 4 ] . astype ( i n t ) ) )
139 time = t f t . Feature ( i n t 6 4 _ l i s t = t f t . I n t 6 4 L i s t ( value = data [ : , 2 5 ] . astype ( i n t ) ) )
140 sats = t f t . Feature ( i n t 6 4 _ l i s t = t f t . I n t 6 4 L i s t ( value = data [ : , 2 6 ] . astype ( i n t ) ) )
141

142

143

144 feature_dict = { ’ x1 ’ : x1 , ’ y1 ’ : y1 , ’ z1 ’ : z1 , ’ vx1 ’ : vx1 , ’ vy1 ’ : vy1 , ’ vz1 ’ : vz1 ,
145 ’ x2 ’ : x2 , ’ y2 ’ : y2 , ’ z2 ’ : z2 , ’ vx2 ’ : vx2 , ’ vy2 ’ : vy2 , ’ vz2 ’ : vz2 ,
146 ’ x3 ’ : x3 , ’ y3 ’ : y3 , ’ z3 ’ : z3 , ’ vx3 ’ : vx3 , ’ vy3 ’ : vy3 , ’ vz3 ’ : vz3 ,
147 ’ x4 ’ : x4 , ’ y4 ’ : y4 , ’ z4 ’ : z4 , ’ vx4 ’ : vx4 , ’ vy4 ’ : vy4 , ’ vz4 ’ : vz4 ,
148 ’ l a be l ’ : label , ’ time ’ : time , ’ sats ’ : sats }
149 features = t f t . Features ( feature = feature_dict )
150 DataExample = t f t . Example ( features = features )
151
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152 with t f . python_io . TFRecordWriter ( f i l e P a t h +fileName ) as writer :
153 writer . write ( DataExample . S e r i a l i z e To S t r i ng ( ) )
154 return
155

156 def decode_TFRecord ( exampleProto ) :
157 # Read TFRecord f i l e
158 # Define features
159 featureDescription = {
160 ’ x1 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
161 ’ y1 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
162 ’ z1 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
163 ’ vx1 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
164 ’ vy1 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
165 ’ vz1 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
166 ’ x2 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
167 ’ y2 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
168 ’ z2 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
169 ’ vx2 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
170 ’ vy2 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
171 ’ vz2 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
172 ’ x3 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
173 ’ y3 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
174 ’ z3 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
175 ’ vx3 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
176 ’ vy3 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
177 ’ vz3 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
178 ’ x4 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
179 ’ y4 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
180 ’ z4 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
181 ’ vx4 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
182 ’ vy4 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
183 ’ vz4 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
184 ’ l a b el ’ : t f . VarLenFeature ( dtype= t f . int64 ) ,
185 ’ time ’ : t f . VarLenFeature ( dtype= t f . int64 ) ,
186 ’ sats ’ : t f . VarLenFeature ( dtype= t f . int64 ) }
187

188 # Extract features from s e r i a l i z e d data
189 return t f . io . parse_single_example ( exampleProto , featureDescription )
190

191 filePathCheck = rootPath + ’DataRaw/ Detection / Training / ’
192 fileName = "DataOpenFault4N_66_404 . csv "
193

194 # Read Data from Test f i l e
195 data = process ( filePathCheck + fileName )
196 # Create TFRecord f i l e
197 f i lePathWrite = rootPath + "Colab Notebooks/ V e r i f i c a t i o n / "
198 fileNameCheck = ’ Test_0 . t frecord ’
199 create_tfrecord ( fi lePathWrite , fileNameCheck , data )
200

201 # Read Created TFRecord F i l e
202 readSet = t f . data . TFRecordDataset ( f i lePathWrite+ fileNameCheck )
203 # Define features
204 read_features = {
205 ’ x1 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
206 ’ y1 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
207 ’ z1 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
208 ’ vx1 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
209 ’ vy1 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
210 ’ vz1 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
211 ’ x2 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
212 ’ y2 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
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213 ’ z2 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
214 ’ vx2 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
215 ’ vy2 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
216 ’ vz2 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
217 ’ x3 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
218 ’ y3 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
219 ’ z3 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
220 ’ vx3 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
221 ’ vy3 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
222 ’ vz3 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
223 ’ x4 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
224 ’ y4 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
225 ’ z4 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
226 ’ vx4 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
227 ’ vy4 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
228 ’ vz4 ’ : t f . VarLenFeature ( dtype= t f . f l o a t 3 2 ) ,
229 ’ l ab el ’ : t f . VarLenFeature ( dtype= t f . int64 ) ,
230 ’ time ’ : t f . VarLenFeature ( dtype= t f . int64 ) ,
231 ’ sats ’ : t f . VarLenFeature ( dtype= t f . int64 ) }
232

233 # Extract features from s e r i a l i z e d data
234 for s in readSet . take ( 1 ) :
235 feature = t f . parse_single_example ( s , features = read_features )
236

237 # Print features
238 x1read = t f . sparse . to_dense ( feature [ ’ x1 ’ ] ) .numpy( )
239 x1write = data [ : , 0 ]
240 print (np .sum(np . abs ( x1read−x1write ) / len ( x1read ) ) )

Verification of Dataset Pre-processing Only the relevant section (i.e. the logic for checking the output) is
shown here, the full script can be seen in the github project linked above.

1 f i l e L i s t D a t a s e t = t f . data . TFRecordDataset ( l i s t d i r )
2 decodedDataset = f i l e L i s t D a t a s e t .map( decode_TFRecord )
3 processedDataset = decodedDataset . flat_map ( preprocess )
4

5 datalabels = [ ’ x1 ’ , ’ y1 ’ , ’ z1 ’ , ’ vx1 ’ , ’ vy1 ’ , ’ vz1 ’ , ’ x2 ’ , ’ y2 ’ , ’ z2 ’ , ’ vx2 ’ , ’ vy2 ’ , ’ vz2 ’ , ’ x3 ’ ,
6 ’ y3 ’ , ’ z3 ’ , ’ vx3 ’ , ’ vy3 ’ , ’ vz3 ’ , ’ x4 ’ , ’ y4 ’ , ’ z4 ’ , ’ vx4 ’ , ’ vy4 ’ , ’ vz4 ’ , ’ l ab el ’ , ’ time ’ , ’ sats ’ ]
7

8 # Take data and l a b e l s of ent ire run ( j u s t the decoded Dateset )
9 npdataFull = np . zeros ([33612 ,27])

10 for data in decodedDataset . take (−1) :
11 for number, l ab el in enumerate ( datalabels ) :
12 npdataFull [ : , number] = t f . sparse . to_dense ( data [ l ab e l ] ) .numpy( )
13

14 # Take data from the processed Dataset and compare i f i t matches with the correct
15 # spot in the f u l l set
16 i = 0
17 indexList = [ ]
18 incorrectLabelList = [ ]
19 for data , l ab e l in processedDataset . take (−1) :
20 i f i < 33612 − 51:
21 npdata = data .numpy( )
22 d i f f = npdataFull [ i : i +50 ,0:24] − npdata
23 while np . abs (np .sum( d i f f ) ) > 1e−9 :
24 indexList . append( i )
25 i += 1
26 d i f f = npdataFull [ i : i +50 ,0:24] − npdata
27 i f np . abs (np .sum( d i f f ) ) < 1e−9 :
28 i f not l ab e l .numpy( ) == npdataFull [ i , −3] :
29 print (np .sum( d i f f ) )
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30 print ( l ab e l .numpy( ) , npdataFull [ i , −3])
31 incorrectLabelList . append( i )
32 i += 1
33 print ( indexList [ : 1 0 ] )
34 i f len ( indexList ) == 250 and len ( incorrectLabelList ) == 0 :
35 print ( " S l i c i n g Preprocessing Successful " )

Verification of Individual Satellite Data Selection Similar to the above, only the relevant section is shown
here.

1

2 # Check S a t e l l i t e Selection
3 satView = 1
4 satProcessedDataset = decodedDataset . flat_map (lambda x : preprocDetInd ( x , 5 0 , satView ) )
5 i0 = np . where ( npdataFull [ : , −1] == satView ) [ 0 ] [ 0 ]
6 i = i0
7 indexList = [ ]
8

9 for data , l ab e l in satProcessedDataset . take (−1) :
10 i f i < i0 + 33612//6:
11 npdata = data .numpy( )
12 d i f f = npdataFull [ i : i +50 ,0:24] − npdata
13 while np . abs (np .sum( d i f f ) ) > 1e−9 and i < i0 + 33612//6:
14 indexList . append( i )
15 i = i +1
16 d i f f = npdataFull [ i : i +50 ,0:24] − npdata
17

18 i += 1
19 print ( indexList [ : 1 0 ] )
20 i f len ( indexList ) == 50:
21 print ( " S a t e l l i t e Selection Successful " )

B.2. Formation Simulation Code
This appendix contains the definitions of the formation and spacecraft class in MATLAB, used in the sim-
ulation of the formation. The main scripts used to run the simulation are not included here due to their
length but can be found in the "Matlab - Formation Simulation" folder in https://github.com/MHenkel6/
thesis-project-code/.

1 classdef formation < handle
2 %FORMATION Class containing the formation as a whole and relevant
3 %methods
4 properties
5 spacecraftArray ; % Array containing spacecraft objects in formation
6 nSpacecraft ; % no . of spacecraft
7 formationSize ; % distance between s a t e l l i t e
8 nImpulse ; % number of impulses used to control orbit
9

10 % Center Orbit parameters
11 orbitParam ; % Array to j o i n t l y hold o r b i t a l parameters
12 a ; % Semi−major axis [m]
13 e ; % E c c e n t r i c i t y [−]
14 inc ; % Incl inat ion [ rad ]
15 O; % RAAN [ rad ]
16 o ; % Argument of periapsis [ rad ]
17 nu ; % True anomaly [ rad ]
18 truLon ; % True Longitude [ rad ]
19 argLat ; % Argument of l a t i t u d e [ rad ]
20 lonPer ; % Longitude of Periapsis [ rad ]
21 p ; % Semi−l a t u s rectum [m]
22

https://github.com/MHenkel6/thesis-project-code/
https://github.com/MHenkel6/thesis-project-code/
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23 % Control parameteers
24 controltype ; % Continuous ( 1 ) vs di screte ( 2 ) control system
25 disctype ; % Discret izat ion type i f discre te control system
26

27 % Navigation parameters
28 navType = 1 ; % Cartesian ( 1 ) or Spharical ( 2 ) noise and bias
29

30 % Propagation parameters
31 disturbancesOn = 1 ; % Boolean to en/ disable disturbanceForces
32 end
33

34 methods
35 function obj = formation ( nSpacecraft , type , center , velCenter , dist , qOrientation ,

controltype , disctype , spacecraftParameters , residualCovariance , residualMean , navType ,
navArray )

36 %FORMATION Construct an instance of t h i s c l a s s
37 % Inputs :
38 % nSpacecraft = number of spacecraft in formation
39 % type = Formation type
40 % center = position of geometric center of Formation in ECI
41 % velCenter = v e l o c i t y of geometric center of Formation in ECI
42 % d i s t = s i z e parameter of formation ( distance between
43 % sats )
44 % qOrientation = orientation quaternion r e l a t i v e to ECI
45 % controlType = continuous vs discre te control
46 % method
47 % discType = d i s c r e t i z a t i o n type
48 % (ZOH,FOH, Impulse )
49 % spacecraftParameters = array of mass , size , moment of
50 % i n e r t i a and other relevant
51 % spacecraft parameters , see
52 % spacracraft c l a s s
53 % residualCovariance = Covariance matrix of residual
54 % vector in the f a u l t l e s s case
55 % ( determined from the
56 % simulation )
57 % residualMean = mean of the residual vector
58

59 % Construct 6 spacecraft objects
60 obj . nSpacecraft = nSpacecraft ;
61 obj . formationSize = d i s t ;
62 % I f octahedron type . get 6 equidistant points from center
63 switch type
64 case ’ octahedron ’
65 distCenter = d i s t * sqrt ( 2 ) / 2 ; %distance from center
66 distArray = [ 0 , 0 , distCenter ;
67 distCenter , 0 , 0 ;
68 0 , distCenter , 0 ;
69 −distCenter , 0 , 0 ;
70 0 −distCenter , 0 ;
71 0 ,0 ,−distCenter ] ;
72 case ’ s i ngle ’
73 distArray = [ 0 , 0 , 0 ] ;
74 otherwise
75 warning ( ’ Unsupported Formation Type ’ )
76 end
77 % Reorient positions to al ign with formation frame
78 distArrayRot = quatrotate ( qOrientation , distArray ) ;
79 positions = center + distArrayRot +1*randn ( 6 , 3 ) ;
80

81 % Reference Orbit
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82 [ a , e , inc ,O, o , nu , truLon , argLat , lonPer , p] = rv2orb ( center ’ , velCenter ’ ) ;
83 obj . a = a ;
84 obj . e = e ;
85 obj . inc = inc ;
86 obj .O = O;
87 obj . o = o ;
88 obj . nu = nu ;
89 obj . truLon = truLon ;
90 obj . argLat = argLat ;
91 obj . lonPer = lonPer ;
92 obj . p = p ;
93 obj . orbitParam = [ a , e , inc ,O, o , nu , truLon , argLat , lonPer , p ] ;
94 % Create Spacecraft
95 sats = [ ] ;
96 for inc = 1 : nSpacecraft
97 % Fixed a t t i t u d e
98 attQuat = qOrientation ’ ;
99 spinVec = zeros ( [ 3 , 1 ] ) ;

100 spinRate = 0 ;
101 formationParameters = [ inc , dist , qOrientation , obj . orbitParam ] ;
102 sp = spacecraft ( positions ( inc , : ) , velCenter , attQuat , spinRate * spinVec , . . .
103 spacecraftParameters , formationParameters ) ;
104 sats = [ sats ( : ) ’ , sp ] ;
105 end
106

107

108 % Give each spacecraft i t s neighbors
109 % Neighbor sat 1
110 sats ( 1 ) . spacecraftNeighbor1 = sats ( 2 ) ;
111 sats ( 1 ) . spacecraftNeighbor2 = sats ( 3 ) ;
112 sats ( 1 ) . spacecraftNeighbor3 = sats ( 4 ) ;
113 sats ( 1 ) . spacecraftNeighbor4 = sats ( 5 ) ;
114

115 sats ( 1 ) . n1Offset = −( sats ( 2 ) . centerOffset − sats ( 1 ) . centerOffset ) ;
116 sats ( 1 ) . n2Offset = −( sats ( 3 ) . centerOffset − sats ( 1 ) . centerOffset ) ;
117 sats ( 1 ) . n3Offset = −( sats ( 4 ) . centerOffset − sats ( 1 ) . centerOffset ) ;
118 sats ( 1 ) . n4Offset = −( sats ( 5 ) . centerOffset − sats ( 1 ) . centerOffset ) ;
119 % Neighbor sat 2
120 sats ( 2 ) . spacecraftNeighbor1 = sats ( 1 ) ;
121 sats ( 2 ) . spacecraftNeighbor2 = sats ( 5 ) ;
122 sats ( 2 ) . spacecraftNeighbor3 = sats ( 6 ) ;
123 sats ( 2 ) . spacecraftNeighbor4 = sats ( 3 ) ;
124

125 sats ( 2 ) . n1Offset = −( sats ( 1 ) . centerOffset − sats ( 2 ) . centerOffset ) ;
126 sats ( 2 ) . n2Offset = −( sats ( 5 ) . centerOffset − sats ( 2 ) . centerOffset ) ;
127 sats ( 2 ) . n3Offset = −( sats ( 6 ) . centerOffset − sats ( 2 ) . centerOffset ) ;
128 sats ( 2 ) . n4Offset = −( sats ( 3 ) . centerOffset − sats ( 2 ) . centerOffset ) ;
129 % Neighbor sat 3
130 sats ( 3 ) . spacecraftNeighbor1 = sats ( 1 ) ;
131 sats ( 3 ) . spacecraftNeighbor2 = sats ( 2 ) ;
132 sats ( 3 ) . spacecraftNeighbor3 = sats ( 6 ) ;
133 sats ( 3 ) . spacecraftNeighbor4 = sats ( 4 ) ;
134

135 sats ( 3 ) . n1Offset = −( sats ( 1 ) . centerOffset − sats ( 3 ) . centerOffset ) ;
136 sats ( 3 ) . n2Offset = −( sats ( 2 ) . centerOffset − sats ( 3 ) . centerOffset ) ;
137 sats ( 3 ) . n3Offset = −( sats ( 6 ) . centerOffset − sats ( 3 ) . centerOffset ) ;
138 sats ( 3 ) . n4Offset = −( sats ( 4 ) . centerOffset − sats ( 3 ) . centerOffset ) ;
139 % Neighbor sat 4
140 sats ( 4 ) . spacecraftNeighbor1 = sats ( 3 ) ;
141 sats ( 4 ) . spacecraftNeighbor2 = sats ( 6 ) ;
142 sats ( 4 ) . spacecraftNeighbor3 = sats ( 5 ) ;
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143 sats ( 4 ) . spacecraftNeighbor4 = sats ( 1 ) ;
144

145 sats ( 4 ) . n1Offset = −( sats ( 3 ) . centerOffset − sats ( 4 ) . centerOffset ) ;
146 sats ( 4 ) . n2Offset = −( sats ( 6 ) . centerOffset − sats ( 4 ) . centerOffset ) ;
147 sats ( 4 ) . n3Offset = −( sats ( 5 ) . centerOffset − sats ( 4 ) . centerOffset ) ;
148 sats ( 4 ) . n4Offset = −( sats ( 1 ) . centerOffset − sats ( 4 ) . centerOffset ) ;
149 % Neighbor sat 5
150 sats ( 5 ) . spacecraftNeighbor1 = sats ( 4 ) ;
151 sats ( 5 ) . spacecraftNeighbor2 = sats ( 6 ) ;
152 sats ( 5 ) . spacecraftNeighbor3 = sats ( 2 ) ;
153 sats ( 5 ) . spacecraftNeighbor4 = sats ( 1 ) ;
154

155 sats ( 5 ) . n1Offset = −( sats ( 4 ) . centerOffset − sats ( 5 ) . centerOffset ) ;
156 sats ( 5 ) . n2Offset = −( sats ( 6 ) . centerOffset − sats ( 5 ) . centerOffset ) ;
157 sats ( 5 ) . n3Offset = −( sats ( 2 ) . centerOffset − sats ( 5 ) . centerOffset ) ;
158 sats ( 5 ) . n4Offset = −( sats ( 1 ) . centerOffset − sats ( 5 ) . centerOffset ) ;
159 % Neighbor sat 6
160 sats ( 6 ) . spacecraftNeighbor1 = sats ( 5 ) ;
161 sats ( 6 ) . spacecraftNeighbor2 = sats ( 4 ) ;
162 sats ( 6 ) . spacecraftNeighbor3 = sats ( 3 ) ;
163 sats ( 6 ) . spacecraftNeighbor4 = sats ( 2 ) ;
164

165 sats ( 6 ) . n1Offset = −( sats ( 5 ) . centerOffset − sats ( 6 ) . centerOffset ) ;
166 sats ( 6 ) . n2Offset = −( sats ( 4 ) . centerOffset − sats ( 6 ) . centerOffset ) ;
167 sats ( 6 ) . n3Offset = −( sats ( 3 ) . centerOffset − sats ( 6 ) . centerOffset ) ;
168 sats ( 6 ) . n4Offset = −( sats ( 2 ) . centerOffset − sats ( 6 ) . centerOffset ) ;
169 % Assign s a t e l l i t e array to formation property
170 obj . spacecraftArray = sats ;
171

172 obj . controltype = controltype ;
173 obj . disctype = disctype ;
174 i f e x i s t ( ’ navType ’ )
175 obj . navType = navType ;
176 else
177 obj . navType = 1 ;
178 end
179

180 i f navType == 2
181 rangeNoiseSize = navArray ( 1 ) ;
182 rangeBiasSize = navArray ( 2 ) ;
183 angleNoiseSize = navArray ( 3 ) ;
184 angleBiasSize = navArray ( 4 ) ;
185 for sc = obj . spacecraftArray
186 sc . rangeBias = (2* randi ( 2 , 4 , 1 )−3)* rangeBiasSize ;
187 sc . rangeNoise = rangeNoiseSize ;
188 sc . angleBias = (2* randi ( 2 , 4 , 2 )−3)* angleBiasSize ;
189 sc . angleNoise = angleNoiseSize ;
190 end
191 end
192 % Give spacecraft 1 the residual Covariance for FDI function
193 obj . spacecraftArray ( 1 ) . residualMean = residualMean ;
194 % Finish o f f with i n i t a l measurements and control commands
195 for i i = 1:6
196 obj . spacecraftArray ( i i ) . navigation ( obj . navType ) ;
197 obj . spacecraftArray ( i i ) . controlCommand( 0 , obj . controltype , obj . disctype ) ;
198 obj . spacecraftArray ( i i ) . thrustAl loc ( 0 ) ;
199 cF = obj . spacecraftArray ( i i ) . controlForce ( 0 ) ;
200 end
201 end
202

203 function rk4Prop ( obj , time , dt )
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204 %rk4Prop Propagate the s t a t e s of the formation
205 % Main function to propagate the s t a t e of the entire
206 % formation by one time step dt
207

208 % nSpacecraft x 6 Matrix containing s t a t e d e r i v a t i v e s for
209 % a l l spacecraft
210 devArray = zeros ( obj . nSpacecraft , 6 ) ;
211 KalmanMeasurement = zeros (6 ,24) ;
212 KalmanControlStates = zeros ( 1 , 3 * 6 ) ;
213 % Determine s t a t e changes for each s a t e l l i t e
214 for i = 1 : obj . nSpacecraft
215 spacecraft = obj . spacecraftArray ( i ) ;
216 %spacecraft . guidance ( time ) ;
217

218 % Perform r e l a t i v e and absolute measurements
219 spacecraft . navigation ( obj . navType ) ;
220 % Determine thruster output
221 spacecraft . controlCommand( time , obj . controltype , obj . disctype ) ;
222 % Determine thruster opening time based on commanded input
223 spacecraft . thrustAl loc ( time ) ;
224 % Determine actual thrust exerted by thrusters in ECI frame
225 cF = spacecraft . controlForce ( time ) ;
226

227 % Gather measurements and control s t a t e s for the Kalman
228 % f i l t e r
229 KalmanMeasurement( i , : ) = reshape ( spacecraft . r e l E s t H i l l ’ , 1 , 2 4 ) ;
230 KalmanControlStates ( 1 , ( i −1) *3+1: i *3) = spacecraft . cAccHill ;
231

232 % Runge−Kutta 4 Integration Scheme
233 dev1 = dynamics ( time , spacecraft . position , spacecraft . velocity , . . .
234 spacecraft . mass , cF , obj . disturbancesOn ) ;
235 dev2 = dynamics ( time+dt /2 , spacecraft . position+dt /2*dev1 ( 1 : 3 ) , . . .
236 spacecraft . v e l o c i t y +dt /2*dev1 ( 4 : 6 ) , . . .
237 spacecraft . mass , cF , obj . disturbancesOn ) ;
238 dev3 = dynamics ( time+dt /2 , spacecraft . position+dt /2*dev2 ( 1 : 3 ) , . . .
239 spacecraft . v e l o c i t y +dt /2*dev2 ( 4 : 6 ) , . . .
240 spacecraft . mass , cF , obj . disturbancesOn ) ;
241 dev4 = dynamics ( time+dt , spacecraft . position+dt *dev3 ( 1 : 3 ) , . . .
242 spacecraft . v e l o c i t y +dt *dev3 ( 4 : 6 ) , . . .
243 spacecraft . mass , cF , obj . disturbancesOn ) ;
244 devTotal = dt * ( dev1 + 2*dev2 + 2*dev3 + dev4 ) / 6 ;
245 devArray ( i , : ) = devTotal ;
246

247 % Determine change in a t t i t u d e and rotation
248 r o t S ta te = [ spacecraft . a t t i t u d e ;
249 spacecraft . spin ] ;
250 rotDev1 = rotDynamics ( rotState , spacecraft . i n e r t i a ) ;
251 rotDev2 = rotDynamics ( r o tS t a te +rotDev1 * dt /2 , spacecraft . i n e r t i a ) ;
252 rotDev3 = rotDynamics ( r o tS t a te +rotDev2 * dt /2 , spacecraft . i n e r t i a ) ;
253 rotDev4 = rotDynamics ( r o tS t a te +rotDev3 * dt , spacecraft . i n e r t i a ) ;
254

255 rotDevTotal = dt * ( rotDev1 + 2* rotDev2 + 2* rotDev3 + rotDev4 ) / 6 ;
256 spacecraft . updateAtt ( rotDevTotal ) ;
257 end
258 % Kalman f i l e r update
259 % Use a l l r e l a t i v e Measurements in ECI to get proper H i l l frame
260

261 % Reorder Measurements to be in correct order
262 % Correct Order : [ s12 , s13 , s14 , s15 , s23 , s34 , s45 , s52 , s65 , s64 , s63 , s62 , . . .
263 % s21 , s31 , s41 , s51 , s32 , s43 , s54 , s25 , s56 , s46 , s36 , s26 ]
264 % Current Order :
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265 % [ s12 , s13 , s14 , s15 , s21 , s25 , s26 , s23 , s31 , s32 , s36 , s34 , . . .
266 % s43 , s46 , s45 , s41 , s54 , s56 , s52 , s51 , s65 , s64 , s63 , s62
267

268 KalmanMeasurementCorrect = zeros (1 ,144) ;
269 KalmanMeasurementCorrect ( 1 : 2 4 ) = KalmanMeasurement ( 1 , : ) ;
270 KalmanMeasurementCorrect ( 2 5 : 3 0 ) = KalmanMeasurement( 2 , 1 9 : 2 4 ) ;
271 KalmanMeasurementCorrect ( 3 1 : 3 6 ) = KalmanMeasurement( 3 , 1 9 : 2 4 ) ;
272 KalmanMeasurementCorrect ( 3 7 : 4 2 ) = KalmanMeasurement( 4 , 1 3 : 1 8 ) ;
273 KalmanMeasurementCorrect ( 4 3 : 4 8 ) = KalmanMeasurement( 5 , 1 3 : 1 8 ) ;
274 KalmanMeasurementCorrect ( 4 9 : 7 2 ) = KalmanMeasurement ( 6 , : ) ;
275

276 KalmanMeasurementCorrect ( 7 3 : 7 8 ) = KalmanMeasurement ( 2 , 1 : 6 ) ;
277 KalmanMeasurementCorrect ( 7 9 : 8 4 ) = KalmanMeasurement ( 3 , 1 : 6 ) ;
278 KalmanMeasurementCorrect ( 8 5 : 9 0 ) = KalmanMeasurement( 4 , 1 9 : 2 4 ) ;
279 KalmanMeasurementCorrect ( 9 1 : 9 6 ) = KalmanMeasurement( 5 , 1 9 : 2 4 ) ;
280 KalmanMeasurementCorrect (97:102) = KalmanMeasurement ( 3 , 7 : 1 2 ) ;
281 KalmanMeasurementCorrect (103:108) = KalmanMeasurement ( 4 , 1 : 6 ) ;
282 KalmanMeasurementCorrect (109:114) = KalmanMeasurement ( 5 , 1 : 6 ) ;
283 KalmanMeasurementCorrect (115:120) = KalmanMeasurement ( 2 , 7 : 1 2 ) ;
284 KalmanMeasurementCorrect (121:126) = KalmanMeasurement ( 5 , 7 : 1 2 ) ;
285 KalmanMeasurementCorrect (127:132) = KalmanMeasurement ( 4 , 7 : 1 2 ) ;
286 KalmanMeasurementCorrect (133:138) = KalmanMeasurement( 3 , 1 3 : 1 8 ) ;
287 KalmanMeasurementCorrect (139:144) = KalmanMeasurement( 2 , 1 3 : 1 8 ) ;
288

289 % Perform Kalman f i l t e r update
290 obj . spacecraftArray ( 1 ) . kalmanUpdate ( KalmanMeasurementCorrect , KalmanControlStates ) ;
291 %obj . spacecraftArray ( 1 ) . extendedKalmanUpdate ( time , KalmanMeasurementCorrect ,

KalmanControlStates ) ;
292

293 % Perform FDI once residual s ignal has s e t t l e (~1000 seconds
294 i f time>1000
295 obj . spacecraftArray ( 1 ) . f d i ( time )
296 end
297

298 % Update a l l posit ions
299 for i = 1 : obj . nSpacecraft
300 obj . spacecraftArray ( i ) . updatePos ( devArray ( i , : ) ) ;
301 end
302 % For output purposes , another measurement i s taken
303 for i i = 1 : obj . nSpacecraft
304 obj . spacecraftArray ( i i ) . navigation ( obj . navType ) ;
305 end
306 end
307

308 function s t a t e s = getStates ( obj )
309 % Return true position and v e l o c i t y of the formation in ECI
310 s t a t e s = zeros ( obj . nSpacecraft , 6 ) ;
311 for i = 1 : obj . nSpacecraft
312 s t a t e s ( i , : ) = obj . spacecraftArray ( i ) . getState ( ) ;
313 end
314 end
315

316 function [ r e l S t a t e , r e l S t a t e H i l l ] = getRelStates ( obj , zeroed )
317 % Return the r e l a t i v e measurements for each member of the
318 % formation , both in ECI and in the HILL frame
319 r e l S t a t e = zeros (4* obj . nSpacecraft , 6 ) ;
320 r e l S t a t e H i l l = zeros (4* obj . nSpacecraft , 6 ) ;
321 for i = 1:6
322 sc = obj . spacecraftArray ( i ) ;
323 r e l E s t = sc . r e l a t i v e E s t ;
324
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325 r e l D i f f = r e l E s t − [ sc . n1Offset , 0 , 0 , 0 ;
326 sc . n2Offset , 0 , 0 , 0 ;
327 sc . n3Offset , 0 , 0 , 0 ;
328 sc . n4Offset , 0 , 0 , 0 ] ;
329 i f zeroed
330 r e l S t a t e ( ( i −1) *4+1: i * 4 , : ) = r e l D i f f ;
331 else
332 r e l S t a t e ( ( i −1) *4+1: i * 4 , : ) = r e l E s t ;
333 end
334 r e l S t a t e H i l l ( ( i −1) *4+1: i * 4 , : ) = sc . r e l E s t H i l l ;
335 end
336 end
337 function [ absMeas ] = getAbsoluteMeasurement ( obj )
338 % Return measured position and v e l o c i t y of the formation in ECI
339 absMeas = zeros ( 6 , 6 ) ;
340 for i i = 1:6
341 absMeas ( i i , : ) = [ obj . spacecraftArray ( i i ) . positionEst , . . .
342 obj . spacecraftArray ( i i ) . v e l o c i t y E s t ] ;
343 end
344 end
345 function [command, err ] = getControlCommands ( obj )
346 % Return current commanded control acceleration
347 command = zeros ( 6 , 3 ) ;
348 err = zeros ( 6 , 6 ) ;
349 for i i = 1:6
350 sc = obj . spacecraftArray ( i i ) ;
351 command( i i , : ) = sc . cAccHill ;% sc . cImpulseHill ;%
352 err ( i i , : ) = sc . cErr ; % control err ;
353 end
354

355 end
356 function setFault ( obj , faultTime , satel l i teNo , thrusterNo , faultType , faultParam )
357 % Set f a u l t v e c t o r of selected s a t e l l i t e and thruster to
358 % faultparameter
359 f a u l t y S a t = obj . spacecraftArray ( s a t e l l i t e N o ) ;
360 f a u l t y S a t . faultTime = faultTime ;
361

362 i f faultType == 1 % Closed thruster f a u l t
363 f a u l t y S a t . faultVectorClosed ( thrusterNo ) = 1−faultParam ;
364 e l s e i f faultType == 2 % Open thruster
365 f a u l t y S a t . faultVectorOpen ( thrusterNo ) = faultParam ;
366 end
367 end
368

369 %% Following functions mainly used in the optimization of the formation
370 function s e t S t a t e s ( obj , center , size , qOrientation , velCenter )
371 % Set s t a t e of formation for optimization
372 distCenter = s i z e * sqrt ( 2 ) / 2 ; %distance from center
373 distArray = [ 0 , 0 , distCenter ;
374 distCenter , 0 , 0 ;
375 0 , distCenter , 0 ;
376 −distCenter , 0 , 0 ;
377 0 −distCenter , 0 ;
378 0 ,0 ,−distCenter ] ;
379 distArrayRot = quatrotate ( qOrientation , distArray ) ;
380 positions = center + distArrayRot ;
381 i t = 1 ;
382 for sat = obj . spacecraftArray
383 sat . s e t S t a t e ( [ posit ions ( i t , : ) , velCenter ] ) ;
384 end
385 end
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386

387 % function [ deltaVs , positions ] = guideOpt ( obj , dt , T)
388 % % Calculate deltaV required to keep current formation for 1
389 % % orbit
390 % % Returns required DeltaVs per s a t e l l i t e and the positions wrt
391 % % the center of the formation .
392 %
393 % % Propagate orbit for one revolution with Keplerian dynamics
394 % % only
395 % for t = 0 : dt : T
396 % devArray = zeros ( obj . nSpacecraft , 6 ) ;
397 % for i = 1 : obj . nSpacecraft
398 % spacecraft = obj . spacecraftArray ( i ) ;
399 % dev1 = dynamicsKepler ( spacecraft . position , spacecraft . v e l o c i t y ) ;
400 % dev2 = dynamicsKepler ( spacecraft . position+dt /2*dev1 ( 1 : 3 ) , . . .
401 % spacecraft . v e l o c i t y +dt /2*dev1 ( 4 : 6 ) ) ;
402 % dev3 = dynamicsKepler ( spacecraft . position+dt /2*dev2 ( 1 : 3 ) , . . .
403 % spacecraft . v e l o c i t y +dt /2*dev2 ( 4 : 6 ) ) ;
404 % dev4 = dynamicsKepler ( spacecraft . position+dt *dev3 ( 1 : 3 ) , . . .
405 % spacecraft . v e l o c i t y +dt *dev3 ( 4 : 6 ) ) ;
406 %
407 % devTotal = dt * ( dev1 + 2*dev2 + 2*dev3 + dev4 ) / 6 ;
408 % devArray ( i , : ) = devTotal ;
409 % end
410 % % Update a l l positions
411 % for i = 1 : obj . nSpacecraft
412 % obj . spacecraftArray ( i ) . updatePos ( devArray ( i , : ) ) ;
413 % end
414 % end
415 % deltaVs = 0 ;
416 % positions = 0 ;
417 % end
418

419 end
420 end

1 classdef spacecraft < handle
2 properties
3 position ; % Position in ECI in m, 3 doubles
4 v e l o c i t y ; % v e l o c i t y in ECI in m/ s 3 doubles
5 a t t i t u d e ; % a t t i t u d e quaternion in ECI
6 spin ; % rotation rate in rad/ s
7

8 positionEst ; % estimated position in ECI in m, 3 doubles
9 v e l o c i t y E s t ; % estimated v e l o c i t y in ECI in m, 3 doubles

10 a t t i t u d e E s t ; % estimated a t t i t u d e quaternion in ECI
11

12 r e l a t i v e E s t ; % estimated /measured r e l a t i v e positions [m]
13 r e l E s t H i l l ; % Estimated distance , v e l o c i t y in H i l l frame [m, m/ s ]
14

15 posSelfBias ; % position bias for absolute position determination in m
16 v e l S e l f B i a s ; % v e l o c i t y bias for absolute v e l o c i t y determination in m
17 posRelBias ; % position bias for r e l a t i v e position determination in m
18 velRelBias ; % position bias for r e l a t i v e v e l o c i t y determination in m
19

20 posSelfNoise ; % standard deviation of absolute position noise [m]
21 velSelfNoise ; % standard deviation of absolute v e l o c i t y noise [m/ s ]
22 posRelNoise ; % standard deviation of r e l a t i v e position noise [m]
23 velRelNoise ; % standard deviation of r e l a t i v e v e l o c i t y noise [m/ s ]
24

25 rangeBias ; % Bias in range measurement for robustness cases [m]
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26 angleBias ; % Bias in angle measurement for robustness cases [ rad ]
27

28 rangeNoise ; % standard deviation in range measurement for robustness cases [m]
29 angleNoise ; % standard deviation in angle measurement for robustness cases [ rad ]
30

31 mass = 100 ; % s a t e l l i t e mass [ kg ]
32 i n e r t i a = [ 1 0 0 , 0 , 0 ;
33 0 ,100 ,0;
34 0 , 0 , 1 0 0 ] ; % I n e r t i a Tensor
35 dim = 1 ;% s a t e l l i t e dimensions in m
36

37

38 % Formation Info
39 centerOffset ; % Distance to center of ideal formation [m]
40 formationNo ; % S a t e l l i t e number in formation
41 formationOrientation ; % Orientation quaternion of the formation
42 formationSize ; % Distance between adjacent s a t e l l i t e s [m]
43 formationCenterOrbit ; % Orbital parameters of center reference orbit
44

45 %Thruster Parameters
46 minImpulse = 0.0001; % minimum inpulse b i t
47 isp = 200; % s p e c i f i c impulse in s
48 thrust = 4 ; % Maximum thrust force of s a t e l l i t e thruster [ 4 ]
49 Tconfig = [1 ,−1 ,0 ,0 ,0 ,0 ;
50 0 ,0 ,1 ,−1 ,0 ,0 ;
51 0 ,0 ,0 ,0 ,1 , −1];% thruster configuration matrix
52 faultVectorClosed = ones ( 6 , 1 ) ;
53 faultVectorOpen = zeros ( 6 , 1 ) ;
54 % boolean to adjust f a u l t time to a f t e r f i r s t f i r i n g of affected thruster
55 f i r s t T h r u s t = f a l s e ;
56 % Occurenf of f a u l t time
57 faultTime = 1e9 ;
58

59 % Pseudo−inverse of the thruster configuration
60 TconfigInv = [ 0 . 5 , 0 ,0 ;
61 −0.5 ,0 ,0 ;
62 0 , 0 . 5 ,0 ;
63 0 ,−0.5 ,0 ;
64 0 ,0 , 0 . 5 ;
65 0 ,0 ,−0.5]
66

67

68 t h r u s t I n t e r v a l ; % Time in between beginnings of burn windows [ s ]
69 burnTime ; % Duration of burn window [ s ]
70 accumDV = 0 ; % accumulated DV over orbit [m/ s ]
71 maxBurnTime = 0 ; % maximum obverved burn time ;
72 thrusterOpeningCount = zeros ( 6 , 1 ) ; % Amount of times each thruster has opened
73 thrusterOpeningTime = zeros ( 6 , 1 ) ; % Cumulative time of each thruster opening [ s ]
74 spentProp = 0 ; % Amount of f u e l expelled during burns [ kg ]
75 % S a t e l l i t e neighbors ( spacecraft object and o f f s e t in ideal
76 % conditions )
77 spacecraftNeighbor1 ;
78 n1Offset ;
79 spacecraftNeighbor2 ;
80 n2Offset ;
81 spacecraftNeighbor3 ;
82 n3Offset ;
83 spacecraftNeighbor4 ;
84 n4Offset ;
85

86 %Navigation Matrices
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87 THillECI ; % Transformation matrix from H i l l to ECI frame
88 Tdot ; % Derivative of THillECI
89

90 % Controller Parameters
91 Kcont ; % Continuous LQR c o n t r o l l e r gain
92 KZOH; % Discrete LQR c o n t r o l l e r gain using Zero−Order−Hold Discret izat ion
93 Kimp ; % Discrete LQR c o n t r o l l e r gain using Impulse−Method Discret izat ion
94

95 % Current Control Commands
96 cImpulse ; % Commanded control impulse in ECI
97 cImpulseHill ; % Commanded control impulse in H i l l Frame
98 cFECI ; % Actual force output from thruster in ECI [N]
99 cAccHill ; % Commanded acceleration in H i l l Frame [m/ s ^2]

100 cErr ; % Control error [m,m/ s ]
101 opTimes ; % Opening time vector for thruster al l ocat ion [ s ]
102 thrustAllocComplete = 0 ; % Boolean to indicate thruster al locat io n
103 burnFraction ; % vector to scale down thrust
104 pastControl ;
105 % Kalman f i l t e r Matrices
106

107 A ; % State matrix
108 B ; % Input Matrix
109 C; % Measurement Matrix
110 D; % Feed−through Matrix
111

112 Q; % Covariance matrix of system noise
113

114 R ; % Covariance matrix of measurement noise
115 Kk ; % Kalman gain
116 P ;% Solution to Discrete R i c a t t i Equation from Kalman f i l t e r
117 M; % Innovation gain
118

119 kalmanEstimate ; % Current Kalman estimate of formation s t a t e
120 kalmanResidual ; % Current Kalman residual
121 ErrCov ; % Error Covariance Matrix
122 alphLow = 0 . 0 2 5 ; % Low pass f i l t e r parameter
123 kalLowPass ; % Kalman f i l t e r passed through discr ete low pass f i l t e r
124

125

126 % Extended Kalman f i l t e r Matrices
127 Bf ;
128 extQ ;
129 extKalmanEstimate ;
130 extKalmanResidual ;
131 extErrCov ;
132

133 % Relat ive s t a t e and absolute s t a t e from l a s t time step
134 l a s t R e l a t i v e E s t ;
135 l a s t P o s i t i o n E s t ;
136 l a s t V e l o c i t y E s t ;
137

138 % Fault Detection Variables
139 residualCovariance ; % Covariance Matrix of residual / innovation
140 % vector in the f a u l t l e s s case
141 Qinv ; % Inverse of residual Covariance , saved here for increased speed
142 residualMean ; % Mean of residual vector
143 faultThreshold ; % Threshold before f a u l t alarm i s issued
144 gk ; % Cumulative sum of Log−l ikel ihood ratio , r e c u r s i v e l y computed
145 detect ; % Boolean to indicate detection
146 i s o l a t e ; % Index of detected f a u l t y thruster
147 isoCounter ; % Counter to indicate successive i d e n t i f i c a t i o n s
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148 faultDetTime ; % time at which f a u l t was detected [ s ]
149 faultDetected ; % Boolean to indicate i f f a u l t was found at a l l
150 % FDI matrix
151 tempMatrix ; % Temporary matrix saved here for reduced computing e f f o r t
152 end
153

154 methods
155 function obj = spacecraft ( position , velocity , att i tude , spin , . . .
156 spacecraftParameters , formationParameters )
157 %Constructor
158 obj . position = position ;
159 obj . v e l o c i t y = v e l o c i t y ;
160 obj . a t t i t u d e = a t t i t u d e ;
161 obj . spin = spin ;
162

163

164 % Unpack and assign parameters
165 obj . mass = spacecraftParameters { 1 } ;
166 obj . dim = spacecraftParameters { 2 } ;
167 obj . i n e r t i a = spacecraftParameters { 3 } ;
168 obj . t h r u s t I n t e r v a l = spacecraftParameters { 4 } ;
169 obj . burnTime = spacecraftParameters { 5 } ;
170 obj . thrust = spacecraftParameters { 6 } ;
171 obj . isp = spacecraftParameters { 7 } ;
172 obj . minImpulse = 1e−3*spacecraftParameters { 8 } ;
173 s e l f B i a s S i z e = spacecraftParameters { 9 } ;
174 r e l B i a s S i z e = spacecraftParameters { 1 0 } ;
175 velBiasSize = spacecraftParameters { 1 1 } ;
176 obj . posSelfNoise = spacecraftParameters { 1 2 } ;
177 obj . velSelfNoise = spacecraftParameters { 1 4 } ;
178 obj . posRelNoise = spacecraftParameters { 1 3 } ;
179 obj . velRelNoise = spacecraftParameters { 1 4 } ;
180 alpha1 = spacecraftParameters { 1 5 } ;
181 alpha2 = spacecraftParameters { 1 6 } ;
182

183 % Bias vectors
184 obj . posSelfBias = random_unit_vector ( ) ’ * s e l f B i a s S i z e ;
185 obj . v e l S e l f B i a s = random_unit_vector ( ) ’ * velBiasSize ;
186 obj . posRelBias = random_unit_vector ( ) ’ * r e l B i a s S i z e ;
187 obj . velRelBias = random_unit_vector ( ) ’ * velBiasSize ;
188

189 % Range Navigation biases and noises
190 %obj . rangeBias = ( 2 * ( randi ( 2 )−1)−1)* Constants . rangeBiasSize ;
191 %obj . angleBias = [ cos (2* pi * rand ( ) ) , sin (2* pi * rand ( ) ) ] * Constants . angleBiasSize ;
192

193 % Unpack and assign formation Parameters
194 formationNo = formationParameters ( 1 ) ;
195 formationSize = formationParameters ( 2 ) ;
196 formationOrientation = formationParameters ( 3 : 6 ) ;
197 obj . formationNo = formationNo ;
198 obj . formationSize = formationSize ;
199 obj . formationOrientation = formationParameters ( 3 : 6 ) ;
200 obj . formationCenterOrbit = formationParameters ( 7 : 1 6 ) ;
201 switch formationNo
202 case 1
203 o f f s e t = −[0 ,0 , formationSize * sqrt ( 2 ) / 2 ] ;
204 case 2
205 o f f s e t = −[ formationSize * sqrt ( 2 ) / 2 , 0 , 0 ] ;
206 case 3
207 o f f s e t = −[0 , formationSize * sqrt ( 2 ) / 2 , 0 ] ;
208 case 4
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209 o f f s e t = −[ −formationSize * sqrt ( 2 ) / 2 , 0 , 0 ] ;
210 case 5
211 o f f s e t = −[0 −formationSize * sqrt ( 2 ) / 2 , 0 ] ;
212 case 6
213 o f f s e t = −[0 ,0 ,− formationSize * sqrt ( 2 ) / 2 ] ;
214 end
215 obj . centerOffset = quatrotate ( formationOrientation , o f f s e t ) ;
216

217 a = obj . formationCenterOrbit ( 1 ) ;
218 n = sqrt ( Constants . muEarth/a^3) ;
219

220 % Inclusion of J2 e f f e c t
221 J2 = Constants . J2 ;
222 r = a ;
223 inc = obj . formationCenterOrbit ( 3 ) ;
224 s = (3* J2 * Constants . graviPar . Re^2 / (8* r ^2) ) * (1 + 3* cos (2* inc ) ) ;
225 c = sqrt (1 + s ) ;
226 %Test without j 2 compensation
227 %c = 1 ;
228 % Determine Continuous LQR gain
229 A = [0 ,0 ,0 ,1 ,0 , 0 ;
230 0 ,0 ,0 ,0 ,1 , 0 ;
231 0 ,0 ,0 ,0 ,0 , 1 ;
232 (5* c^2−2)*n^2 ,0 ,0 ,0 ,2*n*c , 0 ;
233 0 ,0 ,0 ,−2*n*c , 0 , 0 ;
234 0 ,0 ,−(3* c^2−2)*n^2 ,0 ,0 , 0 ] ;
235

236

237 B = [ 0 , 0 , 0 ;
238 0 , 0 , 0 ;
239 0 , 0 , 0 ;
240 1 , 0 , 0 ;
241 0 , 1 , 0 ;
242 0 , 0 , 1 ] ;
243

244 contSys = ss (A , B, eye ( 6 , 6 ) , 0 ) ;
245 Qcont = zeros ( 6 ) ;
246 Qcont ( 1 : 3 , 1 : 3 ) = alpha1 * eye ( 3 ) ;
247 Qcont ( 4 : 6 , 4 : 6 ) = alpha2 * eye ( 3 ) ;
248 Qdisc = zeros ( 6 ) ;
249 Qdisc ( 1 : 3 , 1 : 3 ) = alpha1 * eye ( 3 ) ;
250 Qdisc ( 4 : 6 , 4 : 6 ) = alpha2 * eye ( 3 ) ;
251 %{
252 Q( 1 , 1 ) = 0 . 5 ;
253 Q( 2 , 2 ) = 0 . 5 ;
254 Q( 3 , 3 ) = 0 . 5 ;
255

256 Q( 4 , 4 ) = 1 ;
257 Q( 5 , 5 ) = 1 ;
258 Q( 6 , 6 ) = 1 ;
259 %}
260 Rcont = eye ( 3 , 3 ) ;
261 Rdisc = 1* eye ( 3 , 3 ) ;
262 E = eye ( 6 , 6 ) ;
263 [ S , ~ , ~ , ~ ] = icare (A , B, Qcont , Rcont , 0 , E , 0 ) ;
264 obj . Kcont = Rcont\ transpose (B) *S ;
265

266 % Determine Discrete LQR gain using Zero Order Hold ZOH
267 discSysZOH = c2d ( contSys , obj . thrustInterval , ’ zoh ’ ) ;
268 AdZOH = discSysZOH . A ;
269 BdZOH = discSysZOH . B ;
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270 SdZOH = idare (AdZOH,BdZOH, Qdisc , Rdisc , 0 , E) ;
271 obj .KZOH = ( Rdisc+transpose (BdZOH) *SdZOH*BdZOH) \ transpose (BdZOH) *SdZOH*AdZOH;%;−R\

transpose (BdZOH) *SdZOH;
272 % Determine Discrete LQR using Impulse method
273 discSysImp = c2d ( contSys , obj . thrustInterval , ’ impulse ’ ) ;
274 AdImp = discSysImp . A ;
275 BdImp = discSysImp . B ;
276 SdImp = idare (AdImp, BdImp, Qdisc , Rdisc , 0 , E) ;
277 obj . Kimp = ( Rdisc+transpose (BdImp) *SdImp*BdImp) \ transpose (BdImp) *SdImp*AdImp ;%

Rdisc \ transpose (BdImp) *SdImp;%
278

279 % Give Formation S a t e l l i t e 1 a Kalman f i l t e r
280 i f formationNo == 1
281 A4 = blkdiag (A , A , A , A) ;
282 Aformation = blkdiag (A4 , A4 , A4) ;
283 zerosB = zeros ( s i z e (B) ) ;
284 Bformation = [−B , B , zerosB , zerosB , zerosB , zerosB ;
285 −B , zerosB , B , zerosB , zerosB , zerosB ;
286 −B , zerosB , zerosB , B , zerosB , zerosB ;
287 −B , zerosB , zerosB , zerosB , B , zerosB ;
288 zerosB ,−B , B , zerosB , zerosB , zerosB ;
289 zerosB , zerosB ,−B , B , zerosB , zerosB ;
290 zerosB , zerosB , zerosB , −B , B , zerosB ;
291 zerosB , B , zerosB , zerosB ,−B , zerosB ;
292 zerosB , zerosB , zerosB , zerosB , B ,−B ;
293 zerosB , zerosB , zerosB , B , zerosB ,−B ;
294 zerosB , zerosB , B , zerosB , zerosB ,−B ;
295 zerosB , B , zerosB , zerosB , zerosB ,−B ] ;
296 Cformation =[ eye (72) ;−eye (72) ] ;
297 G = eye ( length ( Aformation ) ) ;
298 H = [ eye ( length ( Aformation ) ) ; eye ( length ( Aformation ) ) ] ;
299 kSys = ss ( Aformation , [ Bformation ,G] , Cformation , [ [ zeros ( s i z e ( Bformation ) ) ; zeros

( s i z e ( Bformation ) ) ] ,H] ) ;
300 dSys = c2d ( kSys , Constants . dt , ’ zoh ’ ) ;
301 Q = blkdiag (1e−12*eye ( 3 ) ,1e−12*eye ( 3 ) ) ;
302

303 Q = blkdiag (Q,Q,Q,Q , . . .
304 Q,Q,Q,Q , . . . .
305 Q,Q,Q,Q) ;
306

307 R = zeros ( 6 , 6 ) ;
308 R( 1 : 3 , 1 : 3 ) = Constants . posRelNoise ^(2) * eye ( 3 ) ;
309 R( 4 : 6 , 4 : 6 ) = Constants . velRelNoise ^(2) * eye ( 3 ) ;
310

311

312 R = blkdiag (R, R, R, R , . . .
313 R, R, R, R , . . .
314 R, R, R, R , . . .
315 R, R, R, R , . . .
316 R, R, R, R , . . .
317 R, R, R, R) ;
318 P = idare ( dSys . A’ , dSys . C’ ,Q, R, 0 , eye ( s i z e ( dSys . A) ) ) ;
319 Man = P* dSys . C’ / ( dSys .C*P* dSys . C’+R) ;
320

321 obj . P = P ;
322 obj . Kk = Man;
323 obj . A = dSys . A ;
324 obj . B = dSys . B ;
325 obj . Bf = Bformation ;
326 obj .C = dSys .C;
327 obj .D = dSys .D;



B.2. Formation Simulation Code 143

328 obj .Q = Q;
329 obj . Qinv= inv ( dSys .C*P* dSys . C’+R) ;
330 obj . extQ = Q;
331 obj . R = R ;
332

333 obj . gk = zeros ( [ 3 6 , 1 ] ) ;
334 obj . faultThreshold = 25;
335 obj . detect = 0 ;
336 obj . i s o l a t e = 0 ;
337 obj . faultDetTime = 0 ;
338 obj . faultDetected = 0 ;
339 % The temp matrix i s used in the calculat ion of the
340 % residual−f a u l t t r a n s f e r function and only calculated here
341 % to save computation time
342 obj . tempMatrix = obj .C/ ( eye ( s i z e ( obj . A) ) − obj . A + obj . A* obj . Kk* obj .C) ;
343 end
344 end
345

346 function updatePos ( obj , stateChange )
347 obj . position = obj . position + stateChange ( 1 : 3 ) ;
348 obj . v e l o c i t y = obj . v e l o c i t y + stateChange ( 4 : 6 ) ;
349 end
350

351 function updateAtt ( obj , attChange )
352 obj . a t t i t u d e = ( obj . a t t i t u d e + attChange ( 1 : 4 ) ) / (norm( obj . a t t i t u d e + attChange ( 1 : 4 )

) ) ;
353 obj . spin = obj . spin + attChange ( 5 : 7 ) ;
354 end
355

356 function s t a t e = getState ( obj )
357 s t a t e = [ obj . position , obj . v e l o c i t y ] ;
358 end
359

360 function s e t S t a t e ( obj , s t a t e )
361 obj . position = s t a t e ( 1 : 3 ) ;
362 obj . v e l o c i t y = s t a t e ( 4 : 6 ) ;
363 end
364

365 % Navigation function
366 % access actual position , add noise and bias
367 function [ posEst , velEst ] = selfNav ( obj )
368 posEst = obj . position + obj . posSelfBias + obj . posSelfNoise *randn ( [ 1 , 3 ] ) ;
369 velEst = obj . v e l o c i t y + obj . v e l S e l f B i a s + obj . velSelfNoise *randn ( [ 1 , 3 ] ) ;
370 end
371

372 % Relat ive navigation function
373 % given another spacecraft , subtract positions , add noise and bias
374 function r e l E s t = relNav ( obj )
375 r e l D i s t 1 = obj . spacecraftNeighbor1 . position − obj . position . . .
376 + obj . posRelBias + obj . posRelNoise * randn ( [ 1 , 3 ] ) ;
377 re lVel1 = obj . spacecraftNeighbor1 . v e l o c i t y − obj . v e l o c i t y . . .
378 + obj . velRelBias + obj . velRelNoise * randn ( [ 1 , 3 ] ) ;
379 r e l D i s t 2 = obj . spacecraftNeighbor2 . position − obj . position . . .
380 + obj . posRelBias + obj . posRelNoise * randn ( [ 1 , 3 ] ) ;
381 re lVel2 = obj . spacecraftNeighbor2 . v e l o c i t y − obj . v e l o c i t y . . .
382 + obj . velRelBias + obj . velRelNoise * randn ( [ 1 , 3 ] ) ;
383 r e l D i s t 3 = obj . spacecraftNeighbor3 . position − obj . position . . .
384 + obj . posRelBias + obj . posRelNoise * randn ( [ 1 , 3 ] ) ;
385 re lVel3 = obj . spacecraftNeighbor3 . v e l o c i t y − obj . v e l o c i t y . . .
386 + obj . velRelBias + obj . velRelNoise * randn ( [ 1 , 3 ] ) ;
387 r e l D i s t 4 = obj . spacecraftNeighbor4 . position − obj . position . . .
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388 + obj . posRelBias + obj . posRelNoise * randn ( [ 1 , 3 ] ) ;
389 re lVel4 = obj . spacecraftNeighbor4 . v e l o c i t y − obj . v e l o c i t y . . .
390 + obj . velRelBias + obj . velRelNoise * randn ( [ 1 , 3 ] ) ;
391 r e l E s t = [ relDist1 , re lVel1 ;
392 relDist2 , re lVel2 ;
393 relDist3 , re lVel3 ;
394 relDist4 , re lVel4 ; ] ;
395 end
396

397 function r e l E s t = relNavDistAngle ( obj )
398 qAtt = obj . a t t i t u d e ;
399

400 rVec1 = quatrotate ( qAtt ’ , ( obj . spacecraftNeighbor1 . position − obj . position ) ) ;
401 rVec2 = quatrotate ( qAtt ’ , ( obj . spacecraftNeighbor2 . position − obj . position ) ) ;
402 rVec3 = quatrotate ( qAtt ’ , ( obj . spacecraftNeighbor3 . position − obj . position ) ) ;
403 rVec4 = quatrotate ( qAtt ’ , ( obj . spacecraftNeighbor4 . position − obj . position ) ) ;
404

405 r = euclidnorm ( rVec1 ) + obj . rangeBias ( 1 ) + obj . rangeNoise * randn ( 1 ) ;
406 theta = acos ( rVec1 ( 3 ) /euclidnorm ( rVec1 ) ) + obj . angleBias ( 1 , 1 ) +obj . angleNoise *

randn ( 1 ) ;
407 psi = atan2 ( rVec1 ( 2 ) , rVec1 ( 1 ) ) + obj . angleBias ( 1 , 2 ) + obj . angleNoise * randn ( 1 ) ;
408 r e l D i s t 1 = quatrotate ( quatinv ( qAtt ’ ) , r * [ sin ( theta ) * cos ( psi ) , sin ( theta ) * sin ( psi ) ,

cos ( theta ) ] ) ;
409

410 re lVel1 = obj . spacecraftNeighbor1 . v e l o c i t y − obj . v e l o c i t y . . .
411 + obj . velRelBias + obj . velRelNoise * randn ( [ 1 , 3 ] ) ;
412

413 r = euclidnorm ( rVec2 ) + obj . rangeBias ( 2 ) + obj . rangeNoise * randn ( 1 ) ;
414 theta = acos ( rVec2 ( 3 ) /euclidnorm ( rVec2 ) ) + obj . angleBias ( 2 , 1 ) + obj . angleNoise *

randn ( 1 ) ;
415 psi = atan2 ( rVec2 ( 2 ) , rVec2 ( 1 ) ) + obj . angleBias ( 2 , 2 ) + obj . angleNoise * randn ( 1 ) ;
416 r e l D i s t 2 = quatrotate ( quatinv ( qAtt ’ ) , r * [ sin ( theta ) * cos ( psi ) , sin ( theta ) * sin ( psi ) ,

cos ( theta ) ] ) ;
417 re lVel2 = obj . spacecraftNeighbor2 . v e l o c i t y − obj . v e l o c i t y . . .
418 + obj . velRelBias + obj . velRelNoise * randn ( [ 1 , 3 ] ) ;
419

420 r = euclidnorm ( rVec3 ) + obj . rangeBias ( 3 ) + obj . rangeNoise * randn ( 1 ) ;
421 theta = acos ( rVec3 ( 3 ) /euclidnorm ( rVec3 ) ) + obj . angleBias ( 3 , 1 ) + obj . angleNoise *

randn ( 1 ) ;
422 psi = atan2 ( rVec3 ( 2 ) , rVec3 ( 1 ) ) + obj . angleBias ( 3 , 2 ) + obj . angleNoise * randn ( 1 ) ;
423 r e l D i s t 3 = quatrotate ( quatinv ( qAtt ’ ) , r * [ sin ( theta ) * cos ( psi ) , sin ( theta ) * sin ( psi ) ,

cos ( theta ) ] ) ;
424 re lVel3 = obj . spacecraftNeighbor3 . v e l o c i t y − obj . v e l o c i t y . . .
425 + obj . velRelBias + obj . velRelNoise * randn ( [ 1 , 3 ] ) ;
426

427 r = euclidnorm ( rVec4 ) + obj . rangeBias ( 4 ) + obj . rangeNoise * randn ( 1 ) ;
428 theta = acos ( rVec4 ( 3 ) /euclidnorm ( rVec4 ) ) + obj . angleBias ( 4 , 1 ) + obj . angleNoise *

randn ( 1 ) ;
429 psi = atan2 ( rVec4 ( 2 ) , rVec4 ( 1 ) ) + obj . angleBias ( 4 , 2 ) + obj . angleNoise * randn ( 1 ) ;
430

431 r e l D i s t 4 = quatrotate ( quatinv ( qAtt ’ ) , r * [ sin ( theta ) * cos ( psi ) , sin ( theta ) * sin ( psi ) ,
cos ( theta ) ] ) ;

432 re lVel4 = obj . spacecraftNeighbor4 . v e l o c i t y − obj . v e l o c i t y . . .
433 + obj . velRelBias + obj . velRelNoise * randn ( [ 1 , 3 ] ) ;
434 r e l E s t = [ relDist1 , re lVel1 ;
435 relDist2 , re lVel2 ;
436 relDist3 , re lVel3 ;
437 relDist4 , re lVel4 ; ] ;
438

439 end
440 function navigation ( obj , navType )
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441 obj . l a s t P o s i t i o n E s t = obj . positionEst ;
442 obj . l a s t V e l o c i t y E s t = obj . v e l o c i t y E s t ;
443 obj . l a s t R e l a t i v e E s t = obj . r e l a t i v e E s t ;
444

445 [ pos , vel ] = obj . selfNav ( ) ;
446 obj . positionEst = pos ;
447 obj . v e l o c i t y E s t = vel ;
448 i f navType == 1
449 obj . r e l a t i v e E s t = obj . relNav ( ) ;
450 e l s e i f navType == 2
451 obj . r e l a t i v e E s t = obj . relNavDistAngle ( ) ;
452 end
453

454 [ a , e , inc ,O, ~ , ~ , ~ , argLat , ~ ] = rv2orb ( pos ’ , vel ’ ) ;
455 n = sqrt ( Constants . muEarth /( a^3*(1−e^2) ^3) ) *(1+ e* cos ( argLat ) ) ^2;
456

457 x = pos/norm( pos ) ;
458 z = cross ( x , vel /norm( vel ) ) ;
459 y = cross ( z , x ) /(norm( cross ( z , x ) ) ) ;
460 obj . THillECI = [ x ;
461 y ;
462 z ] ;
463 S = n*skewSym ( [ 0 , 0 , 1 ] ) ;
464 obj . Tdot = −S* obj . THillECI ;%n* rotZdot ( argLat ) * rotX ( inc ) * rotZ (O) ;
465

466 % Convert to H i l l frame
467

468 r e l P o s H i l l = obj . THillECI * obj . r e l a t i v e E s t ( : , 1 : 3 ) ’ ;
469

470 %r e l V e l H i l l = THillECI * obj . r e l a t i v e E s t ( : , 4 : 6 ) ’−S* THillECI * obj . r e l a t i v e E s t ( : , 1 : 3 ) ’ ;
471 r e l V e l H i l l = obj . THillECI * obj . r e l a t i v e E s t ( : , 4 : 6 ) ’+ obj . Tdot* obj . r e l a t i v e E s t ( : , 1 : 3 )

’ ;
472 posSelf = repmat ( pos ’ , [ 1 , 4 ] ) ;
473 v e l S e l f = repmat ( vel ’ , [ 1 , 4 ] ) ;
474 posRel = posSelf+obj . r e l a t i v e E s t ( : , 1 : 3 ) ’ ;
475 velRel = v e l S e l f +obj . r e l a t i v e E s t ( : , 4 : 6 ) ’ ;
476 obj . r e l E s t H i l l = [ relPosHil l ’ , r e l V e l H i l l ’ ] ;
477 end
478 % Kalman f i l t e r update
479 function kalmanUpdate ( obj , measurement , c o n tr o l s ta t e s )
480 % Project s t a t e into the present based on past s t a t e and control
481 % input
482 i f ~ length ( obj . kalmanEstimate ) == 0
483 est imatePriori = obj . A * obj . kalmanEstimate + obj . B ( : , 1 : 1 8 ) * obj . pastControl

’ ;%controlstates ’ ;
484 % Propagate error covariance matrix
485 obj . ErrCov = obj . A* obj . ErrCov * obj . A’+ obj .Q;
486 % Compute Kalman gain
487 %K = obj . ErrCov * obj . C’ / ( obj .C* obj . ErrCov * obj . C’+ obj . R) ;
488 K = obj . Kk ;
489 % Update estimate using measurement
490 obj . kalmanResidual = (measurement’−( obj .C* est imatePriori +obj .D( : , 1 : 1 8 ) *

controlstates ’ ) ) ;
491 obj . kalmanEstimate = est imatePriori + K * obj . kalmanResidual ;
492 % Update Error Covariance Matrix
493 I = eye ( s i z e ( obj . A) ) ;
494 obj . ErrCov = ( I − K * obj .C) * obj . ErrCov * ( I −K * obj .C) ’ + K* obj . R*K ’ ;
495 % Low Pass F i l t e r
496 obj . kalLowPass = obj . alphLow * obj . kalmanResidual ’ + (1−obj . alphLow ) * obj .

kalLowPass ;
497 obj . pastControl = c o n t r o l s t a te s ;
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498 else
499 obj . kalmanEstimate = 0 . 5 * ( measurement ( 1 , 1 : 7 2 )−measurement ( 1 , 7 3 : end) ) ’ ;
500 obj . kalmanResidual = zeros ( s i z e ( measurement) ) ’ ;
501 obj . kalLowPass = zeros ( s i z e ( measurement) ) ;
502 obj . pastControl = c o n t r o l s t a te s ;
503 obj . ErrCov = obj .Q;
504 end
505 end
506

507 % Extended Kalman f i l t e r update DEPRECATED DONT USE
508 function extendedKalmanUpdate ( obj , time , measurement , c o n tr o l s ta t e s )
509 % Project s t a t e into future based on past s t a t e and control
510 % input
511 s t a t e = obj . l a s t R e l a t i v e E s t ;
512 s a t e l l i t e P o s E C I = obj . l a s t P o s i t i o n E s t ;
513 s a t e l l i t e V e l E C I = obj . l a s t V e l o c i t y E s t ;
514 posCenterECI = s a t e l l i t e P o s E C I + mean( s t a t e ( : , 1 : 3 ) , 1 ) ;
515 velCenterECI = s a t e l l i t e V e l E C I + mean( s t a t e ( : , 4 : 6 ) , 1 ) ;
516 [ a , e ,~ ,~ ,~ ,~ ,~ , argLat , ~ ] = rv2orb ( posCenterECI ’ , velCenterECI ’ ) ;
517

518 i f ~ length ( obj . extKalmanEstimate ) == 0
519 % Propagate State with nonlinear function
520 Alin = expm( dynJac ( obj . extKalmanEstimate , posCenterECI , velCenterECI , a , e , argLat

) * Constants . dt ) ;
521

522 est imatePriori = Alin * obj . extKalmanEstimate + obj . B( 1 : 7 2 , 1 : 1 8 ) * controlstates ’ ;
523 % Linearly approximate function
524 % Jacobian
525 % Propagate error covariance matrix
526 obj . extErrCov = Alin * obj . extErrCov * Alin ’+ obj .Q;
527 % Compute Kalman gain
528 K = obj . extErrCov * obj . C’ / ( obj .C* obj . extErrCov * obj . C’+ obj . R) ;
529 %K = obj . Kk ;
530 % Update estimate using measurement
531 observation = obj .C* est imatePriori ;
532 obj . extKalmanResidual = ( measurement’− observation ) ;
533 obj . extKalmanEstimate = ( est imatePriori + K * obj . extKalmanResidual ) ;
534 % Update Error Covariance Matrix
535 I = eye ( s i z e ( Alin ) ) ;
536 obj . extErrCov = ( I − K * obj .C) * obj . extErrCov * ( I − K * obj .C) ’ + K* obj . R*K ’ ;
537 else
538 obj . extKalmanEstimate = 0 . 5 * ( measurement ( 1 , 1 : 7 2 )−measurement ( 1 , 7 3 : end) ) ’ ;
539 obj . extKalmanResidual = zeros ( s i z e (measurement ) ) ;
540 obj . extErrCov = obj .Q;
541 end
542 end
543

544 function f d i ( obj , time )
545 % Perform a recursive formulation of a GLR t e s t for various
546 % 6*n f a u l t scenarios
547 residual = obj . kalmanResidual ’ ;%−obj . kalLowPass ;
548 I = eye (72) ;
549 TECIBody =myQuat2dcm( quatinv ( obj . formationOrientation ) ) ;
550 TConf2Acc = 1/ obj . mass* obj . THillECI *TECIBody* obj . Tconfig ;
551 TConfStack = blkdiag ( TConf2Acc , TConf2Acc , TConf2Acc , . . .
552 TConf2Acc , TConf2Acc , TConf2Acc ) ;
553 Ff = obj . B ( : , 1 : 1 8 ) * TConfStack ;
554

555 Du = obj .D( : , 1 : 1 8 ) * TConfStack ;
556 K = obj . Kk ;
557
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558 Mat = −obj . tempMatrix * ( Ff−obj . A*K*Du)−Du;
559 nf = 6*6;
560

561 for i i = 1 : nf
562 fVec = zeros ( [ nf , 1 ] ) ;
563 fVec ( i i ) = 0.0005;
564 mu = Mat* fVec ;
565 sz = (mu−obj . residualMean ’ ) ’ * obj . Qinv * ( residual ’−1/2*(mu+obj . residualMean ’ ) ) ;
566

567 obj . gk ( i i ) = max( 0 , obj . gk ( i i ) + sz ) ;
568 end
569 i f any ( obj . gk>obj . faultThreshold )
570 obj . detect = 1 ;
571 [~ , obj . i s o l a t e ] = max( obj . gk ) ;
572 obj . isoCounter = obj . isoCounter + 1 ;
573 i f ~obj . faultDetected
574 obj . faultDetTime = time ;
575 obj . faultDetected = true ;
576 end
577

578 end
579 end
580

581 % Guidance Law
582 % determine position to be in for current time/ t r a j e c t o r y to follow
583 function deltaV = guidance ( obj , time )
584 i f mod( time , obj . t h r u s t I n t e r v a l ) == 0
585 debugGuidance = 1 ;
586 i f debugGuidance
587 a = obj . formationCenterOrbit ( 1 ) ;
588 e = obj . formationCenterOrbit ( 2 ) ;
589 inc = obj . formationCenterOrbit ( 3 ) ;
590 O = obj . formationCenterOrbit ( 4 ) ;
591 o = obj . formationCenterOrbit ( 5 ) ;
592 nu = obj . formationCenterOrbit ( 6 ) ;
593 truLon = obj . formationCenterOrbit ( 7 ) ;
594 argLat = obj . formationCenterOrbit ( 8 ) ;
595 lonPer = obj . formationCenterOrbit ( 9 ) ;
596 p = obj . formationCenterOrbit (10) ;
597 [ pos , ~ ] = keplerEQsolve ( a , e , inc ,O, o , nu , truLon , argLat , lonPer , p , time+obj .

t h r u s t I n t e r v a l ) ;
598 else
599 %Test propagation using v i r t u a l center
600 s t a t e = obj . relNav ( ) ;
601 stateR = reshape ( state , 6 , 4 ) ;
602 center = obj . selfNav ( ) ’ + mean( stateR ( 1 : 3 , : ) , 2 ) ;
603 inc = obj . formationCenterOrbit ( 3 ) ;
604 velMag = sqrt ( Constants . muEarth/norm( center ) ) ;
605 centerDir = center /norm( center ) ;
606 nDir = [0 ,− sin ( inc ) , cos ( inc ) ] ;
607 velDir = cross ( nDir , centerDir ) ;
608 velCenter = velMag* velDir ;
609 [ a , e , inc ,O, o , nu , truLon , argLat , lonPer , p] = rv2orb ( center , velCenter ’ ) ;
610 [ pos , ~ ] = keplerEQsolve ( a , e , inc ,O, o , nu , truLon , argLat , lonPer , p , obj .

t h r u s t I n t e r v a l ) ;
611 end
612

613 posNext = pos+obj . centerOffset ;
614 [ v1B , v2B ] = lambertBook ( obj . selfNav ( ) , posNext , obj . thrustInterval , ’ pro ’ ) ;
615 deltaV = v1B−obj . v e l o c i t y ;
616 obj .accumDV = obj .accumDV +norm( deltaV ) ;
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617 obj . v e l o c i t y = v1B ;
618 end
619

620 end
621

622 % Control Law
623 % Determine control impulse based on estimated position and
624 % position / t r a j e c t o r y
625 function controlCommand( obj , time , controltype , disctype )
626 % Check i f we have a form of dis cr ete control ( disctype =|= 0)
627 i f disctype ~= 0
628 % Check i f we are outside a burn window
629 i f mod( time , obj . t h r u s t I n t e r v a l ) >obj . burnTime
630 obj . cImpulse = [ 0 ; 0 ; 0 ] ;
631 obj . thrustAllocComplete = 0 ;
632 return
633 e l s e i f any ( obj . cImpulse )% Check i f we already were in t h i s burn window
634 return
635 end
636 end
637

638 switch controltype
639 case 1
640 err = obj . errTrackedCenter ( time ) ;
641 case 2
642 err = obj . errVirtualCenter ( time ) ;
643 end
644

645 % Select control gain according to d i s c r e t i z a t i o n method
646 % 0 = Continuous
647 % 1 = Zero Order Hold (ZOH)
648 % 2 = Impulse (imp)
649 switch disctype
650 case 0
651 K = obj . Kcont ;
652 case 1
653 K = obj .KZOH;
654 case 2
655 K = obj . Kimp ;
656 end
657

658 cImpulse = −K* err ’ ;
659 obj . cImpulseHill = cImpulse ;
660

661 % Transform control force to ECI frame
662 s t a t e = obj . r e l a t i v e E s t ;
663 %stateR = reshape ( state , 6 , 4 ) ;
664 s a t e l l i t e P o s E C I = obj . posit ionEst ;
665 velECI = obj . v e l o c i t y E s t ;
666 posCenterECI = s a t e l l i t e P o s E C I + mean( s t a t e ( : , 1 : 3 ) , 1 ) ;
667 % Estimate center v e l o c i t y
668 velCenterECI = velECI + mean( s t a t e ( : , 4 : 6 ) , 1 ) ;
669 % Transform error into H i l l Frame
670

671 % INCORRECT TRANSFORMATION, DEPRECATED only used for continutiy
672 x = velCenterECI /norm( velCenterECI ) ;
673 z = posCenterECI/norm( posCenterECI ) ;
674 y = cross ( z , x ) /(norm( cross ( z , x ) ) ) ;
675 THillECI_Incorrect = [ x ;
676 y ;
677 z ] ;
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678 cImpulse = THillECI_Incorrect \cImpulse ;
679 %cImpulse = obj . THillECI \cImpulse ;
680

681 i f disctype >0
682 cImpulse = cImpulse * obj . t h r u s t I n t e r v a l * 0 . 8 ;
683 end
684 obj . cImpulse = cImpulse ;
685 obj .accumDV = obj .accumDV + norm( cImpulse ) ;
686 end
687

688 % Thruster al lo cat i on
689 % Given control force vector , determine which thrusters should f i r e
690 % for how long
691 function thrustAl loc ( obj , time )
692 i f any ( obj . cImpulse ) && ~obj . thrustAllocComplete
693 obj . thrustAllocComplete = 1 ;
694 impulseECI = obj . cImpulse ;
695 % Determine current a t t i t u d e
696 qAtt = obj . a t t i t u d e ( ) ;
697 % Transform impulse into body frame
698 impulseBody = quatrotate ( qAtt ’ , impulseECI ’ ) ;
699 % Calculate opening times
700 opening = 1/ obj . thrust * obj . TconfigInv * obj . mass*impulseBody ’ ;
701 % Negative opening times are added to other thruster
702 i f opening ( 1 ) <0
703 opening ( 2 ) = opening ( 2 )−opening ( 1 ) ;
704 opening ( 1 ) = 0 ;
705 end
706 i f opening ( 2 ) <0
707 opening ( 1 ) = opening ( 1 )−opening ( 2 ) ;
708 opening ( 2 ) = 0 ;
709 end
710 i f opening ( 3 ) <0
711 opening ( 4 ) = opening ( 4 )−opening ( 3 ) ;
712 opening ( 3 ) = 0 ;
713 end
714 i f opening ( 4 ) <0
715 opening ( 3 ) = opening ( 3 )−opening ( 4 ) ;
716 opening ( 4 ) = 0 ;
717 end
718 i f opening ( 5 ) <0
719 opening ( 6 ) = opening ( 6 )−opening ( 5 ) ;
720 opening ( 5 ) = 0 ;
721 end
722 i f opening ( 6 ) <0
723 opening ( 5 ) = opening ( 5 )−opening ( 6 ) ;
724 opening ( 6 ) = 0 ;
725 end
726 obj . thrusterOpeningCount ( opening >0) = obj . thrusterOpeningCount ( opening >0) + 1 ;
727 obj . thrusterOpeningTime = obj . thrusterOpeningTime + opening ;
728 obj . spentProp = obj . spentProp + sum( opening ) * obj . thrust / ( obj . isp * 9 . 8 1 ) ;
729 obj . opTimes = time+opening ;
730 obj . maxBurnTime = max( obj . maxBurnTime ,max( opening ) ) ;
731 end
732 end
733

734 % Determine force based on opening times
735 function cFECI = controlForce ( obj , time )
736 remainingBurntime = max( obj . opTimes−time , 0 ) ;
737 minOpTime = obj . minImpulse/ obj . thrust ;
738 for i i = 1:6
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739 i f remainingBurntime ( i i ) > 0
740 i f remainingBurntime ( i i ) < minOpTime
741 remainingBurntime ( i i ) = minOpTime ;
742 end
743 end
744 end
745 thrusterOpening = remainingBurntime >0;
746 burnFraction = min( abs ( remainingBurntime ) / Constants . dt , 1 ) ;
747 obj . burnFraction = burnFraction ;
748 i f time > obj . faultTime
749 % Determine
750 thrusterForce = max( obj . thrust * obj . faultVectorClosed . * burnFraction . *

thrusterOpening , . . .
751 obj . thrust * obj . faultVectorOpen ) ;
752 i f any(1−obj . faultVectorClosed )
753 faultyThrusterActivat ion = find (1−obj . faultVectorClosed ) == find (

thrusterOpening ) ;
754

755 i f any ( faultyThrusterActivat ion ) && ~ obj . f i r s t T h r u s t
756 obj . faultTime = time ;
757 obj . f i r s t T h r u s t = true ;
758 end
759 end
760 else
761 thrusterForce = obj . thrust * burnFraction . * thrusterOpening ;
762 end
763 cFBody = obj . Tconfig * thrusterForce ;
764 cFECI = quatrotate ( quatinv ( obj . att i tude ’ ) ,cFBody ’ ) ;
765 obj . cFECI = cFECI ;
766 % For Kalman f i l t e r purposes , get commanded force output in
767 % H i l l frame
768 thrusterForceFault less = obj . thrust * burnFraction . * thrusterOpening ;
769 c F f a u l t l e s s = obj . Tconfig * thrusterForceFault less ;
770 cFECIfault less = quatrotate ( quatinv ( obj . att i tude ’ ) , c F f a u l t l e s s ’ ) ;
771 obj . cAccHill = obj . THillECI * cFECIfault less ’ / obj . mass ;
772

773 deltaMass = sum( thrusterForce ) / ( obj . isp * 9 . 8 1 ) ;
774 obj . mass = obj . mass−deltaMass ;
775 end
776 %
777 function err = errVirtualCenter ( obj , time )
778

779 s t a t e = obj . r e l a t i v e E s t ;
780 s a t e l l i t e P o s E C I = obj . posit ionEst ;
781 velECI = obj . v e l o c i t y E s t ;
782 posCenterECI = s a t e l l i t e P o s E C I + mean( s t a t e ( : , 1 : 3 ) , 1 ) ;
783 % Estimate center v e l o c i t y
784 velCenterECI = velECI + mean( s t a t e ( : , 4 : 6 ) , 1 ) ;
785 [ a , ~ , inc ,O, ~ , theta , ~ , argLat , ~ ] = rv2orb ( posCenterECI ’ , velCenterECI ’ ) ;
786 n = sqrt ( Constants . muEarth/a^3) ;
787 realCenterECI = s a t e l l i t e P o s E C I + obj . centerOffset ;
788 % Transform error into H i l l Frame
789 % NOTE: INCORRECT TRANSFORMATION, DEPRECATED, used only for
790 % consistency with Data generation method . CORRECT
791 % transformations are given by obj . THillECI and obj . Tdot
792 x = velCenterECI /norm( velCenterECI ) ;
793 z = posCenterECI/norm( posCenterECI ) ;
794 y = cross ( z , x ) /(norm( cross ( z , x ) ) ) ;
795 THillECI_Incorrect = [ x ;
796 y ;
797 z ] ;
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798 Tdot_Incorrect = n* rotX ( 0 . 5 * pi ) * rotZdot ( theta ) * rotZ ( 0 . 5 * pi ) * rotX ( inc ) * rotZ (O) ;
799

800 v H i l l = THillECI_Incorrect * ( velECI−velCenterECI ) ’−Tdot_Incorrect *
THillECI_Incorrect * ( satel l i tePosECI−posCenterECI ) ’ ;

801 %v H i l l = obj . THillECI * ( velECI−velCenterECI ) ’+ obj . Tdot * ( satel l i tePosECI−
posCenterECI ) ’ ;

802

803 vRef = Tdot_Incorrect * THillECI_Incorrect * obj . centerOffset ’ ;
804 %vRef = −obj . Tdot* obj . centerOffset ’ ;
805 err ( 1 : 3 ) = THillECI_Incorrect * ( realCenterECI − posCenterECI ) ’ ;
806 %err ( 1 : 3 ) = obj . THillECI * ( realCenterECI − posCenterECI ) ’ ;
807 err ( 4 : 6 ) = vHil l−vRef ;
808

809 obj . cErr = err ;
810 end
811

812 function err= errTrackedCenter ( obj , time )
813 a = obj . formationCenterOrbit ( 1 ) ;
814 e = obj . formationCenterOrbit ( 2 ) ;
815 inc = obj . formationCenterOrbit ( 3 ) ;
816 O = obj . formationCenterOrbit ( 4 ) ;
817 o = obj . formationCenterOrbit ( 5 ) ;
818 nu = obj . formationCenterOrbit ( 6 ) ;
819 truLon = obj . formationCenterOrbit ( 7 ) ;
820 argLat = obj . formationCenterOrbit ( 8 ) ;
821 lonPer = obj . formationCenterOrbit ( 9 ) ;
822 p = obj . formationCenterOrbit (10) ;
823 [ posCenterECI , velCenterECI , theta ] = keplerEQsolve ( a , e , inc ,O, o , nu , truLon , argLat ,

lonPer , p , time ) ;
824 s a t e l l i t e P o s E C I = obj . posit ionEst ;
825 velECI = obj . v e l o c i t y E s t ;
826 n = sqrt ( Constants . muEarth/a^3) ;
827 %{
828 s t a t e = obj . relNav ( ) ;
829 stateR = reshape ( state , 6 , 4 ) ;
830 realCenterECI = obj . position + mean( stateR ( 1 : 3 , : ) , 2 ) ’ ;
831 %}
832 realCenterECI = s a t e l l i t e P o s E C I + obj . centerOffset ;
833 inc = obj . formationCenterOrbit ( 3 ) ;
834 % Transform error into H i l l Frame
835

836 v H i l l = obj . THillECI * ( velECI−velCenterECI ) ’−obj . Tdot* obj . THillECI * ( satel l i tePosECI
−posCenterECI ) ’ ;

837 vRef = obj . Tdot* obj . THillECI * obj . centerOffset ’ ;
838 err ( 1 : 3 ) = obj . THillECI * ( realCenterECI − posCenterECI ) ’ ;
839 err ( 4 : 6 ) = vHil l−vRef ;
840

841 end
842 end
843 end
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