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Executive summary

This report presents the work carried out for the research into using Reinforcement Learning
(RL) and obstacle-airflow interactions to detect and avoid obstacles on a quadrotor. The
goal of the research is to investigate and propose an alternative method for obstacle
avoidance and detection, one that does not require the addition of any sensors
but relies solely on measurements of the accelerometer and rotor controllers.

In recent years, Unmanned Aerial Vehicles (UAVs), and quadrotors in specific, have risen
in popularity, with applications ranging from industrial inspection tasks to disaster response
and package delivery applications. Increasing autonomy for these vehicles could bring down
cost significantly and allow for larger scale deployments of these solutions. A key remaining
challenge is in-flight autonomous object detection and avoidance. Most current obstacle
avoidance methods are either based on computer vision, requiring good lighting conditions,
or based on the addition of a range sensor.

The obstacle avoidance method proposed in this research could be used as a stand-alone
method for small quadrotors, thereby removing the need for additional sensors, thus saving
cost and weight while increasing flight time. Alternatively, when being used as an addition
to other obstacle avoidance solutions, like computer vision methods, it can increase safety
and reliability by functioning as a backup method. An example of this would be a disaster
response drone entering a room filled with smoke, or a warehouse inspection drone returning
safely to its base when the lights turn off during a power outage.

The detection of obstacles is based on the principle that the airflow around a multirotor
changes when the multirotor is flying near a surface. A well-known example of this is the
ground effect, an increase in lift force close to a ground surface. Similarly, a change in
dynamics occurs when a multirotor is flying close to a wall or ceiling. The proposed method
uses a reinforcement learning controller to detect obstacles based on these measurements, and
take action to lead the multirotor back to safety.

A proof-of-concept of this method is developed by training a reinforcement learning agent to
avoid obstacles beneath a descending quadrotor. This is first done in a simulated environment,
where the influence of hyperparameters, the amount of noise in the state signal, and the
number of training episodes are investigated. The best performing agent from simulation
is evaluated during a flight experiment with the Parrot Bebop 1 drone, where it is able to
prevent the quadrotor from hitting the obstacle in 80% of the episodes. Furthermore, it is
shown that the same level of performance can be achieved, by learning fully from scratch,
in-flight, without prior knowledge or training, during 50 real flight training episodes

An approach for extending this method to the avoidance of walls, ceilings, and smaller ob-
stacles is discussed and the expected performance when doing so on the Parrot Bebop 1 is
assessed. Additionally, it is shown that this method can easily be extended to other quadro-
tors, by demonstrating this on the Parrot Bebop 2 quadrotor.
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Chapter 1

Introduction

1-1 Background

In recent years multirotors, and quadrotors in specific, have grown to be the most popular
UAV platform. [12] This can be attributed to their simplicity, ability to hover and vertical
take-off and landing (VTOL) capability, all driving commercial, academic and private demand
for these vehicles.

With the acceptance of multirotors now high, the next step in development is largely ex-
pected to be the development of fully autonomous control for these UAVs. A key challenge
here, similar to that for other UAV-platforms, is in-flight autonomous object detection and
avoidance. Currently, partial solutions to this problem are usually either vision-based or
range-sensor-based.

Vision-based methods rely on an onboard camera and the use of computer vision algorithms
to detect and avoid obstacles. While this area of investigation certainly looks promising, it is
also dependent on good lighting conditions, and the implementation on multirotors is usually
limited by the amount of computational resources available on such a platform.

Other obstacle detection solutions usually rely on the addition of some range sensor for
proximity measurement, like a laser rangefinder or ultrasonic sensors, to detect obstacles.
Because of the added cost, weight and power usage of such a sensor, this can decrease flight
time significantly and restrict their usability to large multirotors.

A qualitative assessment of these classes of methods, as well as of the method that will be
proposed in this thesis, is shown in figure 1-1. Performance is considered to be a combination
of accuracy and reliability.

P
e

rf
o

rm
a

n
ce

Cost ($, weight, power & CPU)

Range

sensors

Vision

based

(a) Current obstacle detection methods

P
e

rf
o

rm
a

n
ce

Cost ($, weight, power & CPU)

Range

sensors

Vision

based

Obstacle -air!ow

interactions

(b) Placement of the proposed new method

Figure 1-1: Qualitative assessment of current obstacle detection solutions.
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2 Introduction

1-2 Problem statement

The objective of this research is to investigate and propose an alternative method for obstacle
avoidance and detection, one that does not require the addition of any sensors but relies
solely on measurements of the accelerometer and rotor controllers, both present on almost all
multirotors. This new obstacle avoidance method could potentially be used either as a stand-
alone method, for multirotors that are not equipped with another form of obstacle avoidance,
or as an addition to another obstacle avoidance solution.

The detection of obstacles is based on the principle that the flight dynamics of a multirotor
change when the multirotor is flying near a surface. A well-known example of this is the
so-called ground effect, an increase in lift force close to a ground surface, an effect also seen in
helicopters and fixed-wing aircraft. Similarly, a change in dynamics occurs when a multirotor
is flying close to a wall [37], or ceiling [52]. The proposed method then uses a reinforcement
learning controller to detect obstacles based on these measurements and take action to lead
the multirotor back to safety.

In the research, the focus is on quadrotors, a multirotor helicopter that is lifted and propelled
by four rotors. However, it is expected that, following a similar approach, this obstacle
avoidance technique can be extended to other types of multirotors as well.

In order to achieve the objective the following main research question and underlying sub-
questions have been defined:

How can a reinforcement learning-based quadrotor control system avoid obstacles
using the obstacle-airflow interactions caused by these obstacles?

SQ1 What is the state of the art in the related fields?

SQ1.1 What is the state of the art in the field of obstacle avoidance?

SQ1.2 What is the state of the art in the field of obstacle-airflow interactions between a
quadcopter and obstacles?

SQ1.3 What is the state of the art in the field of reinforcement learning?

SQ2 Given this state of the art, can a reinforcement learning-based quadrotor control system
avoid obstacles, using these obstacle-airflow interaction effects?

SQ2.1 How can the reinforcement learning-based control system best be setup?

SQ2.2 How can the reinforcement learning agent be trained and tested in simulation?

SQ2.3 How can this agent be trained and tested in a real-life experiment?

SQ2.4 What is the performance of the trained and tested control system?

SQ3 How can the knowledge gained from developing this reinforcement learning-based
quadrotor control system be applied to other quadrotors?
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1-3 Considerations 3

1-3 Considerations

1-3-1 Potential advantages of this new method

Since this new method does not require the addition of any sensors, there is a lot of potential
for multirotors that need to be either really light or really cheap. Opening up the ability to
also fly these type of multirotors autonomously in a safe manner.

Furthermore, by using this new method as an addition to another obstacle avoidance method
three major things can be achieved. These would be applicable to all multirotors, regardless
of cost or weight restrictions.

First of all, none of the current obstacle avoidance methods are 100% accurate, even in
their designed operational environment. By implementing a secondary method, relying on
a different type of detection technology, it is expected that this accuracy can be improved.
This could be done by using both methods simultaneously, or by using this new method as
an extra check when the primary obstacle detection method is not a 100% certain.

Secondly, a UAV flying autonomously can encounter situations that fall outside of their ex-
pected operational environment. An obvious example here would be a UAV operating indoors,
using computer vision for obstacle avoidance, when suddenly the lights go out. In such a case
a secondary method, not relying on visual light, could be a savior.

Thirdly all systems are subject to the risk of failure. As such, having a certain redundancy
in your obstacle avoidance method would be an advantage. Especially when it is a method
that does not require the addition of any weight to the UAV.

1-3-2 Potential disadvantages of this new method

There are of course also some potential downsides that need to be considered. First of all,
the obstacle-airflow interaction effects used by this method to detect obstacles only occurs
when the multirotor is close to the obstacle. Initial analysis from [37] and [53] shows that the
effect is measurable at a distance between 3 and 5 times the rotor radius. The direct impact
of this would be that the multirotor would probably need to fly at relatively low speeds.

Secondly, since the method relies on aerodynamic effects, its reliability would be influenced
by other aerodynamic effects like wind or turbulence. Leading to either false positives or false
negatives. As such, the application of this technique should probably first be applied indoor
before it is tested in outdoor environments.

Third and finally, there are certain types of obstacles that this method would have a hard time
detecting. Especially obstacles where the aerodynamic interaction between the multirotor and
the obstacle is small. Either because the obstacle itself is small compared to the size of the
multirotor, or because the obstacle does not have a solid surface, for example, a net.
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4 Introduction

1-4 Research approach

The research has been divided into three main parts. A literature survey, the preliminary
research, and the final thesis research.

In the literature survey, relevant literature will be identified and studied. The focus will be on
three topics: obstacle avoidance, reinforcement learning and the obstacle-airflow interactions
between a quadcopter and obstacles. For all three topics, both the basic principles and the
state of the art will be researched. By doing so, research question 1 (SQ1) will be answered.

In the preliminary research phase, an initial experiment will be performed in simulation,
this will provide some first experience with solving a problem like this. Furthermore, the
results from this preliminary research will help to partially answer subquestion 2.1 (SQ2.1) by
providing insight in the influence of reinforcement learning algorithms and hyperparameters.

Finally, in the final thesis research, subquestions 2 and 3 will be answered by training a RL
agent to intervene when it notices an obstacle beneath a descending quadrotor. This will first
be done in a simulated environment, where the influence of hyperparameters, the amount of
noise in the state signal, and the number of training episodes can be investigated. The best
performing agent from simulation will then be evaluated during a flight experiment with the
Parrot Bebop 1 drone in the CyberZoo at Delft University of Technology. Using the same
quadrotor, an experiment will also be conducted where the RL agent will learn from scratch.
Using these results the extension of the developed method to obstacles above, and on the
same level as the quadrotor will be assessed.

1-5 Report structure

First, in chapter 2, the relevance of this research from both a social and academic perspec-
tive will be highlighted. With respect to the social relevance both the social relevance of
autonomous aerial drones in general, and the social impact of this new obstacle avoidance
method will be discussed. In the academic relevance section, the threefold addition of this
research to the state of the art will be introduced.

The main thesis research and its most interesting results will be discussed in a stand-alone
article. This article is included in chapter 3. In the article, subquestion 2 and 3 will be
answered implicitly. An explicit answer to these subquestions will be provided directly after
the article, in section 3-2. For readers not familiar with reinforcement learning it is suggested
that section 4-3 of this thesis is read prior to the article. Similarly, readers not familiar with
obstacle avoidance might consider reading section 4-1 prior to the article.

In addition to providing an introduction into some of the topics touched upon in the article,
the literature survey in chapter 4 also discusses the state of the art in the fields related to
this research. By doing so, subquestion 1 will be answered. In chapter 5, the preliminary
investigation that preceded the main thesis research, and its results will be discussed. Thirdly,
any additional results of the final thesis research not discussed in the article will be discussed
in chapter 6.

The overall conclusions of the research will be drawn in chapter 7. After this, recommenda-
tions regarding future research will be made in chapter 8.
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Chapter 2

Social and academic relevance

The relevance of this research can be seen from both a social and academic perspective. To
highlight the importance of this research, and help place the conclusions in the right context,
the research will be described from both perspectives.

2-1 Social relevance

The social relevance can be split up into two key parts: the social relevance of autonomous
aerial drones in general, and the social impact of this new obstacle avoidance method.

The social relevance of autonomous aerial drones is mainly driven by the discovery and de-
velopment of new applications, which may range from industrial inspection tasks to disaster
response or package delivery applications. Covering all fields and applications would be im-
practical, but some examples of successful or promising applications are given below.

• Package delivery Of all drone applications, delivery drones have generated the most
media coverage and public attention. Promises of half-hour shipping times, reduced
greenhouse gas emissions and reduction of road traffic make this a promising application.
[60] The actual use of delivery drones is however still in its early development phases.

Figure 2-1: One of the prototype package delivery quadcopters from Amazon [4].

• Disaster response In the future, autonomous aerial drones can be of great assistance
in disaster prediction, assessment and response. For example by surveying an affected
area, delivering medical supplies or establishing vital wireless communication links for
survivors. [14]
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6 Social and academic relevance

• Industrial inspection Using aerial drones, like quadcopters, to inspect existing infras-
tructure can be cheaper, faster and safer than current inspection methods. [71] Several
utility companies, like AT&T, are already using aerial drones to inspect (cell) towers.

• Construction The ability of autonomous aerial drones to perform real-time aerial in-
spections of large construction and infrastructure sites allows for quick surveys and
mistake prevention. According to a study from PWC in 2017, dangerous accidents on
construction sites monitored by drones decreased by up to 91 percent. [46]

• Warehousing and inventory In addition to using drones to deliver packages, companies
like Wal-Mart are also testing with quadcopters for warehouse inventory management.
According to the company, these UAVs can do a full inventory check in a day, a task
that currently takes a month for people to do manually.[13]

Figure 2-2: Eyesee, a fully autonomous quadrotor for inventory inspection [16].

For these, and other applications, one might argue that these aerial drones could also be
controlled by human pilots instead of flying autonomously. While there is certainly some
truth in this, increasing the level of autonomy can bring down cost significantly and allow
for larger scale deployments of these systems. For example, by having a human supervise
or monitor the deployment of multiple drones, efficiency can be increased, while still leaving
higher level decisions to humans.

While the application areas described above show the social relevance of developing au-
tonomous UAVs, which will require obstacle avoidance at early levels of autonomy, the social
relevance of this specific obstacle avoidance method can best be explained by looking into the
specific advantages of this new method.

As mentioned earlier, this new method could either be used as the primary obstacle avoidance
method for small, lightweight, multirotors or as a secondary obstacle avoidance method for
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2-2 Academic relevance 7

larger multirotors. Both applications profit greatly from the very limited cost and resource
requirements of this method.

When this method is applied as a primary obstacle avoidance method for small quadcopters, it
removes the need for additional sensors, which you would need for range-sensor based methods,
and large computational capacity, which you usually need for vision-based methods. By doing
so, not only cost is saved, but both weight and power consumption can be decreased. This
can greatly increase the flight time and range of such a quadcopter, thereby increasing the
usability and applications.

When using this new method as a secondary obstacle avoidance method for larger quadcopters,
it can act as a backup system or as an extra obstacle detector. Vision-based methods, for
example, require good lighting conditions, so drones using that as their primary obstacle
avoidance method could benefit from having the option to switch to this new method when
lighting conditions worsen. An example of this would be a disaster response drone entering
a room filled with smoke, or a warehouse inspection drone returning safely to its base when
the lights turn off during a power outage. The reliability and safety of drone operations can
thus be increased by using this new method as a secondary obstacle avoidance method.

2-2 Academic relevance

The addition of this research to the state of the art is threefold. This research offers a distinct
addition to all the three fields it is part of: obstacle avoidance, reinforcement learning and
the research of obstacle-airflow interaction between a quadcopter and an obstacle.

First of all, this research contributes to the field of obstacle avoidance by offering an innovative
new method of obstacle avoidance. Furthermore, this new method is one that does not require
the addition of any sensors, solely relying on the IMU and rotor speed measurements already
available in most UAVs. As such, the method can not only be used as a stand-alone obstacle
avoidance solution, but also as a low-cost addition, an extra layer of safety, for other obstacle
avoidance solutions. The potential advantages and disadvantages of this method in this
context are described in more detail in section 1-3.

Secondly, in the field of reinforcement learning, this research adds to the state of the art by
its unconventional placement of the reinforcement learning agent within the control loop. In
most current reinforcement learning applications the agent is in full control over the actions
taken; the agent chooses an action, which results in a reward and a new state. In this appli-
cation, however, the reinforcement learning agent is used in combination with a conventional
controller. The conventional controller controls the UAV during most of the flight, but its
actions can be overridden at any time by an action of the reinforcement learning agent.

Finally, regarding the research of obstacle-airflow interaction between a quadcopter and an
obstacle, this research will provide additional measurements of the wall-effect, the aerody-
namic interaction between a quadcopter and a large vertical surface on the same level as the
quadcopter. Measurement data of this effect is currently scarce, so additional measurement
data would be of value to any research looking into this effect.
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Chapter 3

Article

3-1 Article

In the following stand-alone article the main research of this thesis will be presented. For
readers unfamiliar with reinforcement learning it is suggested that section 4-3 of this thesis
is read prior to the article, as it will introduce some of the reinforcement learning concepts
being mentioned in the article. Furthermore, readers not familiar with obstacle detection and
avoidance might consider reading section 4-1 prior to continuing with the article.
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This research investigates and proposes a new method for obstacle detection and avoidance
on quadrotors. One that does not require the addition of any sensors, but relies solely on
measurements from the accelerometer and rotor controllers. The detection of obstacles is
based on the principle that the airflow around a quadrotor changes when the quadrotor is flying
near a surface. A well-known example of this is the ground effect, an increase in lift force close
to a ground surface. Similarly, a change in dynamics occurs when a quadrotor is flying close
to a wall or ceiling. The proposed method uses a reinforcement learning controller to detect
obstacles based on these measurements, and take action to lead the quadrotor back to safety.
A proof-of-concept of this method is developed by training a reinforcement learning agent to
avoid obstacles beneath a descending quadrotor. This is first done in a simulated environment,
where the influence of hyperparameters, the amount of noise in the state signal, and the
number of training episodes are investigated. The best performing agent from simulation is
evaluated during a flight experiment with the Parrot Bebop 1 drone, where it is able to prevent
the quadrotor from hitting the obstacle in 80% of the episodes. Furthermore, it is shown
that the same level of performance can be achieved, by learning fully from scratch, in-flight,
without prior knowledge or training, during 50 real flight training episodes. An approach for
extending this method to the avoidance of walls, ceilings, and smaller obstacles is discussed and
the expected performance when doing so on the Parrot Bebop 1 is assessed. Additionally, it is
shown that this method can easily be extended to other quadrotors, by demonstrating this on
the Parrot Bebop 2 quadrotor.

Nomenclature

α Learning rate
γ Discount rate
δt Temporal-Difference error
ε Exploration rate
θ Pitch angle [rad]
λ Decay-rate for eligibility traces
µ Mean
σ Standard deviation
τext,x, τext,y, τext,z Estimated external torques [Nm]
φ Roll angle [rad]
ωi Rotational speed of rotor i [rad/s]
a Action
Asignal Strength of the signal
b Distance between opposite rotors [m]
c Distance to a surface above [m]
d Distance between adjacent rotors [m]
di,x Distance from rotor i to the x-axis [m]
di,y Distance from rotor i to the y-axis [m]
e Ground effect model bias [N/kg]
Et Eligibility traces
Fdrag,x, Fdrag,y, Fdrag,z Drag forces [N]

Fext,x, Fext,y, Fext,z Estimated external forces [N]
Fi Thrust produced by rotor i [N]
g Standard gravitational acceleration [m/s2]
Isst , Iaat Identity-indicator functions
Ixx, Iyy, Izz Moments of inertia [kg·m2]
Kb Body lift coefficient
kD,x, kD,y, kD,z Drag coefficients [N·s2/m]
ki Rotor gain [N·s2/rad]
li Rotor torque gain [kg·m2/rad]
m Quadrotor mass [kg]
Nepisodes Number of episodes
p, q, r Body rates around x,y and z axes [rad/s]
Q Action-value function
r Reward
Rrotor Rotor radius [m]
s State
Tc Thrust in ceiling effect [N]
Tg Thrust in ground effect [N]
T∞ Thrust in free flight [N]
u, v,w Speed in body x,y and z axes [m/s]
z Distance to a surface below [m]
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I. Introduction

In recent years, Unmanned Aerial Vehicles (UAVs), and quadrotors in specific, have risen in popularity. Their low-cost,
small volume and Vertical Take-Off and Landing (VTOL) capability have driven their application outside of aerial

photography to many new applications, which may range from industrial inspection tasks to disaster response or package
delivery applications [1].

The next step in development is expected to be increasing the level of autonomy for these quadrotors [2]. This could
bring down the cost significantly and allow for larger scale deployments of these solutions. A key remaining challenge
for this, similar to that for other UAV-platforms, is in-flight autonomous object detection and avoidance. Currently,
solutions to this problem are usually either vision-based or range-sensor-based.

Vision-based methods rely on an onboard camera and the use of computer vision algorithms to detect and avoid
obstacles. While this area of investigation and initial applications certainly look promising [3], it is also dependent on
good lighting conditions. Furthermore, the implementation on quadrotors can be limited by the amount of computational
resources available on such a platform.

Range-sensor solutions rely on the addition of some range sensor, like a laser rangefinder or ultrasonic sensor,
for proximity measurement in order to detect obstacles. These solutions can achieve good accuracy and have been
successfully implemented on quadrotors [4]. However, because of the added cost, weight and power usage of such a
sensor, they can decrease flight time and limit their usability to only larger quadrotors.

This research investigates and proposes an alternative method for obstacle avoidance and detection, one that does not
require the addition of any sensors but relies solely on measurements of the accelerometer and rotor controllers, both
present on almost all quadrotors. This new obstacle avoidance method could be used as a stand-alone method for small
quadrotors, thereby removing the need for additional sensors, thus saving cost and weight while increasing flight time.
Alternatively, when being used as an addition to other obstacle avoidance solutions it can increase safety and reliability.

The detection of obstacles is based on the principle that the airflow around a quadrotor changes when the quadrotor
is flying near a surface. A well-known example of this is the so-called ground effect, an increase in lift force close to a
ground surface, an effect also seen in helicopters [5] and fixed-wing aircraft [6]. Similarly, a change in airflow occurs
when a quadrotor is flying close to a wall [7], or ceiling [8]. The proposed method uses a Reinforcement Learning (RL)
controller to detect obstacles based on these effects and take action to lead the quadrotor back to safety.

In this article, the initial development of a proof-of-concept of this low-cost method is described. This proof-of-
concept is limited to the detection of large obstacles underneath a quadrotor, using the so-called ground effect. The
results from this are used to assess and discuss the extension of this method to the avoidance of obstacles above and on
the same level as the quadrotor.

The contribution of this research to the state of the art is twofold. This research offers a distinct addition to both
fields it is part of: obstacle avoidance and reinforcement learning. First of all, this research contributes to the field
of obstacle avoidance by offering an innovative method of obstacle avoidance. Furthermore, this new method is one
that does not require the addition of any sensors, solely relying on the Inertial Measurement Unit (IMU) and RPM
measurements already available in most UAVs.

Secondly, in the field of reinforcement learning, this research adds to the state of the art by its unconventional
placement of the reinforcement learning agent within the control loop. Instead of being in full control, the RL agent is
run in combination with an inner loop flight control following a predetermined flight plan. The UAV will follow the
flight plan during most of the flight, but this can be overridden at any time by an intervention action of the reinforcement
learning agent.

This article is structured as follows. First, a brief background on the obstacle-airflow interactions between a quadrotor
and obstacles, and RL is given in section II. Then, in section III, the method in which obstacle-airflow interactions
are used to detect obstacles is discussed. The reinforcement learning setup is discussed in section IV. The setup and
results of the experiments carried out in simulation are discussed in section V. Similarly, the setup and results of the
flight experiments are discussed in section VI. In section VII the extension of this obstacle avoidance method to walls,
ceilings, and other quadrotors is discussed. The conclusions of this article are presented in section VIII, after which
recommendations for future research are made in section IX.

II. Background
Background information is presented on the obstacle-airflow interactions between a quadrotor and obstacles.

Furthermore, the basics of reinforcement learning, as well as the application for flight control of quadrotors and the
specific reinforcement learning algorithm used for this research, are discussed.
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A. Obstacle-airflow interactions between a quadrotor and obstacles
The dynamics of a quadrotor are greatly dependent on its aerodynamics, most importantly the airflow around the

thrust-producing rotors. This airflow can be influenced by surfaces in proximity to the quadrotors. In the proposed
method, this change in dynamics will effectively function as the source of information used by the reinforcement learning
agent to determine the presence of obstacles. Therefore, it is of key importance that their effect on the quadrotor is
known and can be estimated in flight. Furthermore, training in simulation will require a model of these effects.

1. Obstacles underneath the quadrotor
The influence of a horizontal surface underneath a rotor has been well researched in literature [5, 9]. Most of this

research has been focused on helicopters, but in general, it can be noted that for all rotorcraft operating closely above a
ground surface, the produced thrust increases [10].

To estimate this thrust increase for quadrotors, often the classical model for ground effect in helicopters is used.
This analytical model is derived by Cheeseman and Bennett [5] and shown in Eq. 1. It is based on potential flow theory,
under both the assumption that the helicopter is hovering and the assumption that the rotor can be modeled as a point
source. The method of images is then used to derive the ratio between the thrust produced by a helicopter in ground
effect (Tg) and the thrust out of ground effect (T∞), as a function of the radius of the rotor (Rrotor) and the distance to the
surface underneath (z).

Tg

T∞
=

1
1 − (Rrotor

4z )2
(1)

Validation using experimental measurements has since shown that the ground effect for a quadrotor is larger than
predicted by this equation [10, 11]. Furthermore, these experiments showed that the influence of the ground effect in
quadcopters was apparent up to heights of 5 times the rotor radius.

A new model, specifically for quadrotors was recently proposed by Sanchez-Cuevas et al. [10]. It was shown to
represent their experimental results more closely than Eq. 1. This model accounts for the presence of multiple rotors by
representing them not as one but as four sources. It assumes a quadrotor hovering above a ground surface with four
co-planar rotors.

Furthermore, this new model accounts for an effect called the fountain effect, an additional increase in lift previously
seen in tandem helicopters [12] and quadcopter experiments [11]. It can best be explained by looking at the CFD
simulation of a simplified quadrotor in ground effect, as shown in Fig. 1. As expected, the wakes from each rotor spread
out to the sides as they near the ground, however in the center area where the two airflows interact with each other a
vortex ring appears. Due to this aerodynamic effect, an upwards force is applied to the body of the quadrotor, leading to
a greater ground effect. This effect is represented in this new model by an empirical body lift coefficient [10].

Fig. 1 CFD simulation of a simplified quadrotor model hovering close to a ground surface plane [10].

2. Obstacles above the quadrotor
Little research has been conducted on the influence of obstacles or surfaces above a quadrotor, the ceiling effect.

The most relevant description and experiments are performed by Sanchez-Cuevas et al. [8]. In this research, the thrust
produced by both a single rotor and a quadcopter, at varying distances to a ceiling surface, were measured and compared.
These measurements were performed on a static test bench.
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In Sanchez-Cuevas et al. [8], the increment in the thrust of a single rotor due to the ceiling effect is approximated by
an analytical function similar to that of the ground effect shown in Eq. 1. The ratio between the thrust in (Tc) and out
of the ceiling effect (T∞) is given by equation 2, where c is the distance to the ceiling, and K1 and K2 are determined
experimentally using ordinary least squares. A model for the increase in thrust for a complete quadcopter is not given,
but it is shown that the relative increase is larger than that for a single rotor.

Tc

T∞
=

1

1 − 1
K1

(
Rrotor
c+K2

)2 (2)

3. Obstacles on the same level as the quadrotor
The influence of large vertical surfaces like walls, on the same level as the quadrotor, has been described by Lee et al.

[13], and Mckinnon [7]. Where the first article focuses only on reference tracking in the aerodynamic effects caused by
such a wall, the second provides actual measurements of the effects caused by a wall. In that research, an Unscented
Kalman Filter (UKF), based on a known model of the UAV, is used to estimate the external forces and torques near
ground and wall surfaces whilst hovering.

These measurements indicate a small external force away from the wall in the horizontal plane. Furthermore, a
small external torque around the pitch and roll axes was noticed. Finally, a small downward external force was measured
in the vertical plane. A clear increase in these three effects can be seen from a distance of 0.35 meter from the wall,
about 3 times the rotor radius of the quadrotor that was used for that particular research.

B. Reinforcement learning
Reinforcement learning is a large and quickly developing field, containing a multitude of learning algorithms and

architectures. In this research, reinforcement learning is used to find an optimal policy for the detection and avoidance
of obstacles underneath a descending quadrotor. In the section below, the principles of RL and their application to flight
control of multirotors is discussed. Furthermore, the method used for this research, Q-learning, is introduced.

1. Principles of reinforcement learning
Reinforcement learning is a computational approach to machine learning where an agent learns to maximize the

cumulative rewards it receives when interacting with an environment. At each timestep t the agent chooses an action at ,
based on the current state st and its policy function, a mapping from state-space to action-space. The environment
responds to this action by transitioning to state st+1 and providing the agent with a numerical reward rt+1, a process
depicted in Fig. 2a.

Environment

Agent

atrt+1

st+1st

rt

(a) The agent-environment interaction in reinforcement
learning.

Environment

at
rt+1

st+1st

rt

Cri c Actor

Value func!on

TD error 

Policy

(b) The actor-critic architecture.

Based on this reward and new state, a reinforcement learning algorithm specifies how the policy should be updated.
The RL method does so with the goal of maximizing the sum of rewards received by the agent.

A special case of reinforcement learning methods are the actor-critic methods, in which the action selection and value
estimation are split into two separate structures. The actor selects the actions and the critic estimates the (action-)value
function and uses this to criticize the actor, as shown in Fig. 2b. This critique signal provided by the critic can be a
scalar and is called the Temporal-Difference (TD) error (δt ). It is used by the actor to adjust its policy.

2. Applying reinforcement learning to flight control of quadrotors
There are multiple examples of reinforcement learning techniques being applied to multirotors, and quadrotors in

specific. Reinforcement learning agents have been used both for full control of a quadrotor [14] and for adjustment of a
conventional controller [15]. Key challenges in applying reinforcement learning to flight control remain the challenge of
safety, the challenge of robustness, the challenge of online efficiency and the challenge of sample efficiency.
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3. Q-learning
One often used reinforcement learning method is Q-learning. Q-learning is a model-free, off-policy, Temporal-

Difference method, which has three key implications. First of all, it does not require a model of the environment but
instead learns solely from interacting with the environment. Secondly, the policy it uses to select actions, its behavior
policy, is not necessarily equal to the estimation policy, the policy that is being improved to approach the optimal policy.
Finally, methods of the Temporal-Difference learning class makes use of bootstrapping, using previously estimated
values for the action-value function Qt (s, a) for its new estimate Qt+1(s, a), with the goal of approaching the optimal
action-value function Q∗(s, a).

Q-learning is often combined with eligibility traces, another key reinforcement learning mechanism, to obtain a
more general method that may learn more efficiently. One implementation of this is Watkins’s Q(λ) method [16]. The
update equations for this method, using replacing traces, are given in equations 3 and 4.

The choice for Watkins’s Q(λ) is based on a preliminary investigation where Monte Carlo, SARSA and Q-Learning
methods were tested on a simplified version of the problem at hand. Results of this investigation suggest that Watkin’s
Q(λ) is best suited for problems with this particular setup.

Et (s, a) =
{

min
(
γλEt−1(s, a) + Isst · Iaat , 1

)
if Qt−1(st, at ) = maxa Qt−1(st, a)

Isst · Iaat otherwise.
(3)

Qt+1(s, a) = Qt (s, a) + αδtEt (s, a) for all s,a, with δt = rt+1 + γmax
a

Q(st+1, at+1) −Q(st, at ) (4)

III. Using obstacle-airflow interactions for obstacle detection
The result of the obstacle-airflow interactions on the quadrotor can be estimated by using a simple quadrotor model

to estimate external forces and torques in and around all three axes. A procedure to do so is explained in detail for the
external force in the vertical direction. This estimate is used to create a model for the ground effect, using measurement
data gathered with the same drone that is used for the final flight experiments.

A. Frame of reference & equations of motion
For the purpose of this article, all derivations are performed within the quadrotor body frame and with the assumption

of a rigid body. This right-handed coordinate frame is fixed to the quadrotor at the center of gravity, with the rotor axes
pointing in the vertical z direction, the direction of thrust being negative, and the arms pointing in the x and y directions.
A sketch of a quadrotor, showing this reference frame can be seen in Fig. 3.

z

x
y

φ

(a) Quadrotor near a ground surface.

x

y

1 2

34

(b) Top view of a quadrotor.

z

x

(c) Side view of a quadrotor near a wall.

Fig. 3 Quadrotor body frame of reference.

The translational set of equations of motion for the quadrotor is given in Eq. 5. The gravitational acceleration is
denoted as g, the mass of the quadrotor is m, the body attitude angles in pitch, roll, and yaw are given by θ, φ, ψ, the
drag forces as Fdrag and the thrust produced by each rotor i as Fi . Furthermore, the body speeds in forward, sideways
and vertical direction are given by u, v,w, so the accelerations in the body frame are Ûu, Ûv, Ûw. Finally, p, q and r refer to
the angular rates for pitch, roll, and yaw.
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−mg sin θ + Fdrag,x

mg sin φ cos θ + Fdrag,y

mg cos φ cos θ −∑
i Fi + Fdrag,z


= m


Ûu + qw − rv
Ûv + ru − pw
Ûw + pv − qu


(5)

Assuming symmetry about the x and y axes of the body frame, as well as negligible rate damping, the rotational set
of equations of motion is given by Eq. 6. Here Ûp, Ûq and Ûr, refer to the angular acceleration rates, di,x to the shortest
distance from rotor i to the x-axis and di,y to the shortest distance to the y-axis. The moments of inertia are given as
Ixx, Iyy and Izz . Finally, the torque produced by each rotor is assumed to be a function of rotor speed T(ωi).


F1d1,x − F2d2,x − F3d3,x + F4d4,x

F1d1,y + F2d2,y − F3d3,y − F4d4,y∑
i T(ωi)


=


Ixx Ûp
Iyy Ûq
Izz Ûr


+


−Iyyqr + Izzqr
Ixxpr − Izzpr
Izzpq + Iyypq


(6)

B. Estimating external forces & torques
While the equations of motion given in Eq. 5 and 6 provide a model of the quadrotor in perfect free flight conditions,

without any disturbances, wind or obstacle-airflow interactions, this is not always the situation in reality. To the
contrary, these obstacle-airflow interactions are exactly the subject of interest. Therefore an external force, representing
the difference between reality and the simplified quadrotor model, is added to each of the translational equations
of motion; Fext,x, Fext,y, Fext,z . Similarly an external torque is added to each of the rotational equations of motion:
τext,x, τext,y, τext,z .

Since the external forces and torques represent all unmodelled dynamics, like the influence of obstacle-airflow
interactions, these forces and torques can also be used to identify these dynamics. This can be accomplished by rewriting
the equations of motion and solving for the external force or torque, using the known or approximated states. An example
of this will be given below for the external force in the z-direction, as this force can be caused by obstacle-airflow
interactions with obstacles underneath the quadrotor. The derivation starts with the translational equation of motion in
the z-direction, as shown in Eq. 7.

mg cos(φ) cos(θ) −
∑
i

Fi + Fdrag,z + Fext,z = m( Ûw + pv − qu) (7)

The IMU sensor of the quadrotor consists of a 3-axis accelerometer, providing accelerations, and 3-axis gyroscope,
providing angular rates. The body speeds can either be derived from an external positioning system (like GPS, or
OptiTrack), integration of body accelerations, or a combination of both using sensor fusion.

The onboard accelerometer measures in the body frame, however, it does not just measure Ûw. Instead it is influenced
by the gravity vector, as it measures Û̂w, with Û̂w = Ûw − g cos(φ) cos(θ). So if one substitutes this in Eq. 7 and solves for
Fext,z , the following estimate for the external force in the vertical direction is derived:

Fext,z

m
= Û̂w + pv − qu +

1
m

∑
i

Fi − 1
m

Fdrag,z (8)

Now if the following model for the thrust produced by each rotor is assumed: Fi = kiω2
i [17], this can be rewritten to:

Fext,z

m
= Û̂w + pv − qu︸         ︷︷         ︸

from IMU

+
∑
i

ki
m

ω2
i︸︷︷︸

from motors

− 1
m

Fdrag,z (9)

To estimate ki
m an initialization procedure is conducted when the quadrotor is hovering in free flight, without closeby

obstacles or disturbances. The external force Fext,z and drag Fdrag,z can then assumed to be zero. The equation above
can then be solved for ki

m if either the assumption is made that ki
m is equal for all four rotors, or that the force produced

by each of the four rotors during this initialization procedure is equal.
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ki
m
=
− Û̂w − pv + qu∑

i ω
2
i

assuming equal ki (10)
ki
m
=
− Û̂w − pv + qu

4ω2
i

assuming equal thrust (11)

The drag force can be estimated by performing another experiment in free flight, without closeby obstacles or
disturbances. However, instead of hovering the quadrotor should now move up and down. Using the previously found
values for ki

m , Eq. 9 can be solved for Fdrag,z/m for each measurement point of the experiment. It can be expected that
the drag is of the form |Fdrag,z/m| = kD,zw

2, where the direction of the force is opposite to the speed [18]. A function of
this form can thus be fitted to the experiment data, and solved for kD,z using for example linear least squares, providing
a model for Fdrag,z/m.

Fext,z

m
= Û̂w + pv − qu︸         ︷︷         ︸

from IMU

+
∑
i

ki
m

ω2
i︸︷︷︸

from motors

−Fdrag,z/m , with Fdrag,z/m =
{
−kD,zw

2 if w > 0
kD,zw

2 otherwise
(12)

Similarly, the following equations can be derived to estimate the external forces in x and y direction.

Fext,x

m
= Û̂u + qw − rv︸         ︷︷         ︸

from IMU

−Fdrag,x/m , with Fdrag,x/m =
{
−kD,xu2 if u > 0
kD,xu2 otherwise

(13)

Fext,y

m
= Û̂v + ru − pw︸         ︷︷         ︸

from IMU

−Fdrag,y/m , with Fdrag,y/m =
{
−kD,yv

2 if v > 0
kD,yv

2 otherwise
(14)

Following a similar process, equations can be derived to estimate the external torque around the x, y, z axes. The
resulting estimators are shown in Eq. 15, 16 and 17. To get to these estimators, it is assumed that the angular rates are
relatively small and qr , pr and pq can be considered negligible. Furthermore, these estimators make use of ki

m , this is
the same parameter that is used for estimating the external force in the z-direction.

The moments of inertia around the x and y-axis can be estimated by performing an experiment in free flight, where
the quadrotor performs sequentially a pitch and roll changing maneuver. If the external torques are assumed to be zero,
Eq. 15 and 16 can be solved for Ixx and Iyy .

τext,x

Ixx
= Ûp − 1

Ixx

[ k1
m
ω2

1d1,x − k2
m
ω2

2d2,x − k3
m
ω2

3d3,x +
k4
m
ω2

4d4,x
]

(15)

τext,y

Iyy
= Ûq − 1

Iyy

[ k1
m
ω2

1d1,y +
k2
m
ω2

2d2,y − k3
m
ω2

3d3,y − k4
m
ω2

4d4,y
]

(16)

To estimate the external force around the z-axis, as shown in Eq. 17 it is assumed that the torque produced by one
rotor can be approximated by T(ωi) ≈ liω2

i [17]. The parameters li
Izz

can be estimated by letting the quadrotor perform
an initialization procedure in free flight, where τext,z is assumed to be zero. If one then either assumes equal li , or equal
torque, Eq. 17 can be rewritten to estimate the torque parameters.

τext,z

Izz
= Ûr + l1

Izz
ω2

1 −
l2
Izz

ω2
2 +

l3
Izz

ω2
3 −

l4
Izz

ω2
4 (17)

Finally, with respect to the accuracy of the three external torque estimates, it is important to note that angular
acceleration rates are often not provided directly by an IMU. Instead, they might need to be acquired by taking the
derivative of the angular rates, which introduces noticeable noise into the estimation.
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C. Challenges
While the method described above provides estimates of the external forces, they are not perfect estimates. There

are three main challenges for achieving accurate estimates: inaccuracies in the estimated model, noisy measurements
and delays in measurements.

Inaccuracies in the estimated model can be a result of incorrect assumptions, disturbances during initialization or
changing system dynamics (e.g. a difference in mass due to a change in the payload). To cope with this, especially
the latter, the estimation of the rotor gains is performed on board the quadrotor at the start of every flight. This is
fully automated and takes only 2 seconds. In addition to being influenced by the gravity factor, the measured body
accelerations Û̂u, Û̂v, Û̂w are also susceptible to sensor noise and vibrations in the body frame. One common source of such
vibrations are the rotors. In this research, a 4th order Butterworth filter with a cutoff frequency of 3Hz is applied to all
accelerometer and gyroscope measurements in an effort to remove sensor noise and rotor-induced vibrations. This
choice is based on a frequency spectrum analysis and a trade-off between remaining noise and introduced delay.

Finally, delays in the measured states can lead to inaccuracies in the estimations. One of such delays is caused by the
low-pass filter discussed above, which is expected to introduce a 140ms delay [19]. Therefore, the same filter is also
applied to the speed, attitude, and rotor measurements in order to keep the signals synchronized. At a descend speed of
0.3m/s this thus corresponds to a distance of 4.2cm.

D. Model for the external force in the vertical direction when flying close to the ground
In order to train reinforcement learning agents to avoid obstacles underneath the quadrotor, a training environment is

created. To make this environment as realistic as possible, a model of the net vertical force caused by the ground effect
is created. This model is created based on measurements gathered during three separate measurement flights with the
Parrot Bebop 1 drone, the same drone that is used for the flight experiments. In these measurement flights, the quadrotor
descends from 1m height, with constant speed, to 1cm above a large surface of artificial grass. At each timestep, the
external force in z-direction is estimated.

The model for the external force is based on the recently proposed formula for thrust increase in ground effect
provided by Sanchez-Cuevas et al. [10]. In this formula, the increase in thrust near a surface underneath the quadrotor is
not only dependent on the rotor radius Rrotor and distance to the ground z, but also on the distance between adjacent
rotors d, the distance between opposite rotors b and an empirical body lift coefficient Kb . For this research, the model is
extended with a bias e and rewritten to approximate Fext,z/m, as can be seen in Eq. 18.

Fext,z

m
= −g [ 1

1 − (Rrotor
4z )2 − R2

rotor( z√
(d2+4z2)3

) − (R2
rotor
2 )( z√

(2d2+4z2)3
) − 2R2

rotor( z√
(b2+4z2)3

)Kb

− 1
]
+ e (18)

Non-linear least squares, using the Trust Region Reflective (TRF) algorithm and boundaries based on the physical
properties of the quadrotor, is used to fit this function to the measurement data. This results in the following parameters:
R = 0.05m, d = 0.181m, b = 0.253m, Kb = 0.474, e = −0.150. From Fig. 4 it can be seen that this function better
replicates the measurement data than the classical formula from Cheeseman and Bennett [5].
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Fig. 4 Estimated external force in the vertical direction as a function of height above the ground surface.
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IV. Reinforcement learning setup
In this section, the position of the reinforcement learning agent in the general control scheme are discussed.

Furthermore, the states, actions, and rewards provided to the agent are introduced. Additionally, the initialization
and termination conditions are highlighted. Finally, the exploration strategy, reinforcement learning algorithm, and
hyperparameter are discussed.

A. General control scheme
The general control scheme of both the simulation and real flight experiment is depicted in Fig. 5. As can be seen

from this figure, the RL agent is set up as an actor-critic method, where the actor is only updated after an episode has
ended. The reason for this is practical, on the Parrot Bebop 1 the onboard computational capacity is limited. Therefore it
is expected that the update rate of the RL agent will not be able to keep up with the frequency of the control loop, which
runs at 512Hz. This high frequency is chosen to limit reaction time and give the agent the best chance of preventing
collision with the obstacle underneath.

The state estimator that is indicated in the control scheme is the function that estimates Fext,z/m. In the simulation
experiments, this is estimated using the ground model discussed in section III.D. In the actual flight experiments, it is
estimated based on the actual measured signals using Eq. 12.

Actuator
dynamics

Commanded
Rotor speeds

Flight controller

Action

Flight plan

Intervention?

Descend with 0.3 m/s

State estimatorRL Critic Reward calculator

State

Reward

RL Actor

Quadrotor 
dynamics

Actual
Rotor speeds

Accelerations1/sRates & speeds1/sAttitude & position

EnvironmentAgent

Fig. 5 High-level overview of the control scheme used in the experiments.

B. States & actions
Two states are available to the reinforcement learning agent; the current estimate of Fext,z/m and the action chosen

in the previous timestep at−1. The estimate of external force Fext,z/m is discretized into 9 equally spaced bins, ranging
from -0.2N/kg up to -1.00N/kg. The action in the previous timestep at−1 is provided to the RL agent because the reward
given by the environment depends as much on the previously chosen action as on the external force.

Based on these states, the agent then decides which action to perform. There are three actions available to the agent;
No action (ano-action), save (asave) and hover (ahover). When ano-action is chosen, the quadrotor continues on its original
flight plan for one timestep, thus continuing the 0.3m/s descend. When choosing asave, a short 1-second full-thrust
command is sent to the quadrotor inner control loop. Finally, when choosing ahover, the quadrotor inner control loop is
given the command to hover for 0.5 seconds.

As mentioned above, two of the three potential actions take more than 1 timestep to execute. Hovering will take 256
timesteps and a save 512 timesteps. During this time the reinforcement learning agent is considered frozen, no new
states are provided to the agent, no actions are picked by the agent and neither the action-value function, policy nor
eligibility traces of the agent are updated. Any rewards that the agent might receive during this period are summed and
provided to the agent for processing at the final timestep of the multistep action, together with the new state.

C. Rewards & termination
The goal of the reinforcement learning agent is to prevent the quadrotor from hitting any obstacles underneath. As

such, the largest negative reward is given when the quadrotor comes to close to the obstacle below, as determined by the
termination height ztermination, with height referring to the height above the obstacle. While this is referred to as a crash,

9



it must be noted that it is not an actual crash of the quadrotor, instead, the safety controller intervenes, preventing an
actual collision, and leading the quadrotor back to safety. In all experiments, a termination height of 0.05 meter is used.

R(s, a) =
{
−2000 + Ra if z ≤ ztermination

Ra otherwise
(19)

Furthermore, a negative action-based reward Ra is given when the agent intervenes, especially when the intervention
is false. In this case, false is defined as outside of the area from which the ground effect can be measured, which was
estimated to be 0.25 meter, corresponding to 4 times the rotor radius.

Ra(s |a = asave) =
{
−500 if z > 0.25
−50 ∗ 0.25−z

0.25−ztermination
if z ≤ 0.25

, Ra(s |a = ahover) =
{
−100 if z > 0.25
−25 if z ≤ 0.25

(20)

There are three ways in which an episode can end. First of all, when the agent intervenes by performing a save, this
is an episode-ending action. Secondly when the quadrotor comes to close to the surface underneath, as defined by Eq.
19. In either case, the final reward is processed by the agent and the episode ends. If neither of the two happens the
episode automatically ends after 10 seconds.

As can be concluded from these termination conditions, all episodes are finite, therefore it is not an absolute
requirement to have a reward discount factor γ < 1. In the context of obstacle avoidance, it can even be argued that the
negative impact of a collision in the future should not be discounted at all. Therefore, in this reinforcement learning
problem, it is chosen to have γ = 1.0.

D. Exploration & initialization
Initial results with ε-greedy exploration strategies [20] showed that exploration was quite challenging for the RL

agents, the number of state visits was highly skewed towards states with Fext,z/m close to zero. These states typically
correspond to heights out of the ground effect. The states with more negative Fext,z/m, that generally correspond to
heights within the ground effect, were rarely visited by the agents. Further studies showed that the limited exploration of
states close to the ground is inherent to the problem, for which there are two reasons.

First, the save action is episode-ending. As such, any exploration strategy which relies on random actions being
picked runs the risk of ending the episode, and thus stopping further exploration, every time it does so. This is
problematic when it is prone to happen early on in the episode, as it prevents the quadrotor from coming close to the
ground. Therefore, the RL agent will rarely experience those states. An illustration of this can be seen in Fig. 6a.

Secondly, there are a lot of timesteps compared to the number of potential discrete states. This means that during the
descent the agent will often be in the same state for many steps. This is a challenge for exploration because it requires
many subsequent exploratory actions to be taken in order to reach another state. An example of this is depicted in Fig.
6b, where it must be noted that in reality it usually takes way more than three steps to progress from one state to the next.
This reason relates back to the unconventional placement of the RL agent in the control scheme, as running the agent at
a high frequency allows for quick interventions, but leads to this large number of timesteps per discrete state.

Episode

start

-0.9

F
ext,z

/m

-0.2-0.3-0.4-0.5-0.6-0.7-0.8-0.9-1.0

Area of interest
Save

Save

Greedy action Exploratory action

(a) Early ending of an episode due to exploration.
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-0.9

F
ext,z

/m

-0.2-0.3-0.4-0.5-0.6-0.7-0.8-0.9-1.0

Area of interest
Save

Save

Greedy action Exploratory action

(b)Multiple consecutive exploratory actions required to go
past a state where the greedy action is save.

Fig. 6 Two typical exploration challenges for this particular reinforcement learning problem. Note: only one
dimension of the policy is shown.

To handle these issues, a combination of three different exploration strategies is implemented; exploring starts,
episode-long exploratory actions, and epsilon-greedy exploration. An example of this strategy is shown in Fig. 7.

First of all, exploring starts are implemented [20]. From the perspective of the simulated or actual quadrotor, each
episode always starts when hovering at 1-meter height, where it is given the command to descend with 0.3m/s. The RL
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Fig. 7 Implemented threefold exploration strategy.

agent is however not initialized until height zexpl is reached. This exploratory starting height zexpl is randomly taken from
the uniform distribution [0.45, 1.0] before the start of each episode. This part of the exploration strategy encourages the
exploration of the states that typically occur closer to the ground.

Secondly, episode-long exploratory actions are randomly generated before the start of each episode; for each state s
in the state-space there is a chance εepisode that random action a will be taken on every visit of that state, instead of the
greedy action. By doing so, this approach can mitigate the challenge of requiring multiple consecutive exploratory
actions to get to another state.

Finally, the methods above are combined with ε-greedy exploration at each timestep. The chance of picking a
random action, instead of the greedy or episode-long exploratory action for that state, is then given by εstep.

E. Hyperparameters
There are four key hyperparameters that determine the behavior of the RL agent; the learning rate (α), exploration

rate at each step (εstep), episode-long exploration (εepisode) and decay of eligibility traces (λ). The results from the
previously mentioned preliminary investigation suggest that, when using Q-learning, a high, non-decreasing, exploration
rate at each step εstep, a λ between 0.1 and 0.5, and a learning rate α that decreases to a quarter of its initial value during
the first half of the episodes, produce the best-performing agents.

Based on these preliminary results, 216 different combinations of these hyperparameters were selected for further
investigation. Two grid searches were carried out in the simulation environment described below. The results from the
first grid search are used to determine the best set of hyperparameters for training an agent from scratch. The results
from the second grid search are used to determine the set of hyperparameters that are best when a previously trained
agent is placed in a new, slightly different, environment. In each grid search, 2160 agents were trained during 500
training episodes, 10 for each of the 216 different hyperparameter sets.

The sets of hyperparameters that performed the best in these two grid searches are shown in table 1. For both sets, it
is found that the best performance is achieved when εepisode linearly decreases to zero during the first half of the episodes.
The learning rate decreases as well, with the learning rate in episode i given by Eq. 21.

λ εstep α0 εepisode

Initial training 0.1 0.01 0.5 0.5→ 0.0
Continued training 0.1 0.01 0.1 0.01→ 0.0

Table 1 Best hyperparameter sets found for initial and
continued training.

with αi = α0
Nepisodes

Nepisodes + i
(21)

It is important to note here that the found sets of hyperparameters are the local optimum, the best available set from
the 216 analyzed sets of hyperparameters. While these 216 options were selected carefully, based on both literature [21]
and a preliminary investigation, there might exist a better set of hyperparameters globally.

V. Simulation
For the first phase of the experiments, a simulation environment is created that represents the in-flight environment

as much as possible. To this end, the quadrotor inner vertical loop is replicated, the quadrotor dynamics are implemented
and the ground effect is simulated. This simulated environment is then used to train and evaluate multiple agents,
investigate the influence of noise and the number of required training episodes.
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A. Experiment setup
First, the setup of the simulation environment and the experiments conducted within this environment are presented.

1. Creating the simulation environment
The quadrotor dynamics are implemented as described by the equations of motion given in Eq. 5 and 6. A key

addition to this are the actuator dynamics. These provide the relationship between the commanded rotor speed ωcmd,i ,
from the inner control loop to the actual rotor speed ωi . These are simulated using a 2nd order lower-pass Butterworth
filter with a cut-off frequency of 15Hz. This actuator model is based on in-flight measurements from the system
identification experiment described below.

The quadrotor inner vertical control loop is replicated in simulation to better reproduce the behavior of the quadrotor
when it receives a command. This is especially relevant at the start of the episode when the quadrotor is hovering
and receives the 0.3m/s descend command, and during interventions, when it receives a hover (ahover) or save (asave)
command. The replication of the inner loop is based on the control scheme that is provided for the open-source flight
control software ∗. The gains are determined by performing small system identification experiments with the Parrot
Bebop 1 drone, where a step command is given on the vertical reference speed. The same step command is given in the
simulation environment, and the gains are tuned based on the comparison.

The ground effect is simulated using the fitted function, as given in Eq. 18, and shown in Fig. 4. However, as can be
seen from this figure, Fext,z/m is not a perfect estimator of height above the ground. As discussed in section III.C, the
estimate is also influenced by inaccuracies in the estimated model, and noise or delays in measurements. As a result, the
difference between the estimated external force at one timestep and the fitted model cannot be considered white noise.
Instead, the Fext,z/m signal is quite smooth, as can be seen from Fig. 8.

In the simulation, an effort is made to replicate the stochastic deviations from the fitted function, but to keep the
smoothness of the estimated signal. To do so, random normally-distributed noise is generated and filtered using a
2nd order Butterworth low-pass filter with a cutoff frequency of 1.8Hz. The mean (µnoise = 0.055) and standard
deviation (σnoise = 1.392) of this normal distribution are chosen such that the filtered noise distribution replicates the
distribution seen in measurements. This can be confirmed by looking at Fig. 8, as the signals are similar, both in terms
of smoothness and deviation from the fitted function.

A small difference can, however, be seen in the timing of the signal; the Fext,z/m signal measured in flight is delayed
around 140 milliseconds. This difference can be explained by considering the 140ms delay introduced by the 4th order
low-pass filter that is used to filter the in-flight measurements, as discussed in section III.C. While a low-pass filter is
also used in the simulation, only the noise is filtered, not the underlying signal, as such no delay is introduced into the
actual information-carrying signal, explaining the 140ms difference.
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Fig. 8 Comparison of measured and simulated noise in the Fext,z/m state signal.

2. Training agents in simulation
Using the created simulation environment, and the set of hyperparameters for initial training discussed in section

IV.E, 100 agents are trained in the simulation environment. Each agent is trained for 500 episodes, using the exploration
strategy described in section IV.D. Their performance is evaluated during 100 fully greedy evaluation episodes. In these
greedy episodes, there is no exploration and no learning. The comparison of agents is based on the average total reward

∗http://wiki.paparazziuav.org/wiki/Control_Loops#Vertical_loop, as accessed on 23/01/2019
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during these evaluation episodes, a measure of agent performance, and the number of episodes since the agent’s policy
last changed, a measure of the agent’s stability. Based on this comparison the top performing agent is then selected as
the top agent.

3. Investigating the influence of noise on agent performance
As discussed in sections III.C and V.A.1, the external force estimators are not perfect estimators of the distance to

an obstacle underneath. Instead, they are stochastic signals, influenced by both inaccuracies in the estimated external
force, like sensor noise, and external forces not resulting from obstacle-airflow interactions, like gusts. Furthermore, the
amount of stochasticity in comparison to the underlying obstacle-airflow interaction is likely to depend on the quadrotor,
obstacle characteristics and location of the obstacle with respect to the quadrotor. As such, getting an understanding of
the effect of this stochasticity on the performance achievable by the RL agent is of key importance. Especially when
considering the application of this object avoidance technique to other quadrotors or other types of obstacles.

Therefore, an experiment is carried out in which the noise on the Fext,z/m state is varied. The noise is varied from
no noise, so a completely deterministic signal (σnoise = 0), to 10 times as much noise as measured on the Parrot Bebop
1 drone for obstacles underneath (σnoise = 13.92). The ratio between the strength of the signal (Asignal) and the noise
(σnoise) is captured by the Signal to Noise Ratio (SNR), as given in 22 [22]. Since this equation uses the strength of the
signal, it also depends on the distance to the obstacle. In this case, the strength of the signal, Fext,z/m as caused by the
ground effect, at 0.15m distance from the surface is used. This is approximately three times the rotor radius and exactly
halfway between the estimated start of the ground effect area (0.25m), and the termination distance (0.05m).

SNR =
A2
signal

σ2
noise

(22)

For each SNR level, 100 RL agents are trained for 500 episodes, using the hyperparameter set for initial training.
Each agent is then evaluated during 100 fully greedy episodes. Both training and evaluation are carried out in the
simulation environment, with the noise on the Fext,z/m state as defined by the respective SNR levels.

4. Investigating the number of required training episodes
In order to determine the influence of the number of training episodes on the performance of the agents, another

experiment is carried out in simulation. Using the top initial hyperparameter set determined before, 100 agents are
trained for each of the following number of episodes: Nepisodes = {25, 50, 100, 500, 1000}. Evaluation is once again
performed during 100 fully greedy episodes.

The results from this experiment are expected to help determine the feasibility of training an agent fully online
during real flight, as the number of episodes that can be performed in real flight in a practical manner is limited.

B. Results
In the section below the results of the experiments carried out in the simulation environment are discussed.

1. Training agents in simulation
The results of training 100 agents in simulation are shown in Fig. 9. They respectively show the performance of the

agent, as measured by the average total reward (Fig. 9a) and the percentage of episodes resulting in a correct save (Fig.
9b). The number of episodes since the last policy change, as shown in Fig. 9c, is a metric indicating the stability of the
agent.

From these figures, it can be seen that a number of agents exist with similar top performance. Further inspection
shows that the similar performance of these agents is due to the fact that they have converged to a policy that is, for all
practical purposes, equal. From this point forward, this policy shall be referred to as the optimal policy.

Further evaluation of this optimal policy is performed during 10,000 fully greedy evaluation episodes, each with
uniquely random generated noise on the Fext,z/m signal. This results in an average total reward of −86.5 (σ = 32.1).
Furthermore, 96.4% (σ = 2.0) of the episodes result in a correct save.

Of the 100 trained agents, 22% have found this optimal policy after training for 500 episodes. Given the level of
performance achieved by this optimal policy, one could conclude that the RL setup works. Furthermore, 85% of all
trained agents save the quadrotor successfully in ≥80% of the episodes.
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Fig. 9 Performance and stability metrics for the 100 agents trained in simulation.

In addition to providing insight into the performance distribution of agents trained in this environment, this
experiment also set forth to select a top agent. This is the agent that will be used for the experiments in the flight phase.
As further selection from 22 agents with the optimal policy based on performance is not evident, selection among these
agents is based on the perceived stability of the agent.

HoverNo-action Save Unexplored

Fig. 10 Policy of the selected top agent, including
the key interevention state.

The convergence of the selected top agent can be seen in
Fig. 11. Furthermore, the final policy of this top agent can be
seen in Fig. 10. For clarity, only the policy for states visited
more than 10 times during the 500 training episodes are shown.

Indicated in the policy is the key intervention state (circled),
the first intervention that the RL agent is likely to encounter
when descending towards an obstacle underneath. Accounting
for discretization, this part of the policy thus says: perform
a save when: −0.65N/kg < Fext,z/m ≤ −0.55N/kg and the
previous action is ano−action.

From this experiment, the following conclusions can be
drawn. First of all, in the simulation environment, there is one
clear optimal policy, achieving high performance both in terms
of average total reward (-86.5) and percentage of episodes resulting in a correct save (96.4%). Secondly, 85% of all the
trained agents are able to save the quadrotor successfully in ≥80% of the episodes. Thirdly, only a small percentage of
the agents (22%) converges to the optimal solution.
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Fig. 11 Convergence of the selected top agent, as seen from the mean Q value and policy changes.

2. The influence of noise on agent performance
To investigate the effect of noise in the force and torque estimations, an experiment is conducted where 100 RL

agents are trained with 26 different levels of noise added to the Fext,z/m state signal. The results of these experiments
are shown in Fig. 12 and Fig. 13. These figures respectively show the influence of the noise on the average total reward
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and the percentage of episodes resulting in a correct save. They do so as a function of the SNR level, which is taken at
0.15m distance to the obstacle underneath.

The expected rewards for three key agent behaviors are also shown in these figures. First of all, the line at -2000
indicates the expected reward for a crash. This would be the performance of an agent that always performs ano−action.
The only way in which an agent could achieve a performance worse than this would be if it performed hovering actions
but still crashed every episode. Secondly, the line at -500 indicates the expected reward for a policy that always performs
a save at the start of every episode, the always-save policy. Since the quadrotor would not yet be in the ground effect,
this would always result in a false save. As such, this is the level of performance that can be achieved regardless of the
noise. Finally, the line at -50 indicates the expected reward for an agent that is able to correctly save the quadrotor in
every episode, but do so at the last minute, so when z − ztermination is close to zero. Any agents with a performance
better than this are thus able to save the quadrotor almost every episode and do it farther away from the obstacle.

The following observations can be made from these figures. Below -9dB, almost all agents have an average reward
of -500 and 0% save rate, suggesting that they are unable to detect the presence of an obstacle underneath and thus
converge to an always-save policy. Between -9dB and -1dB, the performance of all agents is actually worse compared to
the always-save policy. This suggests that it is possible to detect obstacles, but that the reliability of doing so is lacking,
resulting in some saves, but mostly crashes. Between -1dB and 2dB there are some top agents that are able to achieve a
performance better than always-save. However, the stochasticity of the signal makes it difficult for the algorithm to find
these better performing policies. Beyond 6dB almost all agents find a policy better than the always-save policy, their
policies resulting in a correct save in ≥70% of the episodes.

Furthermore, the distribution of the agents’ performances becomes smaller. Between a SNR of 12dB and 26dB, all
trained agents are able to perform a correct save in almost every episode. Improvement is found in performing a save at
larger distances to the obstacle underneath. Beyond 26dB, the performance is constant. Almost all agents are able to
save the quadrotor far away from the obstacle in all episodes.

From these results, it can be concluded that using the current setup, a SNR ≥-1dB is required to outperform a trivial
always-save policy and a SNR ≥2dB for most agents to do so. Beyond 6dB most agents are able to perform the obstacle
avoidance task quite well, performing a correct save in ≥70% of the episodes.
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Fig. 12 Influence of noise on agent performance, as measured by the rewards.
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3. The number of required training episodes
The results of the experiment to determine the number of required training episodes are shown in Fig. 14. Two key

observations can be made. First of all, the performance of agents trained for 100 episodes is similar to those trained for
500 episodes or more. Secondly, while the mean performance of agents trained for 25 and 50 episodes is lower, in both
cases there are still some agents which manage to learn the optimal policy. After training for only 50 episodes, 25% of
the agents have learned the optimal policy. Considering the stochasticity involved in both the exploration and the state
signal, this can be considered similar to the percentage of agents that have learned the optimal policy after training for
100 episodes (19%) and 500 episodes (22%).

It can thus be concluded that training for 100 episodes is sufficient when the purpose is to achieve the best performance
for each of the trained agents. However, if one is only concerned with finding one agent with the optimal policy, it can
be more efficient to train agents for only 25 or 50 episodes.
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Fig. 14 Boxplot showing the influence of the number of training episodes on agent performance.

VI. Real flight
In the second phase, experiments are carried out in real flight, using a Parrot Bebop 1 quadrotor. First, the hardware

and software setup that is developed for these experiments is discussed. Then the setups of three experiments that are
carried out in real flight are presented; the evaluation of the top agent trained in simulation, continuing training of this
top agent, and the training of an agent from scratch.

A. Experiment setup
First, the hardware and software setup, as well as the experiments carried out using this setup, are discussed.

1. Hardware and software setup

Fig. 15 Parrot Bebop 1 quadrotor
[23].

The quadrotor being used for the flight experiments is the Parrot Bebop
1 quadrotor shown in Fig. 15. This relatively inexpensive drone features
4 outrunner, brushless, motors, driving 4 rotors with a radius of 6.4cm. For
the measurement of accelerations and angular rates, the Bebop relies on the
MPU 6050 chip, which contains a 3-axis gyroscope and 3-axis accelerometer
[24]. All flight experiments are carried out with the protection bumpers
attached. With these bumpers, the drone weighs 420 grams.

All experiments are carried out in the Cyberzoo of Delft University of
Technology. This test area for ground robots and aerial vehicles spans 10m x 10m and is 7m high. It is equipped with
the Optitrack: Motive Tracker optical tracking system, consisting of 24 cameras, enabling high precision positioning.
This system provides the current position of the quadrotor, with 0.5cm accuracy at 120Hz, as GPS coordinates, via a
wired connection to a laptop that functions as a ground station.
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Onboard the quadrotor runs version 5.13 of the open source autopilot software Paparazzi. † The Paparazzi software
suite also contains software for the ground station. The ground station is an Elitebook 8570w laptop. Communication
between the quadrotor and ground station, including the position as provided by Optitrack, is done over Wi-fi.

Paparazzi is a modular platform on which additional functionality can be easily be added by creating custom modules.
For the purpose of this experiment, such a custom Paparazzi module has been developed. This module is written in C
and performs the following functions in-flight:

• State estimator: estimating Fext,z/m based on Eq. 12, using the filtered accelerations, motor speeds, rotational
rates, body speeds, and thrust model. To enable this, the state estimator is also responsible for conducting a
2-second initialization procedure at the start of each flight. During this procedure the gains for the thrust model
(ki/m) are estimated, using Eq. 10. For the drag coefficient a constant value of kD,z = 0.271N · s2/m is used.

• Reinforcement learning actor: at every step of the episode, this actor is presented with the reward and the state
(consisting of the estimated Fext,z/m and the previous action), based on which the actor will select one of the
three actions (no-action, hover or save). It does so, based on its exploration strategy and the policy it determines at
the start of each episode. When the action is to intervene (ahover or asave), this action is passed to the Paparazzi
inner vertical control loop as a command. When the chosen action is ano-action, the inner vertical control loop will
follow the flight plan, which in all of the conducted experiments commands it to descend with 0.3m/s.

• Safety controller: if the quadrotor comes to close to the obstacle underneath z < ztermination, the safety controller
will end the episode and send the quadrotor back to its start point of 1 meter above the obstacle. This part of the
module thus has access to the height above the obstacle, as provided by the Optitrack system. This information is
however not shared with the RL actor or critic, except through the rewards they receive.

• Data logger: storing all relevant variables for later analysis, including measured accelerations, speeds, motor
speeds, estimated Fext,z/m and chosen actions. All these variables are written to a .csv file every timestep.

Other than the custom module, the quadrotor uses only existing Paparazzi modules models for its flight control. For
stabilization in the horizontal plane, usage is made of the Incremental Nonlinear Dynamic Inversion (INDI) module
[25]. For speed and positional control, the Paparazzi default inner vertical and horizontal control loops are used. It must
be noted however that the HOVER_KD gain for the vertical loop has been increased from 100 to 600, in order to ensure
closer tracking of the desired descent speed. This is required to maintain constant descent speed when nearing the
obstacle underneath, as the ground effect tends to reduce the descent speed. Furthermore, the importance of thrust
control with respect to the roll and pitch axes was increased from 10 : 1000 to 100 : 1000. The complete control scheme
for the flight experiments can be found in appendix A.

The reinforcement learning critic was custom developed for these particular experiments and runs on the ground
station laptop. It was developed in Python and uses the codebase that was originally developed for the simulation
experiments. At the end of every episode, the critic retrieves the data log file of that episode from the quadrotor over
FTP. For each step in this episode, Watkin’s Q(λ) algorithm is then used to calculate the change in action-value function
(Q), based on the state, selected action, and resulting reward. To do so, the critic needs to distinguish between greedy
actions and exploratory actions. The exploratory actions being either episode-long exploratory actions or an exploratory
action taken at one specific timestep by the ε–greedy exploration. The critic uses this distinction to reset the eligibility
traces when needed. After processing every step in the episode, the result is sent to the quadrotor over the Ivy bus, a
text-based (ASCII) Publish-Subscribe protocol that communicates over the local Wi-Fi network.

2. Evaluation of the top agent trained in simulation
The first experiment carried out in real flight is the evaluation of the top agent trained in simulation. The purpose of

this experiment is twofold. First of all, it serves to validate that the simulation environment is a reasonably accurate
representation of the real flight environment. This can then be used to argue that results from experiments carried out in
simulation, like the influence of hyperparameters, noise and number of training episodes, hold for real flight as well.
Secondly, it provides a first performance assessment in terms of the obstacle avoidance capability of this novel method.

In the experiment, for each of the evaluation episodes, the Bebop 1 quadrotor is commanded to descend from 1m
height with 0.3m/s. Onboard the quadrotor runs the top RL agent trained in simulation. All episodes are carried
out as fully greedy evaluation episodes, so no exploring starts, no exploration and no learning by the agent, just the
evaluation of the found policy. Twenty evaluation episodes are carried out, using the artificial grass surface of the TU
Delft CyberZoo as the obstacle underneath.

†http://wiki.paparazziuav.org/wiki/Main_Page, as accessed on 02/04/2019
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3. Continuing training in real flight
Secondly, an experiment is carried out where training of the top agent from the simulation experiment is continued

in real flight. This is done during 100 training episodes, using the same exploration strategy as used in the simulations,
and the hyperparameters found to be best for helping an agent adjust to a slightly different environment. After training,
the agent is once again evaluated during 20 fully greedy evaluation episodes. In all flights, the artificial grass surface
functions as the obstacle underneath.

4. Training from scratch in real flight
Finally, using the knowledge gained during previous experiments, an experiment is conducted where multiple RL

agents are trained fully from scratch, during a real flight. Training is conducted during 50 episodes, using the same
exploration strategy as used in the simulations, and the hyperparameters found to be best for the initial training of agents.
Evaluation is performed during 20 fully greedy evaluation episodes. In these flights the artificial grass surface functions
as the obstacle underneath, however, if this yields promising results, an additional evaluation is performed using an
alternative obstacle, a 75cm x 53cm x 17.5cm box placed underneath the quadrotor.

This experiment serves to determine whether a RL agent can be trained fully in flight to avoid obstacles underneath
it, using the obstacle-airflow interactions caused by this obstacle. If this is indeed possible, it shows the potential for the
extension of this method to other quadrotors, or other types of obstacles, without requiring simulation environments or
models of the obstacle-airflow interaction.

B. Results
Using the hardware and software setup described in section VI.A.1, several experiments are carried out in real flight,

using the Parrot Bebop 1 quadrotor. First, the top agent from the simulation phase is evaluated in flight. Secondly, an
experiment is conducted in which training of the previously found top agent is continued in flight. Finally, an experiment
is conducted where multiple agents are trained during real flight, without any prior knowledge of the environment.

1. Evaluation of the agent trained in simulation
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Fig. 16 Evaluation results of the
agent trained in simulation.

Of the 20 in-flight evaluation episodes, the top RL agent trained in simulation
is able to perform a correct save in 80%. As can be seen from Fig. 16, 5% of
episodes result in a false save and 15% in a crash. This results in an average reward
of −350. When comparing this to the performance of this agent in simulation;
with an average reward of -86.5 (σ = 32.1), and 96.4% (σ = 2.0) of episodes
ending in a correct save; it is clear that the performance in real flight is significantly
worse. Based on these results, it is estimated to be around 20% worse.

An explanation for this difference in performance could be the 140ms delay
in the Fext,z/m signal, introduced by the low-pass Butterworth filter, discussed
in section III.C. As this delay is present in real flight, but not in the simulation,
obstacles are expected to be detected slightly later in real flight, potentially leading
to worse performance.

While the results above provide the first assessment of the obstacle avoidance
capability of this new method, there is a second goal of the experiment; validating
that the simulation environment is an accurate representation of the real flight
environment. There are two key observations that are especially relevant to this. First of all, the observation that
the agent is able to perform well in the real flight environment, while only having being trained in the simulation
environment. This suggests that a good performance in simulation corresponds to a good performance in real flight.
Secondly, the exact level of performance achieved by this policy in the simulation environment is different from the
performance in real flight.

While the first observation speaks to validate the simulation model, the second raises the question of whether the
optimal policy found in simulation is also the optimal policy in real flight. To answer this question, and further validate
the simulation environment, this is investigated in the next two flight experiments. This is done by seeing if an even
better policy can be found by continuing training of the top agent in real flight, or training a new agent from scratch in
real flight.
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2. Continuing training in real flight

HoverNo-action Save Unexplored

Fig. 17 Alternative policy found after continuing
training online.

To check if the performance of the top agent can be further
improved, training is continued in flight for 100 episodes, using
the previously determined set of hyperparameters deemed best
for adjusting to a slightly different environment. Due to the
stochasticity involved, both in the exploration and in the Fext,z/m
signal, this experiment is conducted five times.

In all five training runs it can be seen that the agent exper-
imented with different policies. After the 100 training episodes,
4 of the 5 agents have converged to the same policy they started
with, the top policy from the simulations. The other agent has
ended up with the policy shown in Fig. 17. Accounting for
discretization this policy says: perform a save when: −0.75N/kg < Fext,z/m ≤ −0.65N/kg and the previous action was
ano-action. Compared to the optimal policy found in simulation, the RL agent thus intervenes later, at a more negative
Fext,z/m.

To test whether this policy is better than the initial policy, it is evaluated during 20 fully greedy episodes. The
performance is clearly worse. Only 5% of the episodes results in a correct save, 95% result in a crash. This also becomes
clear from the average total reward, which is -1902.

This result thus supports the hypothesis that the optimal policy found in simulation, is the optimal policy in real
flight as well. Furthermore, this implies that the performance shown in Fig. 16, performing a correct save in 80% of the
episodes, is the best achievable performance within the current setup.

3. Learning from scratch in real flight
Since the simulation experiments show that even after training for only 50 episodes, some RL agents have found the

optimal policy, an attempt can be made to train a RL agent fully from scratch, during a real flight. Of the 5 agents
trained in real flight, one has converged to a policy with the top performance, as can be seen from the evaluation results
shown in Fig. 18. During the 20 evaluation episodes, this agent correctly performed a save 16 times (80%), crashed 2
times (10%) an performed a false save 2 times (10%).
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Fig. 18 Evaluation performance of the 5 agents trained from scratch in flight.
Further inspection of this particular agent shows that its policy, as shown in Fig. 19b, is very similar to the optimal

policy found in simulation. Both have the same key intervention, a save when −0.65N/kg < Fext,z/m ≤ −0.55N/kg and
the previous action is ano-action. It can thus be argued that for practical purposes this policy is equal to the optimal one
found in simulation. As such, this speaks for validation of the simulation environment.

This agent is also evaluated using a 75cm x 53cm x 17.5cm box as the obstacle underneath, instead of the artificial
grass surface. During the 20 fully greedy evaluation episodes, this results in the agent performing a correct save 15
times (75%) and a crash 5 times (5%).

From a practical perspective, it takes 15 minutes to train a single agent and evaluation takes another 7 minutes. This
includes the flight time for the 50 episodes, the initialization procedures and the replacement of batteries (3x). If enough
batteries are available, training 5 agents sequentially could thus be conducted in less than 2 hours. This is important
when considering the extension of this method to other quadrotors, or other types of obstacles.

Overall, it can thus be concluded from this experiment that it is possible to successfully train an agent fully in flight,
in only 50 episodes to detect and avoid obstacles underneath a descending quadrotor. Upon approaching an obstacle, a
detect-and-avoid accuracy of at least 80% can be achieved by a reinforcement learning agent with the optimal policy.
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Fig. 19 Convergence and policy of the third agent trained from scratch.

There is however no guarantee that every agent that is trained will always converge to this optimal policy. Results
from simulation and real flight suggest that only 20-25% of agents will converge to the optimal policy. Therefore, it is
recommended to train multiple agents, evaluate them and select the best.

VII. Extension to other types of obstacles and other quadrotors
While the results discussed above look promising, they of course only demonstrate the obstacle avoidance capability

for one specific drone, the Parrot Bebop 1, and only for large obstacles underneath the quadrotor. To assess the potential
of this method as a general method of obstacle avoidance, the extension to other quadrotors and other types of obstacles
must be considered.

A. Extension to other obstacles
When considering the extension of this method to other obstacles, one could consider extending it to detect large

obstacles above, like a ceiling, obstacles on the same level, like a wall, or to smaller or otherwise different obstacles. The
feasibility of using this method to detect walls and ceiling surfaces will depend on the strength of the effects caused by
these surfaces and the amount of noise and other disturbances present in the estimated forces and torques. For the Parrot
Bebop 1, an initial estimate of the SNR of the effects caused by the ceiling and wall is made as part of this research.

A large surface above the quadrotor, e.g. a ceiling, is known to cause an external force in the vertical direction [8].
The effect can be estimated using the measurement data from Sanchez-Cuevas et al. [8]. Adjusting for the different rotor
radius, a first estimate of the external force caused by the ceiling would be Fext,z/m ≈ −0.32N/kg. If similar noise as
seen in the presence of obstacles underneath is then assumed, this results in a SNR of 8.63dB. Since this is larger than
the SNR seen for obstacles underneath, it implies that these obstacles are easier to detect. One must, however, note that
the force, in this case, is pulling the quadrotor towards the surface above, in contrast to pushing the quadrotor away from
a surface underneath. As such, the intervention action might be more difficult or require a sooner intervention, thereby
perhaps reducing the performance.

To estimate the feasibility of detecting large vertical surfaces on the same level, like walls, an experiment is conducted
using the Parrot Bebop 1 drone. In this experiment, a 1m wide, 2.05m high screen is placed inside the CyberZoo.
The quadrotor then hovers at a height of 1.5 meter at varying distances from the wall, ranging from 1-meter to up to
1-centimeter distance. The measurement data is used to construct plots similar to Fig. 4, showing the estimated forces
and torques versus the distance to the wall.

The clearest influence of the wall can be seen in the torque around the y-axis, the effect is however relatively small
compared to the noise. An initial analysis estimates the SNR to be -4.15dB. For such a SNR it is not expected that
agents will able to find a policy that results in correct saves, as can be seen from Fig. 20.

It must, however, be noted however that this is only an initial analysis. It is expected that by analyzing the effects in
more detail, using better sensors, or using more than 1 external force or torque as a state, the performance might be
further improved. Furthermore, the performance could also be improved by using some of the other recommendations
discussed in section IX.

The extension to smaller or otherwise different types of obstacles is something that might be done incrementally.
As mentioned in the results, the RL agent trained in this research is already able to detect a large box. By continuing
training with smaller obstacles underneath, perhaps in combination with refining the used discretization, the detection
limits can be found and improved.
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Fig. 20 Estimated Signal-to-Noise ratios and resulting performance, for the detection of walls, ceiling and
ground surfaces.

Overall, the following conclusions can be drawn with respect to the extension of this method to other obstacles. The
extension of this obstacle avoidance method to the detection of surfaces above the quadrotor, e.g. ceilings, is expected to
achieve a similar or even better performance as for surfaces underneath. The extension to surfaces on the same level as
the quadrotor, e.g. walls, is expected to require some significant improvements to the SNR of the estimated forces and
torques, or to the usage thereof, before a similar performance can be reached. The extension to smaller or otherwise
different types of obstacles requires further research, and possibly a more dense discretization of the states.

B. Extension to other quadrotors
Finally, the extension to other quadrotors. The whole method has been set up such that it requires little prior

knowledge of the quadrotor. For example, no assumptions are made about the mass of the quadrotor and the moments
of inertia are calculated in flight. Furthermore, the rotor gains ki/m are automatically estimated during initialization
procedures. The following steps are suggested to implement this obstacle avoidance method on another quadrotor:

1) Perform an experiment where the quadrotor first moves up and down without any nearby obstacles and then
descends to 5cm above a ground surface three times. Use the gathered measurement data to estimate the drag
coefficient as discussed in section III.B, and if need be, adjust the discretization bounds for the estimated external
forces and/or torques.

2) Train multiple agents in flight, using a large horizontal surface as the obstacle underneath. Suggested is to train
at least 5 agents for 50 episodes, using the hyperparameters discussed in section IV.E.

3) Evaluate all agents during a number of evaluation episodes, at least 20 is suggested, and pick the best agent for
implementation.

While following these steps should provide a good basis, there is no guarantee on the performance of the optimal
obstacle avoidance policy. This will especially depend on the ratio between noise and obstacle-airflow interaction effects
within the state signal, the SNR, as discussed in section V.B.2.

To demonstrate the extension of this method to other quadrotors, an experiment is performed using the Parrot
Bebop 2 drone. This successor to the Bebop 1 has a larger frame, larger rotors (Rrotor = 7.5cm) and new motors [26].
Furthermore, in the experiment the Bebop 2 is flown without the bumpers, thereby potentially altering the airflow, and
thus the obstacle-airflow interactions. Other than this, the setup is as described in section VI.A.4. Two RL agents are
then trained to avoid obstacles underneath this quadrotor. After 50 training episodes, one of the agents has already
learned a policy with similar performance as was achieved on the Parrot Bebop 1 drone. In the 40 fully greedy evaluation
episodes it is able to perform a correct save in 80% of the episodes, 2.5% resulted in a crash and 17.5% in a false save.
It can thus be concluded that the obstacle avoidance method can be extended to other quadrotors in only a few steps.

VIII. Conclusion
In this research, a first step in the development of a novel obstacle avoidance method for quadrotors is taken. A

reinforcement learning agent is successfully trained to detect and avoid obstacles underneath a descending quadrotor.
To accomplish this, a simple quadrotor model is introduced and used to estimate external forces and torques around

all three axes. Measurement flights with a Parrot Bebop 1 quadrotor are performed in order to model one of these
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estimators, the external force in the vertical direction (Fext,z/m) as a function of distance to the ground. These models
are used to create a simulation environment in which RL agents can be trained. This simulation environment represents
the actual flight environment as much as possible, replicating not only the quadrotor equations of motion but also its
inner loop flight control. Furthermore, the states (Fext,z and the previous action), actions (ano-action, ahover and asave),
and rewards of the environment are defined. In this environment, several experiments are then performed in simulation.
These are performed using the Watkin’s Q(λ) reinforcement learning algorithm, a custom threefold exploration strategy,
and hyperparameters determined during an extensive grid search.

From these results, it can be concluded that the estimated external force in the vertical direction is a good indicator
for the presence of large surfaces underneath. Furthermore, a reinforcement learning agent can be trained to use this
estimated external force to detect and avoid obstacles underneath. However, due to the stochastic nature of the problem,
not all agents will find the optimal policy. Multiple agents should thus be trained to ensure an optimal solution is found.

The best agent trained in simulation is evaluated in real flight, during an experiment with the Parrot Bebop 1, running
the Paparazzi open-source flight software, inside the Delft University of Technology CyberZoo. The results show that
the agent is able to save the quadrotor from hitting the obstacle underneath in 80% of the episodes. An attempt is made
to further improve this performance by continuing training online, but this yields no further improvement, suggesting
that the optimal policy found in simulation is also the optimal policy in real flight.

Finally, it is shown that it is possible to train an agent fully from scratch during a real flight. This is accomplished by
training 5 agents during 50 episodes each, without prior knowledge or training in simulation. Of these 5 agents, one
found the optimal policy, confirming the conclusion that multiple agents should be trained in order to ensure that the
optimal policy is found. Since this did not require any simulation beforehand, it suggests that a RL agent can be trained
to avoid other types of obstacles or obstacles on another quadrotor in real flight in a similar fashion.

For the extension of this method to other quadrotors, a procedure is presented. Furthermore, this extension is
demonstrated using the Parrot Bebop 2 drone. Showing that similar performance can be achieved on another quadrotor
in only a few short steps, without requiring any specific quadrotor model or simulation.

Furthermore, an approach for extending this method to the avoidance of walls, ceilings, and smaller obstacles is
discussed and the expected performance when doing so on the Parrot Bebop 1 is assessed. For surfaces above the
quadrotor, e.g. ceilings, the method is expected to achieve a similar or even better performance as for surfaces underneath.
The extension to surfaces on the same level as the quadrotor, e.g. walls, is expected to require some improvements to the
SNR of the estimated forces and torques, or to the usage thereof, before a similar performance can be achieved.

Overall, it can be concluded that it is possible to use reinforcement learning and obstacle-airflow interactions for the
detection and avoidance of large obstacles underneath a Parrot Bebop 1 quadrotor. Furthermore, it is expected that this
method can be extended to other quadrotors, as well as to large obstacles or surfaces above the quadrotor.

IX. Recommendations for future research
While initial success for this new obstacle avoidance method is shown, there are many points on which the method

can be improved. First of all, this method can be extended to other quadrotors, or other types of obstacles, e.g. walls,
ceilings, or smaller obstacles, as discussed in section VII.

Secondly, the estimations of the external forces and torques might be improved, thereby increasing the signal-to-noise
ratios, the effect of which is shown in Fig. 21a. This could be done by improving the estimator, reducing noise or
correcting for other disturbances. Improving the estimator could be accomplished by using more accurate models for
the produced thrust, drag or quadrotor dynamics. Reducing the noise in the estimator could be achieved by using
better sensors, improved filtering, or by reducing latencies in the underlying measurements. Finally, there can be other
effects, like wind, turbulence or the airflow of other aerial vehicles, causing external forces and torques on the quadrotor.
Methods might be developed by which they can be identified and corrected. In the case of wind and turbulence, a
correction might reduce false positives or false negatives, improving the performance of the obstacle avoidance method.
In the case of other aerial vehicles, identification might extend the applicability to dynamic obstacle avoidance.

Finally, the way the estimated external forces and torques are being used might be improved. This could lead to a
better optimal policy, the expected effect of which is shown in Fig. 21b, a better distribution of performance among
trained agents, as shown in Fig. 21c or a combination of the two. Two ways in which this might be accomplished are;
the combination of multiple estimators and improvements to the reinforcement learning setup. For obstacle-airflow
interactions expected to result in more than one external force or torque, e.g. those caused by a wall, providing multiple
estimators as a state to the RL agent could improve performance. Another way the proposed method might be improved
is by improving the reinforcement learning setup. Of the many ways in which this could potentially be accomplished,
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Fig. 21 Potential influence of proposed improvements on agent performance.

two interesting potential improvements can already be recommended for future research. First, the representation of the
action-value might be improved; either by increasing the discretization density, or using another function approximator
such as a Support Vector Machine (SVM) or a neural network. Secondly, the reward structure of the current setup
might be improved, for example by providing a positive reward for a correct save, with a larger distance to the obstacle
resulting in a larger positive reward. Initial experiments suggest that this can increase the percentage of the agents
finding the optimal policy in 50 episodes, from 20-25% to 40%.

To conclude, future research could both improve upon the current obstacle avoidance capabilities of this low-cost
method, and extend the method to other quadrotors and types of obstacles. Thereby increasing the potential of this
method as a primary obstacle avoidance method for small quadrotors, or as a secondary obstacle detection method for
larger quadrotors.
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A. Appendix: Setup flight experiments
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34 Article

3-2 Conclusions

As the preceding article covers the core of the conducted thesis research, it also answers two
of the three research questions (SQ2 & SQ3). The first research question being: Given this
state of the art, can a reinforcement learning-based quadrotor control system avoid obstacles,
using these obstacle-airflow interaction effects? The short answer to this question is: yes,
at least for large obstacles underneath a quadrotor, as demonstrated in the article. A more
comprehensive answer can, however, be provided by considering the underlying subquestions:

SQ2.1 How can the reinforcement learning-based control system best be setup?
From the development of a reinforcement learning-based control system, tasked with
the detection and avoidance of obstacles underneath a descending quadrotor, several
conclusions can be drawn with respect to the setup of such a system. First of all, the
estimated external force in vertical direction can be a good indicator of the presence of
large surface underneath the quadrotor. It is, however, susceptible to noise, both from
other disturbances and sensor noise. While sensor noise can be reduced by filtering,
this will introduce delays, thereby increasing the reaction time. Secondly, an actor-
critic architecture can be used to limit onboard computational requirements for the
quadrotor. Finally, it is shown that the unconventional placement of the RL agent within
the control loop can work, but that it does introduce some challenges for exploration.
It must be noted that these conclusions are in addition to the ones already drawn in the
preliminary investigation, regarding the setup of such a system, as discussed in section
5-5 of the thesis. Together these conclusions describe several insights into the setup of
such a control system.

SQ2.2 How can the reinforcement learning agent be trained and tested in simulation?
Several conclusions can be drawn with respect to training the reinforcement learning
agent in simulation. First of all, it is important that in the simulated training envi-
ronment not only the external force and torque estimations are simulated, but also the
noise that is present within these estimations. For an accurate representation of real
flight, the estimation should correspond in stochasticity, distribution, and smoothness
of the resulting signal. Furthermore, it is expected to be beneficial to mimic any delays
that are present in the real flight estimations. In addition to the creation of a simu-
lation environment, training will also require a good set of hyperparameters. The sets
of hyperparameters found to be best for this particular setup, when using Q-learning,
are presented in section IV.E of the article. When using these hyperparameters, only
a limited number of training episodes are required for some agents to find an optimal
policy. However, not all agents will find the optimal policy, therefore instead of training
a few agents for a long period, it can be more efficient to train a larger number of agents,
evaluate and pick the best one.

SQ2.3 How can this agent be trained and tested in a real-life experiment?
In the article, it is demonstrated that a reinforcement learning agent can be trained
and tested in real flight. This is accomplished by using the open-source flight controller
Paparazzi, a Parrot Bebop 1 quadrotor, a commercial optical tracking system and cus-
tom software running both onboard the quadrotor and on a ground station. Either
the continuation of training for an agent already trained in simulation or training from
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scratch is possible this way. Furthermore, it is shown that only a small number of
episodes is required to do so. This is an advantage, as the number of episodes that can
be conducted in one flight is limited by the time required per episode and the battery
capacity. As such, to increase the likelihood of finding a good policy, it is recommended
to train a large number of agents for a limited number of episodes, instead of a few
agents for many episodes. These agents can then be tested by running fully greedy
episodes, with exploration and learning disabled, thereby providing a good measure of
the obstacle avoidance performance.

SQ2.4 What is the performance of the trained and tested control system?
The prototype obstacle avoidance method described in the article is able to correctly
detect and avoid a large obstacle underneath a descending quadrotor in 75-80% of the
episodes. One could argue that this is a good performance, especially when considering
the very limited cost of adding this method to a quadrotor. This of course only consti-
tutes the performance with respect to large obstacles underneath. An initial assessment
of the expected performance of this method for other obstacles yields the following re-
sults; for the avoidance of surfaces above the quadrotor, e.g. ceilings, a similar or even
better performance is expected. The performance when considering the avoidance of
surfaces on the same level as the quadrotor, e.g. walls, is expected to be worse. As such
improvements, some of which are already discussed in the article, would be required to
reach a satisfactory performance for detecting all obstacles.

While the second subquestion has been positively answered by the development and demon-
stration of the prototype method in the article, the social relevance is largely determined by
subquestion three: How can the knowledge gained from developing this reinforcement learning-
based quadrotor control system be applied to other quadrotors? As the ease and cost associated
with the extension to other quadrotors will determine whether this method indeed is the low-
cost obstacle avoidance method that is desired.

A procedure for the extension to other quadrotors is described in section VII.B of the article.
It has already been demonstrated, as it was used to successfully train a reinforcement learning
agent to avoid obstacles underneath, on the Parrot Bebop 2 drone. Furthermore, it is shown
that this can be accomplished in only two 50 episode long training runs. The cost and
time required to do so were negligible, showing that this system can easily be applied to other
quadrotors. It must be noted however that this does not guarantee that the obstacle avoidance
method will achieve satisfactory performance on every quadrotor. As shown in section V.B.2
of the article, the performance that can be achieved is highly dependent on the signal-to-noise
ratio of the external force estimate. Since this ratio depends on, among others, the quadrotor
rotor radius, sensor noise, and rotor-induced vibrations, the performance is expected to be
quadrotor specific.

Obstacle avoidance for quadrotors using reinforcement learning and obstacle-airflow interactions G.J. van Dam



Chapter 4

Literature survey

In the literature survey, the state of the art in fields related to this research will be investigated.
This will be done by studying both the basics from textbooks and the state of the art from
recent publications

In section 4-1, existing obstacle avoidance methods will be analyzed in order to allow for com-
parison with the new method under investigation. This relates directly to research question
1.1 (SQ1.1).

In section 4-2, literature regarding the obstacle-airflow interactions between a quadcopter and
obstacles will be investigated. This will be done by studying papers describing these effect
and their (experimental) results. By doing so, research question 1.2 can be answered (SQ1.2).

Thirdly, in section 4-3, the basics of Reinforcement Learning will be described, as well as the
state of the art. This will help answer research question 1.3 (SQ1.3)

Finally, based on this literature study, research question 1 (What is the state of the art in the
related fields? ) can be answered, this will be done in section 4-4.

4-1 Obstacle Avoidance

Obstacle detection

Obstacle avoidance

Motion planning
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o

m
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Figure 4-1: Obstacle avoidance
as part of motion planning.

Obstacle avoidance is the task of preventing unwanted colli-
sions. Within the domain of robotic control, it can be seen as
one level above obstacle detection and one level below motion
planning, as is illustrated in figure 4-1.

Obstacle detection is thus usually a prerequisite for obstacle
avoidance. One must first be aware of the presence of an obsta-
cle to take action and prevent a collision. Experience has shown
that accurate obstacle detection at sufficient range is one of the
main challenges for UAVs. Because of this, and because the
obstacle avoidance method under investigation in this research
relies on a new obstacle detection method, obstacle detection
will be one of the main focus points of this literature survey.

Once an obstacle is successfully detected, a UAV or other robot
can take action to prevent an unwanted collision. What is im-
portant here is that the mitigating action should be sufficient to avoid the collision, but also
safe and not too restrictive in preventing the robot or UAV in pursuing its goal.

Motion planning can be considered the next step; based on the detected obstacles an obstacle-
free path is calculated, which is then used as guidance. The planning involved is the key
distinction between motion planning and obstacle avoidance. Motion planning is out of the
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scope for this literature survey, but for a survey of different motion planning methods for
UAVs the reader is referred to [38].

In section 4-1-1, different methods for obstacle detection on a UAV will be discussed. In
section 4-1-2 different techniques within the category most relevant to this research will be
highlighted. Then in section 4-1-3, different actions to prevent collision will be discussed, here
the focus is purely on quadcopters.

4-1-1 Obstacle detection

Obstacle detection for UAVs is typically characterized by three main challenges: limited
information about the environment, limitations on the placement and capabilities of onboard
sensors, and uncertainty in vehicle state and sensor data.

Obstacle detection

Map-based

Using a range-sensor Computer vision
Detecting a change in 

dynamics

Electromagnetic Sound Impact
Aerodynamic 

interaction

Mapless Map-building

Figure 4-2: Methods of obstacle detection.

On a general level, obstacle detection
methods can be divided into three cat-
egories: Map-based, map-building and
mapless. [3]

Map-based methods rely on a preexist-
ing map containing either the location
of obstacles or the location of obstacle-
free paths. Because of this, they can
rely on an internal (lookup) system to
detect and avoid obstacles.

A map-based method can be a great
obstacle detection method. There are
however three main challenges for a map-based method. First of all, getting or creating a
detailed map to make such a method work can be a great challenge. Secondly, it requires the
environment to be time-invariant. Finally, the UAV needs to be able to localize itself on the
map. This is especially challenging in indoor environments, where an accurate GPS signal is
usually not available.

Map-building methods first explorer the environment to build a map and then use this map
for navigation. By doing so, a map-building method can take away the first challenge in
map-based methods, as discussed above. A prerequisite for this is however that the method
is able to build a map that is accurate. This is is often a challenge for UAVs, because the
accuracy of the map will depend on the accuracy of their self-localization during the map
construction process. Another challenge for map-building methods on UAVs is that during
the exploration, map-building, phase they already have to avoid obstacles in order to prevent
collisions.

Mapless obstacle detection methods include all methods that do not need knowledge of the
environment to run. Instead, they rely on some combination of sensors to detect obstacles.
The main advantage of this is that it allows for deployments of the UAV in unknown or
dynamic environments. A downside of these methods is however that they often rely on the
placement of extra sensors on the UAV. This usually comes with added weight, cost and
power usage, thereby increasing the cost of the UAV and/or limiting its flight time.
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Because the new obstacle detection method investigated in this research falls into the category
of mapless obstacle detection methods, the rest of this part of the literature study will focus
on this category. It is, however, important to note that also map-based and map-building
methods often rely on one or more of the mapless obstacle detection methods. They can,
for example, use the results from these mapless methods to improve localization of the UAV,
build or improve a map, or as an extra safety layer.

4-1-2 Mapless obstacle detection

Within the category of mapless obstacle detection, a wide variety of methods, sensors, and
algorithms reside. A full subdivision is thus not obvious, however, for practical purposes,
a subdivision has been made into methods that use a range-sensor, methods that rely on
detecting a change in system dynamics and methods that rely on computer vision to detect
obstacles.

Using a range/proximity-sensor

One common way of detecting obstacles is to use some kind of range sensor, sometimes also
called proximity sensor, to measure the distance to the closest object in a certain direction.
By doing this in multiple directions, an autopilot can get a decent overview of where obstacles
are located with respect to the current position of the UAV.

The accuracy and reliability of such a range-sensor obstacle detection method then usually
depend on two factors: the reliability of the distance measurement and the number of direc-
tions that can be measured per second. If both are high, a range-sensor based method can
be one of the most reliable obstacle detection methods.

There is however also a downside to these methods, the range-sensors, especially those that can
perform measurements in different directions quickly, are usually quite heavy and expensive.
This limits their use mostly to larger UAVs.

In the list below some key examples of range-sensors and their implementation for obstacle
detection will be given:

• Radar, an acronym for RAdio Detection And Ranging, is an object detection system
that uses radio waves to detect objects. The basic technology was developed for military
purposes between 1934 and 1943. Its main usage has historically been the detection of
relatively large objects over large distances. Examples of these are the detection and
tracking of aircraft and ships, tracking space vehicles and observing weather conditions.

In the last few years, some research and experiments have been performed using RADAR
for obstacle avoidance. Most notably by Moses et al. [41], who developed a lightweight
(230 gram), X-band doppler RADAR system. This RADAR system was fitted on a
quadrotor and used to detect and identify a conventional-type miniature helicopter. A
picture of this setup can be seen in figure 4-3 .

Initial results were promising but limited to the size of the radar lobe, around 12.5
degrees. The goal of this particular research was to develop a system to prevent mid-air
collisions with other air traffic, but looking at the experiment setup it can be expected
that a similar application might be developed for obstacle avoidance in general.
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Figure 4-3: Quadrotor Equipped with RADAR Sensor [41].

• Ultrasonic sensors are, as the name suggests, sensors that measure distance by trans-
mitting an ultrasonic wave. They measure the time between the emission and reception
and combine this with the known speed of sound to come to an estimate of distance.

Ultrasonic sensors are typically low-cost and low weight. They can achieve accuracy
up to a few centimeters, but can only measure distances up to about 250cm reliably.
Furthermore, soft surfaces, like foamed material and people wearing clothes, can be
hard to detect for an ultrasonic sensor. [18] Also, these sensors, like most other range
sensors, can only detect an obstacle within a certain cone from their installed direction.
As a result, multiple of these sensors often need to be installed, as seen in figure 4-4.

Figure 4-4: Installation of multiple ultrasonic sensors on a quadcopter [18].

• Most Infrared range finders work by transmitting an infrared beam. In contrast to
the ultrasonic sensor, the transmitter and receiving-sensor are not placed at the same
location. Instead of using the time difference between transmission and reception to
calculate the distance, the infrared sensor uses the angle under which the infrared beam
returns to calculate the distance. This is done using simple triangulation.

Because infrared rangefinders use infrared light they are much more dependent on the
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lighting conditions and reflective properties of the object that needs to be detected than
similar ultrasonic sensors. However, infrared rangefinders can be effectively used on the
softer surfaces which were a problem for ultrasonic sensors.

As a result, a combination of both ultrasonic and infrared sensor can be used as a
successful low-cost obstacle detection and avoidance method on quadrotors. This is
demonstrated in Gageik et al. [19]. This did, however, require a 360-degree setup with
a total of 16 infrared sensors and 12 ultrasonic sensors for obstacles on the same level
alone. The impact on the design of the drone is thus relatively large, as can be seen in
figure 4-5.

Figure 4-5: The AQopterI8 equipped with 12 ultrasonic sensors and 16 (2 x 8) infrared sensors
[19].

Additionally, more advanced infrared sensors exist that measure not just the distance to
one single point but create a full depth map over a larger area. These devices are however
also heavier and use more power. Historically, they were also quite expensive, however,
there are now examples of cheaper implementations, like those using the Microsoft
Kinect. [28] The first implementations of this Microsoft Kinect onto a quadrotor have
already shown promising results. [61]

• LIDAR. One of the best-known methods is called Light Detection and Ranging (LI-
DAR), it is a surveying method that measures the distance to a target by illuminating
the target with pulsed laser light and measuring the reflected pulses with a sensor. LI-
DAR has previously been applied for cars, fixed-wing UAV’s [51] [49], and thanks to
recent advancements also on quadcopters [32] [78] [44].

• Structured light can be seen as a technique that is a mix between the range sensor
methods previously discussed and the computer vision methods about to be discussed.
Structured light is a technique whereby a known pattern, usually parallel stripes, are
projected on a certain surface or scene. A camera is then used to capture this scene.
From the deformation of the pattern, depth and surface information of the objects in
the scene can then be extracted.

Currently, structured light is being used for a variety of different applications, including
3D scanning of static objects. It has the potential for obstacle detection [17] and has
previously been used for obstacle detection on mobile robotic devices. [73]
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Figure 4-6: Obstacle detection for a car using LIDAR [70].

Figure 4-7: Working of structured light surface imaging [21].

In general, it can be observed that there are two categories of obstacle detection methods
using range sensors. Both requiring the installation of specific sensors on the quadrotor.

The first category contains the simple sensors that measure the range to the closest obstacle
in a single direction. The ultrasonic and simple infrared sensors fall under this category.
They have the advantage of being low-cost, low-power and low-weight. However, they all
have certain surface types on which their detection performance is significantly worsened.
Furthermore, they only measure in one direction, so their obstacle detection capability is
limited to one direction. Of course, it is in some cases possible to install multiple of these
devices, but then also the cost, power and weight contribution starts to add up.

In the second category, there are sensors that are able to measure the range in multiple
directions. This includes the radar systems, advanced infrared sensors like the Microsoft
Kinect, structured light and of course LIDAR. They are able to achieve higher accuracy, but
this also comes with a higher cost, power consumption, and weight.
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Computer vision

The field of computer vision is a large and highly active field of research that has seen signif-
icant breakthroughs in previous years, mainly driven by the application of machine learning
techniques. This progress can, for example, be seen by looking at the great advancement of
image classification on the ImageNet dataset challenge. [50] Furthermore, face recognition
using deep convolutional neural networks has become the standard for multiple large social
media and photo sharing websites, bringing this new technology to the end user. [54]

When looking at using computer vision for obstacle avoidance, four main approaches can be
seen, optical flow, appearance-based navigation, visual sonar, and stereo-vision. [3]

• Optical flow is the pattern of apparent motion of objects, surfaces, and edges in a visual
scene caused by the relative motion between an observer and a scene. Optical flow
based solutions estimate this optical flow by using a sequence of images. The optical
flow between frames is then usually represented by an optical flow vector for every
pixel. The size of the vector indicates the motion speed, and the direction indicates the
movement of the pixel. This information can then, for example, be used to estimate the
layout of surfaces, the direction of the Focus of Expansion (FOE), the Time To Contact
(TTC), or a depth map.[3] [23]

Figure 4-8: The optic flow experienced by a rotating observer [74].

There exist a multitude of different platform independent algorithms using optical flow
to detect obstacles. These methods are often insect-inspired or rely on the addition
of edge and corner detection algorithms to improve performance. Furthermore, some
articles have shown that the combination of optical flow and stereo vision can improve
results. [3]

There have also been multiple applications of optical flow methods to UAV’s for navi-
gation and obstacle avoidance. Examples of this are[15] and [9].

A challenge for optical flow based methods is the detection of objects or surfaces with
little texture. This, because here it is difficult to track individual pixels. Furthermore,
changing light conditions and noise in the camera image can be problematic for obstacle
detection methods relying on optical flow.

• Appearance-based navigation methods store (representations of) images encountered
in previous stages, match this with the current camera image and use this for self-
localization and/or direct steering commands.
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There are multiple methods using this principle. The main challenge is usually the
algorithm to create the stored imaged representation and to match this subsequently
with an online image. This category also includes some of the machine learning methods
discussed in the introduction, most specifically the image classification methods.

An example of using these methods for navigation is [40]. In this study, a SVM is
used to store and match image representations, which are then used for navigation of a
mobile robot. The result of which can be seen in figure 4-9.

Figure 4-9: A computer vision method using a SVM for appearance-based navigation [40].

While this specific study is focused on localizing itself on a predetermined route, based
on recognized appearances, a similar method could be used for obstacle detection. This
would then be based on a stored set of known obstacle representations. However, the
applicability would be challenging for environments in which not all potential obstacles
are known.

• Visual sonar uses the idea that the distance in pixels from the bottom of an image to
the object edge, is proportional to the real world distance from the robot to the detected
object. In other words, this method looks at how much ground there is left between the
robot and a particular object. This idea, first described by Horswill in 1994 [24], has
seen multiple implementations on robotic platforms. Both on ground-based robots and
UAV’s. [36]

This method is shown to work reasonably well, as long as the environment satisfies
the specific requirements. Specifically, the floor needs to be easily recognizable for the
algorithm. While this is certainly not the case everywhere, it can be argued that a lot
of indoor environments actually do satisfy this requirement. [24]

• Stereo-vision methods can be used to generate a depth map and detect obstacles when
not one, but two cameras are used. By comparing the images from the two cameras,
and knowing the positions of the camera with respect to each other, 3D information
can be extracted. This works similar to the binocular vision that allows humans to see
depth.

Obstacle detection methods using stereo-vision have been successfully demonstrated on
flying UAV’s, for example by Yu et al. [77], [8] and [75].
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Figure 4-10: Visual sonar, as implemented by Ulrich and Nourbakhsh [68].

As can be seen from 4-11, the direct results from these stereo-vision methods can have a
low signal-to-noise ratio. By making certain assumptions about the scene, and applying
for example contour detection, this noise can partly be removed.

Figure 4-11: Depth image from stereo vision algorithm, before and after pretreatment [75].

In general, it can be concluded that a variety of computer vision methods exist, each with its
own reliability in specific environments, however all depending on good lighting conditions.
Furthermore, it must be noted that most UAV’s use a front-facing camera, and thus these
algorithms are only able to detect obstacles in front of the UAV.
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Detecting a change in dynamics

Another way to detect obstacles would be to detect the change in flight dynamics that takes
place when a quadrotor is either in contact with an obstacle or flying close to it.

In comparison to the other methods described above, very little research has been performed
in this area. There are two key reasons for this. First of all, actually making contact with an
obstacle can be damaging and even catastrophic when it is done at higher speeds, in other
words, a collision. Secondly, the effect of changing flight dynamics when flying near a surface
is relatively small and can only be experienced when flying close to the obstacle.

As such, these methods have historically been researched to a lesser extent. Within this
research, their potential will be investigated further, as the proposed new obstacle avoidance
method falls in this category.

When looking at the research that has been done, within this area of using a change in
dynamics to detect obstacles, a couple of articles stand out.

• In Mckinnon [37] a SVM was trained to detect the presence of a wall using the change
in flight dynamics. This research is the one that is most similar to the research at hand,
therefore it is discussed in more detail in sections 4-2-3 and 4-2-4.

• In Tomic and Haddadin [66] a method was developed to detect and react to collisions,
using an external wrench estimation. By doing so, they were able to map an environment
with obstacles, simply by exploring and saving the location of collisions. This was shown
to work in experiments using an AscTec Hummingbird quadrotor.

Figure 4-12: Experimental flight results from Tomic and Haddadin [66], showing the identifica-
tion of multiple collisions, indicated by the peaks in the upper graph, and the recovery reaction,
indicated by the shaded areas.

This work is then extended in [67], by filtering out the effects that wind might have on
the external wrench estimation. Thereby enabling this method of obstacle detection in
windy environments.

Overall it can be thus concluded that the research into obstacle avoidance methods based on
detecting a change in system dynamics is limited. Further investigation of this would thus fill
a specific literature gap.
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4-1-3 Actions to prevent collision

Since the focus of this literature study is not just obstacle detection, but obstacle avoid-
ance, the actual avoidance of detected obstacles needs to be considered. There are three key
elements to consider when it comes to going from detection to avoidance.

• The location of the obstacle(s) w.r.t. the current position of the quadrotor.

• The current speed and acceleration of the quadrotor in the direction of the obstacle(s).

• The evasive maneuvers available to the quadrotor.

The first logical step for an autonomous quadrotor would be to determine the chance of
collision with any detected obstacles. This can be done by combining the estimated location
of the obstacle, the current speed and acceleration of the quadrotor, and any knowledge about
the accuracy of both the detection system and the speed & acceleration estimates.

It must be noted here that not all obstacle avoidance methods calculate this as a chance in
percentages, perhaps they use a certain threshold or conflict identification algorithm, but in
general, there will be some way to determine which obstacles will potentially cause a collision.
These obstacles must thus be acted upon.

A final check, before determining that an action needs to be taken to prevent collision, might
be estimating the time till impact. This would be especially relevant to any obstacle detection
method which is capable of detecting obstacles at larger distances. Not all obstacles might
pose a direct threat to the quadrotor and therefore it might be beneficial to continue along a
path in the short term, even if this path could lead to a collision in the long term. As long
as there is enough time to prevent a collision at a later stage, the extra exploration could be
beneficial. An example of this is shown in the figure below.

Figure 4-13: Example of a situation in which continuing along a certain path might be beneficial,
even though an obstacle is detected on that path. In this case because it leads to the discovery
of an alternative path.

In the cases where a collision with a detected obstacle is imminent, an autonomous quadrotor
should take the right action to prevent a collision. Usually, this can be done in one of two
ways.
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• Decelerate such that the speed relative to the detected obstacle becomes zero.

• Accelerate in another direction, thereby adjusting the current flight path, such that the
detected obstacle is no longer in its flight path.

The exact maneuver that is best for this depends greatly on the situation and the exact type
of quadrotor that is being used. Depending for example on their power to weight ratio, certain
quick deceleration’s might, or might not be achievable.

In general, it can be said that deceleration is usually the less risky option but adjusting
the flight path the more time-efficient in terms of achieving the overall flight mission. The
choice for an exact maneuver is thus specific to the quadrotor, the situation and the mission
objective.

A final interesting case that might be considered is the case where a collision cannot be
avoided. An example of this would be a situation in which the quadrotor approaches an
obstacle at such a speed that deceleration in time is no longer possible, and there is no
alternative flight path available to avoid the obstacle. In that case, it might be desired to
adjust the orientation of the quadrotor such that the impact of the collision is minimized.
However, this is out of the scope for this particular research.
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4-2 Obstacle-airflow interaction

The dynamics of a quadrotor are greatly dependent on its aerodynamics, most importantly
the airflow around the thrust-producing propellers. These aerodynamics can be influenced
by surfaces in proximity to the quadrotors. The most well-known example of this is the
one produced by proximity to the ground surface, usually called the ground effect. This
phenomenon has been shown to influence the dynamics not only in quadrotors [45], but
also helicopters [7] and fixed-wing aircraft [25] [48]. Recently it has been shown that for
quadrotors similar phenomena can also be seen for surfaces above [52], and on the same level
as the quadrotor [37].

In the proposed new method, this change in dynamics will effectively function as the source of
information used by the reinforcement learning agent to determine the presence of obstacles.
Therefore, it is of key importance that these effects can be accurately measured in flight.
Furthermore, it would be very useful if these effects could be modeled in simulation. Accuracy
here is key because only then a policy learned in simulation can be successfully transferred to
a real (physical) application without needing too much additional online training. In order
to accurately simulate these effects, this research will use both known analytical models and
measurement data provided in other publications.

The literature survey of obstacle-airflow interactions has been divided into three separate
parts: obstacles underneath the quadrotor, obstacles above the quadrotor and obstacles on
the same level as the quadrotor. This has been done for a couple of reasons. First of all,
this is the division usually used in literature. Secondly, the aerodynamic effects causing the
interaction are expected to be different. Finally, the resulting interactions, as experienced by
a quadcopter, are expected to be distinctly different between the three cases.

4-2-1 Obstacles underneath the quadrotor

Also known as the ground effect, the influence of a horizontal surface underneath a rotor
has been well researched in literature [7] [47]. Most of this research has been focused on
helicopters, but in general, it can be noted that for all rotorcraft operating closely above a
ground surface, the produced thrust increases. [53]

Classical theory

The classical model for ground effect in helicopters is provided by Cheeseman and Bennett
[7]. In this article from 1955, I.C. Cheeseman and W.E. Bennett derive an analytical model
based on potential flow theory and under both the assumption that the helicopter is hovering
and the assumption that the rotor can be modeled as a point source. They then use the
method of images to derive the following ratio between the thrust produced by a helicopter
in ground effect (Tg) and the thrust out of ground effect (T∞), as a function of the radius of
the rotor (Rrotor) and the distance to the ground (z).

Tg
T∞

=
1

1− (Rrotor
4z )2

(4-1)
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Thanks to its simplicity, this model has also been used to estimate the ground effect in
quadrotors [45], even though quadrotors have multiple rotors and the airflows from the dif-
ferent rotors could thus potentially interfere with each other.

Validation using experimental measurements have since shown that the ground effect for a
quadrotor is larger than predicted by this formula. [57] [53] Furthermore, these experiments
showed that the influence of the ground effect in quadcopters was apparent up to heights of
5 times the rotor radius. This is significantly larger than previously expected.

Recent developments

A new formula, specifically for quadrotors was recently (2017) proposed by Sanchez-Cuevas
et al. [53], accounting for the presence of multiple rotors by representing them not as one but
as four sources. It assumes a quadrotor hovering above a ground surface with four coplanar
rotors, each rotor axis separated a distance d from its adjacent rotor axes.

Furthermore, this new formula accounts for an effect called the fountain effect. This effect
has previously been seen in tandem helicopters [22] and quadcopter experiments [57]. It can
best be explained by looking at the CDF simulation of a simplified quadrotor in ground effect
shown in figure 4-14. As expected, the wakes from each rotor spread out to the sides as they
near the ground, however in the center area where the two airflows interact with each other a
vortex ring appears. Due to this aerodynamic effect, an upwards force is applied to the body
of the quadrotor, leading to a greater ground effect. [53] This effect is represented in equation
4-2 by the empirical body lift coefficient Kb, where b is the distance between two diagonally
opposite rotor axes.

Figure 4-14: CDF simulation of a simplified quadrotor model hovering close to a ground surface
plane [53].

In Sanchez-Cuevas et al. [53], equation 4-2 is shown to represent their experimental results
more closely than equation 4-1. Unfortunately however, at the current moment, this has not
yet been confirmed by third-party research.

Tg
T∞

=
1

1− (Rrotor
4z )2 −R2

rotor(
z√

(d2+4z2)3
)− (

R2
rotor
2 )( z√

(2d2+4z2)3
)− 2R2

rotor(
z√

(b2+4z2)3
)Kb

(4-2)

Another interesting part of ground effect analysis is the analysis of a situation in which
only some of the rotors in a quadrotor are subject to the ground effect. This situation is
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analyzed by Sanchez-Cuevas et al. [53], and referred to as the quadrotor partial ground effect.
Experimental tests of this situation have also been performed by Seo et al. [55].

According to [53], if only a single rotor is under the influence of the ground effect, the increase
in thrust of that specific rotor can be modeled using equation 4-1. The total trust of the
quadrotor can then be calculated by summing the thrust of the 3 rotors outside of ground
effect and the one rotor in ground effect. According to the same article, if three or more rotors
are under the influence of the ground effect, each at the same distance z from the ground,
equation 4-2 should be used.

This leaves open two groups of situations. First of all, situations wherein two rotors are
experiencing the ground effect. Secondly, situations where two or more rotors are experiencing
the ground effect, but at different distances (zi). This can happen for example when the
quadrotor is not parallel to the ground or the ground is uneven. To solve this problem, [53]
introduces the following formula for the thrust generated by each of the motors.

Fi = kiω
2
i fGE(zrmu) (4-3)

Where fGE is the ground effect factor that accounts for the increment in thrust due to the
(partial) ground effect. It is a function of the relative distance of each motor to the ground
(zr). Furthermore, this function varies linearly with the area of the rotor that is under the
ground effect, an observation taken from Seo et al. [55].

The full equation for the ground effect factor (fGE) is unfortunately not provided in the
article. Therefore it is unclear whether equation 4-1, or an altered version of equation 4-2 is
used in the calculation of fGE .

4-2-2 Obstacles above the quadrotor

Little research has been done regarding the influence of obstacles or surfaces above a quadro-
tor. The most relevant description and experiments are performed by Sanchez-Cuevas et al.
[52]. In this research, the thrust produced by both a single rotor and a quadcopter, at varying
distances to a ceiling surface, were measured and compared. This was done using a static
test bench, specifically built for these type of measurements.

In Sanchez-Cuevas et al. [52] the increment in thrust due to the ceiling effect is approximated
by an analytical function similar to that of the ground effect shown in equation 4-1. The
ratio between the thrust in (Tc) and out of the ceiling effect (T∞) is in this case given by
the following formula, where c is the distance to the ceiling, and K1 and K2 are determined
experimentally using ordinary least squares.

Tc
T∞

=
1

1− 1
K1

(
Rrotor
c+K2

)2 (4-4)

Similar to the ground effect, it can be expected that there is also such a thing as partial
ceiling effect. This would occur when some, but not all rotors are experiencing the ceiling
effect. Unfortunately, at the current moment, no experimental data or formula is known that
describes this effect. It can, however, be expected that a formula similar to equation 4-3 can
be formulated.
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4-2-3 Obstacles on the same level as the quadrotor

At the time of writing, only two previous research articles have been found in the literature
that discuss the obstacle-airflow interactions with obstacles on the same level. The first one,
[33], focused specifically on reference tracking in the presence of a wall. It shows that there
is an interference, but does not discuss how to model it.

More detailed research is carried out in Mckinnon [37], where multiple measurements have
been carried out, both in ground and wall effect. In this research, an Unscented Kalman
Filter, based on a known model of the UAV, was used to estimate the resulting forces and
torque due to the ground and the wall effect. Important to note here is that all experiments
and tests were carried out in hover.

The results of this experiment can be seen in figure 4-15. On the x and y-axis, the distance
to the wall and the ground at the moment of measurement are displayed. Indicated in color
are the estimated external forces and torques: ||fx,y|| indicates the 2-norm of the force in the
x− y plane, fz indicates the vertical force along the z-axis (perpendicular to the x− y-plane)
and ||τx.y|| is the 2-norm of the torque about the x− and y− axis.

The force in the x− y plane, shown in figure (a), can be seen to quickly increase from about
0.05N up to 0.1N between 0.5m and 0.25m. What is important to note here is that this effect
seems stronger when the quadcopter is not only hovering close to the wall but is also close to
the ground (<1m height).

When looking at the vertical force, shown figure (b), the ground effect can clearly be seen; fz,
the external force in vertical direction, becomes more positive as the height decreases. This
effect, however, seems to be counteracted if the quadcopter is close to a wall, fz even becomes
negative when close to the wall (<0.35m), but far away from the ground (>1m).

Finally, from the graph showing the torque about the x− and y− axis, figure (c), a clear
influence of the wall can be seen. Between 0.5m and 0.25m from the wall the torque doubles
from 0.01Nm to 0.02Nm.

From these results, it can be seen that a small, but measurable increase in forces and torque
are present when flying close to the wall, ground or both. In Mckinnon [37] an attempt was
made to detect the presence of a wall from a distance of 0.35m or less. For the drone that
was used, this distance corresponds to about 3 times the propeller radius. It is, however,
unknown whether the minimum detection distance for walls depends on this radius.

Figure 4-15: The estimated external forces and torque while hovering at different distances from
a wall and the ground [37].
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4-2-4 Using these effects for obstacle detection

In addition to describing the effect between quadcopters and obstacles, some effort was also
made by Mckinnon [37] to detect obstacles based on these measurements. More specifically,
in Mckinnon [37] a support vector machine was trained to detect the presence of a wall. A
SVM is a machine learning method that learns a decision boundary between two classes as
a function of feature vectors. Like other supervised machine learning methods, it learns this
during a training phase, where it is exposed to multiple examples from both categories.

The setup of the experiment can be seen in figures 4-16a and 4-16b, what is important to
note here is that the vehicle was hovering for 5 seconds at each measuring point.

(a) Setup of the wall detection using an SVM carried out
by Mckinnon [37].

(b) Classification results for a quadrotor navi-
gating a series of waypoints. [37]

Figure 4-16: Setup and results of the wall detection experiment carried out by Mckinnon.

Using random search on hyperparameters, to optimize classification accuracy on a separate
dataset, the created SVM was able to accurately classify being close to the wall with an
accuracy above 90%. Close to the wall was defined as being at a distance ≤0.35m. It was
able to classify being not close to the wall with an accuracy of around 80%. It thus shows
that the algorithm was capable of detecting proximity with consistently higher accuracy than
free flight. The explanation for the difference in false negatives versus false positives, given
in the publication is that the forces caused by the wall effect are so small that they can be
felt during random disturbances in regular flight as well.

Other than that, no further research has been found that uses these effects for obstacle
detection.
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4-2-5 Final considerations

In the sections above, the influences of ground, ceiling, and wall, were all considered separately.
It can however not be expected that their contribution to the increase in thrust can be
considered independent. On the contrary, the experiment results of Mckinnon [37], as shown
in figure 4-15, indicate a much more complex relationship.

Furthermore, the formulas given all approximate the increase in thrust when a quadcopter
is hovering, near a flat surface. In applications for obstacle avoidance, one would want the
obstacle detection especially to work while flying. Additionally, not all obstacles that are
encountered are flat surfaces.

Based on these considerations, it can thus be concluded that the formulas found in literature
can serve as a starting point for simulation, but not as a highly accurate representation of
reality.

This highlights the reason why reinforcement learning will be used for this research. Because
reinforcement learning can learn by interacting with these aerodynamic effects in real flight,
it does not require a very accurate pre-existing model. It must be noted however that if some
part of the training of the reinforcement learning agent were to be done in simulation, still
some (simple) model of the obstacle-airflow interactions and their effect on the quadrotor
would be required.
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4-3 Reinforcement Learning

Reinforcement learning is a computational approach to machine learning whereby an agent
tries to maximize the cumulative rewards it receives when interacting with a complex envi-
ronment. In this section, both the basics and the state of the art will be discussed. If not
otherwise indicated, all theory has been derived from Sutton and Barto [63].

4-3-1 The basics

Reinforcement learning is a type of machine learning, and thereby also a branch of artificial
intelligence. The defining idea behind reinforcement learning is that an agent learns by
interacting with an environment. By doing so, the agent tries to determine the ideal behavior
in order to maximize its performance.

In reinforcement learning the agent is the learner and decision maker, and everything outside
of the agent is considered the environment. The agent interacts with the environment by
picking an action, the environment then responds to this action and presents the agent with
a numerical reward and a new (updated) situation.

This constant loop of the agent picking an action and the environment responding with a
reward plus a new situation is almost always considered in discrete time. Some work has been
done to extend it to continuous time, but in practice, almost all applications of reinforcement
learning are using discrete time timesteps. [63] The agent and environment thus interact at
a sequence of discrete time steps.

At each discrete time step t, the agent not only receives a numerical reward (rt), but also a
representation of the environment’s state st, the current situation. The agent then uses its
policy function, a mapping from state-space to action-space, to determine the next action to
take. This policy can be deterministic or stochastic and is usually denoted as at = π(xt).
One time step later, this action at, chosen at state st, results in both a numerical reward rt+1

and a new state st+1. This process can be seen in figure 4-17.

Figure 4-17: The agent environment interaction in reinforcement learning [63].

A reinforcement learning method then specifies how the policy should be updated, based on
this reward and new state. The reinforcement learning method does so with the end goal of
maximizing the total amount of rewards received by the agent.

4-3-2 Rewards & the return

This total amount of rewards received after some timestep t is often called the return and the
simplest way to define it is as the sum of the rewards.
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Gt = rt+1 + rt+2 + rt+3 + ...+ rT (4-5)

In this equation T is the final time step, intermediately identifying a potential problem with
this definition of the return; It only works for tasks in which the agent-environment interaction
has a certain (natural) end. These kinds of tasks are usually called episodic tasks, examples
include most games, and for example pathfinding. All tasks which can be naturally defined
as a certain episode with a definitive start and end point.

There are however also a large class of tasks for which such a natural end of an episode does
not exist. These tasks are called continuing tasks, and if there return is calculated using
equation 4-5 a problem arises. The final time step would approach infinity and thus the
return could easily be infinite, severely limiting a practical implementation.

Therefore, the discounted return is introduced. This discounted return is based around γ,
the discount rate, a parameter determining the relative value of rewards in the future versus
rewards now. This discount rate is bounded by 0 ≤ γ ≤ 1, and if γ < 1 the discounted return
will always have a finite value, as long as the rewards are also bounded.

Gt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=0

γkrt+k+1 (4-6)

4-3-3 The state

Next to the immediate reward, another key source of information for the agent is the state.
While the reward is used by a reinforcement learning algorithm to update the policy function,
the state is the direct input to this policy function. As such, the state should contain all
available and relevant information for the agent to make a decision.

The state signal usually includes immediate measurements, but can also include previous
measurements and/or processed measurements. However, it is usually impractical and un-
necessary to store all previous measurements in the state signal. Therefore a choice has to be
made.

A goal is often to have the state signal compact, but also satisfying the Markov property. A
state signal is said to have this Markov property if the signal succeeds in retaining all relevant
information. Formally this can be defined as follows.

Considering a discrete process at time step t, with a finite number of states (st, st−1, ...s0),
actions (at, at−1, ..., a0) and reward values (rt, rt−1, ..., r1). The state signal s is said to have
the Markov property, if and only if, the probability distribution of transitioning from the
current state st to a new state s′ and receiving reward r, depends only on the current state
st and the chosen action at. If this is the case then the transition probability is fully given
by equation 4-7 for all s′, r, st and at.

Pr{st+1 = s′, rt+1 = r|st, at} (4-7)

If the Markov property does not hold for the state signal, the transition probability also
depends on some previous states and actions. As shown in the equation below.
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Pr{st+1 = s′, rt+1 = r|st, at, rt, st−1, at−1, ..., r1, s0, a0} (4-8)

In other words, a state signal has the Markov property if and only if 4-7 is equal to 4-8 for
all potential s′ and r and all histories st, at, rt, st−1, at−1, ..., r1, s0, a0. Furthermore, one could
predict future states and expected rewards from the knowledge of only the current Markov
state and action as well as one could given the entire history of previous states, actions, and
rewards. [63]

Because in reinforcement learning the value function, which will be discussed hereafter, and
policy function are assumed to be functions of only the current state, the Markov property is
of key importance to the application of reinforcement learning.

A reinforcement learning task that satisfies the Markov property is called a Markov De-
cision Process (MDP) and it is the most common type of task considered in the research
into reinforcement learning. Markov state representations are thus a common assumption in
reinforcement learning theory.

In real-life applications a perfect Markov representation is often not possible, however, expe-
rience has shown that if a state representation is informative enough, even though not strictly
Markov, reinforcement learning can still successfully be applied. [63]

4-3-4 The value function

Almost all reinforcement learning algorithms are based on estimating some sort of value
function, where the value function is an indication of the desirability of a certain state or
state-action pair. The desirability is then usually an indication of the expected return from
that state or state-action pair.

Most reinforcement learning algorithms use either an state-value function (V ) or an action-
value function (Q). Since the value function is an indication of the expected returns, it is
also dependent on the actions that are taken after that state or state-action combination.
Therefore the value function is usually evaluated under a certain policy π.

For an MDP, the state-value function at state s and for policy π is thus formally defined as
in equation 4-9, where Eπ{} is the expected value given that the agent follows this policy π.

V π(s) = Eπ {Rt | st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣st = s

}
(4-9)

Alternatively, some algorithms use the action-value function. This function not only takes
into account the current state (s), but also the action that will be taken in the next time step
(a). It can thus be seen as the expected return starting from state s, then taking action a
and thereafter following policy π. The formal definition for the action-value function in an
MDP can be seen in equation 4-10. [63] Important to note here is that for the value function
Qπ(s, a) the action a does not necessarily need to be in line with the policy π.

Qπ(s, a) = Eφ {Rt | st = s, at = a} = Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣st = s, at = a

}
(4-10)

G.J. van Dam Obstacle avoidance for quadrotors using reinforcement learning and obstacle-airflow interactions



4-3 Reinforcement Learning 57

4-3-5 On-policy and off-policy methods

In addition to the division into the three fundamental classes that will be discussed below,
reinforcement learning methods can also be split between on-policy and off-policy methods.
In on-policy methods, the reinforcement learning agent learns the value function for the
policy it is currently using to select actions. In off-policy methods this is different, here the
reinforcement learning agent learns the value function for the policy it currently thinks is best,
however it is not necessarily following this policy to select actions. An off-policy method thus
consists of a behavior policy, used to select actions, and an estimation policy that is being
evaluated and improved in order to approach the optimal policy.

An advantage of off-policy methods is that sufficient exploration can be ensured by having a
behavior policy with a nonzero probability of selecting each of the actions, while the estimation
policy can be fully greedy in selecting only the action it thinks is best. As such, off-policy
methods can be a great approach to the exploration-exploitation dilemma. This dilemma refers
to the fundamental choice between exploration, where an agent gathers more information that
might lead to better decisions in the future, and exploitation, where an agent makes the best
decision given the current information.

A downside of off-policy methods is, however, that they are often hard to combine with
bootstrapping, practice has shown that off-policy bootstrapping methods may even diverge
to infinite error. [63]

4-3-6 Three main reinforcement learning methods

Reinforcement learning methods can be split up into three fundamental classes: dynamic
programming, Monte Carlo methods, and temporal-difference learning. Each of these classes
has its own specific strengths and weaknesses.

Dynamic programming

Dynamic programming refers to a collection of methods that can be used to find optimal
policies for a given Markov decision process, provided however that a full and perfect model
of the environment is known. This requirement, combined with the often great computational
expense are the two main limitations of applying dynamic programming.

Monte Carlo methods

Monte Carlo methods, on the other hand, do not require a perfect and complete model
of the environment, instead, they learn value functions and optimal policies directly from
interaction with the environment. They learn from experience, by using sample episodes and
estimating the value function by averaging the returns observed after visits to that state.
What is important to note here is that Monte Carlo methods only update the estimated
value function based on the returns observed and not on the basis of other value estimates.
In other words, they are not bootstrapping. This can be an advantage, because they may be
less harmed by violations of the Markov property [63]. This however also means that they
are less suited for incremental step-by-step computation, something that is often desired for
computational implementation.
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Temporal-Difference learning

Like Monte Carlo methods, Temporal-Difference (TD) methods can learn directly from raw
experiences and do not require a model of the environment. The key difference is that in
TD methods, the value function is incrementally updated; Each timestep the values of the
previous state or states are updated based on the observed reward and the estimated value
of the new state. As such, TD is a bootstrapping method

The main advantage of TD methods, comparing to dynamic programming methods, is that
they do not require a model of the environment. Secondly, due to the incremental nature of the
algorithms, these TD methods can be naturally implemented in an online, fully incremental
fashion. Taking immediate use of the knowledge gained during each episode. Finally, TD
methods have usually been found to converge faster than Monte Carlo methods (with constant
step-size) on stochastic tasks. [63]

The simplest TD method, known as TD(0) is:

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)] (4-11)

After taking action a from state st and receiving reward rt+1, the estimated value of this
previous state (V (st)) is thus updated based on the observed reward (rt+1) and the estimated
value of the next state (V (st+1)). For any fixed policy π, the TD(0) algorithm shown above
has been proved to converge to V π in the mean when α is constant and sufficiently small, and
with probability 1 if α satisfies the following conditions.

∞∑
k=1

αk(a) =∞ and
∞∑
k=1

α2
k(a) ≤ ∞ (4-12)

With αk(a) the step-size parameter used to precess the reward received after the kth selection
of action a. A common choice is αk(a) = 1/k, which satisfies both conditions shown above.

Instead of estimating the value function (V π) of a policy π, most reinforcement learning
methods try to estimate the action-value function Qπ(s, a) for the policy π and all states
s and actions a. This is also the case for the most well-known implementation of a TD(0)
method for on-policy control: SARSA.

As shown in equation 4-13, the SARSA algorithm uses every element in the quintuple
(st.at, rt+1, st+1, at+1) to update the estimated state-action value. This is also where the
name SARSA comes from.

Q(st, at)← Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)] (4-13)

Because SARSA is an on-policy method, the policy π is constantly changed toward greediness,
using the state-action value function Qπ. Since Qπ is an estimation of the value of behavior
policy π this value function is then updated, to more closely approximate the value function
for the current policy. This loop is proven to converge to an optimal policy and action-function
as long as all state-action pairs are visited an infinite number of times and the policy function
converges in the limit to a fully greedy policy.
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Where SARSA is the well-known on-policy TD algorithm, the best known off-policy TD
algorithm is Q-learning. The most basic, one-step, Q-learning method is defined as: [72]

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, at+1)−Q(st, at)

]
(4-14)

The key difference with SARSA is thus that Q-learning uses the maximum value of the next
state to update the previous state, instead of the value under policy π. As a result, Q-learning
approximates Q∗, the optimal action-value function, instead of Qπ, the value of behavior
policy π. This algorithm has been shown to converge with probability 1 to Q∗ to as long as
all pairs of (s,a) continue to be updated. [63] As with all reinforcement learning algorithms,
sufficient exploration is thus required for both SARSA and Q-Learning implementations.

4-3-7 Eligibility traces

Eligibility traces are one of the basic mechanisms of reinforcement learning, they provide a
theoretical bridge from Temporal-Difference methods to Monte Carlo methods. Furthermore,
in a more mechanical view, they provide a way to temporarily store the occurrence of events
(states and/or actions) and use this information for learning.

Regardless of which view is preferred for the explanation, eligibility traces are centered around
the principle of using multiple, but not all rewards for backing up a value or action-value
function. Instead of using just the direct reward in a state, like the previously discussed
TD(0) methods, or using all subsequent rewards, like Monte Carlo methods, an intermediate
number of rewards is used to update the value estimate.

From the perspective of the more theoretical view, sometimes referred to as the forward view,
each state that is visited is updated by looking forward in time to all the future rewards.
These are then combined and used to update the state. A graphical representation of this
can be seen in figure 4-18.

Figure 4-18: Illustration of the update mechanism according to the forward view [63].

The most used methods for the actual combination of these future rewards is called the λ-
return. When using this method, the update to the current state is a weighted sum of future
rewards, where the weight fades with λ on each step further in the future. This is then
normalized with a factor (1− λ) to ensure that the sum of the weights is 1.

For an episodic task, with an terminal state of Gt, the λ-return is described by equation 4-15.

Lt = (1− λ)
T−t−1∑
n=1

λn−1Gt+nt (Vt(St+n)) + λT−t−1Gt (4-15)

Obstacle avoidance for quadrotors using reinforcement learning and obstacle-airflow interactions G.J. van Dam



60 Literature survey

Where Gt+nt , the general n-step return, is defined as following.

Gt+nt (c) = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnc (4-16)

Looking at these equations, the bridge from Temporal-Difference methods to Monte Carlo
methods can be shown. When λ = 1, equation 4-15 reduces to the conventional return Gt, the
same as the Monte Carlo algorithm. When λ = 0, the equation reduces to Gt+1

t (Vt(St+1)),
the one-step temporal difference return TD(0). As such, both Monte Carlo and one-step
temporal difference methods can be seen as special cases of the Temporal Difference method
TD(λ).

While the beauty of this forward view is in the bridge it creates between Monte Carlo and
the one-step temporal difference methods, a direct implementation is problematic, because
it requires knowledge of rewards in future time steps. Instead, most implementations of
eligibility traces follow the backward view, which provides a causal, incremental mechanism
for approximating the forward view computationally. [63]

To do so, the backward view relies on memory variables called eligibility traces, associated
with each of the states. These traces keep track of how recently a state, or state-action
combination, has been visited. This is done for all states, except the current state St, using
the following update equation.

Et(s) = γλEt−1(s), for ∀s ∈ S, s 6= st (4-17)

The eligibility thus decreases by the discount factor γ and the decay parameter λ every time
step. The eligibility is only increased for the current state. There are three main methods to
do so, as shown in equation 4-18 and visualized in figure 4-19.

Et(s) = γλEt−1(s) + 1, for s = st Accumulating traces (4-18)

Et(s) = (1− α)γλEt−1(s) + 1, for s = st Dutch traces (4-19)

Et(s) = 1, for s = st Replacing traces (4-20)

Figure 4-19: The three main tracing methods. [63]

When eligibility traces are not only used to track and estimate values for states but for full
state-action pairs, they can then be used for policy evaluation, improvement and thus control.
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This can be seen as an extension of the temporal difference methods discussed in section 4-3-6
with eligibility traces, and it can be done for both on-policy and off-policy algorithms.

When the on-policy TD method SARSA is extended with eligibility traces, it is referred to
as SARSA(λ). The estimated action-value function Q is then updated, using the eligibility
traces matrix E, as following

Qt+1(s, a) = Qt(s, a) + αδtEt(s, a) for all s,a (4-21)

With
δt = rt+1 + γQt(st+1, at+1)−Q(st, at) (4-22)

In contrast to the one-step SARSA update equation given in equation 4-13, multiple state-
action pairs are thus updated in one single time step. This can improve the learning speed,
as can be imagined when looking at an example of the impact seen in figure 4-20.

Figure 4-20: Gridworld example of the speedup of policy learning due to the use of eligibility
traces [63].

Off-policy Temporal Difference methods can also be extended with eligibility traces. However,
this requires special care, because in an off-policy the policy that is being learned is not
necessarily the same as the one that is being used to pick actions. Instead, off-policy methods
often rely on the occasional selection of sub-optimal exploratory actions.

A well-known implementation of Q-learning that deals with this problem and extends Q-
learning with eligibility traces is Watkins’s Q(λ). In this method, eligibility traces are used
similar to SARSA(λ), however when an action is picked that is not in line with the policy
being evaluated, for example, a non-greedy action, eligibility traces are set to zero. The
update of the eligibility matrix, previously done using equation 4-17, thus changes to the
following form [63].

Et(s, a) =

{
γλEt−1(s, a) + Isst · Iaat if Qt−1(st, at) = maxaQt−1(st, a)

Isst · Iaat otherwise.
(4-23)

In this case accumulating traces are used, but a similar equation is easily derived for dutch
or replacing traces. The estimated action-value function Q is then updated, as following

Qt+1(s, a) = Qt(s, a) + αδtEt(s, a) for all s,a (4-24)

With
δt = rt+1 + γmax

a
Q(st+1, at+1)−Q(st, at) (4-25)
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4-3-8 Partially observable Markov decision processes

In most of the reinforcement learning theory, the assumption is made that the state repre-
sentation has the Markov property. In practical applications, this is however not always the
case. The extension of reinforcement learning methods to non-Markov processes is an active
and interesting research area.

One common approach is to try and construct a Markov or nearly Markov state representation,
based on the non-Markov state provided by the environment. A well-known example of this is
the theory of Partially Observable Markov Decision Processes (POMDs). POMDs are finite
MDPs in which, even though the state is not fully observable, another signal is available that
is stochastically related to the state.

A POMD can thus be seen as a generalization of a MDP, where it is assumed that the
environment dynamics are a MDP, but the agent cannot directly observe the underlying
state. Instead, the agent maintains a probability distribution over the set of possible states.
More formally, a POMD is usually defined as the tuple 〈S,A, T,R,Ω〉, where: [56]

• S is the complete set of possible environment states, also referred to as the state-space.

• A is the complete set of actions that the agent can execute, also referred to as the
action-space.

• T is the (stochastic) transition function, the probability of reaching a state s′ at time
t+ 1 when executing action a from state s at time t.
T (s, a, s′) = Pr(st+a = s′ | st = s, at = a)

• R is the reward function, R(s, a) is the reward received by the environment at time
t+ 1 when taking action a in state s at time t. In some special cases, when the reward
is dependent on st+1 and the transition is stochastic, it might be required to write the
reward function in the form R(s, a, s′).

• Ω is the complete set of all possible observations that might be available to the agent,
also referred to as the observation-space.

• O is an observation function, the probability of observing o at time t+ 1 given that the
agent has executed action a at time t and reached state s′.
O(a, s′, o) = Pr(ot+1 | at = a, st+1 = s′)

Depending on the specifics of the problem at hand, sometimes this tuple can be extended
with one of the following variables:

• b0, a initial belief state, with b ∈ B a vector of state probabilities, where for every
s ∈ S, b(s) ∈ [0, 1] and

∑
s∈S b(s) = 1. A POMD can be defined without specifying this

initial belief, but specifying some initial belief distribution over initial states can help
establish the boundaries of the reachable belief space. [56]

• γ ∈ [0, 1], a discount factor for the rewards.
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Historically, POMDs have been extensively studied for the case in which a full known model of
the environment is available. In that case, the observation function O is known and a Bayesian
method can be used to transform the observation signal into a probability distribution of being
in a certain state. This signal can then be used as a new state signal for the original problem.
[63]

In recent years, significant progress has been made in other POMD solving algorithms, improv-
ing the computational efficiency, supporting larger domains and loosening the requirement
for a full model of the environment. [56] Key in this transition has been the development of
Point-based Value Iteration (PBVI) methods like SARSOP, which explorer the belief space,
focusing on reachable states, while continuously maintaining a value function approximation
and applying a point-based backup operator.[31]

Finally, instead of trying to reconstruct some kind of Markov belief state representation,
another approach is to leave the observation-representation unchanged and use methods that
are not too adversely affected by the observations being non-Markov. Research into this area
has been performed in Singh et al. [59].

The main proof provided by their research is that in a POMD, assuming ergodicity in the
underlying MDP, both the TD(0) and the Q-learning algorithm will converge to a value
function that is not necessarily the correct value function. Secondly, they propose the use of
stochastic policies instead of deterministic policies and prove that the return for a memory-less
stochastic policy can be significantly better than the return for any memory-less deterministic
policy. Finally, they present arguments why researchers should use the average payoff for
POMDs instead of the discounted payoff. [59]

Based on this research, the authors, in a subsequent paper, present a new Monte Carlo
algorithm for solving average payoff POMDs, without requiring the estimation of some belief
state. This new algorithm includes stochastic policies in the search for an optimal policy in
the policy space. [27]
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4-3-9 State of the art in reinforcement learning methods

The field of reinforcement learning is rapidly developing, both in the application of reinforce-
ment learning techniques to new applications and domains, as well as in the improvement
and development of new techniques and methods. Due to the extent of the research being
done, the summary of recent development below is not exhaustive but focuses instead on the
developments most relevant to this thesis research.

Actor-critic methods

Actor-critic methods are special temporal difference methods in which the action selection
and value estimation have been split up into two separate structures. The actor selects the
actions and the critic estimates the (action-)value function and uses this to criticize the actor,
as can be seen in figure 4-21.

Figure 4-21: The actor-critic
architecture [63].

This critique signal provided by the critic can be a scalar and
is often called the TD error (δt). This value is then used by the
actor to adjust its policy.

δt = rt+1 + γV (st+1)− V (st) (4-26)

Actor-critic methods have two main advantages. First of all,
because the policy is explicitly stored, the effort of selecting an
action is usually limited. This is especially relevant when the
action space is continuous and thus an action must be picked
from an infinite set.

Secondly, due to their structure, they allow for the implemen-
tation of a stochastic policy. As discussed in section 4-3-8, this
can be advantageous when considering non-Markov problems.

Function approximation

So far, both the value function V (s) and action-value function Q(s, a) have been assumed
to be of the tabular form, especially when discussing specific Temporal-Difference algorithms
and eligibility traces. There are however two main challenges for such a representation of the
(action-)value function when state-space or state-action space becomes large. In other words,
when there are a large number of potential states and/or actions.

First, the computational requirements. The computational memory required to store large
tables can become problematic and impractical. Similarly, the computational expense of
manipulating such tables can increase significantly as well.

Secondly, the time and exploration needed to fill these large tables accurately can easily
become problematic. If the required training becomes too time or resource intensive, using
such an approach can quickly become impractical.

Combined, these challenges that arise when the combined state- and action-spaces become
too large are often referred to as the curse of dimensionality.
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To solve this issue, one might want to use a limited subset of the existing state space data
and generalize this to produce a good approximation over a much larger state space. This is
often referred to as generalization. [63]

Luckily, the idea of taking examples from a desired function and using these to construct a
generalized approximation of the entire function is a well-studied area in mathematics. It
is often referred to as function approximation. Within machine learning, this falls under
supervised learning.

Gradient-descent methods are the most widely used category of methods used for function
approximation in reinforcement learning. [63] They rely on a fixed number of real-valued
parameters (w1, w2, ..., wn)T , that together are used to create a smooth differentiable function
v̂, which is then used to estimate the (action-)value function.

Gradient-descent methods approximate such a function by trying to minimize a certain cost
function, for example, the Root-Mean-Square Error (RMSE). They do so by adjusting the
parameters, after each sample data point, by a small amount in the direction that would most
reduce the cost function for that data point.

When the approximate function v̂ is a linear function with respect to the parameter vec-
tor (w1, w2, ..., wn)T , this method is called linear gradient descent. This is one of the most
popular implementations of function approximation for reinforcement learning because the
mathematical implementation is relatively simple. Furthermore, any method guaranteed to
converge to a local optimum is guaranteed to converge to the global optimum. [63] Examples
of linear gradient descent methods include radial basis functions, tile coding, and Kanerva
coding.

Figure 4-22: Function approximation of the cost-to-go function, the negative of the value func-
tion, learned during one run of the mountain-car task [63].

In addition to linear methods, also nonlinear gradient descent methods exist, the most famous
one being multilayer neural networks. One of the first successful applications of this to
reinforcement learning was the development of TD-Gammon, a reinforcement learning agent
that learned how to play backgammon by combining the TD(λ) algorithm with a standard
multilayer neural network as an approximation of the value function. The network consisted
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of a layer of input units, a layer of hidden units and a final output unit. The input to the
network was a representation of a Backgammon position and the output was an estimate of
the value of that position. [63]

While some further progress was made in the years thereafter, the great breakthrough came
with the successful usage of deep neural networks, networks with multiple hidden layers. This
was termed Deep Reinforcement Learning. [5]

Deep Reinforcement Learning

The combination of deep neural networks with reinforcement learning has been an area of
great recent interest and success. While there had been some research done in this area
before, the kickoff to the real success of deep reinforcement learning was the work from
Google Deepmind, published in 2015. [5] It described the development of an algorithm that
could learn to play a range of Atari 2600 video games, directly from image pixels, and do
so at a level comparable to professional gamers. They did so by developing a novel artificial
agent, called a Deep Q-Network (DQN), based on recent advances in training of deep neural
networks. This agent used a deep Convolutional Neural Network (CNN) to approximate the
optimal action-value function. It did so using no prior knowledge and taking as input only
the 4 most recent image frames and the current score, without explicitly designing the state
space or action space.[39]

Figure 4-23: Schematic illustration of the convolutional neural network used by Google Deep-
minds DQN agent [39].

Another recent success of deep reinforcement learning is AlphaGo, the reinforcement learning
agent that defeated the reigning human world champion in the game of Go. The game Go, is
considered one of the hardest games in the world for Artificial Intelligence (AI), because of the
incredible number of potential game scenarios and moves; there are around 250150 different
sequences of moves. To master this game, AlphaGo used a combination of a multiple CNNs
and heuristic search. [58]
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While the given examples are merely two of the large success stories of reinforcement learning,
the research currently being done in this area is extensive and the expectations are high. [58]
They are however especially useful in problems with high dimensional raw input data (e.g.,
audio, text, and images), something that might be applicable, but is not necessarily expected
in this research.

Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning (HRL) is the idea of splitting up a large reinforcement
learning problem into smaller pieces, under the assumption that solving them individually will
solve the original task. [69] By doing so HRL can help deal with the curse of dimensionality,
the well-known challenge for reinforcement learning problems when the combined state- and
action-space become too large. It does so by splitting up to the state- and action-spaces in a
hierarchy of sub-spaces, each with its own reinforcement learning problem.

Three main approaches to HRL covered in literature are the options formalism from Sutton
et al. [62], the hierarchies of abstract machines (HAM) approach of Parr [43] and the MAXQ
framework by Dietterich [11]. [6]

Transfer Learning

The core idea of transfer learning is that experience gained in learning to perform one task
can help improve learning performance in a related, but different, task. [64] As such, it is not
just relevant in reinforcement learning, but in all areas of machine learning. Furthermore, it
is something that can be seen in humans as well. [65]

When the tasks are two truly independent tasks, it is referred to as inter-task transfer learning.
When the initial task is part of the second task, or both are part of one larger task, it is often
referred to as intra-task and it starts to partly overlap with hierarchical reinforcement learning.

Research has shown that transfer learning can speed up learning in reinforcement learning
tasks, this research has however mostly been empirical [65].

Inverse RL

While normal reinforcement learning learns a policy from interaction with the environment,
by selecting actions and receiving rewards, Inverse Reinforcement Learning (IRL) uses obser-
vations to learn a reward function. In other words; given the inputs to an existing agent, as
well as the actions taken by the agent and a model of the environment, what is the reward
function that the agent is optimizing?

Notable work in this area includes the development of apprenticeship learning by Pieter
Abbeel and Andrew Y. Ng [1] in 2004. In apprenticeship learning, an expert is observed
demonstrating the task that the RL-agent is trying to learn. It then uses IRL to learn the
reward function, which is then used to develop a policy for the task itself.

One of the successes most relevant to flight control is the development of an autonomous
helicopter capable of flying a wide range of highly challenging aerobatics, at the same level
as a human expert pilot. [2]
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4-3-10 State of the art in applying reinforcement learning methods on multiro-
tors

While the previous section looked at the current state of the art in general reinforcement
learning methods, it is also useful to investigate to what extent these methods have already
been applied to the application domain under investigation, control of multirotors.

In general, it can be seen that most applications of reinforcement learning techniques for mul-
tirotors have focused on quadrotors, this could be attributed to the advantages of quadrotors
as discussed in section 1. Furthermore, it is interesting to see how the reinforcement learning
agent is placed within the control loop of a multirotor. This can range from full control,
controlling the input to each motor, to only changing some parameters of a conventional
controller.

A great example of applying reinforcement learning for full control is the paper Control of
a Quadrotor with Reinforcement Learning [26]. In this research, a method is presented to
control a quadrotor using a neural network trained with reinforcement learning methods. In
this case, the created agent directly controls all actuators, the motors, of a quadcopter. The
learning method used is a new algorithm, based on a value function trained using Monte-
Carlo samples from on-policy trajectories and a policy optimization using natural gradient
descent. The performance of the created policy is demonstrated by both reference tracking
and stabilization tasks.

An implementation which focuses on the adjustment of parameters of a conventional controller
using reinforcement learning techniques is the paper Self-tuning Gains of a Quadrotor using
a Simple Model for Policy Gradient Reinforcement Learning [29]. In this research, a simple
model of a quadrotor system is used in combination with gradient policy iteration to tune the
gains on a quadrotor. Successful tests were performed in simulation as well as in a real flight
test using the AR Drone 2 quadrotor.

Key challenges

When it comes to applying reinforcement learning to multirotors, some key remaining chal-
lenges can be identified that are especially important to this research. The most challenging
being the challenge of safety, challenge of robustness, challenge of online efficiency and the
challenge of sample efficiency. [35]

• The challenge of safety refers to limiting the risk of damaging the UAV itself, or
its surroundings, due to unsafe actions, while still enabling and ensuring sufficient ex-
ploration. This risk is especially relevant for multirotors, because they are relatively
fragile, expensive, can reach considerable velocities and have rotating parts.

Reinforcement learning, on the other hand, requires states and action combinations to
be visited, in order to learn from it. Especially in the beginning, when the RL agent
has little experience and often relies on random actions to explore the learning space.
[35]

A proposed approach to handling this challenge of safety is the Safety Handling Explo-
ration with Risk Perception Algorithm (SHERPA) as proposed by Manucci in Mannucci
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[35]. This algorithm functions as a sort of ’safety filter’ between the agent and the en-
vironment. It monitors the states and actions and allows only actions that are not
expected to cause a fatal transition. Furthermore, while the agent is exploring its en-
vironment, SHERPA accounts for backup-actions, a sequence of actions that cause the
environment to transition (back) to a safe state. SHERPA has been successfully demon-
strated on a simplified quadrotor control task and is as such very relevant to further
research involving reinforcement learning and multirotors, including this research.

• Because of the challenge of safety, it could be desirable to train a RL agent for a
multirotor in a safe or simulated environment, instead of in the actual environment.
However, this brings rise to the challenge of robustness, the learned policy might
not be safe or have satisfactory performance in the actual environment, due to differences
between the training environment and the actual environment.

This is often referred to as the reality gap and can be attributed to uncertainties in,
or lack of, accurate environment and multirotor models. While this challenge can,
in theory, be approached by using higher fidelity models, these models are sometimes
nonexistent.

Furthermore, if usage is made of some supervision during the training phase, the RL
agent could start depending on this as part of its learned policy. This is something that
special attention must be paid to, especially in the research proposed in this preliminary
thesis. [35]

• The challenge of online efficiency concerns the combination of limited onboard
computational capacity, and a highly dynamic platform requiring quick decisions. Re-
inforcement learning can become computationally expensive, especially when dealing
with large state-action spaces and/or algorithms requiring many operations, like those
using eligibility traces or function approximators.

Furthermore, as suggested by Mannucci [35], the need to ensure safe exploration can
add a further computational load, as well as the need for quicker reactions due to the
insurgence of risks.

• The challenge of sample efficiency concerns the number of interactions with the
environment (samples) that are required for an agent to find a good policy. Often
reinforcement learning techniques have a low sample efficiency and thus require a large
number of interactions with the environment. This requirement is mainly driven by the
need for exploration of the environment. [76] This is especially the case when dealing
with large state spaces, stochastic environments, or non-Markov Decision Processes
since these will further increase the need for exploration of the environment, requiring
more samples.

A lot of the recent successes of reinforcement learning have thus been in the digital
world, where samples can be generated fast, relatively cheap and sometimes even in
parallel. When applying reinforcement learning to multirotors in the real world, this is
usually not the case. The generation of samples is often limited by the time it takes to
perform one episode, battery life, and availability of required assets.

As a result, this challenge of sample efficiency might be another reason to perform
(initial) training in a simulated environment, instead of the actual environment.
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4-4 Conclusions

The goal of the literature study was to answer the first research question: What is the state
of the art in the related fields? To do so, relevant literature has been identified and studied.
Based on this, the subquestions of this first research question can be answered

SQ1.1 What is the state of the art in the field of obstacle avoidance?
Obstacle avoidance consists of two key parts: obstacle detection and taking mitigating
action to prevent collision. Most of the current obstacle detection methods use either
a range sensor or computer vision. Methods using a range sensor have achieved the
highest accuracy and reliability. To reach this accuracy they require however heavy and
costly sensors, which limits the flight time of a quadrotor. Computer vision methods
have gained popularity and can achieve decent reliability, they are however dependent
on good lighting conditions. It can thus be concluded that there would be added value
in a low-cost obstacle avoidance method that does not require good lighting conditions
or the addition of any sensors, especially for smaller quadcopters.

SQ1.2 What is the state of the art in the field of obstacle-airflow interactions between a quad-
copter and obstacles?
Based on the limited literature and experimental data available, the ground and ceiling
effect for a quadcopter with given dimensions can be approximated. According to the
literature, these effects can be measured up to a distance of 5 times the rotor radius. For
the wall effect, no approximation is available, however, an experiment by [37] indicated
that the effect can be measured up to 0.35m for a drone of similar size as the Parrot Be-
bop 1 drone. It can thus be expected that the ground, ceiling and wall effects are large
enough to be measured. Furthermore, the ground and ceiling effect can be simulated
with some accuracy. For the wall effect, surfaces that are not flat and combinations of
wall, ground and ceiling effect, it is however expected that simulation without further
experimentation will be challenging.

SQ1.3 What is the state of the art in the field of reinforcement learning?
Reinforcement learning is a large and quickly developing field, containing a multitude
of learning algorithms and architectures, each with its own strengths and weaknesses.
Recent success in reinforcement learning has included the introduction of deep rein-
forcement learning, apprenticeship learning, and hierarchical reinforcement learning. A
significant achievement has also been made in applying reinforcement learning to flight
control and quadrotor control in particular. Reinforcement learning agents have been
used both for full control of a quadrotor [26] and for adjustment of a conventional con-
troller [29]. Key challenges in applying reinforcement learning to flight control remain
the challenge of safety, the challenge of robustness, the challenge of online efficiency
and the challenge of sample efficiency. Recently, a new algorithm called SHERPA was
proposed by [35] that is potentially promising for this particular research. It deals
with the challenge of safety by functioning as a safety net between the agent and the
environment.
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Chapter 5

Preliminary investigation

Based on the literature survey and the research questions, a preliminary investigation was
carried out. The overall goal of this investigation will be described in section 5-1. Since
the preliminary investigation concerns a reinforcement learning problem, the definition and
setup of this problem will first be discussed in section 5-2, after which the approach to solving
this problem using reinforcement learning is described in section 5-3. The results of this
preliminary investigation will be described in section 5-4. Finally, the conclusions that can
be drawn from these results, especially relating back to research subquestion 2.1 (SQ2.1), will
be discussed in section 5-5.

5-1 Goal

The goal of the preliminary investigation is threefold: learning how to do such an experiment,
investigating a novel RL-control scheme, and gathering an understanding of hyperparameters
and their influence on the training & results.

First of all, by gathering experience with defining, analyzing and solving a reinforcement
learning problem, valuable experience is gained that will help in the final research. This
is especially important because of the large computational part that is involved with using
reinforcement learning methods. While the theory of reinforcement learning follows from the
literature survey, the actual computational implementation of these methods can be challeng-
ing. As such, both the experience of implementing these RL algorithms and the resulting
code that might be reused, are expected to be of great use in the final research.

Secondly, as mentioned in section 2-2, this research adds to the state of the art by its uncon-
ventional placement of the reinforcement learning agent within the control loop. Because this
is a novel method, the preliminary investigation serves to assess the viability of this method
and identify challenges that would need to be addressed when using this control scheme for
the final research.

Third and finally, there are not only multiple RL methods that can be used to solve a RL
problem, but also a number of hyperparameters that can be set for each of these methods. Be-
cause, it is expected that in the full research it will be impractical to do a full grid search over
all combinations of methods and different hyperparameter values, the preliminary research is
used to gather an understanding of these methods, hyperparameters, and their influence on
the training & result. By doing so it is expected that a substantiated choice can be made for
the method & set of hyperparameters to be used in the final research.

By pursuing these goals, it is also expected that subquestion 2.1 from the problem statement
can be answered. How can the reinforcement learning-based control system best be setup?
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5-2 Setup

Figure 5-1: Sketch of the dynamics of the
preliminary investigation .

Based on the problem statement and research ques-
tions at hand, a discrete problem was created that con-
tained a lot of the characteristics of the full problem
but reduced in complexity. The setup of this problem
is shown in figure 5-1.

In this setup, a ball with a certain mass is moving in a
1D world. Its position x lies on the vertical x-axis, and
the ball can have a certain speed ẋ, and acceleration
ẍ, along this same axis.

The ball is controlled by a conventional PID controller
which is performing a reference tracking task by ap-
plying an upward (positive) or downward (negative)
force on the ball. The reference signal is a randomly
generated sinusoidal signal.

Placed within the setup are two walls, one placed at
a certain distance above the starting position of the
ball, and one placed below. When the ball comes in
the proximity of one of these walls, these walls will
exert a certain pulling force on the ball, similar to the
ceiling effect.

A reinforcement learning agent is then tasked with preventing the ball from hitting the wall.
It can do so by overriding the conventional controller and instead applying its own force to
the ball. As in any reinforcement learning problem the agent receives a state and reward
from the environment, based on the previous state, the action chosen by the agent and the
environment dynamics.

5-2-1 Environment dynamics

The environment dynamics are defined by the following equations.

ẍ =
1

m
(Fg + Fwall) ẋ =

∫ t
0 ẍdt x =

∫ t

0
ẋdt (5-1)

With m the mass of the ball, Fg the force exerted by either the conventional controller or
the reinforcement learning agent, and Fwall the force exerted by the walls. Furthermore, x
denotes the current position of the ball, ẋ the current speed and ẍ the current acceleration.

Also part of the environment is the reference signal xref(t). This is the signal that the con-
ventional controller is trying to follow, and it is defined as

xref (t) =

Nsin∑
i=1

ai ∗ sin(bi2πt+ ci) (5-2)
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Where Nsin is the number of individual sine waves that together comprise the reference signal,
and ai, bi, ci randomly generated amplitudes, periods and phase shifts for each of the sine
waves.

From the perspective of the reinforcement learning agent, also the conventional controller is
part of the environment. In this environment, the conventional controller is a PID controller,
a widely used control loop feedback mechanism that uses the difference between the desired
reference signal and the measured process variable. A PID controller then calculates the
error between these two signals and applies a correction based on the weighted proportional,
integral, and derivative terms of this error.

In this case, the desired reference signal is xref (t), as given by equation 5-2, the measured
process variable is x(t) and the correction the PID controller can apply is Fconv. The PID
controller is then described by equation 5-3, where KP is the proportional gain, KI the
integral gain and KD the derivative gain.

Fconv(t) = KP e(t) +KI

∫ t

0
e(t′)dt′ +KD

de(t)

dt
, e(t) = xref (t)− x(t) (5-3)

It must be noted that within the environment, certain bounds are placed on the force that
can be applied, either by the conventional controller or by the reinforcement learning agent.

Figure 5-2: Linear pulling force exerted by
a wall.

Finally, the force exerted by the walls, Fwall, is de-
fined as the sum of the forces exerted by each individ-
ual wall, where the force from each wall depends on
some constant Kwall, the distance between the posi-
tion of the wall xwall and the ball x, and the minimum
distance from which the wall exerts this effect dwall.

The equation below is constructed such that the force
exerted by each wall increases linearly from |Fwall,j | =
0 at distance dwall from the wall, to |Fwall,j | = Kwall

when x = xwall,j , the ball is effectively colliding with
the wall. Furthermore, the direction of the force is
always such that it is pulling the ball closer to the
wall, given thatKwall > 0. This to prevent an inherent
safety or stability that might otherwise occur in the
environment.

An illustration of what the resulting wall forces would
look like can be seen in figure 5-2.

Fwall =
∑

Fwall,j , Fwall,j =

Kwall

[
x−xwall,j

dwall
+

xwall,j

|xwall,j|

]
if x− xwall,j < dwall

0 otherwise
(5-4)

The specific parameters used during the preliminary investigation for the ball, conventional
controller, reference signal and wall dynamics can be found in table 5-1.
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Ball dynamics

Ball mass (m) 1 kg Force bounds -20, 20 N

Conventional controller & Reference signal

KP 5.0 ai ∈ [−4, 4] - Nsin 5 -
KI 0.0 bi ∈ [0.01, 0.05] -
KD 2.0 ci ∈ [0.0, 0.0] -

Walls

dwall 1 m Kwall 1 - xwall 4 & -4 m

Table 5-1: Parameters used during the preliminary investigation.

5-2-2 Control scheme

As mentioned in the previous section, the ball has two controllers: a conventional controller,
trying to follow a reference signal, and a reinforcement learning controller trying to prevent
the ball from hitting the wall. The control scheme of this setup can be seen in figure 5-3.

Agent

Environment

Frl

Reward

State

Conventional 
controller

Fconv

State

g(Frl,Fconv)Action

Reference

Figure 5-3: Control scheme of the preliminary investigation setup.

Because in the end there is only one input force to the ball Fg, the output from these controllers
needs to be combined, this is done using the function g(Frl, Fconv). When considering potential
options for this function two immediate solutions come to mind.

A first solution could be to sum the inputs from the controllers, so Fg = Frl + Fconv. That
way the input from both controllers is truly combined, and both controllers have the same
level of influence.

However, when looking at the problem as a representation of a quadcopter trying to follow
a path, while simultaneously avoiding obstacles, it becomes clear that the obstacle avoidance
part is often actually more important than the path following part. Because, if a collision
occurs, the impact to the quadcopter is usually so high, e.g. a crash, that the path following
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can’t be continued anyhow. Therefore it was decided to give the controller trying to prevent
a collision, the reinforcement learning agent, a higher level of control.

In this second solution, the reinforcement learning agent has the option to override any input
from the conventional controller. The implementation of this is shown in equation: 5-5.

Fg = g(Frl, Fconv) =

{
Frl, if Frl 6= None

Fconv, otherwise
(5-5)

One might argue that it would also be possible to give this higher level of influence to the
reinforcement learning agent, while still defining Fg as the sum of Frl and Fconv, by making for
example use of boundaries on the input force. As previously shown in table 5-1 the absolute
input force on the ball is limited to 20 Newton. By enforcing this limit on Fconv and the
resulting Fg, but allowing Frl to vary between -40 Newton and 40 Newton, the reinforcement
learning agent could then effectively also override any conventional control.

While this might seem attractive from a theoretical perspective, this would also mean that
the action space for the reinforcement learning agent would need to double to keep the same
resolution. Furthermore, the state space would have to include Fconv as well, something that
might not be required otherwise. As a result, it can be expected that such an implementation
would require a longer training phase. Therefore the implementation given in equation 5-5
was preferred.

5-2-3 Making it a reinforcement learning problem

To make this problem a reinforcement learning problem, the states, actions, rewards, and ter-
mination need to be defined. Furthermore, it was chosen not only to simulate in discrete time
but also to use discretization for the states and actions, therefore also these discretizations
will be discussed.

States

Assuming the reference signal to be truly random, this RL problem can be seen as a partially
observable Markov decision process. The speed (ẋ) and acceleration (ẍ) are available to the
agent, but not the position (x) or the reference signal (xref ). What is available however is
the estimate of external force Fext, which can serve as an indication of the distance to the
wall.

Overall, the following states are available to the reinforcement learning agent

• ’dx’, the current speed of the ball, also referred to as ẋ.

• ’F ext’, an estimate of the external force on the ball, this is calculated, using the fol-
lowing equation.

Fext(t) = ẍ(t− 1) ∗m− Fg(t− 1) (5-6)

• ’rl intervention’, a 1-bit memory state. It starts of as 0, but turns to 1 after the re-
inforcement learning agent has intervened, in other words, when it has performed an
action which is not ’None’.
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Actions

Based on these states, the agent can then determine his action. There is only 1 action
dimension, which is the force Frl. This action can be an actual force, which should be within
the force bounds set by the environment, or ’None’, an indication that the conventional
controller can perform an action without being overruled by the reinforcement learning agent.

Frl =

{
a force F , where: Fmin ≤ F ≤ Fmax
None

(5-7)

Rewards

Because a reinforcement learning agent is trying to maximize its rewards, the choice of rewards
can be key. For this problem, it was chosen to only work with negative rewards. This makes
the theoretical maximum sum of rewards 0.

Most importantly, if the ball hits the wall. A negative reward of -1000 is given.

Furthermore, if the ball has not yet been in close proximity to the wall, the following rewards
are provided to the RL agent:

• 0 when Frl = None

• -10 in all other cases

However, if the distance of the ball to the closest wall has at one timestep in the episode been
smaller than the wall effect distance, the following reward is provided instead.

• -0.5, regardless of the action taken

Figure 5-4: Typical episode before a distinction was
made in the rewards before and after the ball had been
close to a wall.

These rewards are chosen such that the reinforcement
learning agent is stimulated to prevent collisions with
the wall, but limit overriding of the conventional con-
troller when not close to the wall.

The distinction between the rewards when the ball
has been close to a wall, and the rewards when it
has not, is made to prevent the reinforcement learn-
ing agent from relying on the conventional controller
when performing an obstacle avoidance maneuver.
This was implemented after initial results showed RL
agents using the None-action while ’saving’ the ball
from hitting the wall, thereby preventing a non-zero
reward, but introducing undesirable oscillations be-
tween the conventional controller and the reinforce-
ment learning agent. An example of this can be seen
in figure 5-4 This also leads to the first sub conclusion of the preliminary research:

SC1 The reward structure must be set up such that it does not stimulate unwanted oscillatory
behavior between the conventional controller and the reinforcement learning agent.
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Initialization

While the environment dynamics describe the transition between states, based on the actions
chosen by the agent, there must also be an initial state, a starting state. In his reinforcement
learning problem this starting state was kept constant at x = 0, ẋ = 0, ẍ = 0. Because x = 0 is
not in proximity to any wall, also Fext = 0. Furthermore, because the reinforcement learning
agent has not yet performed an action ’rl intervention’ = 0.

Finally, because the reference signal is a sum of sine waves, and the deviation ci for all these
sine waves is set to zero, the reference signal will also be 0 at t = 0. The ball thus starts
exactly on the reference signal, without a tracking error.

Termination

There are three possible endings to an episode.

• The ball hits the wall, resulting in a reward of -1000

• The ball was about to hit the wall but is successfully saved by the reinforcement learning
agent. No additional rewards are given. The conditions for the end of a successful safe
are defined to be the following:

– The ball has been close to the wall; the distance of the ball to the closest wall has
at one timestep in the episode been smaller than the wall effect distance.

– The current speed of the ball is small; −0.5 < ẋ < 0.5.

– The current distance to the wall is larger than the wall effect distance:

min
j
|x− xwall,j | > dwall (5-8)

– The rl agent has at one point in the episode performed an action, which was not
’None’; the state ’rl intervention’ is thus 1.

• The maximum number of timesteps is reached. In the training, this was set to 1,000
timesteps. No additional rewards are given.

Discount factor

As can be concluded from the termination requirements, all episodes are finite, therefore it
is not an absolute requirement to have the discount factor γ < 1. In the context of obstacle
avoidance, it might even be argued that the negative impact of a collision in the future
shouldn’t be discounted at all. Therefore, in this reinforcement learning γ = 1.0.

Discretization

Like most reinforcement learning setups, the training and evaluation of the agent were per-
formed in discrete time. For this, a timestep of 0.05 seconds was used. In other words
dt = 0.05.
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Furthermore, the states and actions were also discretized, making it a fully discrete Reinforce-
ment Learning problem. This discretization has been determined by trying different options
and comparing results manually, using plots similar to figure 5-5 and figure 5-6. In the end,
the following discretizations were found to adequately capture the environment dynamics.

• ’dx’ was discretized linearly into 20 options, from −5m/s, up to, and including, +5m/s.

• ’F ext’ was discretized linearly into 11 options, starting from −1.0N and up to, and
including, +1.0N .

• ’rl intervention’ was already discrete (0 or 1)

• ’F rl’ has 10 options: 9 linear options starting from −20N and up to, and including,
+20N . Furthermore one option ’99’, which represented the ’None’ action.

The size of the state-space is thus 20*11*2, for a total of 440 unique states. Combined with
the 10 action possibilities this results in a state-action space of size 4400.

Figure 5-5: Number of visits for each of the discretized states, during 500 episodes.

Figure 5-6: Number of times each of the discrete actions is taken by an RL-agent during 500
training episodes.
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5-3 Approach

Now that the reinforcement learning problem has been defined, reinforcement learning agents
can be trained. The chosen approach was to perform a grid search; training multiple agents,
each with its own combination of reinforcement learning method and set of hyperparameters,
evaluating these agents, and comparing the results.

5-3-1 Methods and hyperparameters

As mentioned in section 4-3-6, there are three main reinforcement learning solution methods:
Dynamic programming, Monte Carlo methods, and Temporal-Difference learning. Since dy-
namic programming requires a complete model of the environment, which will not be available
in the final object avoidance application, only Mont Carlo and Temporal-Difference methods
were considered for the approach.

This still leaves open a wide variety of specific methods, variations, and implementations.
Especially for the Temporal Difference methods. Therefore it was chosen to focus on the
following 3 distinct methods that have been well-researched and form the basis of most other
methods.

• Monte Carlo

• SARSA(λ), on-policy TD

• Q-learning(λ), off-policy TD

For both SARSA(λ) and Q-learning(λ), accumulating traces were used when λ > 0. To ease
the computational load, traces were cutoff, set to zero, when Et(s) < 0.0001.

In addition to the reinforcement learning methods, there are also some hyperparameters that
have a large influence on the learning process of these agents. The three hyperparameters
that are most relevant to these methods are the following:

• ε, the exploration rate. All algorithms were implemented with ε-greedy exploration,
where this parameter determines the percentage of cases in which a non-greedy action
is (randomly) chosen. It is applicable to all 3 methods.

• α, the learning rate. This parameter determines to what extent the value function
should be updated based on the new estimate. How this is usually implemented can be
seen in equation 4-11. It is applicable to both the SARSA and the Q-learning method.

• λ, the decaying factor of eligibility traces. This parameter determines whether eligibility
traces are used, and if so, to what extent previous states are updated. A further
description can be found in section 4-3-7. This parameter is applicable to both the
SARSA and the Q-learning method.

Of course, defining which hyperparameters to variate in the grid search is not enough. The
values that will be considered for these parameters will also need to be defined. Important
here is that the options span the available parameter space adequately.
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Figure 5-7: Grid search on the hyperparameters.

The exploration rate

For the exploration rate ε, three different starting values were considered: ε = 0.5, ε = 0.1
and ε = 0.01. These values were chosen based on literature, specifically [63].

Furthermore, research has shown that in some situations reinforcement learning agents can
benefit from a decreasing exploration rate. Therefore it was determined that next to the 3
potential starting values, there were also 3 potential transgression methods.

• ε is constant.

• ε linearly decreases to a tenth of its starting value in the first half of the episodes, and
is constant thereafter.

• ε linearly decreases to zero in the first half of the episodes, and stays zero thereafter.

This gives a total of 9 options that are considered for the exploration rate.

The learning rate

For the learning rate α also three different starting values were considered: α = 0.5, α = 0.3
and α = 0.1. These values were once again chosen based on [63].

Similar to the decay of the exploration rate, decreasing the learning rate throughout the
episode has also been considered. For α, decay is given by the following formula. With i the
current episode, α0 the initial value and k a parameter that indicates the speed of decay.

αi = α0
k

k + i
(5-9)

Two potential values for k where considered, which resulted in the following 3 options for
transgression.

• α is constant

• α decreases to half its initial value after the first half of the episodes: k = Nepisodes

• α decreases to a quarter of its initial value after the first half of the episodes: k =
Nepisodes

2

In total there are thus 9 different options for α.
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Eligibility traces

For λ, 4 potential values were considered: λ = 0.0, λ = 0.1, λ = 0.5 and λ = 0.9. The case
where λ = 0.0 means that no eligibility traces are used.

Combinations

Since these hyperparameters cannot be considered independent, it was not only necessary to
vary them individually, but also their combinations. This resulted in the following agents
being trained:

• 9 Monte Carlo agents with varying ε

• 324 SARSA(λ) agents with varying ε, α and λ

• 324 Q-learning(λ) agents with varying ε, α and λ

For a grand total of 657 unique agents.

5-3-2 Initialization and training

Next to the choice of reinforcement learning method and hyperparameters, a choice also has
to be made for the initialization of the value function Q for SARSA and Q-learning, since they
make extensive use of bootstrapping. In this case, it was chosen to initialize the Q function
at zero for both methods. Since all rewards received by the agent are negative this will ensure
exploration.

Each of these 657 agents was then trained for 5,000 episodes with a maximum length of a
1,000 timesteps per episode. Each of these episodes was simulated using a randomly generated
reference signal in order to ensure that the agent did not become dependent on one specific
reference signal. The maximum number of timesteps was chosen such that most reference
signals crossed the position of the wall at some point during an episode.

5-3-3 Evaluation

All 657 trained agents were then evaluated during an additional 50 episodes. Each of these
episodes took once again place with a randomly generated reference signal. Furthermore,
these evaluations were performed greedy, the exploration rate was set to zero for all agents
during this evaluation phase. Also, learning was stopped, neither the value functions nor the
policies were updated during these evaluation episodes.

After the evaluation episodes, the performances of all agents were compared. This was done
based on two key performance indicators.

• The average total reward, a value that contains both information about the number
of crashes (since these result in a high negative reward), and the number of actions
required to prevent crashes.

• The % of evaluation episodes that resulted in a crash.
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5-4 Results

In this section, the results of the preliminary investigation will be presented and discussed.
First, a baseline, to compare reinforcement learning agents with, will be established. Then
the training performance of different RL methods and hyperparameters will be presented,
after which also their evaluation results will be discussed. Finally, the best-performing agents
will be investigated.

5-4-1 The baseline

In order to understand and interpret results, it is important that a baseline is set. Therefore,
the same training and evaluation process that will be used for the reinforcement learning
agents has also been applied to two trivial agents; a no-action agent and a random-action
agent.

The no-action agent performs no true action, instead, it always picks the None option, such
that the conventional controller is fully in control. The ball will thus simply try and follow
the reference signal. Its ability to do so accurately depends on the reference signal and the
gains chosen for the PID controller.

Figure 5-8: Mean absolute tracking error in episodes
with no obstacle present, for 10,000 episodes.

This tracking ability can be confirmed by
running the environment, with the no-action
controller, but without walls placed in the
environment. When doing so for 10,000
episodes, and looking at the difference be-
tween the position of the ball x and the ref-
erence signal xref , the mean absolute track-
ing error is found to be only 0.04m. Fur-
thermore, this is fairly consistent among
episodes, as seen in figure 5-8. Considering
the size of the environment, the walls in this simulation are placed at -4 and +4 meters, so 8
meters apart, it can be concluded that the tracking error is negligible when there is no wall
present.

The random-action agent, like its name suggests, picks a random action each timestep. This
could be a force from the discrete force-options or the None option.

Even though neither of the two agents has a learning capability, the same procedure has
been followed as for the reinforcement learning agents, to allow for comparison. These trivial
agents thus went through a ’training’ phase of 5,000 episodes. The results of this can be
seen in figure 5-10. These training results can be used as a baseline to compare the training
performance of reinforcement learning agents with.

Additionally, both agents went through a greedy evaluation phase of 50 episodes. This is
equal to the evaluation approach used for all other agents and resulted in the performance
indicators shown in table 5-2.

What is interesting to note from these results is that not all episodes necessarily end with a
crash or a save. As noted in section 5-2-3, it is possible for an episode to reach the end of the
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episode with the ball never colliding with a wall, nor satisfying the requirements for a save.
The reason this can happen is that the reference signal is randomly generated each episode,
and its path might not necessarily come close to the wall within the set number of time steps.
Examples of episodes in which this is the case can be seen in figure 5-9. To quantify this
effect and establish a baseline, 10,000 episodes were run with the no-action controller. From
these episodes, 12.8% resulted in a timeout. Considering that only 50 episodes were run in
the initial evaluation phase, the difference between this number and the percentage timed out
shown in table 5-2 for the no-action controller is unsurprising.

Figure 5-9: Three sample episodes resulting not in a crash or save, but in a timeout, when no-action is performed
by the agent.

Overall, looking at figure 5-10 and table 5-2, it can be concluded that neither of the agents
shows any type of learning, as expected, and neither achieves a desirable performance. Fur-
thermore, it can even be argued that the random action agent has a negative influence because
it results in a larger percentage of episodes resulting in a crash than if no action were to be
taken by the agent at all. In other words, it results in the ball colliding with the wall even
though the reference signal does not.

Figure 5-10: Training performance of a no-action and a random-action agent

Average reward % crashed % saved % timed out

No-action -918 86% 0% 14%
Random-action -1558 96% 4% 0%

Table 5-2: Performance of the baseline agents during 50 evaluation episodes.
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5-4-2 Training performance

Now that the baseline has been set, the actual reinforcement learning agents can be trained.
This has been done for all 657 agents, following the approach described in 5-3, for 5,000
episodes each.

Due to the large number of agents involved, it would be impractical to investigate the learning
of each of these agents. Instead, the learning performance of the best and worst performing
agents might be considered to give an idea of the learning ability of a specific method.

Learning performance of the best agents for each method

The performance during learning for the best agents is what is shown in figure 5-11, where
best is defined as the agent with the least negative average reward during the successive
greedy evaluation phase. A method is for practical purposes defined as a combination of an
algorithm (Monte-Carlo, Q-learning or SARSA) and a choice of eligibility trace (λ). There
are thus a total of 9 methods; 1 Monte-Carlo method, 4 Q-learning methods and 4 SARSA
methods.

Figure 5-11: Comparison of the training results of the best performing agents for each of the reinforcement learning
methods. Note: a running average of 100 episodes is used to make the graph more readable.

When studying the graph above it can immediately be noted that, in contrast to the baseline,
most of the methods clearly show improvement in training performance during the training
phase. Each of these agents increases its average total reward in training, except for Q-
learning(0.9) and Q-learning(0.0). A clear indication that at least most of the reinforcement
learning methods are working.
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What is important to note here is that the performance in training can be an indicator of the
agent learning, but the lack of an increase in training performance does not necessarily mean
that the agent has not learned anything.

The reason for this is that the agent could be using an off-policy method, in other words, the
agent is not following its current estimate for the optimal policy, the estimation policy, but
instead relies on a behavior policy for exploration.

Furthermore, the training performance of a method might look worse than its evaluation
performance if the method relies on a large exploration rate ε.

For the two methods that do not show improvement in performance during the training phase,
this is both the case. Both methods use the off-policy Q-learning algorithm and rely on a
large constant exploration rate ε = 0.5. Therefore it is perfectly possible that these agents
have learned as well, this will need to be checked during the greedy evaluation.

Similarly, regarding the learning rate of each of the methods, it might be tempting to make
observations like ’the training performance of most of the SARSA methods increases faster
than the training performance of the Q-learning methods’. This does however not mean that
the SARSA methods necessarily learn faster than the Q-learning methods. The Q-learning
methods are off-policy methods and the agents shown here rely on a significantly larger
(initial) exploration rate.

Finally, when looking at some of the specific lines, three interesting things can be noticed.
First of all the learning performance of the Monte Carlo method seems much more constant
than that of the other methods. Secondly, the training performance reached by the best
Monte Carlo agent is lower than that of the best SARSA and Q-learning methods. Third,
and finally, when looking at the learning performance of SARSA(0.9) it can be seen that the
learning performance goes up drastically between episode 2500 and 3500. This is especially
interesting when noting that this agent started off with quite a high epsilon (ε = 0.5), but
during training, this decreases, and after episode 2500 this was set to be constant at ε = 0.0.
This could, of course, be coincidental, but considering the previous discussion about the
influence of the exploration rate on the training performance, expecting this to be causal
would not be unreasonable.

Learning performance of the worst agents for each method

By investigating not only the best but also the worst performing agents for each method,
as shown in figure 5-12, the robustness with respect to hyperparameters can be tested. The
worst agent for each method is defined as the agent with the most negative average reward
during the successive greedy evaluation. Four observations can be made from this graph and
the comparison with figure 5-11:

• While the best agents from the SARSA methods had the highest performance training,
compared to other methods, the worst SARSA agents show no training improvement
at all.

• All 4 of the worst agents trained using Q-learning show some increase in performance
during the learning phase.
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Figure 5-12: Comparison of the training results of the worst performing agents for each of the reinforcement learning
methods. Note: a running average of 100 episodes is used to make the graph more readable.

• The average sum of rewards in training, after 5,000 episodes, for the best agent
trained with Q-learning(0.5) is comparable to that of the worst agent trained with
Q-learning(0.5).

• The average sum of rewards in training, after 5,000 episodes, for the worst agent trained
with Q-learning(0.0) is higher than that of the best agent trained with Q-learning(0.0).

The combination of these observations and discussions above lead to the following sub con-
clusions, based on the results from the training phase:

SC2 For all 9 tested methods there is some set of hyperparameters that leads to a better
performance in training than the baseline methods.

SC3 For Q-learning agents, the average total reward during training is not a good predictor
of performance during evaluation. This is most likely due to the higher exploration rate
used by the top Q-learning agents.

5-4-3 Initial greedy evaluation

While the training performance can be an indicator of learning, the leading measure of perfor-
mance for this case was chosen to be the performance during a fully greedy evaluation. This
was chosen because this enables an equal comparison between the performance of on-policy
and off-policy algorithms, and among methods with different exploration rates ε.
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One might argue that a fully greedy, non-learning policy, might not be the desired policy to be
used in a real-world application; it might be desirable to have an agent that always keeps on
learning and adjusting to its environment. However, the goal of this preliminary investigation
is more on getting an understanding of different algorithms and sets of hyperparameters, and
not as much on developing a real-world application. Therefore, having an equal comparison,
without the random component introduced by ε, is preferred.

As mentioned in section 5-3, a greedy evaluation of 50 episodes was performed for each of the
657 agents. The average total rewards from these evaluation episodes were then compared
and used to find the ’best’ and ’worst’ agents shown in figures 5-11 and 5-12. Their actual
evaluation performance can be seen in tables 5-3 and 5-4.

Performance during 50 greedy evaluation episodes
Algorithm ε α Average reward % crashed % saved % timed out

Q-learning(0.0) 0.5 (0.1, 2500) -16.62 0% 98% 2%
Q-learning(0.1) 0.1 (0.1, 5000) -21.74 0% 98% 2%
Q-learning(0.5) (0.5, 0.05, 2500) 0.1 -16.88 0% 88% 12%
Q-learning(0.9) 0.5 (0.1, 2500) -33.96 0% 98% 2%
SARSA(0.0) (0.01, 0.0, 2500) (0.3, 5000) -34.22 0% 92% 8%
SARSA(0.1) (0.01, 0.001, 2500) (0.3, 5000) -19.10 0% 92% 8%
SARSA(0.5) (0.01, 0.001, 2500) (0.1, 5000) -19.59 0% 92% 8%
SARSA(0.9) (0.5, 0.0, 2500) (0.1, 2500) -52.89 0% 88% 12%
MC (0.01, 0.0, 2500) 1.0 -225.75 0% 100% 0%

Table 5-3: Evaluation scores of the best performing agent for each of the 9 methods.

Performance during 50 greedy evaluation episodes
Algorithm ε α Average reward % crashed % saved % timed out

Q-learning(0.0) (0.01, 0.0, 2500) 0.1 -769 62% 32% 6%
Q-learning(0.1) 0.1 0.5 -816 78% 4% 18%
Q-learning(0.5) (0.5, 0.0, 2500) (0.1, 2500) -1,262 78% 18% 4%
Q-learning(0.9) (0.1, 0.0, 2500) 0.1 -5,792 64% 4% 32%
SARSA(0.0) 0.5 0.5 -1,371 78% 22% 0%
SARSA(0.1) 0.5 0.5 -1,911 98% 0% 2%
SARSA(0.5) 0.5 (0.5, 5000) -1,285 100% 0% 0%
SARSA(0.9) (0.5, 0.0, 2500) 0.1 -10,000 0% 0% 100%
MC (0.01, 0.001, 2500) 1.0 -1,124 100% 0% 0%

Table 5-4: Evaluation scores of the worst performing agent for each of the 9 methods.

From these tables the following interesting observations can be made:

• For each of the 9 methods there exists at least one set of hyperparameters that enable
the agent to learn a policy that performs very well, showing 0% crashes over 50 episodes
of evaluation. An example of a save, preventing a crash with the wall, can be seen in
figure 5-13a .

• Over 50 episodes, the percentage of timed out episodes, which should theoretically be
around 12.8%, differs a lot. Among the different evaluations, there is thus still a factor
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of randomness involved, this is likely due to the randomly generated reference signal.

• There exists a policy that successfully prevents crashes, but at the cost of a large negative
reward. This can be seen from the evaluation performance of the worst SARSA(0.9)
agent. Further investigation shows that this agent does so by not allowing the ball to
follow the reference signal, but instead go straight ahead, as can be seen in figure 5-13b.

(a) One episode of the best Q-learning(0.5) agent. (b) One episode of the worst SARSA(0.9) agent.

Figure 5-13: Two episodes not resulting in a crash, one agent following a desirable policy (a), one agent following
an undesirable policy (b).

Another interesting observation can be made by studying figure 5-13a. Interestingly the first
action taken by the Q-learning(0.5) agent in the episode shown in figure 5-13a is a force
upward, towards the wall. This seems counter-intuitive on first sight. However, further
investigation shows that this is quite common in the episodes of this agent.

An explanation for this has not yet been found but could go in one of two directions. Either
the policy has not (yet) converged to the optimal solution, more training episodes might help
this, or there is some benefit to performing this counter-intuitive action. A possible cause for
this benefit might have something to do with the termination conditions as defined for the
reinforcement learning conditions. These require the ball to have been close to the wall at
some point. As such, this might have unwillingly caused this incentive for the reinforcement
learning agent. It is thus recommended that the termination conditions in the full research
are re-investigated to ensure these do not provide undesired incentives to the RL agents.

From these observations and results the following sub conclusions can be drawn:

SC4 For all 9 tested methods there is some set of hyperparameters that leads to a policy in
which the ball is successfully saved from crashing into the wall, in most of the episodes.

SC5 To accurately compare the performance of the best agents, an evaluation with 50
episodes and randomly generated reference signals is not adequate.

SC6 The current setup of the reinforcement learning problem, with small negative rewards
on all actions that are not None, successfully counteracts policies that prevent crashes
by not letting the ball follow the reference signal at all.
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5-4-4 Extended greedy evaluation

As mentioned in the sub conclusions of section 5-4-3, to adequately compare the trained
agents, the 50 episodes with randomly generated reference signals are not enough. Further-
more, since the evaluation results, as shown in table 5-3 are quite comparable, it’s difficult to
determine for certain which one is actually the est.
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Figure 5-14: Key performance indicators during the
extended greedy evaluation of the top 5 agents for
each of the 9 methods.

To tackle both issues, and enable an accu-
rate comparison of the final trained meth-
ods, a second greedy evaluation has been per-
formed. In these second evaluation phase,
for each of the 9 methods, the 5 best per-
forming agents (from the initial evaluation
phase) were selected. These 45 agents were
then evaluated during 500 greedy evaluation
episodes. However, contrary to the initial
evaluation, all agents were evaluated on the
same 500 reference signals. Therefore, the
evaluation conditions are now truly equal for
all agents.

The results of this extend evaluation evalua-
tion can be seen in figure 5-14. Furthermore,
the exact performance of the best agent for
each of the 9 methods, including the underly-
ing set of hyperparameters, is given in table
5-5. The data of this extended greedy evaluation confirms the conclusion from the first eval-
uation that for each of the 9 methods some set of hyperparameters exists that lead to the
desired performance.

Furthermore, the following interesting observations can be made by studying the graph above,
the table below and by comparison with the results of the initial greedy evaluation:

• Now that all agents have been evaluated on the same set of reference signals, the dif-
ference in the percentage of episodes ending in a timeout is significantly less. Between
7.2% and 7.6% of episodes result in a timeout. This is notably lower than the 12.8%
predicted as the baseline. This difference can be explained by considering that while
12.8% of the reference signals do not intersect the wall, some of these signals might come
close enough to one of the walls to experience the force of the wall, thereby triggering
a save or collision.

• From the evaluation episodes with the best Monte Carlo agent, 98.8% of the episodes
result in a save, only 1.2% in a crash and not in a timeout. This goes however together
with the worst performance in terms of average reward. Investigation of some of the
episodes show that this agent relies on a policy where the reference signal is not followed
at all, instead, the ball is immediately forced towards the upper wall, after which the
ball is ’saved’ from a collision. This can be seen in figure 5-15b and is clearly undesired
behavior.

Obstacle avoidance for quadrotors using reinforcement learning and obstacle-airflow interactions G.J. van Dam



90 Preliminary investigation

• The set of hyperparameters that gave the best performances in the initial greedy evalu-
ation, is not for every method the set that gives the best performance in this extended
evaluation.

• All top Q-learning agents have a high initial exploration rate.

• All top SARSA agents have a low, decreasing, exploration rate.

• The best Monte Carlo agent performs worse than the top Q-learning and SARSA agents.

• The agent with arguably the best performance in this evaluation is the Q-learning(0.5)
agent, with a learning rate of 0.1, and an exploration rate that starts at 0.5, but decreases
to 0.05 in the first 2500 episodes.

Performance during 500 greedy evaluation episodes
Algorithm ε α Average reward % crashed % saved % timed out

Q-learning(0.0) 0.5 0.1 -32 1.6% 91.2% 7.2%
Q-learning(0.1) 0.5 (0.5, 2500) -38 0% 92.6% 7.4%
Q-learning(0.5) (0.5, 0.05, 2500) 0.1 -17 0% 92.8% 7.2%
Q-learning(0.9) 0.5 (0.3, 2500) -46 0.4% 92.0% 7.6%
SARSA(0.0) (0.01, 0.0, 2500) (0.5, 5000) -72 4.6% 88.0% 7.4%
SARSA(0.1) (0.01, 0.001, 2500) (0.3, 5000) -39 1.8% 91.0% 7.2%
SARSA(0.5) (0.01, 0.0, 2500) (0.3, 5000) -42 1.2% 91.2% 7.6%
SARSA(0.9) (0.01, 0.0, 2500) (0.1, 2500) -43 0% 92.4% 7.6%
MC (0.01, 0.0, 2500) 1 -242 1.2% 98.8% 0%

Table 5-5: Evaluation scores for the best performing agents for each of the 9 methods, in 500 extended evaluation episodes.

(a) Agent preventing a collision, but not meeting the require-
ments for a save.

(b) Best Monte Carlo agent forcing the ball to the upper wall,
to perform a save.

Figure 5-15: Policies that result in a higher or lower percentage of timeouts than expected.
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Figure 5-16: Comparison of performance of Q-learning, SARSA and MC agents.

5-4-5 Influence of the RL algorithm

A comparison of the distribution of average total reward and percentage of crashes among
Q-learning, SARSA and Monte Carlo agents, is shown in figure 5-16. By combining the
information from this graph with the observations from the extended greedy evaluation, the
following conclusions can be drawn with respect to the RL-algorithm:

SC7 Monte Carlo methods seem least suited for this reinforcement problem, based on the
low performance of the Monte Carlo agents (see figure 5-16) and undesirable policies
(see figure 5-15b).

SC8 Q-learning is best suited to train agents in this reinforcement learning problem, because
for this specific problem:

(a) Agents trained using a temporal difference method achieve on average a higher
performance than those trained using the Monte Carlo method.

(b) The top agents trained using Q-learning are able to achieve a higher performance
than the top agents trained using SARSA.

(c) Q-learning is more robust with respect to the hyperparameters.

Figure 5-17: Difference between performance in
training and evaluation.

This might be surprising when looking back
to the training performance, where it looked
like SARSA was performing better. This is,
however, as discussed, caused by Q-learning
being an off-policy method where the top
agents use a large exploration rate during
training. This clouds the measured perfor-
mance in training, so the evaluation perfor-
mance is significantly better than the train-
ing performance. This can also be seen in
figure 5-17, where the average reward during
training is compared to that during the fully
greedy evaluation for all 657 agents.
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5-4-6 Influence of hyperparameters

As the goal of this preliminary research is, among others, to gather an understanding of the
influence of hyperparameters on training results, this influence needs to be investigated. The
key challenge here is that the influences of the hyperparameters are not independent of each
other. As such, the direct influence of a hyperparameter on the final performance is in many
cases not obvious. However, when looking at the performance for different values of ε, α and
λ still some observations can be made and conclusions can be drawn.

Exploration rate (ε)

First of all, the average total reward for different values of the exploration rate is shown in
figure 5-18. For this overview all 648 temporal difference agents where used. After studying
this figure, the following sub conclusions are reached, for this specific reinforcement learning
problem:

SC9 Q-learning agents, in general, benefit from a high, non-decreasing exploration rate.

SC10 For most SARSA agents, a low, decreasing exploration rate is beneficial to the perfor-
mance.

Figure 5-18: Average total reward in evaluation of the 648 temporal difference agents, for
different values of the exploration rate (ε).

Figure 5-19: Average total reward in eval-
uation of the 9 Monte Carlo methods, for
different values of the exploration rate (ε).

Not only the temporal difference methods make use
of an exploration rate. For the Monte Carlo methods,
the same 9 options for the exploration rate were used,
resulting in 9 unique agents. Their results can be seen
in figure 5-19. It can, however, be argued that these
are not enough data points to assess the exact influ-
ence of the exploration rate on performance. There-
fore it is recommended that if Monte Carlo methods
are chosen for the full research, more agents need to
be trained and evaluated to assess this influence.
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Learning rate (α)

The average total reward in evaluation for different values of the learning rate (α) can be seen
in figure 5-20. The following sub conclusions are posed regarding the influence of the learning
rate, in this specific reinforcement learning problem:

SC11 Q-learning agents, in general, benefit from a decreasing learning rate, unless the learning
rate is already small (≤ 0.1), then the effect is less.

SC12 For Q-learning agents, a learning rate that decreases to a quarter of its initial value
after the first half of the episodes seems most promising.

SC13 For SARSA agents, a learning rate that decreases to half its initial value after the first
half of the episodes looks most promising.

Figure 5-20: Average total reward in evaluation of the 648 temporal difference agents, for
different values of the learning rate (α).

Eligibility traces(λ)

The average total reward in evaluation with different eligibility traces (λ) can be seen in figure
5-21. Based on this graph the following sub conclusions are formulated, with respect to this
specific reinforcement learning problem:

SC14 A λ between 0.1 and 0.5 seems most beneficial for this problem when using either
Q-learning or SARSA.

SC15 Some agents without eligibility traces (λ = 0) are able to achieve the same level of
performance as the top agents with eligibility traces. The bulk, however, has a slightly
lower performance.
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Figure 5-21: Average total reward in evaluation of the 648 temporal difference agents, for
different eligibility traces (λ).

It must be noted that all the sub conclusions following from this investigation are for this
specific reinforcement learning problem, not necessarily for RL-problems in general. However,
these working observations and implied influences can be used as a good starting point for
picking the sets of hyperparameters to be used in the full research.

5-4-7 Investigation of best performing agent

Previously, the performance of all agents has been discussed in terms of average total reward
and the percentage of episodes resulting in a crash. It is, however, useful to assess the best
performing agents also within terms of the larger goal; obstacle avoidance. To do so, three
things will be investigated; independence with respect to the wall position, independence with
respect to the reference signal and the final agent policy.

The agent that will be evaluated is the best Q-learning(0.5) agent. This agent had 0 crashes
and the lowest average total reward (-17) in the extended greedy evaluation. It had been
trained using an initial exploration rate of 0.5, which decreased to 0.05 in the first 2500
episodes, after which it was constant. The learning rate was set to be constant at 0.1. From
here on this agent will be referred to as the top agent.

Independence with respect to the wall position

To test the independence of the top agent with respect to the wall position, greedy evaluations
were conducted at different wall positions. The wall position was varied in two different ways,
symmetrical and asymmetrical. In the symmetrical variation, the two walls were placed at
equal distance from x = 0, the starting point of the ball, the distance was however varied.
While in the training the walls were always placed at x = −4 and x = 4, the walls where
now placed at x = (0.5, 0.675, ..., 8) and x = (−0.5,−0.675, ...,−8), for a total of 41 unique
variations. In the asymmetrical variation, the lower wall stayed at x = −1, however the upper
wall was placed at x = (0.5, 0.675, ..., 8). Both variations can be seen in figure 5-22a
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This created a total of 82 unique environment setups. The agent was evaluated within each
environment during 500 fully greedy evaluation episodes each. This leads to the results shown
in figure 5-22b.

(a) (b)

Figure 5-22: Performance of the top agent at different wall positions during 500 fully greedy
evaluation episodes.

From these results, it can clearly be seen that the performance of the agent stays at roughly
the same level, as long as the distance between the two walls does not become too small.
Furthermore, it can be seen that the performance does not differ significantly among the
symmetrical and asymmetrical variant.

If one considers that the wall effect distance is currently set at one meter, it is obvious that
an environment with the walls placed ≤ 2m away from each other is significantly different
from the training environment. The ball would always be within the influence zone of at least
one wall. Similarly when the distance between the two walls is between 2 and 3 meters, the
area where the ball is not within the influence of a wall is quite small, less than 1 meter. This
likely explains the drop in performance seen at these distances.

The following subconclusion can thus be drawn:

SC16 The performance of the top agent is independent of the wall position, as long as the
distance between the walls is larger than 4 meters.

Independence with respect to the reference signal

Similar to the approach above, simulations were performed to test independence with respect
to the reference signal. However, because the reference signal is already randomly generated
each episode, the parameters used to generate this reference signal were changed instead.
Overall, the parameters where changed such that the range of potential reference signals was
increased. This was done by:

• Varying the number of sine waves Nsin, from 1 sine wave up till 20 combined sine waves.

• Doubling the bandwidth of the randomly generated amplitude ai, from ai ∈ [−4, 4] to
ai ∈ [−8, 8].

• Increasing the bandwidth of the randomly generated period bi, from ai ∈ [0.01, 0.05] to
ai ∈ [0.005, 0.1].
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• Allowing the deviation ci to be randomly generated ci ∈ [−0.5, 0.5]. As a result the
reference signal is now not necessarily 0 at t = 0, the ball thus does not start at the
reference signal, but already with some tracking error.

Figure 5-23: Performance of the top agent
when varying the parameters of the ranomly gen-
erated reference signal.

Once again 500 greedy evaluation episodes were
performed, once with the extended parameter
bandwidth and once with the normal bandwidth,
and the number of sine waves varying from 1 to
20. The results of this evaluation can be seen in
figure 5-23.

From this figure, two interesting observations can
be made. Firstly, increasing the number of sine
waves, in other words, making the reference signal
more complex, decreases the performance. This
can be seen both when the parameters (ai, bi, ci)
are generated from within the original and the
extended bandwidths. Secondly, the extension of
the parameter bandwidth leads to a further de-
crease in performance.

By studying the episodes in which a crash occurs it can be seen that such a crash usually
happens when the reference signal, and thus the ball, approaches the wall at high speeds. An
example of this can be seen in figure 5-24a.

It can thus be concluded that:

SC17 An increase in either the number of sine waves or the extension of the bandwidth of the
parameters, can lead to the ball approaching the wall at higher speeds, which results in
a decrease in performance.

This means that the agent is not truly independent of the reference signal. However, from a
practical perspective, it can be argued that preventing a crash in 80% of the episodes, with
reference signals that cross the wall at higher speeds then the agent was trained on, is still a
reasonable performance.

(a) (b)

Figure 5-24: Two examples of episodes with a more complex reference signal that is faster and
does not necessarily start at x = 0.
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Final agent policy

Figure 5-25: Visualization of an episode in which the top agent
successfully saves the ball from colliding with the wall.

As the final part of the investiga-
tion of the top agent, the policy of
this agent will be checked. This can
be used as a sort of reality check,
to make sure that the agent indeed
uses its internal policy representa-
tion and that actions taken during
an episode correspond with the pol-
icy.

The final policy of the top agent
is shown in figure 5-26. This 3-
dimensional matrix is split up into
two 2-dimensional visualizations,
figures 5-26a and 5-26b. These re-
spectively describe the policy when
the agent has not yet intervened
(executed an action which was not
None) and the policy when it has. The None action is indicated by the value ’99’. All other
numbers indicate the force in Newton, where a force upwards is defined as positive. Only the
policy for states that are visited in one or more percent of the episodes is shown.

(a) Policy when the agent has not yet executed its first action. (b) Policy after the agent has intervened at least once.

Figure 5-26: The state-space, policy and transitions during an episode in which the top agent successfully saves the
ball from colliding with the wall.

Furthermore, the transition within the state-space during the episode shown in figure 5-25,
is indicated by the blue line. By following this line and comparing it with the actions shown
in figure 5-25, it can be confirmed that the agent indeed exactly follows its learned policy.
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5-5 Conclusions

During the preliminary investigation, a 1-dimensional simplified version of the problem at
hand was investigated. A setup was chosen such that it replicated some of the challenges
expected to be faced in the full research, including the novel placement of the reinforcement
controller within the control loop. This setup was then turned into a reinforcement learning
problem, after which a total of 657 reinforcement learning agents were trained during a grid
search. Within this grid search not only different reinforcement learning algorithms were
considered (Monte Carlo, on-policy SARSA and off-policy Q-learning), but also different
values for the exploration rate (ε), learning rate (α) and eligibility traces (λ).

After the learning phase, each of these agents was then evaluated during a fully greedy
evaluation phase of 50 episodes. The most promising agents were then evaluated further on
an equal set of 500 evaluation episodes. Based on these results, a qualitative analysis on the
influence of both the reinforcement learning algorithm and the influence of hyperparameters
could then be conducted. Furthermore, the best agent, an agent trained with Q-learning(0.5),
was then evaluated in depth.

The goal of the preliminary research was threefold: learning how to do such an experiment,
investigating a novel RL-control scheme and gathering an understanding of hyperparameters
and there influence on the training & results. The sub conclusions 1 through 15 from the
results discussion, as well as the other key observations and conclusions, can be summarized
around these same three goals.

Learning how to do such an experiment

1. For Q-learning agents, the average total reward during training is not a good predictor
of performance during evaluation. This is most likely due to the higher exploration rate
used by the top Q-learning agents. (SC3)

2. To accurately compare the performance of the best agents, an evaluation with 50
episodes and randomly generated reference signals is not adequate. (SC5)

Investigate novel RL-control scheme

3. This novel RL-control scheme can work, as is demonstrated by the performance of the
trained agents (SC2, SC4). Especially the top Q-learning(0.5) agent which, in every
of the 500 evaluation episodes, let’s the ball follow the reference signal uninterrupted,
until a wall is detected, then the ball is successfully saved from hitting the wall.

4. The current setup of the reinforcement learning problem, with small negative rewards
on all actions that are not None, successfully counteracts policies that prevent crashes
by not letting the ball follow the reference signal at all. (SC6)

5. However, to ensure that this novel RL-control scheme indeed works as desired it is
important that oscillations between the conventional controller and the reinforcement
agent are not encouraged (SC1) and during training, the agent is exposed to the full set
of situations it will have to operate in. (SC16, SC17)
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Gather an understanding of hyperparameters and there influence on the training
& result.

6. Monte Carlo methods are least suited for this reinforcement problem, based on the low
performance of the Monte Carlo agents and undesirable policies. (SC7)

7. When using SARSA, a low, decreasing, exploration rate (SC10), a λ between 0.1 and
0.5 (SC14, SC15), and a learning rate that decreases to half of its initial value during
the first half of the episodes, is expected to produce the best performing agents. (SC13)

8. When using Q-learning, a high, non-decreasing, exploration rate (SC9), a λ between
0.1 and 0.5 (SC14, SC15), and a learning rate that decreases to a quarter of its initial
value during the first half of the episodes, are expected to produce the best performing
agents. (SC11, SC12)

9. Q-learning is best suited to train agents in this reinforcement learning problem, because
for this specific problem these agents achieve a higher performance (SC8a, SC8b) and
are more robust with respect to the hyperparameters. (SC8c)

These combined conclusions do not only show that the three goals of the preliminary in-
vestigation have been fulfilled but also partly answer subquestion 2.1, posed in the problem
definition: How can the reinforcement learning-based control system best be setup?.
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Chapter 6

Additional Results

In this chapter the additional results of the thesis research will be presented. First, the
filtering of the onboard IMU measurements on the Parrot Bebop 1 quadrotor will be discussed
in section 6-1. Then, the system identification experiments and their results will be presented
in section 6-2. Thirdly, the determination of the hyperparameters will be discussed in section
6-3. The top agent that was trained with these hyperparameters, and its training, will then
be investigated in section 6-4. Then, the measurements of the wall effect, used to assess the
potential of extending this method to the avoidance of obstacles on the same level as the
quadrotor, will be presented in section 6-5. Finally, the preliminary results of a potential
improvement to the reward structure of the RL setup will be discussed in section 6-6.

6-1 Filtering the onboard IMU measurements

Key to the estimation of the external forces are the acceleration measurements provided by the
onboard accelerometer. However, MicroElectroMechanical Systems (MEMS) accelerometers
like the one on the Parrot Bebop 1 are known to contain quite a lot of noise. This was also
visible upon inspection of the raw acceleration measurements on the Bebop, as can be seen
from figures 6-1 and 6-2.

What also can be seen from these figures is the fact that the accelerometer also measures the
gravity factor, as discussed in section III.B of the article. This explains the mean of -9.81 for
the body acceleration in vertical direction, even when the quadrotor is still standing on the
ground.

Furthermore, an increase in the noise can be seen after the quadrotor takes off, around 10
seconds after the start of the measurements. An indication that the measured deviations of
the mean acceleration are not just sensor noise.
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Figure 6-1: Accelerations in the body frame as measured by the accelerometer during a test
flight.
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Figure 6-2: Distribution of the accelerations in the body frame, as measured by the accelerometer.

This is confirmed by a frequency spectrum analysis of the body accelerations, as shown in
figure 6-3. This analysis shows a lot of noise on the speeds at which the rotors spin during
flight: 6000 - 9000 RPM, so 100 - 150Hz. While these accelerations are referred to as noise,
it can actually be expected that these measurements are true measurements of vibrations,
caused by the rotors. Nevertheless, for the purposes of this research, they are problematic.
As such, a 4th order Butterworth filter was designed to remove these vibrations from the
measurements. This low-pass filter has a cutoff frequency of 3Hz and the gain it applies at
the different frequencies is depicted in the figure below as well.
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Figure 6-3: Frequency spectrum analysis of the body accelerations.

The result of applying this filter on the measured acceleration in the vertical body axis can
be seen in figure 6-4 and 6-5. The filter removes most of the vibrations and noise from the
measurements. When relating the shown accelerations to the displayed vertical position of
the quadrotor it becomes clear that the remaining accelerations correspond to the changes in
vertical speed.
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Figure 6-4: Filtered and unfiltered accelerations in the body z-axis.
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Figure 6-5: Distribution of the filtered accelerations in the body frame.

Unfortunately, as with any low-pass filter, this filter will introduce some delay into the filtered
signal. For a 4th order Butterworth filter, the introduced delay is approximately 0.416/fc,
with fc the cutoff frequency. [34] With the chosen cutoff frequency of 3Hz this thus results
in an expected delay of 140 milliseconds.

Because the accelerations now contain a 140-millisecond delay, the same filter is also applied
on the motor speeds and angular rates to keep them synchronized in time. While their effect
on the motor speeds mainly introduces a delay, the angular rates also contain a lot of noise,
so they benefit from the actual filtering as well. This can be seen in figure 6-6.
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Figure 6-6: Filtered and unfiltered body roll rates.
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6-2 System identification of the Parrot Bebop 1

In order to create a simulation environment that resembles the actual flight environment as
much as possible, two system identification experiments were performed. The first experiment
served to determine the actuator dynamics, inner loop gains of the quadrotor and drag coef-
ficient in the body z-axis. In the second experiment the other drag coefficients, the moments
of inertia about the x and y-axis, and the torque gains of the quadrotor were determined.

In the first system identification experiment, the quadrotor descended towards the ground
with 0.2, 0.3 and 0.4 m/s. For each commanded descend speed, two flights were carried out,
bringing the total to 6 measurement flights. Each measurement flight took about 30 seconds.

In the second system identification experiment the quadrotor was first commanded to
consecutively fly forward, backward, to the right and to the left, with speeds rang-
ing up to 1.5m/s. After this, consecutive attitude commands were given. First on
the roll angle: ψ = {5◦,−5◦, 10◦,−10◦,−15◦, 15◦} and then on the pitch angle θ =
{5◦,−5◦, 10◦,−10◦,−15◦, 15◦}. Finally, the quadrotor was commanded to perform rota-
tions around its body z-axis, by instructing the following heading change commands: ψ =
{0◦, 90◦, 270◦, 90◦, 0◦}.

6-2-1 Actuator dynamics

The actuator dynamics were approximated based on the measurements from the first system
identification experiment. A second order Butterworth low-pass filter with a cut-off frequency
of 15Hz was used to mimic the relationship between commanded and actual motor speed. In
the figure below, the commanded motor speed, as well as the actual and the simulated motor
speeds are shown. What is important to note here is that the actual and commanded motor
speeds are logged onboard the quadrotor and thus have been discretized.
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Figure 6-7: Actual, commanded and simulated motor speeds.
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6-2-2 Inner vertical loop

The Paparazzi inner loop for vertical control, as shown below in figures 6-8 and 6-9 was
recreated in Python. The initial gains were based on the gains that were found in the source
code of this Paparazzi inner vertical control loop for rotorcraft.

Figure 6-8: Paparazzi reference generator of the inner vertical control loop [42].

Figure 6-9: Paparazzi inner loop for vertical control [42].

The same system identification experiment described in the introduction was then carried out
in simulating, commanding the quadrotor to descend with 0.2, 0.3 and 0.4m/s. The results
were compared with the results from the real flights and used to adjust the gains. This was
done until a similar response was achieved for all three commanded speeds.

The result of this can be seen in figures 6-10 and 6-11. These figures compare the simulated
response to a 0.3 m/s descend command with that of an actual flight. As can be seen from
these figures, the simulation response resembles the actual flight quite well.
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Figure 6-10: Simulated and measured height after receiving a 0.3m/s descend command.

16 17 18 19 20 21
Time in s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ve
rti
ca
l s
pe
ed
 in
 b
od
y 
fra

m
e 
in
 m

/s Flight data, run: 1
Python simulation
Commanded speed

Figure 6-11: Simulated and measured speed after receiving a 0.3m/s descend command.

6-2-3 Estimation of the drag coefficients

As discussed in section III of the article, the drag forces at different body speeds can be
estimated by performing experiments in free flight, outside of the presence of obstacles. All
external forces are then assumed to be zero. If the drag in a certain direction is then assumed
to be some drag coefficient times the speed squared, these drag coefficients can be estimated.

This was done for the Parrot Bebop 1 drone, using the data from both system identification
experiments. The estimation of the drag coefficient in vertical direction kD,z, will be described
below as an example.

To estimate kD,z, first the equation for estimating the external torque, equation 6-1, is rewrit-
ten to equation 6-2.

Fext,z
m

= ˆ̇w + pv − qu︸ ︷︷ ︸
from IMU

+
∑
i

ki
m

ω2
i︸︷︷︸

from motors

− 1

m
Fdrag,z (6-1)
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Fdrag,z
m

= ± ˆ̇w + pv − qu+
∑
i

ki
m
ω2
i (6-2)

The drag force is estimated for each measurement point in the previously described flight
experiment. The drag is then assumed to be of the form: |Fdrag,z/m| = kD,zw

2, and an
equation of this type is fitted to the measurement data using linear least squares regression.
The result can be seen in figure 6-12. This resulted in an estimated drag coefficient of
kD,z = 0.271.
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Figure 6-12: Fitted drag model and estimated drag forces in z-direction.

The same process was followed for estimating the drag coefficients in the x and y direction
of the quadrotor body frame. The results of this are shown in figures 4-16 and . They led
to the following estimates for the drag coefficients in these directions: kD,x = 0.345 and
kD,y = 0.416.
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(a) Fitted drag model and estimated drag forces in x-direction.
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Figure 6-13: Fitted drag models and estimated drag forces in x and y-direction.
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6-2-4 Moments of Inertia

Finally, the moments of inertia about the x and y-axis of the quadrotor were estimated.
This was done by following the procedure described in section III.B of the article, using the
measurement data gathered in the second system identification experiment. The estimation
of the moment of inertia about the body y-axis will be described below as an example.

As mentioned in the article, equation 6-3 can be used to estimate the external torque around
the y-axis, assuming angular drag to be negligible. Since the measurements were carried out
with no nearby obstacles, the external torque is assumed to be zero. This equation can then
be rewritten to equation 6-4 to estimate Iyy.

τext,y
Iyy

= q̇ − 1

Iyy

[k1

m
ω2

1d1,y +
k2

m
ω2

2d2,y −
k3

m
ω2

3d3,y −
k4

m
ω2

4d4,y

]
(6-3)

Iyy =
k1
mω

2
1d1,y + k2

mω
2
2d2,y − k3

mω
2
3d3,y − k4

mω
2
4d4,y

q̇
(6-4)

The moment of inertia about the y-axis can be estimated for every time step of the performed
pitch maneuvers. The results of which are shown in figure 6-15. From the large distribution,
it can be concluded that there is quite some noise present in the estimation. There are even
some time steps for which the estimated Iyy is negative.

A potential explanation for this would be that both equations 6-3 and 6-4 make use of the
angular acceleration q̇. The angular acceleration is not actually measured by the quadrotor,
so it was estimated by taking the derivative of the filtered body rate q. This introduces
inaccuracies into both the external torque estimate and the estimated moment of inertia. For
this research, the mean of all estimations is taken as the estimate of the moment of inertia
about the y-axis: Iyy = 0.00282 kg·m2.
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Figure 6-14: Estimated moment of inertia about the y-axis during the pitch maneuvers.

Similarly, the estimation of the moment of inertia about the x-axis uses the angular accel-
eration ṗ and large distribution can be seen for the estimated Ixx in figure 6-15. The mean
of the distribution is then taken as the estimate of the moment of inertia about the x-axis:
Ixx = 0.00242 kg·m2.
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Figure 6-15: Estimated moment of inertia about the x-axis during the roll maneuvers.

6-2-5 Torque model

As discussed in section III.B of the article, it is assumed that the torque produced by one
rotor can be approximated by T (ωi) ≈ liω2

i [20]. The torque gains li/Izz were then estimated
from the heading change maneuvers in the second system identification experiment, where
τext,z is assumed to be zero. It was then assumed that li was equal for all rotors, allowing
equation 6-5 to be rewritten to estimate the torque gains li/Izz, as shown in equation 6-6.

τext,z
Izz

= ṙ +
l1
Izz

ω2
1 −

l2
Izz

ω2
2 +

l3
Izz

ω2
3 −

l4
Izz

ω2
4 (6-5)

li
Izz

=
ṙ

−ω2
1 + ω2

2 − ω2
3 + ω2

4

(6-6)

Using this equation the torque gains can be estimated for every time step during the heading
change maneuvers. By taking the mean, this resulted in the following estimation for the
torque gains: li/Izz = 3.904 ∗ 10−6/rad.
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Figure 6-16: Estimated torque gains for each time step in the heading change maneuvers.
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6-3 Determining the hyperparameters

As mentioned in section IV.B of the article, two grid searches were carried out in the simulation
environment to determine the best sets of hyperparameters for training. The setup and results
of these grid searches will be discussed below.

6-3-1 Setup

There are four key hyperparameters that determine the behavior of the RL agent; the learning
rate (α), exploration rate at each step (εstep), episode-long exploration (εepisode) and decay
of eligibility traces (λ). To determine a good set, two grid searches were carried out in the
simulation. The first grid search was used to determine the best set of hyperparameters for
training an agent from scratch. Furthermore, the best performing agent was selected from
these results. The second grid search helped determine the set of hyperparameters that are
used when a previously trained agent is placed in a new, slightly different, environment.

For the learning rate, three starting points were considered: α0 = {0.1, 0.3, 0.5}. The learning
rate was decreasing so at episode i, the learning rate is given by α = α0k/(k + i), with
k = Nepisodes/2 and Nepisodes the number of episodes.

The episode-long exploration, as determined by εepisode, was varied in starting value, as well
as decay rate. There were three startling values εepisode,0 = {0.01, 0.1, 0.5} and three methods
of decay: constant εepisode, linearly decreasing to a tenth of the value in the first half of the
episodes, and linearly decreasing to 0 in the first half of the episodes. This thus resulted in 9
options for εepisode.

Four different values for the decay of eligibility traces were considered: λ = {0.0, 0.1, 0.5, 0.9}.
In every case λ was kept constant throughout the episodes. Similarly, the two following
constant values for the step-wise exploration rate were considered: εstep = {0.0, 0.01}.

In the initial grid search, a total of 216 different combinations of these parameters were thus
evaluated. For each set, 10 agents were trained in the simulation environment for 500 episodes,
after which they were evaluated during 100 fully greedy episodes. In this greedy episodes,
there was no exploration and no learning. These 2160 agents were then compared, based on
the average total reward during these evaluation episodes, a measure of agent performance,
and the number of episodes since the agent’s policy last changed, a measure of agent stability.
Based on this comparison the best set of hyperparameters was determined. From the 10
agents trained with this set, the top performing agent was then selected as the top agent.
This selection of the top agent is described in section V.B.2 of the article.

In the secondary grid search, 2160 copies of the top agent, 10 for every combination of
hyperparameters, were placed in a simulation environment. This simulation environment was
slightly modified, a +0.1 bias was added to the Fext,z/m state, the agent thus had to learn
to adjust its policy accordingly. Each agent was trained for 100 episodes, using the same
exploration strategies and hyperparameter options as in the initial grid search, only with
Nepisodes now 100 instead of 500. Each agent was then evaluation during 100 fully greedy
episodes. To determine the best set of hyperparameters, the same procedure was used as for
the previously discussed grid search, looking both at the performance of the agent and the
stability.
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It is important to note here that best refers to the local optimum, the best available set from
the 216 analyzed sets of hyperparameters. While these 216 options were selected carefully,
based on both literature [62] and a preliminary investigation, there might exist a better set
of hyperparameters globally.

6-3-2 Hyperparameters for initial training

In the first grid search, 10 agents were trained from scratch for each of the 216 hyperparameter
sets. An overview of the performance and stability metrics of each of the 2160 trained agents
can be seen in Fig. 6-17a. From this figure, it can be seen that there exist a number of
agents with similar top performance. Further inspection showed that the similar performance
of these agents is due to the fact that they have converged to a policy that is, for all practical
purposes, equal. From this point forward, this policy shall be referred to as the optimal policy.
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trained in the initial grid search
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Figure 6-17: Performance and stability of the best and all hyperparameter sets in the initial grid search.

In the initial grid search the following set of hyperparameters was found to be best for training
an agent from scratch: λ = 0.1, εstep = 0.01, α0 = 0.5, and εepisode,0 = 0.5 with εepisode linearly
decreasing to zero during the first half of the episodes. Of the 10 agents that were trained
with this set, 5 have the optimal policy, as can be seen from Fig. 6-17b. When looking at
the last policy change, it can be observed that all agents have found the current policy on
average 33 episodes before the end of training. Combined, these two metrics made this set of
hyperparameters clearly stand out above other sets.

One must, however, be aware of the selection bias; this set of hyperparameters was selected
because of its good performance (50% of agents have the optimal policy) and stability. As
such, these 10 agents might not be representative of the population intended to be analyzed.
Therefore 100 verification agents were trained with this set of hyperparameters. The training
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was performed for 500 episodes, under exactly the same conditions as in the initial grid search.
The evaluation was once again done during 100 fully greedy episodes.

From the results, shown in Fig. 6-18, the selection bias can clearly be seen. Of the 100
agents only 22%, instead of 50% have the optimal policy. Additionally, the agents have on
average found their current policy more recently, an indication that the agents might be
less stable. While these figures give a more accurate estimate of agent performance and
stability, the selected set of hyperparameters can still be considered a good set to use in the
subsequent experiments. Especially when considering that also other sets that performed well
in the initial grid search are subject to this selection bias. Furthermore, when considering
the performance in terms of obstacle avoidance, one could argue that also the performance of
most trained agents that do not have the optimal policy is quite good. As can best be seen
from Fig. 6-18c, 85% of the trained agents save the quadrotor successfully in ≥80% of the
episodes.
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Figure 6-18: Selection bias, as seen in the performance and stability metrics for the first grid search.

6-3-3 Hyperparameters for the continuation of training

The results of the secondary grid search are shown in figure 6-19a. In this grid search, the
following set of hyperparameters was found to be best for letting the top agent adopt to
a slightly different environment: λ = 0.1, εstep = 0.01, α0 = 0.1, and εepisode,0 = 0.01 with
εepisode linearly decreasing to zero during the first half of the episodes. Of the 10 agents that
continued training with these hyperparameters, 8 found the optimal policy of the modified
environment, as can be seen from figure 6-19b. Furthermore, they were quite stable in doing
so, the last policy change was on average 61 episodes before the end of training. Considering
they were only trained for 100 episodes this shows that the agents are quick to adapt to a
change in environment when using these hyperparameters.
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(a) Performance and stability of all 2160 agents for
which training was continued in the secondary grid
search.

0 20 40 60 80 100
Number of episodes since last policy change

−103

−102

Av
er
ag
e 
to
ta
l r
e 
ar
d 
in
 e
va
lu
at
io
n

Performance and stability for selected agents

Optimal policy
Trained agents

(b) Performance and stability of the 10 agents that
continued training with the best set of hyperparame-
ters.

Figure 6-19: Performance and stability of the best and all hyperparameter sets in the continuation grid search.

To correct for the selection bias, the experiment was repeated with 100 agents, now all using
the set of hyperparameters mentioned above. The results are shown in figure 6-20. From the
100 agents, 64% learned the optimal policy of the modified environment, with the mean last
episode change being 41 episodes before the end of training.
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Figure 6-20: Selection bias, as seen in the performance and stability metrics for the second grid search.
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6-4 Investigation of the top agent

In the section below, both the training and evaluation results of the top agent will be discussed
in some more detail. This is an extension of the results discussed in section V.B.2 of the article.

6-4-1 Training of the top agent

The training of the selected top agent is shown in figures 6-21 and 6-22. These figures depict
respectively the rewards received during training and the absolute changes to the Q-value
function. From these figures, several interesting observations can be made:

First of all, the agent only experiences six crashes and three timeouts during its training.
Most of the episodes thus end with a correct save. Secondly, while the reward per episode is
seen to vary quite a bit, an upward trend can be seen in the rolling reward, especially between
episode 0 and 250. Finally, changes to the Q-function keep happening, but the frequency of
large changes decreases over time.
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Figure 6-21: Rewards received during training by the selected top agent.
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Figure 6-22: Changes in Q during training of the top agent.
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Since the Q-value function is still changing, it is important to check whether the agent has
indeed converged and is stable in its policy. In other words, if training had continued for a
couple more episodes, would the agent still have had the same policy?

To check this, four different continuations of the training were investigated, each for 100
episodes:

A Continue training with exploring starts, using the hyperparameters as they were after
500 episodes of initial training. (λ = 0.1, εactor = 0.01, εcritic = 0.0, αcritic = 0.5 ∗

250
250+500 ≈ 0.1667).

B Continue training without exploring starts, using the hyperparameters as they were
after 500 episodes of initial training.

C Continue training with a fresh set of the ’retrain’ hyperparameters, with exploring starts.

D Continue training with a fresh set of the ’retrain’ hyperparameters, but without explor-
ing starts.

Initial training A) cont. exploring B) cont. non-exploring C) fresh exploring D) fresh non-exploring
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Figure 6-23: Average total reward for 100 copies of the top agent, after training has been
continued in four different manners.

The results can be seen in figures 6-23 and 6-24. From the results the following observations
can be made.

First of all when considering whether the agent would have had the same policy when training
had continued for a couple more episodes, continuation A is the most relevant. Its results show
that after 100 additional episodes 95% of the agents had the same policy. Thus indicating a
large chance that the agent would have had the same policy.

Secondly, it can be observed that when continuing to use exploring starts, a large percentage
of the agents forget the previously found optimal policy. As such, reducing the exploring
starts range throughout the training episodes might be a beneficial improvement to the RL
setup.
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Overall, of the 100 copies of the selected top agent, most are still performing excellently after
training has been continued in either of the four ways. Only those for which training was
continued with a fresh set of parameters and using exploring starts, saw a significant portion
of agents ’forget’ the top policy.

Finally, it is interesting to note that even though most agents end up with the same policy
they started with (figure 6-23), almost all experience policy changes throughout the continued
training (figure 6-24).
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Figure 6-24: Number of episodes since last policy change for 100 copies of the top agent, after
training has been continued in four different manners.

6-4-2 Evaluation of the top agent

In addition to the 100-episode long evaluation conducted directly after training of the top
agent, two additional evaluations were performed to gather an understanding of the perfor-
mance distribution of this agent. In the first evaluation, the agent was evaluated 100 times,
with each evaluation consisting of 20 fully greedy evaluation episodes. In the second evalua-
tion, the agent was evaluated once again 100 times, but now each evaluation consisted of 100
fully greedy evaluation episode. In both cases, each evaluation episode was conducted with
uniquely randomly generated noise on the Fext,z/m estimator.

The results are shown in figure 6-25 and table 6-1. They can be used to assess whether
the performance metrics of policies evaluated in simulation (100 episodes) or real flight (20
episodes), are significantly different from the performance distribution of this top agent in
simulation.

# episodes Mean reward σreward Mean % correct save σsaved

20 episode evaluation 2,000 -92.01 69.59 95.90% 4.66%
100 episode evaluation 10,000 -86.50 32.06 96.36% 2.02%

Table 6-1: Key performance metrics after evaluating the top agent for 20 and 100 episodes.
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Figure 6-25: Distribution of performance when evaluating the top agent for 20 and 100 episodes.

6-5 Using obstacle-airflow interactions to detect a wall

To estimate the feasibility of detecting large vertical surfaces on the same level as a quadrotor,
like walls, an experiment was conducted using the Parrot Bebop 1 drone. This experiment
was once again carried out in the Cyberzoo at Delft University of Technology, Within this
testing area, a 1m wide, 2.05m high screen was placed that functioned as the wall. The
quadrotor then approached the wall at a height of 1.5m, while staying on the center line of
the wall with its (forward) body x-axis perpendicular to the wall. It approached the wall
starting from 1-meter to up to 1-centimeter distance, where the distance is taken from the
front of the quadrotor.

Following the procedure described in section III of the article, the 3 external forces and 3
external torques were then estimated at each timestep. The results are set out against the
distance to the wall in the figures below.
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Figure 6-26: Estimated external force in the body x-axis as a function of distance to the wall.
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Figure 6-27: Estimated external force in the body y-axis as a function of distance to the wall.
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Figure 6-28: Estimated external force in the body z-axis as a function of distance to the wall.

From the estimated external forces in the body x, y and z-axis, as shown in figures 6-26, 6-27
and 6-28, no clear influence of the wall can be seen. An explanation for this can be that
influences are smaller than the noise, or other disturbances present in the estimations.

In the measurement data from Mckinnon [37] external forces in the x-y plane between 0.06
and 0.1N were estimated at several centimeters from the wall. Considering the mass of the
Bebop 1, similar forces would result in in an Fext,x/m or Fext,y/m between 0.14N/kg and
0.24N/kg. As can be seen from the figures 6-26 and 6-27, the noise in the estimated forces in
the x and y-axis has a similar magnitude.

When investigating the external force in the body z-axis, the measurements from Mckinnon
[37] suggest a downward force (decrease in lift) between 0.05N and 0.15N. The effect on the
Parrot Bebop 1 is not likely to be exactly the same, as the used quadrotors differ in many
characteristics, including rotor radius. However, if the forces are assumed to be of a similar
order of magnitude, a Fext,z/m between around 0.1N/kg and 0.5N/kg is expected for the
Bebop 1. This would be similar to the magnitude of the noise, as seen in figure 6-28.

It can thus be expected that the signal-to-noise ratio in the estimation of external forces is
too low to see the influence of the obstacle-airflow interactions caused by the wall.
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Figure 6-29: Estimated external torque around the body x-axis as a function of distance to the
wall.
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Figure 6-30: Estimated external torque around the body y-axis as a function of distance to the
wall.

The estimated external torques around the body x, y and z-axis are shown in figures 6-29,
6-30 and 6-31. In the external torque around the body x (pitch) and z-axis (heading), no
clear influence of the wall can be seen. The estimated external torque around the y-axis does
show an effect that correlates with the distance to the wall. From 20cm distance an increasing
external pitch down moment can be seen in figure 6-30. This could correspond to a decrease
in thrust of the front rotors.

To get an estimate of the SNR of this effect, equation 6-7 was fitted to this dataset using
Non-linear least squares and the Trust Region Reflective (TRF) algorithm. The distance to
the wall is denoted by o, and k1 to k5 are general coefficients.

τext,y
Izz

= k1
1

o+ k2
+ k3

( 1

o+ k4

)2
+ k5 (6-7)
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Figure 6-31: Estimated external torque around the body z-axis as a function of distance to the
wall.

This resulted in the following coefficients k1 = 1.00, k2 = 0.262, k3 = −0.709, k4 = 0.262, k5 =
2.271. The deviations with respect to the fitted function were then calculated and the standard
deviation was found to be σ = 3.38. Using equation 22 of the article (section V.A.3), and
correcting for the bias in the τext,y/Izz estimation, the SNR at 0.15cm from the wall was
estimated to be -4.15dB.

As the effect becomes stronger when nearing the wall, the SNR will also increase. Detection
and avoidance closer to the wall might thus still be possible, perhaps requiring to fly at lower
speeds. The expected SNR of the wall effect seen in τext,y/Izz as a function of the distance
to the wall is shown in figure 6-32.
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Figure 6-32: Expected SNR of the τext,y/Izz estimation, as a function of the distance to the
wall.

Based on the results discussed above, combined with figure 20 from the article, it can be
expected that none of the RL agents will find a policy better than the trivial always-save policy
when the current τext,y/Izz estimation is used as the (only) indicator for the presence of a wall.
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However, by analyzing the effects in more detail, using better sensors, or using more than 1
external force or torque as the state, the performance might be improved. Furthermore, the
performance could also be improved by implementing some of the recommendations mentioned
in section IX of the article, and chapter 8 of the thesis.

6-6 Positive rewards for performing a correct save

Even with exploring starts the agent seldom experiences a crash during training. This can
be seen from figure 6-21. As such, the fact that performing a ’no-action’ might increase the
likelihood of such a crash, is often not fully accounted for in the value function. The agent
simply hasn’t experienced this often enough. Based on this insight an experiment was carried
out with an alternative reward structure.

Previously all rewards were negative: -2,000 for a crash, -500 for a false save, a small negative
reward for a hover and the following negative reward for a save:

R(s, a) =

{
−500 if zs > 0.25

−50 ∗ 0.25−zs
0.25−ztermination

if zs ≤ 0.25
(6-8)

The reward for a save would thus be zero when saved exactly at 0.25m and becoming negative
when saved closer to the ground. The idea behind this is to stimulate the quadrotor being
saved farther away from the ground while staying with only negative rewards.

In the experiment, the rewards for a save were changed, such that they are positive for a
correct save. When saved at the termination boundary (0.05m) it will be zero, and when
saved at the maximum height (0.25m) it will be +50.

R(s, a) =

{
−500 if zs > 0.25

50 ∗ zs−0.05
0.25−ztermination

if zs ≤ 0.25
(6-9)

Using this new reward structure 100 agents were trained for 25, 50, 100 and 500 episodes.
The training was performed in the created simulation environment, using the hyperparameters
deemed best for initial training, as provided in section IV.E of the article. The results are
shown in figure 6-33 and table 6-2. As the reward structure has been altered, the percentage
of episodes resulting in a correct save is now used as the key metric of performance.

Correct save in ≥ 80% of episodes Optimal policy
Original Positive rewards Original Positive rewards

25 episodes 33% 82% 16% 20%
50 episodes 67% 95% 25% 37%
100 episodes 92% 94% 19% 55%
500 episodes 85% 87% 22% 40%

Table 6-2: Percentage of the trained agents with good or optimal performance when being
trained with the original or altered reward structure.
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Figure 6-33: Comparison of performance, as measured by the percentage of correct saves,
between agents trained using the original and the altered reward structure.

From these results it can be observed that the overall performance distribution for agents
trained for 25 or 50 episodes is better when using the altered reward structure. Of the 100
agents trained for 50 episodes with the altered reward structure, 95% saved the quadrotor
in ≥ 80% of the evaluation episodes. With the original reward structure this was only 67%.
Furthermore, the chances of the agent finding the optimal policy are increased.The number of
agents that found the optimal policy in 50 episodes increased from 20% to 37% by using this
new reward structure. This increase is also present when training for 25, 100 or 500 episodes.

Finally, it was noticed that for the agents trained with the alternative reward structure, on
average, the number of episodes since the last policy change was higher. This indicated that
these agents converged sooner to there policy.

It can thus be concluded that rewarding correct saves with a positive reward can be beneficial
to both the performance and stability of trained agents.
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Chapter 7

Conclusions

This chapter will summarize the most important results and conclusions from the article
(chapter 3), literature survey (chapter 4), preliminary investigation (chapter 5) and additional
results (chapter 6).

The conclusions from the literature survey and preliminary investigation contain references
to the underlying sub conclusions, indicated as SC#. An overview of these sub conclusions
and their location within the thesis is provided in appendix B.

7-1 Conclusions

In the literature study, the state of the art in three fields was studied: obstacle avoidance,
obstacle-airflow interactions between a quadcopter and obstacles and the field of reinforcement
learning.

From the study into current obstacle avoidance methods, it was concluded that there is added
value in a low-cost, obstacle avoidance method that does not require good lighting conditions
or the addition of any sensors, especially for smaller quadcopters.

With respect to the obstacle-airflow interactions between a quadcopter and obstacles, it was
noted that the effect due to ground and ceiling surfaces can be measured up to a distance
of 5 times the rotor radius. Furthermore, simple models exist describing this relationship.
About the effect near vertical walls, less is known, however, an experiment by Mckinnon [37]
indicated that the effect can be measured up to 0.35m for a drone of similar size to the Parrot
Bebop quadrotor.

The result of the study of reinforcement learning was twofold. First, by studying the basis
of reinforcement learning, it allowed for a computational implementation of reinforcement
learning, which was used in both the preliminary investigation and is the final thesis research.
Secondly, by studying the state of the art, several challenges were identified that could be ex-
pected in the full research. Most notably the challenges of safety, robustness, online efficiency
and sample efficiency. The literature study however also identified potential solutions, such
as SHERPA [35], an algorithm that could potentially tackle the issue of safety.

In the preliminary research, a 1-dimensional simplified version of the challenge at hand was
turned into a reinforcement learning problem on which 657 reinforcement learning agents were
trained during a grid search. Among these agents were Monte Carlo, SARSA and Q-learning
agents, with different values for the exploration rate (ε), learning rate (α) and eligibility traces
(λ). After a fully greedy evaluation, investigation of the influence of these hyperparameters
and an in-depth evaluation of the best performing agent, the following key conclusions were
drawn:
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• This novel RL-control scheme can work, as is demonstrated by the performance of the
trained agents (SC2, SC4). Especially the top Q-learning(0.5) agent which, in every
of the 500 evaluation episodes, let’s the ball follow the reference signal uninterrupted,
until a wall is detected, then the ball is successfully saved from hitting the wall.

• However, to ensure that this novel RL-control scheme indeed works as desired it is
important that oscillations between the conventional controller and the reinforcement
agent are not encouraged (SC1) and during training, the agent is exposed to the full set
of situations it will have to operate in. (SC16, SC17)

• Q-learning is best suited, and Monte Carlo methods are least suited, to train agents in
this reinforcement learning problem, based on the performance in this specific problem
(SC8a, SC8b) and the robustness with respect to the hyperparameters. (SC8c)

• When using Q-learning, a high, non-decreasing, exploration rate (SC9), a λ between
0.1 and 0.5 (SC14, SC15), and a learning rate that decreases to a quarter of its initial
value during the first half of the episodes, are expected to produce the best performing
agents. (SC11, SC12)

While these conclusions are specific to the 1-dimensional simplified reinforcement learning
problem, they constituted a good starting point for approaching the reinforcement learning
problem of the final thesis research.

This final thesis research consisted of three phases. In the first phase, a large number of
reinforcement learning agents were trained in simulation to detect and avoid obstacles un-
derneath a simulated quadrotor. Using this setup several experiments were then executed in
simulation. From these results, it can be concluded that:

• The estimated external force in the z-direction can be a good indicator for the presence
of obstacles underneath.

• A reinforcement learning agent can be trained to use this estimated external force to
detect and avoid obstacles, but due to the stochasticity involved in both the state signal
and the exploration, not all agents being trained will find the optimal policy.

• The combination of episode-ending actions, multistep actions and a lot of timesteps
compared to the number of states, make exploration challenging within this RL setup.

• Not many training episodes are required. Training for 100 episodes is sufficient when
the purpose is to achieve the best performance for each of the trained agents. However,
if one is only concerned with finding one agent with the optimal policy, it can be more
efficient to train agents for less episodes.

In the second phase, several experiments were conducted in real flight. These flight exper-
iments were conducted in the Cyberzoo of Delft University of Technology, using a Parrot
Bebop 1 drone. From these results, it can be concluded that:

• The top agent trained in simulation is able to save the quadrotor from hitting the
obstacle underneath in 80% of the episodes.
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• The optimal policy found in simulation is also the optimal policy in real flight, its
performance is however about 20% worse in real flight.

• It is possible for an agent trained fully from scratch in real flight, to achieve the same
performance. This is shown by training 5 agents during 50 episodes each, without prior
knowledge or training in simulation. Of these 5 agents, one found the optimal policy.

In the third and final phase, the extension of this method to other quadrotors and other
obstacle types was investigated. The first was done by demonstrating that, following the pro-
cedure provided in the article, the obstacle avoidance method could successfully be extended
to the Parrot Bebop 2 quadrotor. The extension to other obstacle types was investigated by
evaluating the top agent with another obstacle underneath. Furthermore, several measure-
ment flights were performed close to a wall, assessing the potential of using this method to
detect and avoid obstacles on the same level. From these results, it can be concluded that:

• Application of this method to other quadrotors is possible and requires only limited
time and resources. The performance of the obstacle avoidance method depends on the
signal-to-noise ratio for that specific quadrotor.

• For surfaces above the quadrotor, e.g. ceilings, the method is expected to achieve a
similar or even better performance as for surfaces underneath.

• The extension to surfaces on the same level as the quadrotor, e.g. walls, is expected to
require some improvements to the SNR of the estimated forces and torques, or to the
usage thereof, before a similar performance can be achieved.

• The current proof-of-concept is not only able to detect and avoid large surfaces, but
also an 75cm x 53cm x 17.5cm box placed underneath the quadrotor.

Overall, it can thus be concluded that it is possible to use reinforcement learning and obstacle-
airflow interactions for the detection and avoidance of obstacles underneath a quadrotor. Fur-
thermore, it is expected that this can be extended to obstacles above, and perhaps obstacles
on the same level. By doing so, not only the main research question and the subquestions
have been answered. Also a new obstacle avoidance method has been developed. A method
that does not require the addition of any sensors, and therefore with great potential to serve
either as a primary obstacle avoidance method for lightweight quadrotors or as an extra check
or redundancy to other obstacle avoidance methods, thereby increasing safety and reliability.
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Chapter 8

Recommendations

There are several ways in which the developed obstacle avoidance method can be improved
or extended. They can be categorized in improvements to the simulation environment, im-
provements to the developed method, the extension to other obstacles, and the extension to
other UAVs.

Recommendations to improve the simulation environment

The key recommendation to improve the simulation environment is to include the delay intro-
duced by the filtering of measurements. By doing so, it is expected that the performance in the
simulation environment better represents the performance in the actual flight environment,
as the difference in required reaction time will have been removed.

Recommendations to improve the developed method

The developed method could be improved by either improving the estimation of external
forces and torques or by improving the way these estimated forces and torques are used in
the reinforcement learning setup. When considering ways to improve the estimation of the
external forces and torques several recommendations can be made:

• More accurate thrust, torque and drag models The estimations of external forces
and torques can be improved by using more accurate models for the produced thrust,
torque and drag of the quadrotor. This could be accomplished by using more advanced
models, or by improving the initialization procedures and assumptions used for the
current models. An example of the latter would be to improve the estimation of the
rotor gains ki/m by no longer assuming equal gains for of four rotors, instead, using an
initialization procedure in which the gain for each rotor is estimated individually.

• Reduction of the sensor noise Much of the noise present in the estimations is
caused by noise in the IMU measurements. By using more accurate accelerometer and
gyroscope sensors, the torque and force estimations could be improved.

• Improved filtering The remaining sensor noise and the noise caused by actual vibra-
tions in the body could perhaps be further reduced by improved filtering, for example by
using a Kalman filter instead of the low-pass Butterworth filter [30]. Another improve-
ment would be the reduction of delay introduced by the filter, as this would decrease
the reaction time of the obstacle avoidance method.

• Filtering out other disturbances Other disturbances, like wind, turbulence or the
airflow of other aerial vehicles, can cause external forces and torques on the quadrotor.
Methods might be developed by which they can be identified and corrected.
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Additionally, the performance of the developed method could be increased by implementing
some of the following improvements to the reinforcement learning setup.

• Extending the state-space More of the information available could be used by the
agent to detect obstacles. For obstacle-airflow interactions expected to result in more
than one external force or torque, e.g. those caused by a wall, providing multiple estima-
tors as a state to the RL agent could improve performance. Secondly, one could consider
providing not only the latest estimation of external forces or torques but also that of
several previous timesteps. Thirdly, the performance can be improved by increasing the
discretization density.

• Function approximators Extending the state-space can be limited by the curse of
dimensionality. As such, implementing a function approximator like a SVM or neural
network, as described in section 4-3-9, to represent the action-value function, can be an
improvement.

• New reward structure As shown in section 6-6 improvements to the reward structure,
specifically rewarding correct saves with positive rewards, can improve the performance
distribution of the RL agents.

• Improved exploration strategies As exploration was one of the key challenges for
this RL agent, further research into improvements to the used exploration strategy could
increase the stability and convergence of the RL agents. Two key areas that would be
of specific interest are the limited number of crashes experienced by the RL agents, as
mentioned in section 6-6 and reduction of the exploring starts range throughout the
training episodes, as discussed in section 6-4.

• State-of-the art reinforcement learning techniques As the field of reinforcement
learning is highly active, there are several state-of-the-art RL techniques that might
be applied to improve the stability or convergence of the RL agents. Several of these
techniques are described in section 4-3-9 of the article. One technique that might be of
specific interest to future research would be the application of apprenticeship learning,
as described by Abbeel and Ng [1].

Extension to other types of obstacles

The potential of extending this method to the detection and avoidance of other static obstacles
is discussed in section VII.A of the article. In that section both the extension to smaller
obstacles and to other obstacle locations, e.g. above or in front of the quadrotor, are assessed.
An additional topic for future research is the detection and avoidance of dynamic obstacles
using this method.

It has already been shown by Mckinnon [37] that the wake of a nearby quadrotor can result
in small but measurable external forces and torques. As such, it would be interesting to
investigate whether the proposed method might be used to avoid other aerial vehicles in
flight.

Similarly, the extension of this method to avoid other dynamic obstacles could be investigated.
A key challenge for the RL agent in both cases would be determining the action to take, as
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the best avoidance action is likely to depend on the movement of the dynamic obstacle as
well. As such, this application might be combined with the extension of the state space to
include the estimations for multiple timesteps, thereby providing information about the rate
of change to the RL agent.

Extension to other UAVs

While the potential of extending this method to other quadrotors is already discussed and
demonstrated in section VII.B of the article, it is also recommended that the potential of
extending this method to other types of UAVs is further investigated.

The extension to other multirotors, as well as single rotor UAVs is expected to be relatively
straightforward. The equations of motion, and thus the derived external force and torque
estimators, are expected to be of similar form. Similar assumptions and initialization proce-
dures might be used as well. Furthermore, obstacle-airflow interactions are expected to be
similar for most rotorcraft.

Additionally, the ground-effect is a well-known effect in fixed-wing aircraft. A such, this
low-cost method could potentially be used to detect obstacles underneath a fixed-wing UAV.
The potential of using this method to detect obstacles above a fixed-wing UAV would require
further research. The potential for detection of obstacles on the same level is expected to be
limited, considering the forward speed required by a fixed-wing aircraft.

Thirdly, one might consider the application of this method for flapping wing UAVs like the
DelFly, an insect-flight inspired Micro Air Vehicle (MAV) developed at the Delft University of
Technology [10]. As these UAVs are often designed to be extremely lightweight, the available
onboard energy, sensors, and processing capabilities are usually limited. A low-cost method
like this could thus be an interesting obstacle avoidance solution for these flapping wing
UAVs.
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Appendix A

Implemented RL algorithm
εepisode ← εepisode,0, α← α0;
Initialize, for all s ∈ S, a ∈ A(s):

Q(s, a)← 0, E(s, a)← 0;
π(a|s)← random policy;

for i← 1 to Nepisodes do
s← s0;
repeat

Take action ano-action, observe r, s′;
s← s′;

until finished exploring starts;
Historyi ← empty list;
Actor: repeat

Choose a, based on the current state s, using policy π, but with a chance εstep of
picking a random action instead;

Take action a, observe r, s′;

Historyi
+← (s, a, r, s′), s← s′;

until s is terminal ;
Critic: foreach s, a, r, s′ ∈ Historyi do

δ ← r + γmaxaQ(s′, a)−Q(s, a);
a∗ ← arg maxaQ(s, a);
if a 6= a∗ then

E(s, a)← 0;
E(s, a)← 1;
foreach ŝ ∈ S, â ∈ A(s) do

Q(ŝ, â)← Q(ŝ, â) + αδE(ŝ, â);
E(ŝ, â)← γλE(ŝ, â);

end
foreach s̄ ∈ S do

if εepisode < rand(0, 1) then
π(a|s̄)← random action;

else
π(a|s̄)← arg maxaQ(s̄, a);

end

end

end
εepisode ← max(εepisode − (εepisode,0 − εepisode,final)/(Nepisodes/2), 0.0);
α← α0Nepisodes/(Nepisodes + i);

end
Algorithm 1: Implementation of Watkin’s Q(λ) method with extended exploration.
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Appendix B

List of sub conclusions

SC Conclusion Page

SC1 The reward structure must be set up such that it does not stimulate unwanted oscillatory
behavior between the conventional controller and the reinforcement learning agent.

76

SC2 For all 9 tested methods there is some set of hyperparameters that leads to a better performance
in training than the baseline methods.

86

SC3 For Q-learning agents, the average total reward during training is not a good predictor of
performance during evaluation. This is most likely due to the higher exploration rate used by
the top Q-learning agents.

86

SC4 For all 9 tested methods there is some set of hyperparameters that leads to a policy in which
the ball is successfully saved from crashing into the wall, in most of the episodes.

88

SC5 To accurately compare the performance of the best agents, an evaluation with 50 episodes and
randomly generated reference signals is not adequate.

88

SC6 The current setup of the reinforcement learning problem, with small negative rewards on all
actions that are not None, successfully counteracts policies that prevent crashes by not letting
the ball follow the reference signal at all.

88

SC7 Monte Carlo methods seem least suited for this reinforcement problem, based on the low per-
formance of the Monte Carlo agents (see figure 5-16) and undesirable policies (see figure 5-15b).

91

SC8 Q-learning is best suited to train agents in this reinforcement learning problem 91
SC8a Agents trained using a temporal difference method achieve on average a higher performance

than those trained using the Monte Carlo method.
91

SC8b The top agents trained using Q-learning are able to achieve a higher performance than the top
agents trained using SARSA.

91

SC8c Q-learning is more robust with respect to the hyperparameters. 91
SC9 Q-learning agents, in general, benefit from a high, non-decreasing exploration rate. 92
SC10 For most SARSA agents, a low, decreasing exploration rate is beneficial to the performance. 92
SC11 Q-learning agents, in general, benefit from a decreasing learning rate, unless the learning rate is

already small (≤ 0.1), then the effect is less.
93

SC12 For Q-learning agents, a learning rate that decreases to a quarter of its initial value after the
first half of the episodes seems most promising.

93

SC13 For SARSA agents, a learning rate that decreases to half its initial value after the first half of
the episodes looks most promising.

93

SC14 A λ between 0.1 and 0.5 seems most beneficial for this problem when using either Q-learning or
SARSA.

93

SC15 Some agents without eligibility traces (λ = 0) are able to achieve the same level of performance
as the top agents with eligibility traces. The bulk however has a slightly lower performance.

93

SC16 The performance of the top agent is independent of the wall position, as long as the distance
between the walls is larger than 4 meters.

95

SC17 An increase in either the number of sine waves or the extension of the bandwidth of the param-
eters, can lead to the ball approaching the wall at higher speeds, which results in a decrease in
performance.

96
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