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INTRODUCTION

Motives and scope of the research

A fundamental demand in the design of structures is that sufficient
safety against failure is obtained. With regard to concrete struc—
tures it can be stated that numerous experiments have been carried
out in order to enable the ultimate resistance of many types of
structural members under various loading configurations to be esti-
mated. However, while it is true that at present many equations are
available for predicting bearing capacities in adequate agreement
with available test results, it cannot be claimed that the theories
always truly explain the calculated strengths. Lack of fundamental
knowledge in several respects means that it is often impossible to
be confident in extending existing equations to structures with a
more complex behaviour.

Particularly in the last decade an increase in scale and complexity
of new structures has occurred. Problems encountered in the design
of offshore structures subject to wind, waves, drifting ice and
collisions with other floating objects go far beyond the level of
the actually available experimental knowledge. The same can be said
of the construction of reactor vessels, requiring a high degree of
safety against any possible damage caused by earthquake motions or
flying objects. Also sea resisting structures, such as the surge
tide barrier in the Eastern Scheldt (Oosterschelde) in the Nether-
lands, which has to protect thousands of people from another flood
disaster, confront the designer with problems which he cannot solve
by simply consulting the literature. Small-scale tests on such
structures could provide a better insight into these situations,
bgf_ngep the incomplete knowledge about scale laws, particularly
for concrete structures, leads to new incertainties. There is evi-

dently a need for improved methods of analysis.

Fortunately, also in the field of calculation techniques new per-—
spectives were opened by the development of the computer. The intro-—

duction of the finite element method, by means of which the behav-



iour of complicated structural systems could be analysed, although
initially only on the assumption of linear elastic material proper-
ties, was an important step forward. However, for concrete struc—
tures, which exhibit a strongly non-linear character due to the
formation of cracks and plastification of materials, more sophis-
ticated programs had to be developed, involving the possibility of
redistribution of forces. Therefore not only the numerical programs
had to be improved, but also close attention had to be paid to ac-
curate formulation of the properties of the constituent materials.
To give added impetus to further development in this direction, the
research project "Concrete Mechanics" was started. It was expected
that the best results would be obtained by a collaboration of in-
vestigators in the fields of computer analysis and material research.
Participating in the project were on the one hand the Rijkswater-—
staat, a division of the Netherlands Ministry of Transport and
Public Works, concentrating on the numerical part of the research
program, and on the other hand the Technological Universities of
Delft and Eindhoven and the Institute for Applied Scientific Re-
search on Building Materials and Building Structures (IBBC-TNO),
focusing on the material aspects. The overall project "Concrete
Mechanics" was financially supported and organized by the CUR,

the research committee in the Netherlands Concrete Association.

A survey of the structure of the project is presented in Fig. 1.1.

crack area

micro-model

experimental verification bond area

macro-model

fundamental knowledge literature

design rules

Fig. 1.1 Structure of the organization of the project "Concrete

Mechanics"



The numerical part of the project has meanwhile resulted in two
non-linear finite element programs, the micro and the macro-model.
<The micro-model is able to describe the formation of discrete cracks
in a concrete structure)Yin this way the displacements at a crack
can be determined and the effect of these displacements on the in-"

ternal stresses can be taken into account:‘Since this model can
make a dominant crack distinctly discernible, it is especially
suitable for the analysis of complex structures and reinforcing
details (Grootenboef)[:27 ]). The other model,(the macro-model, is
based on a different concepf}(To calculate the behaviour under
loading a structure is dividéa;into imaginary layers of concrete
and steel, having different propertiesx The effect of cracking is
taken into account by modifying the stiffness characteristics of

a layer. The cracks are as such "smeared outﬁ\(Blaauwendraad et al.
[ 6 :])(lﬁoth programs enable non-linear material properties to be
inserted in an appropriate way:/>

The material research was subdivided into three parts: a study of
the mechanisms directly related to the crack area, an analysis of
the bond area and a study of literature to provide rémaining char-
acteristics, such as the behaviour of concrete under biaxial load-
ing.

The part of the project reported in this document is concerned with
the study of the crack area and was carried out at the Delft Uni-
versity of Technology. An adequate understanding and formulation
of the transmission of forces across cracks in concrete is neces-—
sary to take full advantage of the possibility, included in the

numerical programs, to describe redistributions of forces.

Some aspects of the role of the roughness of the cracks in concrete

structures

Prior to discussing some examples illustrating the role of the
roughness of the cracks, it may be useful to point out two impor-
tant features inherent in the behaviour of cracks in reinforced and

prestressed concrete.

a. Although cracks are generally formed perpendicularly to the
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direction of the local principal tensile stresses in the con-
crete in the uncracked loading stage, they do not necessarily
also open perpendicularly to their direction. This is mainly
caused by the fact that the stress—strain relations of cracked
reinforced or prestressed concrete differ essentially from those
in the uncracked stage. Whereas in the uncracked stage the in-
fluence of the reinforcement on the stress—strain relations 1is
small and the behaviour is not far from being isotropic (De
Josselin de Jong [ 33 ] and Walraven [80]), in the cracked
state generally an anisotropic type of behaviour is developed,
resulting in shear stresses parallel to the cracks. In an ear-—
lier publication [ 81:] this subject was discussed. Apart from
this argument, it must also be noted that in non-prestressed
concrete shrinkage and temperature stresses as well as previous
loads may produce a crack of any direction, existing before the
ultimate load is introduced. The existence of cracks in other
directions than would directly result from the loads in the ul-
timate loading state itself, is sometimes even a necessary as—
sumption for design: an example of this is that current design
criteria in the United States for conventionally reinforced nu-
clear containment vessels [ 1 j require that the structure be
designed to withstand the simultaneous occurrence of internal
pressure and the inertia forces generated by a strong motion
earthquake. Crack planes form in the concrete wall in the hori-
zontal and vertical directions (Fig. 1.2) due to internal pres-
sure. The cyclic shearing forces due to a seismic excitation

must then be transmitted along these planes (Laible et al.[:40]1

Fig. 1.2 Cracking of a vessel under internal pressure and seismic

loading [ 40]



b. As a result of its rough structure the cracks can transmit forces
in the normal and the parallel direction if the crack faces are
shifted in opposite directions. Three mechanisms can contribute

to this transmission:

- Aggregate interlock: this mechanism is directly related to
the way in which a crack is formed in concrete. Because the
strength of the hardened cement pasté in most concretes is
lower than the strength of the aggregate particles, cracks
intersect the cement paste but run along the edges of the
aggregate particles. So the aggregate particles, extending
from one of the crack faces, "interlock'" with the opposite

face and resist shear displacements (Fig. 1.3.a).

- Dowel action: this term denotes the resistance of a reinforc-—
ing bar, crossing a crack, to shear displacement (Fig. 1.3.b).
It is generally assumed that dowel action is inferior to ag—
gregate interlock for the reinforcement ratios which are used

in practice.

- Axial forces in reinforcing bars inclined to the crack plane

(Fig. L.3.e)s

Fig. 1.3 Aggregate interlock (a), dowel action (b) and axial

steel force (c)

In the following some examples are given, illustrating the role of
the transmission of forces in cracks and emphasizing the need to

have a better understanding of this phenomenon.



Fig. 1.4 shows the cracking pattern of a beam without shear rein-
forcement, subjected to a 4-point loading test, at about 807 of the
ultimate load [ 82].
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Fig. 1.4 Measurements on cracks in a beam without shear rein-

forcement [ 82]

During this test some strain gauge rosettes were stuck on the
cracks, immediately after observation (at a crack width of
w=0.10-0.15 mm), so that the displacements could be measured.

It is seen that an increasing amount of shear displacement was
recorded, so that shear forces can be expected to be transmitted
across the cracks (see also Fig. 1.3.a). Estimates of the contri-
bution of aggregate interlock in the cracks on the basis of exper-
iments conducted on single cracks (see section 2.1), varied between
40 and 90% (Taylor [ 75 ], Fenwick [ 18 |, Swamy [ 73 ]).

The research project from which the results presented in Fig. 1.4
were borrowed, refuted a persistent misunderstanding about aggre-
gate interlock. A study of the phenomenon that the shear resistance
of such types of beam does not increase linearly with the scale of
the beam, but less, was undertaken. This was generally believed to
be due to the fact that in experiments the size of the aggregate
particles was the only variable that was not scaled properly, which
would lead to differences in aggregate interlock. In the investi-
gation a series of differently scaled beams, made of gravel con—
crete, was compared with an identical series, made of lightweight

concrete, In spite of the fact that lightweight concrete can only



supply a very reduced aggregate interlock component, as a result

of the low strength of the lightweight aggregate particles permit-
ting the crack to run both through the hardened cement paste and
the particles (Fig. 1.5), the sensitivity to the increase of the
scale did not differ from that obtained for gravel concrete. Only
the shear resistance was lower over the full range of tests. It

was demonstrated that not aggregate interlock, but the influence

of the strain gradient on the flexural tensile strength of the con-—
crete, is responsible for the scale effect. This may illustrate
that caution is necessary in testing structures on model scale if

no full understanding of aggregate interlock is available.

gravel concrete lightweight concrete

Fig. 1.5 Aggregate interlock in gravel concrete (intermediate or

low strength) and lightweight concrete

The capability of aggregate interlock to transmit shear forces

was even more clearly demonstrated in an investigation into the
influence of axial tensile forces on the shear resistance of sym—
metrically reinforced beams without shear reinforcement (Regan
[(H ]). Prior to shear loading, the beams were subjected to axial
tensile loads, producing cracks perpendicular to the beam axis.
These tensile loads were kept constant during loading, at values
between 0 and 130 kN. The loading arrangement is presented in

Fig. 1.6.

The influence of axial loading on the shear strength was found to
be very small. In all beams failure was caused by the formation of
a single well-defined crack, with an inclination notably flatter

than that of any earlier cracks.
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Fig. 1.6 Beam subjected to combined shear and axial loading [ 61]

It was apparent from the behaviour of beams containing vertical
cracks over their whole depth that shear was being transmitted by
aggregate interlock and dowel action, especially as such cracks
near points of contraflexure were never even partially closed by

the formation of compression zones due to bending. A special beam
was tested to investigate the possible significance of dowel action.
This beam had a smooth-sided crack preformed in it at the section
of contraflexure. The crack was formed by a sheet of acetate paper.
The beam failed at a very low load with the formation of dowel

cracks at the levels of the top and bottom reinforcement.

High reliability is further imposed on the capacity of cracks to
transmit shear forces in the application of theories based on the
principle of plastic behaviour. In these theories it is assumed
that shear displacements of the crack faces are completely pre-
vented by aggregate interlock, implying that the cracks can open
only in the perpendicular direction. With regard to beams with
shear reinforcement, it is assumed that there is an upper and a
lower stringer, which are both infinitely stiff in the axial di-
rection and have no flexural stiffness at all: as a result the

flexural moment is fully resisted by these stringers and the shear



force is fully carried by the web of the beam. Due to these con-
ditions shear stresses are provoked in the cracks, resulting in
compression diagonals with a flatter inclination than the cracks
themselves. The "plastic truss" leads to a more economical design
of the shear reinforcement than the original Morsch truss (Fig.
1.7), which has compression diagonals, by definition inclined at
45 degrees to the beam axis, and which is generally known to over-—

estimate the forces in the shear reinforcement considerably.

4 ,
ln////{\\\\\‘\rl - AZ]ZE Mérsch truss

i
IA L5 1NN\ ;l — /]7?'\*'plasﬁc'truss

?

Fig. 1.7 Morsch truss analogy and plastic truss analogy

However, to get good agreement between the prediction of the plas-—
tic theory and the results of experiments, mostly correction coef-
ficients are necessary, which are not the same for all cases of
loading and cannot be physically explained in a satisfactory way.
To obtain a better idea of the merits and limitations of the plas-—
tic theory and the way in which improvements could be achieved, it
is necessary to have a better understanding of the most fundamental
assumption of the theory: the full prevention of shear displace-
ments in cracks by aggregate interlock. Fig. 1.8 shows some measure-
ments of the opening direction of cracks in a partially prestressed
beam, tested in an earlier investigation (Bruggeling et al. |:8:]).
It is seen that the assumption of fully prevented shear displace-
ment does not hold true. However, it is felt that the occurrence

of shear displacements is a better argument for the presence of

shear stresses in the cracks than an observation of perpendicular
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crack opening would be (see also Fig. 1.3.a).
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Fig. 1.8 Measurements on cracks in a partially prestressed

beam without shear reinforcement [23]

The last example is concerned with the generally underestimated
role that aggregate interlock plays in the design of mesh rein-
forcing systems, which is a fundamental problem for concrete
shells, shear walls, box girders and vessels, prestressed as well
as unprestressed, and has been studied intensively ([?,7, 39,41]).
Generally, the role of aggregate interlock has been disregarded,
arguing that the friction is highly variable and, to be on the safe
side, should be neglected. Recently BaZant [Z;] pointed out, that
this argument is false. The reason is that during subsequent tan-—
gential displacement the wedging effect of surface asperities in
contact causes further relative normal displacements, which is
manifested by an overall volume increase due to shear (dilatancy)
(Fig. 1.9).

Due to this dilatancy the reinforcement crossing the crack is ten-
sioned. If this effect is not taken into account, it may happen
that tensile yielding of the reinforcement occurs before the ap-

plied load component normal to the crack alone is great enough for



achieving it. Furthermore it may occur that the crack width in the
serviceability state is greater than expected (Fig. 1.9), which
would be rather undesirable in, for instance, bridges or nuclear
structures. Consequently, taking aggregate interlock into account
generally leads to heavier rather than lighter reinforcement and
thus a neglect of this mechanism is seen to be generally on the

unsafe side.

Fig. 1.9 Shear dilatancy in cracks

The formulation of crack characteristics in existing numerical

programs

Earlier numerical programs display a great variety of properties,
attributed to the cracks.

Ngo/Scordelis [54], Nilson [:55] and Stauder E 71 :] introduced
cracks in their non-linear finite element programs by disconnecting
the nodes between the elements. In this way discrete cracks were
obtained, each side of which was considered to be an independent
external boundary, unable to transmit shear stresses (Fig. 1.10).
The disadvantage of this method is that the crack directions are
restricted to the direction of the element edges. Another, more
generally applied method, which is not subject to this restriction,
is to '"'smear out" the effect of cracking over the elements: it is
then assumed that, if the tensile strength of the concrete in an

element is reached, an infinite number of identical cracks with

the same direction is formed (Fig. 1.11).



Fig. 1.10 Crack representation Fig. 1.11 Crack representation
by means of disconnect-— by means of smeared-

ing nodes [ 54, 55, 71 ] out crack fields

The cracked elements are considered as continua with an anisotropic
behaviour. The assumption that these cracks behave as smooth sur-—
faces, unable to transmit shear stresses, was made by Cervenka

[ K}] and Loov [:46]. Inherent in this assumption is that the
principal stress directions after cracking are fixed in, and per-
pendicular to, the direction of the cracks: as a result a redistri-
bution of forces after cracking was impossible. The shear stiffness
modulus, denoted by G in the uncracked state, was reduced to zero

immediately after cracking (Fig. 1.12).

Ger /G

i 1NN
|

L] >
. Ecr €n
T

Fig. 1.12 Shear modulus of cracked concrete according to [ 13, 46 ]

Maintainance of the full shear resistance after cracking was sup-

posed in the non-linear finite element programs developed by



Franklin [ 21] , Isenberg/Adham [ 31] , Zienkiewics/Phillips/Owen
[927], swoboda [ 74 ] and Miller [ 52 ] (Fig. 1.13). As was men-
tioned already in section 1.2, this assumption was also used in
the analytical methods based on the theory of plasticity (Braestrup/
Nielsen [5 :] , Thirlimann ]:78 :[ , CEB-Model Code [ 10]).

T ;

— Gy /G
i L
'
—g Eer €n

Fig. 1.13 Shear modulus of cracked concrete according to [5, 10,

31, 52, 53, 74, 78, 92 ]

Also Ebbinghaus [ 15 ] took a fully maintained G-value after crack-
ing into account, but added the condition that this {ralue is re—
duced to zero, if the shear stress in the cracks exceeds a certain
limit. This limit was defined to decrease for increasing strain
normal to the crack direction (or, formulated differently, for

increasing crack widths) (Fig. 1.14).

]GC,JG
1

n
Fig. 1.14 Shear modulus of cracked concrete according to [15]

A formulation which is still generally used, implies that the shear

stiffness of an element after cracking is reduced to a lower value,

_13_



but remains greater than zero, according to the equation:

T = 0.G.y

in which o is a predetermined constant, with 0 < a < I (Fig. 1.15).

T
3 . J‘Y Ger /G
T 1
- 1 —
€
—p Cor :

Fig. 1.15 Shear modulus of cracked concrete according to [11, 28,

37, 43, 72, 91 |

This type of formulation was used by Hand/Pecknold/Schnobrich [ 28 ]
(a = 0.4), Yuzugullu/Schnobrich [91] (oo = 0.2), Suidan/Schnobrich
[72] (a = 0.5), Lin/Scordelis [ 43|, Cedolin/Dei Poli [ 11| and
Krisnamoorthy/Paneerselvam [37 ] . In a later publication Cedolin

and Dei Poli improved this formulation, relating o to the strain

normal to the direction of the cracks (Fig. 1.16) [12].
. .
G.. /G
cr
Fl“r !__\I’Y
Tl 1
I
LR | .
Ecr En

Fig. 1.16 Shear modulus of cracked concrete according to [12]
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The suggested expression for G was:

€
c (1 - EE) if € <eg <e¢g
p

G /G
cr

]
o
He
Hh
m
\4
™

Gcr/G n P
in which C is a numerical constant (suggested value 0.1 Ec), € is
the fictitious strain (the contribution of the concrete to the
strain was neglected) in the direction normal to the crack and €
is a limit value beyond which no shear transmission across the
cracks is supposed to be possible (0.0035 < Ep < 0.0045).
Schimmelpfennig [:67] used a reduction factor a which was defined
to decrease as a function of increasing strain normal to the crack
direction, but was also related to the level of the shear stress

in the cracks (Fig. 1.17).

Fig. 1.17 Shear modulus of cracked concrete according to [ 67]

However, although relating the value a to the development of the
strain normal to the cracks results in an improved expression for
o, this formulation, too, has to be regarded as rather provisional,
since it is obvious that other factors may influence the shear
stiffness as well, such as the distribution of crack widths and
distances, the concrete quality, the value of the shear displace-
ment and the load history. These aspects were taken into account

by Schafer [ 65'], who assumed that the initial resistance of two
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crack faces against shear displacement can by neglected over a cer-
tain distance, while after this "free sliding range" a.linear re—
lation between shear stress and shear displacement can be assumed
(Fig. 1.18). The length of the free sliding range was theoretically
derived, while the linear relation was subsequently based on test
results ([fﬂ)], see also section 2.2). In combination with formu-
las for the average crack width and distance, a relation was de-
rived which related o both to the strain normal to the crack direc-—

tion and to the shear deformation (Fig. 1.19).

£
(o)
1

//
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0.54%

R

05 1 200‘Y

Fig. 1.18 Free sliding range Fig. 1.19 Shear modulus of
according to |:65 ] cracked concrete,

according to [65 ]

Geistefeld E 24:] dealt, in his two-dimensional tension stiffening
model, with the shear stiffness in a similar way, but did not take

into account the free sliding range.

It is obvious that the formulation of characteristics representing
the transfer of stresses across cracks is generally rather provi-
sional. A great number of variables which may reasonably be ex-
pected to influence the behaviour is not taken into account. In
none of the programs was the possibility of shear dilatancy due

to wedging action of the cracks implemented. Since up to now the
numerical programs have predominantly been used to investigate rela-
tively uncomplicated structures subjected to simple loading condi-

tions in which shear generally played a subordinate role, the rele-



vance of transfer of stresses in cracks has only partially been
recognized. Only in [ ]2] , in which beams without shear reinforce-
ment subjected to shear forces were numerically investigated, it
was pointed out that there was a strict relationship between the
inserted characteristics regarding aggregate interlock and the re-—
sults of the calculations. Since calculation programs are bound to
be applied to structures and loading types of greater complexity,

a good formulation of these material properties is also becoming

more important.

Aim of the research program

The aim of the research program is to establish the relation between
stresses and displacements between crack facez))ln the first in-
stance the behaviour under monotonic increased’ loading will be
studied. In the previous part it has already been pointed out that
the relation which is generally employed up to now and which is

represented by

=C  .d s
dt e A (1.1)
is not the basic equation describing the transfer of stresses across
cracks, but that this relation has to be represented by (see also

Fig. 1.20)

do € @ dw
nn nt
= (1.2)
C €
dz tn tt da
The coefficients C _, C , C and C depend on the interaction
nn ne tn tt

between the mechanisms of aggreate interlock, dowel action and
axial restraint forces in the reinforcing steel. Firstly, it has
to be assessed how these individual components are influenced by
technological factors. Secondly, it has to be established how the

interactions between the components are achieved.
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Fig. 1.20 Stresses and displacements in a crack

It is important that not merely empirical relations for the coef-
ficients of equation (1.2) are provided, but also that an insight
into the fundamental behaviour of the mechanism is obtained. This
would not only give information over a wider range of values than
covered by the experimental results alone, but would also give
some idea of the behaviour under other types of loading (cyclic
loading or long-term constant loading). In extending the investi-
gation, at a later stage, to the effect of such types of loading
conditions, a fundamental insight could contribute considerably
to an efficient design of new test series. It will be investigated
what information is already available in the literature and where

new research is necessary.
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STATE OF THE ART

The mechanisms involved in the transmission of forces across cracks
are, as mentioned before, aggregate interlock, dowel action and
axial restraint stiffness of reinforcing bars (see also Fig. 1.3).
These components will first be dealt with separately. Then the
available information on the interaction of these components in
cracks crossed by reinforcement is reviewed. Topics are discussed
only as far as they supply information which is directly concerned
with the subject to be studied. An extended review of the whole
field of available information, focusing also on cyclic and impact

loading, was published earlier (Walraven [ 83]).

Aggregate interlock

In order to avoid confusion when talking about crack width, it is

emphasized, before dealing with the phenomenon of aggregate inter-
lock, that the crack width is defined as the displacement that the
crack faces have undergone in the normal direction in relation to

each other. This definition is necessary because on the micro scale
the local crack widths vary considerably when a shear displacement
has occurred (Fig. 2.1). As defined here, the crack width is inde-

pendent of the shear displacement.

Fig. 2.1 Local variation of "crack width" on the micro scale

Fenwick [ 18:] conducted tests on specimens as represented in
Fig. 2.2. The specimens were cracked prior to testing by an exter-—
nal tensile force. The crack plane was predetermined by a groove

along the outline of the specimen. After cracking, the crack width

_]9-
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b.

was kept constant at values ranging from 0.06 to 0. 38 mm. To ob-
tain a constant crack width during a test, after every load incre-—
ment the crack width was adjusted by means of an external force,
normal to the crack plane. Values for this force were not given.
All the specimens failed as a result of flexural tensile cracking

at an early stage of loading (Fig. 2.2.a).
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Fig. 2.2 Test equipment and results of Fenwick/Paulay [ 18:

Fig. 2.2.b shows the development of the shear stress acting on the
crack plane as a function of the shear displacement for various
constant crack widths, the concrete strength being constant.

Fig, 2.2.c shows the influence of the concrete strength on this
relation for a constant crack width: before tensile cracking the
crack stiffness with regard to shear loading appeared to be an in-

creasing function of the concrete strength.

Figures like 2.2.b and 2.2.c represent average shear stresses. It
must be realized that the shear stresses are generally not uniform—
ly distributed, but vary along the length of the crack plane. This

variation is a function of the geometry of the specimens (as demon-—



strated by Schwing [ 69:]) and of the method of introducing the
loads. This effect has always to be taken into account when inter-—
preting test results.

An investigation, based on the same testing concept as used in
[18:], was carried out by Houde and Mirza [:30:]. The results of ‘
this investigation did not differ very much from those obtained in

LCi1s]. w
Paulay and Loeber [ 60:] conducted other constant crack width tests, ‘
using a different test set—up and larger specimens, in order to

avoid early flexural tensile cracking. The type of specimen used

in their tests is represented in Fig. 2.3.
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Fig. 2.3 Test arrangement according to [ 60]

The lower part of the specimen was completely fixed, while the
upper part could move freely. The crack width could be adjusted
with an accuracy of 2%. Crack width and shear displacement were
measured on both sides of the specimen. The test results were not
influenced by the development of secondary cracks in the specimens.
The tests were carried out with a constant concrete strength equal
to fécyl = 37 N/mm?. Objects of investigation were the influence
of the crack width, the effect of aggregate size and shape, and

the effect of load history. The maximum values of the shear stresses
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were much higher than obtained in the tests of [18, 3Q]. The
upper limit of shear transfer at T = 7 N/mm? was not reached as

a result of aggregate interlock in the crack. Either failure
occurred as a result of local crushing of the concrete in the top
or bottom section of the specimens, or further increase of load was
not possible with the loading arrangement used. It was observed al-
so by Paulay and Loeber [:60 ] that the shear stress-displacement
relation is essentially dependent on the crack width. Shape and
size of the aggregate particles had no noticeable influence in the
range tested (Dmax = 9.5-19 mm, round and crushed). The relation
between shear stresses and displacements is represented in Fig. 2.4,
and the stresses normal to the crack plane, necessary to keep the
crack width constant, are represented as a function of the shear

stress in Fig. 2.5.
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Fig. 2.4 Shear stress—shear dis- Fig. 2.5 Average shear stress-—
placement relation for restraining normal

constant crack widths, stress relations for
according to [60] crack widths

0.25-0.51 mm

For these last-mentioned curves no significant influence of aggre-—




gate type or crack width was observed. It is seen in Fig. 2.4 that
the shear stress—shear displacement relations have a "hardening"
character. This can be explained by the physical nature of the
mechanism, since an increase of shear displacement must result in
an increase of the total contact area between the crack faces (due
to crushing of hardened cement paste), which results in increasing
resistance to shear displacement. The influence of load history is
shown in Fig. 2.6. In this diagram the mean experimental curve ob-
tained in separate tests, carried out with a constant ratio between
shear stress and crack width, is given, with on both sides the
interval of scatter of 13% (shaded area). Upon this curve the re-
sults from the previous "constant crack width tests" (Fig. 2.4)
have been superimposed to enable a comparison to be made. The dot-
ted line connects the appropriate stress values for the three dis—
tinct crack widths used in the tests. It reveals the same form as

the relationship obtained from the "variable crack width tests'.
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Fig. 2.6 Mean experimental curve for shear stress—displacement

relationship with constant shear stress to crack width

ratio, according to [ &)]

Taylor [ 75] carried out an investigation into the fundamental
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behaviour of beams without shear reinforcement, in which it was
demonstrated how the behaviour of the structure as a whole can be
explained as an interaction of a number of basic mechanisms. One

of these mechanisms was aggregate interlock. Measurements on beams
showed that cracks do not open to their final width and shear then,
but open and shear simultaneously. Therefore it was doubted whether
the results obtained in E 18, 30, 60 ] are immediately applicable
to the analysis of actual-beam behaviour. Observations on the beams
without shear reinforcement appeared to show a constant ratio of
crack width to shear displacement during crack opening. Therefore
aggregate interlock tests were carried out, not with constant crack
widths as in [ 18, 30, 60 ], but with constant crack width to shear

displacement ratios (Fig. 2.7).
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Fig. 2.7 Schematic illustration of test equipment, used in [75 ]

The ratio of normal to shear displacement could be changed between
tests but was constant during a test. This ratio was introduced by
means of a parallel ruler system. However, although a good approxi-
mation of real crack behaviour in constructional situations seemed
to be obtained, it is felt that also objections could be raised,
due to which no general validity can be attributed to the results.

At first only the normal displacements at the crack were measured:



hence it is not certain that the ratio of normal to shear displace-
ment, which was supposed to be introduced by the test arrangement,
was also obtained at the level of the crack. This may only be con-
sidered to be true if it were certain that the crack faces have no
resistance against the imposed displacements, so that no preference
for any direction of crack opening would exist. Further, the obser-—
vations that there is a linear proportionality between normal and
shear displacements in beams without shear reinforcement were based
on measurements by means of strain gauges which were stuck on the
beam after the cracks had formed, so that a certain interval of
displacement was not measured. Experiments in which the measure-
ments on similar type of beams were carried out from the beginning
of loading, thus providing a complete picture of the behaviour
after cracking, revealed an increasing ratio between shear and nor-
mal displacements of the crack faces [:82 ].

Important information about the way in which the stresses are actu-
ally transferred from one crack face to the other can be derived
from cyclic loading tests. Tests by Laible et al. [ 40 ] , which
were aimed at studying the effect of seismic loading.on the behav-—
iour of cracks in reinforced concrete, therefore claimed attention.
These tests were carried out on specimens as represented in Fig.

2.8
660 mm »

|

restraint rods

10| I 1] 1]
specimen )
o O restraint
== rods
crack
Hlane
i) 1

L b iy

Fig. 2.8 Test specimen used in [Zd)]

Dowel action was excluded by using external restraint bars. These
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bars had a negligible shear stiffness but acted to hold the speci-
men halves together when shearing and overriding occurfed. The spec—
imens were cracked at mid-depth, prior to testing, by forcing crack-
ing wedges into the sides of the specimen. The desired initial crack
width was then set by positioning the upper half of the specimen
with respect to the lower half by adjustment of the nuts on the
restraint rods that passed through the upper restraint beams. The
horizontal shearing surface had a net cross—sectional area of

194000 mm?. Fully reversing cyclic shear stresses of about 1.24
N/mm? were applied across initial crack widths of 0.25, 0.51 and
0.76 mm by hydraulic rams. A result obtained on a specimen with

an initial crack width of 0.76 mm and a restraint stiffness of

600 kN/mm is represented in Fig. 2.9.
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Fig. 2.9 Shear stress-shear displacement curve for cyclic loading,
according to [40]
C(£? = 21 N/mm?, D =38 mm, w_= 0.75 mm, restraint
ccyl max o
stiffness Ac = 0.3 N/mm? for Aw = 0.1 mm)

The result may be considered to be representative of the generally
observed behaviour. Although the loading portion of the load-shear
displacement curve during the first cycle is nearly linear, the
very next cycle of all specimens demonstrated a marked degree of
non-linearity similar to the results for cycle 15 in Fig. 2.9.

In only a few cases did the shear displacement freely return to



as little as 507 of the maximum value. Usually the return shear
displacement was in the range of 0- 207 of this value. This is be-
lieved not to be caused by a type of "locking effect" between par-
ticles, since hardly any shear stress was necessary to return the
specimen to its neutral position. It therefore appears obvious that
this irreversibility is due to local deformation of the

matrix (hardened cement paste). This feature is important as a basic

property in further analysis of the mechanism.

Summarizing the available information on aggregate interlock, it

is obvious that there is a serious lack of information. Experiments
have generally been carried out disregarding the effect of shear
dilatancy. Only in [60 ] a rather wide range of values has been
indicated for the stress normal to the crack plane, necessary to
adjust the crack width to its original value after every load in—
crement. However, it is not only uncertain whether a constant crack
width test is representative of the behaviour of a crack in a
structure, but also it is questionable whether this normal stress
itself is a realistic value, since it has to exceed the internal
friction between the crack faces before being able to adjust the
crack width: hence it may overestimate the stress that really
occurs due to the shear dilatancy in a crack (compare also active
and passive soil pressure). Tendencies revealed by the available
test data are that the shear resistance increases with increasing
concrete strength and increasing shear displacement, and decreases
with increasing crack width. Furthermore it is apparent that irre-—
versible deformation of matrix material is directly related to the
overall observed behaviour. No reliable information was found about
the role of the scale of the aggregate (Dmax)’ the particle size
distribution (grading curve) and the influence of the crack opening
path. It is obvious that in order to define appropriate material
properties concerning aggregate interlock it will be necessary to

obtain more information.

Dowel action

Dowel action is defined as the capacity of reinforcing bars to
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transfer forces perpendicular to their axis (Fig. 1.3.b). The effect
of dowel action depends essentially on the constructional circum-—
stances. This can be explained by considering the stresses around

a bar, loaded by a dowel force, and the consequences of a tensile
crack.

For a thin slice of an elastic material, loaded as indicated in

Fig. 2.10, the stresses in the material can be determined by using

plane stress elasticity methods [ 70, 90 .

Fig. 2.10 Thin slice of an elastic material, loaded by a dowel

force

In this way it was found that the radial stresses are equal to:

F

- _d
g = = cos U 2.1

Values of the circumferential tensile stresses in the concrete are:

2F

°w=°'3""‘m—d T (2.2)
2% .
Gw =0.637w llJ =E (2.3)

Thus the tensile stress in the direction of the dowel action force
is highest and the tensile stress normal to the dowel force, which
tends to produce a wedging splitting action is only 547 of the
maximum. This trend was experimentally confirmed by Weaver and

Clark [:86]. When the tensile strength of the concrete is reached



and a crack is formed, an adjustment in the load carrying system
may be expected.

In an in-plane loaded planar element a redistribution of stresses
occurs, resulting in higher stresses under the bar (Fig. 2.11.a).
When the dowel load is increased, a progressive deterioration of
the concrete under the bar occurs, resulting in a gradual decrease
in stiffness till the ultimate load is reached (curve a in Fig. -

2.11.¢c).
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Fig. 2.11 a,b: Dowel cracking in a planar structure and in a beam
¢ : Load-deflection curves for both cases

In a beam, however, after the formation of a crack generally no re-—
distribution of stresses is possible, and a rigorous extension of
the crack along the bar axis, resulting in failure must be expected;
only if the beam is reinforced with stirrups, the dowel crack may
be stopped and a completely different mechanism is activated to
transfer dowel forces.

This study focuses on dowel action in cracks in planar elements, in
which particularly the relation between forces and displacements
between the crack faces is considered. An extended review of avail-
able knowledge about dowel action in beams, before and after dowel
cracking, the determination of ultimate bearing capacities at large
deformations and the behaviour under cyclic loading has been re-

presented in |:83 ] .

The deflection of the dowel will be defined as the total distance
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between the axes of the undeformed parts of the bars on both sides

of the crack (Fig. 2.12).

Fig. 2.12 Deflection of a bar subjected to a dowel force

As has been indicated, the total deflection is both a result of the
deformation of the part of the bar embedded in the concrete and the
part which is free over a certain length.

For the deformation over the free length, Paulay |:59:] distin—

guished three mechanisms (Fig. 2.13):

bending shear Fy kinking
- 2My Acf Y,
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Fig. 2.13 Mechanisms of shear transfer over the free length accord-

ing to [59]

- Load transfer by bending: the capacity of this mechanism is lim—

ited by the formation of plastic hinges in the bar.

— Load transfer by pure shear.

- Load transfer by kinking: if there is a considerable shift be-

tween the two main bar axes, for instance as a result of plastic



deformations, the axial force in the local deviation results in
a component perpendicular to the main axis. There has been much
discussion on this subject. It was often stated that this contri-
bution could not be great, since the bar diameter is normally

very large in relation to the crack width (Fig. 2.14).

TI.vv=(lArnrn

Fig. 2.14 Representation of a ratio bar diameter - crack width

However, it has to be realized that, because of crushing of the
concrete, large deformations can occur, resulting in a considerable
kinking effect. Especially for thin bars an importanf increase in-
load can be achieved after the formation of plastic hinges. The
deformations necessary to develop this force are relatively large,
so that kinking may play a role in parts of structures in which
the bearing capacity is directly related to dowel action, such as
some types of joints.

Later on it will further be shown that the free length can be
greater than the crack width as a result of several effects, so
that it is worthwile to take this length into account in a basic

derivation of the dowel force - displacement relation.

The description of the dowel load-displacement relation can be
based on the theory of beams on an elastic foundation, as published
by Timoshenko and Lessels [ 79:} (Fig. 2.15).

The first known application of this principle to the mechanism of
dowel action is a publication of Friberg [:22 ], who tried to cal-
culate the loadbearing capacity of steel dowels in joints in con-

crete pavements.
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Fig. 2.15 Dowel considered as a beam on an elastic foundation

The derivation of the load-displacement relation, taking into ac—
count the deformations both in the concrete and in the steel, is
given, based on the publications mentioned before. The model and

the different partial displacements associated with it are repre—

sented in Fig. 2.16.
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Fig. 2.16 Calculation model and partial displacements

The total deflection at the centre is the sum of three components:

= (e
Yo Ve T Ve L+ g (2.4)

According to Finney [ 19], y, can be expressed as:

1
Yo = Fd TRIET (1 + Bf) (2.5)

in which



n
EI = ES %%r (flexural stiffness of the bar)

Gf = foundation modulus of concrete
1 .
£ = 2 )
y! = = By ggrr B+ 289) (2.6)

Vg is the deflection of a bar which is fixed (restrained) at x = 0

and subjected to a load Fd at x = —£3
F. .f3
v = fat (2.7)
F 3 EI
The relation between the dowel force Fd and the total deflection
v, is:
Fd
- 2 3¢3
Vo = GBI {3 + 6Bf + 6B%f% + 2B°f3} (2.8)

The shear deformation of the steel over the free length is neglected
in this formulation. Stanton [:70:] demonstrated that this contri-
bution to the total displacement is always < 47, independent of the
bar diameter. The relation between the dowel force and the total
dowel deflection, which is equal to the total shift between the

two parallel bar axes (A = 2 yo), is then:

_ 383EL A
d 3+ 6Bf + 6(BF)Z + 2(BE)3

F (249)
The validity of this model is restricted to the elastic range. A
prediction of the ultimate bearing capacity on the basis of con-
stant elastic material properties is doomed to fail. Marcus [:48:
demonstrated with the results of his experiments that, if the elas-
tic model were valid, the concrete stress under the bars in the
ultimate loading stage would reach values up to 2.6 times the con-—
crete compression strength. Between the initial (elastic) loading
range and the ultimate (plastic) loading range a transition range

with changing material properties exists. Attention must be paid
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to two important variables used in formulation (2.9): the value Gf,
involved in the foundation modulus of the concrete, and the value
of the free length f.

For the foundation modulus of the concrete G_ many different values

f
are encountered in literature. A survey of values given by Finney

[ H)] is represented in Table 2.I.

Table 2.I Values for Gf according to a survey by Finney [ 19:

Gf Average Source Remarks Literature

Range, N/mm N/mm

834 - 417 - Grinter Estimation [ 26]

max. 695 19.7 fé Friberg Tests on embedded [ 22, 23:
dowels — 1938

198 - 325 256 MSHD * Load-deflection [ 20]
test 1947

217 = 1637 639 MSHD ™ Tests on embedded Not published
dowels

247 - 2307 712 Marcus Dowels with uniform E 48:

bearing pressure

Not known 681 Loe Load-deflection [ 45:
tests 1952

250 - 2391 695 MSHD Tests on embedded Not published
dowels

* Michigan State Highway Department

There are several reasons which can be advanced in order to explain

the scatter in the values.

At first the value Gf is strongly related to the quality of the

concrete immediately under the bar. So, even when the same concrete



composition is used, a scatter is obtained, depending on the posi-
tion of the bar during casting. When the direction of the bar is
parallel to the direction of casting (Fig. 2.17.a) a higher value
of Gf can be expected than in the case of a bar perpendicular to
this direction (Fig. 2.17.b), since during the vibration a local
segregation of water under the bar can be expected, resulting in
lower concrete quality. Also for bars situated nearer to the bottom

of the structure (Fig. 2.17.c) a higher value for G_. may be ex—

pected, since the density of the concrete increasesffrom top to
bottom.
lllll'llll%—gfirce:sti?:g——%lllllllll L
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Fig. 2.17 Various positions of bars, influencing the value of Gf

Next, it is obvious that the value of Gf must decrease with in-
creasing dowel force. As was stated earlier, at first small cracks
will occur, parallel to the bar axis (Fig. 2.11.a). As a result,
the concrete compressive stresses under the bars increase. For a
higher degree of loading crushing of the concrete under the bars

also occurs. A gradually decreasing value of G_ for increasing

f
dowel action may be expected as a result of this. This is confirmed

by a comparison between the theoretical values obtained from eq.
(2.9) and the experimental values obtained in the tests of Paulay,
Park and Phillips [ 59 ] (Fig. 2.18).

These tests were carried out by applying a transverse load to a
corbel which was connected to the rest of the specimen by rein-—
forcing bars, crossing a smooth contact area, excluding all possible

loadbearing components, except dowel action.
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Fig. 2.18 Dowel tests carried out by Paulay, Park, Phillips [:59:

To get agreement between (2.9) and these experiments, Gf must de-
crease as a function of the increasing dowel displacement: the
result of this calculation is represented in Fig. 2.19. Apparently
the bar diameter is not a significant parameter in this respect.

This agrees with observations by Marcus [ 48 | and Eleiott [ 17 J.
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Fig. 2.19 G_. as a function of the dowel displacement, deduced

£
from the experiments described in [fﬁ)]



The value of Gf obtained in this way is in fact a function both of

changes in material properties and of redistribution of stresses.
Gf may be considered only as the value which has to be inserted
in (2.9) to get the same load-deflection curve as is experimentally

obtained due to a complex physical mechanism (Fig. 2.20).

L ST N
——— e — . S p—" .
\
\
actual !
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Fig. 2.20 Stress distribution, actual and modelled

Summarizing, it is obvious that Gf must not be considered as a
uniform value, only depending on the concrete quality, but that
further considerations have to be taken into account. Therefore,

it is not surprising that the values for G_. represented in Table 2.1

f
scatter over a wide range.

The second variable in the formulation (2.9) which has to be treated
with caution is the free length f. At first sight it appears logical
to insert for this variable the crack or joint width. However, there
are circumstances that may lead to free lengths which are consider-
ably greater.
- When bars cross a crack not perpendicularly, the concrete adjacent
to the bars may locally crack off (Fig. 2.21).
The free length which is caused in this way must depend on the

angle 6 and the bar diameter 4. Schafer [:65:] suggested the

relation:

f = Cr.é.tan 0 (2.10)
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in which Cr is a constant. This relation gives f = 0 for 6 = 0°

and f = » for 6 = 90°.

Fig. 2.21 1Increase in free length for bars inclined to a crack

- An important other cause for an increased free length is the
presence of an axial tensile force in the bar. As a result of
this force large bond stresses occur, causing microcracks to

form (Fig. 2.22).

/AN
\\/

Fig. 2.22 Microcracks according to [:25 ]

The existence of these cracks was first experimentally proved by
Goto [ 25:]. Due to this crack development, cone-shaped concrete
elements are extracted, resulting in an increase of the free
length. This increase (=2f-w) depends on the value Acs, which

is the difference between the steel stress in the crack and in
the undisturbed area, the bond properties and the diameter of

the bar. Leonhardt [AQZJ gave as an approximation for deformed

bars (estimation on basis of centric tensile tests):



Ao

= 45—8 (N/mm? and mm) (2.11)

£

See also Fig. 2.23.
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Fig. 2.23 Distribution of steel stresses and bond stresses over

and beside the free lengths

It must furthermore be pointed out that an axial tensile force not
only increases the free length, but also, because of microcracking,
reduces the value of the foundation modulus Gf in thé area where
contact is still maintained. However, both developments lead to

a decrease in dowel stiffness. The influence of the axial tensile
force was experimentally confirmed by Eleiott [ 17]. His tests on
pure dowel action were carried out with embedded bars of different
sizes, stressed to different levels of axial stress. The tests were
principally intended for studying the behaviour under cyclic load-
ing. However, already during the first cycles a pronounced influ-
ence of the axial stress level was observed. Fig. 2.24 shows the
load-deflection curves for the first load cycle for two tests

on bars with a diameter of 12.8 mm: one test was carried out with-
out an axial tensile stress, the other with an axial stress of

175 N/mm?. The great loss of stiffness due to an increased axial

stress is manifest.

In the same investigation a comparison was made between the effect
of dowel action alone and the effect of aggregate interlock and

dowel action together. The reinforcement in both cases was the same
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(1 bar ¢ 12.8 mm), just as the axial tensile stress (cs =175 N/mm?) .

The concrete area was 9525 mm?. The results are given in Fig. 2.25.
z
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Fig. 2.24 Test results of [ 17] for a stressed and an unstressed
dowel
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Fig. 2.25 Comparison between a test on combined aggregate inter-
lock and dowel action (left) and a test on dowel action
alone [ 17, 32, 89 |

A comparison of the stiffnesses for this case showed that about
127 of the shear stiffness was provided by dowel action and about

88% by aggregate interlock.

Recapitulating, it may be stated that the deflection of a bar, sub-

jected to a dowel force, is partially a result of the deformation



of the concrete around the bar and partially of the deformation of
the steel over a free length. When the theory of a beam on an elas-—
tic foundation is used to calculate the load-deflection relation,
some parameters have to be handled with caution. The value Gf,
necessary to calculate the deformations in the concrete is not a
constant, but decreases with increasing deflection. The position

of the bar in the structure and the bond stresses, if any, may

have an influence on G_; the bar diameter has apparently no sig-

£
nificant influence on this value. The free length of the steel,

and therefore the contribution of this part to the total dowel
deflection, increases if the axial tensile stress increases; also
for bars inclined to the crack (joint) plane an increase in the
free length is possible, this being due to the local spalling of

the concrete. For relatively small deflections the deformation

of the steel over the free length is mainly attributable to bending
action: shear deformations may be neglected. Kinking of the bars
can only occur for relatively large deflections. A prediction of

the load-deflection relation only as a function of the deformations
in the steel is an unrealistic approach, despite arguments, some-—
times encountered in literature, which seem to confirm the opposite.
This will be demonstrated, investigating a statement found in
|:59:], in which it was concluded that dowel action is approximate-
ly proportional to the reinforcement ratio, irrespective .of the bar
diameters. This conclusion was based on a diagram in which dowel
force-displacement relations were constructed for equal reinforce-
ment ratios on the basis of tests on single bars with different
diameters (Fig. 2.26). Comparing this result with the three mechan-
isms for the shear transfer, being possible for the steel over the
free length (Fig. 2.13), it was concluded that shear and kinking
would predominantly be responsible for the behaviour. This would

be contrary to the tendendies emerging from other tests and theories
treated in this chapter. However, it can be demonstrated that these
results do not violate the assumption of behaviour according to

the model of a beam on an elastic foundation. According to formula
(2.9) for a free length £ = 0 the dowel action of one bar can be

written as:
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é Ge
= g3 = g3 i = —
Fd B%.EL.2 yo B°.EI.A with B 7 FT
N
Substitution of %%r for I results in the relation
o= 3.56 477, 60070 L (2.13)

so that a proportionallity with ¢1'75 is obtained.

If a number of n; bars with a diameter ¢; in a joint results in a

reinforcement ratio p, this can be written as:

ny.iné 2= obd (2.14)

If a number of n, (< n;) bars with a larger diameter ¢, = ad;
(o > 1) results in the same reinforcement ratio, this can be

written as:

n,.im(ad;)?2 = pbd (2.15)

From (2.14) and (2.15) it is seen that

n)

Ny =52- (2.16)

According to (2.13) the total dowel force for the bars with the

smaller diameter is

LF =n; . 3.56

and for the bars with the larger diameter, with equal reinforcement

ratio:

1.75  0.75
ZFdz = D2 . 3.56 ((1¢1) . Gf . A=
=a® (my . 3.56 . 40 L2 L m (2.18)

f

Comparing (2.17) with (2.18) it is found that

(2.12)

. Gf o A (2.17)



=0..25
ZFd2 = a g ZFdl

(2.19)

This implies that, if the reinforcement ratio is the same, for

equal values of A (and as a result of Gf), larger

bars ought to

give a slightly lower total dowel force than smaller bars (since

a > 1). This is indeed confirmed by Fig. 2.26.

1=YFy/bd (N/mm?)

25 |

20 22 & 64mm -

15 @9.4mm ]

Ve;zhzymm

10 /] |

05 /// P, = -

1

A (mm)

05 10 15 20 25

Fig. 2.26 Total dowel force for a joint with bars of several dia-

meters, but the same reinforcement ratio, according to

tests of [59 ]

T=Y Fy/bd (N/mm?)
25

6012.7m
20 5094 $ -

15

\

1.0

05

A (mm)

05 1.0 15 20 25

Fig. 2.27 The same curves after a correction on the basis of the

model of a beam on an elastic foundation. (According

to this theory the curves must coincide)
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If these curves (from [:59 ]) are "corrected" by means of a reduc-—

. 0..25 2,0.25
tion factor a = (
rl

, related to the line for 6 ¢ 12.7 mm,
it appears that a comparison on the basis of the model of a beam
on an elastic foundation gives a surprisingly good result

(Fig. 2.27).

Regarding dowel action in general it is apparent, that the influ-
ence of most parameters can adequately be described by the model
of a beam on an elastic foundation. Since furthermore the contri—
bution of dowel action in practical circumstances is greatly in-
ferior to that of aggregate interlock, and a very accurate esti-

mation is not possible due to the scatter in G_, further experi-

f!
mental work on this subject would appear hardly to deserve high

priority.

Axial restraint stiffness of reinforcing steel

In reinforced concrete the axial force in the reinforcing bars,
whether inclined or not, is also a component which has to be con-
sidered when equilibrium of forces in a crack is analysed. The
relation between the axial force in the bars and the slip at the
crack is mainly a function of the bond between steel and concrete.
Bond between steel bars and surrounding concrete depends predomi-
nantly on the profiling of the reinforcing bar, characterized by
the ratio between the area of the ribs FR and the shear area FS:
the related rib area fR (Rehm [62, 63], Martin [49:], Noakowski
[56 ], Fig. 2.28).

[ 1R Fk [ 1 1

Fig. 2.28 Definition of related rib area fR



How these f  values are determined has been described in [ 9 7.

Average values for conventional steel bars are (Koch [:35]):

fR x 0.045 - 0.060 for ¢ = 4 > 11 mm

o % 0.065 for ¢ > 12 mm

Tests on reinforcing bars, embedded over a short length, demon-
strated that for a wide range of slip values a proportionality
between the bond stress and the concrete strength féc exists.

In order to find functions describing the relation between the
pull-out force and the slip of a bar, it therefore appeared appro-
priate to base oneself on the value ?ZZ
the basic relation between ¥%z-and the slip As can be represented

. Experiments showed that

by
1
= a_ + b afcem) (2.20)

e€c

(ao, bO and B are constants).

However, this equation results in a complicated differential equa-
tion. Martin [:49 ] showed that an approximate solution can be ob-
tained by a difference calculation. The reinforcing bar is accord-
ingly divided into elements with a length Ax. Besides equation

(2.20), for all the elements two other conditions have to be ful-

filled:
-EX
—4 dOsx
// =— Osx* g %
/ —

Ax

SX

1]

Fig. 2.29 Equilibrium of forces on a bar element
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Equilibrium of forces (Fig. 2.29)

S
oy Ty (2.21)

In this equation is U = the circumference of the reinforcing bar

and AS is the cross—-sectional area.

Compatibility of deformations

dax _ “sx (1—03.53) (2.22)

dx Es Osx EC
In words: the difference in strain between steel and concrete over
the length of the element has to result in a slip d(Ax). Schiessl
[ 66 ] demonstrated that the concrete strain is of minor influence
and can be neglected without committing a significant error.
If the constants in equation (2.20) are known, a difference cal-
culation on the basis of the equation (2.20-2.23) can provide a
sufficiently accurate estimation of the steel stress, bond stress
and the steel strain over the length of the bars, starting from
initial values for %0’ Tso and Aso’ on condition that the length
of the elements is small enough. Calculations with a variable
value of Ax demonstrated that a length equal to the distance be-
tween the ribs offers a fair degree of accuracy.
Martin [ 49 ] carried out tests in which the bar was embedded in
the concrete over a length of 7-10 ¢; on the basis of measurements
of the bar slip in these tests and the equatiomns (2.20, 2.21, 2.22)
he determined by an iterative procedure the basic constants of
equation (2.20). The values resulting from this calculation are
represented in Table 2.II.
A result of a difference calculation for a bar with ¢ 8 mm and
fR = 0.050 is presented in Fig. 2.30. Detailed information on this
type of calculations is given in.|:85, pp. 81 ].
It must be realized that the constants ao, bO and R are unreserved-—
ly valid only for the loading conditions as used in Martin's tests,
in which no stresses transverse to the bér axis were acting

(Fig. 2.31.a).



Table 2.IT Constants in basic bond stress - slip relation (2.20),

according to [49:]

fR a, bO B
0.005 | 0.0320 |.0.129 | 2.34
0.010 | 0.0317 | 0.300 | 2.00
0.025 | 0.0317 | 0.680 1..85
0.050 | 0.0314 | 0.872 | 2.10
0.100 | 0.0315 15135 2.31
0.200 | 0.0322 1,353 | 2.53
0.400 | 0.0316 1.308 | 2.85

40

! I
bar @8 mm, fr=0.050

pull-out force (kN)

i

0.3

0.4

0.5

: A (mm)

Fig. 2.30 Pull-out characteristic, calculated with the difference

method

Fig. 2.31 Various stress conditions for reinforcing bars
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It may for instance be asked how concentrated transverse stresses,
due to dowel action, affect the basic bond slip relation (Fig.

2.31.b). This was investigated by Klein et. al. [ 34:], who carried
out tests on specimens as represented in Fig. 2.32. The specimens
were reinforced with bars ¢ 10 and ¢ 16 mm, inclined at angles of

6 = 45°, 60° and 90°.

4 500 mm o

300

300

e .

Fig. 2.32 Test specimen as used in [ 34:

All the tests were repeated several times in order to obtain rep—
resentative results. Since the results of the investigation were
principally intended to be applied to reinforced slabs in which
the cracked parts are connected over the uncracked compression
area, only displacements normal to the crack plane were imposed.
Strain gauges were stuck to the bars over a length of 360 mm. For
the ¢ 16 mm bars this length appeared to be insufficient, so that
some extrapolation of the measurements was necessary. The results
of the measurements were used to reconstruct the bond stress dis-—
tribution over the length of the bars. It was also possible to
deduce the basic bond-slip relation for each reinforcement geome-—
try. These relations are represented in Fig. 2.33 for all angles
and for both diameters. It is seen that in the case of ¢ 10 mm
bars no systematic variation with the angle of inclination could
be observed. An upper limit to the validity of the measurements

was obtained because of yielding at one end of the bar. In the



2.4

case of ¢ 16 mm bars a deterioration of bond quality with decreas-
ing angle of inclination (greater stress concentrations) was ob-—
served, which probably has to be attributed to the formation of
longitudinal and transverse cracks, which were not observed in

the specimens with the ¢ 10 mm bars.

~ 6 —~ 6
T E

5 o 5
— /8:60 o
E /;-—“ 0= 900 E 9 _900
P e | p b ~ ]
0 3 gl 3 / ™. 6 =602
& é /' \\\\\ o
v 2 . 2 6 =45
he)
& 1 1
o

002 004 006 008 010
A (mm)

002 004 006 008 010

@ A(mm)

®

Fig. 2.33 Basic bond-slip curves for several angles.of inclination
for bars ¢ 10 mm (a) and ¢ 16 mm (b), deduced from tests
conducted by Klein et al. [ 34:

Another possible loading condition, which frequently occurs in
biaxially loaded structures, is that compressive stresses are ap-—
plied in a direction transverse to the bar axis over its full
length (Fig. 2.31.c). There are at present no known test results
for this case. This phenomenon is studied in another part of the

project "Concrete Mechanics" (Fig. 1.1).

Interaction of components in cracks crossed by reinforcement

The resistance of a "reinforced crack" to imposed displacements
is the result of the interaction of the components dealt with ear-
lier in this chapter in the sections 2.1 -2.3: aggregate interlock,

dowel action and axial steel forces. A s:hematic representation of
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this interaction for the case where the reinforcing bars cross the

crack perpendicularly is given in Fig. 2.34.

Tlv
non-linear spring

2ggregate interoek (axial restraint stiffness
of reinforcement )

non-linear spring
% (dowel action of reinforcement)

Fig. 2.34 Schematic representation of interaction of single com—

ponents in a crack

Increased interest in the interdependence of stresses and displace-
ments in cracks has developed only in recent years, and in most of
the experiments on "reinforced cracks" attention has been confined
to the ultimate bearing capacity under shear loading, while the
relation between stresses and displacements has been disre-

garded [:83:]. An exception is an investigation conducted by
Mattock [ 51], who tested specimens as shown in Fig. 2.35. The
specimens were reinforced with varying numbers of closed stirrups,
so that reinforcement percentages of 0.4 - 2.3% were obtained. The
specimens were cracked prior to testing, which resulted in an aver-
age initial crack width of 0.25 mm (the scatter was not indicated).
The displacements of the crack faces normal to the crack were meas-—
ured by a gauge located at the middle of the length of the shear
plane and the shear displacement by a gauge 50 mm below it (omnly

on one side of the specimen). Fig. 2.35 further shows an exampile

of a family of shear stress — shear displacement curves for one of

the series.



shear displacemeni (mm)

Fig. 2.35 Test

Fig. 2.36 shows
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specimen and some results of [51 ]

the crack opening paths for two series. Both dia-

a family of curves for different reinforcement ratios,

which are shifted in relation to one another for better comparison.
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Fig. 2.36 Crack opening paths for precracked specimens with dif-

ferent reinforcement ratios, made of two types of con-—

crete, according to [51]

Apparently the reinforcement ratio had no significant influence on

-5
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the crack opening direction, while also the fact that the light-
weight particles of mix B are intersected by the crack had no
noticeable influence. Since other series, made entirely of light-
weight concrete, exhibited slightly steeper crack opening paths,

it was believed that the behaviour could be explained by overriding
of sand particles. If the sand particles are idealized as spheres
(Fig. 2.37), the direction of motion due to overriding would be

30 degrees to the line of the crack, which corresponds closely

to the average measured values of crack opening in Fig. 2.36.

direction

sand particles - of motion

N,
eipagre gl TN
/ T A \

crack )
i ;’{\, }>—4\\ \\-\ 3/
! AN { - Nt
' §refy 1 |
Y ~__’/ v’

Fig. 2.37 Overriding of sand particles according to [51 j

However, from a physical point of view it is not clear why only a
certain sand fraction should predominantly govern the behaviour

and how it could be explained that fractions with larger particles
would be inactive. Furthermore, if overriding of particles were

the essential mechanism, it is hard to explain why in "constant
crack width tests" gradually increasing shear stress — shear dis-—
placement lines occur, without failure of the specimen due to secon-

dary cracks (Fig. 2.3 and 2.4).

Conclusions

Considering the available knowledge, it is evident that in carry-
ing out further study in this field, emphasis has to be placed on
aggregate interlock. Not only is there a great lack of information

on the relation between stresses and displacements, but also merely



speculations exist concerning the physical background of the phe-
nomenon. If adequate knowledge of aggregate interlock were avail-
able, all the basic components acting in the transmission of forces
across cracks would be sufficiently well known to enable the be-—
haviour of "reinforced cracks" to be analysed. It must be investi-
gated whether this behaviour can be explained on the basis of the
individual components, or whether these components tend to inter-
fere and a deviating mechanism is obtained. Accurate experimental

data are required in this field anyway.
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A FUNDAMENTAL THEORY FOR AGGREGATE INTERLOCK

Basic assumptions

To explain certain properties of concrete, this material is some-—
times represented as a two—phase system: in a matrix (phase I) a
collection of aggregate particles (phase II) are embedded. It is

a matter of definition from which diameter the particles form part
of the matrix. In the following, 0.25 mm is adopted as the limit
between the phases I and II. For the crack widths to be considered
in this study, the particles with a diameter smaller than 0.25 mm
may practically be disregarded as far as their contribution to
aggregate interlock between the crack faces is concerned. The prop-—
erties of the matrix are, however, not very much influenced by the
exact choice of this wvalue, but are mainly governed by the proper-—
ties of the hardened cement paste (Wischers [:87 ]).

In general, the strength and stiffness of the aggregate particles
are higher than those of the matrix. However, the contact area be-
tween the two materials, the bond zone, is the weakest link of the
system. Hence, cracking occurs commonly through the matrix, but
along the circumference of the aggregate particles. Only in the
case of high-strength concretes (with high matrix strength) and
lightweight concretes (with low particle strength) are cracks ob-—
served running both through the matrix and the particles. Generally
crack faces are encountered which have a structure as indicated in

Fig. 3.1.

Fig. 3.1 Generally observed structure of crack planes



Considering such a crack structure, a number of trends emerging
from earlier tests can be explained. The steady increase of the
shear stress as a function of the shear displacement (Paulay/Loeber
[ 60:], Fig. 2.4) can be attributed to the growing contact

area during shear displacement. The fact that the stiffness
against shear displacement is smaller for larger crack widths,
(see also Fig. 2.4) is due to the fact that the potential contact
area between the opposite crack faces is reduced. Also an expla-
nation can be given for the observed difference between the first
and the subsequent loading cycles manifest in the tests, conducted
by Laible et al.([:40 ] , Fig. 2.9): the concentrated stresses,
occurring during the first loading cycle, result in local.irre-
versible deformation of the matrix material, so that, during the
subsequent cycle, the opposite crack faces have to travel a longer
distance before touching each other. The increase in stiffness
versus shear displacement with higher concrete strength, observed
in the constant crack width tests of Fenwick et al. [ HS], can

be attributed to the fact that high concrete strength is generally
attended with high matrix strength, so that also a High resistance

of the matrix to deformation is obtained.

Natural aggregate particles have an irregular shape. For the model
to be developed, it is assumed that these particles are randomly

orientated, so that no preferred directions exist. Furthermore the
particles are simplified to spheres, for which it is supposed that
they can be intersected by the crack plane at all depths with the
same probability. Next, considering Fig. 3.1, it can be concluded

that the "micro-roughness" of the crack, caused by the aggregate
particles projecting from the crack faces, must dominate the effect
of "macro-roughness", due to general undulations of the crack plane.

Therefore the overall crack plane is considered to be a flat plane.

Hardened cement paste is a visco—elastic material: the deformations
provoked by stresses are only partially elastic, for the other part
plastic (Locher [Zﬂ+]). Under multi-axial stresses, as in the area

between the aggregate particles in concrete, large plastic defor-
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mations can occur as a result of pore-volume reduction. Since the
plastic deformations are expected to dominate the elastic defor-
mations, the stress—strain relation of the matrix material, con-
sisting of hardened cement paste with aggregate particles smaller
than 0.25 mm, is assumed to be rigid-plastic, as represented in

Fig. 3.2. The stress at which yielding occurs is denoted as ¢

Fig. 3.2 Rigid-plastic stress—strain relation of the matrix

material

Hence it can be expected that, during shear displacement of the
crack faces, contact areas develop on the surface of the particles,
interlocking between the crack faces, due to plastic deformation
of the matrix. Fig. 3.3 shows the formation of this type of areas

as a result of a shear displacement in the direction of the X-axis.

Fig. 3.3 Contact areas due to a shear displacement
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The stresses at these contact areas produce reactions in the di-
rections of all principal axes. However, if the crack area under
consideration is not too small, it can reasonably be expected that
the sum of all the components in the positive and the sum of all
the components in the negative Z-direction are equal, so that equi-
librium in that direction is automatically obtained without the
action of external forces.

Furthermore it is assumed that the reactions in the positive and
the negative Z-direction are uniformly distributed along the X-axis,
so that no torsional moments with respect to the Y-axis are devel-
oped. These assumptions reduce the three-dimensional problem to a
two—dimensional one. As a result it is possible to consider a
cracked concrete body, as represented in Fig. 3.4.a, as an assem-
bly of a large number of slices, each of finite width (Fig. 3.4.c),
and it is possible to derive the overall behaviour of the crack by

first studying the properties of this thin slice.

crack plane

a b c

Fig. 3.4 Cracked concrete body (a), intersected by a Z-plane (b),

and a representative slice (c)

Fig. 3.5 shows a cross-section through a particle lying in a
Z-plane (see also Fig. 3.4.b and 3.4.c) in which there is a line

of contact between the opposite crack faces. The projections of

_57_



- 58 -

this line of contact on the X- and Y- directions are a and ay.

The shaded area represents that part of the matrix which has dis-

appeared due to plastic deformation of the matrix.

Fig. 3.5 Development of a contact area between matrix and aggre-—

gate

If the shear load on the plane of cracking is increased and crack
opening is counteracted by restraining forces, for instance due

to reinforcement, a mechanism will develop which can be described
as follows: The contact areas tend initially to slide: as a result
of this sliding, the contact area is reduced, which results in

too high contact stresses. Hence, further yielding occurs, until
equilibrium of forces is obtained in the X- and Y-directions. The
stresses at the contact area are resolved into a stress Op
to the contact area and a stress Tpu, tangential to this area. The
stresses Opu and Tpu are interrelated by the condition that the
contact areas are about to slide. Therefore the equilibrium con-
ditions are formulated, based on a uniform critical stress combi-

nation (Opu’ Tpu), with Tpu = u.cpu (Fig. 3.6).

Next, the components of the contact forces in the X- and Y-direc-
tions are derived, based on the previous assumptions. The circle
in Fig. 3.7 represents the intersection of a particle by an arbi-

trary Z-slice (Fig. 3.4.c).

, normal
u



Fig. 3.6 Contact stresses on a particle

0y =2RsinOsina
i

Fig. 3.7 Equilibrium conditions

The radial stresses cpu are compounded to a force F0 =2 opu Rsin 6.
The component of this force in the direction of the Y-axis is
Fcy =2 Opu R sin 0 sin o and the component in the direction of
the X-axis is F =20 R sin 6 cos oa. The stresses T are

ox pu pu
compounded to a force FT = 2 Tpu R sin 6. The Y-component of this
force is FTy = =2 Tpu R sin 6 cos a and the X-component is
F =21 R sin 0 sin a.

X pu

The projection of the contact area on the X-axis is equal to
a = 2 R sin 6 sin o and on the Y-axis ay = 2 R sin 0 cos a.

The resulting reactions in the X- and Y-directions can then be
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formulated as

F =0 .a_ + 1_ .a
x pu''y pu’ x
(3.0)
F =90 +a =7 .4
Y pu X pu 'y
Since T = u.o this is simplified to the final relations
FX = cpu(ay + u.ax)
(3:2)

F =0 (a - yp.a)
¥ pu X ’ y

The total resistance of the crack area under consideration , of

unit width and length 1, according to Fig. 3.4.c, is the sum of the

contributions of all particles in that area:

IF = Opu(Zay + u.ZaX)
(3.3)

IF =0 Za_ - u.Za
g pu( x "M y)

If also a unit length is considered, the projected contact areas
are related to a unit surface area of the crack, so that (3.3) is
modified to
s A+ q.
T cpu( T 0 Ax) (3.4)

o = opu(AX = u-Ay)

in which T and o are the shear stress and normal stress, and AX

and Ay are the projected contact areas for a unit crack area.

3.2 General considerations on the basic variables

The equations (3.4) represent the contact forces in the X- and Y-
directions for a crack area of predefined dimensions, expressed as

functions of the projected contact areas AX and Ay. These values
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themselves are functions of the crack width w and and the shear
displacement A, as seen in Fig. 3.6. So the relations between
stresses and displacements are known, assuming that suitable values

for the parameters cpu and p can be inserted.

The projected contact areas AA and A increase with decreasing
values of the crack width w and incrzasing values of A. Other
influencing factors are the relative volume of the aggregate and
the distribution of the particle diameters (grading curve). The
values Ax and Ay are stochastic variables. On the basis of assump-
tions for the relative volume, the distribution and the shape of
the particles (assumed to be spherical) it must be possible to
establish the expected average values of AX and Ay by means of a
statistical analysis. This analysis, which relates the stresses

to the displacements, is carried out in section 3.3.

The matrix yielding strength Opu is representative of the average

strength of the inhomogeneous matrix material subjected to locally
differing multiaxial stress combinations. One aspectrof inhomoge—
neity which is important for shear transfer in cracks is that
during hardening of the concrete some segregation of water can
occur in the contact zones between matrix and particles, due to
which the matrix in the immediate vicinity of the particles may
have a lower strength. These layers of lower matrix quality around
the particles have no uniform thickness, so that, during shear dis-
placement of the crack faces, the particles penetrate partially
into soft and partially into strong matrix material. Furthermore
the matrix is enclosed in small areas between the aggregate parti-—
cles, so that the stresses around the individual aggregate parti-—
cles mutually interfere and the stress conditions vary from point
to point, resulting in strength values which are also subject to
local variations.

Since at present no satisfactory model exists which describes the
behaviour of the concrete on the basis of an interaction between
the constituent components (Lische [:47]), no appropriate values

for the average yielding strength Opu are available. However, it
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is possible to detect tendencies for this value by analysing the
results of experiments on multiaxially loaded concrete. The matrix
strength can be expected to exceed the uniaxial concrete compressive
strength. The strength of the concrete is largely governed by the
quality of the bond between matrix and aggregate particles, which
is generally considered to be the weakest link of the loadbearing
mechanism. In general the deterioration of the concrete under ‘uni-
axial loading starts with microcracking in this bond zone. Shah and
Chandra [ 68:] injected loaded concrete specimens with a fluorescent
substance to facilitate the observation of microcracks. At about
50% of the failure load the number of microcracks around the parti-
cles, some of which cracks were already present before loading,
began to increase significantly. At about 70% of the failure load
these cracks began to intersect the matrix. If the formation of
microcracks in the bond zone is delayed, for instance by a lateral
confining pressure, the strength of the concrete is significantly
increased (Fig. 3.8). If the matrix strength were smaller than the
concrete strength, such an increase could never occur. For concretes
subjected to lateral confining pressures (a3 >0, =@ 2 0) Hobbs
[29:] gave as an approximate expression for the failure stress
Taus in terms of the compressive strength at atmospheric pressure

£! and the confining pressure, 0. , an equation of the form

cyl? lu

= ' =
03u fcyl k1 Olu
with k1 ranging from about 5.7 for conventional concrete with a
w/c ratio of 0.35 to about 4.5 for a conventional concrete with a
w/c ratio of 0.71.

Writing this expression in an other form:

5 o
f'i=l+f_3u_—kl
cyl cyl
o
it is seen that the relative strength i1 is a function of the
cy

uniaxial concrete strength: decreasing values are obtained for

concretes with higher strengths.
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Fig. 3.8 Stress—strain curves for concrete cylinders subjected to
different lateral confining stresses, according to tests

of Newmann and Newmann [ 16:

Reinhardt [ 64:] pointed out that this tendency is attributable to
the more brittle behaviour of the matrix in high-strength concretes,
giving rise to higher stress concentrations and as a result earlier
formation of microcracks and accelerated deterioration of the load-
bearing mechanism. This has also consequences for the yielding
stress of the matrix Opu: if in places where high stress concen—
trations occur the strength of the matrix is exceeded, this

has a reducing influence on the value Opu’ since this is an

average value for stresses of varying intensity.

Also under other loading conditions, such as biaxial tension-com-—
pression tests (Kupfer |:38 ]), the relative strength values
(referred to the uniaxial strength), increase for lower concrete
qualities: also in such a case the relatively higher strength of

the matrix in the lower-strength concrete must be responsible for
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this tendency. )

Summarizing, it can be stated that the matrix yielding strength Opu
is higher than the uniaxial concrete strength fé, whereas the value
¥§E must be expected to decrease for increasing values of this uni-
axial strength.

For the coefficient of friction p between the matrix and the aggre-—

gate particles no adequate data are found in the literature either.
An indication of the order of u is found in the results of tests
carried out by Weiss [:88:], who investigated the coefficient of
friction between square concrete slices with sides of 100 mm and

a thickness of 20 mm, the surfaces of which were always ground off
in the same way. In these tests, performed on a large number of
specimens in a so-called tribometer (Fig. 3.9), a coefficient of
friction for concrete of u = 0.52 was found. If the surfaces were
treated with hydrochloric acid, removing a small layer of the
matrix, so that only the particle area remained, the value obtained
was u = 0.41. Tests on specimens made of mortar (1l cement, 3 sand,
w/c ratio = 0.5) yielded a value of p = 0.47, lying between the

values for concrete and aggregate.

rh
|
[ normal load
—
G
test i m L R
est specimen = J
['m (=
[

adjusting bolts —

R | Ep— shear load

Fig. 3.9 Tribometer to establish the coefficient of friction be-

tween two solid bodies, according to Weiss [-88:
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Summarizing, it must be possible to express the values Ax and Ay
in equation (3.4) as functions of the displacements w and A, on
the basis of a given concrete mix composition (aggregate content,
grading curve, particle shape).

For the values Opu and p only tendencies are known. It would be
too hypothetical to engage in further speculations about these
values. Therefore the most suitable procedure seems to be to
establish, first, the relations between AX and Ay on the one hand
and w and A on the other hand; next, to insert these expressions
into the equation (3.4), and then to find the values cpu and u
indirectly, as the values which give the theoretical curves which
best fit the results of experiments on cracks. If the model is
realistic, this procedure ought to give values of Upu and p which

are in agreement with the tendencies previously outlined.

Determination of the relation between the projected contact areas

A and A for a unit crack area on the one hand and the displace—
A

Y
ments between the crack faces on the other hand

Before dealing with the details of the analysis, the general con-—
cept of the calculation is schematically represented. The calcu-

lation is carried out in a number of steps.

a. An arbitrary Z-plane, intersecting the concrete body, is con-—
sidered. Assuming a certain grading curve for the distribution
of the particles in the mix, first, the most probable distri-
bution of the diameters of the intersection circles in the

Z-plane is derived (Fig. 3.10.a). Next, the most probable num-

ber of intersection circles with an arbitrary diameter Do’ which

are also intersected by the crack over a length 1, is calculated

(Fig. 3.10.b). Then also for a unit crack length the most prob-—
able number of particles with a diameter Do intersected by the

crack is known (Fig. 3.10.c). Since the distribution of aggre-

gate particles in a concrete is substantially a continuous func-—

tion, it is not possible to give a most probable discrete num-—

ber: probability density functions have to be used.
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Fig. 3.10

b. In a second step of the calculation an answer is given to the
question: "What are the average projected contact lengths a and
ay for an intersection circle with a diameter DO, for an arbi-
trary displacement combination (w, A)?" In this calculation the
variable position of the circle with regard to the central crack

line (u) is taken into account (Fig. 3.11).

Fig. 3.11

c. If the density function of the most probable number of inter-
section circles with a diameter Do is known from (a) and the
average contact lengths a and ay, provided by such a circle,
are known from (b), the total contributions of the circles with

a diameter Do to the total contact lengths Zax and Ia_ are



3+3:8

known. The most probable total contact lengths, taking into ac-
count all possible circle diameters, are then found by integra-
tion over the full range of diameters, the distribution of which
is known from (a).

Since the calculations have been carried out for an arbitrary
Z-plane, and the same considerations are valid for all Z-planes,
the projected contact areas AX and Ay, for a crack area with a
unit length and a unit width (Fig. 3.10.d), are obtained by
multiplying the contact lengths Zax and Zay by that unit width.

Determination of the most probable distribution of the diameters

of the intersection circles, which are located in a Z-plane and

are crossed by the crack

To be able to calculate the distribution of the diameters of the
intersected circles in the Z-plane, an assumption has to be made
for the distribution of the aggregate particles in the concrete
mix. For this distribution a Fuller curve has been choosen. This
curve represents a grading of aggregate particles which results

in optimum density and strength and is therefore often used in

practice. Besides, the curve is described by a simple and handy

mathematical formula:

p = 100\/DD (3.5
max

in which p denotes the percentage by weight passing a sieve with

aperture diameter D, and Dmax is the diameter of the largest aggre-
gate particle. This relation is used as the cumulative distribu-—
tion function of spherical aggregate particles with a diameter D
(Pige. 3.12),

The probability thalf an arbitrary point in the concrete is located
inside an aggregate particle is denoted by p = Py - Actually Py is
the ratio of the total volume of the aggregate to the concrete
volume. The probability that a point, if located inside a particle,
also lies in a particle with a diameter smaller than an arbitrary

chosen value Dx’ can be expressed, using equation (3.5), as follows:
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D'X
)

Ni—

p (D < Dx) =Py (D (3.6)

max

By differentiation of this function the probability density func-—

tion p'(Dx) is obtained:

3p(D<D.) D {
' S S ® - 1 _ . -}
B =P~ inG—) o35 c.n_ 3.7
.3 max max
with
c=1 D-%
2+Py-Phax
10
P
08 sl
06 A
04
0.2 L4
D
0 0.2 04 06 08 1.0 D
max

Fig. 3.12 Cumulative distribution function for spherical aggregate

particles according to Fuller

Next, the probability that an arbitrary point, located in a Z-plane
intersecting the concrete body, lies also in an intersection circle
with a diameter D, is analysed, The probability that a point, if
located in a particle with a diameter Dx’ lies also in an inter-—
section circle with a diameter > Do (D0 < Dx)’ is equal to the ratio
of the volume of the sphere section A (Fig. 3.13) to the volume of
the hemisphere.

The volume of the sphere section B is equal to:

= 2 2 : 1 _ T o2 _ o2
VB 5 Tth(3a4 + h%) with h 3 Dx i Dx a= (3.8)

whilst the volume of the hemisphere:

1
V = — 3.9

Wow
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Fig. 313,

The probability that a point inside this sphere lies in an inter-—

section circle with D > D0 is equal to

NV = VB
p, (@>D) = (3.10)
. A

)

Substitution of (3.8) and (3.9) into (3.10) and rearranging results

in:
5% D,
Py (D>Do)= 1 Y %EZ ] = ('D—)z (Bl
X *® k3 =

So the probability that an arbitrary point in a Z-plane (Fig. 3.4.b)
lies in an intersection circle with a diameter D > Do is obtained

by integrating the product of (3.7) and (3.11) over the interval

D toD s
o max

D
max

p.(D>D) = Jr P'(DX)-pDX (D>D) dD_ (3.12)

D
o

Substitution of (3.7) and (3.11) into (3.12) results in:

D D D
max max max
-1 -2.5 2.5 %
p (D>D )= €.D_%dD - €.D2D dp - j/ 1c.p2D 1= (==)dD
e o X * o = 3 o X D X
D D D *®
0\ o] , o
i Y ~
1 II IIT
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Integral I

D
max max
-1 1
C f D2?2dD =2 C.D?
D b3
o o

Integral II

max

D
max

_ 2| 2. -1.5 Y Ry

c_[ dD CD[3DX :L) P, (302D

[e]
o

Integral III

D

max D
f b cp2p 2 \f- D240
D o % D *

®
(o]

max

1 ZD-Z

3 "0 max

D
This integral is solved by expanding the term \/1 - (—59-)2 into a
F

Taylor series:

Dz D2 D2
L - 1(-_0\ 2, 1.3 . "oy3
T+ D2) I+ a( 52’77, 4( _7) 7460 Di)

D2

135

- __O\y
2.4.6.8( 6}{)

0 ®-0.039 08 D"
o

= 1-0.5D2D 2-0.125D%D %~ 0.063 D6
o % o = 0
The integral can then be written as:
- 1 2 f "2.5_ ) —4.5_ L '6.5
Logr = b GD2 (o 0.502D 0.125 D% D
-0.03908p 10> ... )d D
o = x

Integration results in:

8

-0.063D6 D
0o =

8.5



5705 2 ['_ 0.667 D15 3.5
[e] *®

Pk “max i

—
]
i

, -
11T + 0.143 D0 Dx

max
+0.023 D* D2 4+ 0.008 D5 D> + 0.004 D8 D 9:§,]
(o) b3 (o] b3 o * D
(o)
= p (- 0.167 D2 D%+ 0.03 D* D * + 0.006 D6 D °
k o0 max 0 max O max
+0.002 D8 D8 4 0.001 D20 !0 4 0.122 D22 p 0% ... .. .
o max o max o] max
Combination of I, II and III gives:
p (D% D) = pyd] = }-455 Do 0 %% 4 0.50 D2 D> - 0.036 D* D
c o k o max 0 max 0 max
(3.13)
- 0.006 D® D ° - 0.002 D8 D® - 0.001 DD 'y ... ...
o max (6] max . (o] max

The cumulative distribution function, representing the probability
that an arbitrary point in the concrete body, lying in a Z-inter-—
section plane, is located in an intersection circle with a diameter

D < Do can now be calculated, using equation (3.13):
pC(D < DO) =1 - pC(D > DO) (3.14)

Substitution of (3.13) into (3.14) results in:

p (D <D) =p, (1.455 293 p 93 _ 9,50 02 072 + 0.036 D% D %
c o k o max 0 ~max o ~max
(3.15)

6

+ 0.006 D6 D 8
o] max

+ 0.002 D8 D 10
o) max

+ 0.001 DI0p V)
(o] max

This function is represented in Fig. 3.14.
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Fig. 3.14 Cumulative distribution function for the diameter of

intersection circles

The density function for the probability that an arbitrary point in
the concrete body, lying in a Z-plane of intersection, is situated
in an intersection circle with a diameter D = D0 is obtained by
differentiation of (3.15) to DO:

0.5 D—O.S -D =2

D +0.144 D3 D *
max [o] max o

; _ =
pc(DO) = pk(0.727 DO -

(3=16)

6

+ 0.036 D5 D_ @
(o] ma:

+ 0.016 D7 D_ 10
b, 4 0O max

+0.010 D° D )
(o] max

Since the distribution of circles of intersection in the Z-plane is
now known, it is possible to establish the frequency of circles Do
which both lie in the Z-plane and are crossed by the crack (Fig.
3.4.b and Fig. 3.15).

Fig. 3.15 Circles of intersection crossed by the crack



The average length of the intersection line AB for a circle with

diameter DO crossed by the crack is established using Fig. 3.16.

Fig. 3.16 Determination of the average length of intersection

for a circle with diameter DO

The surface area of the circle is im Dg and the surface area of
the equivalent rectangle is Dog. The average intersection length
is then

%ﬂD2 mD
[¢)

- _ 5
s =3 = (3.17)
o

If the length of the crack line (intersection of the crack plane
and the Z-plane, Fig. 3.4.c) is denoted by 1, the probability
density function for the expected length of that part of the line
whose points also form part of an intersection circle with a dia-
meter Do’ is obtained by multiplying 1 with pé(Do) (equation 3.16);

hence:
1(d_) = p.(D).1 (3.18)

Then the probability density function for the expected number of
intersection circles with a diameter D0 in the Z-plane which also
intersect the crack line 1 is obtained from (3.17) and (3.18)

1(D0) pé(DO).l

n(Do) R = T
o

s 4
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Per unit length of the crack line 1 this expression is simplified

to:
. O
n(Do) = }'H_DO (3.]9)

Determination_of the expected average contribution of an intersec-

tion circle with radius R to the contact lengths a, and ay for an

arbitrary displacement combination (w, A), taking into account a

variable embedment depth u

In the preceding section the probability density function for the
expected number of intersection circles with an arbitrary diameter
Do’ intersected by a unit crack length, has been derived (equation
3.19). However, the position of these circles with regard to the
plane of cracking has not yet been taken into account. The distance
from the central crack line to the centre of the circle is denoted
by u (Fig. 3.17). This value is assumed to be a random variable

in the interval 0 Su<R. (For -R Susx 0 the circle is in the

opposite crack face, for which the same considerations are valid).

C/'/.

e ~E

=R Cire
(3

Fig. 3.17 Position of intersection circle characterized by u,

randomly varying between 0 and R

If w + u > R, then for no value of the shear displacement A can any

contact area occur. If w + u < R, then two characteristic values for



A can be found. For A < AO no contact is found (see also Fig.
3.18:a). If Ao < A< Ab’ a contact area is obtained which increases
for increasing value of A. This phase is called the "growing contact
phase" (Fig. 3.18.b). If A > Ab no increase of contact area by
further shear displacement can be obtained. This phase is called

the "maximum contact phase" (Fig. 3.18.c).

m

cg

a. Phase of no contact b. Phase of growing contact

0 <A<A A < A <A
o o b

ax

c. Phase of maximum contact

Ab < A

Fig. 3.18 Different phases for w + u < R

The values A  and A are obtained with the help of Fig. 3.17.

A, = OA - 0B = VRZ - w2’ - VRZ - (w2 (3.20)
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Ab is obtained by calculating the intersection point of circle II

with the line y = R

x2 + (R - w)2 = R?

so that x == \(2 Rw - w2
or Ab \/2 Rw - w? (3.21)

For the interval &, = A < Ab the values a and ay, characterizing

the contact area, can be expressed as a function of u, w, A and R.

This derivation is given in Appendix I;

a_ = \/R2 T Ty NN (3.22)

y Vi + 2%
a = - VE2=102+42) X s B2~ (u+w)2 ~ (3,23)
VWZ +A2

For A > Ab it is easily deduced that

R=- (u+w) (3.24)

o
]

a_ = VR2 - (u + w)2 (3255

In the previous part of section 3.3.b the contact lengths a, and

ay have been calculated for an individual intersection circle with
a radius R, which resulted in expressions containing the variables
w, A and u. The following question will now be analysed: What is
the average contribution of an intersection circle with a radius

R to the contact lengths a and ay if A and w have an arbitrary,
constant value? If the answer to this question is known, it is
possible to find the total projections of the contact lengths Zax
and Zay by integrating the contributions of all single circles over
the full range of variation of R.

An intersection circle must be taken into account if it gives a



contact area in its most favourable position. It is evident that
the most favourable position is obtained if the embedment depth u
is zero. If a circle even in this extreme position is not in con-
tact with the opposite crack face it may be excluded from the cal-
culation. The first demand, if contact is required, is that R > w;
if R < w there is no contact for any value of A, even in the ex-

treme case where u = 0 (Fig. 3.19).

Fig. 3.19 1Intersection circle in its most favourable position

(u=0)

If contact is not impossible in advance, so if Rmax > w, it will
be necessary to analyse the question how the circles contribute
to the total contact area, taking into account the different modes

of contact, represented in Fig. 3.18.

The value R1 to which the radius of the intersection circle has to
"grow" (Fig. 3.19) in order to provide at least one point of con- i
tact can be calculated from equation (3.20). For u = 0 it is de- 1

duced that just ome point of contact is obtained for

2 2
_wo + A
R] Ry — (3.26)

The value RZ’ providing an upper limit for the range in which

"maximum contact" (Fig. 3.18) is obtained, is found from equation
(3.21):

w2 + A2
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Comparing the expressions (3.26) and 3.27), it is seen that for

A < w (designated as the case A), the value R2 is smaller then the
value R, so that the "maximum contact phase' has no significance.
So for A < w all circles with a radius R1 SR Rmax can contribute
(whether this really happens will depend on the value of the embed-
ment depth u). However, if A > w (case B), then R, is greater than
R,, so that both the "growing contact phase" and the "maximum con-
tact phase" are of practical importance. It must furthermore be
noted that now the limit value R1 does not apply, since contact is
always guaranteed for R > w (see also Fig. 3.19 for A > w). So for
A > w all circles with a radius w < R < R2 can contribute (again
dependent on u), and if they do, "maximum contact" is obtained;
furthermore all circles with a radius R2 <RZ Rmax can contribute,
and if they do, "growing contact" is obtained.

The two case A and B are schematically represented in Fig. 3.20.

"growing contact”

A< w i S o, R e o, i A o =
@ ( R, &= __w2+A2) R, = wls A2
2 2w 1 2A
“ maximum contact” " growing contact”
‘ A>DW ————= — -
= _ WA
Remin=W RZ = W

Fig. 3.20 Schematical representation of the fundamental contact
modes for varying values of the radius R of the inter-—

section circles

The fundamental cases A and B have to be distinguished, establish-—
ing the average expected contributions of the intersection circles

to the contact area. This is done in the following derivation.



Case A: A < w

If there is any contact area, this is at least the case for the
minimum embedment depth u = 0. Solutions are found up to an upper

bound u . This value u is deduced using Fig. 3.21.
max max

Fig. 3.21 Calculation of maximum embedment depth U for which

contact still exists

For constant values of A, w and R, the variable u is increased to
such an extent that only a single point of contact remains: at that
stage u is reached.

max

In Fig. 3.21 it is seen that

To fulfil the condition that only one point of contact remains, it
is sufficient to demand that the point (Xo’ yo) = (0- VRZ-u2, u+w)

lies on the circle; hence:
(u+ w2+ (A - VRZ - u2)2 = r2
or 2 uw + (w2 + A2) = 2A RZ2 - u?

Squaring both members of this expression results in:
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w2 (4w +402) +buw(w? +A2) + (w2 +A2)2-4A2R2=0

which leads to:

w2 +42) + § Va2 (@2 + 42)2 - (42 +82) { (w2 + 42)2 - 4 A2R2) -
max (w2 + AZ) .

So values for a and ay are found for the range

0 <u<u
max
The probability density function for the occurrence of a value u
is equal to

p(u) = (3..29)

2,
R
The expected value for the average contribution of a circle with

radius R to the contact lengths a and ay can be formulated, using

equation (3.29), as (Fig. 3.22)

Fig. 3.22 Calculation of the average contribution of a circle with

radius R to the contact length ag

du (3.30)



and

u=u
max
- 1
== .31
B ™ f a_p du (3.31)
0

in which a _ and a _ are the contact lengths a_ and a_ for a circle
yR xR y X
with radius R, according to (3.22 and 3.23).

Substitution of (3.22) into (3.30) results in:

max
jf { VRZ = Lw? + A?) e 3w — u} du
0

[l
n
|-

yR

o |
i

l\/RZ_l(w2+A2)—1__A__u =i %y _ ) ‘max (3.32)
yR R * \[w2 + a2 max *R R

Substitution of (3.23) into (3.31) results in:

u 5

max
5R=%j {3a- VR2 - p (w2 +42) —2——+ VR2- (u+w)?} du
b - w2+A2

L — ~ o
I IL

Integration of I results in:
I o= {38 = VEE = d0w® ¢ 4% =B} .4 (3.33)

; T

Integration of II:

max

u
1
III = J( (R?2 = (u + w)2)? du (3.34)
0
Since du = d(u + w), (3.34) can be formulated as:
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w+u wHu
max max
i< J/- VR2 -= (u + w)2 d(u + w) = ‘/F VRZ - t2 dt
w w
w+u
max
2
t 2 2 R 5 t
=|+ VR? - t2 + — arcsin —
2 2 R
w
u + W ey
- _max_ /\/R2 - (w+u )2 =X \/R2 - w2 +
2 max 2
+
+ —E arcsin Y—~—EE§§ - Bz-arcsin ik
2 R 2 R

The final expression for EXR is then written as:

u u +w
- = [l _ H 2 _ 1(w2 + A2 W max + max o i 9
ag= RS- 1(wo+a9) W} R R VR mGwra D

w+u

W AR2_2 4R in — max_R ™.
7R R - w? + 5 arcsin R 5 arcsing (3.35)
Case B: A > w
. . (w2 + A2) .
In Fig. 3.20 it is seen that for R > N the calculation can

be carried out in the same way as in case A. For the range

weRr ¥ a2 (3.36)
2w

the "maximum contact'" phase is valid. In the same way as in the
"growing contact'" phase a circle is in contact with the opposite
crack face if the embedment depth u is greater than zero and
smaller than a certain upper bound. In Fig. 3.18.c it can easily
be seen that this upper bound is obtained for u = Wk R - w.

For values of R in the range indicated in (3.36) ayR is obtained

by substituting (3.24) into (3.30):



(R-w)
gyR - % / (B~ 4= widu = —2’—R (R = w)Z (3.37)
0

;xR is obtained by substituting (3.25) into (3.31):

R-w

azg = % j VR? = (u + w)? du (3.38)

0

Substituting t for (u + w), equation (3.38) can be written as:

ol
=
o=

R
f VR2 - t2.dt
"

so that ' " R
= 1 t 9 2 R . t
= — = -t + — =
aXR R > VR 7 arcsin R }
= %—. R - %% VRZ - w2 - % arcsin % (3.39)

For the range

w2 + A?

&® 2w

the formulas (3.32) and (3.35) are valid.

33 Determination_of the_expected value of the sum of all projections

of the contact areas in the X- and Y-directions for a unit surface

area_of the crack plane

For a unit length of the crack line (line of intersection of the
crack plane and a Z-plane (Fig. 3.4.c) it was shown that the prob-
ability density function for the expected number of circles with

a diameter Do’ intersected on this length, can be expressed by
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equation (3.19). The total contact lengths in the X- and Y-direc-
tions, provided by all circles with a radius R intersecting the

unit crack length, can be expressed as:

R
max
ZayR = n(R).ayR.dR (3.40)
R .
min
max
ra_, = J[ n(R).5_.dR (3.41)
R .
min

in which n(R) can be calculated with equation (3.19) and ;yR and

a g can be taken from (3.32) and (3.35) in the case where A < w, or
from (3.37) and (3.39) in the case where A > w.

The expected values for the sum of all projected contact lengths
Zax and Zay for a unit length of the crack line, are obtained by
the summation of the contributions of all circles which have such

a radius that contact may occur; formulated otherwise: by integrat-—

ing the expressions (3.40) and (3.41) over the full interval of

circles which may provide contact with the opposite crack face.

Case A: A < w

2 2 2 2
(we + A%) —_— (w2 + A2)

Contact is obtained if R > A A s

therefore:

max

ra, = n(D).Ey .dD (3.42)

La = n(D).a__.dD (3.43)
w2+A2
A

in which n(D) is taken from (3.19), ;yD from (3.32) and ng from



(3:35)« DmaX is the diameter of the largest aggregate particle.

No contact is possible if D
max

wise, if

w? + A2
A

< 4 - \/p2 - 2y,
. 2(Dmax Dmax el

1

< —————= or, formulated other-

Nor is contact possible if w > 3 D . The physical background of

max

these conditions is shown in Fig. 3.23.

Fig. 3.23 Minimum value of A providing contact for the most favour-—

able intersection circle (D = Dmax) and the most favour—

able embedment depth (u = 0)

Case B: A > w

Contact is obtained if D > 2w. Two modes of contact are distin—

contact" is found for D >

This results in:

La =
¥y

]

La
p: 4

2 2
guished: "maximum contact'" is found for D < S % 4)
(w? + 82) v
2 A2
we+A D
w max
n(D).a__ .dD + n(D).a__ .dD
[ yDy ) yD2
2w EE+A2
w
w2+A2
w max
J/ﬂ n(D).a .dD + n(D).a .dD
D xDyp
2w w24+p2
w

5 "growing"

(3.44)

(3.45)
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With the formulas (3.42-3.45) the expressions are given for the
most probable projected contact lengths in the X- and Y-directions,
for a crack surface with a unit length. Since the Z-plane of inter-
section has been arbitrarily chosen (Fig. 3.4.c), the projected
contact areas Ax and Ay for a crack with a unit length and a unit
width are obtained by multiplying the values Zax and Zay by that
unit width.

Substitution of (3.19, 3.32, 3.35, 3.37 and 3.39) into (3.42-3.45)
results in the final set of equations, representing the contact

areas in the X- and Y-directions for a unit crack surface area.

Case A: A < w

max
_ 4
A, = P+ Fg=—) « G1 (4, w, D) .dD (3.46)
a2 max
A
D
max
A = By o Floled . CyiA, W,y D - OB (3.47)
X k“w 5D ¢ E25e Me - :
W2+A2 max
A
Case B: A > w
w2+p2
w
_ 4 D
A, -[ P, -=-Flg=) . G3(8, w, D) . dD
o max
max
4
+ P -+ F(z=) . G1(4, w, D) .dD (3.48)
o max




_ 4 D
AX_ f pk.?f_.F(D )'G'-}(A! W, D).dD

2w max
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k7T LAy We B2 s .
e max
w
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Gp (A,w,D) =D “{(A- \D (w2+A2) s U (umax +w)

V Y S W Uhax
1 n2 2 1 n2 2 4 1pn2 8

i D (w+u —w\/—D - wc+ 3 D¢ aresin —5—
4 ( max) 4 4 - %D

2
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3 1
_"hw (w2 +A2) + 4 sz(wz ’c-Az)QZ-(w2 +A2) { (w? + A2)2 - A2D?}

max Zil 4 A2

P, = volume of aggregate/volume of concrete.
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Fig. 3.24 Total projected contact areas Ay and AX for 1 mm? crack
plane, as a function of crack width w and shear dis-—

placement A, calculated with the equations (3.46 - 3.49)

Integration of (3.46 —3.49) was performed numerically. For this
purpose an Algol program was developed. For the text of this pro-

gram see [85]. A stepwise integration in 10 steps appeared to be



accurate enough: an extension to 100 steps resulted in differences
smaller than 2%. In this way the contact areas in the X- and Y-
directions for a unit crack area of 1 mm? are obtained for varying
(w, A) combinations.

Fig. 3.24 shows the result of a calculation for a concrete mix with
a maximum aggregate particle diameter of 32 mm and a Py value equal
to 0.75,

The relations between the stress conditions in the crack on the one
hand and the displacement components on the other hand were ex-

pressed earlier by the equations (3.4):

Q
]

cpu (Ax - u.Ay)

(3.50)
T = Opu (Ay + u.AX)

in which AX and Ay depend on w and A (equations 3.46 —3.49). The

validity of these relations will be investigated in an experimental

program. If it can be shown that good agreement exists between

theory and experiments, the unknown parameters cpu’ the yielding

strength of the matrix, and u, the coefficient of friction, will

be established. The experimental part of the analysis is described

in Chapter 4. The comparisons between experimental and theoretical

values are made in Chapter 5.
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EXPERIMENTS

General

In Chapter 2 it was concluded that lack of knowledge about the
transmission of forces across cracks concerns predominantly aggre-
gate interlock as an individual mechanism and its role in the inter-—
action with other components in reinforced cracks. Accordingly, the
experimental part of this research program was split into two parts.
In one part, tests on pure aggregate interlock were carried out,

the results of which were planned to be used for a direct compari-
son with the theory. In another part, tests on reinforced cracks
were carried out in which the role of all parameters possibly in-
fluencing the behaviour was studied; for the interpretation of

this part of the experiments the results of the first part have

to be known.

In all, 83 tests have been carried out. Only the main aspects of
this experimental program will be dealt with in this chapter. A
full survey of all results, containing all measuremerts and tech—

nical details, has been given in [ 84 |.

Pure aggregate interlock tests

Test specimens, instrumentation and testing procedures

The tests were carried out on push-off specimens with external
restraint bars of various stiffness (Fig. 4.1.a).

The shear area of all specimens was 36000 mm? (300 x 120 mm). The
specimens were supported on roller bearings and were loaded by a
vertical load, applied on top via a knife hinge. With this method
of loading, shear without bending moment is produced in the shear
plane. The head and the sides of the specimens were reinforced in
order to avoid premature failure due to secondary cracks. Measure-
ments of the crack width and the shear displacement were performed

at two points on the front and at two on the back of the specimens,



by means of so-called plate spring gauges, which were directly
mounted on the specimens and had an accuracy of 0.01 mm. The verti-
cal external load was measured by a load cell. The passive restraint
force normal to the crack plane was determined using strain gauges
attached to the external bars, the force-strain relation of which
was established before testing. The external bars were mounted in

such a way that only axial forces could develop.

400 mm
9 strain gauge
n @
T
! crack -!" §
| I
L
L s
2
Fig. 4.1.a Test specimen with ex— Fig. 4.1.b Precracking of
ternal restraint bars a specimen

Prior to testing, the specimens were cracked along the shear plane
by pulling steel rods in V-shaped grooves at the front and rear
faces of the specimen (Fig. 4.1.b). The displacements of the speci-
men across the crack plane during this precracking operation were

controlled by strain gauges.

During the actual shear test the specimens were subjected to a
monotonically increasing load. During the first three minutes the
shear displacement rate was 0.004 mm/min., which was subsequently
increased to 0.02 mm/min. The tests were stopped when the shear

displacement had reached a value of 2 mm.



4,2.2
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Variables

The variables in the tests were the concrete strength and composi-
tion, the external restraint stiffness and the initial crack width.
Four different concrete mixes were tested. Three of these had the
same maximum particle size (16 mm) but different cube crushing
strengths féca (13, 37 and 59 N/mm?), one had a maximum particle
size of 32 mm and a cube strength of 33 N/mmz.

The aggregate in all the mixes was distributed according to a
Fuller grading curve, permitting a direct comparison with the
theoretical values according to Chapter 3. Detailed data on the

mixture compositions are listed in Table 4.I.

Table 4.1 Mixture compositions in kg/m3

mix 1 =) mix 3 mix 4 mix 5
Cement B 250 400 195 209
Water 156 160 165 104
Quartz powder 50 s 143 34
16 = 32 mm - - = 598
8 - 16 mm 613 702 682 507
4 - 8 mm 433 378 378 227
gravel/ 2 - 4 mm 307 306 296 80
sand 1 - 2 mm 217 224 215 106
0.5 - 1 mm 153 114 113 219
0.25- 0.5 mm 108 136 135 262
0.1 = 0.25 mm 119 18 11 34
1950 1878 1830 2033
LMixture weight in kg/m’ 2406 2438 2333 2380
f'CC 29-37 56-60 13-20 33-38

%) Mix 2 is a variant of mix 1, only tested in reinforced specimens.
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In order to obtain a wide range of displacement combinations (w, A),

combined with stress measurements, three different initial crack

widths have been chosen (0.0, 0.2 and 0.4 mm), in combination with

varying external restraint stiffnesses against crack opening. It

was not attempted to vary this restraint stiffness systematically,

since it was not only a function of the diameter of the external

bars, but depended also on the properties of the transverse plate

on the short sides of the specimens and the thin layer of rapidly

hardening sand-cement paste, which was necessary to ensure good

bearing contact between these plates and the specimen.

Results

In all, 32 tests were carried out. Fig. 4.2 shows a characteristic

set of results for mix 1

(see Table 4.I). The individual specimens

have been assigned identifying numbers, consisting of three charac—

teristics separated by oblique strokes. The first number denotes

the mix number, the second the initial crack width in mm, and the

third the restraint force per unit crack area (equivalent normal

restraint stress) at a crack width of 0.6 mm (arbitrarily chosen).

T (N/mm?2)
14
12
1@ 1.0/6.8
8
A 11.0/36
6 -1.4/10
11216
% P — 11204
P s e RINIT
" ﬁ 11,443
—

05 10
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A (mm)
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1.5
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25

—— w (mm)
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N

\
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\
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Fig. 4.2.a,b,c Set of results of tests, carried out on specimens

made of concrete mixture type 1 (féc = 37.6 N/mm2)

Fig. 4.2.a shows the development of the average shear stress on
the crack plane as a function of the shear displacement, Fig.
4.2.b shows the relation between the crack width and the shear dis-
placement (crack opening path), and Fig. 4.2.c the average equiv-
alent restraint stress normal to the crack plane as a function of
the crack width. A characteristic feature was that in all experi-
ments the crack opening path was influenced by the external re-
straint stiffness. This is shown in Fig. 4.3.a and b, in which the
crack opening path has been represented for displacements of less
than 0.5 mm for the tests on the specimens made of the mixes 1
(£, = 37.6 - 38.5 N/mn’) and 3 (£, =57.4 - 60.8 N/mn?).

It is seen that the crack opening path is steeper for greater re-

straint stiffness (note the last numbers of the specimen codes).

In none of the specimens tested in this part of the program were
there any discernible secondary cracks influencing the behaviour

of the specimens.

A substantial proportion of the results will be used in Chapter 5

for evaluating the theory. Therefore they will not be further dis-—



cussed here; a complete survey of the results of all the tests can
be found in [ 84 ].

——» w(mm) —— w(mm)
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0.5 1/.0/6.8 142/16| 05
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Fig. 4.3.a,b Crack opening paths for the mixes 1 and 3

It must be noted that all crack displacements represented here are
the direct results of the measurements. As such these values in-
clude also some elastic deformations of the concrete adjacent to
the crack, between the measuring points (see also the measuring
devices in Fig. 4.5.b). It can be shown that these deformations
are so small with regard to the crack displacement that they can
be neglected. Furthermore the elastic deformations are not uniform

over the length of the crack, so that a correction would be even

rather speculative.

4.3 Tests on reinforced cracks

4,3.1 Specimens, instrumentation and testing procedures

The tests on reinforced cracks were also carried out on push-off

specimens. Two variants were used, as shown in Fig. 4.4.a and b.
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400 mm

Y

150

150

2

crossection AA

300

i-.>’
Bo L 300 150

150

Fig. 4.4 Specimen geometries for tests on reinforced cracks

The geometry, represented in the left part of Fig. 4.4 (a) was used
only in a limited number of tests. These tests were carried out as
pilot tests in the early stage of the program. It appeared that the
specimen shape shown in Fig. 4.4 (b) was somewhat more practical,
not only because it enables inclined reinforcement to be used, but
also because better introduction of stresses around the re—entrant
angle is obtained. In both cases (a) and (b) the shear area was
36000 mm? (300 x 120 mm). Apart from the auxiliary reinforcement

in the head and along the sides of the specimen, reinforcement was
applied crossing the crack plane. This reinforcement consisted of
closed stirrups, overlapped on one of the short sides to ensure
effective anchorage.

Measurements of the crack width and the shear displacement were
carried out across the crack on both sides of the specimens on
three places (Fig. 4.5.a and b). With this configuration, which

was not possible in the pure aggregate interlock tests, due to the
position of the external restraint bars, control of the uniformity

of the displacements was possible.



4:3.2

Fig. 4.5.a Test specimen during Fig. 4.5.b Measuring devices

loading on the crack

The other test conditions were the same as in the case of external
restraint bars; the specimens were supported on roller bearings and
were loaded through a knife hinge at the top, during which the load
was measured by means of a load cell. Also the precracking proce-
dure and the actual shear tests were carried out in a comparable

way.
Variables

Five different types of concrete were used. Apart from the mix types
as applied in the tests on specimens with external restraint bars,
represented in Table 4.I, a special gap-graded mix was designed,
approximately similar to mix 1, except for the fact that all parti-
cles between 0.25 and 1 mm (the order of the crack displacements)
were replaced by quartz powder: the weight of the remaining frac-—
tions was proportionally increased, in order to get the same total
aggregate weight as in mix 1. This mix (further denoted as mix 2)
was specially designed for investigating the statement found in

[51 ] (see also section 2.4) that the behaviour of reinforced
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cracks is probably a function of overriding of sand particles. If
that were true, the omission of an important sand fraction would
have to affect the results.

With all five concretes a basic series of four specimens was made,
reinforced with 2, 4, 6 and 8 closed stirrups ¢ 8 mm, correspond-
ing to reinforcement ratios of 0.56 —2.247%. In the case of mix 1
this range was extended to 0.14% (2 stirrups ¢ 4 mm) and 3.367

(3 stirrups ¢ 16 mm). In order to investigate the influence of the
bar diameter, additional specimens were made with the same rein-
forcement ratio as others, but different bar diameter: 7 stirrups
$ © mm, comparable with 4 stirrups ¢ 8 mm, and 2 stirrups ¢ 16 mm,
comparable with 8 stirrups ¢ 8 mm. Furthermore some tests were
repeated with completely similar specimens, in order to obtain an
impression of the scatter of the results. A schematical represen-—

tation of the program is represented in Table 4.ITI.

Table 4.IT Basic program O0f test on reinforced cracks

Reinforcement ratio I

Number of stirrups and diameters inmm

-
Mix number and properties 0.1470.567|1.127%|1.68%12.247 | 3.367%
Mix 1 Dmax = 16 mm 2 ¢ 412 6 8|4 48|60 8|8 483416
fl. = 29.4-36.6 N/mm? 746 2 ¢ 16
Mix 2 Dmax = 16 mm 2 ¢ 814 ¢ 8|6 4 8|8 ¢ 8
£l = 29.2-29.5 N/mm? 746 2 ¢ 16
Mix 3 Dmax = 16 mm 2 ¢ 8|4 ¢ 8(6 ¢ 8|8 ¢ 8

f' = 56.1 N/mm?
ce

Mix 4 Dmax = 16 mm 2 48|44 8|64 8|8 &8

£' = 19.9 N/mm?
(& &

Mix 5 Dmax = 32 mm 2 68|44 8l6¢ 8|8 ¢ 8

f' = 38.2 N/mm?
ce




The stress—strain relations of the steel, used for the stirrups,

are represented in Fig. 4.6.

o (N/ mmz)
800
L— @ 4mm
/ g
é ;;;; ——@ 16
_///
400
200
10 20 30 40
— £ ( '/o)

Fig. 4.6 Stress—strain relations for the steel, used for the

stirrups

The initial crack widths in the tests were generally smaller than
0.04 mm. A number of specimens were unloaded after reaching the

top of the load-shear displacement curve and subsequently reloaded
in order to obtain an impression of the behaviour under repeated
loading.

Additionally to the specimens represented in Table 4.II, some spec—
imens were made with a somewhat greater initial crack width (0.07 -
0.09 mm), to see how this would affect the results.

Next, the influence of inclination of the reinforcement was inves—
tigated in a separate series of specimens, made of concrete mix I
with féc = 34,2 N/mmz, which were all reinforced with 2 stirrups

$ 8 mm, inclined at various angles with the crack plane (450, 680,
90°

tests (Table 4.II) were used).

5 112° and 1350, in which for 90° the average results of earlier

Results

In none of the specimens were secondary cracks inclined to the pre-
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formed crack observed, as reported in [ 51 ] for comparable speci-
mens. In some of the more heavily reinforced specimens, spalling

of the concrete at the ends of the crack occurred (Fig. 4.7).

N .
//spalhng

Fig. 4.7 Local spalling in some of the heavily reinforced speci-

mens

This phenomenon was more significant for lower concrete strengths:
for mix 4 (féc = 19.9 N/mm?) spalling was observed in the specimens
with 6 and 8 stirrups ¢ 8 mm, resulting in a reduction of the fully
resisting shear plane of, on a rough estimate, 15-25%. However,
for mix 3, with féc = 56.1 N/mm?, even for 8 stirrups ¢ 8 mm there
was no spalling. Furthermore it was observed that the specimens of
the type shown in Fig. 4.4.a (left) were more susceptible to this
spalling than the others. Therefore this type was abandoned after

a limited number of tests on the specimens made of the concretes
type 1 and 2 (Table 4.II). A later attempt to establish the in-—
fluence of the shape, by reproducing some specimens of these series,
but with the improved geometry, was not fully succesful, because
the concrete strength was found to be 207 higher than in the first
case. Anyhow, this phenomenon of spalling has to be taken into
account when interpreting the results of some of the heavily rein-
forced specimens.

The measurements at the various levels of the crack (Fig. 4.5) did



not exhibit significant differences.
The most important features of the results will now be presented.

Detailed information on all the individual tests can be found in

[8s].

a. Repetition of similar tests and initial crack width:

Two results of repeated similar tests are shown in Fig. 4.8 and
4.9 (solid lines). In both cases (mix 1, 2 stirrups ¢ 8 mm in
Fig. 4.8 and mix 1, 8 stirrups ¢ 8 mm in Fig. 4.9) good agreement
is obtained. Testing similar specimens with greater initial crack
widths (dashed lines) showed that the crack faces did not immedi-
ately jump on the original crack opening path, but rather tended
to join it very steadily (Fig. 4.8.b and 4.9.b). The development
of the shear stress as a function of the shear displacement was

also retarded, but tended to reach the same level.

— w(mm)

2
T (N/mm?) 01 02 03 04 05 06
2 stirrups @ 8 mm N,
12 | -] ® =307 Nimm? 01 \\\
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8 0.3 \3
\
6 o) - - 0.4 \
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4 s anr ol 05 \
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2 -y 06 \u
/ . ; \
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P — A (mm)

Fig. 4.8 Shear stress-shear displacement relation (a) and crack
opening path (b) for three specimens made of mix 1, rein-

forced with 2 stirrups ¢ 8 mm (p0 = 0.567%) .
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Fig. 4.9 Shear stress-shear displacement relation (a) and crack
opening path (b) for three specimens made of mix 1, rein-

forced with 8 stirrups ¢ 8 mm (po = 2.247%)

b. Unloading and reloading:

In all cases unloading and reloading resulted in a considerable
amount of hysteresis. If the test was continued immediately, no
influence of load history was manifest. In some tests, reloading
was carried out after 5 months. In that case the shear resistance
seemed to have increased as a result of the strength development
of the concrete in this period. The crack opening path was appar-
ently not affected. Fig. 4.10 shows a representative result of a
test on a specimen made of mix 1 (f(':C = 30.7 N/mm?) and rein-

forced with 4 stirrups ¢ 8 mm.
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Fig. 4.10 The effect of unloading and reloading after a short time

C.

and after a long time (5 months: dashed line) on the
shear stress-shear displacement relation (a) and on the
crack opening path (b) of a specimen made of concrete

mix 1 and reinforced with 4 stirrups ¢ 8 mm (po = 1..127%)

The influence of the bar diameter at constant reinforcement ratio

and constant concrete quality:

Only very slight differences between comparable tests occurred.
The greatest deviation was found between specimens made of mix
2, one reinforced with 2 stirrups ¢ 16 mm and one with 8 stirrups
$ 8 mm. It is seen that even in this case the differences were

insignificant.
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Fig. 4.11 The influence of the variation of bar diameter at con-

stant reinforcement ratio on the shear stress—shear dis-
placement relation (a) and on the crack opening path (b)
for two specimens, one reinforced with 8 stirrups ¢ 8 mm

and one with 2 stirrups ¢ 16 mm (po = 2.24%)

d. Concrete type and reinforcement ratio:

The influence of these parameters can be studied by comparing
Figs. 4.12-4.13 representing the shear stress—shear displace-
ment relations (left) and the crack opening paths (right) for

a number of basic series (see also Table 4.II).

It is seen that for all individual concrete qualities an increase
of the shear strength is obtained with increased reinforcement
ratio. The crack opening path, however, seems not to be signif-
icantly influenced by the reinforcement ratio. It is to be noted
that this result is contrary to what has been observed in the

tests on specimens with external restraint bars, exhibiting



a dependence of the crack opening path on the restraint stiff-

ness (Fig. 4.3). On comparing the diagrams of Fig. 4.12 it is

clear that the shear resistance increases with higher concrete

strength.
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Fig. 4.12 Shear stress—shear displacement relations (left) and

crack opening paths (right) for four basic series, all

containing four specimens, reinforced

8 stirrups ¢ 8 mm (po = 0.56 —2.247)
4.12.a: Mix 4: £' = 19.9 N/mm?%, D =
ee max
b: Mix 1: f' = 30.7 N/mm?, D =
ce max
c: Mix 5: f' = 38.2 N/mm%, D =
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d: Mix 3: f' = 56.1 N/mm2, D =
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with 2, 4, 6 and

16 mm
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Also the series with concrete type 5, in which the maximum aggre-—
gate diameter was twice that of the other series, seems to fit
into this generally observed regularity. Besides, the influence
of the concrete strength on the crack opening path is rather
small. The crack opening lines for the concretes with strengths
between 19.9 and 38.2 N/mm? nearly coincide. The lines of mix 3,
with féc = 56.1 N/mm?, deviate slightly (greater shear displace-
ments). An explanation for this difference may be that in the
high-strength concrete a number of particles are intersected by
the crack, so that greater shear displacements are necessary to
obtain the same contact area between the crack faces.

Finally, in Fig. 4.13 a diagram is shown in which all the results
of the tests carried out on specimens made of concrete type 1 are
represented. The solid lines resulted from the tests of the basic
series (Table 4.II); the dashed lines are the results obtained in
additional tests, carried out with the improved specimen geometry

(Fig. 4.4.b).
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Fig. 4.13 Shear stress—shear displacement relations and crack

opening paths for all the tests carried out on specimens

made of concrete type 1
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It is seen that only the crack opening path of the specimen
with 2 stirrups ¢ 4 mm (po = 0.147%) deviated. All the others,

with 0.56 < B 2 2.247, were located between narrow limits.

e. Gap-graded concrete:

Fig. 4.14 shows the comparison between the results of the basic
series, made of concrete type 1 with a continuous grading curve,
and those of the basic series, made of concrete mix 2 with a
discontinuous grading curve, in which all particles between
0.25 and 1 mm were eliminated. It appears that there is no per-

ceptible influence.

T (N/mm? PRV
g ) 01 02 03 04 05 06
— mix 1 (continuous),

fcc=30.7 N/mm2
12 ---;ﬁx 2 (discontinuous), 01

fee= 29.5 N/mm?2
10 0.2

sgs all results

i B lega 03 9
6 ] 0.4

'/ =1 1’2¢8 .
4 0.5
2 06

0.7

01 02 03 04 05

& Do A (mm)

Fig. 4.14 Shear stress—shear displacement relations and crack
opening paths for basic series with discontinuous and

continuous grading curves
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f. The influence of the inclination of the reinforcement to the

Fig. 4.15 shows that the effectiveness of the reinforcement is
increased with decreasing value of 6. The crack opening paths

are similar for all inclinations, except for 6 = 135°.

—eW (mm)

g 05 10 15
T (Nfmm%) fee=342 N/mm?: 2 stirrups '
14 X @ 8mm
8 0.5
10
1.0
8
6 S 1.5
/"\\\§ 8=45’
" L \\\\‘ '&19:68
\ —==—p8=90°
, X \%.emf =
J \*glﬁ-e:ﬁﬁo
25

05 10 15 20 25 )
A (mm) A (mm)

Fig. 4.15 Shear stress—shear displacement relations and crack
opening paths for various inclinations of the reinforce-—

ment
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INTERPRETATIONS AND FURTHER ANALYSIS

This chapter, like the previous one, is subdivided into two parts.
The first deals with pure aggregate interlock: the experiments are
used to evaluate the theory and subsequently the theory is used
for further analysis. The second focuses on the transmission of
forces in reinforced cracks. For the interpretation of this second

part, the results of the first part are used.

Aggregate interlock

Comparison of theory and results

The relations between the stresses in a crack on the one hand and
the displacement components on the other hand have earlier been

formulated as:

. (A, - u-Ay)

(3.50)
T = opu (Ay + u-AX)

in which Ax and Ay depend on the crack width w, the shear displace-

ment A, the maximum particle diameter Dmax and the total aggregate

volume per unit volume of the concrete Py, as expressed in the

functions (3.46 —3.49).

The parameters Upu’ the matrix yielding strength and the coefficient

of friction p, are established by fitting the equations (3.50) to

be experimental results obtained in the tests on specimens with

external restraint bars (Fig. 5.1-5.4). It appeared that the best

results are obtained for a friction coefficient of p = 0.50 for all

mixes. The matrix yielding strength Gpu’ which has to be inserted

to get optimal fitting, depends on the uniaxial concrete strength.

The best results are obtained for

T = 5+83 f(':g'63 .1)



These values for u and opu are in adequate agreement with what was
expected (section 3.2): the coefficient of friction p is of the
same order as found by Weiss [:88:] in his tests; the matrix
yielding strength is higher than the uniaxial cube compressive
strength, whilst a tendency to lower relative matrix strength for
higher concrete strength is reflected by equation (5.1), which can
be represented in a modified form as opu/f(':C = 5.83 fé;0'37.

It must be realized that this is only a provisional, approximate

relation. Actually the relation between o and f'c is not unique.
pu e
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An example is represented in Fig. 5.5, which shows that for the same
matrix the prism compressive strength varies as a function of the
scale of the aggregate. In order to avoid too great complexity,

such effects are not taken into account.

;,(N/mmz)
50
40
0 wer =0.55
3
0 ——p— wer=07
5 10 ] 38

max. aggregate particle(mm)

Fig. 5.5 The influence of the maximum particle size on the prism
compressive strength for various water—cement ratios,

according to Cordon and Gillespie E H;]

Analysis of some aspects of aggregate interlock on the basis of

thk2 model developed

The model that has been develored allows a further analysis of the

phenomenon. Some aspects will be dealt with:

a. The role of friction between the aggregate particles and the

matrix material.

It was shown that equilibrium in the contact area was obtained
by combinations of normal (yielding) stresses and shear (fric-
tion) stresses. It was shown that with a friction coefficient
equal to 0.5 the best fitting of the curves to the experimental
results was obtained. By doing a calculation with a fricticn

coefficient py = 0 the influerce of friction can be visualized.



A calculation is carried out for a mix with maximum aggregate
i = = 2

size Dmax 16 mm, Opu 48 N/mm“, Py

0.5. The results are shown in Fig. 5.6 for some crack widths

(w=0.2, 0.6 and 1.0 mm).

= 0.75 and p = 0.0 resp.

It is seen that the friction increases the shear stress by up
to about 50%, whereas the normal restraint stresses to provide

equilibrium are reduced.

I(N/mmz) Theoretical model Dyq,=16mm, Py =075, o, =48N/mm’
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Fig. 5.6 The role of

transfer of

friction between aggregate and matrix in the

stresses in a crack

b. The contribution of the various aggregate fractions to the trans-—

fer of stresses in a crack.

By a slight modification in the derivation of the equations re-
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presenting the relations between stresses and displacements in
the crack it is possible to ascertain the contribution of only
a part of the aggregate particles.

The equation (3.15) was found by integrating the product of
equation (3.7) and (3.11) over the range Do > Dmax By integrat-—
ing only over the range Do - n.DmaX (n < 1) the cumulative dis-
tribution function is obtained, representing the probability
that an arbitrary point in the concrete body, located in a Z-
intersection plane, is situated in an intersection circle with
a diameter D < Do’ with as an additional condition that it must

also be situated in a sphere with a diameter D < n.D An

max’
elaboration of this integration results in a modified expression

(3.15)%

) 0.5 _-0.5 a5 g oD
_ - 2 =
pc(D <D0) -pk(l n? + 1,455 Do Dmax 0.50 n Do Dmax +
0,036 n 22 p* o % + 0,006 o0 pf p7®
(o] max o max

7.5 8 .—8

+0.002 n " D, D +0.001 n 23 p!0 p710

max (e] max

)

The probability density function is obtained by differentiation

with respect to Do:

SRS JE O

. ) _
pc(Do) pk'(0'727 Do max o Dmax *
+ 0144032 D3 0% +0.036n0°° D D ® +
(e} max (o] max
#0060 70 p B0 +0.00 o 29 p? p 19y
o max (6] max

On substituting this expression into (3.19), and (3.19) into



obtained, with only a modified expression for F(D )i
max
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(3.42-3.45), the same set of final equations (3.46 -3.49) is

Fig. 5.7 Contributions of the various aggregate fractions to the

transfer of stresses in cracks for crack widths w = 0.1,

0.6 and 1.0 mm (Mix: o = 48 N/mm?, p, = 0.75, u
pu k

D = 16 mm)
max

= F1 =

0.50,



118 =~

08D
- e max __— 10Dmax

. 0.8Dmax

= . 2 . __ .- 06Dmax

=, 0 D

—

N -y 02Dmax
==t sy i 1 T N )
T — e —  __ A(mm)

\\ -
— —_— 0
BT~ o T 0.2 Dmax
~

AT, S 0 Diviag
Y . T 08D
E T max
3~~~ 06Dmax e Dt
WDy -, & ax
N ~0.8Dmax 1.0 Dmax
~
1.0 Dmax

Fig. 5.8 Contributions of the various aggregate fractions to the
transfer of stresses in cracks for crack widths w = 0.1,
0.6 and 1.0 mm (Mix: £ ™ 48 N/mm?, p, = 0.75, u = 0.50,

D = 32 mm)
max

k

With these equations the contributions of a number of fractions
have been established and represented for a small (0.1 mm), an
average (0.6 mm) and a large (1.0 mm) crack width. Two mixes
P = 0 754
but different maximum aggregate size (Dm = 16 mm and Dma =

ax X
32 mm). (Fig. 5.7 and 5.8).

were analysed, both with Upu = 48 N/mm?, u = 0.50,

The curves in these diagrams represent the relations between

0, 1, w and A, if only the particles with a diameter between

0 and a varying fraction of Dmax are considered. It is seen that



the small aggregate fractions lose importance as the crack width

increases.

c. Scale effect of the aggregate.

To obtain some idea of the effect of the scale of the aggregate,
two mixes were compared. Both had the same properties, except
for the maximum particle diameter, which was 16 mm and 32 mm

respectively. The results of this comparison are shown in

Fig. 5.9.
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Fig. 5.9 The effect of the maximum aggregate particle size on the
transfer of stresses in a crack. Maximum diameter
D = . Mi ies: = 0. = 0.
L 16 and 32 mm. Mix properties Py 0.75, 1 050,
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It is seen that the normal stress o is not very susceptible to
this variation, but that the shear stress T is more affected

according as the crack width is greater. This tendency is con-—
firmed by the results of the experimental part of this investi-

gation (Fig. 5.2 and 5.3).

. Effect of grading curve.

In the previous analyses and in the experiments a Fuller—curve
was always adopted. However, in practice most Codes allow a per-—
missible grading curve region. The ideal Fuller—curve is near
the lower boundary of this area. To study the influence of the
grading curve a curve is chosen which approximates to the upper
limit given in the Netherlands Code of Practice, the VB'74, for
DmaX = 16 mm and Dmax = 32 mm (Fig. 5.10 and 5.12).

The relations between stresses and displacements for the con-
crete confirming to the grading curves B in Fig. 5.10 and 5.12
were calculated. Other values adopted for Dmax = 16 mm and

Doax = 32 mm were p = 0.75, u = 0.50 and s 48 N/mm?.
Although these concretes have the same maximum particle dia-
meter Dmax as the comparable Fuller mixes, they contain a much
higher proportion of sand particles. The results previously
obtained under b, where the contribution of the individual aggre-
gate fractions to the transfer of stresses in a crack was estab-
lished, were used for the calculations. The results for the con-—
cretes, designed with the grading curves B are represented in
the Figs. 5.11 and 5.13 by the dashed lines, and are compared
with the results for the Fuller concretes calculated earlier
(Fig. 5.9).

It is seen that in both cases the influence of the grading curve
on the normal stresses ¢ is not great, but is significant for
the shear stresses. The most pronounced differences are obtained
for larger crack widths. This is to be expected, since the sandy
mixes according to curve B provide a smaller potential contact

area for larger crack width.
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e. Cyclic_loading.

From tests [:40, 89:] it is known that in the case of cyclic
loading a considerable difference exists between the behaviour
of the crack plane during the first loading cycle and the sub-—
sequent cycles. The shear stress—shear displacement relation-—
ship of the initial cycle is nearly linear, and after unloading
a considerable amount of hysteresis can be observed. The shear
stress-shear displacement relationship for the later loading
cycles is highly non-linear, and a hardening type of behaviour
is observed. This overall behaviour can be explained with the
theory developed. As an example a fictitious specimen according

to Fig. 5.14 is considered. |

external restraint rods

- .

shear loading

|
/ j;fW

crack plane

Fig. 5.14 Fictitious specimen considered

The specimen consists of two parts, separated by a crack, the
initial width of which is assumed to be LM 0.50 mm. The two
halves are loaded by shear forces, while enlargement of the
crack width is counteracted by external restraint rods. The
stiffness of these rods is assumed to be such that an increase
of the crack width of Aw = 0.1 mm results in an increase of the
normal stress on the crack plane of Ac = 0.5 N/mm?. The maximum
shear stress applied is assumed to be T = 3 N/mm?.

The assumed concrete quality is féc = 33.4 N/mm? with Dmax =

32 mm, so that the relations represented in Fig. 5.3 can be

used to construct the ascending branch OA of the t1-A relation

CBig. 51505
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T(N/mm?)

L |
first cycle
A

3

Later cycle

T(N/mm?)

Fig. 5.15 Response to cyclic loading of fictitious specimen, cal-

culated with theoretical model

A description of this procedure is given in Appendix II. The un-—
loading branch is calculated by a different method: just before

unloading, the relations (3.50) are valid:

o] = cpu (AX = u.Ay) (5.3)

T] = opu (Ay + u.AX) (5.4)
At that moment the friction still has its maximum value

(u = 0.50). This situation can be compared with that of a

body on an inclined plane, with frictional forces acting be-
tween the body and supporting surface, and the resultant of the
horizontal force V and vertical force N acting in the direction
of the line b-b'. Unloading is done by diminishing the horizon-—
tal (shear) force V. Movement of the two halves of the specimens
relatively to each other can only occur if V is so small that

the maximum frictional resistance in the other direction is



reached (comparable with the situation in Fig. 5.16, where the

resultant is in the direction of a-a').

Fig. 5.16 Body on a rough inclined plane as an analogy for the

behaviour of a crack under cyclic loading

Movement of the crack faces occurs if u has become -u. At that
moment the normal stress on the surface of the aggregate parti-
cles, originally equal to Gpu’ is reduced to a value Opl, as a
result of the reduction of V.

Substituting these values into (5.3), the normal stress acting

between the crack faces is expressed as:

0p =0 (AX + u.Ay) (5:5)

However, just before sliding back, the external normal stress
is still the same as at the start of unloading, since the ex—
ternal restraint rods have not been subjected to any change in
length during the period during which V was reduced.

So, because 0; = 0,, combination of (5.3) and (5.5) results in:

. _ cpu (AX - u.Ay) .0
P1 (A + p.A) :
X y
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If the crack planes are about to move, the shear stress 71, can

be formulated by replacing p in (5.4) by —u, and Upu by cpl.

=0 A = paA (51
To pl(y ueA) )

Substitution of (5.6) into (5.7) results in:

AX s u.Ay
g =, (m).(Ay - WA) (5.8)

T, can be expressed as a function of 17, comparing (5.8) with
(5.4)

Ty = E.1] (5.9)

with

Ax = u.Ay Ay s u.Ax

Ax + u.Ay Ay 2 u.AX

In this way it is possible to determine the position of point B
in Fig. 5.15. For the case considered it was calculated that
A =3.13%10° m and A = 4.49 x 1072 mm . With u = 0.50 a
value & = 0.080 is obtained.

If the frictional resistance of the crack faces is exceeded, a
displacement will occur. This displacement will continue until
no areas of contact and no external forces remain. To reach
this stage the crack width has to attain its original value,
but the shear displacement need not return to zero. This is ex-—
plained with the aid of Fig. 5.17.

The position of the crack faces before loading is represented
in Fig. 5.17.a. At peak stress level the crack width has been
increased by Aw and the shear displacement by A. As a result of
the rigid-plastic character of the matrix material a cavity

has been formed (shaded area in Fig. 5.17.b). Due to this cavity



the "no contact phase" after unloading is reached before the

shear displacement has returned to zero (Fig. 5.17.c).

Fig. 5.17 Three characteristic stages during the first loading
cycle: a. Before loading
b. Peak stress

c. After unloading

The "no contact phase'" is considered to be reached, if in the

most unfavourable case (R = } Dmax and u = 0) contact no longer

exists. For the case considered (DmaX = 32 mm, w, = 0.5 mm) it
can easily be calculated (Appendix II, using the formulas of
Appendix I) that the remaining shear displacement A, is equal

to 0.41 mm (point C in Fig. 5.15). To restore the two halves

of the specimen to their neutral position a small shear force

may be necessary, since the rubble between the crack faces due

to deterioration of matrix material during loading may cause

some frictional resistance (point D in Fig. 5.15). If the shear

force is applied in the other direction, the same type of be—

haviour can be expected, since those parts of the crack surfaces

where contact occurs in this reversed cycle are not yet damaged

(Fig. 5.17). Hence a similar loading and unloading curve can

be expected (Fig. 5.15, points A', B', C', D').

In the subsequent loading cycles the presence of the cavities

worn out in the first cycle of loading considerably affect the

behaviour of the specimen. At first a shear displacement will

= 127 =



occur at a small shear force, until contact between the opposing
areas occurs (A b 0.41 mm (point E)). Then in a shoft interval
of A full contact between the cavities will be obtained. In this
short interval a process of gradual wearing-off will occur at
places of high contact stresses (point X in Fig. 3.34.c). Hence
a steeply ascending branch (EFG) may be expected, slightly
shifted from the foregoing loading line. On unloading, behaviour
similar to that in the first cycle may be expected (GHI -

Fig. 5.15).

A comparison of the 1-A relation based on the theoretical model
(Fig. 5.15) with experiments carried out by Laible, White and
Gergely [AM)], shows fairly good agreement in behaviour

(Fig. 2.9).

f. Comparison with other static tests.

Tests on cracks in plain concrete were performed by, among oth-

ers, Paulay and Loeber [ 60:], who applied constant crack widths

(w =0.13, 0.25 and 0.51 mm). The concrete had a D - of 19 mm
m

and an average cube compressive strength of féc = 37 N/mm?.

2
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6 l/ / 4 -
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4 // . /./ experiments
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1 [/ ' Rd
isse
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Fig. 5.18 Comparison between the experimental results of Paulay/

Loeber [ 60:] and the predictions of the theoretical

model developed
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The experimental results have been compared with the results of
the theoretical model, on the assumptions that Dmax = 19 mm,

u = 0.50, P = 0.75 and cpJ=57 N/mm? (according to equation 5.1).
This comparison is represented in Fig. 5.18. The agreement be-
tween experimental and theoretical values, taking into consider-—
ation the differences in grading curve and experimental set-up

between both investigations, is satisfactory.

Simplified equations for the relations between 1, A, w_and g,

A, w.

On the basis of a regression analysis, simplified equations have
been derived which fit the experimental results. In these equa-
tions only the cube crushing strength has been considered as a
variable. The aggregate scale effect has not been taken into
account, since it is only of minor influence in the range tested.
The formulas derived are suitable in principle for the type of
mixes used (Fuller-curves), the interval of Dmax (16 < Dmax <

32 mm), and the range of A and w-values tested. The curves which

most closely fitted the results are:

fv

pim sl iy 8w 0L o oa 0 Lo any et 1 Ga0) (5,10
30 cc =

and
f'

o= -2 (135w 04 0191w 0 P22 0.15) £ 38 (02 0) (51D

A comparison of these bilinear approximations with the experi-
mental results of the various series is represented in the Figs.

5: 19 ~-5..22.
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Fig. 5.19 Comparison of equation (5.10) and equation (5.11) with

experimental results (Mix 1)
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Fig. 5.20 Comparison of equation (5.10) and equation (5.11) with

experimental results (Mix 3)
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Fig. 5.21 Comparison of equation (5.10) and equation (5.11) with

experimental results (Mix 4)
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Fig. 5.22 Comparison of equation (5.10) and equation (5.11) with

experimental results (Mix 5)
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Sl Transmission of forces

across reinforced cracks

5241 Components involved in

the transmission of forces

Prior to analysing the
are considered. As far

bling an estimation of

overall mechanism, the individual components
as necessary, expressions are derived, ena-

the forces acting across the crack, as a

function of the displacements between the crack faces. As already

stated, the overall behaviour must be a function of the interaction

between aggregate interlock, dowel action and axial forces in the

reinforcement.

a. Aggregate interlock.

Adequate information can be obtained by consulting the first

part of this chapter.

b. Axial forces in the reinforcement.

The relations between the axial forces in the reinforcing bars

and the slip can be obtained by using a finite difference method,

as proposed by Rehm et al. [ 63 ] (see section 2.3).

f..= 20N/mm’; ¢8mm,

fee=30N/mm?, ¢ 8mm, fg =0.050
fr=0.050 # 6 mm, fg =0.045

a6 = 858
<10 ~“=10
£
E L £ /~
~N
=% 698| | =8 / 648
= / ° /
6 / 6 Y. 766
/ d L¢B Lg8
L /// L / o il
5 /// 2¢8 y // 2¢8
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0 02 04 06 08 10 0 02 04 06 08 10
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Fig. 5.23.a-d

Equivalent stress normal to the crack plane as a

function of the crack width for various amounts of

stirrups with various diameters and four concrete

qualities

This has been carried out for all bars crossing the crack plane,

taking into account the bar diameters, the related rib areas and

the concrete qualities. Detailed information on this calculation

can be found in [ 85:]. These relations have been used to con-—

struct diagrams in which the equivalent stress normal to the

crack plane is represented as a function of the crack width

(Fig. 5.23.a-d).

Dowel action.

The available knowledge about dowel action and its physical

background has been reviewed and discussed in section 2.2. It

was shown that the behaviour can be approximately described by

the model of a beam on an elastic foundation.

For the case that
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no axial force is acting, the dowel force can be expressed by

equation (2.13):

F.o=3.56 ¢1°7° 27

4 p A (5+12)

Tests by several authors [ 175 595 70:] demonstrated that Gf
does not depend on the bar diameter 4. In experiments by Paulay
[ 59 ] , carried out with a constant concrete quality of

féc % 30 N/mm?, the value of G, was found to be a decreasing

f
function of A (Fig. 2.19). A comparison of (5.12) with these

experimental relations results in an expression for G_., equal to

f

G, = 188 B (5.13)

However, G_. must also be a function of the concrete strength.

£
Because the modulus of elasticity EC is generally related to

the concrete strength according to:

E =¢C, \[f
c ce

a similar relation has been adopted for the foundation modulus:

Using this relation, equation (5.13) is modified to

~ T -0.85
G, = 34 \/fCC A (5.14)

This relation, however, is only based on experiments without
axial tensile forces in the bars, i.e., for w = 0. Tests, carried
out by Eleiott [ 175 90:] showed that an axial tensile force in
a bar reduces its dowel stiffness considerably (see also Fig.
2.24): a tensile stress of 175 N/mm? in a bar with ¢ 12.8 mm
reduced the dowel stiffness by about 50%, whilst an increase to
350 N/mm? resulted again in a reduction of 40%. For the experi-

ments in the author's own program, a stress level of 175 N/mm?



is approximately obtained for a crack width of w = 0.2 mm and a
stress of 350 N/mm? for w = 0.4 mm (Fig. 5.23). Taking these
values into account, an approximate reduction factor can be
formulated as:

E=0.20 (w+ 0.2) ) (5.15)

Combining (5.12, 5.14 and 5.15), an approximate estimation of the
dowel force is obtained, taking into account the influences of
crack width, shear displacement, bar diameter and concrete
quality:
1 ,0.36 ,1.75
é

Fd =10 (w + 0.2) A s

(5.16)

Comparing the values, obtained with (5.16) for the measured
crack opening path, with the total shear force in the experi-
ments, it is seen that dowel action is of minor importance

(Fig. 5.24).

t(N/mmz)
12 5
fec =38N/mm
10 848l egs
8 I// Z/
2¢8 N
Y/

\lZd

contribution of dowel action

2
S S S O A 7 11
== =F = F F=--91248
0 01 02 03 04 05

—— A (mm)
Fig. 5.24 Contribution of dowel action, calculated with equation
(5.16), to the total shear stress in a crack, for the
basic series made with concrete mix 5, reinforced with

2, 4, 6 and 8 stirrups ¢ 8 mm
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Comparison between reinforced and unreinforced cracks

For unreinforced cracks it was shown that there is a unique rela-
tionship between the stresses T and o and the displacements w and A.
This implies that if two of these parameters are given, the two
remaining ones are also known. If, for instance, a certain combi-
nation of w and o is given (point A in Fig. 5.25), the related

values of A and T are known.

= w=01

T 010203 g
7 05 06 O
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G

Fig. 5.25 Construction of T-A and w—A relations for given restraint

stiffness

If, more generally, the external restraint stiffness is given (the
collection of points A), both the w-A relation and the t—-A relation
can be constructed. An important property of the mechanism is that
an increase in restraint stiffness (greater ¢ for the same w, point
B in Fig.5.25) results in a greater A or in a '"steeper" crack open—
ing path.

This sensitivity to the restraint stiffness is the main difference
between the response of unreinforced and reinforced cracks to shear
forces. Whereas for unreinforced cracks even small differences in

restraint stiffness were perceptible (Fig. 4.2), for reinforced



cracks a variation of this stiffness over a wide interval (Fig.
5.23) did not result in any significant difference in the w-A rela-
tions (Fig. 4.12). Hence, an attempt to construct the t—A and the
w—A relations for reinforced cracks on the basis of the aggregate
interlock diagrams and the restraint stiffness in the way indicated
in Fig. 5.25, possibly correcting the value with a small dowel term,
is doomed to fail. This is demonstrated in the Figs. 5.26 and 5.27
for the concrete mixes 1| and 4. It is seen that good agreement is
achieved only for low reinforcement ratios (p0 < 0.56%), while in-
creasingly large deviations are observed with increasing values of

Py The same tendencies were observed in other series.
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1/ -
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2 /
20 {
' 0 05 10 15
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Fig. 5.26 Comparisons between experimental results (solid lines)
for basic series 4 (f;C = 19.9 N/mm?, 2, 4 and 6 stir-
rups ¢ 8 mm), with hypothetical ones, constructed on

the basis of Fig. 5.27 (dotted lines)
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Fig. 5.27 Comparisons between experimental results (solid lines)
for basic series 1 (f(':c = 30 N/mm?, 2, 4, 6, 8 stirrups
$ 8 mm and 2 stirrups ¢ 4 mm) with hypothetical onmes,

constructed according to Fig. 5.27 (dottéd lines)

It was believed that local disturbance of the crack structure
around the bars was responsible for this difference in behaviour.
This disturbance may be caused by local splitting forces originat—
ing from the ribs of the reinforcing bars when these are pulled out
of the concrete by axial tensile forces (Fig. 5.28).

In this way concentrations of loose asperities are formed, which
contribute in their own way to the transmission of forces across
the crack (Fig. 5.29). This mechanism is likely to be rather com—
plicated. Not only yielding of matrix material occurs, but also
sliding friction at the contact points between the aggregate parti-—
cles and rolling friction, due to which the particle shape may have
an influence. Furthermore the volume of loose particles increases

with continuing extraction of the reinforcing bars.



Fig. 5.28 Deterioration of Fig. 5.29 Two mechanisms of aggre-

the concrete by gate interlock in a
splitting forces crack, crossed by rein-
around the bar forcement

The differences in crack structure can also be observed after open-
ing of the specimens. Fig. 5.30 shows a crack face of a specimen,
tested with external restraint bars: only a small amount of fine
material was found to be torn off the crack faces. So the inter-
locking forces must indeed have been transmitted via particles
embedded in the concrete. Fig. 5.31 shows a crack face of a speci-
men, reinforced with two stirrups ¢ 8 mm, after opening of the
crack. A considerable amount of loose particles was released. After
removal of remaining particles, crater—-shaped holes around the

bars were revealed. It is likely that these holes were mainly
formed before yielding of the bars, during the actual shear test,
and only to a minor extent during crack opening after the tests,
since the greatest increase in stress in the steel, and attendant
slip of the reinforcing bars, combined with splitting of the ad-
jacent concrete, occurs before yielding.

In order to investigate the hypothesis that local disturbance of

the crack structure is responsible for the difference in behaviour
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between reinforced and unreinforced cracks, an additional series
of 4 specimens was cast. These specimens were made of mix 1, with
féc = 36.1 N/mm?, and were again reinforced with 2, 4, 6 and 8
stirrups ¢ 8 mm: around the stirrup legs soft sleeves were secured
to both sides of the crack over a distance of 20 mm. These sleeves
eliminated local splitting forces and thus the activation of the
additional mechanism of aggregate interlock (Fig. 5.29). The effect
of the sleeves on the restraint stiffness, calculated as earlier
with the finite difference method, proved to be inconsiderable
(Fig. 5.32). If the behaviour hypothesis were correct, these speci-
mens would behave in the same way as the unreinforced specimens
with external restraint bars. Indeed it appeared that the crack
opening path was dependent on the restraint stiffness of the rein-
forcement. The results of the tests are represented in Fig. 5.33

(dashed lines).

Fig. 5.30 Crack face of a specimen tested with external restraint

bars
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Fig. 5.31 Crack face of a specimen, reinforced with 2 stirrups
# 8 mm, showing crater—shaped holes around the rein-

forcing bars (after removal of loose material)
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Fig. 5.32 Effect of sleeves on the restraint stiffness for
specimens with 2, 4, 6 and 8 stirrups ¢ 8 mm, and

féc = 36 N/mm? (calculated)
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Fig. 5.33 Comparison between the results of the tests on specimens
with reinforcing bars, provided with short sleeves, and
two specimens with external restraint bars: (a) crack
opening path (b) shear stress-shear displacement rela-

tion, (c) restraint stiffness

A direct comparison can be made with the results of two tests with

external restraint bars, carried out earlier (solid lines). All
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the specimens were of the same concrete quality. Fig. 5.33.c shows
a comparison between the (measured) restraint stiffness of the un-
reinforced specimens with the (calculated - using Fig. 5.32) re-
straint stiffness of the reinforced specimens. The specimen with

6 stirrups (s -6¢8) had a stiffness against crack opening approxi-
mately equal to that of specimen 1/.0/7.8. (Fig. 5.33.c). It is
seen that the crack opening path (Fig. 5.33.a) and the t-A relation
(Fig. 5.33.b) are also almost the same. Furthermore the stiffness
against crack opening of specimen 1/.0/3.6 is intermediate between
those of the specimens s-2¢8 and s-4¢8 (for w > 0.1 mm and

A > 0.13 mm). In this case, too, the positions of the w-A relation
(Fig. 5.33.a and the t-A relation (Fig. 5.33.b) are in agreement
with what could be expected on the basis of the stiffness against
normal crack opening.

In spite of the apparently complex character of the mechanism of
transmission of forces around the reinforcing bars, the experiments
on reinforced specimens reveal two characteristic modes of behav-

iour.

1. The mechanism is not active for low values of the reinforcement
ratio (see for instance Fig. 5.26 and 5.27). It seems that if
the "natural" crack opening direction does not exceed a certain
critical value the loose particles around the bars do not lock

and as such do not influence the behaviour.

2. If locking of the loose particles occurs, struts with relative-—
ly high stiffness are apparently formed, since for all rein-
forcing percentages greater than about 0.67 the crack faces

are forced to follow the same crack opening path.

Quantitative analysis of the behaviour of reinforced cracks

In the previous section it was shown that the mechanism of trans-
mission of forces across reinforced cracks is not simply a function
of aggregate interlock (as established for unreipforced cracks),
dowel action and axial restraint stiffness of the embedded rein-

forcement. It appeared that aggregate interlock can be subdivided
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into two parts: aggregate interlock type I, transmitting forces via
embedded particles, and aggregate interlock type II, representing
the forces which act between the crack faces via concentrations of
loose particles around the reinforcing bars.

The overall behaviour is, as a result, a function of four compo-
nents, three of which can adequately be described as a function

of the displacements w and A: dowel action, axial restraint stiff-
ness and aggregate interlock type I. Hence it is obvious to study
the role of aggregate interlock type II as the missing link in the
polygon of forces.

The equilibrium of one half of a test specimen is represented in

Fig. 5.34.

1
w2t
\\
/’IZn
4
By
1
Lit 4 >
TH
IZFd
Fe

Fig. 5.34 Equilibrium of forces in a reinforced crack, in which

two types of aggregate interlock are distinguished

The forces, which are indicated by solid lines, are known for any
displacement combination (w, A): the external shear force Fe was
measured by a load cell, the dowel force ZFd can be calculated with
equation (5.16), the axial restraint forces H, of the reinforcement
normal to the crack plane, can be obtained from Figs. 5.23.a-d,

and the shear and normal forces resulting from aggregate interlock

type I can be calculated with equation (5.10) and (5.11). Since



aggregate interlock type II seems to be narrowly related to the
crack opening path, which is nearly constant for all concrete
types, it is resolved into a component normal and a component

2t)'
" have been calculated for all specimens

tangential to this path (I2n and I
The components I2n and I2
of the basic series (Table 4.II), for a great number of displace-
ment combinations (w, A). It appeared that for low amounts of rein-
forcement (2 stirrups ¢ 8 mm, Py = 0.567%), both components were
very small (this agrees with the observations in Fig. 5.26 and
5.27). For increasing amounts of reinforcement the value I in—

2n

creased considerably, but the value I, remained relatively un-—

2t
important, irrespective of the amount of reinforcement.

This implies that approximately equilibrium of forces is obtained
if the polygon of forces is simply closed by a line, normal to

the crack opening path (Fig. 5.35.a).

aggr. int.
horizont. ~|d

aggr. 4
interlock
vertical

restraint

stress rebars|] dowel

action
A
Fig. 5.35.a Polygon of Fig. 5.35.b Schematic representa-—
forces tion of forces in a

reinforced crack

Considering all crack opening paths of the basic series (Fig. 4.12),
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it was deduced that for low and intermediate concrete strengths

(20 < féc < 40 N/mm?2) the relation

2

& = 150w (5.17)
and for high concrete strength (féc = 56 N/mm?) the relation
A= 1.87 w*? (5.18)

describe the results with adequate accuracy.

Schematically the mechanism of force transmission is shown in

Fig. 5.35.b.

Aggregate interlock type II is represented by the infinitely stiff
compression struts S, which are defined to be always perpendicular
to the critical crack opening path, given by the equations (5.17
and 5.18). The struts S permit no crack opening steeper than the
critical crack opening path, but are not stressed if the natural
crack opening path is less steep.

In the following, the experimental results are compared with those
predicted on the basis of the system of Fig. 5.35.

First, it has to be established whether the compression struts are
activated or not. This is done as shown in Fig. 5.25; the relation
between the equivalent restraint stress and the crack width is
taken from Fig. 5.23, and the value A is then determined. The com-
bination (w, A) reveals whether the critical crack opening path is
exceeded or not. If not, the value T can be assessed with the dia-
gram, as a function of w and A, and the total external shear stress
is obtained by adding a dowel term, according to equation (5.16).
If the critical crack opening path is indeed exceeded, the struts
S are activated and the crack faces are forced to follow this path.
In this case the external shear stress is constructed, using the
principle represented in Fig. 5.35.a. The polygon of forces can be
constructed for every value of w, starting from point A. For a
value w the accompanying value A can be calculated with equation
(5.17) or equation (5.18). The dowel contribution is obtained from

equation (5.16). The normal restraint stress, caused by the rein-



forcement, can be taken from the diagrams in Fig. 5.23. The vertical
and horizontal components of aggregate interlock (type 1) are as-—
sessed, using the relations (5.10) and (5.11). The direction of
the normal on the crack opening path is obtained from (5.17) or
(5.18). Consequently the external shear stress is found as AB.
This calculation has been carried out for a great number of speci-
mens (Fig. 5.36.a-v).

In general, satisfactory agreement with the experimental results
is obtained. In some of the more heavily reinforced specimens the
calculated lines reach a higher peak value than the experimental
ones, which can be explained by the occurrence of spalling regions
at the top and bottom of the crack, observed during testing, which
weaken the ultimate resistance (Fig. 5.36.c, h, j, k, p). Indeed,
the specimens with lower concrete strength are more susceptible

to this strength reduction. (As discussed earlier, this effect

was theoretically demonstrated by Schwing [:69 ]).

Only in one of the specimens the struts S were not found to be
stressed (Fig. 5.36.r-v). If the influence of the stresses trans—
verse to the bars on the bond characteristics could be taken into
account, this would probably even increase the accuracy of the
approximation, since slightly higher values for 1 would be obtained

for values w < 0.4-0.5 mm.
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Fig. 5.36 Comparison between calculated relations (dotted lines)

and experimental relations (solid lines)

Specimens with reinforcing bars inclined to the crack plane

It can be shown that the behaviour of specimens with reinforcing
bars inclined to the crack plane is not essentially different from
that of specimens with reinforcement perpendicular to ghe crack
plane. In order to construct the tT-w and A-w relations it is neces-—
sary to calculate the restraint stress normal to the crack plane,
and the dowel action of the bars. The restraint stress normal to
the crack plane is, in the case of inclined bars, not only a func-
tion of the crack width w, but also of the shear displacement A
(Fig. 5.37).

For a displacement (w, A) the total pull-out slip of the reinforc-—
ing bar is equal to LA sin 6 + A cos 6. The total steel force
Fs,e in the direction 6 can be calculated by using Fig. 5.23, re-
placing w by v, and multiplying o by the crack area AC (0 is re-
lated to AC in Fig. 5.25), and is subsequently resolved into a

restraint force normal to the crack plane, equal to FS .sin 6,

6

and a shear force parallel to the crack plane, equal to Fse.cos B
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Fig. 5.37 Pull-out slip for an inclined reinforcing bar

For the dowel action of the inclined bars an expression suggested
by Mattock [ 50:] has been used, which related this force to the
dowel action of a bar perpendicular to the crack, according to

the formula

_ c o Z
Fa,6 = Fa,90-5170 o

T(N/mm?)

. w=0102 03 g4 05 06 07

3

2

1

0

1

2

3

6( N/mm?)

Fig. 5.38 Interaction diagram for féc = 34 N/mm? and 2 stirrups

¢ 8 mm inclined to the crack plane with 0 = 112°
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Fig. 5.40 Equilibrium in a crack with reinforcement inclined with

g = 135°

The tw and w-A curves can be constructed, requiring equilibrium
in the direction normal to the crack. The stress normal to the
crack, due to aggregate interlock, is formulated as a function

of w and A in equation (5.10) and equation (5.11). The restraint
stress normal to the crack, due to the tensile force in the rein-
forcement, is calculated, as described previously, also as a func-
tion of w and A (dashed lines in Fig. 5.38). Combinations of (w, A)
for which equilibrium is obtained can be graphically estimated with
interactions diagrams, an example of which is given in Fig. 5.38.
The corresponding value of T due only to aggregate interlock can
be read in the upper part of the diagram. To obtain the total shear
force, this value has to be increased by a term resulting from the
axial steel force and a term resulting from dowel action. Further-
more it has to be checked whether the critical crack opening path
is not exceeded. The results of these calculations are represented
in Fig. 5.39. The agreement between calculated and experimental
results is satisfactory. In the calculation it was found that even
for 6 = 135° the reinforcement was subjected to a tensile stress.
In the case of 6 > 90° this axial tensile force itself has a nega-—
tive influence on the shear resistance, but acts positively by
providing a restraint stiffness against crack opening and, as such,

activating aggregate interlock (Fig. 5.40).
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Hypothesis for the behaviour of reinforced cracks subjected to

general combinations of external loads or imposed displacements

In the previous section it was shown that the behaviour of the test
specimens could be described by defining two types of aggregate
interlock: type I, interlock over embedded particles, and type II,
interlock over concentrations of loose particles around the bars,
forcing the crack to follow a certain constant crack opening path.
The first type can be denoted as the micro-roughness, and the sec—
ond as the macro-roughness of the crack plane. For the tests carried
out, the macro-roughness seemed to be a characteristie property,
since a high degree of repeatability of crack opening paths was
observed. However, nearly all specimens had an initial crack width
of less than 0.04 mm, and all specimens were subjected only to
(external) shear forces. Due to these restrictions the information
obtained was limited. It may for instance be wondered what crack
opening path would be followed, if the initial crack width were
greater, or, if the external shear force were combined with an
axial tensile force. It seems not unlikely that alsé in other
points of the w, A plane critical crack opening directions exist
due to locking of loose particles. At present little evidence is
available to support this supposition. Besides a few tests carried
out with slightly greater initial crack widths, represented in
Fig. 4.8 and 4.9, only a series, carried out by Mattock [fﬂ ] was
found in the literature, giving complementary results. In that
investigation comparable precracked specimens, with reinforcing
ratios of 0.4 —-2.37, were subjected to an external shear load.
During precracking the crack width reached an average maximum
value of 0.28 mm. When the line loads were removed, a residual
crack width of about 0.23 mm remained, this being the average
width of the crack in the shear plane before the shear transfer
test.

Fig. 5.41 shows the crack opening path (supposing that for all

specimens W, 0.23 mm) for this series, with féc 4 28 N/mm?

yl
(which agrees with a cube crushing strength of about féc:=35 N/mm?) ,

and Dmax = 19 mm. It is seen that after a short vertical branch an
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_ approximately constant slope is followed (other tests, on other

types of concrete did not exhibit the vertical branch; see also
Fig. 2.36.b and [:83, p- 85:], so that also here a characteristic

crack opening path seems to exist.

——w(mm)
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0.7

Fig. 5.41 Crack opening paths for specimens, tested by Mattock
[5] ], for gravel concrete with féc v 35 N/mm?,

D =19 mm, 0.472 < p < 2.3Z and w_ = 0.23 mm
max (o] o

The average crack opening path obtained in the present author's
own tests for intermediate concrete strengths is indicated by a
dashed line in Fig. 5.41. It may be assumed that at every point
of the w, A plane a critical crack opening direction exists, which
cannot be exceeded, and that the critical directions can be repre-
sented by the definition of a continuous vector field. An example

is given in Fig. 5.42, in which the expression



% - "B ) BEE 200 Wi~ 1.5 8 (5.20)

is used as a definition formula for the critical crack opening
direction.

This formula is so constructed that both for the present author's
own tests, and for Mattock's, a fitting crack opening path is ob-

tained (see also Fig. 5.42).

—— w(mm)
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01 F\\‘
0.2 \\
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a5

06
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A(mm)

Fig. 5.42 Vector field according to equation (5.20), so defined

that both for Mattock [:51 ] and the present author's
own tests a good approximation of the experimental crack

opening path is obtained

It can be demonstrated that also Mattock's test results [fﬂ ] can
be reasonably well described using the procedure described in sec-—
tion 5.2.3, with the formulas (5.10), (5.11), (5.16) and Figs.
5.23.a-d, if equation (5.20) is used to define the critical crack
opening path. A comparison between calculated and experimental

relations for these tests is represented in Fig. 5.43.
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Since, however, only a few test results are available, further ex—
periments on reinforced specimens are necessary, focusing on the
existence of critical crack opening paths for a wider range of

w, A-values. Aspects of load history should also be taken into

account.,

—— > w(mm) T.(N/mmz)
0 02 04 06 08 10 10
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Fig. 5.43 Comparison between experimental values of tests by
Mattock [51] (solid lines) with calculated relations
(dashed 1lines)
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A MATHEMATICAL FORMULATION OF THE RELATION BETWEEN STRESSES AND
DEFORMATIONS OF CRACKED REINFORCED CONCRETE, TAKING INTO ACCOUNT
THE CRACK PROPERTIES

The stress—displacement relation for a single crack

A distinction has to be made between the two cases of a crack in
plain concrete and a crack in reinforced concrete. The experiments
demonstrated that in the case of reinforced cracks the crack open-—
ing direction may be confined to a certain limit value. To simulate
the behaviour displayed by the cracks a compression strut has been
introduced (Fig. 5.35), which is activated only if the shear dis-—

placement tends to exceed the limit value.

a. The unreinforced crack.

For the sake of succinct formulation a modified notation is used
for the stresses and displacements, referring to the directions
n (normal to the crack) and t (tangential to the crack)

(Fig. 6:1)«

Fig. 6.1 Principal directions n and t

6n and 6t represent the displacements in normal and tangential
directions (Gn > 0: én = crack width, earlier denoted as w),

ét = shear displacement (earlier denoted as A). The associated

stresses are Onn (normal stress) and cnt (shear stress).

The relations between ¢, © and § , S can be expressed as:
nn nn nt

nt



nn nn nt n
= or
B
4 c’l’lt tn tE d 6t
{d o} = [Bcr’p:l {d 8} (6.1)
where B, B, B and B__ are the crack stiffness coefficients:
nn nt 53t tn

the superscripts cr,p refer to crack and plain concrete. With
the equations (5.10) and (5.11) simplified expressions have been
given for the relations between o__, © and § 3 6 .+ In a

nn’ “nt nn

nt
generalized way these functions are represented by

c =f (6,68),0  =f (Gn, §,.) (6.2)

Differentiation of (6.2) results in expressions for the crack

stiffness coefficients:

B =- , B = , B = ,B = (6.3)

Detailed formulations for these expressions are given in Appen-—
dix III. These relations are valid for increasing values of

6, and IGtI, as generally encountered in the case of monotonic-—
ally increased loading. A path-dependent formulation, taking
into account plastic deformations and friction between particles
and matrix, would be possible on the basis of the data presented
in the Chapters 3 and 5, but would require more complicated ex—
pressions. Considering the values of the crack stiffness coef-
ficients, it can be expected that the crack stiffness matrix

is not positive definite. However, the unstable behaviour is
usually stabilized by the restraint provided by the reinforce-

ment and the boundary conditions (Bazant, Gambarova [13]).

b. The reinforced crack.

A distinction has to be made between the case where the crack

160 -



opens freely and the case where crack opening is confined to a
limit direction due to secondary effects caused by local modifica-
tions of the crack structure around the reinforcing bars due

to splitting forces. In Fig. 5.35 it was shown that in the case

of a confined crack opening it is possible to simulate the be-
haviour by the introduction of hinged struts with high stiffness.
The direction of these struts depends on the actual combination

of displacements (6n, 6t) (Bigs: 6u2)

Fig. 6.2 Compression struts as an expedient to simulate the be-

haviour of reinforced cracks

The relation between stresses and displacements is now a func-—
tion of two mechanisms: the compression struts (aggregate inter-—
lock type II) and the particle-matrix interaction, as formulated
in the previous section (6.1.a) (aggregate interlock type I).

In the next formulation the influence of dowel action is ne-
glected. The average stresses, caused by the very stiff compres—

sion struts, are represented by
(4 o5t} = [Bstrj/{d §°T} (6.4)

where the superscript str refers to strut and cr refers to crack.

§ . . : str—
Since the struts are inclined to the crack, the matrix [B r] .

which is by definition related to the crack direction (n, t),

has to be obtained by the transformation
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[petr] - [petr] [thr] [reer] 6.5)

or M2 2MN
with [RS ] =
| -MN  M?-N?
and B 0
SEY str
(5] -
L o 0

where M = cos ¢, N = sin ¢ and ¢ is the angle between the direc-—
tion normal to the crack and the direction of the struts. The
direction of the struts depends on the combination of displace-
ments: § = w(én, Gt) (Appendix III).

A sufficiently high stiffness could be attributed to the struts,

for example, E = 1020 (R =) .

str
The stresses in the crack as a result of the particle-matrix
interaction have earlier been formulated in equation (6.1).

A summation of the stresses caused by both effects yields
{d ¢} = [B”’r] {d 6%y (6.6)

with [Bc_r’r] B [:Bcr’l’] " [BStr:l (6.7)

where the superscript cr,r refers to crack in reinforced con-
crete. If the struts are subjected to tensile forces, the

matrix BStr is defined to be [BStr] = [O] ¢

The relation between stresses and displacements in cracked rein-

forced concrete

The relation between stresses and displacements in cracked rein-—
forced concrete is formulated in a way similar to that previously
proposed by Bazant and Gambarova [ 3]. A slight modification is
applied, enabling the introduction of tension stiffening effects.
A cracked concrete element is considered, reinforced with steel

bars in one direction. The concrete is intersected by a system of



parallel cracks of average spacing s; the angular deviation between

the bars and the crack normal is equal to 0 (Fig. 6.3).

| N y N

{ \2 ] N,
pr =
16 ¢

ad

Fig. 6.3 Reinforced concrete element intersected by cracks

It is assumed that the element is sufficiently large compared to
the spacing of bars and cracks and that the internal forces vary
gradually and smoothly, so as that they could be assumed to be

almost uniform over a distance of several bar and crack spacings.
oh ) o

By inversion of the crack stiffness matrix [B | from equation

(6.7), we obtain:

(6.8)

CI'}

or {d 67y = [Fcr’r] {d ¢°F}

where [Fcr,r] is the flexibility matrix of the crack and

[Fcr,r] . [Bcr,r]—l.

The average strains resulting from the "smeared out" cracks are:



ey, dnn CT cr 6nt "
(6.9)

€an ~ () Yot T 4 €at ~ s(o)

The superscript cr indicates that only deformations directly re-
lated to the crack displacements are considered. s(g) is the mean
crack spacing attended by a strain condition {e}. The mean crack

spacing s(e) depends on a number of influencing factors:

— the bond-slip relation, depending on the profiling of the rein-
forcing bars, the concrete quality and the stresses in the sur-—

rounding concrete;

- geometrical effects, such as the bar diameter, bar distance and

concrete cover;

- the concrete tensile strength (low strength results in many
cracks), which is also influenced by the stresses in the sur-

rounding concrete due to external forces;

- the angle between reinforcing bars and crack direction: in gen-
eral the mean crack width is a function of the introduction

length 1. of the bond stresses. If the cracks are perpendicular

b

to the direction of the reinforcement, the average crack spacing

is about s = 1.5 lb. If the angle between cracks and reinforce-
. o ; ;

ment deviates from 90, the average crack spacing is reduced as

a function of this deviation (Fig. 6.4).

™ .

Fig. 6.4 Crack spacing related to the orientation of the reinforce-

ment

Extended reviews and discussions on crack spacing have been given

by, among others, Leonhardt ]: 42], Eibl and Ivanyi [16] and
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Geistefeld [ 24 :| 3

A combination of the equations (6.8) and (6.9) results in:

-

cr ) B 1 1]

- - c
F 0 d
d € - s(ge) Fnt s(€) L
cr _ c
d B >oo= 0 0 0 1d Tee (6.10)
cr = =1 [
d Ynt) __Ftn s(g) 0 Ftt s(g) J »d 9c

which may be briefly written as
{d T} = [Dcr:l{d o} (6.11)

Here the superscript c refers to the concrete between the cracks.
The last equation indicates that the stresses in the concrete are
equal to those in the cracks. The average strains of the cracked

reinforced concrete element €’ © and Y e Can be obtained as

tt :
the sums of the strains of the solid concrete between the cracks

(o3 () € 2 cr cr ()=
€ and nd the strains due to the cracks e € 5
nn’ tt Yae @ nn’ te’ Yo’

SO
{d e} ={d e} + {d %) (6.12)

where {d ¢} = (d €n’ d Bppd d Ynt)T’ T denoting the transpose, and
{d scr}, {d gc} are the analogous column matrices for strains due
to cracks and to concrete between the cracks. The strains in the
concrete between the cracks are related to the stresses by the

incremental stress-strain relation
{d £ = [ch{d o} (6.13)

e —_— i
where D~ is the tangent flexibility matrix of concrete.

Substitution of (6.11) and (6.13) into (6.12) yields

{d e} = [D:l{d o} ':D:] - [:Dcr:‘ + [lncj (6.14)



where D is the flexibility matrix of cracked concrete as a whole.
Equation (6.14) being known, the influence of the reinforcement
can be insterted. It is assumed that the average strains of the
reinforcement are equal to those of the cracked concrete. The
effect of tension stiffening is implied in the stress-strain re-

lation of the steel. The averaged stresses are:
ra Os}=[cs]{d e} (6.15)

where the superscript s refers to steel. Since the cracks are in
general inclined with respect to the reinforcing bars, the matrix
[ CS_J , which is by definition related to the axes n and t, must

be obtained by the transformation:
T - —
-l [eglle
[c R ceJ R J,

P2 Q2 2 PQ

[xe]

Q2 P2 -2 7PQ (6.16)

]

-PQ PQ P2-Q2

with
peEs 0 OT
o.{g)
( s
_Ce] = 0 0 O (6:17)
L o o o]

where P = cos 6, Q = sin 6, 6 is the angle between the reinforcing
bars and the direction normal to the crack (Fig. 6.3). ES(E) is the
tangential spring stiffness of the reinforcing steel, N is the
reinforcing ratio in the bar direction and o(e) is a factor taking
account of the effect of tension stiffening. This factor a(e) is

closely related to the mean crack spacing s(e).

= 166 =



Finally the stresses due to the cracked concrete and to the steel

bars must be added:
{d o} = {d ¢} + {d ¢°}
Because, according to equation (6.14):
{do®t=[0]" tde}
this results in
fdoy=[c]{der with [c] =[c®] + [p]™!
where [(3] is the tangential stiffness matrix of cracked rein-

forced concrete, referred to the axes n and t. This matrix [ C:

must of course be further transformed to the element co-ordinates.
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RETROSPECTIVE VIEW

The aim of the investigation was to study the phenomenon of aggre-—
gate interlock as an individual mechanism and its role in co-oper-—

ation with other components in reinforced cracks.

The analysis of the first item resulted both in an adequate insight
into the physical backgrounds of the mechanism and in a simple
mathematical formulation. The results apply for a great variety

of concrete mixes. However, due to limitations in time and costs

not all aspects could be taken into account:

The results have been obtained for concretes with natural rounded
aggregate particles, for which a simplification to spheres may be
considered reasonable. In a number of countries crushed aggregate
is also used. To see whether the same relations apply also to

these types of concretes, or whether modifications are necessary,

other tests would be of interest.

- The orientation of the crack plane with respect to the direction

It was shown by the mathematical model describing the mechanism
of aggregate interlock that the stress—displacement relations
for cracks are affected by the quality of the matrix. The yield-
ing strength of the matrix, as defined in the model, is an aver-—
age value for a heterogeneous material. Effects of anisotropy

of this material have not been taken into account. However,
anisotropy may occur, due to the influence of the direction of
casting: as a result of water gain and sedimentation under coarse
aggregate particles a soft and spongy layer can form, with a
variable thickness. Hence, it may make a difference whether the
orientation of the layer is as represented in Fig. 7.1.a or as
in Fig. 7.1.b. It would be interesting to see whether this dif-

ference has a significant influence.



O

T

gain and sedimentation

Fig. 7.1 Effect of water gain and sedimentation on the stiffness

characteristics of a crack

- Matrix/particle strength ratios:

In the experiments the particle strength was generally higher
than the matrix strength. Even in the case of a concrete strength
of féc = 60 N/mm? in the tests, only a limited number of particle
were found to have fractured. However, if the relation particle
strength/matrix strength would be lower than in this investiga-
tion, the crack faces would be less profiled and the total con-
tact area could be significantly reduced. Tests have also been
carried out on cracked specimens made of lightweight concrete

[ 84, 85 ] in which the crack intersected all lightweight parti-
cles but avoided the sand particles. In spite of the fact that
the sand was distributed according to a Fuller curve, the results
obtained by calculation with the theoretical model (only taking
account of the sand particles) were too low. This is probably
caused by the rough surface of the broken lightweight particles,

the influence of which was neglected.

In the tests on reinforced cracks it appeared that for a wide range
of reinforcement ratios the crack opening path was not influenced
by the restraint stiffness against crack opening in normal direc-
tion. The divergence of the crack opening paths was small, in spite
of considerable variations in concrete strength and reinforcement
ratio. Hence, the results obtained in this part of the investiga-
tion do not cover all possibilities of crack opening which can be

expected in cracked reinforced concrete in practical situations.
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To improve the provisional model for the behaviour of reinforced
cracks, as proposed in this study, further experimental evidence
is needed. Above all, what is required are the results of tests

on reinforced cracks subjected to combinations of shear and ten—

sion normal to the crack.



SUMMARY

As a result of the increasing difficulties in structural design
associated with the increase in scale and complexity of new struc-—
tures and their loading conditions in recent years, added impetus
has been given to the development of numerical calculation tech-
niques. Above all, the non-linear finite element methods, which
are still being refined, may become powerful tools in future design.
These methods, however, can only show to full advantage if the
material characteristics to be inserted are adequately known. One
of the characteristics affected by lack of information concerns
the mechanism of transmission of forces across cracks whose the
faces are subjected to shear displacements. This mechanism is
achieved by interaction of several components: axial and trans—
verse stiffness (dowel action) of the reinforcement and direct
transfer of forces between the rough concrete crack faces, gener-
ally denoted by the term "aggregate interlock'. Since aggregate
interlock appeared to be the missing link in this system with
regard to the available knowledge, a research program was carried

out, focusing on this subject.

First, "pure" aggregate interlock, i.e., aggregate interlock in
cracks which are not intersected by reinforcement, was studied.

To obtain an insight into this mechanism a theoretical model was
developed, which was subsequently compared with experimental re-
sults. The theory is based on the assumption that concrete can

be conceived as a "two-phase'" material which is composed of a
collection of aggregate particles with high strength and stiffness
(phase I), and a matrix material consisting of hardened cement
paste with fine sand with lower strength and stiffness (phase II).
A crack in this composite material generally intersects the matrix,
but not the aggregate particles, because the contact layer between
particles and matrix is of relatively low quality. The transmission
of forces during shear displacement of the crack faces is effected
via local contact areas between the particles protruding from one

of the crack faces and the matrix in the opposite crack face. The
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} interdependence between forces and displacements of the crack faces
‘ is closely related to the deformation of the matrix material. The
most probable distribution and orientation of the contact areas
were determined by a statistical analysis. For this analysis the
aggregate particles were simplified to spheres, protruding for an
arbitrary part of their diameter from one of the crack faces. For
the distribution of the aggregate particle diameters a Fuller curve
was chosen, frequently used in the design of concrete mixes, which
\ has the advantage of being characterized by a simple mathematical
formulation. The coefficient of friction between particles and
‘ matrix at overriding, and the stress at which plastic deformation
of the matrix occurs, were used as "adjusting parameters" in the
‘ model. The validity of the theory has been verified by a number
of experiments in which the concrete quality, the particle sizes
‘ and the external restraining stiffness against crack opening had
‘ been varied. It was shown that the experimental results could be
| adequately described by the theoretical model. By means of a pa-—
‘ rameter study carried out with the model, the mechanism of trans-—
mission of forces was further analyzed, focusing on the role of
the individual particle fractions, the scale of the aggregate
particles and the influence of the grading curve. It was demon-—
stated that the behaviour of cracks subjected to cyclic loading,
as known from the literature, can be explained by the model. It
was also shown that the concrete quality has a great influence on

the "crack stiffness".

The second part of the investigation was concerned with the ques-—
tion whether the relations for cracks in plain concrete, derived

in the first part, are directly applicable to cracks in reinforced
concrete, in which the resistance to crack opening is internally
provided and in which the role of dowel action has to be considered.
Therefore a number of experiments were carried out, in which the
reinforcement ratio, the bar diameters and the concrete quality
were varied. It emerged that the relations previously found for
cracks in plain concrete could not be directly applied to cracks

in reinforced concrete. It was demonstrated that this must be due
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to local modifications caused in the crack structure in the imme-
diate vicinity of the reinforcing bars crossing the crack by split-—
ting forces transmitted through the ribs of the bars into the con-—
crete. It was observed that due to this additional mechanism a
preferred direction for crack opening exists, which exhibited only
minor differences for the various concrete types tested. It was
shown how the relation between forces and displacements for cracks
in reinforced concrete can be formulated on the basis of the ex-—

perimental results.

Finally it was indicated how the relation between stresses and
deformations for cracked reinforced concrete can be formulated,
taking account of the characteristics of the behaviour of single

cracks.



SAMENVATTING

Vooral de laatste jaren worden voor verschillende doeleinden con-
structies vereist met een steeds complexer karakter, waaraan voor—
al schaalvergroting en bijzondere functionele eisen debet zijn.
Bij het ontwerpen van dit soort constructies kan vaak niet meer
worden teruggegrepen naar bestaande ontwerpmethoden en rekenregels,
omdat deze meestal geldig zijn voor betrekkelijk eenvoudige geval-
len. In verband met het voorgaande zijn de laatste jaren sterke
impulsen gegeven aan de ontwikkeling van nieuwe rekentechnieken.
Vooral de ontwikkeling van de niet-lineaire elementenmethode opent
in dit opzicht brede perspectieven. Een dergelijke methode komt
echter slechts dan goed tot zijn recht, als nauwkeurige materiaal-
karakteristieken kunnen worden ingevoerd.

Eén van de mechanismen waarvan te weinig bekend was betreft de
overdracht van krachten tussen scheurvlakken indien deze aan
parallelverplaatsingen onderhevig zijn. De krachtsoverdracht kan
plaatsvinden via een interactie tussen de axiale veerstijfheid en
de deuvelwerking van de wapening, en "aggregate interlock", d.w.z.
de krachtsoverdracht tussen de ruwe beton-scheurvlakken. Omdat ge-
brek aan kennis voornamelijk het laatste onderdeel betrof is hier-

naar een onderzoek verricht.

In de eerste plaats is onderzoek gedaan naar de krachtsoverdracht
bij "zuiwere aggregate interlock", d.w.z. aggregate interlock in
ongewapende scheurvlakken. Om een inzicht te krijgen in dit mecha-
nisme is een theoretisch model ontwikkeld, dat vervolgens aan
experimenten is getoetst. De theorie gaat er van uit dat beton kan
worden beschouwd als een zogenaamd twee-fasen materiaal, dat is
opgebouwd uit een verzameling toeslagkorrels met grote sterkte en
stijfheid (fase I) en een matrixmateriaal, bestaande uit cement-—
steen met fijne toeslagkorrels, dat een lagere sterkte en stijf-
heid bezit (fase II). Een scheur door dit materiaal doorsnijdt in
het algemeen wel de matrix, maar niet de korrels, omdat de aan-
hechtingslaag tussen korrels en matrix van relatief lage kwaliteit

is. De krachtsoverdracht bij tegengerichte parallelverplaatsing der
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beide scheurvlakken komt tot stand ter plaatse van de contactvlak-
ken tussen de korrels aan de ene zijde van de scheur en de matrix
aan de andere zijde. De relatie tussen de krachten en de verplaat-
singen der scheurvlakken ten opzichte van elkaar hangt samen met

de mate waarin het matrixmateriaal wordt vervormd. De meest waar—
schijnlijke verdeling der contactvlakken is met een statistische
berekening bepaald. Hierbij zijn de toeslagkorrels tot bollen ge-
schematiseerd, die voor een willekeurig deel van hun afmetingen

uit het scheurvlak kunnen steken. Voor de opbouw van de korrel-
grootte-verdeling is een Fullerkromme aangehouden, die bij het
samenstellen van beton vaak wordt gehanteerd en het voordeel heeft
door een eenvoudige mathematische formulering te worden gekarakte-
riseerd. De wrijvingscoéfficiént ter plaatse van het korrelopper—
vlak en de spanning waarbij het matrixmateriaal plastisch gaat ver-
vormen zijn als "instelparameters'" in het model opgenomen. De gel-
digheid van de theorie is getoetst aan een aantal experimenten,
waarbij de betonkwaliteit, de korrelgrootte en de uitwendige stijf-
heid tegen openen van de scheur werden gevarieerd. Vastgesteld werd
dat de experimentele resultaten zeer goed door het mathematische
model kunnen worden beschreven. Door een parameterstudie, uitge-
voerd met behulp van het model, werd het mechanisme van krachts-
overdracht in scheuren nader geanalyseerd, waarbij aandacht werd
besteed aan de bijdrage van afzonderlijke korrelfracties aan de
krachtsoverdracht, de invloed van de schaal van het korrelmengsel
en de invloed van de verdelingsfunctie van het toeslagmateriaal.
Aangetoond werd dat het gedrag van scheurvlakken onder wisselbe-
lasting, zoals bekend uit de literatuur, in overeenstemming is met
de aannamen van het model en hieruit kan worden verklaard. Vastge-
steld werd dat de betonkwaliteit een grote invloed heeft op de

krachtsoverdracht in scheuren.

In het tweede deel van het onderzoek werd nagegaan of de gevonden
wetmatigheden direct toepasbaar zijn op scheuren in gewapend beton,
waarin de weerstand tegen scheuropening inwendig wordt geleverd

en waarbij rekening gehouden moet worden met de deuvelwerking van

de wapeningsstaven. Hiertoe zijn een aantal proevenseries uitge-
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voerd waarin onder meer het wapeningspercentage, de staafdiameters
en de betonkwaliteit werden gevarieerd. Hieruit bleek dat de rela-
ties, gevonden voor ongewapend beton niet zonder meer mogen worden
gebruikt voor gewapend beton. Aangetoond kon worden dat dit toege—
schreven moet worden aan vernietiging van de scheurstructuur ter
plaatse van de kruising met de wapeningsstaven, door splijtkrachten
die via de ribben van het staal in het beton worden ingeleid. Vast-—
gesteld werd dat door het optreden van dit mechanisme een voor-
keursrichting voor scheuropening ontstaat, die voor de verschil-
lende betonsoorten en kwaliteiten slechts zeer geringe verschillen
vertoont. Aangegeven werd op welke wijze de kracht-verplaatsings—
relatie voor scheuren in gewapend beton, op grond van de beschik-—

bare gegevens, geformuleerd kan worden.

Tot slot is aangegeven hoe de relatie tussen spanningen en ver-—
vormingen voor gescheurd gewapend beton kan worden geformuleerd,
rekening houdend met de gevonden karakteristieken voor het scheur—

gedrag.
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NOTATION
a projection of a contact length in a Z-plane on the X-axis
ay projection of a contact length in a Z-plane on the Y-axis
f free length
féc cube crushing strength
' ’ :
cylinder crushing strength
ceyl y & &
;p prism crushing strength
fR related rib area of a reinforcing bar, characterizing its
profiling
fSy yielding stress of steel
) probability
p (%) percentage of aggregate weight passing a sieve with a
certain opening diameter
P probability that an arbitrary point in the concrete is
located in an aggregate particle
s crack distance
s(g) crack distance at a strain €
u embedment depth of a particle, defined as the distance from
the centre of a spherical aggregate particle to the central
crack face
U oax maximum embedment depth of a particle for which contact
with the opposite crack face still exists.
w crack width
v initial crack width
y dowel deflection
AC total area of the crack plane
A cross sectional area of reinforcing bar(s)



max

mc

nn

nt

cr

projection on the Y-plane of the total contact area, ob-

tained over a unit crack area

projection on the X-plane of the total contact area, ob-

tained over a unit crack area

crack stiffness coefficients

diameter of a spherical aggregate particle
maximum diameter of a spherical aggregate particle
modulus of elasticity of concrete

modulus of elasticity of steel

dowel force

dowel force component parallel to the crack plane provided

by bars inclined at an angle 6 with this plane

axial steel force

axial steel force for bars, inclined at an angle 6 with the

crack plane

shear stiffness modulus of uncracked concrete
shear stiffness modulus of cracked concrete
foundation modulus of concrete

radius of a spherical aggregate particle

maximum radius of a spherical aggregate particle

radius of the smallest aggregate particle, providing "maxi-

mum contact"

G
shear stiffness reduction factor (= —EZ)

G
crack width
shear displacement

strain

strain for which cracking occurs
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ultimate strain
shear deformation angle

coefficient of friction between matrix and aggregate parti-

cles

reinforcement ratio
reinforcement percentage
normal stress

normal stress at which plastic deformation of the matrix

occurs

steel stress

steel stress at section x
concrete stress

concrete stress at section x
shear stress, bond stress
ultimate shear stress

shear stress at plastic deformation of the matrix during

sliding of the crack faces
shear displacement
slip of steel bar in concrete

diameter of a reinforcing bar

All values used in this report are expressed in N, mm, N/mm?,

unless indicated otherwise.



APPENDICES

Appendix I

Determination of the contact area for an intersection circle with
radius R as a function of the crack width w and the shear displace-

ment A.

A contact area can only exist if R < w. If R > w, three possibili-

ties are distinguished:
I. A < A ; Phase "No contact"; a =0; a =0
o x

2i AO < A < A, ; Phase "Growing contact";

b

Fig. I.1 Contact components a, and ay for w < R and Ao <A< Ab

The co-ordinates of S and T can be calculated. To simplify this
calculation the xy-axes are rotated through an angle a, so that
in the new situation the displacement is not characterized by

(A, w) but by (v, 0) withv = A2+ w? (Fig. T.2).



Fig. I.2

The co-ordinates of S can be calculated using Fig. I.2. S must

fulfill the conditions

which results in
yi= B - v

so that:

(X]_, yl) = (% V, R2 - lla VZ)

The relations between the new and the old co-ordinates are ex-—

pressed by:

X =1X] cos o — y] sin a

y_ =X sina + y; cos a
Hence the co-ordinates of S in the main xy-system are:

Xx =14 vecosa- RZ - ! v2 sin o (I.1)
y. =4 vsina + RZ - 1 v
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The co-ordinates of point T can be immediately established (Fig.

L.1)-

Yp=utw (E:2)

RZ - (u + w)?

M
1]
1

By subtracting T from S it is found that:

ay=ys-yT=%vsinu+ RZ-1lv2cosa-u-w (1.3)

ax=xs—xT=%vcosa- RZ-1v2sina+ \[RZ-(u+w)?

Furthermore v and a are related to w and A by:

v sin o = w
v cos a = A (1.4)
So §in @ = rmme— - and cos o = P T (I.5)

sz & AZ \/ w2 + A2

Substitution of (I.4) and (I.5) in (I.3) results in:

a = YRE= P epd) et . —fo-y (1.6)
¥ Hw2+A2

a_ = sA- \/RZ-1}(w?+42) . — \/RZ =(u+w)?2
“ \/ w2 + A2

3. A, < A; Phase '"Maximum contact;

b

It is easily deduced (Fig. I.1) that:

ay=R- (u + w) (1.7)
a_ = \/Rz—(u+w)2
X
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Appendix IT

Construction of the ascending branch of the t—-A relationship re-

presented in Fig. 5.16.

The relations between w, A, T and o, according to Fig. 5.3 are
represented in Fig. II.1 for the crack widths w = 0.5, 0.6 and

0.7 mm.

T(N/mm?) w =050

08 03 A(mm)

0.70
2 0.60

i w=050

3L o(N/mm?)

Fig. II.1 1, o, A, w relations for £f' = 33.4 N/mm? and D =
cc max

32 mm

The initial crack width is W, = 0.50 mm. It is seen that for
w=0.50 mm and A = 0.1, 0.2 and 0.3 mm no increase of crack width
can be expected, since no normal stress ¢ is developed. Further-
more it is known that an increase of crack width of Aw = 0.1 mm
results in an increase of the normal stress with Ac = 0.5 N/mm?.

So the following points form part of the ascending branch.



w (mm) A (mm) o (N/mm?) T (N/mm?)

0.50 0.1 0 0..25
0.50 0.2 0 0.85
0.50 0.3 0 1.75
0.60 0.52 0.5 3.10

Calculation of point C in Fig. 5.16

Fig. II.2 Calculation of the residual shear displacement A, after

unloading in the first cycle

At peak stress level'wo = 0.6 mm and A = 0.52mm. Substituting these
values in combination with R = 16 mm in equation (I.6), it is found

that ay = 9.95 mm.
In Fig. II.2 it is seen that

A= by = A

Cirele T ¢ x12 + y12 = R2)

¢ X1 12.53 mm Al =R-x,=3.47mm

Circle II: x,2 + y,2 = R?

r X, 12.12 mm A, = R = x, = 3.88 mm

So: A=Ay - Ay = 3.88 = 3.47 = 0.41 um.
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Appendix III

B.s B

Crack stiffness coefficients B. , B,
nn’ nt tn

tt

The crack stiffness coefficients are described by (see also

equation 6.3):

The functions fn and ft are described by (see also equation (5.10)

and equation (5.11)):

_f'
_ cc -0.80 -0.707 _ i N
B, = == {1.80 6 +(0.234 & 0.20)fcc}6t;0
._.f'
_ Tce -0.63 -0.552 _ ;
fn - =i + {1.35 Gn + (0.191 dn 0.15)fcc}6t;(3
fy
6no 6t
6to
1‘n
Fig. III.I
Differentination results in:
0<68 <6 B_=B_=B_=B8_=0 (orf.i. 10 20
= 't = to nn nt tn tt e
6to ; st ; 6n0 Bnn = Bnt =0
i -1.80 _ v —1.707
B {-1.44 8 0.165 £! & §6t
_ -0.80 05 707 .
Btt I8 6n + (0.234 én - 0.20)fcc



§_ > 8 B
nn

nt
tn

Et

where

to

no

where f'
ce

The angle Yy between

163 —]'552)6

=(-0.85 §_
n n t

-0.105 £' &
ce

0.6

34 0.191 6

- 1.35 & -0.552 _
n n

1
O.IS)fCC

1.80 _1'707)6

=(-1.44 &_
n n t

-0.165 £' &
cc

0.8 -0.707

n

= 1.8 6 0~+(o.234 s -0.20)f"'
n e

f'
cC

04 (0.234 s

0.8 -0.707

30{1.8 &_
n T

-0.20)f' }
ee

fl

cc
45 g 9H3
n

-0.552

20{1 +(0.191 & -0.15)f' }
n e

is the cube crushing strength (cubes 1503 mm).

the direction normal to the crack and the axes

of the hinged struts (Fig. 6.2), limiting the crack opening di-

rection, can at present only be based on a limited number of test

results. Using equation (5.20), which is a provisional formulation,

Y is expresses as:

w:

arctan {

1

b
§9 18165 +2.106) - 1.5
n n t
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Stellingen

Het in rekening brengen van de schuifweerstand van scheuren in de
formulering van de spannings—-vervormingsrelatie van géscheurd ge—
wapend beton door alleen de schuifstijfheid ten opzichte van de
ongescheurde fase te reduceren, zoals tot op heden algemeen ge-
bruikelijk, is onjuist: door de structuur van de scheurvlakken
treedt dilatatie op, waardoor ook de krachten en de verplaatsingen
loodrecht op de scheurrichtingen in beschouwing moeten worden

genomen.

De veronderstelling van Mattock dat het karakter van aggregate
interlock wordt bepaald door het over elkaar schuiven van de fijne
toeslagkorrels is onjuist. In de eerste plaats doen vanaf een
bepaalde korrelgrootte, afhankelijk van de positie der scheur-—
vlakken, alle fracties aan de krachtsoverdracht mee. In de tweede

plaats treedt naast glijding ook deformatie op.

Het gedrag van een gewapende scheur onder een schuifbelasting kan
niet zonder meer worden verklaard uit de componenten aggregate
interlock, deuvelwerking en axiale veerstijfheid van de wapening
zoals deze uit afzonderlijke proeven naar voren komen:

in samenwerkingsverband kunnen de componenten elkaars krachts-

overdrachtskarakteristieken beinvloeden.

Het feit dat het afschuifdraagvermogen van liggers zonder schuif-
wapening niet evenredig is met de liggerhoogte kan niet, zoals

algemeen wordt aangenomen, worden verklaard uit de schaalgevoelig-

heid van aggregate interlock.

Het gebruik van gemiddelde schuifspanningen ter bepaling van het
afschuifdraagvermogen van constructiedelen, zoals in voorschriften
gebruikelijk, geeft een onjuist beeld van de werkelijke krachts-

overdracht en kan daarom in de toekomst beter worden vermeden.

Om een zinvolle discussie over scheurwijdten in betonconstructies
mogelijk te maken, is het noodzakelijk dat voor scheurwijdte-

metingen een standaardprocedure wordt afgesproken.



In de door de VB '74 voorgeschreven waarden voor de toelaatbare
betontreksterkte is een reductiefactor verwerkt, waarmee tijds-—
afhankelijke effecten in rekening worden gebracht. Gezien het
ontbreken van een goede grondslag voor deze factor, alsmede de
invloed die deze heeft op het wapenen van veel soorten construc—
ties, is een grondig onderzoek naar het langeduur-gedrag van

beton onder trek gewenst.

Om de duidelijkheid van voorschriften te vergroten, zouden alle
hieraan ten grondslag liggende argumentaties eenvoudig achter-

haalbaar moeten zijn.

Naarmate de voor het doorrekenen van constructies beschikbaar
komende computorprogramma's gecompliceerder worden, groeit het

belang van constructief inzicht.

Het verminderde aantal verplichte buitenlandse talen op de middel-
bare scholen zal in de toekomst zowel het verrichten van weten-
schappelijk werk bemoeilijken als de plaats van de Nederlander

in het internationale overleg ondermijnen.

Bij de ontwikkeling van micro-electronische apparatuur ter ver-
groting van de mogelijkheden van informatieoverdracht dient niet
alleen aandacht te worden besteed aan vergroting van het infor-

matie-aanbod, maar ook aan de mogelijkheid van terugmelding.

Wanneer een voetbalploeg spreekt over '"ons doel", dan wordt hier-
mee het te verdedigen object bedoeld. Het feit dat dit volledig
in strijd is met de betekenis van het begrip '"doel" duidt erop

dat de voetbalsport een verdedigend karakter heeft.

De rassenintegratie zou erbij gebaat zijn als Zwarte Piet niet

meer als boeman zou worden afgeschilderd.

Stellingen behorende bij het proefschrift
van J.C. Walraven

Delft, 8 oktober 1980
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