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              Abstract                
Growth and preferential attachment are the two ingredients of the scale-free network. 
Based on the Barabási-Albert scale-free model, we construct a more general model by 
replacing the linear preferential attachment with the nonlinear preferential attachment. 
We introduce different networks by controlling a parameter β which decides the 
preferential attachment of our model. We try to find the influence of β on the network 
structure and property.  

    To study the influence, we investigate our model in three directions: topological 
characteristics, correlation of topological measures and attack vulnerability. 

    In topological characteristics section, we specify the structural measures and the 
spectral measures to analyze the influence of β. These measures are the degree 
distribution, the average hopcount, the average clustering coefficient, the assortativity 
coefficient and the eigenvalues of the adjacency matrix and the Laplacian matrix. 

    In correlation section, we calculate the correlation coefficients between the four 
measures: the algebraic connectivity, the spectral radius, the average clustering 
coefficient and the average hopcount to study their relationship. 

    In attack vulnerability section, we use two kind node attack strategies to attack the 
networks based on the cluster-focused attack and the global attack respectively. Then 
we analyze the size of the largest cluster, the spectral radius and the algebraic 
connectivity of the largest cluster in the network. 

 

 

    Key words: complex network, growth, preferential attachment, topological 
characteristics, correlation, attack vulnerability 
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1 
Introduction                           
Robustness of a network measures the ability of the network withstanding the changes 
of the network structure. The study on the robustness of real world networks can give 
us some insights on how to construct and maintain a relatively stable network in the 
future. 

1.1 Motivation 

1.1.1 Model description 

Barabási and Albert first used the two network features: growth and preferential 
attachment to construct a network model named Barabási-Albert (BA) model. Growth 
means the number of nodes in a network is continuously growing; preferential 
attachment decides which existing nodes will have relationship with new adding 
nodes. These two features are already found in most real world networks.  

    We construct a general model based on the BA model. In our model, the 
preferential attachment is expanded from the linear one of the BA model to the 
nonlinear one of ours. We control the preferential attachment by using a parameter β. 
Thus different networks can be introduced by different values of this parameter. 

1.1.2 Study direction 

The network features can tell us the structure and the property of a network. It also can 
tell us which features could be good measures for the robustness of the network. We 
investigate the features of our model in the following three directions: 

    • Topological characteristics 

    Network structure is the base of a network. It decides the function of the network. 
The study on topological characteristics is to find the inherent structural property of 
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the network and the relationship between the structural property and the network 
function. For example, what topological property is related to the robustness of a 
network against the decomposition; what topological property has relationship with 
the information propagation and virus spreading of the network. After knowing this, 
we can go further to study how to enhance the robustness of the network, make the 
information propagation easier or let the virus spreading more difficult. Besides this, 
we also can use the inherent structural property to classify the networks. For example, 
the degree distribution of most real world networks follows a power law, which means 
the degree distribution has no relationship with the network size. These networks are 
classified into a network family named the scale-free network. The classification of 
networks makes the network study more effective. 

    In this paper, we study the influence of the parameter β on the structural property 
of our model through the following measures: the degree distribution, the average 
hopcount, the average clustering coefficient, the eigenvalues of the adjacency matrix 
and the Laplacian matrix (see the definition of these measures in Chapter 1.2). 

    • Correlation of topological measures 

    A network can be represented by a set of topological measures. In the set, some 
measures are highly correlated to others. In other words, the correlation coefficient 
between two measures is big. The set of measures to characterize a network can be 
reduced by choosing the measures that are relatively independent from each other. 
Thus, we deem it crucial to understand the correlation between topological measures. 
Correlation indicates the linear relationship between two measures and it strongly 
relies on the network topology. Using the correlation coefficient, we observe the 
change of the correlations between any pair of measures when the network structure 
changes along with the parameter β. 

    Based on the simulation results obtained in topological characteristics section, we 
calculate the correlation coefficients between any pair of the four topological 
measures: the algebraic connectivity, the spectral radius, the average clustering 
coefficient and the average hopcount to investigate the influence of β on the 
correlations between these measures (see the definition of these measures in Chapter 
1.2).  

    • Attack vulnerability 

    Attack means the removal of nodes or links from the network. After attacking, the 
network may segment into several disconnected clusters. The study on attack 
vulnerability is a way to measure the robustness of the network. Different network 
structures will have different behaviors when the network is under different attack 
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strategies. Through the study we hope to know how to build a robust network against 
attack in the future. 

    In this paper, we examine the behaviors or the characteristics of different 
structures of our model when subject to various node removal attacks. 

1.2 Graph measures 

Graph measures are numerical expressions of the network topological property. This 
paper is focused on the study of the network property, so we use the graph measures to 
investigate the network structure and the network function of our model. 

    A graph G is denoted as G = (N, L), where N is the number of nodes in the network, 
and L is the number of links. A complete graph or full mesh G = KN is a graph which 
has a link between every pair of nodes. This graph consists of N nodes and 

( 1)
2

N NL −
=  links.  

    In a network the links can be weighted and directed. The link weight shows how 
strong the relationship two nodes have, and the direction gives the information about 
which is the source node and which is the destination node. In this paper we only 
consider the unweighted and undirected networks, which contain no self-loops. 

1.2.1 Structural measures 

    • Degree: The degree di of a node i is the number of direct neighbors that the node 
i has in the network. The degree di satisfies the inequality 0 ≤ di ≤ N-1.  

    • Shortest path: In the unweighted networks, the shortest path is the minimum 
number of hops that a source node needs to reach a destination node. 

    • Hopcount: The hopcount H is originally defined as the number of hops on the 
path between a source node and a destination node. Since in a network there may be 
several paths between a pair of nodes, so in this paper we define the hopcount as the 
number of hops on the shortest path between any pair of nodes. The average hopcount 
in a network is the average value of the shortest paths between all pairs of nodes. 

    • Diameter: Diameter Hmax is the largest hopcount in the network. 

    • Clustering coefficient: The clustering coefficient characterizes the connection 
density in the neighborhood of a node i. It is defined as the ratio of the number of links 
y connecting the neighbors of node i over the total possible links di (di -1)/2 [22]: 
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2
( 1)i

i i

yc
d d

=
−

 

    The average clustering coefficient is the average value of the clustering 
coefficients of all nodes in the network. 

1.2.2 Spectral measures 

    • Adjacency matrix: The adjacency matrix A is a symmetric N×N matrix. The 
diagonal element of the matrix aii = 0 and the nondiagonal element aij is 1 or 0 
depending on whether the two nodes are connected. 

if 
if  and node  is a

0          
djacent to 

                      
node 

otherwise

                  
  1   
0                                             

ij

i j
i j i ja

⎧ =
= ≠⎪

⎨
⎪
⎩

 

    The set of all N adjacency eigenvalues λN ≤ λN-1 ≤ ··· ≤ λ1 is called the adjacency 
spectrum of the graph G. The largest eigenvalue λ1 of the adjacency matrix is defined 
as the spectral radius. 

    • Laplacian matrix: The Laplacian matrix Q is a symmetric N×N matrix. The 
diagonal element of the matrix qii is the degree di of node i and the nondiagonal 
element qij is -1 or 0 depending on whether the two nodes are adjacent. 

if 
if  and node  is

       
 adjace

              
nt to node 

                             
1   
0                                        otherwise      

i

ij

i j
i j i

d
q j

⎧
⎪=

=
−⎨ ≠

⎪
⎩

 

   The set of all N Laplacian eigenvalues μi is called the Laplacian spectrum of a 

graph G, and they are all real and nonnegative [5], which means the eigenvalues 

satisfy μN = 0 ≤ μN-1 ≤ ··· ≤ μ1. The second smallest eigenvalue μN-1 of the Laplacian 

matrix is denoted as algebraic connectivity. 

1.3 Complex network 

    Many real world networks, such as the World Wide Web, biological networks, 
social networks, business networks etc, are complex networks which are networks 
with substantial non-trivial topological features. For example, the human web has the 
small shortest path and the high clustering coefficient features. The citation network 
has the power-law degree distribution feature. 

    Until now, several models have been introduced to capture the features of real 
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world networks. Among them, the mostly studied models are the Erdős-Rényi random 
graphs, the small-world model and the scale-free model. 

1.3.1 Erdős-Rényi (ER) random graph  

The Erdős-Rényi (ER) random graph [2, 15, 21] may be the earliest and most 
investigated random network model. An Erdős-Rényi (ER) random graph with N 
nodes can be constructed in the following steps: first we begin with N nodes. Then a 
link exists between each node pair with the probability p. We denote the random graph 
by Gp(N). The ER random graphs have a small average hopcount and a low clustering 
coefficient. 

    The degree D of an arbitrary node in the ER model has a binomial distribution:  

11
Pr[ ] (1 )

!

k z
k N kN z eD k p p

k k

−
− −−⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

 (1) 

where z is the average node degree of the graph: z = E[D] = (N-1)p. In (1) the second 
term is the Poisson approximation for large N. So the degree distribution of the ER 
random graph has an exponential tail. 

    One greatest discovery of the ER random graph is that there exists a critical link 

density ln
cp N

N= . When p < pc, the graph consists of disconnected clusters; when   

p > pc, a large cluster contains almost all nodes in the graph. 

1.3.2 Small-world graph model 

The small-world graph model is a graph which has a large number of nodes and a 
relatively short path between any pair of nodes. The small-world property can be 
captured by the small average hopcount and the high clustering coefficient. It has been 
demonstrated that many real world networks have such small-world property, such as 
social networks, gene networks etc. One famous theory of the small-world property is 
“Six degrees of separation” (also referred to as the “Human Web”). It refers to the idea 
that anyone can connect to any other on the Earth through at most six persons. 

    Watts and Strogatz (WS) model [16] is a random graph with the small-world 
property. The construction of the WS model follows the random rewiring procedure. 
We start from a ring lattice with N nodes and L links per nodes. Ring lattice is a 
network with N nodes placed on a circle structure. There are links between each node 
and its nearest and next-nearest neighbors. Then we randomly rewire each link with 
the probability pr. When pr = 1 the graph is a random graph and when pr = 0 the graph 
is a regular lattice. 
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    The degree distribution of the WS model depends on pr. When pr → 1 the degree 
distribution is Poisson distribution, so it also has an exponential tail similar as the ER 
model. 

1.3.3 Scale-free graph model 

A scale-free graph is a graph whose degree distribution follows a power law with an 
exponent independent of the graph size N for large N. Hence the probability of a node 
in the graph having a degree k is Pr[D=k]~k -γ, where k is the node degree, γ is the 
scaling exponent and is typically in the range 2 < γ < 3. Many real world networks 
appear to be scale-free, such as the World Wide Web, some social networks etc. 

    The first model introduced as a scale-free network is the Barabási-Albert (BA) 
model [1, 2]. The BA model begins with m0 nodes. Then at each time step we add a 
new node with m links which will be connected to the m (m ≤ m0) different nodes 
which are already present in the network. The m different nodes are chosen by the 
preferential attachment, which indicates the probability Π of a node to be picked out 
depends on the degree of this node:  

( ) i
i

jj

dd
d

=∏ ∑
 

where di is the degree of node i, jj
d∑ is the total degree in the network. 

    The degree distribution of the BA model follows a power law Pr[D=k] ~ k -γ with       
γ = 3 [2] and is independent of m with larger N. The BA model indicates the 
"rich-get-richer" phenomenon [1] that the nodes with high degree have a large chance 
to be attached with new adding nodes. In real world, there are some examples 
supporting the feature, such as the citation patterns of the scientific publications with 
the exponent γ = 3 [9], the movie actors collaboration network with γ = 2.3 ± 0.1 [1, 2] 
etc.  

    The clustering coefficient of the BA model follows approximately a power law    
C ~ N -0.75. The larger the N is, the smaller the clustering coefficient C is. 
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2 
Model                                 

2.1 Model introduction 

The Barabási-Albert model is the first model that uses preferential attachment to 
construct a network. Since the BA model was proposed, many researchers have 
studied this model. Some similarity between the BA model and the real world network 
has been found, such as the power law distribution, the “hub” which gathers many 
links from other nodes etc. Then P.L.Krapivsky and S.Redner [3, 4] raised an 
extensional model on the ground of the BA model. Replace the linear preferential 

attachment of the BA model with the nonlinear one ( ) i
i

jj

dd
d

β

β=∏ ∑
 to construct the 

networks, where β changes from 0 to +∞. 

    Until now these models all only consider the positive β. We are wondering what 
the network structure and property will be if β is negative. Thus we have our model 
that uses the nonlinear preferential attachment to construct the networks: 

( ) i
i

jj

dd
d

β

β=∏ ∑
 

where β is in the range [-∞, +∞]. The parameter β is named as the strength of 
preference. Given different values of β, we will have different network topologies. 

2.2 Model construction 

Our model G*(m,N,β) is constructed in the following steps, based on growth and 
preferential attachment: 

    1). Start from a complete graph with m nodes. 

    2). At every time step we add a new node with m links which will be attached to m 
different nodes which are already existed in the network. A network constructed like 
this has been proved to be m-connected (see the proof in appendix A). The m different 
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existed nodes are decided by the preferential attachment: 

( ) i
i

jj

dd
d

β

β=∏ ∑
, where ( , )β ∈ −∞ ∞  

    3). Repeat step 2 until the total number of nodes in the graph is N. 

    Through the preferential attachment rule we can get a rough tendency of 
probability Π along with β. When β > 0, the larger the degree of a node is, the higher 
the probability it has to be connected to. On the contrary, when β < 0, the smaller the 
degree of a node is, the higher the probability it has to be attached to.  

    Obviously when β = 1 the network is the Barabási-Albert scale-free network, in 
which the probability Π is linearly related to the node degree. When β = 0, it is a 
network called growing exponential network [7], in which all the existing nodes have 
the same probability to be chosen. In other words, the nodes to be connected to are 
picked out randomly. When β approaches to +∞, the network is unique. All the new 
adding nodes will be attached to the first m nodes. Fig.2.1 is an example of our model 
when β→+∞. In this figure, the bigger nodes are the original m nodes and the smaller 
nodes are the newly added nodes. 

 
Figure 2.1 The connectivity of nodes in G* (m=3, N=20, β→+∞) 
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3 
Topological characteristics in relation to β  
Topological property is the inherent property of a network. Through the study of the 
structural and spectral measures, we can capture the topological characteristics of a 
network. In this section, we carry out the simulations to calculate the structural 
measures and spectral measures of our model when β = -8,-4,-2,-1,0,1,2. Then we 
analyze these measures to see the influence of β on the network structural features. 
For each class of G*(m,N,β) we iterate 10000 times to build 10000 different networks 
to obtain good statistical property of the class of graphs. 

3.1 Degree distribution Pr[D = k] 

3.1.1 Degree distribution for a given β 

Before our analysis on different preference strength β, we investigate the degree 
distribution of G* with fixed β, but tunable m and N.  

3.1.1.1 β = 1, m = 3,5, N = 200,400,800  

The class of graphs with β = 1 is the same as the BA model with m0 = m.  

    It has been demonstrated that the degree distribution of the Barabási-Albert model 
has a power-law tail Pr[D=k] ~ k -γ with the scaling exponent γ = 3 independent of m 
when N approaches to infinite [1, 2]. So the degree distribution of our model with    
β = 1 should also follow a power law and have an exponent close to 3. As Fig.3.1 
shown, the curves have a power-law tail and the exponent γ has nearly no relationship 
with m since γ = 2.61 is hold by the five graphs. 

    According to the research result of A.L.Barabási and R.Albert, the exponent γ of 
the BA model is 3 which is large than our model 2.61. Two reasons can explain the 
bias. First, it is caused by the influence of N on γ. The larger the N is, the closer the γ is 
to 3. In our model the largest N is 800, if we let N be larger, the exponent γ will be 
closer to 3. Second, the exponent γ is obtained directly from the curve fitting on the 
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probability distribution function (pdf) of the degree. Actually, the pdf is less precise 
than the ccdf to capture the power-law behavior of the degree [21]. The ccdf is the 
complementary cumulative distribution function. It is defined as F(x) = Pr(X > x) = 
1-F(x). The exponent γ’ of pdf can be computed from the exponent ν of ccdf by the 
equation γ’ = ν+1. We use ccdf to calculate the degree distribution and get ν = 1.82 
(See the curve fitting on ccdf in Fig.C.1). Thus the computed exponent γ’ of the 
degree distribution is γ’ = ν+1 = 2.82, which is closer to 3 than the one obtained 
directly by the curve fitting on the pdf. 
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Figure 3.1 The degree distribution of G*(m=3,5, N=200,400,800, β=1) 

 

3.1.1.2 β = 0, m = 3,5, N = 200,400,800 

The attachment rule of the graph with β = 0 can be rewritten as 0

1( )i
jj

d
d

=∏ ∑
, 

where i, j are the node i and j in the network, and 0
jj

d∑ is the total number of nodes 

in the present network. It indicates that the probability of a node to be chosen is 
independent of the node degree. For all the nodes in the present network, the 
probability Π are the same. In other words, the nodes to be attached are chosen 
randomly. 

    Since A.L.Barabási and R.Albert proposed the Barabási-Albert model, they have 
done some simulation to demonstrate that the scale-free feature only presents when    
β = 1 [1]. And it has been proved that when β = 0 this model is not a scale-free network 
because of the absence of preferential attachment [1, 2].  
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    The graph with β = 0 is named as growing exponential network [7]. It has been 
explained that the degree distribution of the model when β = 0 is exponential [7]. And 
further, the numerical representation of the degree distribution has been derived as 

Pr[ ] exp( )e kD k
m m

= = −  by using the mean-field approximation [2]. It indicates that 

the exponent of the degree distribution tail is inversely proportional to m. As Fig.3.2 
shown, the larger the m is, the smaller the exponent of the degree distribution is, 
which matches the analysis. 
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Figure 3.2 The degree distribution of G* (m=3,5, N=200,400,800, β=0) 

    When β = 0 and m = 1, our model becomes the uniform recursive tree (URT). A 
URT is a random tree structure, in which any two nodes are connected by exactly one 
path. When constructing the URT, at each time step, a new node is attached uniformly 
to one existed node in the network. The degree distribution of the URT has an 
exponential tail and the exponent of the tail is ln2 [22]. 

3.1.1.3 β = -1, m = 3,5, N = 200,400,800 

Different from the model with β = 1, when β = -1, the smaller degree of a node is, the 
larger chance it has to connect to a new adding node. Because in this network the 
nodes with the small degree m take the majority, so approximately we can think that 
the nodes to be connected to are chosen randomly from the most nodes with the small 
degree m. 

    The simulation results of the model with β = -1 are shown in Fig.3.3. The degree 
distribution does not follow a power law or have an exponential tail. A surprising 
phenomenon is that the networks with the same m have nearly the same degree 
distribution, no matter what N is. This indicates that the degree distribution is mainly 
related to m, and is independent of N. 
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Figure 3.3 The degree distribution of G*(m=3,5, N=200,400,800, β=-1) 

    In this section, we studied our model on fixed β and tunable m and N. Through the 
simulation results, we find that the degree distribution is always independent of N as 
long as N is large. When β = -1, 0, the degree distribution is related to m and when    
β = 1, the degree distribution is independent of m. 

3.1.2 Degree distribution in relation to β 

3.1.2.1 Related work with β > 0 

P.L.Krapivsky and S.Redner have studied the nonlinear form ∏(k) ~ k β of the 
probability that a node is attached to a newly added node, where β is tunable in the 
range [0, +∞] [3, 4]. The model used by them is a specified one of our model that     
m0 = m = 1 and β ≥ 0. A graph constructed like this is in fact a tree structure. A tree is a 
graph in which any two nodes are connected by exactly one path. In other words, a 
tree has N-1 links and no loops exist in a tree. 

    They used rate-equation approach 1 1
1 ( 1)k

k k k
dN k N k N
dt M

β β

β

δ−⎡ ⎤= − − +⎣ ⎦ (2), 

where M β = ∑ k β Nk (t), to study the degree distribution Nk(t) with time evolution. The 
degree distribution Nk(t) is defined as the average number of nodes which have degree 
k at time step t. The first term ((k-1)βNk-1) / Mβ in (2) counts for the probability that a 
node with degree k - 1 to be connected to a new node and then its degree increases to k. 
The second term (kβNk) / Mβ is the probability of a node degree increasing from k to   
k + 1. The term Mβ is the β moment of Nk(t) and it provides the proper normalization. 
The term δk1 accumulates the continuous introduction of new nodes which do not 
have any incoming links but only one outgoing link. 
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    P.L.Krapivsky and S.Redner divided the values of β into two parts to study the 
model separately. They are 0 < β < 1 and β > 1. 

    1). Sublinear case for 0 < β < 1.  

    In this regime, Mβ and Nk grow linearly with time, satisfying Mβ = μt where        
1 ≤ μ ≤ 2 and Nk = nk t. Substitute Mβ and Nk into Eqs.(2) we have the degree 

distribution 1

1

Pr[ ] (1 )
k

j

D k
k jβ β

μ μ −

=

= = +∏ , whose asymptotic behavior is 

        
2

1 1

( 1/ 2)

1 2 1 2

2 1exp[ ( )]    1
1 2

1Pr[ ] ~ exp[ 2 ]    
2

1 1exp[ ]    
1 2 1 2 3 2

kk

D k k k

k kk

β β
β

μ

β β
β

μ β
β

μ β

μμ β
β β

− −
−

−

− −
−

⎧ −
− < <⎪ −⎪

⎪
= − =⎨

⎪
⎪

− + < <⎪ − −⎩

  (3) 

    As shown in Eqs.(3) whenever β decreases below a value 1/x, where x is an 
arbitrary positive integer, an additional term arises exponentially in Pr[D=k]. 

    2). Superlinear case for β > 1. 

    When β > 1 the network exhibits a “winner takes all” phenomenon: a single node 
will get almost all the links from other nodes. From Fig.3.4 we can see the 
phenomenon clearly that most nodes of the model with β = 2 have the degree m, which 
means most links are owned by a few nodes. 

    In this regime there is no analytical solution for degree distribution. But when     
β > 2, through a discrete time process we can calculate the probability of the initial 

node gathering all links in the network from 1
1

1( )
1i

j

d
j β

∞

−
=

Π =
+∏ . 

3.1.2.2 β→+∞ 

In the model when β→+∞, the m original nodes gather all the links from other nodes 

in the network, so the degree id
β →+∞

 has only two values: 

 if the node is one of the original  nodes
  if the node is one of the  adding node

1  
- si

N m
d

m N mβ →+∞

−⎧
= ⎨

⎩
. 
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Thus the degree distribution is
Pr[ 3]

Pr[ 1]

N mD
N

mD N
N

−⎧ = =⎪⎪
⎨
⎪ = − =
⎪⎩

.  

3.1.2.3. β = -8,-4,-2,-1,0,1,2 

Through the preferential attachment rule we know that when β < 0 the probability 
∏(di) increases as di decreases. Since the newly added nodes often have the smallest 
degree, so when β < 0, the existing nodes to be attached to are mostly picked out 
among these former added nodes. Thus with β decreasing, the existed nodes to be 
attached can be seen as randomly picked out from the nodes with the smallest degree, 
so the connections of new adding nodes should scatter in these former added nodes.  
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Figure 3.4 The degree distribution of G*(m=3, N=800, β=-8,-4,-2,-1,0,1,2) 

    From the above analysis we can deduce that the degree which corresponds to the 
peak should increase as β decreases. As Fig.3.4 shown, the simulation results match 
our analysis. Particularly, it seems the degree possessed by most nodes stays at 6 when   
β<-2. In fact, when β→-∞ our model is a regular graph. A regular graph is a graph in 
which all the nodes have the same degree. When constructing the network, adding one 
node with m links into the network will make the total degree of the network increase 
of 2m. Thus when N is infinite, the average degree of the network is 2m. In our model 
it is 6. So combined with the tendency of the degree distribution shown in Fig.3.4, we 
can deduce that when β→-∞ our model is a regular graph. 

    The model with β = 0 is a special case that it has no preferential attachment. It 
have been indicated in [1, 2, 7] that the model when β = 1 should follow a power law 
with the exponent γ = 3, and when β = 0 the model should have an exponential tail. 
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The curve fitting results are shown in Fig.3.5 and Fig.3.6 respectively. The exponent 
of the numerical result of the model with β = 1 does not exactly equal to 3 but it also 
can be accepted because the total node number N in our simulation is not big enough 
and we use the curve fitting on pdf directly to get γ. The result of the model with β = 0 
is in good agreement with [1, 2, 7]. 
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Figure 3.5 The curve fitting of the degree distribution of G*(m=3, N=800, β=1) 

10-5

10-4

10-3

10-2

10-1

Pr
[D

 =
 k

]

3530252015105
k

 β = 0
 10-0.123k-0.238

 
Figure 3.6 The curve fitting of the degree distribution of G*(m=3, N=800, β=0) 

    In this section we studied the degree distribution of our model in relation to β. We 
observed that when β ≥ 0 the degree possessed by most nodes is m but the percentage 
of degree m decreases as β decreases; when -2≤ β<0 the degree possessed by most 
nodes increases as β decreases; when β<-2 the smaller the β is, the larger the 
percentage of degree 6 is. Through the trend of the degree distribution when β<-2 we 
deduce that our model is a regular graph when β→-∞. 
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3.2 Average hopcount H 

3.2.1 β→+∞ 

In this network, all the newly added nodes are attached to the m original nodes and the 
m nodes are completely connected to each other. Hence any source node can reach to 
any destination node in at most 2 hops. When the size N of the network is large, the 
diameter and the average hopcount of the network are 

max [ ] 2H E H
β β→+∞ →+∞= = . 

3.2.2 β = -8,-4,-2,-1,0,1,2 

As the analysis in the degree distribution, most links are attached to the m original 
nodes in these networks when β >> 1. These networks can be seen as centralized 
networks where the m original nodes are the hubs; on the contrary, when β < 0 most 
links are attached to the nodes with the smallest degree which takes the majority in the 
network, so these networks can be regarded as distributed networks. Thus when β 
decreases from positive to negative, our model changes from centralized to distributed. 
This makes the number of hops needed to connect any two nodes increase 
accompanied by β decreasing from positive to negative. 

    We calculated the average of the hopcount between each pair of nodes in the 
network, thus for 10000 networks we have 10000 average hopcounts. The simulation 
result shown in Fig.3.7 indicates that the change of the hopcount agrees with our 
analysis.  
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Figure 3.7 The average hopcount distribution of G*(m=3, N=800, β=-8,-4,-2,-1,0,1,2) 
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Figure 3.8 The mean value of the average hopcount of G*(m=3, N=800) 

    The curves in Fig.3.7 show that the average hopcount distribution in G* follows 
approximately a Gaussian distribution. Therefore we examine the mean value of the 
average hopcount of the class G*(m,N,β). The study on the mean value E[H] could 
make the relationship between the average hopcount and β more clearly and 
numerically. From Fig.3.8 we find that the mean value of the average hopcount differs 
slightly when β < 0, but changes sharply for β > 0. Especially at β = 2 the mean value 
is close to the extreme situation that E[H] = 2. When β is larger than 2 and getting 
larger and larger, the network structure of our model is more and more close to the 
model when β→+∞. So combing with our simulation result we can deduce that    
E[H] = 2 for  β ≥ 2.        

3.3 Average clustering coefficient c 

The clustering coefficient represents the connectivity density between the neighbors 
of a node. It is a local structural property of the network. 

3.3.1 β→+∞ 

In these networks, there are two types of node degree id
β →+∞

. So we classify all the 

nodes into two classes to calculate the clustering coefficient of every node belonging 
to each class separately, then sum and average them to get the mean value which is the 

average clustering coefficient ic
β →+∞

 of the network. 

   • Class1: the m original nodes. Among the neighbors of any one node belong to 

class1, there are (m-1)·(N-m) links connecting the m - 1 original nodes to N-m added 
nodes, and (m-1)·(m-2)/2 link between the m - 1 original nodes. So for each node in 
this class, the clustering coefficient is 
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( 1) ( ) ( 1) ( 2) / 2
( 1)( 2) / 2i

m N m m mc
N N

− × − + − × −
=

− −
. 

   • Class2: the N-m added nodes. In this class, the neighbors of every node are the m 

original nodes, which fully connect to each other, thus the clustering coefficient of 
every node in this class is 1. 

The sum of all nodes' clustering coefficient is 

( 1) ( ) ( 1) ( 2) / 2 ( )
( 1)( 2) / 2ii

m N m m mc m N m m
N N

− × − + − × −
= ⋅ + − ⋅

− −∑  

Thus the average clustering coefficient of this network is  

( 1) ( ) ( 1) ( 2) / 2 ( ) /
( 1)( 2) / 2G

m N m m mc m N m m N
N Nβ →+∞

⎛ ⎞− × − + − × −
= ⋅ + − ⋅⎜ ⎟− −⎝ ⎠

 

When N is large, 1Gc
β →+∞

=  

3.3.2 β = -8,-4,-2,-1,0,1,2 

Fig.3.9 and Fig.3.10 illustrate us that the average clustering coefficient of the model 
with β = 2 is much larger than the models with small β. This is because when β = 2 the 
neighbors of most nodes in the model are the m original nodes which are fully 
connected to each other. Hence the average clustering coefficient is high. When β is 
under 1, most newly added nodes in the network do not connect to the original m high 
degree nodes but distribute to the smallest degree nodes which have low possibility to 
connect to each other. Thus the average clustering coefficient is low for small β.  
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Figure 3.9 The average clustering coefficient distribution of G*(m=3, N=800, β=2) 
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Figure 3.10 The average clustering coefficient distribution of G*(m=3, N=800, β=-8,-4,-2,-1,0,1) 

    Also we study the mean value of the average clustering coefficient for each β, as 
shown in Fig.3.11. 
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Figure 3.11 The mean of the average clustering coefficient of G* (m=3, N=800) 

   In Fig.3.10 and Fig.3.11 we observe that when β = 0 the model has the lowest 
average clustering coefficient but the difference of the coefficients between the model 
with β = 0 and other models with β < 0 is not obvious. This can be explained by the 
preferential attachment rule. When β = 0 the model picks out the existed nodes 
randomly among all the nodes in the network; on the other hand, when β < 0 the 
models select the existed nodes from these smallest degree nodes also at random, so 
approximately we can consider when β < 0 the models choose nodes randomly. But it 
seems the range of the existed nodes with the highest probability to be chosen when  
β < 0 is smaller than the one when β = 0. This makes the model with β = 0 likely more 
distributed than other models with β < 0. Thus when β = 0 the model has the lowest 
average clustering coefficient. Meanwhile as β decreases under 0, the range of the 
existed nodes that have the high probability to be chosen is likely more and more 
small, so the average clustering coefficient increases a bit.  
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3.4 Eigenvalues λi of the adjacency matrix 

3.4.1 Eigenvalues λi of the adjacency matrix 

3.4.1.1 β→+∞ 

The adjacency matrix of ( )G Nβ →+∞  is 3 3 3 3 3 ( 3)

( 3) 3 ( 3) ( 3)0
N

G
N N N

J I J
A

Jβ→+∞

× × × −

− × − × −

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 in which 

Jm×m is a m×m matrix with all the elements equal to 1 and Im×m is a m×m identity 

matrix, so the eigenvalues of GA
β →+∞

 can be calculated from the equation 

det( ) 0GA I
β

λ
→+∞

− = , where N > 3. 

3 3 3 3 3 3 3 ( 3)

( 3) 3 ( 3) ( 3)

( 3) ( 3) 3 3 3 3 3 ( 3) ( 3) ( 3) ( 3) 3

det( ) det
( )

1                        det(( ) ) det(( ( 1) ) ( ) )

                        

N
G

N N N

N N N N N N

J I I J
A I

J I

I J I J I J

β

λ
λ

λ

λ λ
λ

→+∞

× × × × −

− × − × −

− × − × × × − − × − − ×

− −⎡ ⎤
− = ⎢ ⎥−⎣ ⎦

= − ⋅ − + − ⋅ − ⋅

= 3
3 3 3 3 3 3

3
3 3 3 3

3 3
3 3 3 3

3

3( ) det( ( 1) ( ) )

3                        ( ) det( ( 1) )

3 ( 1)                        ( ) ( ) det( )
3

                        ( ) (

N

N

N

N

NJ I J

N J I

N J I
N

λ λ
λ

λλ λ
λ

λ λ λλ
λ λ

λ

−
× × ×

−
× ×

−
× ×

−

−
− ⋅ − + − −

+ −
= − ⋅ − +

+ − + ⋅
= − ⋅ ⋅ −

+ −

= − ⋅ 3 3 2

4 2 2

3 ( 1) ( 1)) ( 1) ( ) ( 3)
3 3

                        ( ) ( 1) (( 1) 3 8)N

N
N N

N

λ λ λ λ λ
λ λ λ

λ λ λ−

+ − + ⋅ + ⋅
⋅ − ⋅ ⋅ −

+ − + −
= − ⋅ + ⋅ − − +

The spectral radius λ1 of ( )G Nβ →+∞ , which is denoted as the largest eigenvalue of the 

adjacency matrix, is 3 8 1N − + when N > 3. The other eigenvalues when β→+∞ are 

either 0 or -1. 

3.4.1.2 β = -8,-4,-2,-1,0,1,2 

Fig.3.12 and Fig.3.13 show the probability density function (pdf) of the eigenvalues 
of the adjacency matrix of G*. Fig.3.12 is the eigenvalues of the model with β = 2 and 
Fig.3.13 is the eigenvalues of the models with other β. 
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Figure 3.12 The spectrum distribution of the adjacency matrix of G*(m=3, N=800, β=2) 
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Figure 3.13 The spectrum distribution of the adjacency matrix of G*(m=3, N=800, 

β=-8,-4,-2,-1,0,1) 

    These figures tell us that when β = 2 most eigenvalues of the model have the value 
0. We have deduced the spectrum of our model when β→+∞ in chapter 3.4.1.1: N-4 
eigenvalues of the adjacency matrix should equal to 0. When β = 2 the network 
structure of the model is close to the model when β→+∞. Hence the model with β = 2 
should also have a similar spectrum as that with β→+∞. This explains why most 
eigenvalues of G*(β = 2) are equal to 0. 

    When β = 1 the spectrum still has a peak at eigenvalues 0, but the percentage of 
these eigenvalues is much less than the model with β = 2. Meanwhile the percentage 
of other eigenvalue increases. When β ≤ 1, as β decreases, the peak at eigenvalue 0 
disappears and the pdf of eigenvalues becomes more and more smooth. In other words, 
the probability density function of the eigenvalue approaches a uniform distribution. 
Compared with the model when β = 2, we also observe that the range of eigenvalues 
shortens as β decreases.  
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Figure 3.14 The curve fitting of the spectrum tail part of G*(m=3, N=800, β=1) 

    Fig.3.14 is the curve fitting of the tail part of the spectrum when β = 1. It has been 
indicated in [13] that the eigenvalue distribution of a scale-free network follows a 
power law. In other words, if the degree distribution of a network has a power-law tail, 
then the eigenvalue distribution of this network also has a power-law tail. And it also 
has been demonstrated in [13] that in scale-free networks the exponent γ of degree 
distribution tail and the exponent δ of adjacency spectrum have the following 
relationship δ = 2γ – 1 at large eigenvalues λ. So we do the curve fitting on these 
eigenvalues which locate in the range λ ≥ 7 and then we obtain the exponent δ = 4.31. 
Since we already have the degree distribution exponent γ = 2.713 in chapter 3.1.2.3, 
so we can calculate the theoretical exponent δ which should be around               
δ = 2γ – 1 = 4.426. Thus we find that our simulation result is close to the theoretical 
analysis. 

3.4.2 Spectral radius λ1 

    Spectral radius is the largest eigenvalue of the adjacency matrix. It can be used to 
represent the capability of a network against the viruses spreading. The smaller the 
spectral radius is, the stronger the robustness of a network is against the spread of 
virus [12]. In other words, the information is more difficult to propagate. So the more 
centralized the network structure is, the weaker it is against the virus spreading. When 
β is large, most nodes are connected to the original m nodes which can be regarded as 
hubs in the network. In this circumstance, virus is easy to infect the hubs and then 
spread out. Thus compared with other 6 cases of β, the model with β = 2 should have 
the largest spectral radius. As Fig.3.15 and Fig.C.2 (Fig.C.2 is the average of the 
spectral radius) shown, when β = 2 the spectral radius of the model indeed has the 
largest value. 

    In Fig.3.15 we observe that not only the value, but also the range of the spectral 
radius gets larger as β increases. When β is smaller than 0, the spectral radius of these 
β models are very close. Meanwhile with β decreasing, the spectral radius is more and 
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more unanimous.  
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Figure 3.15 The spectral radius distribution of G*(m=3, N=800, β=-8,-4,-2,-1,0,1,2) 

3.5 Eigenvalues μi of the Laplacian matrix  

3.5.1 Eigenvalues μi of the Laplacian matrix 

3.5.1.1 β→+∞ 

The Laplacian matrix Q can be calculated from Q = ∆ - A, where diag( )idΔ = in which 

di is the degree of node i ( i N∈ ), A is the adjacency matrix of ( )G Nβ →+∞ , written 

as 3 3 3 3 3 ( 3)

( 3) 3 ( 3) ( 3)0
N

G
N N N

J I J
A

Jβ→+∞

× × × −

− × − × −

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. The eigenvalues of the corresponding Laplacian 

matrix G G GQ A
β β β→+∞ →+∞ →+∞

= Δ − are the solutions of det( ) 0GQ I
β

μ
→+∞

− = . For N > 3, 

3 3 3 3 3 ( 3)

( 3) 3 ( 3) ( 3)

( 3) ( 3) 3 3 3 3 3 ( 3) ( 3) ( 3) ( 3) 3

( )
det( ) det

(3 )

1                        det((3 ) ) det(( ) )
3

                        

N
G

N N N

N N N N N N

N I J J
Q I

J I

I N I J J I J

β

μ
μ

μ

μ μ
μ

→+∞

× × × −

− × − × −

− × − × × × − − × − − ×

− − −⎡ ⎤
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The algebraic connectivity 1Nμ − of ( )G Nβ →+∞ , which is defined as the second smallest 

eigenvalue of the Laplacian matrix, is always 3 when N > 4 and is 4 for N = 4. The 
other eigenvalues when β→+∞ are either 0 or N. 

3.5.1.2 β = -8,-4,-2,-1,0,1,2 

Fig.3.16 presents the eigenvalue distribution of the model when β = 2. Fig.3.17 shows 
the probability density function (pdf) of the eigenvalues ranging between 0 and 15 for 
the 7 cases of β. 
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Figure 3.16 The spectrum distribution of the Laplacian matrix of G*(m=3, N=800, β=2) 
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Figure 3.17 The spectrum distribution of the Laplacian matrix of G*(m=3, N=800, 

β=-8,-4,-2,-1,0,1,2) 

    According to the theoretical analysis, when β = 2 there should be a peak in the 
spectrum of the model since there should be a lot of eigenvalues have the value 3. But 
in Fig.3.17 this is not observed in our simulation result. This is caused by the 
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accumulative way of calculating the pdf. When β = 2 the eigenvalue range of the 
model is very large. So when we derive the pdf for the same number of bins, the model 
with β = 2 has a larger bin size than the models with other β. Compared the pdfs when 
β = 2 and β = 1, we can easily find that the bin size of the former is larger than that of 
the latter. So in this circumstance, the eigenvalues 3 would be accumulated into the 
bin whose range covers 3 but the mark of this bin may not directly points to 
eigenvalue 3. 

    The tendency of the spectrum of the Laplacian matrix is similar to that of the 
adjacency matrix. The peak corresponds to the eigenvalue 3 disappears and the curve 
becomes more and more smooth as β decreases, meanwhile the range of the 
eigenvalues also gets shorter. 

3.5.2 Algebraic connectivity μN-1 

The algebraic connectivity μN-1 is the second smallest eigenvalue of the Laplacian 

matrix. It measures how a network constructs. The larger the algebraic connectivity is, 
the more difficult it is to cut a graph into disconnected components [11], which 
implies that the network is more robust with respect to connectivity.  

    When β = 2, most newly added nodes are attached to the original m nodes, so if 
one of the original m nodes loses its function, since the m nodes are full connected to 
each other, thus the information still can find an alternative way to propagate; if the 
broken node are one of the latter added nodes, as long as the broken node is neither the 
source node nor the destination node, there will be no influence on the information 
propagation. Thus the algebraic connectivity of the model with β = 2 should be larger 
than other β models. 
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Figure 3.18 The algebraic connectivity distribution of G*(m=3, N=800, β=-8,-4,-2,-1,0,1,2) 
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Figure 3.19 The average of the algebraic connectivity of G*(m=3, N=800) 

    In Fig.3.18 and Fig.3.19 we notice that when β = 2 the algebraic connectivity of 
the model has not only the largest value but also has the largest value range. Fig.3.19 
also shows us that the average algebraic connectivity is close when β is between -2 
and 0. Then it increases dramatically as β increases in the range [0, 2]. 

3.6 Assortativity coefficient r 

Assortativity refers to a preference for a network's nodes to attach to others in a 
similar or different way. For instance, the tendency that highly connected nodes tends 
to be connected with other high degree nodes is referred to as assortative mixing 
(assortativity); the tendency that high degree nodes tend to attach to low degree nodes 
is referred to as disassortative mixing (dissortativity). Usually we use assortativity 
coefficient to measure the assortativity of a network, which can be calculated from[6]: 

1 1 2

2
1 2 1 2

1[ ( )]
2

1 1( ) [ ( )]
2 2

l l l ll l

l l l ll l

L j k L j k
r

L j k L j k

− −

− −

− +
=

+ − +

∑ ∑

∑ ∑
 (4) 

Where jl, kl are the degrees of the two nodes at the ends of the l-th link, with l = 
1,2,…,L. L is the total links of the network. 

    If the assortativity coefficient r > 0, the network is assortative; otherwise if r < 0, 
the network is disassortative. If r ＝ 0, the network does not have assortative mixing 
feature. 

3.6.1 β→+∞ 

Formula (4) indicates that the assortativity coefficient is decided by the degrees of the 
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two nodes at the ends of links. When β→+∞ there are two classes of node degrees, so 
we classify the links into two classes to calculate the coefficient respectively. 

    • Class1: one node with degree m and the other node with degree N - 1. This kind 

of links we have m·(N-m). The terms in (4) are 

( 1)i ij k N m= − ⋅ , ( 1)i ij k N m+ = − + , 2 2 2 2( 1)i ij k N m+ = − + . 

    • Class2: two nodes with the same degree N-1. This kind of links there 

are ( 1)
2

m m⋅ − . The terms in (4) are 

( 1) ( 1)i ij k N N= − ⋅ − , ( 1) ( 1)i ij k N N+ = − + − , 2 2 2 2( 1) ( 1)i ij k N N+ = − + − . 

The total number of links in the network is ( 1)( )
2

m mm N m ⋅ −
⋅ − + . In our model m=3, 

so the total number of links can be written as ( 1)( ) 3( 2)
2

m mm N m N⋅ −
⋅ − + = − . 

Substituting above terms and m=3 into formula (4) we can get 

2 2 2

2 2 2 2

36( 2)(4 14 10) 9( 3 4)
18( 2)[( 3)( 2 10) 2( 1) ] 9( 3 4)

N N N N Nr
N N N N N N Nβ →+∞

− − + − − +
=

− − − + + − − − +
 

So when N is large, 1rβ →+∞ = − . 

3.6.2 β = -8,-4,-2,-1,0,1,2  

First we consider the model when β = 0. The probability for every existed node to be 
attached by new coming nodes is uniform p = 1. So the assortativity coefficient can be 

deduced from (4) as [6]: 1 0.33
1 2 1 2

pr
p

= = ≈
+ +

. Then we consider the model when 

β = 1. The BA model has been proved in [6] that it has no assortative mixing property 

for 
2log 0Nr

N
= ≈  when N is large. 

    The pdf of the assortativity coefficient in Fig.3.20 verifies that r→0 when β = 1 
and r = 0.33 when β = 0. We also get the general tendency that the network is 
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disassortative when β > 1 and assortative when β ≤ 0. When β ≤ 0, the smaller the β is, 
the larger the assortativity coefficient the network has, which means the nodes in the 
network attach to others in a more similar way; that is to say, the low degree nodes 
will connect to other low degree nodes; on the contrary, when β > 1, the bigger β is, 
the nodes attach to others in a more different way. In other words, the highly 
connected nodes will be attached to the low degree nodes. 
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Figure 3.20 The assortativity coefficient distribution of G*(m=3, N=800, β=-8,-4,-2,-1,0,1,2) 

3.7 Summary 

In this chapter we studied the structural measures and the spectral measures on our 
model when β changes from negative to positive to observe the influence of β on the 
topological measures. Especially, we deduced these measures of our model when 
β→+∞. 

    In the structural measures aspect, we studied the degree distribution, the average 
hopcount, the clustering coefficient and the assortativity coefficient; in the spectral 
measures, we studied the eigenvalues of the adjacency matrix and the Laplacian 
matrix. 

    When β→+∞ the first m nodes in the network collect all the links from the new 
added nodes. Thus the degrees in the network are either m or N-m, the average 
hopcount is 2 and the average clustering coefficient is 1 when N is large. The spectral 

radius is 3 8 1N − + when N>3 and the algebraic connectivity is 3 when N>4. This 

network with β→+∞ is disassortative which means the nodes with big degree are 
attached to the nodes with small degree. 

    Besides the extreme situation of β→+∞, we specified 7 cases of β to study our 
model. In the structural measure aspect, the degree possessed by most nodes increases 
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as β decreases and it stays at 6 when β<-2. Through the trend of the degree distribution 
when β<-2 we deduce that our model is a regular graph when β→-∞.The same as the 
degree, the mean value of the average hopcount of the network decreases as β 
increases. When β = 2, the average hopcount is close to 2. In the spectral measures 
aspect, the peak at the eigenvalue 0 of the adjacency matrix disappears and the 
eigenvalues becomes uniform as β decreases; meanwhile the range of the eigenvalues 
also decreases. The Laplacian matrix is similar as the adjacency matrix. The peak at 
the eigenvalue 3 of the Laplacian matrix disappears and the range of the eigenvalues 
also decreases with β decreasing. When β = 1, the model has no assortativity; when   
β > 1 the model is disassortative and when β ≤ 0 the model is assortative. 
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Figure 3.21 The average of measures of G*(m=3, N=800)  

(1).algebraic connectivity, (2).spectral radius, (3).average clustering coefficient, (4).average 
hopcount 

    Fig.3.21 is the comparison between the average values of the four measures: the 
algebraic connectivity, the spectral radius, the average clustering coefficient and the 
average hopcount. Through the comparison we can easily find that the algebraic 
connectivity is more sensitive than other three measures when β is in the range [-8, 0]. 
Thus the algebraic connectivity is a good measure for the network robustness when 
the network is in this β range. 
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4 
Correlation of topological measures 

in relation to β    

Topological measures of a network can be used to represent the network. The 
relationship between these measures may be strong or weak. We can choose the 
weakly related measures to characterize the network. Correlation is a way to observe 
the dependency between the measures. Since topological measures rely on the 
network structure, so the correlation between the measures also rely on the structure. 
In this section, we try to find the influence of β on the correlation of topological 
measures. 

4.1 Definition 

The correlation coefficient indicates the strength and direction of a linear relationship 
between two variables. It can be calculated by: 

,

2 2 2 2

(( )( ))cov( , )( , )

( ) ( ) ( )                            
( ) ( ) ( ) ( )

X Y
X Y

X Y X Y

E X YX Ycorr X Y

E XY E X E Y
E X E X E Y E Y

μ μρ
σ σ σ σ

− −
= = =

−
=

− −

 

Where μX, μY are the expected values of X, Y and σX, σY are the standard deviations of 

X, Y respectively. E is the expected value operator and cov is the covariance operator. 

    The closer the absolute value of the correlation coefficient is to 1, the stronger the 
correlation between the two variables is.  

    When correlation coefficient is used to observe the relationship between two 
variables, we need to consider not only the value but also the sign of the value. The 
strength of the correlation depends on the correlation coefficient value and the 
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direction depends on the sign of the value. 

    If the correlation coefficient is positive, it means the two variables change in the 
same trend: both of them increase or decrease approximately at the same time. On the 
contrary, if the coefficient is negative, the two variables are anti-correlated. In other 
words, the two variables change in a different way: one increases while the other 
decreases during the same time period. 

    Meanwhile we consider the influence of the value of the correlation coefficient. 
The larger the absolute value of the correlation coefficient is, the stronger the 
correlation between the two variables. There are two special cases: when the 
correlation coefficient equals to 1 or -1. In both cases the two variables have the 
strongest correlation. When the coefficient equals to 1, the two variables have an 
increasing linear relationship; when the coefficient equals to -1, they have a 
decreasing linear relationship. When the coefficient is between -1 and 1, its absolute 
value represents the weight of linear dependency between the two variables. 

4.2 Analysis 

In order to observe the influence of β on the correlation between the network 
measures, we choose four kind measures to calculate the correlation coefficient 
between any pair of two. The four measures are the algebraic connectivity μN-1, the 
average clustering coefficient E[c], the average hopcount E[H] and the spectral radius 
λ1 of a network. Meanwhile we specify twelve different values of β from -16 to 8 in 
the calculation, in order to investigate the general dependency of the correlation of 
topological measures in relation to β. The correlation coefficient between any two 
measures computed based on 10000 networks are shown in Table 1. 

    To make the visualization easier, we use the following ranges to classify the 
correlation into four different levels [14]: 

    • no correlation: 0 ≤ |corr| ≤ 0.3  

    • mild correlation: 0.3 ≤ |corr| ≤ 0.6 (Marked with the underline font) 

    • significant correlation: 0.6 ≤ |corr| ≤ 0.9 (Marked with the bold font) 

    • strong correlation: 0.9 ≤ |corr| ≤ 1 (Marked with the underline and bold font) 

    From Table 1 we find that when β = 8, the correlation coefficients related to 
average hopcount are all 0. This is because the correlation coefficient is meaningful 
only if the standard deviations of both variables are finite and nonzero. And when   
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β = 8, the average hopcount has the standard deviation σ = 0 because the average 
hopcount of the graphs all equals to 2, so the correlation coefficient related to the 
average hopcount is 0. 

β -16 -8 -4 

measures 2 3 4 2 3 4 2 3 4 

1 -0.156 -0.816 0.483 -0.101 -0.823 0.429 -0.112 -0.670 0.304 

2  0.430 -0.354  0.291 -0.274  0.294 -0.171 

3   -0.598   -0.486   -0.257 

β -2 -1 0 

measures 2 3 4 2 3 4 2 3 4 

1 -0.129 -0.304 0.006 -0.098 -0.282 -0.011 -0.102 -0.247 0.006 

2  0.249 -0.094  0.151 -0.042  0.028 0.040 

3   -0.083   -0.131   -0.323 

β 0.5 1 1.5 

measures 2 3 4 2 3 4 2 3 4 

1 -0.048 -0.215 0.017 0.025 -0.155 0.043 0.328 -0.353 0.335 

2  -0.151 0.185  -0.717 0.719  -0.904 0.928 

3   -0.525   -0.854   -0.979

β 2 4 8 

measures 2 3 4 2 3 4 2 3 4 

1 0.090 -0.351 0.012 0.065 -0.100 0.451 0.012 0.000 0.647 

2  -0.437 0.457  -0.011 0.478  -0.000 0.612 

3   -0.716   -0.083   0.000 

 
Table 1. Correlation coefficient between four measures: (1) algebraic connectivity, (2) average 

clustering coefficient, (3) average hopcount and (4) spectral radius 
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    Fig.4.1 is the curve version of the simulation results. From this we can observe the 
trend more directly and clearly. 
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Figure 4.1 the relationship between correlation coefficient corr and β 

    The curves all change dramatically when β is in the range [-1, 2]. This is because 
correlation strongly relies on the network topology. In chapter 3 we have known that 
when β < -1 and β > 2, the network topologies are similar. Only when β is in the range 
[-1, 2], the network topologies change greatly. In Fig.3.21 we know that the algebraic 
connectivity is more sensitive than other three measures. In other words, the change of 
the algebraic connectivity is big when β is in the range [-8, 0], while other three 
measures change slightly in this β range. Thus in Fig.4.1 we can observe that when β 
is between -8 and 0, the changes of the correlations related to the algebraic 
connectivity are relatively big, compared with their respective trend when β in the 
range [-16, 0]. 

    As illustrated in Chapter 3, expect for the average hopcount, other three measures 
are approximately positively correlated with β. Hence the correlation coefficients 
related to the average hopcount are mainly negative. The average clustering 
coefficient decreases first then increase as β increases. Correspondingly, the 
correlation coefficient between the average clustering coefficient and the average 
hopcount first is positive then becomes negative as β increases. 

    In Fig.4.1 we observe that the correlation coefficients between these three 
measures, which are the average clustering coefficient, the average hopcount and the 
spectral radius, reach a peak when β = 1.5. The average clustering coefficient is a local 
property of the network and the average hopcount is a global property. Thus when   
β = 1.5 we observe that the local property and the global property have the strongest 
relationship. 
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4.4 Summary 

In the chapter we studied the correlation of topological measures of our model. We 
choose four measures to calculate the correlation coefficient between any pair of two. 
The four measures are: the algebraic connectivity, the spectral radius, the average 
clustering coefficient and the average hopcount. Through the correlation coefficient, 
we observe that the changes of the correlations related to the algebraic connectivity 
are relatively big when β is in the range [-8, 0] since the algebraic connectivity is more 
sensitive than others in this β range. Apart from the algebraic connectivity, the 
correlations between other three measures change dramatically when β is in the range 
[0, 4]. Especially, the absolute values of the correlation coefficients between the three 
measures are larger than 0.9 when β = 1.5. This indicates that when β = 1.5 they have 
the strongest correlation with each other. 
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5 
Attack vulnerability in relation to β     

5.1 Introduction 

The removal of nodes or links from the network may cause the segmentation of the 
network. Attack vulnerability denotes the changes of the network structure and 
property along with the removal of some nodes or links from the network. The study 
on attack vulnerability is one way to observe the robustness of the network. Based on 
these research results, we aim to gain some insights how to build a robust network 
against attack in the future.  

5.2 Related work 

Most studies have investigated the network performance of the Erdös-Rényi random 
networks, the Watts-Strogatz small-world networks, the Barabási-Albert scale-free 
networks and other developed models subject to different strategies of removing 
nodes or links [17, 18, 19, 20]. They examined the size of the giant component, the 
average hopcount and the clustering coefficient to understand the influence of a given 
attack strategy on the global and local property of a network.  

    These studies showed that when using recalculated degree-based attack strategy, 
the BA scale-free network is more vulnerable than the ER model and the WS model. 
The recalculated degree-based strategy is to choose a node with the highest degree to 
remove at each time and then recalculate all the nodes degrees after deleting every 
node. The reason why the BA model is more vulnerable is because the few nodes with 
a large number of connections in the BA model play a very important role in the 
network structure [18] and recalculated degree-based attack strategy attacks these 
nodes (hubs) at first. This makes the network easily to be cut into independent clusters. 
For the same reason, the ability of the BA model against the random failure strategy, 
which is to randomly choose a node to delete, is stronger than the degree-based attack 
strategy [18]. The network structure will not change a lot as long as the few high 
degree nodes in the BA model are not deleted. But the recalculated degree-based 
attack strategy is not so efficient to destroy the WS model compared to the BA model 
[20], and the ER model is the most robust when under the degree-based attack [18]. 
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5.3 Attack model 

Different structures of networks have different reactions to the same attack strategy. In 
this section, we study the attack vulnerability of our complex network models based 
on two kinds of attack objects: the cluster-focused attack and the global attack, and 
two kinds of node attack strategies: the random failure and the degree-based attack.  

5.3.1 Attack object 

There are two kinds of attack objects: the cluster-focused attack and the global attack. 

    • Cluster-focused attack: First we choose the largest cluster in the network as the 

attack object. Then we focus on this cluster to attack. If during the attack process, this 
cluster is split into two clusters or more, we choose the largest one to be the new attack 
object and then focus on this chosen one to attack until the cluster size is 1. Hence, any 
later attack object is always a sub-graph of an earlier object. 

    • Global attack: The attack object is the whole network. According to the attack 

strategy we choose nodes to remove from the network, no matter which cluster the 
removal nodes belong to. We repeat the removal steps until all the cluster size in the 
network are 1. 

5.3.2 Attack strategy 

We consider two kinds of attack strategies: the random failure and the degree-based 
attack. 

    • Random failure strategy: Every time, we choose a node randomly from the 

attack object to delete until the cluster size is 1. 

    • Degree-based attack strategy: Every time we choose a node with the highest 

degree from the attack object to delete. If there are several nodes with the same 
highest degree, choose one randomly among them. After deleting one node and 
clearing the connection between the deleted node and other nodes in the network, 
recalculate the degree of all the nodes in this attack object. Then repeat the steps 
mentioned above until the cluster has only 1 node. 
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5.3.3 Analysis measurement 

Deleting some nodes from the network may make the network segmented. Thus one 
connected network will be divided into several unconnected clusters. The largest 
cluster can be a measure of the network function after attacking. So we study the 
largest cluster to observe the network performance under attack through the three 
aspects: the size of the cluster, the spectral radius and the algebraic connectivity of the 
largest cluster. 

    Our network model has N = 800 nodes. For the cluster-focused attack, we set 
every 10 nodes as an interval; for the global attack, we set every 20 nodes as an 
interval. We delete the nodes from the network one by one, and after deleting every 
interval number of nodes, we observe the property of the largest cluster. 

5.4 Analysis of the largest cluster  

First we put the emphasis on the network property analysis when the network is under 
the cluster-focused attack. Then we will compare the difference of the network 
property introduced by the cluster-focused attack and the global attack. 

5.4.1 The size of the largest cluster 

According to the present studies we know that the BA model is sensitive to the 
degree-based attack strategy. The size of the largest cluster should start with a very 
low value on the Y axis when β ≥ 1, since the nodes with the highest degree have been 
deleted in the first interval, which makes the network segmented into many small 
clusters after removing the first few nodes. Thus the size of the largest cluster should 
decrease to be 1 after removing 20 or 30 nodes from the network. The larger the β is, 
the faster the stable status that all the clusters have only 1 node comes. Since β ≤ 0 
the size of the largest cluster should start with a high value on the Y axis. 

    For the random failure strategy, the behavior of our models with different β from 
-8 to 2 should not differ from each other too much because the models when β ≥ 1 are 
only sensitive to the degree degree-based attack. 

    The simulation results are shown in Fig.5.1 and Fig.5.2. They present the largest 
cluster size in relation to the number of the node removals when the networks are 
under the random failure strategy and the degree-based attack strategy, respectively. 
In the following figures, the symbol NLC represents the size of the largest cluster, 
while the symbol Nrm represents the number of nodes removed from the network. 
Thus in Fig.5.1 and Fig.5.2 the X axis Nrm/N is the ratio of the number of node 
removals to the total number of nodes N in the network; the Y axis NLC /N is the ratio 
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of the number of nodes in the largest cluster to the total number of nodes N in the 
network. 

    Under the random failure strategy, the models with the 7 cases of β almost have 
the same behavior when the deleted nodes take under 30%. When the deleted nodes 
grow from 30% to 70%, the smaller the β is, the larger the largest cluster size is, but 
the difference of these models is very small. Once the removed nodes take up more 
than 70%, the advantage of the model with β = 2 is obvious. Other 6 cases of β become 
complete disconnected when the deleted nodes take around 75%, while the model 
with β = 2 persists until 90%. 
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Figure 5.1 The size of the largest cluster in relation to the number of the cluster-focused random 

failures 
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Figure 5.2 The size of the largest cluster in relation to the number of the cluster-focused 

degree-based attack 

    For the degree-based attack strategy, as we analyzed before, when β = 2 the size of 
the largest cluster starts at a low value and turns to be stable at the second interval. But 
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when β = 1 the model is different with our analysis that it starts at the same point with 
other models when β ≤ 0. From Fig.5.2 we find that the smaller the β is, the longer 
time the largest cluster persists to break down. 

    Compared these two strategies, the degree-based attack strategy is more harmful 
to the network structures for all the 7 cases of β. Our network model under the 
degree-based attack strategy all break down earlier than the same model under the 
random select strategy.  

5.4.2 Spectral radius of the adjacency matrix 

Under the random failure strategy, the behavior of our model with a specific β can be 
observed directly in Fig.5.3: the larger the β is, the larger the spectral radius of the 
largest cluster is. A large spectral radius implies the information can propagate easily 
through the network. So does the virus. Thus if the information still can transmit along 
the network after several attacks, the network is robust. In Fig.5.3 we know that the 
spectral radius of the model with β = 2 is far larger than the models with other β, even 
the model with β = 1. So under the random failures, if we want to construct a network 
in terms of the capability of information propagation, we should let β be large. 
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Figure 5.3 The spectral radius of the largest cluster in relation to the number of the cluster-focused 
random failures 

    We have calculated the spectral radius of our model with β→+∞ in Chapter 

3.4.1.1. It is 3 8 1N − + when N > 3. In Fig.5.3 we find that the curve of the model 

with β = 2 matches our analysis. This is because the network structure when β = 2 is 
close to that when β→+∞. 

    The behavior of the largest cluster under the degree-based attack strategy is more 
complicated than that under the random failure strategy. In Fig.5.4 we find that the 
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model with β = 2 already breaks down in the first few intervals. Apart from the model 
with β = 2, combined with Fig.C.2 we observe that the decreasing speed of the 
spectral radius of the largest cluster is proportional with the mean spectral radius of 
the network. In other words, if a network has a large spectral radius, then under the 
degree-based attack strategy, the spectral radius of the largest cluster decreases rapidly. 
Since the largest cluster size decreases to hold less than 50% nodes in the network, the 
spectral radius of the 6 cases of β < 2 are very close to each other. 

6

4

2

0

λ 1

0.80.60.40.20.0
NLC/N

  β = 2
 β = 1
 β = 0
 β = −1
 β = −2
 β = −4
 β = −8

 

Figure 5.4 The spectral radius of the largest cluster in relation to the largest cluster size when the 
network is under the cluster-focused degree-based attack 

5.4.3 Algebraic connectivity of the Laplacian matrix 

The same as the spectral radius shown in Fig.5.3, under the random failure strategy 
the model with β = 2 has the best behavior in terms of the algebraic connectivity 
among all the 7 cases of β. From Fig.5.5 we know that when β = 2 the model has an 
absolutely large algebraic connectivity under the random failures. This indicates that 
when β = 2 the largest cluster of the model is hard to be cut into disconnected clusters. 
We also observe that the start point of the algebraic connectivity of the largest cluster 
on the Y axis increases as β increases. When β is in the range [-4, 0], the difference 
between these models under the random failures is small. And since the largest cluster 
holds less than 70% nodes in the network, the behavior of the models with β ≤ 0 
becomes unanimous. In Fig.5.5 we find that all the 7 cases of β have a peak at the tail 
part of the algebraic connectivity curves. This is caused by the lack of the 
normalization of algebraic connectivity. In general, we do not compare the algebraic 
connectivity of the network with different size, since only one node may lead to the 
sharp change of the algebraic connectivity. For example, the algebraic connectivity of 
a complete graph with N nodes is N-1. But once we add a new node which will be 
attached to one of the existed nodes in the network, the algebraic connectivity of this 
network will reduce dramatically. 
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Figure 5.5 The algebraic connectivity of the largest cluster in relation to the largest cluster size 
when the network is under the cluster-focused random failures 
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Figure 5.6 The algebraic connectivity of the largest cluster in relation to the largest cluster size 

when the network is under the cluster-focused degree-based attack 

   In Fig.5.6 we observe that under the degree-based attack strategy the model with    
β = 2 has the smallest algebraic connectivity at each interval. Combined with Fig.3.19, 
the larger the mean algebraic connectivity of the network is, the faster the largest 
cluster breaks down. In other words, the larger the β is, the faster the algebraic 
connectivity of the largest cluster decreases. 

    The same as the networks under the random failure strategy, except the network 
with β = 2, the networks with other 6 cases of β under the degree-based attack strategy 
also have a peak at the tail part of the algebraic connectivity curves for the absence of 
the normalization of algebraic connectivity.  
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5.4.4 Comparison between the cluster-focused attack and the 

global attack 

In this part, we compare the simulation results when the network is under the cluster- 
focused attack and under the global attack to observe whether the different attack 
objects will cause different behaviors for the same model. The simulation results of 
the network under the global attack are shown in Appendix C.2. 

    From these simulation results we know that the attack vulnerability of the network 
under the cluster-focused attack and the global attack are similar. Differences can be 
observed only in the tail part of the curves. Compared with the network under the 
cluster-focused attack, when the network is under the global attack, the size of the 
largest cluster becomes 0 at a later time; the tail part of the spectral radius starts to 
decrease also at a later time and thus decreases more dramatically, the peak of the 
algebraic connectivity reaches higher when the network is under the global 
degree-based attack. This is because when the network is split into small clusters by 
node removals, the removed nodes chosen by the global attack may be not in the 
current investigated largest cluster. The global removal strategy postpones the time 
when the largest cluster breaks down. 

    For the absence of the normalization of the algebraic connectivity, there is also a 
peak at the tail part of the algebraic connectivity of the largest cluster when the 
network is under the global attack, as shown in Fig.C.6 and Fig.C.9. Especially, in 
Fig.C.10 we observe that the algebraic connectivity at the peak is 2 and the peak lasts 
for 2 or 3 intervals when the network is under the global degree-based attack. From 
this we can deduce that in this moment the network has several full connected clusters 
with the size 3.  

5.5 Summary 

In this chapter we studied the attack vulnerability of our network model for 7 cases of 
β based on the cluster-focused attack and the global attack when the networks are 
under the random failures and under the degree-based attack strategy. We choose 
three measures to study the vulnerability through the largest cluster in the network 
after attacking. The three measures are the size of the largest cluster, the spectral 
radius and the algebraic connectivity of the largest cluster. 

In terms of the largest cluster size, we observed that when the network is under the 
random failures, the larger the β is, the later the network breaks down. In other words, 
the network is more robust. On the contrary, when the network is under the 
degree-based attack, the larger the β is, the earlier the network breaks down. And for 
all the 7 cases of our model, the degree-based attack strategy is more harmful to the 
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network than the random failures. Since the vulnerability relies on the network 
structure, so the behavior of the networks based on the global attack is similar to that 
based on the cluster-focused attack when using the same attack strategy. 

    In terms of the spectral radius and the algebraic connectivity of the largest cluster, 
when the network is under the random failures, the larger the β is, the larger the 
spectral radius and the algebraic connectivity are; on the other hand, when the 
network is under the degree-based attack, the larger the β is, the faster the spectral 
radius and the algebraic connectivity decrease. When the network is under the global 
degree-based attack, the algebraic connectivity of the largest cluster has a peak equals 
to 2 and lasts for 2 or 3 intervals at the tail part, which indicates that in this moment the 
network has several full connected clusters with the size 3. 
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6 
Conclusions and Future work                

6.1 Conclusions 

In this paper we study the networks introduced by different preferential attachment 
rules which are controlled by the parameter β. We try to gain some insights on how to 
construct a robust network through the study of the influence of β on the network 
structure and property. We investigate these networks through three directions: 
topological characteristics, correlation of topological measures and attack 
vulnerability. 

    In topological characteristics section, we analyzed that when β→+∞, the first m 
nodes in the network gathers all the links from other newly added nodes; when β→-∞, 
the network is a regular graph in which all the nodes have the degree 6, and the 
network structure changes dramatically when β in the range [-1, 2]. From the 
simulation results, we observed the spectrum tendency of the adjacency matrix and 
the Laplacian matrix along with β. Besides this, we found the spectral radius and the 
algebraic connectivity both increase as β increases. Moreover, the algebraic 
connectivity is more sensitive than other measures we used in this section when β in 
the range [-8, 0]. Thus in this sense, the algebraic connectivity is a good measure for 
the network robustness when the network is in this β range. 

    In correlation section, we found that the correlation coefficients between the 
algebraic connectivity, the average clustering coefficient, the average hopcount and 
the spectral radius all change dramatically when β is between 0 and 4. Especially 
when β = 1.5, the absolute value of the correlation coefficients between the average 
clustering coefficient, the average hopcount and the spectral radius are the biggest, 
which indicates that these three measures are strong correlated with each other. When 
β is between -8 and 0, since the algebraic connectivity is more sensitive than other 
three measures, so the changes of the correlations related to the algebraic connectivity 
are bigger than the changes of the correlations between other three measures. 

    In attack vulnerability section, we observed that under the random failures, the 
network with large β is more robust in terms of the size of the largest cluster since the 
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network can persist for a longer time before break down. Meanwhile, the larger the β 
is, the larger the spectral radius and the algebraic connectivity of the largest cluster are. 
On the contrary, when the network is under the degree-based attack, the larger the β is, 
the faster the spectral radius and the algebraic connectivity of the largest cluster 
decreases. In other words, the larger the β is, the faster the size of the largest cluster 
becomes 0. The 7 cases of β proved that the degree-based attack is more harmful to the 
network than the random failures. And the behaviors of the network under the 
cluster-focused attack and the global attack are similar. 

6.2 Future work 

For the time limit, we only studied the three directions list above. There are still some 
measures or directions to investigate our model. This can be done in the future. 

    In topological characteristics section, we observed the spectrum trend of the 
adjacency matrix and the Laplacian matrix along with β. Then we can try to make use 
of this spectrum trend or try to find why the algebraic connectivity is sensitive when β 
in the range [-8, 0]. 

    In correlation section we observed that the spectral radius, the average clustering 
coefficient and the average hopcount are strong correlated to each other when β = 1.5. 
We can try to find why they have such strong correlations. 

    In attack vulnerability section we only used the node removal strategy to 
investigate the vulnerability of our model. In the future, we can use the link removal 
strategy to study the vulnerability of our model. 
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Appendix                            

A. Graphs with given node connectivity 

    Here is the original description and proof of theorems used in this paper, which 
have been proved by Huijuan Wang, Fernando Kuipers and Piet Van Mieghem. 

Theorem 1 In a k-connected graph G with N > k nodes, there are at least k node 
disjoint paths from a node to k other nodes. 

Proof. It can be proved by contradiction. If there are only x < k nodes disjoint paths, 
the graph G can be disconnected by removing x nodes, which contradicts that G is 
k-connected. 

Theorem 2 Graph G starts from complete graph with m nodes. At each time step, we 
add a new node with m links that connect the new node to m different nodes that 
already present in G. The so constructed graph G(N,L), where N > m, 

( )
2
m

L N m m⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
, is m-connected. 

Proof. First, G initializes as G = Km. After connecting a new node to the m nodes of 
Km, G = Km+1 is m connected. 

    Second, given G(N,L) is k-connected, we are going to prove that G(N+1,L+m) 
obtained by connecting a new node to m nodes in G(N,L) is also k-connected. We 
name the new node as D and D is connected with m nodes A1, A2,…, Am in G(N,L). 

From D to any of these m nodes Aj, [1, ]j m∈ , m node disjoint paths exist: the direct 

path P(j) = DAj and ( ) ( )
i j

i
i A AP DA P= + , where 1 ≤ i ≤ m and i ≠ j, when the m-1 paths 

i jA AP  are node disjoint. Since G(N,L) is k-connected, from nodes Aj to the m-1 node Ai, 

1 ≤ i ≤ m and i ≠ j, m-1 node disjoint paths 
i jA AP  always exist according to Theorem 1. 

Furthermore, between node D and any other node B in G(N,L), we can always find m 
node disjoint paths: from D to the m nodes A1, A2,…, Am via the m links, and from A1, 
A2,…, Am to node D via the m node disjoint paths, which exist due to Theorem 1. 
Hence, between node D and any node in G(N,L), at least m node disjoint paths exist. 
Since G(N,L) is k-connected, between each node pair of G(N,L), at least m disjoint 
paths exist. Therefore, G(N+1,L+m) is k-connected. 
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B. Results from linear algebra 

1. If ( ( 1) )m m m mX J Iλ× ×= − + , the inverse matrix of X is  

    1 1 ( ( 1 ) )
( 1)( 1 ) m mX J m I

m
λ

λ λ
−

×= − + + −
+ + −

 

2. 1( ) ( 1)de ( )t n n
n nJ xI x x n−
×− = − −  

3. 1 1det det det det( ) (d )et
A B

A D CA B D A BD C
C D

− −⎡ ⎤
= − = −⎢ ⎥

⎣ ⎦
 

4. Using k n n l k lJ J nJ× × ×= , we can calculate 

    

1
( ) ( )

( ) ( )

( ) ( ) ( )

2
( ) ( ) ( ) ( )

1  ( ( 1 ) )
( 1)( 1 )

1  ( ( 1 ) )
( 1)( 1 )

1  ( ( 1 ) )
( 1)( 1 )

N m m m m m N m

N m m m m m m m N m

N m m N m m m N m

N m N m N m N m

Y J X J

J J m I J
m

mJ m J J
m

m J m m J
m

λ
λ λ

λ
λ λ

λ
λ λ

−
− × × × −

− × × × × −

− × − × × −

− × − − × −

=

= − + + −
+ + −

= − + + −
+ + −

= − + + −
+ + −
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C. Figures 

C.1 Topological measures 
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Figure C.1 The curve fitting of the degree distribution on ccdf of G*(m=3, N=800, β=1) 
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Figure C.2 The average of the spectral radius of G*(m=3, N=800) 
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Figure C.3 The average of the assortativity coefficient of G*(m=3, N=800) 
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C.2 Simulation results of the network under the global attack 
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Figure C.4 The size of the largest cluster in relation to the number of the global random failures 
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Figure C.5 The spectral radius of the largest cluster in relation to the largest cluster size when the 

network is under the global random failures 
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Figure C.6 The algebraic connectivity of the largest cluster in relation to the largest cluster size 

when the network is under the global random failures 
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Figure C.7 The size of the largest cluster in relation to the number of the global degree-based 

attack 
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Figure C.8 The spectral radius of the largest cluster in relation to the largest cluster size when the 

network is under the global degree-based attack 
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Figure C.9 The algebraic connectivity of the largest cluster in relation to the largest cluster size 

when the network is under the global degree-based attack 
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Figure C.10 The algebraic connectivity of the largest cluster in relation to the number of global 

degree-based attack 
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