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ABSTRACT
In this paper, we consider the vulnerability of a network
to disasters, in particular earthquakes, and we propose an
efficient method to compute the distribution of a network
performance measure, based on a finite set of disaster areas
and occurrence probabilities. Our approach has been im-
plemented as a tool to help visualize the vulnerability of a
network to disasters. With that tool, we demonstrate our
methods on an official set of Japanese earthquake scenarios.

1. INTRODUCTION
Over the past few decades, communication networks have

been used more and more in commerce, government, and in
our personal lives. But with an increased usage also comes
an increased dependency. Currently, a failure in our com-
munication systems can have a significant impact on society.
During and following a disaster, communication networks
become even more important, as they are used for timely
communication between emergency services and for deploy-
ing and coordinating relief operations.

In 2011, a massive earthquake struck Japan; the earth-
quake and subsequent tsunami not only resulted in a massive
loss of human lives, but also caused widespread connectiv-
ity problems. Meanwhile, peak communications traffic was
9 times as high as normal. Clearly, large-scale disasters,
like earthquakes, form a formidable challenge in network de-
sign. Not only do they cause hardware failures spread over
a large area, but they also prevent repairs for a significant
amount of time. Computing the vulnerability of a network
against earthquakes can help in (1) preparing for potential
earthquakes and (2) in designing or modifying a network to
become more robust against them.

Although considered as early as 1991 by D. Bienstock [2],
research on so-called geographically correlated challenges
has only really taken of in the last decade. Often it is as-
sumed that the disaster area takes a fixed shape (e.g., a line
or a circle with fixed radius), after which the amount of dis-
asters required to disconnect two nodes (e.g., [6]), the most
vulnerable spot(s) of the network against this type of disas-
ter (e.g., [7]), or the impact after a randomly placed disaster
(e.g., [8]) are computed. Typically, the vulnerability of the
network is reflected by a single value.

We take a different approach: based on a set of possible
disasters (of varying shapes), we compute the distribution
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of the measure after one of these disasters randomly occurs.
We show that this distribution can be efficiently calculated,
and that it provides more information to a network operator
or designer than any single (e.g., expected) value could.

Our main contributions in this paper are threefold:

• We propose an efficient method to compute the distri-
bution of a network performance measure, based on a
finite set of disaster areas and occurrence probabilities.

• We describe our tool to compute and visualize such dis-
tributions for any network topology and disaster set.

• We apply our method to a set of Japanese earthquake
scenarios, although our methodology is applicable to
other types of disasters as well.

2. MODEL
We assume the network G = {V,E}, consisting of a set

V of N nodes connected by a set E of links, is embedded
in a plane, and lies completely in a bounded convex region
R ⊆ R2. The network can either be directed or undirected.
Nodes v ∈ V are modeled as points p ∈ R. Instead of mod-
eling them as straight line segments, each link is modeled as
a finite sequence of line segments connecting their nodes.

We model earthquakes deterministically, i.e., we assume
that all links intersecting a disaster area, which we take as
the area(s) in which ground motions exceed a specific level,
fail. If a node lies within a disaster area, all of its links must
have at least one endpoint in the disaster area and therefore
would fail.

Earthquakes typically occur at faults, and thus can not
occur everywhere in R. In addition, the ground motion,
and thus the disaster area after an earthquake, depends on
the earthquake’s magnitude, as well as the properties of the
rocks and sediments that earthquake waves travel through.
Many earthquakes with similar locations affect the same
links of the network, even though their exact disaster ar-
eas may differ. We therefore argue that it makes sense to
take a finite representative set of earthquakes and use it to
calculate the network’s vulnerability.

We assume that we are given a finite set of possible disas-
ters D. We further assume that exactly one of these disasters
will manifest at a time. The probability of multiple (inde-
pendent) earthquakes occurring simultaneously is generally
very small and thus is ignored in this paper. Earthquakes
that trigger other disasters (e.g., aftershocks) can still be
modeled, by combining their disaster areas. Each disaster



d ∈ D has a disaster area A(d) ⊆ R2 and an occurrence
probability P (d). Note that

∑
d∈D

P (d) = 1.

We model a disaster area as either a circle, line segment,
simple polygon, or a finite union of these. However, our
model and methods can be used with any shape of disaster
area, as long as it is possible to calculate if a line segment
intersects it.

There are multiple ways to obtain the set D. One can
generate potential earthquakes in a Monte Carlo approach
based on fault parameters. The United States Geological
Survey (USGS) provides tools to, given parameters, com-
pute detailed intensity maps, which can be used for this pur-
pose (usgs.github.io/shakemap/shakemap_archives.html#
generating-earthquake-scenarios). Another approach is
to take a historic set of the last N earthquakes above a
certain magnitude. Finally, one can use a given set of earth-
quake scenarios as input. The last two methods have the
advantage that ground motion data can be more accurately
calculated by incorporating more details (e.g., on ground
properties) than the automated tool would.

As an example, in the following section, we will convert
Japanese J-SHIS earthquake scenarios to our disaster model.

3. J-SHIS EARTHQUAKE SCENARIOS
Japan has one of the highest earthquake rates in the world

and thus needs to be especially prepared for major earth-
quakes. The National Research Institute for Earth Sci-
ence and Disaster Resilience (NIED) provides much informa-
tion about potential earthquakes through the Japan Seismic
Hazard Information Station (J-SHIS, http://www.j-shis.
bosai.go.jp/en/). Of particular interest to us are their
Seismic Hazard Map and Scenario Earthquake Shaking Maps.

The Seismic Hazard Map gives probabilities for signifi-
cant ground motion for all of Japan. These probabilities are
calculated in a very similar method as our approach: by ag-
gregating over a set of (representative) modeled earthquakes
[3]. Unfortunately, as the end result is an aggregation, and
the intermediate results are not publicly available, this map
was not usable for our purposes.

Instead, we made use of the Scenario Earthquake Shak-
ing Maps. Of special interest are the earthquakes occurring
in major active fault zones, as these are the highly active
fault zones that cause earthquakes that have large social and
economical impact. These scenario maps contain, among
other data, (JMA) seismic intensities for each affected grid
in Japan, using Divided Quarter Grid Square Codes [1]. By
converting these to geographical coordinates, and only keep-
ing those grids with an intensity above a specific threshold,
a disaster area (of a union of rectangles) can be obtained for
every single scenario on the dataset. The resulting disaster
areas are not contiguous, as there are gaps where the seismic
intensity is below the threshold.

The scenarios do not contain occurrence probabilities. To
obtain these probabilities, we take the mean recurrence in-
tervals for each fault from the parameter dataset for the
Seismic Hazard Map. If a fault segment has N scenarios
and mean recurrence interval i, the occurrence probability
of all its disasters is taken to be

1

iNT
,

where T is the sum of the inverses of all recurrence intervals
of fault segments with N > 0.

4. VULNERABILITY DISTRIBUTIONS
In 1994, S. C. Liew et al. proposed characterizing net-

work survivability by a survivability function, rather than
by a single value (like the expected value after a random
disaster) [5]. In essence, their survivability function is the
probability mass function of a given survivability measure
after a random disaster. Some interesting values can easily
be derived from this function, for example the worst-case
survivability, r-percentile survivability, or the probability of
zero survivability. As far as we know, this concept has not
yet been applied to geographically correlated failures. In this
section, we propose a method to efficiently compute these
distributions.

4.1 Failure States
As an intermediate step towards computing measure dis-

tributions, we first consider the probability distribution over
the state of the network after a random disaster.

Let a failure state s be defined as a set s ⊆ E, where e ∈ s
if and only if e is down.

Let S be the random value indicating the failure state after
the disaster and let S(d) be the failure state after disaster
d ∈ D. Thus S(d) is the set of all links intersecting the
disaster area A(d).

Because we assume exactly one disaster occurs, we have

P (S = s) =
∑

d∈D|S(d)=s

P (d) (1)

The distribution over S can now be computed as follows:

1. ∀d ∈ D, compute S(d)

2. ∀s ∈ S[D] (the image of S), store
S−1(s) = {d ∈ D|S(d) = s}

3. ∀s ∈ S, P (S = s) =
∑

d∈S−1(s)

P (d)

Note that |S[D]| ≤ |D| (trivially), and can be significantly
smaller when many disasters occur in the same small region.
The value of a measure only depends on the state of the
network, and thus it only needs to be computed once per
possible failure state, instead of once for each d ∈ D. By
iterating over possible failure states instead of disasters, we
can potentially significantly reduce computation time, when
computing the distribution over a measure.

4.2 Measures
Consider a measure M . Let M(d) be the value of the mea-

sure after disaster d, and M(s) be the value of the measure
in failure state s. Note that M(d) = M(S(d)).

Similarly as in equation 1, we have

P (M = m) =
∑

d∈D|M(d)=m

P (d)

=
∑

s∈S[D]|M(s)=m

 ∑
d∈D|S(d)=s

P (d)


=

∑
s∈S[D]|M(s)=m

P (S = s)

(2)

The distribution over M can now be calculated as follows:

1. ∀s ∈ S[D], compute P (S = s) as described in section
4.1



2. ∀s ∈ S[D], compute M(s)

3. ∀m ∈M [S[D]], store {s ∈ S[D]|M(s) = m}

4. ∀m, P (M = m) =
∑

s∈S[D]|M(s)=m

P (S = s)

Note that this method can be performed in parallel, to
further increase performance.

5. DISASTER IMPACT VISUALIZATION
The disadvantage of computing a distribution instead of a

single value is that one may be overwhelmed by the amount
of data. Thus it is important to properly visualize the results
in a useful fashion.

The distributions over a measure can be clearly visual-
ized with a histogram of the cumulative distribution func-
tion (CDF), for example, as in figures 2 and 3.

The intermediate results of the computations in section
4.2, such as the distribution over failure states and the cou-
pling of disasters with their resulting state and measure, can
also greatly help in preparing the network against disasters.

To this end, we have created the Disaster Impact Visual-
ization Tool (DIVT). This tool can, given any network topol-
ogy and disaster set, compute and visualize the vulnerabil-
ity distribution and many intermediate results. DIVT maps
the network on a world map using the NASA World Wind
library (worldwind.arc.nasa.gov). By drawing disaster ar-
eas over the network, users can clearly see which links are
affected by a disaster and why.

The measure distribution, state distribution, and the cou-
pling between these distributions and the disasters them-
selves, are visualized in a tree structure (see figure 1).

At the top level one can see and select the values of the
measure with their corresponding probability. Their child
nodes show the probabilities of the states resulting in these
values. Finally, at the lowest level are the individual disas-
ters causing these states. By selecting one or more of these
tree nodes, all corresponding disaster areas are drawn in red
on the map. Failing links are colored pink.

An example is given in figure 1. We first expanded all fail-
ure states that result in an Average 2-Terminal Reliability
– the number of connected node pairs divided by the total
amount of node pairs – of 0.87512. Subsequently, we ex-
panded a specific failure state with 4 failed links. This failure
state is the result of either disaster scenario “F006104 (case
5)” or “F006104 (case 6)” (names are assigned based on J-
SHIS Fault Code and Case Number). “F006104 (case 6)”
was selected and is drawn on the map. Some basic statistics,
like the expected value, variance, worst case, and all CDF
values, are computed and displayed via the Statistics tab.

6. EXPERIMENTAL RESULTS
In this section, we demonstrate the use of our methods

on two Japanese network topologies: JGN2plus-Japan and
Sinet. Both were downloaded from the Topology Zoo [4].
As these files only contain (broad) geographical coordinates
for the nodes, and not the links, all links are assumed to be
straight line segments directly connecting their endpoints.
Mercator projection was used to map all geographical co-
ordinates to the 2-dimensional plane. Nodes without any
geographical information were ignored.

JGN2plus-Japan spans almost all of Japan, but only has
11 nodes and 10 links. In contrast, Sinet spans a slightly
smaller area, but consists of 47 nodes and 49 links.

As disasters, we took the J-SHIS earthquake scenarios de-
scribed in section 3, specifically those from the 2016 dataset.
These comprise 655 scenarios for 189 fault segments. The
JMA seismic intensity threshold was set to 5.5. We chose
the average 2-terminal reliability (ATTR) as our measure.

In figures 2 and 3, the cumulative distribution functions
of the ATTR of both networks, after one of the earthquake
scenarios, has been plotted. One may notice a difference
between the two: while JGN2plus-Japan has a much lower
probability of becoming disconnected than Sinet (0.352 and
0.673, respectively), its probability of incurring a large ATTR
impact is much higher than for Sinet. P (ATTR ≤ 0.7) is
0.224 for JGN2plus-Japan and 0.049 for Sinet.

This is probably caused by the large difference in network
size between both networks. As JGN2plus-Japan consists of
fewer nodes and links, it has a higher probability that it will
not be hit by the earthquake at all. However, in the case
that the network does get hit, it lacks the backup paths
to keep most of its connections. We can confirm this by
inspecting P (No Link Failures) in DIVT. Indeed, the prob-
ability of all links of JGN2plus-Japan being unaffected is
0.648, and there are no possible states in which any link
fails, but the network stays connected. The comparatively
low P (No Link Failures) of Sinet is 0.263.

The worst-case disasters for JGN2plus-Japan all occur
around Tokyo, resulting in an ATTR of 0.291 with prob-
ability 0.007. The worst-case disasters for Sinet are located
around Osaka, and result in an ATTR of 0.362 with proba-
bility 0.009. JGN2plus-Japan has an expected ATTR value
of 0.866 with a variance of 0.044 and Sinet an expected
ATTR value of 0.920 with a variance of 0.016.

For both networks, only computing the ATTR for each
possible failure state, instead of for each disaster, had a large
effect on performance, reducing the number of times ATTR
had to be computed from 655 to 22 and 93 for JGN2plus-
Japan and Sinet, respectively.
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