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1 INTRODUCTION 

1.1 Motives and scope of the research 

A fundamental demand i n the design of s t r u c t u r e s i s that s u f f i c i e n t 
safety against f a i l u r e i s obtained. With regard to concrete s t r u c ­
tures i t can be stated that numerous experiments have been c a r r i e d 
out i n order to enable the ult i m a t e r e s i s t a n c e of many types of 
s t r u c t u r a l members under various loading c o n f i g u r a t i o n s to be e s t i ­
mated. However, while i t i s true that at present many equations are 
a v a i l a b l e f o r p r e d i c t i n g bearing c a p a c i t i e s i n adequate agreement 
w i t h a v a i l a b l e t e s t r e s u l t s , i t cannot be claimed that the the o r i e s 
always t r u l y e x p l a i n the c a l c u l a t e d strengths. Lack of fundamental 
knowledge i n s e v e r a l respects means that i t i s o f t e n impossible to 
be confident i n extending e x i s t i n g equations to s t r u c t u r e s w i t h a 
more complex behaviour. 
P a r t i c u l a r l y i n the l a s t decade an increase i n s c a l e and complexity 
of new s t r u c t u r e s has occurred. Problems encountered i n the design 
of offshore s t r u c t u r e s subject to wind, waves, d r i f t i n g i c e and 
c o l l i s i o n s w i t h other f l o a t i n g objects go f a r beyond the l e v e l of 
the a c t u a l l y a v a i l a b l e experimental knowledge. The same can be s a i d 
of the c o n s t r u c t i o n of re a c t o r v e s s e l s , r e q u i r i n g a high degree of 
safety against any p o s s i b l e damage caused by earthquake motions or 
f l y i n g o b j e c t s . Also sea r e s i s t i n g s t r u c t u r e s , such as the surge 
t i d e b a r r i e r i n the Eastern Scheldt (Oosterschelde) i n the Nether­
lands, which has to p r o t e c t thousands of people from another f l o o d 
d i s a s t e r , confront the designer w i t h problems which he cannot solve 
by simply c o n s u l t i n g the l i t e r a t u r e . Small-scale t e s t s on such 
s t r u c t u r e s could provide a b e t t e r i n s i g h t i n t o these s i t u a t i o n s , 
but often the incomplete knowledge about scale laws, p a r t i c u l a r l y 
f o r concrete s t r u c t u r e s , leads to new i n c e r t a i n t i e s . There i s e v i ­
dently a need f o r improved methods of a n a l y s i s . 

F o r t u n a t e l y , a l s o i n the f i e l d of c a l c u l a t i o n techniques new per­
spectives were opened by the development of the computer. The i n t r o ­
duction of the f i n i t e element method, by means of which the behav-
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i o u r of complicated s t r u c t u r a l systems could be analysed, although 
i n i t i a l l y only on the assumption of l i n e a r e l a s t i c m a t e r i a l proper­
t i e s , was an important step forward. However, f o r concrete s t r u c ­
t u r e s , which e x h i b i t a s t r o n g l y non-linear character due to the 
formation of cracks and p l a s t i f i c a t i o n of m a t e r i a l s , more sophis­
t i c a t e d programs had to be developed, i n v o l v i n g the p o s s i b i l i t y of 
r e d i s t r i b u t i o n of f o r c e s . Therefore not only the numerical programs 
had to be improved, but a l s o close a t t e n t i o n had to be paid to ac­
curate f o r m u l a t i o n of the p r o p e r t i e s of the co n s t i t u e n t m a t e r i a l s . 
To give added impetus to f u r t h e r development i n t h i s d i r e c t i o n , the 
research p r o j e c t "Concrete Mechanics" was s t a r t e d . I t was expected 
that the best r e s u l t s would be obtained by a c o l l a b o r a t i o n of i n ­
v e s t i g a t o r s i n the f i e l d s of computer a n a l y s i s and m a t e r i a l research. 
P a r t i c i p a t i n g i n the p r o j e c t were on the one hand the Ri j k s w a t e r ­
s t a a t , a d i v i s i o n of the Netherlands M i n i s t r y of Transport and 
P u b l i c Works, concentrating on the numerical part of the research 
program, and on the other hand the Technological U n i v e r s i t i e s of 
D e l f t and Eindhoven and the I n s t i t u t e f o r Applied S c i e n t i f i c Re­
search on B u i l d i n g M a t e r i a l s and B u i l d i n g Structures (IBBC-TNO), 
focusing on the m a t e r i a l aspects. The o v e r a l l p r o j e c t "Concrete 
Mechanics" was f i n a n c i a l l y supported and organized by the CUR, 
the research committee i n the Netherlands Concrete A s s o c i a t i o n . 
A survey of the s t r u c t u r e of the p r o j e c t i s presented i n F i g . 1.1. 

experimental v e r i f i c a t i o n 

fundamental knowledge 

design r u l e s 

micro-model 

macro-model 

crack area 

bond area 

l i t e r a t u r e 

F i g . 1.1 Struc t u r e of the o r g a n i z a t i o n of the p r o j e c t "Concrète 
Mechanics" 



The numerical part of the p r o j e c t has meanwhile r e s u l t e d i n two 
non-linear f i n i t e element programs, the micro and the macro-model. 
The micro-model i s able to describe the formation of d i s c r e t e cracks 
i n a concrete s t r u c t u r e ^ I n t h i s way the displacements at a crack 
can be determined and the e f f e c t of these displacements on the i n -
t e r n a l s t r e s s e s can be taken i n t o account.'Since t h i s model can 
make a dominant crack d i s t i n c t l y d i s c e r n i b l e , i t i s e s p e c i a l l y 
s u i t a b l e f o r the a n a l y s i s of complex s t r u c t u r e s and r e i n f o r c i n g 
d e t a i l s (Grootenboer^^ 27 3 ) • T n e other model,(^the macro-model, i s 
based on a d i f f e r e n t concept^To c a l c u l a t e the behaviour under 
loading a s t r u c t u r e i s d i v i d e d i n t o imaginary l a y e r s of concrete 
and s t e e l , having d i f f e r e n t p r o p e r t i e s The e f f e c t of cr a c k i n g i s 
taken i n t o account by modifying the s t i f f n e s s c h a r a c t e r i s t i c s of 
a l a y e r . ¡The cracks are as such "smeared out" (Blaauwendraad et a l . 

6 ^) / Both programs enable non-linear m a t e r i a l p r o p e r t i e s to be 
. • \ in s e r t e d i n an appropriate way. j 

The m a t e r i a l research was subdivided i n t o three p a r t s : a study of 
the mechanisms d i r e c t l y r e l a t e d to the crack area, an a n a l y s i s of 
the bond area and a study of l i t e r a t u r e to provide remaining char­
a c t e r i s t i c s , such as the behaviour of concrete under b i a x i a l l o a d ­
i n g . 
The part of the p r o j e c t reported i n t h i s document i s concerned w i t h 
the study of the crack area and was c a r r i e d out at the D e l f t Uni­
v e r s i t y of Technology. An adequate understanding and formulation 
of the transmission of forces across cracks i n concrete i s neces­
sary to take f u l l advantage of the p o s s i b i l i t y , included i n the 
numerical programs, to describe r e d i s t r i b u t i o n s of f o r c e s . 

1.2 Some aspects of the r o l e of the roughness of the cracks i n concrete 
s t r u c t u r e s 

P r i o r to d i s c u s s i n g some examples i l l u s t r a t i n g the r o l e of the 
roughness of the cracks, i t may be u s e f u l to po i n t out two impor­
tant features inherent i n the behaviour of cracks i n r e i n f o r c e d and 
prestressed concrete. 

a. Although cracks are g e n e r a l l y formed p e r p e n d i c u l a r l y to the 
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d i r e c t i o n of the l o c a l p r i n c i p a l t e n s i l e stresses i n the con­
crete i n the uncracked loading stage, they do not n e c e s s a r i l y 
a l s o open p e r p e n d i c u l a r l y to t h e i r d i r e c t i o n . This i s mainly 
caused by the f a c t that the s t r e s s - s t r a i n r e l a t i o n s of cracked 
r e i n f o r c e d or prestressed concrete d i f f e r e s s e n t i a l l y from those 
i n the uncracked stage. Whereas i n the uncracked stage the i n ­
fluence of the reinforcement on the s t r e s s - s t r a i n r e l a t i o n s i s 
small and the behaviour i s not f a r from being i s o t r o p i c (De 
J o s s e l i n de Jong |~ 33 J and Walraven [] 80 ] ) , i n the cracked 
s t a t e g e n e r a l l y an a n i s o t r o p i c type of behaviour i s developed, 
r e s u l t i n g i n shear s t r e s s e s p a r a l l e l to the cracks. In an ear­
l i e r p u b l i c a t i o n [_ 81 J t h i s subject was discussed. Apart from 
t h i s argument, i t must a l s o be noted that i n non-prestressed 
concrete shrinkage and temperature stresses as w e l l as previous 
loads may produce a crack of any d i r e c t i o n , e x i s t i n g before the 
u l t i m a t e load i s introduced. The existence of cracks i n other 
d i r e c t i o n s than would d i r e c t l y r e s u l t from the loads i n the u l ­
timate loading s t a t e i t s e l f , i s sometimes even a necessary as­
sumption f o r design: an example of t h i s i s that current design 
c r i t e r i a i n the United States f o r c o n v e n t i o n a l l y r e i n f o r c e d nu­
c l e a r containment v e s s e l s £ ] ~2 r e q u i r e that the s t r u c t u r e be 
designed to withstand the simultaneous occurrence of i n t e r n a l 
pressure and the i n e r t i a forces generated by a strong motion 
earthquake. Crack planes form i n the concrete w a l l i n the h o r i ­
z o n t a l and v e r t i c a l d i r e c t i o n s ( F i g . 1.2) due to i n t e r n a l pres­
sure. The c y c l i c shearing forces due to a seismic e x c i t a t i o n 
must then be transmitted along these planes ( L a i b l e et a l . [] 40 ]). 

/ / / / 
' / I 
11 
\CZ 
i f j 
HI 

g. 1.2 Cracking of a v e s s e l under i n t e r n a l pressure and seismic 
loading [ 40 ] 



b. As a r e s u l t of i t s rough s t r u c t u r e the cracks can transmit forces 
i n the normal and the p a r a l l e l d i r e c t i o n i f the crack faces are 
s h i f t e d i n opposite d i r e c t i o n s . Three mechanisms can c o n t r i b u t e 
to t h i s transmission: 

- Aggregate i n t e r l o c k : t h i s mechanism i s d i r e c t l y r e l a t e d to 
the way i n which a crack i s formed i n concrete. Because the 
strength of the hardened cement paste i n most concretes i s 
lower than the s t r e n g t h of the aggregate p a r t i c l e s , cracks 
i n t e r s e c t the cement paste but run along the edges of the 
aggregate p a r t i c l e s . So the aggregate p a r t i c l e s , extending 
from one of the crack faces, " i n t e r l o c k " w i t h the opposite 
face and r e s i s t shear displacements ( F i g . 1.3.a). 

- Dowel a c t i o n : t h i s term denotes the r e s i s t a n c e of a r e i n f o r c ­
ing bar, c r o s s i n g a crack, to shear displacement ( F i g . 1.3.b). 
I t i s g e n e r a l l y assumed that dowel a c t i o n i s i n f e r i o r to ag­
gregate i n t e r l o c k f o r the reinforcement r a t i o s which are used 
i n p r a c t i c e . 

- A x i a l forces i n r e i n f o r c i n g bars i n c l i n e d to the crack plane 
( F i g . 1.3.c). 

a b c 

F i g . 1.3 Aggregate i n t e r l o c k ( a ) , dowel a c t i o n (b) and a x i a l 
s t e e l force (c) 

In the f o l l o w i n g some examples are given, i l l u s t r a t i n g the r o l e of 
the transmission of forces i n cracks and emphasizing the need to 
have a b e t t e r understanding of t h i s phenomenon. 
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F i g . 1.4 shows the c r a c k i n g p a t t e r n of a beam without shear r e i n ­
forcement, subjected to a 4-point loading t e s t , at about 80% of the 
ultimate load Q 82 ] . 

F i g . 1.4 Measurements on cracks i n a beam without shear r e i n ­
forcement Q 82 ~2 

During t h i s t e s t some s t r a i n gauge rosettes were stuck on the 
cracks, immediately a f t e r observation (at a crack width of 
w = 0.10-0.15 mm), so that the displacements could be measured. 
I t i s seen that an i n c r e a s i n g amount of shear displacement was 
recorded, so that shear forces can be expected to be transmitted 
across the cracks (see a l s o F i g . 1.3.a). Estimates of the c o n t r i ­
b u t i o n of aggregate i n t e r l o c k i n the cracks on the b a s i s of exper­
iments conducted on s i n g l e cracks (see s e c t i o n 2.1), v a r i e d between 
40 and 90% (Taylor [_ 75 ] , Fenwick C 1 8 D» Swamy Q 73 ] ) . 
The research p r o j e c t from which the r e s u l t s presented i n F i g . 1.4 
were borrowed, refu t e d a p e r s i s t e n t misunderstanding about aggre­
gate i n t e r l o c k . A study of the phenomenon that the shear r e s i s t a n c e 
of such types of beam does not increase l i n e a r l y w i t h the scale of 
the beam, but l e s s , was undertaken. This was g e n e r a l l y b e l i e v e d to 
be due to the f a c t that i n experiments the s i z e of the aggregate 
p a r t i c l e s was the only v a r i a b l e that was not scaled p r o p e r l y , which 
would lead to d i f f e r e n c e s i n aggregate i n t e r l o c k . In the i n v e s t i ­
g ation a s e r i e s of d i f f e r e n t l y scaled beams, made of gravel con­
c r e t e , was compared with an i d e n t i c a l s e r i e s , made of l i g h t w e i g h t 
concrete. In s p i t e of the f a c t that l i g h t w e i g h t concrete can only 



supply a very reduced aggregate i n t e r l o c k component, as a r e s u l t 
of the low strength of the l i g h t w e i g h t aggregate p a r t i c l e s permit­
t i n g the crack to run both through the hardened cement paste and 
the p a r t i c l e s ( F i g . 1.5), the s e n s i t i v i t y to the increase of the 
scale d i d not d i f f e r from that obtained f o r gr a v e l concrete. Only 
the shear r e s i s t a n c e was lower over the f u l l range of t e s t s . I t 
was demonstrated that not aggregate i n t e r l o c k , but the i n f l u e n c e 
of the s t r a i n gradient on the f l e x u r a l t e n s i l e strength of the con­
c r e t e , i s respo n s i b l e f o r the scale e f f e c t . This may i l l u s t r a t e 
that c a u t i o n i s necessary i n t e s t i n g s t r u c t u r e s on model s c a l e i f 
no f u l l understanding of aggregate i n t e r l o c k i s a v a i l a b l e . 

igljpi 
lightweight concrete 

F i g . 1.5 Aggregate i n t e r l o c k i n gravel concrete (intermediate or 
low strength) and li g h t w e i g h t concrete 

The c a p a b i l i t y of aggregate i n t e r l o c k to transmit shear forces 
was even more c l e a r l y demonstrated i n an i n v e s t i g a t i o n i n t o the 
in f l u e n c e of a x i a l t e n s i l e forces on the shear r e s i s t a n c e of sym­
m e t r i c a l l y r e i n f o r c e d beams without shear reinforcement (Regan 
L 61 J ) . P r i o r to shear lo a d i n g , the beams were subjected to a x i a l 
t e n s i l e loads, producing cracks perpendicular to the beam a x i s . 
These t e n s i l e loads were kept constant during l o a d i n g , at values 
between 0 and 130 kN. The loading arrangement i s presented i n 
F i g . 1.6. 
The i n f l u e n c e of a x i a l loading on the shear st r e n g t h was found to 
be very s m a l l . In a l l beams f a i l u r e was caused by the formation of 
a s i n g l e w e l l - d e f i n e d crack, with an i n c l i n a t i o n notably f l a t t e r 
than that of any e a r l i e r cracks. 

gravel concrete 
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F i g . 1.6 Beam subjected to combined shear and a x i a l loading | _ 6 l ] 

I t was apparent from the behaviour of beams containing v e r t i c a l 
cracks over t h e i r whole depth that shear was being transmitted by 
aggregate i n t e r l o c k and dowel a c t i o n , e s p e c i a l l y as such cracks 
near points of c o n t r a f l e x u r e were never even p a r t i a l l y closed by 
the formation of compression zones due to bending. A s p e c i a l beam 
was tested to i n v e s t i g a t e the p o s s i b l e s i g n i f i c a n c e of dowel a c t i o n . 
This beam had a smooth-sided crack preformed i n i t at the s e c t i o n 
of c o n t r a f l e x u r e . The crack was formed by a sheet of acetate paper. 
The beam f a i l e d at a very low load w i t h the formation of dowel 
cracks at the l e v e l s of the top and bottom reinforcement. 

High r e l i a b i l i t y i s f u r t h e r imposed on the cap a c i t y of cracks to 
transmit shear forces i n the a p p l i c a t i o n of theories based on the 
p r i n c i p l e of p l a s t i c behaviour. In these t h e o r i e s i t i s assumed 
that shear displacements of the crack faces are completely pre­
vented by aggregate i n t e r l o c k , implying that the cracks can open 
only i n the perpendicular d i r e c t i o n . With regard to beams w i t h 
shear reinforcement, i t i s assumed that there i s an upper and a 
lower s t r i n g e r , which are both i n f i n i t e l y s t i f f i n the a x i a l d i ­
r e c t i o n and have no f l e x u r a l s t i f f n e s s at a l l : as a r e s u l t the 
f l e x u r a l moment i s f u l l y r e s i s t e d by these s t r i n g e r s and the shear 
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force i s f u l l y c a r r i e d by the web of the beam. Due to these con­
d i t i o n s shear str e s s e s are provoked i n the cracks, r e s u l t i n g i n 
compression diagonals w i t h a f l a t t e r i n c l i n a t i o n than the cracks 
themselves. The " p l a s t i c t r u s s " leads to a more economical design 
of the shear reinforcement than the o r i g i n a l Morsch truss ( F i g . 
1.7), which has compression diagonals, by d e f i n i t i o n i n c l i n e d at 
45 degrees to the beam a x i s , and which i s ge n e r a l l y known to over­
estimate the forces i n the shear reinforcement considerably. 

1 
Mörsch truss 

1 
'plastic' truss 

F i g . 1.7 Morsch truss analogy and p l a s t i c truss analogy 

However, to get good agreement between the p r e d i c t i o n of the p l a s ­
t i c theory and the r e s u l t s of experiments, mostly c o r r e c t i o n coef­
f i c i e n t s are necessary, which are not the same f o r a l l cases of 
loading and cannot be p h y s i c a l l y explained i n a s a t i s f a c t o r y way. 
To o b t a i n a b e t t e r idea of the merits and l i m i t a t i o n s of the p l a s ­
t i c theory and the way i n which improvements could be achieved, i t 
i s necessary to have a b e t t e r understanding of the most fundamental 
assumption of the theory: the f u l l prevention of shear d i s p l a c e ­
ments i n cracks by aggregate i n t e r l o c k . F i g . 1.8 shows some measure­
ments of the opening d i r e c t i o n of cracks i n a p a r t i a l l y p restressed 
beam, tested i n an e a r l i e r i n v e s t i g a t i o n (Bruggeling et a l . [_ 8 ~~\ ) . 
I t i s seen that the assumption of f u l l y prevented shear d i s p l a c e ­
ment does not hold true. However, i t i s f e l t that the occurrence 
of shear displacements i s a b e t t e r argument f o r the presence of 
shear stresses i n the cracks than an observation of perpendicular 
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crack opening would be (see also F i g . 1 . 3 .a). 

F i g . 1.8 Measurements on cracks i n a p a r t i a l l y prestressed 
beam without shear reinforcement \_ 8 ~J 

The l a s t example i s concerned w i t h the gen e r a l l y underestimated 
r o l e that aggregate i n t e r l o c k plays i n the design of mesh r e i n ­
f o r c i n g systems, which i s a fundamental problem f o r concrete 
s h e l l s , shear w a l l s , box gi r d e r s and v e s s e l s , prestressed as w e l l 
as unprestressed, and has been studied i n t e n s i v e l y ( [ 2 , 7, 39, 4 l ] ) . 
G enerally, the r o l e of aggregate i n t e r l o c k has been disregarded, 
arguing that the f r i c t i o n i s h i g h l y v a r i a b l e and, to be on the safe 
s i d e , should be neglected. Recently Bazant V4 J pointed out, that 
t h i s argument i s f a l s e . The reason i s that during subsequent tan­
g e n t i a l displacement the wedging e f f e c t of surface a s p e r i t i e s i n 
contact causes f u r t h e r r e l a t i v e normal displacements, which i s 
manifested by an o v e r a l l volume increase due to shear ( d i l a t a n c y ) 
( F i g . 1.9). 
Due to t h i s d i l a t a n c y the reinforcement c r o s s i n g the crack i s ten-
sioned. I f t h i s e f f e c t i s not taken i n t o account, i t may happen 
that t e n s i l e y i e l d i n g of the reinforcement occurs before the ap­
p l i e d load component normal to the crack alone i s great enough f o r 
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achieving i t . Furthermore i t may occur that the crack width i n the 
s e r v i c e a b i l i t y s t a t e i s greater than expected ( F i g . 1.9), which 
would be rather undesirable i n , f o r inst a n c e , bridges or nuclear 
s t r u c t u r e s . Consequently, taking aggregate i n t e r l o c k i n t o account 
g e n e r a l l y leads to heavier rather than l i g h t e r reinforcement and 
thus a neglect of t h i s mechanism i s seen to be gen e r a l l y on the 
unsafe s i d e . 

F i g . 1.9 Shear d i l a t a n c y i n cracks 

The formulation of crack c h a r a c t e r i s t i c s i n e x i s t i n g numerical 
programs 

E a r l i e r numerical programs d i s p l a y a great v a r i e t y of p r o p e r t i e s , 
a t t r i b u t e d to the cracks. 
Ngo/Scordelis Q54 ] , N i l s o n Q 55 ] and Stauder £ 71 ] introduced 
cracks i n t h e i r non-linear f i n i t e element programs by disconnecting 
the nodes between the elements. In t h i s way d i s c r e t e cracks were 
obtained, each side of which was considered to be an independent 
e x t e r n a l boundary, unable to transmit shear str e s s e s ( F i g . 1.10). 
The disadvantage of t h i s method i s that the crack d i r e c t i o n s are 
r e s t r i c t e d to the d i r e c t i o n of the element edges. Another, more 
gene r a l l y applied method, which i s not subject to t h i s r e s t r i c t i o n , 
i s to "smear out" the e f f e c t of cracking over the elements: i t i s 
then assumed tha t , i f the t e n s i l e strength of the concrete i n an 
element i s reached, an i n f i n i t e number of i d e n t i c a l cracks w i t h 
the same d i r e c t i o n i s formed ( F i g . 1.11). 



F i g . 1.10 Crack r e p r e s e n t a t i o n F i g . 1.11 
by means of disconnect­
ing nodes ^54, 55, 71 ] 

Crack r e p r e s e n t a t i o n 
by means of smeared-
out crack f i e l d s 

The cracked elements are considered as continua w i t h an a n i s o t r o p i c 
behaviour. The assumption that these cracks behave as smooth sur­
faces, unable to transmit shear s t r e s s e s , was made by Cervenka 
Q 13 3 a n a L o o v C 4°H • Inherent i n t h i s assumption i s that the 
p r i n c i p a l s t r e s s d i r e c t i o n s a f t e r c r a c k i n g are f i x e d i n , and per­
pendicular to, the d i r e c t i o n of the cracks: as a r e s u l t a r e d i s t r i ­
bution of forces a f t e r c r a c k i n g was impossible. The shear s t i f f n e s s 
modulus, denoted by G i n the uncracked s t a t e , was reduced to zero 
immediately a f t e r c r a c k i n g ( F i g . 1.12). 

I 

T 
F i g . 1.12 Shear modulus of cracked concrete according to | 13, 4 6 ] 

Maintainance of the f u l l shear r e s i s t a n c e a f t e r cracking was sup­
posed i n the non-linear f i n i t e element programs developed by 



F r a n k l i n [_ 21 J , Isenberg/Adham Q 31 J , Zienkiewics/Phillips/Owen 
C ? 2 ] , Swoboda [_ 74 ] and M u l l e r [_ 52 ] ( F i g . 1.13). As was men­
tioned already i n s e c t i o n 1.2, t h i s assumption was a l s o used i n 
the a n a l y t i c a l methods based on the theory of p l a s t i c i t y (Braestrup/ 
N i e l s e n [ s ] , Thiirlimann [ 7 8 ] , CEB-Model Code Q 101) • 

F i g . 1.13 Shear modulus of cracked concrete according to Q 5 , 10, 
31 , 52, 53, 74, 78, 92 ] 

A l s o Ebbinghaus Q l 5 ] took a f u l l y maintained G-value a f t e r crack­
ing i n t o account, but added the c o n d i t i o n that t h i s value i s r e ­
duced to zero, i f the shear st r e s s i n the cracks exceeds a c e r t a i n 
l i m i t . This l i m i t was defined to decrease f o r i n c r e a s i n g s t r a i n 
normal to the crack d i r e c t i o n (or, formulated d i f f e r e n t l y , f o r 
i n c r e a s i n g crack widths) ( F i g . 1.14). 

F i g . 1.14 Shear modulus of cracked concrete according to f '5 

A formulation which i s s t i l l g e n e r a l l y used, i m p l i e s that the shear 
s t i f f n e s s of an element a f t e r cracking i s reduced to a lower v a l u e , 
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but remains greater than zero, according to the equation: 

T = a.G.y 

i n which a i s a predetermined constant, with 0 < a < 1 ( F i g . 1.15). 
X 

F i g . 1.15 Shear modulus of cracked concrete according to |~ 11, 28, 
37, 43, 72, 91 ] 

This type of f o r m u l a t i o n was used by Hand/Pecknold/Schnobrich [_ 28 J 
(a = 0.4), Yuzugullu/Schnobrich Q 9 l 3 (a = 0.2), Suidan/Schnobrich 
|^72^] (a = 0.5), L i n / S c o r d e l i s [_ 43 ] , Cedolin/Dei P o l i £ 1 1 J and 
Krisnamoorthy/Paneerselvam \~ 37 ] • In a l a t e r p u b l i c a t i o n C e dolin 
and Dei P o l i improved t h i s f o r m u l a t i o n , r e l a t i n g a to the s t r a i n 
normal to the d i r e c t i o n of the cracks ( F i g . 1.16) £ 12 ^ . 

X 

F i g . 1.16 Shear modulus of cracked concrete according to £l2 J 
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The suggested expression f o r 

e 
G /G = C (1 - — ) 

G /G = 0 cr 

i n which C i s a numerical constant (suggested value 0.1 E ), e i s 
c n 

the f i c t i t i o u s s t r a i n (the c o n t r i b u t i o n of the concrete to the 
s t r a i n was neglected) i n the d i r e c t i o n normal to the crack and 
i s a l i m i t value beyond which no shear transmission across the 
cracks i s supposed to be p o s s i b l e (0.0035 < z < 0.0045). 
Schimmelpfennig £ 67 J used a r e d u c t i o n f a c t o r a which was defined 
to decrease as a f u n c t i o n of i n c r e a s i n g s t r a i n normal to the crack 
d i r e c t i o n , but was also r e l a t e d to the l e v e l of the shear s t r e s s 
i n the cracks ( F i g . 1.17). 

F i g . 1.17 Shear modulus of cracked concrete according to Q 67 ] 

However, although r e l a t i n g the value a to the development of the 
s t r a i n normal to the cracks r e s u l t s i n an improved expression f o r 
a, t h i s f o r m u l a t i o n , too, has to be regarded as r a t h e r p r o v i s i o n a l 
s i n c e i t i s obvious that other f a c t o r s may i n f l u e n c e the shear 
s t i f f n e s s as w e l l , such as the d i s t r i b u t i o n of crack widths and 
d i s t a n c e s , the concrete q u a l i t y , the value of the shear d i s p l a c e ­
ment and the load h i s t o r y . These aspects were taken i n t o account 
by Schafer £ 65 ] , who assumed that the i n i t i a l r e s i s t a n c e of two 

G was : 

i f E < E < e cr n p 

i f E > e n p 

- 15 



crack faces against shear displacement can by neglected over a cer­
t a i n d i s t a n c e , while a f t e r t h i s " f r e e s l i d i n g range" a l i n e a r r e ­
l a t i o n between shear s t r e s s and shear displacement can be assumed 
( F i g . 1.18). The length of the fr e e s l i d i n g range was t h e o r e t i c a l l y 
d e r ived, while the l i n e a r r e l a t i o n was subsequently based on t e s t 
r e s u l t s ( F 30 ] , see als o s e c t i o n 2.2). In combination w i t h formu­
l a s f o r the average crack width and d i s t a n c e , a r e l a t i o n was de­
r i v e d which r e l a t e d a both to the s t r a i n normal to the crack d i r e c ­
t i o n and to the shear deformation ( F i g . 1.19). 

f 

minimi/ .«ff1^ m T r r r v viiniinn 

CO 

2 

1 

0.5 

Gcr< 

05 1 CO Y 

F i g . 1.18 Free s l i d i n g range 
according to |_65 j 

F i g . 1.19 Shear modulus of 
cracked concrete, 
according to |_ 65 ] 

G e i s t e f e l d |_ 24 ] d e a l t , i n h i s two-dimensional tension s t i f f e n i n g 
model, with the shear s t i f f n e s s i n a s i m i l a r way, but d i d not take 
i n t o account the f r e e s l i d i n g range. 

I t i s obvious that the fo r m u l a t i o n of c h a r a c t e r i s t i c s representing 
the t r a n s f e r of stres s e s across cracks i s g e n e r a l l y rather p r o v i ­
s i o n a l . A great number of v a r i a b l e s which may reasonably be ex­
pected to i n f l u e n c e the behaviour i s not taken i n t o account. In 
none of the programs was the p o s s i b i l i t y of shear d i l a t a n c y due 
to wedging a c t i o n of the cracks implemented. Since up to now the 
numerical programs have predominantly been used to i n v e s t i g a t e r e l a ­
t i v e l y uncomplicated s t r u c t u r e s subjected to simple loading condi­
ti o n s i n which shear g e n e r a l l y played a subordinate r o l e , the r e l e -
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vance of t r a n s f e r of stresses i n cracks has only p a r t i a l l y been 
recognized. Only i n |_ 12 J , i n which beams without shear r e i n f o r c e ­
ment subjected to shear forces were numerically i n v e s t i g a t e d , i t 
was pointed out that there was a s t r i c t r e l a t i o n s h i p between the 
i n s e r t e d c h a r a c t e r i s t i c s regarding aggregate i n t e r l o c k and the r e ­
s u l t s of the c a l c u l a t i o n s . Since c a l c u l a t i o n programs are bound to 
be applied to s t r u c t u r e s and loading types of greater complexity, 
a good formula t i o n of these m a t e r i a l p r o p e r t i e s i s a l s o becoming 
more important. 

1.4 Aim of the research program 

/The aim of the research program i s to e s t a b l i s h the r e l a t i o n between 
stress e s and displacements between crack f a c e s . ) I n the f i r s t i n ­
stance the behaviour under monotonic increaseci loading w i l l be 
stud i e d . In the previous part i t has already been pointed out that 
the r e l a t i o n which i s g e n e r a l l y employed up to now and which i s 
represented by 

dx = Ct(..dA (1.1) 

i s not the b a s i c equation d e s c r i b i n g the t r a n s f e r of stres s e s across 
cracks, but that t h i s r e l a t i o n has to be represented by (see a l s o 
F i g . 1.20) 

da 
• = 

C 
nn 

C n t dw 
« 

dx C 
tn 

C 
t t 

dA 
(1 .2) 

The c o e f f i c i e n t s C , C , C and C depend on the i n t e r a c t i o n nn nt tn t t 
between the mechanisms of aggreate i n t e r l o c k , dowel a c t i o n and 
a x i a l r e s t r a i n t forces i n the r e i n f o r c i n g s t e e l . F i r s t l y , i t has 
to be assessed how these i n d i v i d u a l components are in f l u e n c e d by 
te c h n o l o g i c a l f a c t o r s . Secondly, i t has to be e s t a b l i s h e d how the 
i n t e r a c t i o n s between the components are achieved. 
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F i g . 1.20 Stresses and displacements i n a crack 

I t i s important that not merely e m p i r i c a l r e l a t i o n s f o r the coef­
f i c i e n t s of equation (1.2) are provided, but also that an i n s i g h t 
i n t o the fundamental behaviour of the mechanism i s obtained. This 
would not only give information over a wider range of values than 
covered by the experimental r e s u l t s alone, but would a l s o give 
some idea of the behaviour under other types of loading ( c y c l i c 
l oading or long-term constant l o a d i n g ) . In extending the i n v e s t i ­
g a t i o n , at a l a t e r stage, to the e f f e c t of such types of loading 
c o n d i t i o n s , a fundamental i n s i g h t could c o n t r i b u t e considerably 
to an e f f i c i e n t design of new t e s t s e r i e s . I t w i l l be i n v e s t i g a t e d 
what information i s already a v a i l a b l e i n the l i t e r a t u r e and where 
new research i s necessary. 
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2 STATE OF THE ART 

The mechanisms involved i n the transmission of forces across cracks 
are, as mentioned before, aggregate i n t e r l o c k , dowel a c t i o n and 
a x i a l r e s t r a i n t s t i f f n e s s of r e i n f o r c i n g bars (see a l s o F i g . 1.3). 
These components w i l l f i r s t be d e a l t w i t h separately. Then the 
a v a i l a b l e information on the i n t e r a c t i o n of these components i n 
cracks crossed by reinforcement i s reviewed. Topics are discussed 
only as f a r as they supply information which i s d i r e c t l y concerned 
w i t h the subject to be s t u d i e d . An extended review of the whole 
f i e l d of a v a i l a b l e i n f o r m a t i o n , focusing a l s o on c y c l i c and impact 
l o a d i n g , was published e a r l i e r (Walraven £ 83 ] ) . 

2. 1 Aggregate i n t e r l o c k 

In order to avoid confusion when t a l k i n g about crack width, i t i s 
emphasized, before d e a l i n g w i t h the phenomenon of aggregate i n t e r ­
l o c k , that the crack width i s defined as the displacement that the 
crack faces have undergone i n the normal d i r e c t i o n i n r e l a t i o n to 
each other. This d e f i n i t i o n i s necessary because on the micro scale 
the l o c a l crack widths vary considerably when a shear displacement 
has occurred ( F i g . 2.1). As defined here, the crack width i s inde­
pendent of the shear displacement. 

F i g . 2.1 Local v a r i a t i o n of "crack w i d t h " on the micro scale 

Fenwick I 18 J conducted t e s t s on specimens as represented i n 
F i g . 2.2. The specimens were cracked p r i o r to t e s t i n g by an e x t e r ­
nal t e n s i l e f o r c e . The crack plane was predetermined by a groove 
along the o u t l i n e of the specimen. A f t e r c r a c k i n g , the crack width 

- 19 -



was kept constant at values ranging from 0.06 to 0. 38 mm. To ob­
t a i n a constant crack width during a t e s t , a f t e r every load i n c r e ­
ment the crack width was adjusted by means of an e x t e r n a l f o r c e , 
normal to the crack plane. Values f o r t h i s force were not given. 
A l l the specimens f a i l e d as a r e s u l t of f l e x u r a l t e n s i l e cracking 
at an e a r l y stage of loading ( F i g . 2.2.a). 

preformed crack -
secondary cracks 
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F i g . 2.2 Test equipment and r e s u l t s of Fenwick/Paulay |_ 18 J 

F i g . 2.2.b shows the development of the shear s t r e s s a c t i n g on the 
crack plane as a f u n c t i o n of the shear displacement f o r various 
constant crack widths, the concrete strength being constant. 
F i g , 2.2.c shows the i n f l u e n c e of the concrete strength on t h i s 
r e l a t i o n f o r a constant crack width: before t e n s i l e c racking the 
crack s t i f f n e s s w i t h regard to shear loading appeared to be an i n ­
creasing f u n c t i o n of the concrete strength. 

Figures l i k e 2.2.b and 2.2.c represent average shear s t r e s s e s . I t 
must be r e a l i z e d that the shear stresses are gen e r a l l y not uniform­
l y d i s t r i b u t e d , but vary along the length of the crack plane. This 
v a r i a t i o n i s a f u n c t i o n of the geometry of the specimens (as demon-
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s t r a t e d by Schwing |_ 69 J) and of the method of i n t r o d u c i n g the 
loads. This e f f e c t has always to be taken i n t o account when i n t e r ­
p r e t i n g t e s t r e s u l t s . 
An i n v e s t i g a t i o n , based on the same t e s t i n g concept as used i n 
[ l 8 ] , was c a r r i e d out by Houde and Mir z a \_ 30 ] . The r e s u l t s of 
t h i s i n v e s t i g a t i o n d i d not d i f f e r very much from those obtained i n 
[ 1 8 ] . 
Paulay and Loeber F 60 ] conducted other constant crack width t e s t s , 
using a d i f f e r e n t t e s t set-up and l a r g e r specimens, i n order to 
avoid e a r l y f l e x u r a l t e n s i l e c r a c k i n g . The type of specimen used 
i n t h e i r t e s t s i s represented i n F i g . 2.3. 

300 mm 

stresses 
to adjust 
crack width 

1.114 J 
152 

F i g . 2.3 Test arrangement according to |_ 60 ] 

The lower part of the specimen was completely f i x e d , w h i l e the 
upper part could move f r e e l y . The crack width could be adjusted 
w i t h an accuracy of 2%. Crack width and shear displacement were 
measured on both sides of the specimen. The t e s t r e s u l t s were not 
influen c e d by the development of secondary cracks i n the specimens. 
The te s t s were c a r r i e d out with a constant concrete strength equal 
to f , = 37 N/mm2. Obiects of i n v e s t i g a t i o n were the i n f l u e n c e c c y l 
of the crack width, the e f f e c t of aggregate s i z e and shape, and 
the e f f e c t of load h i s t o r y . The maximum values of the shear s t r e s s e s 

- 21 -



were much higher than obtained i n the t e s t s of |_18, 30 J . The 
upper l i m i t of shear t r a n s f e r at T = 7 N/mm2 was not reached as 
a r e s u l t of aggregate i n t e r l o c k i n the crack. E i t h e r f a i l u r e 
occurred as a r e s u l t of l o c a l crushing of the concrete i n the top 
or bottom s e c t i o n of the specimens, or f u r t h e r increase of load was 
not p o s s i b l e w i t h the l o a d i n g arrangement used. I t was observed a l ­
so by Paulay and Loeber |_ 60 J that the shear stress-displacement 
r e l a t i o n i s e s s e n t i a l l y dependent on the crack width. Shape and 
s i z e of the aggregate p a r t i c l e s had no n o t i c e a b l e i n f l u e n c e i n the 
range tested (D = 9.5- 19 mm, round and crushed). The r e l a t i o n max 
between shear s t r e s s e s and displacements i s represented i n F i g . 2.4, 
and the stresses normal to the crack plane, necessary to keep the 
crack width constant, are represented as a f u n c t i o n of the shear 
str e s s i n F i g . 2.5. 
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F i g . 2.4 Shear stress-shear d i s - F i g . 2.5 Average shear s t r e s s -
placement r e l a t i o n f o r r e s t r a i n i n g normal 
constant crack widths, s t r e s s r e l a t i o n s f o r 
according to Q 60 ] crack widths 

0.25-0.51 mm 

For these last-mentioned curves no s i g n i f i c a n t i n f l u e n c e of aggre-



gate type or crack width was observed. I t i s seen i n F i g . 2.4 that 
the shear stress-shear displacement r e l a t i o n s have a "hardening" 
character. This can be explained by the p h y s i c a l nature of the 
mechanism, since an increase of shear displacement must r e s u l t i n 
an increase of the t o t a l contact area between the crack faces (due 
to crushing of hardened cement p a s t e ) , which r e s u l t s i n i n c r e a s i n g 
r e s i s t a n c e to shear displacement. The i n f l u e n c e of load h i s t o r y i s 
shown i n F i g . 2.6. In t h i s diagram the mean experimental curve ob­
tained i n separate t e s t s , c a r r i e d out w i t h a constant r a t i o between 
shear s t r e s s and crack width, i s given, w i t h on both sides the 
i n t e r v a l of s c a t t e r of 13% (shaded area). Upon t h i s curve the r e ­
s u l t s from the previous "constant crack width t e s t s " ( F i g . 2.4) 
have been superimposed to enable a comparison to be made. The dot­
ted l i n e connects the appropriate s t r e s s values f o r the three d i s ­
t i n c t crack widths used i n the t e s t s . I t r e v e a l s the same form as 
the r e l a t i o n s h i p obtained from the " v a r i a b l e crack width t e s t s " . 

0.1 0.2 0.3 OA 0.5 0.6 0.7 0.8 
A (mm) 

F i g . 2.6 Mean experimental curve f o r shear stress-displacement 
r e l a t i o n s h i p w i t h constant shear s t r e s s to crack width 
r a t i o , according to |_ 60 ] 

Taylor [ 7 5 ] c a r r i e d out an i n v e s t i g a t i o n i n t o the fundamental 
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behaviour of beams without shear reinforcement, i n which i t was 
demonstrated how the behaviour of the s t r u c t u r e as a whole can be 
explained as an i n t e r a c t i o n of a number of ba s i c mechanisms. One 
of these mechanisms was aggregate i n t e r l o c k . Measurements on beams 
showed that cracks do not open to t h e i r f i n a l width and shear then, 
but open and shear simultaneously. Therefore i t was doubted whether 
the r e s u l t s obtained i n Q l 8 , 30, 60 ] are immediately a p p l i c a b l e 
to the a n a l y s i s of a c t u a l beam behaviour. Observations on the beams 
without shear reinforcement appeared to show a constant r a t i o of 
crack width to shear displacement during crack opening. Therefore 
aggregate i n t e r l o c k t e s t s were c a r r i e d out, not w i t h constant crack 
widths as i n [ 18, 30, 60 ] , but w i t h constant crack width to shear 
displacement r a t i o s ( F i g . 2.7). 

355 mm 140 mm 

loading 
^direction n 

F i g . 2.7 Schematic i l l u s t r a t i o n of t e s t equipment, used i n [ 7 5 ] 

The r a t i o of normal to shear displacement could be changed between 
tests but was constant during a t e s t . This r a t i o was introduced by 
means of a p a r a l l e l r u l e r system. However, although a good approxi­
mation of r e a l crack behaviour i n c o n s t r u c t i o n a l s i t u a t i o n s seemed 
to be obtained, i t i s f e l t that al s o o b j e c t i o n s could be r a i s e d , 
due to which no general v a l i d i t y can be a t t r i b u t e d to the r e s u l t s . 
At f i r s t only the normal displacements at the crack were measured: 
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hence i t i s not c e r t a i n that the r a t i o of normal to shear d i s p l a c e ­
ment, which was supposed to be introduced by the t e s t arrangement, 
was also obtained at the l e v e l of the crack. This may only be con­
sidered to be true i f i t were c e r t a i n that the crack faces have no 
re s i s t a n c e against the imposed displacements, so that no preference 
f o r any d i r e c t i o n of crack opening would e x i s t . Further, the obser­
vations that there i s a l i n e a r p r o p o r t i o n a l i t y between normal and 
shear displacements i n beams without shear reinforcement were based 
on measurements by means of s t r a i n gauges which were stuck on the 
beam a f t e r the cracks had formed, so that a c e r t a i n i n t e r v a l of 
displacement was not measured. Experiments i n which the measure­
ments on s i m i l a r type of beams were c a r r i e d out from the beginning 
of l o a d i n g , thus p r o v i d i n g a complete p i c t u r e of the behaviour 
a f t e r c r a c k i n g , revealed an i n c r e a s i n g r a t i o between shear and nor­
mal displacements of the crack faces [_ 82 ̂  • 

Important information about the way i n which the stres s e s are actu­
a l l y t r a n s f e r r e d from one crack face to the other can be derived 
from c y c l i c loading t e s t s . Tests by L a i b l e et a l . \_ 40 ] , which 
were aimed at studying the e f f e c t of seismic loading on the behav­
i o u r of cracks i n r e i n f o r c e d concrete, therefore claimed a t t e n t i o n . 
These t e s t s were c a r r i e d out on specimens as represented i n F i g . 
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F i g . 2.8 Test specimen used i n |_ 40 J 

Dowel a c t i o n was excluded by using e x t e r n a l r e s t r a i n t bars. These 
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bars had a n e g l i g i b l e shear s t i f f n e s s but acted to hold the s p e c i ­
men halves together when shearing and o v e r r i d i n g occurred. The spec­
imens were cracked at mid-depth, p r i o r to t e s t i n g , by f o r c i n g crack­
ing wedges i n t o the sides of the specimen. The desired i n i t i a l crack 
width was then set by p o s i t i o n i n g the upper h a l f of the specimen 
w i t h respect to the lower h a l f by adjustment of the nuts on the 
r e s t r a i n t rods that passed through the upper r e s t r a i n t beams. The 
h o r i z o n t a l shearing surface had a net c r o s s - s e c t i o n a l area of 
194000 mm2. F u l l y r e v e r s i n g c y c l i c shear str e s s e s of about 1.24 
N/mm2 were applied across i n i t i a l crack widths of 0.25, 0.51 and 
0.76 mm by h y d r a u l i c rams. A r e s u l t obtained on a specimen w i t h 
an i n i t i a l crack width of 0.76 mm and a r e s t r a i n t s t i f f n e s s of 
600 kN/mm i s represented i n F i g . 2.9. 

T(N/mm 2) 

cycle 1 15 

- -1.5 

F i g . 2.9 Shear stress-shear displacement curve f o r c y c l i c l o a d i n g , 
according to |_ 40 J 
(£' . = 21 N/mm2, D =38 mm, w = 0.75 mm, r e s t r a i n t c c y l max o 
s t i f f n e s s Ao = 0.3 N/mm2 f o r Aw = 0.1 mm) 

The r e s u l t may be considered to be repre s e n t a t i v e of the g e n e r a l l y 
observed behaviour. Although the loading p o r t i o n of the load-shear 
displacement curve during the f i r s t c y c l e i s ne a r l y l i n e a r , the 
very next c y c l e of a l l specimens demonstrated a marked degree of 
n o n - l i n e a r i t y s i m i l a r to the r e s u l t s f o r c y c l e 15 i n F i g . 2.9. 
In only a few cases d i d the shear displacement f r e e l y r e t u r n to 



as l i t t l e as 50% of the maximum value. Usually the r e t u r n shear 
displacement was i n the range of 0-20% of t h i s value. This i s be­
l i e v e d not to be caused by a type of " l o c k i n g e f f e c t " between par­
t i c l e s , since hardly any shear s t r e s s was necessary to r e t u r n the 
specimen to i t s n e u t r a l p o s i t i o n . I t therefore appears obvious that 
t h i s i r r e v e r s i b i l i t y i s due to l o c a l deformation of the 
matrix (hardened cement pas t e ) . This feature i s important as a b a s i c 
property i n f u r t h e r a n a l y s i s of the mechanism. 

Summarizing the a v a i l a b l e information on aggregate i n t e r l o c k , i t 
i s obvious that there i s a serious l a c k of information. Experiments 
have g e n e r a l l y been c a r r i e d out d i s r e g a r d i n g the e f f e c t of shear 
d i l a t a n c y . Only i n [_ 60 J a rather wide range of values has been 
i n d i c a t e d f o r the s t r e s s normal to the crack plane, necessary to 
adjust the crack width to i t s o r i g i n a l value a f t e r every load i n ­
crement. However, i t i s not only u n c e r t a i n whether a constant crack 
width t e s t i s r e p r e s e n t a t i v e of the behaviour of a crack i n a 
s t r u c t u r e , but a l s o i t i s questionable whether t h i s normal s t r e s s 
i t s e l f i s a r e a l i s t i c value, since i t has to exceed the i n t e r n a l 
f r i c t i o n between the crack faces before being able to adjust the 
crack width: hence i t may overestimate the s t r e s s that r e a l l y 
occurs due to the shear d i l a t a n c y i n a crack (compare als o a c t i v e 
and passive s o i l p ressure). Tendencies revealed by the a v a i l a b l e 
t e s t data are that the shear r e s i s t a n c e increases w i t h i n c r e a s i n g 
concrete strength and i n c r e a s i n g shear displacement, and decreases 
w i t h i n c r e a s i n g crack width. Furthermore i t i s apparent that i r r e ­
v e r s i b l e deformation of matrix m a t e r i a l i s d i r e c t l y r e l a t e d to the 
o v e r a l l observed behaviour. No r e l i a b l e i n f o r m a t i o n was found about 
the r o l e of the scale of the aggregate (D ), the p a r t i c l e s i z e 
d i s t r i b u t i o n (grading curve) and the i n f l u e n c e of the crack opening 
path. I t i s obvious that i n order to d e f i n e appropriate m a t e r i a l 
p r o p e r t i e s concerning aggregate i n t e r l o c k i t w i l l be necessary to 
obtain more information. 

2.2 Dowel a c t i o n 

Dowel a c t i o n i s defined as the capacity of r e i n f o r c i n g bars to 
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t r a n s f e r forces perpendicular to t h e i r a x i s ( F i g . 1.3.b). The e f f e c t 
of dowel a c t i o n depends e s s e n t i a l l y on the c o n s t r u c t i o n a l circum­
stances. This can be explained by consi d e r i n g the stresses around 
a bar, loaded by a dowel f o r c e , and the consequences of a t e n s i l e 
crack. 
For a t h i n s l i c e of an e l a s t i c m a t e r i a l , loaded as i n d i c a t e d i n 
F i g . 2.10, the st r e s s e s i n the m a t e r i a l can be determined by using 
plane s t r e s s e l a s t i c i t y methods Q 70, 90 ] . 

F i g . 2.10 Thin s l i c e of an e l a s t i c m a t e r i a l , loaded by a dowel 
force 

In t h i s way i t was found that the r a d i a l s t r e s s e s are equal t o : 

F , 
TlR cos l|l (2.1) 

Values of the c i r c u m f e r e n t i a l t e n s i l e s t r e s s e s i n the concrete are: 

2F, 
a, = 0.344 I|I TTR 

a, = 0.637 
ijj irR 

if) = 0 

* = 2 

(2.2) 

(2.3) 

Thus the t e n s i l e s t r e s s i n the d i r e c t i o n of the dowel a c t i o n force 
i s highest and the t e n s i l e s t r e s s normal to the dowel f o r c e , which 
tends to produce a wedging s p l i t t i n g a c t i o n i s only 54% of the 
maximum. This trend was experimentally confirmed by Weaver and 
Clark f_ 86 ] . Wh en the t e n s i l e strength of the concrete i s reached 



and a crack i s formed, an adjustment i n the load c a r r y i n g system 
may be expected. 
In an in-plane loaded planar element a r e d i s t r i b u t i o n of s t r e s s e s 
occurs, r e s u l t i n g i n higher s t r e s s e s under the bar ( F i g . 2.11.a). 
When the dowel load i s increased, a progressive d e t e r i o r a t i o n of 
the concrete under the bar occurs, r e s u l t i n g i n a gradual decrease 
i n s t i f f n e s s t i l l the u l t i m a t e load i s reached (curve a i n F i g . 
2.11.c). 

a b c 

F i g . 2.11 a,b: Dowel cr a c k i n g i n a planar s t r u c t u r e and i n a beam 
c : L o a d - d e f l e c t i o n curves f o r both cases 

In a beam, however, a f t e r the formation of a crack g e n e r a l l y no r e ­
d i s t r i b u t i o n of stres s e s i s p o s s i b l e , and a rigorous extension of 
the crack along the bar a x i s , r e s u l t i n g i n f a i l u r e must be expected; 
only i f the beam i s r e i n f o r c e d with s t i r r u p s , the dowel crack may 
be stopped and a completely d i f f e r e n t mechanism i s a c t i v a t e d to 
t r a n s f e r dowel fo r c e s . 
This study focuses on dowel a c t i o n i n cracks i n planar elements, i n 
which p a r t i c u l a r l y the r e l a t i o n between forces and displacements 
between the crack faces i s considered. An extended review of a v a i l ­
able knowledge about dowel a c t i o n i n beams, before and a f t e r dowel 
cra c k i n g , the determination of ul t i m a t e bearing c a p a c i t i e s at large 
deformations and the behaviour under c y c l i c loading has been r e ­
presented i n |_ 83 3 • 

The d e f l e c t i o n of the dowel w i l l be defined as the t o t a l distance 
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between the axes of the undeformed parts of the bars on both sides 
of the crack ( F i g . 2.12). 

F i g . 2.12 D e f l e c t i o n of a bar subjected to a dowel force 

As has been i n d i c a t e d , the t o t a l d e f l e c t i o n i s both a r e s u l t of the 
deformation of the part of the bar embedded i n the concrete and the 
part which i s f r e e over a c e r t a i n length. 
For the deformation over the f r e e l ength, Paulay | 59 ] d i s t i n ­
guished three mechanisms ( F i g . 2.13): 

F i g . 2.13 Mechanisms of shear t r a n s f e r over the f r e e length accord 
ing to Q 59 "} 

- Load t r a n s f e r by bending: the capacity of t h i s mechanism i s l i m ­
i t e d by the formation of p l a s t i c hinges i n the bar. 

- Load t r a n s f e r by pure shear. 

- Load t r a n s f e r by k i n k i n g : i f there i s a considerable s h i f t be­
tween the two main bar axes, f o r instance as a r e s u l t of p l a s t i c 



deformations, the a x i a l force i n the l o c a l d e v i a t i o n r e s u l t s i n 
a component perpendicular to the main a x i s . There has been much 
d i s c u s s i o n on t h i s subject. I t was often stated that t h i s c o n t r i ­
b u t i o n could not be great, since the bar diameter i s normally 
very large i n r e l a t i o n to the crack width ( F i g . 2.14). 

F i g . 2.14 Representation of a r a t i o bar diameter - crack width 

However, i t has to be r e a l i z e d t h a t , because of crushing of the 
concrete, large deformations can occur, r e s u l t i n g i n a considerable 
k i n k i n g e f f e c t . E s p e c i a l l y f o r t h i n bars an important increase in-, 
load can be achieved a f t e r the formation of p l a s t i c hinges. The 
deformations necessary to develop t h i s f orce are r e l a t i v e l y l a r g e , 
so that k i n k i n g may play a r o l e i n parts of s t r u c t u r e s i n which 
the bearing capacity i s d i r e c t l y r e l a t e d to dowel a c t i o n , such as 
some types of j o i n t s . 
Later on i t w i l l f u r t h e r be shown that the fr e e length can be 
greater than the crack width as a r e s u l t of s e v e r a l e f f e c t s , so 
that i t i s worthwile to take t h i s length i n t o account i n a b a s i c 
d e r i v a t i o n of the dowel force - displacement r e l a t i o n . 

The d e s c r i p t i o n of the dowel load-displacement r e l a t i o n can be 
based on the theory of beams on an e l a s t i c foundation, as published 
by Timoshenko and Lesse Is [ 7 9 ] ( F i g . 2.15). 
The f i r s t known a p p l i c a t i o n of t h i s p r i n c i p l e to the mechanism of 
dowel a c t i o n i s a p u b l i c a t i o n of F r i b e r g |_ 22 J , who t r i e d to c a l ­
c u l a t e the loadbearing c a p a c i t y of s t e e l dowels i n j o i n t s i n con­
crete pavements. 

-a- w = 0.4mm 
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F i g . 2.15 Dowel considered as a beam on an e l a s t i c foundation 

The d e r i v a t i o n of the load-displacement r e l a t i o n , t a k i n g i n t o ac­
count the deformations both i n the concrete and i n the s t e e l , i s 
given, based on the p u b l i c a t i o n s mentioned before. The model and 
the d i f f e r e n t p a r t i a l displacements associated with i t are repre­
sented i n F i g . 2.16. 

TTT 

1111111; 111 

F i g . 2.16 C a l c u l a t i o n model and p a r t i a l displacements 

The t o t a l d e f l e c t i o n at the centre i s the sum of three components: 

(2.4) 

According to Finney |_ 19 J , y can be expressed as: 

e ''d 28 3EI (2.5) 

i n which 



EI = E ( f l e x u r a l s t i f f n e s s of the bar) s 64 

= foundation modulus of concrete 

y ; - - F d W B ( 1 + m ) ' ( 2 - 6 ) 

y i s the d e f l e c t i o n of a bar which i s f i x e d ( r e s t r a i n e d ) at x = 0 F 
and subjected to a load F, at x = - f : J d 

F . f 3 

>*-hr (2-7) 

The r e l a t i o n between the dowel force F, and the t o t a l d e f l e c t i o n 
d y i s : o 

F. 
Y o = 6 W l { 3 + 6 6 f + e & 2 f Z + 2 B 3 f 3 } ( 2 * 8 ) 

The shear deformation of the s t e e l over the fr e e length i s neglected 
i n t h i s f ormulation. Stanton Q 70 ] demonstrated that t h i s c o n t r i ­
b u t i o n to the t o t a l displacement i s always < 4%, independent of the 
bar diameter. The r e l a t i o n between the dowel force and the t o t a l 
dowel d e f l e c t i o n , which i s equal to the t o t a l s h i f t between the 
two p a r a l l e l bar axes (A = 2 y ), i s then: 

- _ 3B 3EIA . , 
*d 3 + 63f + 6 ( 0 f ) 2 + 2(Bf)3 y ' 

The v a l i d i t y of t h i s model i s r e s t r i c t e d to the e l a s t i c range. A 
p r e d i c t i o n of the ult i m a t e bearing capacity on the basis of con­
stant e l a s t i c m a t e r i a l p r o p e r t i e s i s doomed to f a i l . Marcus [_ 48 ] 
demonstrated with the r e s u l t s of h i s experiments t h a t , i f the e l a s ­
t i c model were v a l i d , the concrete s t r e s s under the bars i n the 
ulti m a t e loading stage would reach values up to 2.6 times the con­
crete compression strength. Between the i n i t i a l ( e l a s t i c ) loading 
range and the ultimate ( p l a s t i c ) loading range a t r a n s i t i o n range 
with changing m a t e r i a l p r o p e r t i e s e x i s t s . A t t e n t i o n must be paid 
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to two important v a r i a b l e s used i n formulation (2.9): the value G^, 
involved i n the foundation modulus of the concrete, and the value 
of the fr e e length f. 
For the foundation modulus of the concrete Ĝ. many d i f f e r e n t values 
are encountered i n l i t e r a t u r e . A survey of values given by Finney 
[ 19 ] i s represented i n Table 2.1. 

Table 2.1 Values f o r G according to a survey by Finney [ 19 ] 

G f 
Rang ;e, N/mm 

Average 
N/mm 

Source Remark s L i t e r a t u r e 

834 - 417 - G r i n t e r E s t i m a t i o n [ 2 6 ] 

max 695 19.7 f 
c 

F r i b e r g Tests on embedded 
dowels - 1938 

[ 22, 23 ] 

198 - 325 256 MSHD * Load - d e f l e c t i o n 
t e s t 1947 

[ 2 0 ] 

217 - 1637 639 MSHD * Tests on embedded 
dowels 

Not published 

247 - 2307 712 Marcus Dowels with uniform [_ 48 J 
bearing pressure 

Not known 681 Loe L o a d - d e f l e c t i o n 
t e s t s 1952 

[ 4 5 ] 

250 - 2391 695 MSHD M Tests on embedded 
dowels 

Not published 

Michigan State Highway Department 

There are s e v e r a l reasons which can be advanced i n order to e x p l a i n 
the s c a t t e r i n the values. 

At f i r s t the value G^ i s s t r o n g l y r e l a t e d to the q u a l i t y of the 
concrete immediately under the bar. So, even when the same concrete 
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composition i s used, a s c a t t e r i s obtained, depending on the p o s i ­
t i o n of the bar during c a s t i n g . When the d i r e c t i o n of the bar i s 
p a r a l l e l to the d i r e c t i o n of c a s t i n g ( F i g . 2.17.a) a higher value 
of can be expected than i n the case of a bar perpendicular to 
t h i s d i r e c t i o n ( F i g . 2.17.b), since during the v i b r a t i o n a l o c a l 
segregation of water under the bar can be expected, r e s u l t i n g i n 
lower concrete q u a l i t y . A l so f o r bars s i t u a t e d nearer to the bottom 
of the s t r u c t u r e ( F i g . 2. 1 7 .<•) a higher value f o r G^ may be ex­
pected, since the density of the concrete increases from top to 
bottom. 

•II IJ J}—direction 
ot casting 

U i u i m i i 

F i g . 2.17 Various p o s i t i o n s of bars, i n f l u e n c i n g the value of G 

Next, i t i s obvious that the value of G^ must decrease with i n ­
creasing dowel f o r c e . As was stated e a r l i e r , at f i r s t small cracks 
w i l l occur, p a r a l l e l to the bar ax i s ( F i g . 2.11.a). As a r e s u l t , 
the concrete compressive stresses under the bars increase. For a 
higher degree of loading crushing of the concrete under the bars 
a l s o occurs. A gradually decreasing value of G^ f o r i n c r e a s i n g 
dowel a c t i o n may be expected as a r e s u l t of t h i s . This i s confirmed 
by a comparison between the t h e o r e t i c a l values obtained from eq. 
(2.9) and the experimental values obtained i n the t e s t s of Paulay, 
Park and P h i l l i p s [ 59 ] ( F i g . 2.18). 
These t e s t s were c a r r i e d out by applying a transverse load to a 
corbel which was connected to the r e s t of the specimen by r e i n ­
f o r c i n g bars, c r o s s i n g a smooth contact area, excluding a l l p o s s i b l e 
loadbearing components, except dowel a c t i o n . 
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F i g . 2.18 Dowel te s t s c a r r i e d out by Paulay, Park, P h i l l i p s \_ 59 ] 

To get agreement between (2.9) and these experiments, G must de­
crease as a f u n c t i o n of the i n c r e a s i n g dowel displacement: the 
r e s u l t of t h i s c a l c u l a t i o n i s represented i n F i g . 2.19. Apparently 
the bar diameter i s not a s i g n i f i c a n t parameter i n t h i s respect. 
This agrees w i t h observations by Marcus [ 4 8 ] and E l e i o t t [ 1 7 ] . 

G t(N/mm 3) 

1500 

1000 

500 

0.5 1.0 1.5 2.0 2.5 
A (mm) 

F i g . 2.19 Gj. as a f u n c t i o n of the dowel displacement, deduced 
from the experiments described i n [ 59 J 
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The value of obtained i n t h i s way i s i n f a c t a f u n c t i o n both of 
changes i n m a t e r i a l p r o p e r t i e s and of r e d i s t r i b u t i o n of s t r e s s e s . 
G^ may be considered only as the value which has to be i n s e r t e d 
i n (2.9) to get the same l o a d - d e f l e c t i o n curve as i s experimentally 
obtained due to a complex p h y s i c a l mechanism ( F i g . 2.20). 

F i g . 2.20 Stress d i s t r i b u t i o n , a c t u a l and modelled 

Summarizing, i t i s obvious that G^ must not be considered as a 
uniform v a l u e , only depending on the concrete q u a l i t y , but that 
f u r t h e r considerations have to be taken i n t o account. Therefore, 
i t i s not s u r p r i s i n g that the values f o r G^ represented i n Table 2.1 
s c a t t e r over a wide range. 

The second v a r i a b l e i n the formulation (2.9) which has to be treated 
w i t h caution i s the free length f. At f i r s t s i g h t i t appears l o g i c a l 
to i n s e r t f o r t h i s v a r i a b l e the crack or j o i n t width. However, there 
are circumstances that may lead to free lengths which are consider­
ably greater. 

- When bars cross a crack not p e r p e n d i c u l a r l y , the concrete adjacent 
to the bars may l o c a l l y crack o f f ( F i g . 2.21). 
The f r e e length which i s caused i n t h i s way must depend on the 
angle 9 and the bar diameter 4. Schafer |_ 65 H suggested the 
r e l a t i o n : 

(2.10) 
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i n which C i s a constant. This r e l a t i o n gives f = 0 f o r 9 = 0 ° r 
and f = » f o r e = 90 ° . 

F i g . 2.21 Increase i n free length f o r bars i n c l i n e d to a crack 

- An important other cause f o r an increased free length i s the 
presence of an a x i a l t e n s i l e f o rce i n the bar. As a r e s u l t of 
t h i s f o rce large bond stresses occur, causing microcracks to 
form ( F i g . 2.22). 

A /A 
F i g . 2.22 Microcracks according to |_ 25 J 

The existence of these cracks was f i r s t experimentally proved by 
Goto [_ 25 J . Due to t h i s crack development, cone-shaped concrete 
elements are e x t r a c t e d , r e s u l t i n g i n an increase of the free 
length. This increase (= 2f-w) depends on the value A<Jg, which 
i s the d i f f e r e n c e between the s t e e l s t r e s s i n the crack and i n 
the undisturbed area, the bond p r o p e r t i e s and the diameter of 
the bar. Leonhardt Q 42 J gave as an approximation f o r deformed 
bars (estimation on basis of c e n t r i c t e n s i l e t e s t s ) : 



Aa 
f = ~rz— 4 (N/ram2 and mm) 

45 
(2.11) 

See also F i g . 2.23. 

TTTTTlTTTTf | M T T T m i m ,f 

! i l k - 4 

d 
F i g . 2.23 D i s t r i b u t i o n of s t e e l stresses and bond stresses over 

and beside the fr e e lengths 

I t must furthermore be pointed out that an a x i a l t e n s i l e f o rce not 
only increases the free l e n g t h , but a l s o , because of microcracking, 
reduces the value of the foundation modulus i n the area where 
contact i s s t i l l maintained. However, both developments lead to 
a decrease i n dowel s t i f f n e s s . The i n f l u e n c e of the a x i a l t e n s i l e 
force was experimentally confirmed by E l e i o t t |_ 17 ] . His t e s t s on 
pure dowel a c t i o n were c a r r i e d out with embedded bars of d i f f e r e n t 
s i z e s , s t r e s s e d to d i f f e r e n t l e v e l s of a x i a l s t r e s s . The t e s t s were 
p r i n c i p a l l y intended f o r studying the behaviour under c y c l i c load­
i n g . However, already during the f i r s t c ycles a pronounced i n f l u ­
ence of the a x i a l s t r e s s l e v e l was observed. F i g . 2.24 shows the 
l o a d - d e f l e c t i o n curves f o r the f i r s t load c y c l e f o r two t e s t s 
on bars with a diameter of 12.8 mm: one t e s t was c a r r i e d out w i t h ­
out an a x i a l t e n s i l e s t r e s s , the other with an a x i a l s t r e s s of 
175 N/mm2. The great loss of s t i f f n e s s due to an increased a x i a l 
s t r e s s i s manifest. 

In the same i n v e s t i g a t i o n a comparison was made between the e f f e c t 
of dowel a c t i o n alone and the e f f e c t of aggregate i n t e r l o c k and 
dowel a c t i o n together. The reinforcement i n both cases was the same 
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(1 bar 4 12.8 mm), j u s t as the a x i a l t e n s i l e s t r e s s (c = 175N/mm2), 
The concrete area was 9525 mm2. The r e s u l t s are given i n F i g . 2.25. 

crs = 175 N/ipm* 

1X25 0.50 
A(mm) 

F i g . 2.24 Test r e s u l t s of |_17 J f o r a stressed and an unstressed 
dowel 

X (N/mm2) 
1.0 

0.5 

U 25 cycles 

aggr. interlock 
• dowel action 

0.25 0.50 0.75 
A (mm) 

X (N/mmz) 

0.25 0.50 0.75 
A (mm) 

F i g . 2.25 Comparison between a t e s t on combined aggregate i n t e r ­
lock and dowel a c t i o n ( l e f t ) and a te s t on dowel a c t i o n 
alone [_ 17, 32, 89 J 

A comparison of the s t i f f n e s s e s f o r t h i s case showed that about 
12% of the shear s t i f f n e s s was provided by dowel a c t i o n and about 
88% by aggregate i n t e r l o c k . 

R e c a p i t u l a t i n g , i t may be stated that the d e f l e c t i o n of a bar, sub­
j e c t e d to a dowel f o r c e , i s p a r t i a l l y a r e s u l t of the deformation 
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of the concrete around the bar and p a r t i a l l y of the deformation of 
the s t e e l over a free length. When the theory of a beam on an e l a s ­
t i c foundation i s used to c a l c u l a t e the l o a d - d e f l e c t i o n r e l a t i o n , 
some parameters have to be handled with caution. The value G^, 
necessary to c a l c u l a t e the deformations i n the concrete i s not a 
constant, but decreases w i t h i n c r e a s i n g d e f l e c t i o n . The p o s i t i o n 
of the bar i n the s t r u c t u r e and the bond s t r e s s e s , i f any, may 
have an i n f l u e n c e on G^; the bar diameter has apparently no s i g ­
n i f i c a n t i n f l u e n c e on t h i s value. The f r e e length of the s t e e l , 
and therefore the c o n t r i b u t i o n of t h i s p a r t to the t o t a l dowel 
d e f l e c t i o n , increases i f the a x i a l t e n s i l e s t r e s s increases; a l s o 
f o r bars i n c l i n e d to the crack ( j o i n t ) plane an increase i n the 
f r e e length i s p o s s i b l e , t h i s being due to the l o c a l s p a l l i n g of 
the concrete. For r e l a t i v e l y small d e f l e c t i o n s the deformation 
of the s t e e l over the f r e e length i s mainly a t t r i b u t a b l e to bending 
a c t i o n : shear deformations may be neglected. K i n k i n g of the bars 
can only occur f o r r e l a t i v e l y large d e f l e c t i o n s . A p r e d i c t i o n of 
the l o a d - d e f l e c t i o n r e l a t i o n only as a f u n c t i o n of the deformations 
i n the s t e e l i s an u n r e a l i s t i c approach, despite arguments, some­
times encountered i n l i t e r a t u r e , which seem to confirm the opposite. 
This w i l l be demonstrated, i n v e s t i g a t i n g a statement found i n 
|_ 59 J , i n which i t was concluded that dowel a c t i o n i s approximate­
l y p r o p o r t i o n a l to the reinforcement r a t i o , i r r e s p e c t i v e .of the bar 
diameters. This conclusion was based on a diagram i n which dowel 
force-displacement r e l a t i o n s were constructed f o r equal r e i n f o r c e ­
ment r a t i o s on the basis of t e s t s on s i n g l e bars with d i f f e r e n t 
diameters ( F i g . 2.26). Comparing t h i s r e s u l t w i t h the three mechan­
isms f o r the shear t r a n s f e r , being p o s s i b l e f o r the s t e e l over the 
f r e e length ( F i g . 2.13), i t was concluded that shear and k i n k i n g 
would predominantly be r e s p o n s i b l e f o r the behaviour. This would 
be contrary to the tendendies emerging from other tests and t h e o r i e s 
treated i n t h i s chapter. However, i t can be demonstrated that these 
r e s u l t s do not v i o l a t e the assumption of behaviour according to 
the model of a beam on an e l a s t i c foundation. According to formula 
(2 . 9 ) f o r a f r e e length f = 0 the dowel a c t i o n of one bar can be 
w r i t t e n as: 
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„ = 8 3.EI.2 y = B 3.EI.A with 6 = \/ -r-J^r (2.12) d o V 4 EI 

S u b s t i t u t i o n of -ri- f o r I r e s u l t s i n the r e l a t i o n 64 

F = 3.56 «S 1 , 7 5 . G ° - 7 5 . A (2.13) d I 

so that a p r o p o r t i o n a l l i t y with ^'-7~' i s obtained. 
I f a number of nj bars w i t h a diameter ^ i n a j o i n t r e s u l t s i n a 
reinforcement r a t i o p, t h i s can be w r i t t e n as: 

n ^ i i r ^ 2 = pbd (2. 14) 

I f a number of n2 (< nj) bars w i t h a l a r g e r diameter $ 2
 = 

(a > 1) r e s u l t s i n the same reinforcement r a t i o , t h i s can be 
w r i t t e n as: 

n 2.h(a«*i) 2 = pbd (2.15) 

From (2.14) and (2.15) i t i s seen that 

n 2 = (2.16) 

According to (2.13) the t o t a l dowel force f o r the bars w i t h the 
smaller diameter i s 

EF d = n x . 3.56 . 4[ . Gf . A (2.17) 

and f o r the bars w i t h the l a r g e r diameter, with equal reinforcement 
r a t i o : 

™ i « i j. ̂  1 -75 „0.75 
d 2

 = " 2 ' 1 f ' = 

= a (nj . 3.56 . 0j . G f .A) (2.18) 

Comparing (2.17) with (2.18) i t i s found that 



(2 .19) 

This implies t h a t , i f the reinforcement r a t i o i s the same, f o r 
equal values of A (and as a r e s u l t of G^), l a r g e r bars ought to 
give a s l i g h t l y lower t o t a l dowel force than smaller bars (since 
a > 1). This i s indeed confirmed by F i g . 2.26. 

T = l F d / b d (N/mm2) 

A (mm) 
0.5 1.0 15 2.0 2.5 

F i g . 2.26 T o t a l dowel force f o r a j o i n t with bars of s e v e r a l d i a ­
meters, but the same reinforcement r a t i o , according to 
te s t s of [_ 59 3 

2.5 

2.0 

1.5 

1.0 

0.5 

X = l F d / b d (N/mm2) 

6 6 12.7mm 
11 5 0 9.4 

2 2 0 6.4 rr m 

A (mm) 
0.5 1.0 1.5 2.0 2.5 

F i g . 2.27 The same curves a f t e r a c o r r e c t i o n on the basis of the 
model of a beam on an e l a s t i c foundation. (According 
to t h i s theory the curves must coincide) 
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I f these curves (from |_ 59 J ) are "c o r r e c t e d " by means of a reduc-
0.25 ^2 0.25 

t i o n f a c t o r a ' = (̂ —) ' , r e l a t e d to the l i n e f o r 6 $ 12.7 mm, 
i t appears that a comparison on the b a s i s of the model of a beam 
on an e l a s t i c foundation gives a s u r p r i s i n g l y good r e s u l t 
( F i g . 2.27). 

Regarding dowel a c t i o n i n general i t i s apparent, that the i n f l u ­
ence of most parameters can adequately be described by the model 
of a beam on an e l a s t i c foundation. Since furthermore the c o n t r i ­
b u t i o n of dowel a c t i o n i n p r a c t i c a l circumstances i s g r e a t l y i n ­
f e r i o r to that of aggregate i n t e r l o c k , and a very accurate e s t i ­
mation i s not p o s s i b l e due to the s c a t t e r i n G^, f u r t h e r e x p e r i ­
mental work on t h i s subject would appear hardly to deserve high 
p r i o r i t y . 

2.3 A x i a l r e s t r a i n t s t i f f n e s s of r e i n f o r c i n g s t e e l 

In r e i n f o r c e d concrete the a x i a l f o rce i n the r e i n f o r c i n g bars, 
whether i n c l i n e d or not, i s a l s o a component which has to be con­
sidered when e q u i l i b r i u m of forces i n a crack i s analysed. The 
r e l a t i o n between the a x i a l f o r c e i n the bars and the s l i p at the 
crack i s mainly a f u n c t i o n of the bond between s t e e l and concrete. 
Bond between s t e e l bars and surrounding concrete depends predomi­
nantly on the p r o f i l i n g of the r e i n f o r c i n g bar, c h a r a c t e r i z e d by 
the r a t i o between the area of the r i b s F„ and the shear area F : 

R s 
the r e l a t e d r i b area f (Rehm [ 6 2 , 63 ] , M a r t i n [ 49 ] , Noakowski 
[56 ] , F i g . 2.28). 

I 1 F R F S 1 I Y 
fR = F R / F S 

F i g . 2.28 D e f i n i t i o n of r e l a t e d r i b area f. 
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How these f values are determined has been described i n \ 9 R 
Average values f o r conventional s t e e l bars are (Koch [ 353) : 

f_ % 0.045 •* 0.060 R f o r ^ = 4 •* 11 mm 

f R % 0.065 f o r jl > 12 mm 

Tests on r e i n f o r c i n g bars, embedded over a short length, demon­
s t r a t e d that f o r a wide range of s l i p values a p r o p o r t i o n a l i t y 
between the bond s t r e s s and the concrete strength f e x i s t s . 

cc 
In order to f i n d functions d e s c r i b i n g the r e l a t i o n between the 
p u l l - o u t force and the s l i p of a bar, i t therefore appeared appro-

T 
p n a t e to base oneself on the value — . Experiments showed that 

T t c c 

the basic r e l a t i o n between — and the s l i p A can be represented 
t c c s 

by 
1 -r-;— = a + b A ("CwA f o o s*- ' cc 

(a , b and B are constants). 

(2.20) 

However, t h i s equation r e s u l t s i n a complicated d i f f e r e n t i a l equa­
t i o n . M a r t i n [ 49 J showed that an approximate s o l u t i o n can be ob­
tained by a d i f f e r e n c e c a l c u l a t i o n . The r e i n f o r c i n g bar i s accord­
i n g l y d i v i d e d i n t o elements with a length Ax. Besides equation 
(2.20), f o r a l l the elements two other conditions have to be f u l ­
f i l l e d : 

a • d a s x dx 
SX j 3A dx 

F i g . 2.29 E q u i l i b r i u m of forces on a bar element 
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E q u i l i b r i u m of forces ( F i g . 2.29) 

da 
-=-5- = i .T (2.21) dx A x s 

In t h i s equation i s U = the circumference of the r e i n f o r c i n g bar 
and A i s the c r o s s - s e c t i o n a l area, s 

C o m p a t i b i l i t y of deformations 

a a E dAx _ sx ,. _ cx s. ¡2 22) 
dx E a ' E * 

s sx c 
In words: the d i f f e r e n c e i n s t r a i n between s t e e l and concrete over 
the length of the element has to r e s u l t i n a s l i p d(Ax). S c h i e s s l 
[ 6 6 ] demonstrated that the concrete s t r a i n i s of minor i n f l u e n c e 
and can be neglected without committing a s i g n i f i c a n t e r r o r . 
I f the constants i n equation (2.20) are known, a d i f f e r e n c e c a l ­
c u l a t i o n on the basis of the equation (2.20- 2.23) can provide a 
s u f f i c i e n t l y accurate e s t i m a t i o n of the s t e e l s t r e s s , bond s t r e s s 
and the s t e e l s t r a i n over the length of the bars, s t a r t i n g from 
i n i t i a l values f o r a , T and A , on c o n d i t i o n that the length so' so so 
of the elements i s small enough. C a l c u l a t i o n s with a v a r i a b l e 
value of Ax demonstrated that a length equal to the d i s t a n c e be­
tween the r i b s o f f e r s a f a i r degree of accuracy. 
Martin [ 49 J c a r r i e d out t e s t s i n which the bar was embedded i n 
the concrete over a length of 7-10 i; on the basis of measurements 
of the bar s l i p i n these t e s t s and the equations (2.20, 2.21, 2.22) 
he determined by an i t e r a t i v e procedure the b a s i c constants of 
equation (2.20). The values r e s u l t i n g from t h i s c a l c u l a t i o n are 
represented i n Table 2 . I I . 
A r e s u l t of a d i f f e r e n c e c a l c u l a t i o n f o r a bar with <t 8 mm and 
f D = 0.050 i s presented i n F i g . 2.30. D e t a i l e d information on t h i s 
type of c a l c u l a t i o n s i s given i n |_ 85 , pp. 81 ~\, 
I t must be r e a l i z e d that the constants a . b and B are unreserved-

o o 
l y v a l i d only f o r the loading conditions as used i n Martin's t e s t s , 
i n which no stresses transverse to the bar axis were a c t i n g 
( F i g . 2.31.a). 



Table 2.II Constants i n b a s i c bond s t r e s s - s l i p r e l a t i o n (2.20), 
according to f_ 49 J 

a 
o 

b 
o 

8 

0.005 0 0320 0. 129 2 34 
0.010 0 0317 0.300 2 00 
0.025 0 0317 0.680 1 85 
0.050 0 0314 0.872 2 10 
0. 100 0 0315 1. 135 2 31 
0.200 0 0322 1 ,353 2 53 
0.400 0 0316 1 .308 2 85 

O 

3 

AO 

30 

2 0 

10 

bar 0 f S mm, ff ̂ =0.050 

56N/mr n 2 

I 
i 

0.1 0.2 0.3 0.A 0.5 
1 A (mm) 

F i g . 2.30 P u l l - o u t c h a r a c t e r i s t i c , c a l c u l a t e d w i t h the d i f f e r e n c e 
method 

I -J 

| I I I I I c 

3 

f t t t 

F i g . 2.31 Various s t r e s s conditions f o r r e i n f o r c i n g bars 
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I t may f o r instance be asked how concentrated transverse s t r e s s e s , 
due to dowel a c t i o n , a f f e c t the ba s i c bond s l i p r e l a t i o n ( F i g . 
2.31.b). This was i n v e s t i g a t e d by K l e i n e t . a l . [ 3 4 ] , who c a r r i e d 
out t e s t s on specimens as represented i n F i g . 2.32. The specimens 
were r e i n f o r c e d w i t h bars $ 10 and & 16 mm, i n c l i n e d at angles of 
6 = 45°, 60° and 90°. 

4 500 mm S _. 

1 1 
o 
<T> 

4 

O 
o 
ro 

-

A A 
F i g . 2.32 Test specimen as used i n [ 3 4 ] 

A l l the t e s t s were repeated s e v e r a l times i n order to ob t a i n rep­
r e s e n t a t i v e r e s u l t s . Since the r e s u l t s of the i n v e s t i g a t i o n were 
p r i n c i p a l l y intended to be a p p l i e d to r e i n f o r c e d slabs i n which 
the cracked parts are connected over the uncracked compression 
area, only displacements normal to the crack plane were imposed. 
S t r a i n gauges were stuck to the bars over a length of 360 mm. For 
the ^ 16 mm bars t h i s length appeared to be i n s u f f i c i e n t , so that 
some e x t r a p o l a t i o n of the measurements was necessary. The r e s u l t s 
of the measurements were used to rec o n s t r u c t the bond s t r e s s d i s ­
t r i b u t i o n over the length of the bars. I t was also p o s s i b l e to 
deduce the ba s i c bond-slip r e l a t i o n f o r each reinforcement geome­
t r y . These r e l a t i o n s are represented i n F i g . 2.33 f o r a l l angles 
and f o r both diameters. I t i s seen that i n the case of i 10 mm 
bars no systematic v a r i a t i o n with the angle of i n c l i n a t i o n could 
be observed. An upper l i m i t to the v a l i d i t y of the measurements 
was obtained because of y i e l d i n g at one end of the bar. In the 



case of i> 16 mm bars a d e t e r i o r a t i o n of bond q u a l i t y with decreas­
ing angle of i n c l i n a t i o n (greater s t r e s s concentrations) was ob­
served, which probably has to be a t t r i b u t e d to the formation of 
l o n g i t u d i n a l and transverse cracks, which were not observed i n 
the specimens w i t h the é 10 mm bars. 

F i g . 2.33 Basic bond-slip curves f o r s e v e r a l angles of i n c l i n a t i o n 
f o r bars i 10 mm (a) and 4> 16 mm (b) , deduced from t e s t s 
conducted by K l e i n et a l . [ 3 4 ] 

Another p o s s i b l e loading c o n d i t i o n , which fr e q u e n t l y occurs i n 
b i a x i a l l y loaded s t r u c t u r e s , i s that compressive stresses are ap­
p l i e d i n a d i r e c t i o n transverse to the bar a x i s over i t s f u l l 
length ( F i g . 2.31.c). There are at present no known t e s t r e s u l t s 
f o r t h i s case. This phenomenon i s studied i n another part of the 
pr o j e c t "Concrete Mechanics" ( F i g . 1.1). 

2.4 I n t e r a c t i o n of components i n cracks crossed by reinforcement 

The r e s i s t a n c e of a " r e i n f o r c e d crack" to imposed displacements 
i s the r e s u l t of the i n t e r a c t i o n of the components d e a l t w i t h ear­
l i e r i n t h i s chapter i n the sections 2.1 -2.3: aggregate i n t e r l o c k , 
dowel a c t i o n and a x i a l s t e e l f o r c e s . A schematic r e p r e s e n t a t i o n of 
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t h i s i n t e r a c t i o n f o r the case where the r e i n f o r c i n g bars cross the 
crack p e r p e n d i c u l a r l y i s given i n F i g . 2.34. 

V 

aggregate interlock non-linear spring 
(axial restraint st i f fness 
of reinforcement ) 

5 
non-linear spring 
(dowel action of reinforcement) 

F i g . 2.34 Schematic r e p r e s e n t a t i o n of i n t e r a c t i o n of s i n g l e com­
ponents i n a crack 

Increased i n t e r e s t i n the interdependence of stress e s and d i s p l a c e ­
ments i n cracks has developed only i n recent years, and i n most of 
the experiments on " r e i n f o r c e d c r a c k s " a t t e n t i o n has been confined 
to the ul t i m a t e bearing capacity under shear l o a d i n g , w h i l e the 
r e l a t i o n between stresses and displacements has been d i s r e ­
garded |_ 83 J . An exception i s an i n v e s t i g a t i o n conducted by 
Mattock [] 51 "2 , who tested specimens as shown i n F i g . 2.35. The 
specimens were r e i n f o r c e d w i t h v a r y i n g numbers of closed s t i r r u p s , 
so that reinforcement percentages of 0.4-2.3% were obtained. The 
specimens were cracked p r i o r to t e s t i n g , which r e s u l t e d i n an aver­
age i n i t i a l crack width of 0.25 mm (the s c a t t e r was not i n d i c a t e d ) . 
The displacements of the crack faces normal to the crack were meas­
ured by a gauge located at the middle of the length of the shear 
plane and the shear displacement by a gauge 50 mm below i t (only 
on one side of the specimen). F i g . 2.35 f u r t h e r shows an example 
of a fa m i l y of shear st r e s s - shear displacement curves f o r one of 
the s e r i e s . 
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X (N/mmz) 

F i g . 2.35 Test specimen and some r e s u l t s of |_ 51 ] 

F i g . 2.36 shows the crack opening paths f o r two s e r i e s . Both d i a ­
grams contain a family of curves f o r d i f f e r e n t reinforcement r a t i o s , 
which are s h i f t e d i n r e l a t i o n to one another f o r b e t t e r comparison. 

displacement norma to crack displacement normal to crack 

F i g . 2.36 Crack opening paths f o r precracked specimens w i t h d i f ­
ferent reinforcement r a t i o s , made of two types of con­
c r e t e , according to [ 51 j 

Apparently the reinforcement r a t i o had no s i g n i f i c a n t i n f l u e n c e on 
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the crack opening d i r e c t i o n , w h i l e a l s o the f a c t that the l i g h t ­
weight p a r t i c l e s of mix B are i n t e r s e c t e d by the crack had no 
not i c e a b l e i n f l u e n c e . Since other s e r i e s , made e n t i r e l y of l i g h t ­
weight concrete, e x h i b i t e d s l i g h t l y steeper crack opening paths, 
i t was b e l i e v e d that the behaviour could be explained by o v e r r i d i n g 
of sand p a r t i c l e s . I f the sand p a r t i c l e s are i d e a l i z e d as spheres 
( F i g . 2.37), the d i r e c t i o n of motion due to o v e r r i d i n g would be 
30 degrees to the l i n e of the crack, which corresponds c l o s e l y 
to the average measured values of crack opening i n F i g . 2.36. 

direction 

F i g . 2.37 Ov e r r i d i n g of sand p a r t i c l e s according to ̂ 51 

However, from a p h y s i c a l p o i n t of view i t i s not c l e a r why only a 
c e r t a i n sand f r a c t i o n should predominantly govern the behaviour 
and how i t could be explained that f r a c t i o n s w i t h l a r g e r p a r t i c l e s 
would be i n a c t i v e . Furthermore, i f o v e r r i d i n g of p a r t i c l e s were 
the e s s e n t i a l mechanism, i t i s hard to e x p l a i n why i n "constant 
crack width t e s t s " g r a d u a l l y i n c r e a s i n g shear s t r e s s - shear d i s ­
placement l i n e s occur, without f a i l u r e of the specimen due to secon­
dary cracks ( F i g . 2.3 and 2.4). 

2.5 Conclusions 

Considering the a v a i l a b l e knowledge, i t i s evident that i n c a r r y ­
ing out f u r t h e r study i n t h i s f i e l d , emphasis has to be placed on 
aggregate i n t e r l o c k . Not only i s there a great lack of information 
on the r e l a t i o n between stre s s e s and displacements, but als o merely 

52 -



speculations e x i s t concerning the p h y s i c a l background of the phe­
nomenon. I f adequate knowledge of aggregate i n t e r l o c k were a v a i l ­
a ble, a l l the b a s i c components a c t i n g i n the transmission of forces 
across cracks would be s u f f i c i e n t l y w e l l known to enable the be­
haviour of " r e i n f o r c e d c r a c k s " to be analysed. I t must be i n v e s t i ­
gated whether t h i s behaviour can be explained on the b a s i s of the 
i n d i v i d u a l components, or whether these components tend to i n t e r ­
f e r e and a d e v i a t i n g mechanism i s obtained. Accurate experimental 
data are required i n t h i s f i e l d anyway. 
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A FUNDAMENTAL THEORY FOR AGGREGATE INTERLOCK 

Basic assumptions 

To e x p l a i n c e r t a i n p r o p e r t i e s of concrete, t h i s m a t e r i a l i s some­
times represented as a two-phase system: i n a matrix (phase I) a 
c o l l e c t i o n of aggregate p a r t i c l e s (phase I I ) are embedded. I t i s 
a matter of d e f i n i t i o n from which diameter the p a r t i c l e s form part 
of the matrix. In the f o l l o w i n g , 0.25 mm i s adopted as the l i m i t 
between the phases I and I I . For the crack widths to be considered 
i n t h i s study, the p a r t i c l e s w i t h a diameter smaller than 0.25 mm 
may p r a c t i c a l l y be disregarded as f a r as t h e i r c o n t r i b u t i o n to 
aggregate i n t e r l o c k between the crack faces i s concerned. The prop­
e r t i e s of the matrix are, however, not very much influe n c e d by the 
exact choice of t h i s value, but are mainly governed by the proper­
t i e s of the hardened cement paste (Wischers [_ 87 ] ) . 
In general, the strength and s t i f f n e s s of the aggregate p a r t i c l e s 
are higher than those of the matrix. However, the contact area be­
tween the two m a t e r i a l s , the bond zone, i s the weakest l i n k of the 
system. Hence, cracking occurs commonly through the matrix, but 
along the circumference of the aggregate p a r t i c l e s . Only i n the 
case of high-strength concretes (with high matrix strength) and 
lig h t w e i g h t concretes (with low p a r t i c l e strength) are cracks ob­
served running both through the matrix and the p a r t i c l e s . Generally 
crack faces are encountered which have a s t r u c t u r e as i n d i c a t e d i n 
F i g . 3.1. 

F i g . 3.1 Generally observed s t r u c t u r e of crack planes 



Considering such a crack s t r u c t u r e , a number of trends emerging 
from e a r l i e r t e s t s can be explained. The steady increase of the 
shear s t r e s s as a f u n c t i o n of the shear displacement (Paulay/Loeber 
|~ 60 ] , F i g . 2.4) can be a t t r i b u t e d to the growing contact 
area during shear displacement. The f a c t that the s t i f f n e s s 
against shear displacement i s s m a l l e r f o r l a r g e r crack widths, 
(see a l s o F i g . 2.4) i s due to the f a c t that the p o t e n t i a l contact 
area between the opposite crack faces i s reduced. Also an e x p l a ­
n a t i o n can be given f o r the observed d i f f e r e n c e between the f i r s t 
and the subsequent loading cycles manifest i n the t e s t s , conducted 
by L a i b l e et a l . ( | ^ 4 0 ] , F i g . 2.9): the concentrated s t r e s s e s , 
o c c u r r i n g during the f i r s t loading c y c l e , r e s u l t i n l o c a l . i r r e ­
v e r s i b l e deformation of the matrix m a t e r i a l , so t h a t , during the 
subsequent c y c l e , the opposite crack faces have to t r a v e l a longer 
distance before touching each other. The increase i n s t i f f n e s s 
versus shear displacement w i t h higher concrete s t r e n g t h , observed 
i n the constant crack width t e s t s of Fenwick et a l . [ 1 8 ] , can 
be a t t r i b u t e d to the f a c t that high concrete strength i s g e n e r a l l y 
attended w i t h high matrix s t r e n g t h , so that a l s o a high r e s i s t a n c e 
of the matrix to deformation i s obtained. 

Natural aggregate p a r t i c l e s have an i r r e g u l a r shape. For the model 
to be developed, i t i s assumed that these p a r t i c l e s are randomly 
o r i e n t a t e d , so that no p r e f e r r e d d i r e c t i o n s e x i s t . Furthermore the 
p a r t i c l e s are s i m p l i f i e d to spheres, f o r which i t i s supposed that 
they can be i n t e r s e c t e d by the crack plane at a l l depths w i t h the 
same p r o b a b i l i t y . Next, c o n s i d e r i n g F i g . 3.1, i t can be concluded 
that the "micro-roughness" of the crack, caused by the aggregate 
p a r t i c l e s p r o j e c t i n g from the crack faces, must dominate the e f f e c t 
of "macro-roughness", due to general undulations of the crack plane 
Therefore the o v e r a l l crack plane i s considered to be a f l a t plane. 

Hardened cement paste i s a v i s c o - e l a s t i c m a t e r i a l : the deformations 
provoked by s t r e s s e s are only p a r t i a l l y e l a s t i c , f o r the other part 
p l a s t i c (Locher [ 44 ] ). Under m u l t i — a x i a l s t r e s s e s , as i n the area 
between the aggregate p a r t i c l e s i n concrete, large p l a s t i c defor-
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mations can occur as a r e s u l t of pore-volume reduction. Since the 
p l a s t i c deformations are expected to dominate the e l a s t i c defor­
mations, the s t r e s s - s t r a i n r e l a t i o n of the matrix m a t e r i a l , con­
s i s t i n g of hardened cement paste w i t h aggregate p a r t i c l e s smaller 
than 0.25 mm, i s assumed to be r i g i d - p l a s t i c , as represented i n 
F i g . 3.2. The s t r e s s at which y i e l d i n g occurs i s denoted as a 

e 

F i g . 3.2 R i g i d - p l a s t i c s t r e s s - s t r a i n r e l a t i o n of the matrix 
m a t e r i a l 

Hence i t can be expected t h a t , during shear displacement of the 
crack faces, contact areas develop on the surface of the p a r t i c l e s 
i n t e r l o c k i n g between the crack faces, due to p l a s t i c deformation 
of the matrix. F i g . 3.3 shows the formation of t h i s type of areas 
as a r e s u l t of a shear displacement i n the d i r e c t i o n of the X-axis 

F i g . 3.3 Contact areas due to a shear displacement 
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The stresses at these contact areas produce re a c t i o n s i n the d i ­
r e c t i o n s of a l l p r i n c i p a l axes. However, i f the crack area under 
c o n s i d e r a t i o n i s not too s m a l l , i t can reasonably be expected that 
the sum of a l l the components i n the p o s i t i v e and the sum of a l l 
the components i n the negative Z - d i r e c t i o n are equal, so that equi­
l i b r i u m i n that d i r e c t i o n i s a u t o m a t i c a l l y obtained without the 
a c t i o n of e x t e r n a l f o r c e s . 
Furthermore i t i s assumed that the r e a c t i o n s i n the p o s i t i v e and 
the negative Z - d i r e c t i o n are uniformly d i s t r i b u t e d along the X-axis, 
so that no t o r s i o n a l moments w i t h respect to the Y-axis are d e v e l ­
oped. These assumptions reduce the three-dimensional problem to a 
two-dimensional one. As a r e s u l t i t i s p o s s i b l e to consider a 
cracked concrete body, as represented i n F i g . 3.A.a, as an assem­
b l y of a large number of s l i c e s , each of f i n i t e width ( F i g . 3.4.c), 
and i t i s p o s s i b l e to derive the o v e r a l l behaviour of the crack by 
f i r s t studying the p r o p e r t i e s of t h i s t h i n s l i c e . 

y 
_ X 

F i g . 3.4 Cracked concrete body ( a ) , i n t e r s e c t e d by a Z-plane (b), 
and a r e p r e s e n t a t i v e s l i c e (c) 

F i g . 3.5 shows a c r o s s - s e c t i o n through a p a r t i c l e l y i n g i n a 
Z-plane (see a l s o F i g . 3.4.b and 3.4.c) i n which there i s a l i n e 
of contact between the opposite crack faces. The p r o j e c t i o n s of 
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t h i s l i n e of contact on the X- and Y- d i r e c t i o n s are a and a . 
x y 

The shaded area represents that part of the matrix which has d i s ­
appeared due to p l a s t i c deformation of the matrix. 

F i g . 3.5 Development of a contact area between matrix and aggre­
gate 

I f the shear load on the plane of c r a c k i n g i s increased and crack 
opening i s counteracted by r e s t r a i n i n g f o r c e s , f o r instance due 
to reinforcement, a mechanism w i l l develop which can be described 
as f o l l o w s : The contact areas tend i n i t i a l l y to s l i d e : as a r e s u l t 
of t h i s s l i d i n g , the contact area i s reduced, which r e s u l t s i n 
too high contact s t r e s s e s . Hence, f u r t h e r y i e l d i n g occurs, u n t i l 
e q u i l i b r i u m of forces i s obtained i n the X- and Y - d i r e c t i o n s . The 
stresses at the contact area are resolved i n t o a s t r e s s a , normal 

pu' 
to the contact area and a s t r e s s x , t a n g e n t i a l to t h i s area. The 
str e s s e s a and T are i n t e r r e l a t e d by the c o n d i t i o n that the pu pu 
contact areas are about to s l i d e . Therefore the e q u i l i b r i u m con­
d i t i o n s are formulated, based on a uniform c r i t i c a l s t r e s s combi­
n a t i o n (a , T ), w i t h T = u.a ( F i g . 3.6). 

pu pu pu pu & 

Next, the components of the contact forces i n the X- and Y - d i r e c ­
t i o n s are d e r i v e d , based on the previous assumptions. The c i r c l e 
i n F i g . 3.7 represents the i n t e r s e c t i o n of a p a r t i c l e by an a r b i ­
t r a r y Z - s l i c e ( F i g . 3.4.c). 

58 -



F i g . 3.6 Contact stresses on a p a r t i c l e 

6 =2R0pu.sin9 J 

ax = 2Rsinesina 
f« »t 

ay = 2R sin0cosa| 

lv = 2RXpusin9 

F i g . 3.7 E q u i l i b r i u m conditions 

The r a d i a l s t r e s s e s a are compounded to a force F = 2 a R s i n pu a pu 
The component of t h i s f orce i n the d i r e c t i o n of the Y-axis i s 
F = 2 a R s i n 0 s i n a and the component i n the d i r e c t i o n of ay pu 
the X-axis i s F = 2 a R s i n 8 cos a. The st r e s s e s T are ax pu pu 
compounded to a force F = 2 T R s i n 8. The Y-component of t h i s 

T pu force i s F = -2 t R s i n 6 cos a and the X-component i s xy pu 
F = 2 T R s i n 8 s i n a. TX pu 
The p r o j e c t i o n of the contact area on the X-axis i s equal to 
a = 2 R s i n 8 s i n a and on the Y-axis a = 2 R s i n 8 cos a. x y 
The r e s u l t i n g reactions i n the X- and Y - d i r e c t i o n s can then be 
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formulated as 

F = a .a + T .a x pu y pu x 
(3.1) 

F = a .a - T .a y pu x pu y 

Since T = u.a t h i s i s s i m p l i f i e d to the f i n a l r e l a t i o n s pu pu 

F = a (a + u . a ) x pu y x 
(3.2) 

F = a (a - u . a ) y pu x y 

The t o t a l r e s i s t a n c e of the crack area under c o n s i d e r a t i o n of 
u n i t width and length 1, according to F i g . 3.4.C, i s the sum of the 
c o n t r i b u t i o n s of a l l p a r t i c l e s i n that area: 

IF = a ( l a + u.Ea ) x pu y x 
(3.3) 

IF = a ( l a - u.Xa ) y pu x y 

I f a l s o a u n i t length i s considered, the projected contact areas 
are r e l a t e d to a u n i t surface area of the crack, so that (3.3) i s 
modified to 

T = a (A + u.A ) (3.4) pu y x v ' ' 

a = a (A - u.A ) pu x y 

i n which T and a are the shear s t r e s s and normal s t r e s s , and A 
x 

and Ay are the projected contact areas f o r a u n i t crack area. 

3.2 General considerations on the ba s i c v a r i a b l e s 
The equations (3.4) represent the contact forces i n the X- and in­
d i r e c t i o n s f o r a crack area of predefined dimensions, expressed as 
functions of the projected contact areas A^ and A^. These values 
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themselves are functions of the crack width w and and the shear 
displacement A, as seen i n F i g . 3.6. So the r e l a t i o n s between 
stresses and displacements are known, assuming that s u i t a b l e values 
f o r the parameters a and u can be i n s e r t e d , pu 

The projected contact areas and increase w i t h decreasing 
values of the crack width w and i n c r e a s i n g values of A. Other 
i n f l u e n c i n g f a c t o r s are the r e l a t i v e volume of the aggregate and 
the d i s t r i b u t i o n of the p a r t i c l e diameters (grading curve). The 
values A and A are s t o c h a s t i c v a r i a b l e s . On the basis of assump-x y 
tio n s f o r the r e l a t i v e volume, the d i s t r i b u t i o n and the shape of 
the p a r t i c l e s (assumed to be s p h e r i c a l ) i t must be p o s s i b l e to 
e s t a b l i s h the expected average values of A and A by means of a f x y 
s t a t i s t i c a l a n a l y s i s . This a n a l y s i s , which r e l a t e s the st r e s s e s 
to the displacements, i s c a r r i e d out i n s e c t i o n 3.3. 

The matrix y i e l d i n g strength a i s re p r e s e n t a t i v e of the average 
strength of the inhomogeneous matrix m a t e r i a l subjected to l o c a l l y 
d i f f e r i n g m u l t i a x i a l s t r e s s combinations. One aspect of inhomoge-
n e i t y which i s important f o r shear t r a n s f e r i n cracks i s that 
during hardening of the concrete some segregation of water can 
occur i n the contact zones between matrix and p a r t i c l e s , due to 
which the matrix i n the immediate v i c i n i t y of the p a r t i c l e s may 
have a lower strength. These laye r s of lower matrix q u a l i t y around 
the p a r t i c l e s have no uniform t h i c k n e s s , so t h a t , during shear d i s ­
placement of the crack faces, the p a r t i c l e s penetrate p a r t i a l l y 
i n t o s o f t and p a r t i a l l y i n t o strong matrix m a t e r i a l . Furthermore 
the matrix i s enclosed i n small areas between the aggregate p a r t i ­
c l e s , so that the stresses around the i n d i v i d u a l aggregate p a r t i ­
c l e s mutually i n t e r f e r e and the s t r e s s c o n d i t i o n s vary from point 
to p o i n t , r e s u l t i n g i n strength values which are also subject to 
l o c a l v a r i a t i o n s . 
Since at present no s a t i s f a c t o r y model e x i s t s which describes the 
behaviour of the concrete on the basis of an i n t e r a c t i o n between 
the c o n s t i t u e n t components (Liische [ 4 7 ] ) , no appropriate values 
f o r the average y i e l d i n g strength a are a v a i l a b l e . However, i t 
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i s p o s s i b l e to detect tendencies f o r t h i s value by a n alysing the 
r e s u l t s of experiments on m u l t i a x i a l l y loaded concrete. The matrix 
strength can be expected to exceed the u n i a x i a l concrete compressive 
strength. The strength of the concrete i s l a r g e l y governed by the 
q u a l i t y of the bond between matrix and aggregate p a r t i c l e s , which 
i s g e n e r a l l y considered to be the weakest l i n k of the loadbearing 
mechanism. In general the d e t e r i o r a t i o n of the concrete under u n i ­
a x i a l loading s t a r t s w i t h microcracking i n t h i s bond zone. Shah and 
Chandra |_ 68 ] i n j e c t e d loaded concrete specimens with a f l u o r e s c e n t 
substance to f a c i l i t a t e the observation of microcracks. At about 
50% of the f a i l u r e load the number of microcracks around the p a r t i ­
c l e s , some of which cracks were already present before l o a d i n g , 
began to increase s i g n i f i c a n t l y . At about 70% of the f a i l u r e load 
these cracks began to i n t e r s e c t the matrix. I f the formation of 
microcracks i n the bond zone i s delayed, f o r instance by a l a t e r a l 
c o n f i n i n g pressure, the strength of the concrete i s s i g n i f i c a n t l y 
increased ( F i g . 3.8). I f the matrix strength were smaller than the 
concrete s t r e n g t h , such an increase could never occur. For concretes 
subjected to l a t e r a l c o n f i n i n g pressures (a > = > 0) Hobbs 
[ 29 ] gave as an approximate expression f o r the f a i l u r e s t r e s s 

a-j u> i n terms of the compressive strength at atmospheric pressure 
£'Cyl> a n d t n e c o n f i n i n g pressure, a ^ , an equation of the form 

a = f* + k o, 3u c y l 1 l u 

with k j ranging from about 5.7 f o r conventional concrete w i t h a 
w/c r a t i o of 0.35 to about 4.5 f o r a conventional concrete w i t h a 
w/c r a t i o of 0.71. 
W r i t i n g t h i s expression i n an other form: 

°3u , °lu , 
jr~ = l + j r - k, 
c y l c y l 

CT3u 
i t i s seen that the r e l a t i v e strength —, i s a f u n c t i o n of the 

. . f c y l u n i a x i a l concrete s t r e n g t h : decreasing values are obtained f o r 
concretes w i t h higher strengths. 
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F i g . 3 . 8 S t r e s s - s t r a i n curves f o r concrete c y l i n d e r s subjected to 
d i f f e r e n t l a t e r a l c o n f i n i n g s t r e s s e s , according to t e s t s 
of Newmann and Newmann f_ 16 J 

Reinhardt [ 6 4 ] pointed out that t h i s tendency i s a t t r i b u t a b l e to 
the more b r i t t l e behaviour of the matr i x i n high-strength concretes, 
g i v i n g r i s e to higher s t r e s s concentrations and as a r e s u l t e a r l i e r 
formation of microcracks and accelerated d e t e r i o r a t i o n of the load-
bearing mechanism. This has also consequences f o r the y i e l d i n g 
s t r e s s of the matrix o : i f i n places where high s t r e s s concen-pu 
t r a t i o n s occur the strength of the matrix i s exceeded, t h i s 
has a reducing i n f l u e n c e on the value a , since t h i s i s an 
average value f o r stresses of va r y i n g i n t e n s i t y . 
Also under other loading c o n d i t i o n s , such as b i a x i a l tension-com­
pr e s s i o n t e s t s (Kupfer |_ 3 8 J ) , the r e l a t i v e strength values 
( r e f e r r e d to the u n i a x i a l s t r e n g t h ) , increase f o r lower concrete 
q u a l i t i e s : a l s o i n such a case the r e l a t i v e l y higher strength of 
the matrix i n the lower-strength concrete must be respo n s i b l e f o r 
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t h i s tendency. 
Summarizing, i t can be stated that the matrix y i e l d i n g strength a 

P u 

i s higher than the u n i a x i a l concrete strength £', whereas the value 
a C 
•;?U must be expected to decrease f o r i n c r e a s i n g values of t h i s u n i -
c. 

a x i a l strength. 

For the c o e f f i c i e n t of f r i c t i o n p. between the matrix and the aggre­
gate p a r t i c l e s no adequate data are found i n the l i t e r a t u r e e i t h e r . 
An i n d i c a t i o n of the order of u i s found i n the r e s u l t s of te s t s 
c a r r i e d out by Weiss Q 88 J , who i n v e s t i g a t e d the c o e f f i c i e n t of 
f r i c t i o n between square concrete s l i c e s w i t h sides of 100 mm and 
a thickness of 20 mm, the surfaces of which were always ground o f f 
i n the same way. In these t e s t s , performed on a large number of 
specimens i n a s o - c a l l e d tribometer ( F i g . 3.9), a c o e f f i c i e n t of 
f r i c t i o n f o r concrete of u = 0.52 was found. I f the surfaces were 
treated w i t h h y d r o c h l o r i c a c i d , removing a small la y e r of the 
matrix, so that only the p a r t i c l e area remained, the value obtained 
was u = 0.41. Tests on specimens made of mortar (1 cement, 3 sand, 
w/c r a t i o = 0.5) y i e l d e d a value of u = 0.47, l y i n g between the 
values f o r concrete and aggregate. 

test specimen—< 

normal load 

adjusting bolts -
shear load 

F i g . 3.9 Tribometer to e s t a b l i s h the c o e f f i c i e n t of f r i c t i o n be­
tween two s o l i d bodies, according to Weiss Q 88 ] 



Summarizing, i t must be p o s s i b l e to express the values A and A 6) r r x y 
i n equation (3.4) as functions of the displacements w and A, on 
the basis of a given concrete mix composition (aggregate content, 
grading curve, p a r t i c l e shape). 
For the values a and u only tendencies are known. I t would be pu 
too h y p o t h e t i c a l to engage i n f u r t h e r speculations about these 
values. Therefore the most s u i t a b l e procedure seems to be to 
e s t a b l i s h , f i r s t , the r e l a t i o n s between A and A on the one hand 

x y 
and w and A on the other hand; next, to i n s e r t these expressions 
i n t o the equation (3.4), and then to f i n d the values a and u 
i n d i r e c t l y , as the values which give the t h e o r e t i c a l curves which 
best f i t the r e s u l t s of experiments on cracks. I f the model i s 
r e a l i s t i c , t h i s procedure ought to give values of a and u which 

pu 
are i n agreement with the tendencies p r e v i o u s l y o u t l i n e d . 

Determination of the r e l a t i o n between the projected contact areas 
A and A f o r a u n i t crack area on the one hand and the d i s p l a c e -—x y • — — — — — — 
ments between the crack faces on the other hand 

Before d e a l i n g w i t h the d e t a i l s of the a n a l y s i s , the general con­
cept of the c a l c u l a t i o n i s schematically represented. The c a l c u ­
l a t i o n i s c a r r i e d out i n a number of steps. 

a. An a r b i t r a r y Z-plane, i n t e r s e c t i n g the concrete body, i s con­
sidered. Assuming a c e r t a i n grading curve f o r the d i s t r i b u t i o n 
of the p a r t i c l e s i n the mix, f i r s t , the most probable d i s t r i ­
bution of the diameters of the i n t e r s e c t i o n c i r c l e s i n the 
Z-plane i s derived ( F i g . 3.10.a). Next, the most probable num­
ber of i n t e r s e c t i o n c i r c l e s w i t h an a r b i t r a r y diameter D , which 

3 o' 
are a l s o i n t e r s e c t e d by the crack over a length 1, i s c a l c u l a t e d 
( F i g . 3.10.b). Then a l s o for a u n i t crack length the most prob­
able number of p a r t i c l e s with a diameter D i n t e r s e c t e d by the 

o 
crack i s known ( F i g . 3.10.c). Since the d i s t r i b u t i o n of aggre­
gate p a r t i c l e s i n a concrete i s s u b s t a n t i a l l y a continuous func­
t i o n , i t i s not p o s s i b l e to give a most probable d i s c r e t e num­
ber: p r o b a b i l i t y density functions have to be used. 
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a b e d 

F i g . 3.10 

b. In a second step of the c a l c u l a t i o n an answer i s given to the 
question: "What are the average projected contact lengths a^ and 
a f o r an i n t e r s e c t i o n c i r c l e w i t h a diameter D , f o r an a r b i -y o 
t r a r y displacement combination (w, A)?" In t h i s c a l c u l a t i o n the 
v a r i a b l e p o s i t i o n of the c i r c l e w ith regard to the c e n t r a l crack 
l i n e (u) i s taken i n t o account ( F i g . 3.11). 

F i g . 3.11 

c. I f the density f u n c t i o n of the most probable number of i n t e r ­
s e c t i o n c i r c l e s w i t h a diameter D i s known from (a) and the 

o 
average contact lengths a^ and a^, provided by such a c i r c l e , 
are known from (b), the t o t a l c o n t r i b u t i o n s of the c i r c l e s w i t h 
a diameter D to the t o t a l contact lengths Ea and Ea are o " x y 
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known. The most probable t o t a l contact lengths, taking i n t o ac­
count a l l p o s s i b l e c i r c l e diameters, are then found by i n t e g r a ­
t i o n over the f u l l range of diameters, the d i s t r i b u t i o n of which 
i s known from ( a ) . 
Since the c a l c u l a t i o n s have been c a r r i e d out f o r an a r b i t r a r y 
Z-plane, and the same con s i d e r a t i o n s are v a l i d f o r a l l Z-planes, 
the projected contact areas A and A , for a crack area w i t h a 

x y 
u n i t length and a u n i t width ( F i g . 3.10.d), are obtained by 
m u l t i p l y i n g the contact lengths Xa^ and Sa^ by that u n i t width. 

3.3. a 5Ê£êIÏ2i3Ë£i2B_2£_£l2ê_™2St_Erobable_dis t r i b u t i o n _ o f _the_diameters 

are_crossed_by__the_crack 

To be able to c a l c u l a t e the d i s t r i b u t i o n of the diameters of the 
i n t e r s e c t e d c i r c l e s i n the Z-plane, an assumption has to be made 
f o r the d i s t r i b u t i o n of the aggregate p a r t i c l e s i n the concrete 
mix. For t h i s d i s t r i b u t i o n a F u l l e r curve has been choosen. This 
curve represents a grading of aggregate p a r t i c l e s which r e s u l t s 
i n optimum d e n s i t y and strength and i s therefore o f t e n used i n 
p r a c t i c e . Besides, the curve i s described by a simple and handy 
mathematical formula: 

(3.5) 

i n which p denotes the percentage by weight passing a sieve w i t h 
aperture diameter D, and D x i s the diameter of the l a r g e s t aggre­
gate p a r t i c l e . This r e l a t i o n i s used as the cumulative d i s t r i b u ­
t i o n f u n c t i o n of s p h e r i c a l aggregate p a r t i c l e s w i t h a diameter D 
( F i g . 3.12). 
The p r o b a b i l i t y thait an a r b i t r a r y p o i n t i n the concrete i s located 
i n s i d e an aggregate p a r t i c l e i s denoted by p = p^. A c t u a l l y p^ i s 
the r a t i o of the t o t a l volume of the aggregate to the concrete 
volume. The p r o b a b i l i t y that a p o i n t , i f located i n s i d e a p a r t i c l e , 
a l s o l i e s i n a p a r t i c l e with a diameter smaller than an a r b i t r a r y 
chosen value D , can be expressed, using equation (3.5), as f o l l o w s : 
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P ( D < V = P k ( l T ^ ( 3 - 6 ) 

max 

By d i f f e r e n t i a t i o n of t h i s f u n c t i o n the p r o b a b i l i t y density func­
t i o n p'(D ) i s obtained: 

x 
3 p ( D < D ) D , , 

P ' < V » k 3D 2 - F - = C - V ° - 7 ) 

K max max 

with 
C = .p. .D 2 

k max 

F i g . 3.12 Cumulative d i s t r i b u t i o n f u n c t i o n f o r s p h e r i c a l aggregate 
p a r t i c l e s according to F u l l e r 

Next, the p r o b a b i l i t y that an a r b i t r a r y p o i n t , located i n a Z-plane 
i n t e r s e c t i n g the concrete body, l i e s a l s o i n an i n t e r s e c t i o n c i r c l e 
with a diameter D q i s analysed. The p r o b a b i l i t y that a p o i n t , i f 
located i n a p a r t i c l e w i t h a diameter D , l i e s a l s o i n an i n t e r ­
s e c t i o n c i r c l e w i t h a diameter > D ( D < D ), i s equal to the r a t i o 

o o x 
of the volume of the sphere s e c t i o n A ( F i g . 3.13) to the volume of 
the hemisphere. 
The volume of the sphere s e c t i o n B i s equal t o : 

V„ = J - irh(3a 2 + h 2) with h = I D - A/i D 2 - a 2' (3.8) B 6 x V " a 

w h i l s t the volume of the hemisphere: 

V = ± T T D 3 (3.9) 12 x 
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The p r o b a b i l i t y that a point i n s i d e t h i s sphere l i e s i n an i n t e r ­
s e c t i o n c i r c l e with D > D i s equal to 

o 
V - V 

p d
 ( D > V " — v ( 3 - 1 0 ) 

S u b s t i t u t i o n of (3.8) and (3.9) i n t o (3.10) and rearranging r e s u l t s 
i n : 

D 2 D 2 \ I D 
p D

 ( D > V = 1 - w - * w V 1 " ( ^ ) 2 ( 3 - n ) 

X K M X 

So the p r o b a b i l i t y that an a r b i t r a r y point i n a Z-plane ( F i g . 3.4.b) 
l i e s i n an i n t e r s e c t i o n c i r c l e w i t h a diameter D > D i s obtained 

o 
by i n t e g r a t i n g the product of (3.7) and (3.11) over the i n t e r v a l 
D to D : 
o max 

D 
max 

P C(D > V = ƒ P'<V- PD C° > V d D
M C3. 12) 

D K 
o 

S u b s t i t u t i o n of (3.7) and (3.11) i n t o (3.12) r e s u l t s i n : 

D D D 
max max max a i - i 

p ( D > D ) = T C . D _ ' d D - / C.D 2D" 2- 5dD - f i C . D 2D~ 2 " 5 \ / l - ( - ^ d D C O J X K < O » K X O X V D * D D D K o o o 
-v v 

I I I I I 
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I n t e g r a l I 

7 0 

ƒ D ' d D 2 C D P , (1 - D ^ D M k o max 

I n t e g r a l I I 

ƒ D 2 D
 2 , 5 d D = C D 2 

3 s P , 4 D 2 D 2 - J D 2 D 2 ) k 3 o max 3 o max 

I n t e g r a l I I I 

Ƒ J C D 2 D " 2 - 5 \ / l - (^) 2 d D 'D ' x 

This i n t e g r a l i s solved by expanding the term ^ 1 - ( ^ ) 2 i n t o a 
Taylor s e r i e s : 

D2 

1 + t °\ _ i . i /_ 1 /_ °s 2 1 • 3 i 0 .3 1 . 3 . 5 , o.h, 

D 2 ' 2V W 2 . 4 . 6 ^ D 2 ; 2 .4.6.8^ D^ 

M X ä€ X 

= 1 - 0 . 5 D 2 D - 0 . 1 2 5 0 ^ 0 - 0 . 0 6 3 D 6 D - 0 . 0 3 9 D 8 D 
0 5 5 O K O K O H 

The i n t e g r a l can then be w r i t t e n as: 

I = 1 C i I I I 2 L o D 2 ƒ ( D 2 , 5 - 0 . 5 D 2 D 4 - 5 - 0 . 1 2 5 D 1* D 6 - 5 - 0 . 0 6 3 D 6 D 

0 . 0 3 9 D 8 D 1 0 - 5 )d D 
O S K 

I n t e g r a t i o n r e s u l t s i n : 



I T T T = \ p. .D 0 , 5 D2 - 0.667 D 1 - 5 + 0.143 D 2 D 3 - 5 

I I I r k max o \_ * O H 

+ 0.023 D"* D - 5" 5 + 0.008 D6 D~7'5 + 0.004 D 8 D~9,\5 , 
O K O X 0 K _ I ] -

max 

o 

= p, (- 0.167 D 2 D 2 + 0.036 D 4 D 4 + 0.006 D 6 D k o max o max o n 

+ 0.002 D8 D + 0.001 D 1 0D + 0.122 D D H ^ 
o max o max o max 

Combination of I , I I and I I I gi v e s : 

p (D > D ) = p, (1 - 1.455 D°' 5 D - 0" 5 + 0.50 D 2 D~2 - 0.036 D~4 

c o k o max o max o max 

(3.13) 
0.006 D6 D~6 - 0.002 D 8 D~8 - 0.001 D 1 0D _ 1 % o max o max o max 

The cumulative d i s t r i b u t i o n f u n c t i o n , representing the p r o b a b i l i t y 
that an a r b i t r a r y point i n the concrete body, l y i n g i n a Z - i n t e r -
s e c t i o n plane, i s located i n an i n t e r s e c t i o n c i r c l e w i t h a diameter 
D < can now be c a l c u l a t e d , using equation (3.13): 

p ( D < D ) = l - p ( D > D ) (3.14) 
C O C O 

S u b s t i t u t i o n of (3.13) i n t o (3.14) r e s u l t s i n : 

p (D < D ) = p, (1.455 D 0 - 5 D~ 0 - 5 - 0.50 D 2 D~2 + 0.036 D1* D~4 

c o r k o max o max o max 

(3.15) 

+ 0.006 D 5 D 6 + 0.002 D 8 D 8 + 0.001 D 1 0D 1 0 ) o max o max o max 

This f u n c t i o n i s represented i n F i g . 3.14. 
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F i g . 3.14 Cumulative d i s t r i b u t i o n f u n c t i o n f o r the diameter of 
i n t e r s e c t i o n c i r c l e s 

The density f u n c t i o n f o r the p r o b a b i l i t y that an a r b i t r a r y point i n 
the concrete body, l y i n g i n a Z-plane of i n t e r s e c t i o n , i s s i t u a t e d 
i n an i n t e r s e c t i o n c i r c l e w i t h a diameter D = D i s obtained by 

o 
d i f f e r e n t i a t i o n of (3.15) to D : 

o 
p'(D ) = p, (0.727 D ~ 0 , 5 D - 0 - 5 - D D ~ 2 + 0.144 D 3 D ~ 4 

c o r k o max o max o max 

+ 0.036 D 5 D 6 + 0.016 D 7 D 8 + 0.010 D 9 D 1 0 ) o max o max o max 

(3.16) 

Since the d i s t r i b u t i o n of c i r c l e s of i n t e r s e c t i o n i n the Z-plane i s 
now known, i t i s p o s s i b l e to e s t a b l i s h the frequency of c i r c l e s D Q 

which both l i e i n the Z-plane and are crossed by the crack ( F i g . 
3.4.b and F i g . 3. 15). 

Q 
üoO°op. 

F i g . 3.15 C i r c l e s of i n t e r s e c t i o n crossed by the crack 
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The average length of the i n t e r s e c t i o n l i n e AB f o r a c i r c l e w i t h 
diameter D crossed by the crack i s e s t a b l i s h e d using F i g . 3.16. 

F i g . 3.16 Determination of the average length of i n t e r s e c t i o n 
f o r a c i r c l e w ith diameter D 

o 

The surface area of the c i r c l e i s 1 IT D 2 and the surface area of 
o 

the equivalent rectangle i s D ^ s . The average i n t e r s e c t i o n length 
i s then 

l 7T D 2 TTD 
* = - ^ = -f ( 3 - 1 7 ) 

o 

I f the length of the crack l i n e ( i n t e r s e c t i o n of the crack plane 
and the Z-plane, F i g . 3.4.e) i s denoted by 1 , the p r o b a b i l i t y 
density f u n c t i o n f o r the expected length of that part of the l i n e 
whose points a l s o form part of an i n t e r s e c t i o n c i r c l e w i t h a d i a ­
meter D q , i s obtained by m u l t i p l y i n g 1 w i t h P^C^) (equation 3.16); 
hence: 

l ( D o ) = p ^ ( D o ) . 1 (3.18) 

Then the p r o b a b i l i t y d ensity f u n c t i o n f o r the expected number of 
i n t e r s e c t i o n c i r c l e s w i t h a diameter D ^ i n the Z-plane which a l s o 
i n t e r s e c t the crack l i n e 1 i s obtained from (3.17) and (3.18) 

l ( D O ) p W . l 
n(D ) = = —; — — o' - | TTD s * o 
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Per u n i t length of the crack l i n e 1 t h i s expression i s s i m p l i f i e d 
to: 

n ( D ) = T ^ A - ( 3 . 1 9 ) o i T T D Q 

3.3.b 5£termination_of_the_exgected_ave 
£i°S_£il£l£_HiEii_ESiiy5_5_f2_£ll§_£2S£§£f_l£BSf t}s_a x_and_a^_f or_an 

variable_embedment_de£th_u 

In the preceding s e c t i o n the p r o b a b i l i t y density f u n c t i o n f o r the 
expected number of i n t e r s e c t i o n c i r c l e s with an a r b i t r a r y diameter 
D ^ , i n t e r s e c t e d by a u n i t crack length, has been derived (equation 
3 . 1 9 ) . However, the p o s i t i o n of these c i r c l e s with regard to the 
plane of cracking has not yet been taken i n t o account. The distance 
from the c e n t r a l crack l i n e to the centre of the c i r c l e i s denoted 
by u ( F i g . 3 . 1 7 ) . This value i s assumed to be a random v a r i a b l e 
i n the i n t e r v a l 0 < u < R . (For - R < u < 0 the c i r c l e i s i n the 
opposite crack face, f o r which the same considerations are v a l i d ) . 

F i g . 3.17 P o s i t i o n of i n t e r s e c t i o n c i r c l e c h a r a c t e r i z e d by u, 
randomly varying between 0 and R 

I f w + u > R , then f o r no value of the shear displacement A can any 
contact area occur. I f w + u < R , then two c h a r a c t e r i s t i c values f o r 
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A can be found. For A < A no contact i s found (see also F i g . 
3.18.a). I f A < A < A , , a contact area i s obtained which increases o b 
for i n c r e a s i n g value of A . This phase i s c a l l e d the "growing contact 
phase" ( F i g . 3.18.b). I f A > A ^ no increase of contact area by 
f u r t h e r shear displacement can be obtained. This phase i s c a l l e d 
the "maximum contact phase." ( F i g . 3.18.c). 

c. Phase of maximum contact 
A , < A b 

F i g . 3.18 D i f f e r e n t phases f o r w + u < R 

The values A and A , are obtained w i t h the help of F i g . 3.17. 
o b r e 

A Q = O A - O B = V R 2 - u 2' - V R 2 - (u+w)2' (3.20) 
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A^ i s obtained by c a l c u l a t i n g the i n t e r s e c t i o n point of c i r c l e I I 
with the l i n e y = R 

x 2 + (R - w) 2 = R 2 

so that x = - V 2 R w w2' 

or A b = V 2 Rw - w2' (3.21) 

For the i n t e r v a l A < A < A, the values a and a , c h a r a c t e r i z i n g o b x y 
the contact area, can be expressed as a f u n c t i o n of u, w, A and R. 
This d e r i v a t i o n i s given i n Appendix I ; 

a = V R 2 - Uw 2 + A 2 ) ' - — j - Uw - u (3.22) 
Y Vw 2 + A2' 

a = Â - V R2 - i ( w 2 + A 2)'—— ^ ,+ V R 2- (U + W ) 2 ' (3.23) 
X Vw 2 + A2' 

For A > A^ i t i s e a s i l y deduced that 

a y = R - ( u + w ) (3.24) 

= VR 2 - (u + w) 2' (3.25) 

In the previous part of s e c t i o n 3.3.b the contact lengths a^ and 
a have been c a l c u l a t e d f o r an i n d i v i d u a l i n t e r s e c t i o n c i r c l e w ith 
y 

a radius R, which r e s u l t e d i n expressions c o n t a i n i n g the v a r i a b l e s 
w, A and u. The f o l l o w i n g question w i l l now be analysed: What i s 
the average c o n t r i b u t i o n of an i n t e r s e c t i o n c i r c l e w ith a radius 
R to the contact lengths a^ and a^ i f A and w have an a r b i t r a r y , 
constant value? I f the answer to t h i s question i s known, i t i s 
p o s s i b l e to f i n d the t o t a l p r o j e c t i o n s of the contact lengths Ea^ 
and Ea^ by i n t e g r a t i n g the c o n t r i b u t i o n s of a l l s i n g l e c i r c l e s over 
the f u l l range of v a r i a t i o n of R. 
An i n t e r s e c t i o n c i r c l e must be taken i n t o account i f i t gives a 



contact area i n i t s most favourable p o s i t i o n . I t i s evident that 
the most favourable p o s i t i o n i s obtained i f the embedment depth u 
i s zero. I f a c i r c l e even i n t h i s extreme p o s i t i o n i s not i n con­
t a c t with the opposite crack face i t may be excluded from the c a l ­
c u l a t i o n . The f i r s t demand, i f contact i s re q u i r e d , i s that R > w; 
i f R < w there i s no contact f o r any value of A, even i n the ex­
treme case where u = 0 ( F i g . 3.19). 

F i g . 3.19 I n t e r s e c t i o n c i r c l e i n i t s most favourable p o s i t i o n 
(u = 0) 

I f contact i s not impossible i n advance, so i f R > w, i t w i l l 
max 

be necessary to analyse the question how the c i r c l e s c o n t r i b u t e 
to the t o t a l contact area, taking i n t o account the d i f f e r e n t modes 
of contact, represented i n F i g . 3.18. 
The value R̂  to which the radius of the i n t e r s e c t i o n c i r c l e has to 
"grow" ( F i g . 3.19) i n order to provide at l e a s t one point of con­
t a c t can be c a l c u l a t e d from equation (3.20). For u = 0 i t i s de­
duced that j u s t one po i n t of contact i s obtained f o r 

The value R^, p r o v i d i n g an upper l i m i t f o r the range i n which 
"maximum contact" ( F i g . 3.18) i s obtained, i s found from equation 
(3.21): 

* 2 < ^ <3-27> 
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Comparing the expressions (3.26) and 3.27), i t i s seen that f o r 
A < w (designated as the case A), the value i s smaller then the 
value R j , so that the "maximum contact phase" has no s i g n i f i c a n c e . 
So f o r A < w a l l c i r c l e s w i t h a radius R, < R < R can con t r i b u t e 

1 = = max 
(whether t h i s r e a l l y happens w i l l depend on the value of the embed­
ment depth u). However, i f A > w (case B), then R2 i s greater than 
Rj , so that both the "growing contact phase" and the "maximum con­
t a c t phase" are of p r a c t i c a l importance. I t must furthermore be 
noted that now the l i m i t value R̂  does not apply, since contact i s 
always guaranteed f o r R > w (see also F i g . 3.19 f o r A > w). So f o r 
A > w a l l c i r c l e s w i t h a radius w < R < R^ can con t r i b u t e (again 
dependent on u) , and i f they do, "maximum contact" i s obtained; 
furthermore a l l c i r c l e s w i t h a radius R. < R < R can c o n t r i b u t e , 

2 = = max 
and i f they do, "growing contact" i s obtained. 
The two case A and B are sch e m a t i c a l l y represented i n F i g . 3.20. 

"growing contact' ® A< w » o fc 
1 R 2 - - 2 w ~ ) 

(B) A> W 

2w ' " 1 " 2A 

maximum contact" "growing contact" 

Rmin - w R i -
2 " 2w 

F i g . 3.20 Schematical r e p r e s e n t a t i o n of the fundamental contact 
modes f o r varying values of the radius R of the i n t e r ­
s e c t i o n c i r c l e s 

The fundamental cases A and B have to be d i s t i n g u i s h e d , e s t a b l i s h ­
ing the average expected c o n t r i b u t i o n s of the i n t e r s e c t i o n c i r c l e s 
to the contact area. This i s done i n the f o l l o w i n g d e r i v a t i o n . 



Case A: A < w 

I f there i s any contact area, t h i s i s at l e a s t the case f o r the 
minimum embedment depth u = 0. Solutions are found up to an upper 
bound u . This value u i s deduced using F i g . 3 . 2 1 . max max 

F i g . 3 . 2 1 C a l c u l a t i o n of maximum embedment depth u f o r which 
max 

contact s t i l l e x i s t s 

For constant values of A , w and R, the v a r i a b l e u i s increased to 
such an extent that only a s i n g l e point of contact remains: at that 
stage u i s reached, max 
In F i g . 3 . 2 1 i t i s seen that 

x = - VR 2 - u 2' u 

To f u l f i l the c o n d i t i o n that only one po i n t of contact remains, i t 
i s s u f f i c i e n t to demand that the po i n t (x^, y ) = ( A - V r 2 ~ u2', u + w) 
l i e s on the c i r c l e ; hence: 

(u + w) 2 + ( A - V K 2 - u 2') 2 = R2 

or 2 uw + (w2 + A 2 ) = 2 A VR 2 - u 2' 

Squaring both members of t h i s expression r e s u l t s i n : 
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u 2(4 w2 + 4 A 2) + 4 uw(w 2 + A 2) + (w 2 + A 2 ) 2 - 4 A 2 R 2 = 0 

which leads to: 

Mw 2 +A 2) + -^Vw2(w2 + A 2 ) 2 - (w2
 +A 2){(w 2 + A 2) 2-4A 2R 2}',., 

(w2
 + A 2) ~ ( 3 - 2 8 ) 

So values f o r a and a are found f o r the ranee x y b 

0 < u < u 

The p r o b a b i l i t y density f u n c t i o n f o r the occurrence of a value u 
i s equal to 

1 
P(u) = f (3.29) 

The expected value f o r the average c o n t r i b u t i o n of a c i r c l e w i t h 
radius R to the contact lengths 
equation (3.29), as ( F i g . 3.22) 
radius R to the contact lengths a^ and a^ can be formulated, using 

u=0 u=iwR 

F i g . 3.22 C a l c u l a t i o n of the average c o n t r i b u t i o n of a c i r c l e w i t h 
radius R to the contact length a „ 

xR 

1 D = D S a D Q U 

yR R ;/=0 yR 
(3.30) 



u=u 
and , max 

a = - a du (3.31) 
xR R J xR 

u=0 

i n which a and a „ are the contact lengths a and a f o r a c i r c l e yR xR y x 
w i t h radius R, according to (3.22 and 3.23) 
S u b s t i t u t i o n of (3.22) i n t o (3.30) r e s u l t s i n : 

„ = i f { VR 2 - u « 2 + A 2 7 A , A — - ;« - u} du 
R J \/„2 x A2 

>R R V" " ' Vw 2 + A 2 ' ' U M A X " R ~ M A X * R 

u 2 

^ W - H w 2 + A 2 ) \ , = ,.u_... - J | u____ - | - SS 

S u b s t i t u t i o n of (3.23) i n t o (3.31) r e s u l t s i n : 

u 
max 

a = I f { J A - V R 2 " K W 2 + A 2 ) " , + V r 2 - (u + w)2'} du 

I I 

I n t e g r a t i o n of I r e s u l t s i n : 

I T = { * A - VR 2 - J(w 2 + A 2 ) ' ,} .u (3.33) 
1 Vw2 + A 2 ' M A X 

I n t e g r a t i o n of I I : 

l l t = I (R 2 - (u + w ) 2 ) 5 du (3.34) 

Since du = d(u + w), (3.34) can be formulated as: 
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w+u w+u 

II R2 - (u + w) 2 d(u + w) tz dt 

t 7 R • t - VR _ t + -rr a r c s i n -

u + w 
V R 2 - (W + U 

max 2 

r>2 w + u _ 9 , . max RZ , w + — a r c s i n r- a r c s i n — 

The f i n a l expression f o r a „ i s then w r i t t e n as: 
xR 

xR Vi — 1 u u + w 

R 2 - | ( w 2 + A 2 ) „, W + 
max A/t>2 C j, \2 

Vw z + A z 

w + u 
2j- V R w + — a r c s i n - — - — - - - ^ a r c s i n — (3.35) 

Case B: A > w 

(w 2 + A 2) In F i e . 3.20 i t i s seen that f o r R > -*—-—•—- the c a l c u l a t i o n can 2w 
be c a r r i e d out i n the same way as i n case A. For the range 

w < R < WV A 2 (3.36) 2w 

the "maximum contact" phase i s v a l i d . In the same way as i n the 
"growing contact" phase a c i r c l e i s i n contact with the opposite 
crack face i f the embedment depth u i s greater than zero and 
smaller than a c e r t a i n upper bound. In F i g . 3.18.C i t can e a s i l y 
be seen that t h i s upper bound i s obtained f o r u = u = R - w. 

max 
For values of R i n the range i n d i c a t e d i n (3.36) a _ i s obtained 

yR 
by s u b s t i t u t i n g (3.24) i n t o (3.30): 



(R-w) 

ayR R 
(R - u - w)du = — (R - w) 2 (3.37) 

a R i s obtained by s u b s t i t u t i n g (3.25) i n t o (3.31): 

R-w 

*xR R VR 2 - (u + w) 2' du 
0 

(3.38) 

S u b s t i t u t i n g t f o r (u + w), equation (3.38) can be w r i t t e n as: 

R 

~.dt 1 
xR R 

ƒ V R T T ^ . 

so that 

xR R 1 t z + — a r c s m — z R 

— . R - — VR 2 - w2' - 5 
4 2R 2 

(3.39) 

For the range 

R > ŵ  + ^ 
2w 

the formulas (3.32) and (3.35) are v a l i d . 

of_the contact a r e a s _ i n _ t h e _ X - _ a n d _ Y - d i r e c t i o n s _ f o r _ a _ u n i t _ s u r f a c e 
area_of_the_crack_glane 

For a u n i t length of the crack l i n e ( l i n e of i n t e r s e c t i o n of the 
crack plane and a Z-plane ( F i g . 3.4.c) i t was shown that the prob­
a b i l i t y d e nsity f u n c t i o n f o r the expected number of c i r c l e s w i t h 
a diameter D q , i n t e r s e c t e d on t h i s length, can be expressed by 
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equation (3.19). The t o t a l contact lengths i n the X- and Y - d i r e c -
t i o n s , provided by a l l c i r c l e s w i t h a radius R i n t e r s e c t i n g the 
u n i t crack length, can be expressed as: 

R max 
ll _ = / n(R).a . dR (3.AO) yR J yR 

R . mm 
R max 

I a x R = J n ( R ) . i x R . d R (3.A.) 
R . min 

i n which n(R) can be c a l c u l a t e d w i t h equation (3.19) and a _ and 
y R 

a x R can be taken from (3.32) and (3.35) i n the case where A < w, or 
from (3.37) and (3.39) i n the case where A > w. 
The expected values f o r the sum of a l l projected contact lengths l a and Ea f o r a u n i t length of the crack l i n e , are obtained by x y 
the summation of the c o n t r i b u t i o n s of a l l c i r c l e s which have such 
a radius that contact may occur; formulated otherwise: by i n t e g r a t ­
ing the expressions (3.AO) and (3.A1) over the f u l l i n t e r v a l of 
c i r c l e s which may provide contact w i t h the opposite crack face. 

Case A: A < w 

(w 2 + A ) (w 2 + A 2) 
Contact i s obtained i f R > K™ ' or D > -£-L 

2A A 
therefore : 

D 
max 

S a

y

 = J n ( D ) - a y D , d I 

w 2+A 2 

A 
D 
max 

E a x = J n(D).ä x D.dD (3.A3) 
w2+A2 

i n which n(D) i s taken from (3.19), a _ from (3.32) and a „ from 
yD xD 



(3.35). D__„ i s the diameter of the l a r g e s t aggregate p a r t i c l e . 
No contac 
wise, i f 

max , z + & Z s 
No contact i s p o s s i b l e i f D < or, formulated other-

max A 

A < |(I5 - A / D 2 - 4w2'). max V max 

Nor i s contact p o s s i b l e i f w > 5 D . The p h y s i c a l background of 
max 

these conditions i s shown i n F i g . 3.23. 

F i g . 3.23 Minimum value of A p r o v i d i n g contact f o r the most favour­
able i n t e r s e c t i o n c i r c l e (D = D ) and the most favour-

max 
able embedment depth (u = 0) 

Case B: A > w 

Contact i s obtained i f D > 2w. Two modes of contact are d i s t i n ­
guished: "maximum contact" i s found f o r D < — — * ̂  ̂  ; "growing" 
contact" i s found f o r D > — — ^ - . 

w 
This r e s u l t s i n : 

W£±a5 d 

w max 
l a = I n(D).a _ .dD + j n(D).a _ .dD (3.44) y J yDj J yD 2 

2w w 2+A 2 

w 

w2+A2 

D 
max 

Za = / n(D).a _ .dD + / n(D).a „ .dD (3.45) x J xDj J xD 2 

2w w2+A2 
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With the formulas (3.42 - 3.45) the expressions are given f o r the 
most probable projected contact lengths i n the X- and Y - d i r e c t i o n s , 
f o r a crack surface w i t h a u n i t length. Since the Z-plane of i n t e r ­
s e c t i o n has been a r b i t r a r i l y chosen ( F i g . 3.4.c), the projected 
contact areas A and A f o r a crack with a u n i t length and a u n i t x y ° 
width are obtained by m u l t i p l y i n g the values Za^ and £a by that 
u n i t width. 
S u b s t i t u t i o n of (3.19, 3.32, 3.35, 3.37 and 3.39) i n t o (3.42 - 3.45) 
r e s u l t s i n the f i n a l set of equations, representing the contact 
areas i n the X- and Y - d i r e c t i o n s f o r a u n i t crack surface area. 

Case A: A < w 

D 
max 

A = ƒ P k . | . F(--£-) . Gj(A, w, D) . dD (3.46) 2 J A 2 ™ a x ŵ +A 
A 

D 
max 

A x = J p k . | . F ( - p - ) . G 2(A, w, D) . dD (3.47) 
wz+Az 

Case B: A > w 

w2+A2 

w 

A y = J P k - V F ( D ^ } 

max 2w 

D 
max 

P k • ~ • F ( j - — ) • Gj (A, w, D) . dD (3.48) 
max 

86 -



w2+A2 

J P k • ̂  • F ( ^ - ) • G M-CA > w, D) . dD 
~ max 2w 

D 
max 

J p, .-. F ( T - 2 - ) . Gj(A, w, D) . dD (3.49) 
7 , o max w2+Az 

w i t h 

Gi (A,w,D) = D ( V D 2 - (w2+A2) ., =y u -w.u - u 2 ) 1 v ' ' v A TT1 max max max Vw2 + A 

G 2 ( A , w , D ) = D 3 { ( A - V D 2 ^ ( W 2 + A 2 ) , , W Z J . U + (u +w) 
2 V V w 2 + A 2 M A X M A X 

V l D 2 - (w + u ) ? - w V i D 2 - w 2 ' + i D 2 

w + u max a r c s m , r 

1 , 2 • 2w , -r- a r c s m — } dD 4 D 

G3(A,w,D) =D 3 (J D-w) 2 

+ ( A , w , D ) = D 3 ( | D 2 - W V l D 2-w 2' - ^ a r c s i n ^ ) 

F ( ^ - ) = 0.727 ( ^ - ) 0 - 5 - ( ^ _ ) 2
+ 0 . 1 4 4 ( ^ - ) 4 + 0.036 + 

max max max max max 

D , j . „ , „ , D , 1 0 + 0 . 0 1 6 (-~^-r + 0 . 0 1 0 ( - ) 
max max 
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-*w (w 2+A 2) + k A / w 2 ( w 2 + A 2)-(w 2 + A 2 ) { ( w 2 + A 2 ) 2 - A 2 D 2 } ' 
(w 2 +A 2) 

p = volume of aggregate/volume of concrete. 

A x ( mrnxlO - 2) 

F i g . 3.24 Tot a l projected contact areas A and A f o r 1 mm2 crack 
y x 

plane, as a f u n c t i o n of crack width w and shear d i s ­
placement A, c a l c u l a t e d w i t h the equations (3.46-3.49) 

I n t e g r a t i o n of (3.46 - 3.49) was performed numerically. For t h i s 
purpose an A l g o l program was developed. For the te x t of t h i s pro­
gram see 1^85 3- A stepwise i n t e g r a t i o n i n 10 steps appeared to be 
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accurate enough: an extension to 100 steps r e s u l t e d i n d i f f e r e n c e s 
smaller than 2%. In t h i s way the contact areas i n the X- and In­
d i r e c t i o n s f o r a u n i t crack area of 1 mm2 are obtained f o r v a r y i n g 
(w, A) combinations. 
F i g . 3.24 shows the r e s u l t of a c a l c u l a t i o n f o r a concrete mix with 
a maximum aggregate p a r t i c l e diameter of 32 mm and a p^ value equal 
to 0.75. 
The r e l a t i o n s between the s t r e s s c o n d i t i o n s i n the crack on the one 
hand and the displacement components on the other hand were ex­
pressed e a r l i e r by the equations (3.4): 

a = a (A - u.A ) pu x y 
(3.50) 

T = a (A + u.A ) pu y x 

i n which A and A depend on w and A (equations 3.46 - 3.49). The 
x y 

v a l i d i t y of these r e l a t i o n s w i l l be i n v e s t i g a t e d i n an experimental 
program. I f i t can be shown that good agreement e x i s t s between 
theory and experiments, the unknown parameters CTpU> t n e y i e l d i n g 
strength of the matrix, and u, the c o e f f i c i e n t of f r i c t i o n , w i l l 
be e s t a b l i s h e d . The experimental part of the a n a l y s i s i s described 
i n Chapter 4. The comparisons between experimental and t h e o r e t i c a l 
values are made i n Chapter 5. 
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4 EXPERIMENTS 

4.1 General 

In Chapter 2 i t was concluded that lack of knowledge about the 
transmission of forces across cracks concerns predominantly aggre­
gate i n t e r l o c k as an i n d i v i d u a l mechanism and i t s r o l e i n the i n t e r ­
a c t i o n w i t h other components i n r e i n f o r c e d cracks. A c c o r d i n g l y , the 
experimental part of t h i s research program was s p l i t i n t o two p a r t s . 
In one p a r t , t e s t s on pure aggregate i n t e r l o c k were c a r r i e d out, 
the r e s u l t s of which were planned to be used f o r a d i r e c t compari­
son with the theory. In another p a r t , t e s t s on r e i n f o r c e d cracks 
were c a r r i e d out i n which the r o l e of a l l parameters p o s s i b l y i n ­
f l u e n c i n g the behaviour was s t u d i e d ; f o r the i n t e r p r e t a t i o n of 
t h i s part of the experiments the r e s u l t s of the f i r s t p art have 
to be known. 

In a l l , 83 t e s t s have been c a r r i e d out. Only the main aspects of 
t h i s experimental program w i l l be d e a l t w i t h i n t h i s chapter. A 
f u l l survey of a l l r e s u l t s , c o n t a i n i n g a l l measurements and tech­
n i c a l d e t a i l s , has been given i n Q 84 ] . 

4.2 Pure aggregate i n t e r l o c k t e s t s 

4.2.1 Test specimens, instrumentation and t e s t i n g procedures 

The t e s t s were c a r r i e d out on push-off specimens w i t h e x t e r n a l 
r e s t r a i n t bars of various s t i f f n e s s ( F i g . 4.1.a). 
The shear area of a l l specimens was 36000 mm2 (300 x 120 mm). The 
specimens were supported on r o l l e r bearings and were loaded by a 
v e r t i c a l load, a p p l i e d on top v i a a k n i f e hinge. With t h i s method 
of l o a d i n g , shear without bending moment i s produced i n the shear 
plane. The head and the sides of the specimens were r e i n f o r c e d i n 
order to avoid premature f a i l u r e due to secondary cracks. Measure­
ments of the crack width and the shear displacement were performed 
at two points on the f r o n t and at two on the back of the specimens, 
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by means of s o - c a l l e d p l a t e spring gauges, which were d i r e c t l y 
mounted on the specimens and had an accuracy of 0.01 mm. The v e r t i ­
c a l e x t e r n a l load was measured by a load c e l l . The passive r e s t r a i n t 
f o rce normal to the crack plane was determined using s t r a i n gauges 
attached to the ex t e r n a l bars, the f o r c e - s t r a i n r e l a t i o n of which 
was e s t a b l i s h e d before t e s t i n g . The e x t e r n a l bars were mounted i n 
such a way that only a x i a l forces could develop. 

400 mm 

F i g . 4.1.a Test specimen w i t h ex- F i g . 4.1.b Precracking of 
t e r n a l r e s t r a i n t bars a specimen 

P r i o r to t e s t i n g , the specimens were cracked along the shear plane 
by p u l l i n g s t e e l rods i n V-shaped grooves at the f r o n t and rear 
faces of the specimen ( F i g . 4.1.b). The displacements of the s p e c i ­
men across the crack plane during t h i s precracking operation were 
c o n t r o l l e d by s t r a i n gauges. 

During the ac t u a l shear t e s t the specimens were subjected to a 
monotonically i n c r e a s i n g load. During the f i r s t three minutes the 
shear displacement r a t e was 0.004 mm/min., which was subsequently 
increased to 0.02 mm/min. The t e s t s were stopped when the shear 
displacement had reached a value of 2 mm. 
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4.2.2 V a r i a b l e s 

The v a r i a b l e s i n the te s t s were the concrete strength and composi­
t i o n , the e x t e r n a l r e s t r a i n t s t i f f n e s s and the i n i t i a l crack width. 
Four d i f f e r e n t concrete mixes were tested. Three of these had the 
same maximum p a r t i c l e s i z e (16 mm) but d i f f e r e n t cube crushing 
strengths f ^ % ( 1 3 , 37 and 59 N/mm2), one had a maximum p a r t i c l e 
s i z e of 32 mm and a cube strength of 33 N/mm2. 
The aggregate i n a l l the mixes was d i s t r i b u t e d according to a 
F u l l e r grading curve, p e r m i t t i n g a d i r e c t comparison with the 
t h e o r e t i c a l values according to Chapter 3. D e t a i l e d data on the 
mixture compositions are l i s t e d i n Table 4.1. 

Table 4.1 Mixture compositions i n kg/m3 

• , x) mix 1 mix 3 mix 4 mix 5 

Cement B 250 400 195 209 

Water 156 160 165 104 

Quartz powder 50 - 143 34 

16 - 32 mm - - - 598 

8 - 1 6 mm 613 702 682 507 

4 - 8 mm 433 378 378 227 

g r a v e l / 2 - 4 mm 307 306 296 80 

sand 1 - 2 mm 217 224 215 106 

0.5 - 1 mm 153 114 113 219 

0.25- 0.5 mm 108 136 135 262 

0 . 1 - 0.25 mm 1 19 18 1 1 34 

1950 1878 1830 2033 

Mixture weight i n kg/m3 2406 2438 2333 2380 

f ' cc 29-37 56-60 13-20 33-38 

*) Mix 2 i s a v a r i a n t of mix 1, only tested i n r e i n f o r c e d specimens. 
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In order to ob t a i n a wide range of displacement combinations (w, A ), 
combined with s t r e s s measurements, three d i f f e r e n t i n i t i a l crack 
widths have been chosen (0.0, 0.2 and 0.4 mm), i n combination w i t h 
varying e x t e r n a l r e s t r a i n t s t i f f n e s s e s against crack opening. I t 
was not attempted to vary t h i s r e s t r a i n t s t i f f n e s s s y s t e m a t i c a l l y , 
since i t was not only a f u n c t i o n of the diameter of the e x t e r n a l 
bars, but depended also on the p r o p e r t i e s of the transverse p l a t e 
on the short sides of the specimens and the t h i n l a y e r of r a p i d l y 
hardening sand-cement paste, which was necessary to ensure good 
bearing contact between these p l a t e s and the specimen. 

4.2.3 Results 

In a l l , 32 t e s t s were c a r r i e d out. F i g . 4.2 shows a c h a r a c t e r i s t i c 
set of r e s u l t s f o r mix 1 (see Table 4.1). The i n d i v i d u a l specimens 
have been assigned i d e n t i f y i n g numbers, c o n s i s t i n g of three charac­
t e r i s t i c s separated by oblique s t r o k e s . The f i r s t number denotes 
the mix number, the second the i n i t i a l crack width i n mm, and the 
t h i r d the r e s t r a i n t force per u n i t crack area (equivalent normal 
r e s t r a i n t s t r e s s ) at a crack width of 0.6 mm ( a r b i t r a r i l y chosen). 
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F i g . 4.2.a,b,c Set of r e s u l t s of t e s t s , c a r r i e d out on specimens 
made of concrete mixture type 1 ( f ' =37.6 N/mm2) 

F i g . 4.2.a shows the development of the average shear s t r e s s on 
the crack plane as a f u n c t i o n of the shear displacement, F i g . 
4.2.b shows the r e l a t i o n between the crack width and the shear d i s ­
placement (crack opening path), and F i g . 4.2.c the average equiv­
alent r e s t r a i n t s t r e s s normal to the crack plane as a f u n c t i o n of 
the crack width. A c h a r a c t e r i s t i c feature was that i n a l l e x p e r i ­
ments the crack opening path was in f l u e n c e d by the e x t e r n a l r e ­
s t r a i n t s t i f f n e s s . This i s shown i n F i g . 4.3.a and b, i n which the 
crack opening path has been represented f o r displacements of le s s 
than 0.5 mm f o r the t e s t s on the specimens made of the mixes 1 
( f = 37.6 - 38.5 N/mm2) and 3 ( f = 57.4 - 60.8 N/mm2). cc cc 
I t i s seen that the crack opening path i s steeper f o r greater r e ­
s t r a i n t s t i f f n e s s (note the l a s t numbers of the specimen codes). 

In none of the specimens tested i n t h i s part of the program were 
there any d i s c e r n i b l e secondary cracks i n f l u e n c i n g the behaviour 
of the specimens. 

A s u b s t a n t i a l p r o p o r t i o n of the r e s u l t s w i l l be used i n Chapter 5 
for e v a l u a t i n g the theory. Therefore they w i l l not be f u r t h e r d i s -
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cussed here; a complete survey of the r e s u l t s of a l l the t e s t s can 
be found i n [_ 84 ] . 
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F i g . 4.3.a,b Crack opening paths f o r the mixes 1 and 3 

I t must be noted that a l l crack displacements represented here are 
the d i r e c t r e s u l t s of the measurements. As such these values i n ­
clude a l s o some e l a s t i c deformations of the concrete adjacent to 
the crack, between the measuring points (see al s o the measuring 
devices i n F i g . 4.5.b). I t can be shown that these deformations 
are so small with regard to the crack displacement that they can 
be neglected. Furthermore the e l a s t i c deformations are not uniform 
over the length of the crack, so that a c o r r e c t i o n would be even 
rather s p e c u l a t i v e . 

4.3 Tests on r e i n f o r c e d cracks 

4.3. 1 Specimens, instrumentation and t e s t i n g procedures 

The t e s t s on r e i n f o r c e d cracks were als o c a r r i e d out on push-off 
specimens. Two v a r i a n t s were used, as shown i n F i g . 4.4.a and b. 
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F i g . 4.4 Specimen geometries f o r t e s t s on r e i n f o r c e d cracks 

The geometry, represented i n the l e f t p art of F i g . 4.4 (a) was used 
only i n a l i m i t e d number of t e s t s . These t e s t s were c a r r i e d out as 
p i l o t t e s t s i n the e a r l y stage of the program. I t appeared that the 
specimen shape shown i n F i g . 4.4 (b) was somewhat more p r a c t i c a l , 
not only because i t enables i n c l i n e d reinforcement to be used, but 
also because b e t t e r i n t r o d u c t i o n of s t r e s s e s around the re-entrant 
angle i s obtained. In both cases (a) and (b) the shear area was 
36000 mm2 (300 x 120 mm). Apart from the a u x i l i a r y reinforcement 
i n the head and along the sides of the specimen, reinforcement was 
app l i e d c r o s s i n g the crack plane. This reinforcement c o n s i s t e d of 
closed s t i r r u p s , overlapped on one of the short sides to ensure 
e f f e c t i v e anchorage. 
Measurements of the crack width and the shear displacement were 
c a r r i e d out across the crack on both sides of the specimens on 
three places ( F i g . 4.5.a and b). With t h i s c o n f i g u r a t i o n , which 
was not p o s s i b l e i n the pure aggregate i n t e r l o c k t e s t s , due to the 
p o s i t i o n of the e x t e r n a l r e s t r a i n t bars, c o n t r o l of the un i f o r m i t y 
of the displacements was p o s s i b l e . 



F i g . 4.5.a Test specimen during 
loading 

F i g . 4.5.b Measuring devices 
on the crack 

The other t e s t c o n d i t i o n s were the same as i n the case of e x t e r n a l 
r e s t r a i n t bars; the specimens were supported on r o l l e r bearings and 
were loaded through a k n i f e hinge at the top, during which the load 
was measured by means of a load c e l l . Also the precracking proce­
dure and the a c t u a l shear t e s t s were c a r r i e d out i n a comparable 
way. 

Fi v e d i f f e r e n t types of concrete were used. Apart from the mix types 
as a p p l i e d i n the t e s t s on specimens w i t h e x t e r n a l r e s t r a i n t bars, 
represented i n Table 4.1, a s p e c i a l gap-graded mix was designed, 
approximately s i m i l a r to mix 1, except f o r the f a c t that a l l p a r t i ­
c l e s between 0.25 and 1 mm (the order of the crack displacements) 
were replaced by quartz powder: the weight of the remaining f r a c ­
t i o n s was p r o p o r t i o n a l l y increased, i n order to get the same t o t a l 
aggregate weight as i n mix 1. This mix ( f u r t h e r denoted as mix 2) 
was s p e c i a l l y designed f o r i n v e s t i g a t i n g the statement found i n 
Q 51 ] (see also s e c t i o n 2.4) that the behaviour of r e i n f o r c e d 

4.3.2 Va r i a b l e s 
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cracks i s probably a f u n c t i o n of o v e r r i d i n g of sand p a r t i c l e s . I f 
that were t r u e , the omission of an important sand f r a c t i o n would 
have to a f f e c t the r e s u l t s . 
With a l l f i v e concretes a b a s i c s e r i e s of four specimens was made, 
r e i n f o r c e d w i t h 2, 4, 6 and 8 closed s t i r r u p s i 8 mm, correspond­
ing to reinforcement r a t i o s of 0.56-2.24%. In the case of mix 1 
t h i s range was extended to 0.14% (2 s t i r r u p s i 4 mm) and 3.36% 
(3 s t i r r u p s i 16 mm). In order to i n v e s t i g a t e the i n f l u e n c e of the 
bar diameter, a d d i t i o n a l specimens were made wi t h the same r e i n ­
forcement r a t i o as others, but d i f f e r e n t bar diameter: 7 s t i r r u p s 
é 6 mm, comparable w i t h 4 s t i r r u p s $ 8 mm, and 2 s t i r r u p s é 16 mm, 
comparable with 8 s t i r r u p s <¡> 8 mm. Furthermore some t e s t s were 
repeated with completely s i m i l a r specimens, i n order to o b t a i n an 
impression of the s c a t t e r of the r e s u l t s . A schematical represen­
t a t i o n of the program i s represented i n Table 4.II. 

Table 4.II Basic program of t e s t on r e i n f o r c e d cracks 

Reinforcement r a t i o p 
o 

Number of s t i r r u p s and diameters i n mm 
Mix number and p r o p e r t i e s 0.14% 0.56% 1.12% 1.68% 2.24% 3.36% 

Mix 1 D = 16 mm max 
f 1 = 29.4-36.6 N/mm2 

cc 

2 é 4 2 é 8 4 é 8 

7 i 6 

6 «S 8 8 *í 8 

2 (¡S 16 

3 ¿ 16 

Mix 2 D =16 mm max 
f = 29.2-29.5 N/mm2 

cc 

2 4 8 4 ?! 8 

7 é 6 

6 «i 8 8 (¿ 8 

2 «i 16 

Mix 3 D = 16 mm max 
f' = 56.1 N/mm2 

cc 

2 i 8 4 «i 8 6 {S 8 8 é 8 

Mix 4 D = 16 mm max 
f =19.9 N/mm2 

cc 

2 i 8 4 «S 8 6 »5 8 8 «( 8 

Mix 5 D = 32 mm max 
f =38.2 N/mm2 

cc 

2 i 8 4 tfi 8 6 é 8 8 «i 8 
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The s t r e s s - s t r a i n r e l a t i o n s of the s t e e l , used f o r the s t i r r u p s , 
are represented i n F i g . 4.6. 
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F i g . 4.6 S t r e s s - s t r a i n r e l a t i o n s f o r the s t e e l , used f o r the 
s t i r r u p s 

The i n i t i a l crack widths i n the t e s t s were g e n e r a l l y smaller than 
0.04 mm. A number of specimens were unloaded a f t e r reaching the 
top of the load-shear displacement curve and subsequently reloaded 
i n order to obt a i n an impression of the behaviour under repeated 
loading. 
A d d i t i o n a l l y to the specimens represented i n Table 4 . I I , some spec­
imens were made wi t h a somewhat greater i n i t i a l crack width (0.07 -
0.09 mm), to see how t h i s would a f f e c t the r e s u l t s . 
Next, the i n f l u e n c e of i n c l i n a t i o n of the reinforcement was in v e s ­
t i g a t e d i n a separate s e r i e s of specimens, made of concrete mix 1 
wit h f =34.2 N/mm2, which were a l l r e i n f o r c e d w i t h 2 s t i r r u p s 

cc 
i 8 mm, i n c l i n e d at various angles w i t h the crack plane (45 , 68 , 
90°, 112° and 135°, i n which f o r 90° the average r e s u l t s of e a r l i e r 
t e s t s (Table 4.II) were used). 

4.3.3 Results 

In none of the specimens were secondary cracks i n c l i n e d to the pre-
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formed crack observed, as reported i n [ 5 1 ] f or comparable s p e c i ­
mens. In some of the more h e a v i l y r e i n f o r c e d specimens, s p a l l i n g 
of the concrete at the ends of the crack occurred ( F i g . 4.7). 

F i g . 4.7 Local s p a l l i n g i n some of the h e a v i l y r e i n f o r c e d s p e c i ­
mens 

This phenomenon was more s i g n i f i c a n t f o r lower concrete strengths: 
f o r mix 4 ( f ^ = 19.9 N/mm2) s p a l l i n g was observed i n the specimens 
w i t h 6 and 8 s t i r r u p s <b 8 mm, r e s u l t i n g i n a reduction of the f u l l y 
r e s i s t i n g shear plane o f , on a rough estimate, 15-25%. However, 
fo r mix 3, w i t h f =56.1 N/mm2, even f o r 8 s t i r r u p s i 8 mm there cc 
was no s p a l l i n g . Furthermore i t was observed that the specimens of 
the type shown i n F i g . 4.4.a ( l e f t ) were more s u s c e p t i b l e to t h i s 
s p a l l i n g than the others. Therefore t h i s type was abandoned a f t e r 
a l i m i t e d number of t e s t s on the specimens made of the concretes 
type 1 and 2 (Table 4 . I I ) . A l a t e r attempt to e s t a b l i s h the i n ­
fluence of the shape, by reproducing some specimens of these s e r i e s , 
but with the improved geometry, was not f u l l y s u c c e s f u l , because 
the concrete strength was found to be 20% higher than i n the f i r s t 
case. Anyhow, t h i s phenomenon of s p a l l i n g has to be taken i n t o 
account when i n t e r p r e t i n g the r e s u l t s of some of the h e a v i l y r e i n ­
forced specimens. 
The measurements at the various l e v e l s of the crack ( F i g . 4.5) d i d 

spalling 
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not e x h i b i t s i g n i f i c a n t d i f f e r e n c e s . 
The most important features of the r e s u l t s w i l l now be presented. 
D e t a i l e d information on a l l the i n d i v i d u a l t e s t s can be found i n 
[ 8 4 ] . 

a• 5£25ti^i°2_2l_5i3iIaI_£ests_and_initial_crack_width: 

Two r e s u l t s of repeated s i m i l a r t e s t s are shown i n F i g . 4.8 and 
4.9 ( s o l i d l i n e s ) . In both cases (mix 1, 2 s t i r r u p s 4 8 mm i n 
F i g . 4.8 and mix I, 8 s t i r r u p s i 8 mm i n F i g . 4.9) good agreement 
i s obtained. Testing s i m i l a r specimens w i t h greater i n i t i a l crack 
widths (dashed l i n e s ) showed that the crack faces d i d not immedi­
a t e l y jump on the o r i g i n a l crack opening path, but ra t h e r tended 
to j o i n i t very s t e a d i l y ( F i g . 4.8.b and 4.9.b). The development 
of the shear s t r e s s as a f u n c t i o n of the shear displacement was 
also retarded, but tended to reach the same l e v e l . 
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F i g . 4.8 Shear stress-shear displacement r e l a t i o n (a) and crack 
opening path (b) f o r three specimens made of mix 1, r e i n ­
forced w i t h 2 s t i r r u p s i 8 mm (p = 0.56%) . 
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F i g . 4.9 Shear stress-shear displacement r e l a t i o n (a) and crack 
opening path (b) f o r three specimens made of mix 1, r e i n ­
forced w i t h 8 s t i r r u p s $ 8 mm (p = 2.24%) 

In a l l cases unloading and re l o a d i n g r e s u l t e d i n a considerable 
amount of h y s t e r e s i s . I f the t e s t was continued immediately, no 
in f l u e n c e of load h i s t o r y was manifest. In some t e s t s , r e l o a d i n g 
was c a r r i e d out a f t e r 5 months. In that case the shear r e s i s t a n c e 
seemed to have increased as a r e s u l t of the strength development 
of the concrete i n t h i s p e r i o d . The crack opening path was appar­
e n t l y not a f f e c t e d . F i g . 4.10 shows a re p r e s e n t a t i v e r e s u l t of a 
te s t on a specimen made of mix 1 ( f 1 =30.7 N/mm2) and r e i n -

cc 
forced with 4 s t i r r u p s 4> 8 mm. 
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F i g . A.10 The e f f e c t of unloading and re l o a d i n g a f t e r a short time 
and a f t e r a long time (5 months: dashed l i n e ) on the 
shear stress-shear displacement r e l a t i o n (a) and on the 
crack opening path (b) of a specimen made of concrete 

mix 1 and r e i n f o r c e d with A s t i r r u p s 4> 8 mm (p 1.12%) 

c. The_influence_of_the_bar_dia^ 
âS^_££Sâ£§2£_£oncE2ÏS_31iâIi£Y • 

Only very s l i g h t d i f f e r e n c e s between comparable t e s t s occurred. 
The greatest d e v i a t i o n was found between specimens made of mix 
2, one r e i n f o r c e d w i t h 2 s t i r r u p s ¿ 16 mm and one wi t h 8 s t i r r u p s 
é 8 mm. I t i s seen that even i n t h i s case the d i f f e r e n c e s were 
i n s i g n i f i c a n t . 
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F i g . 4.11 The i n f l u e n c e of the v a r i a t i o n of bar diameter at con­
stant reinforcement r a t i o on the shear stress-shear d i s ­
placement r e l a t i o n (a) and on the crack opening path (b) 
f o r two specimens, one r e i n f o r c e d with 8 s t i r r u p s <h 8 mm 
and one wi t h 2 s t i r r u p s ^ 16 mm (p = 2.24%) 

d. Concrete_tyj>e_and_reinfor£gment_ratio: 

The i n f l u e n c e of these parameters can be studied by comparing 
F i g s . 4.12-4.13 representing the shear stress-shear d i s p l a c e ­
ment r e l a t i o n s ( l e f t ) and the crack opening paths ( r i g h t ) f o r 
a number of b a s i c s e r i e s (see a l s o Table 4 . I I ) . 
I t i s seen that f o r a l l i n d i v i d u a l concrete q u a l i t i e s an increase 
of the shear strength i s obtained w i t h increased reinforcement 
r a t i o . The crack opening path, however, seems not to be s i g n i f ­
i c a n t l y influenced by the reinforcement r a t i o . I t i s to be noted 
that t h i s r e s u l t i s contrary to what has been observed i n the 
te s t s on specimens w i t h e x t e r n a l r e s t r a i n t bars, e x h i b i t i n g 
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a dependence of the crack opening path on the r e s t r a i n t s t i f f ­
ness ( F i g . 4.3). On comparing the diagrams of F i g . 4.12 i t i s 
c l e a r that the shear r e s i s t a n c e increases w i t h higher concrete 
strength. 
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2 X (N/mm ) ,, „ „ K l , 2 . . „ , 
t c c = 38 N/mm z (mix 5) 
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F i g . 4.12 Shear stress-shear displacement r e l a t i o n s ( l e f t ) and 
crack opening paths ( r i g h t ) f o r four b a s i c s e r i e s , a l l 
c o n t a i n i n g four specimens, r e i n f o r c e d w i t h 2, 4, 6 and 
8 s t i r r u p s < 8 • ( p n = 0.56 - 2.24%) 
4. 12.a: Mix 4: 

b: Mix 1: 
c: Mix 5: 
d: Mix 3: 

19.9 N/mm2, D =16 mm max 
D =16 mm max 2 

f' = 
cc 

f =30.7 N/mm cc 
f =38.2 N/mm2, D = 32 mm cc max „2 f' = 56.I N/mm-cc D =16 mm max 
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Also the s e r i e s with concrete type 5, i n which the maximum aggre­
gate diameter was twice that of the other s e r i e s , seems to f i t 
i n t o t h i s g e n e r a l l y observed r e g u l a r i t y . Besides, the i n f l u e n c e 
of the concrete strength on the crack opening path i s rather 
smal l . The crack opening l i n e s f o r the concretes w i t h strengths 
between 19.9 and 38.2 N/mm2 n e a r l y c o i n c i d e . The l i n e s of mix 3, 
wi t h f' = 56.1 N/mm2, deviate s l i g h t l y (greater shear d i s p l a c e -cc 
ments). An explanation f o r t h i s d i f f e r e n c e may be that i n the 
high-strength concrete a number of p a r t i c l e s are i n t e r s e c t e d by 
the crack, so that greater shear displacements are necessary to 
obtain the same contact area between the crack faces. 
F i n a l l y , i n F i g . 4.13 a diagram i s shown i n which a l l the r e s u l t s 
of the t e s t s c a r r i e d out on specimens made of concrete type 1 are 
represented. The s o l i d l i n e s r e s u l t e d from the t e s t s of the b a s i c 
s e r i e s (Table 4 . I I ) ; the dashed l i n e s are the r e s u l t s obtained i n 
a d d i t i o n a l t e s t s , c a r r i e d out with the improved specimen geometry 
( F i g . 4.4.b). 
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F i g . 4.13 Shear stress-shear displacement r e l a t i o n s and crack 

opening paths f o r a l l the t e s t s c a r r i e d out on specimens 
made of concrete type 1 
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I t i s seen that only the crack opening path of the specimen 
with 2 s t i r r u p s <j> 4 mm (p = 0.14%) deviated. A l l the others, 
with 0.56 < p o < 2.24%, were located between narrow l i m i t s . 

F i g . 4.14 shows the comparison between the r e s u l t s of the b a s i c 
s e r i e s , made of concrete type 1 with a continuous grading curve, 
and those of the bas i c s e r i e s , made of concrete mix 2 wi t h a 
discontinuous grading curve, i n which a l l p a r t i c l e s between 
0.25 and 1 mm were e l i m i n a t e d . I t appears that there i s no per­
c e p t i b l e i n f l u e n c e . 

F i g . 4.14 Shear stress-shear displacement r e l a t i o n s and crack 
opening paths f o r b a s i c s e r i e s w i t h discontinuous and 
continuous grading curves 
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f, The_inf l u e n c e _ o f _ t h e _ i n c H 
£I§£k_£lane: 

F i g . 4.15 shows that the e f f e c t i v e n e s s of the reinforcement i s 
increased with decreasing value of 9. The crack opening paths 
are s i m i l a r f o r a l l i n c l i n a t i o n s , except f o r 0 = 135°. 

F i g . 4.15 Shear stress-shear displacement r e l a t i o n s and crack 
opening paths f o r various i n c l i n a t i o n s of the r e i n f o r c e ­
ment 
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5 INTERPRETATIONS AND FURTHER ANALYSIS 

This chapter, l i k e the previous one, i s subdivided i n t o two p a r t s . 
The f i r s t deals with pure aggregate i n t e r l o c k : the experiments are 
used to evaluate the theory and subsequently the theory i s used 
fo r f u r t h e r a n a l y s i s . The second focuses on the transmission of 
forces i n r e i n f o r c e d cracks. For the i n t e r p r e t a t i o n of t h i s second 
p a r t , the r e s u l t s of the f i r s t part are used. 

5 . 1 Aggregate i n t e r l o c k 

5.1.1 Comparison of theory and r e s u l t s 

The r e l a t i o n s between the stres s e s i n a crack on the one hand and 
the displacement components on the other hand have e a r l i e r been 
formulated as: 

a = o (A - u.A ) pu x y 
(3.50) 

T = o (A + u.A ) pu y X 

i n which A^ and A^ depend on the crack width w, the shear d i s p l a c e ­
ment A, the maximum p a r t i c l e diameter D and the t o t a l aggregate 

max 
volume per u n i t volume of the concrete p^, as expressed i n the 
functions (3.46 - 3.49). 
The parameters a , the matrix y i e l d i n g strength and the c o e f f i c i e n t 
of f r i c t i o n u, are e s t a b l i s h e d by f i t t i n g the equations (3.50) to 
be experimental r e s u l t s obtained i n the t e s t s on specimens with 
e x t e r n a l r e s t r a i n t bars ( F i g . 5.1-5.4). I t appeared that the best 
r e s u l t s are obtained f o r a f r i c t i o n c o e f f i c i e n t of y = 0.50 f o r a l l 
mixes. The matrix y i e l d i n g strength a , which has to be i n s e r t e d 

pu 
to get optimal f i t t i n g , depends on the u n i a x i a l concrete strength. 
The best r e s u l t s are obtained f o r 

a = 5.83 f 0 - 6 3 (5.1) pu cc 

- 110 -



These values f o r u and a a r e l n adequate agreement with what was 
expected ( s e c t i o n 3.2): the c o e f f i c i e n t of f r i c t i o n u i s of the 
same order as found by Weiss [ 8 8 ] i n h i s t e s t s ; the matrix 
y i e l d i n g strength i s higher than the u n i a x i a l cube compressive 
strength, w h i l s t a tendency to lower r e l a t i v e matrix strength f o r 
higher concrete strength i s r e f l e c t e d by equation (5.1), which can 

-0.37 be represented i n a modified form as a / f = 5.83 f' pu cc cc 
I t must be r e a l i z e d that t h i s i s only a p r o v i s i o n a l , approximate 
r e l a t i o n . A c t u a l l y the r e l a t i o n between a and f i s not unique. 

pu cc 

•t(N/mm2) 

o(N/mm2) 

F i g . 5.1 Comparison between experimental values f o r mix 3 
( f ' = 59.1 N/mm2, D =16 mm) and t h e o r e t i c a l cc max 
model, with p. = 0.75, u = 0.50 and a =80 N/mm2 

k pu 
- 1 1 1 



F i g . 5.2 Comparison between experimental values f o r mix 1 
( f ^ c =37.6 N/mm2, D = 16 mm) and t h e o r e t i c a l 
model, w i t h p = 0.75, u = 0.50, a =60 N/mm2 

1 1 2 -



T(N/mm2) mix 5 : f^c =33.4 N/mm 2 , D m a x = 3 2 m m 

o(N/mm2) theor. model u = 0.50 pk= 0.75 O p U = 4 8 N / m m 2 

F i g . 5.3 Comparison between experimental values f o r mix 5 
( f = 33.4 N/mm2, D =32 mm) and t h e o r e t i c a l cc max 
model, w i t h p = 0.75, u = 0.50, a =48 N/mm2 

X ( N/mm2) mix 4 : f £ c = 13.4 N/mm2, D m a x s 16 mm 

CT(N/mm2) theor. model u = 0.50. p^- 0.75 , <Jpu = 31 N/mm 

F i g . 5.4 Comparison between experimental values f or mix 4 
(£' = 13.4 N/mm2, D =16 mm) and t h e o r e t i c a l cc max 
model, with p = 0.75, u = 0.50, a =31 N/mm2 
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An example i s represented i n F i g , 5.5, which shows that f o r the same 
matrix the prism compressive strength v a r i e s as a f u n c t i o n of the 
scale of the aggregate. In order to avoid too great complexity, 
such e f f e c t s are not taken i n t o account. 

f^(N/mm2) 
50 

40 

30 

20 

5 XI 19 38 
max. aggregate pa r t i c l e ! m m ) 

F i g . 5.5 The i n f l u e n c e of the maximum p a r t i c l e s i z e on the prism 
compressive strength f o r various water-cement r a t i o s , 
according to Cordon and G i l l e s p i e \_ 1 4 ] 

5.1.2 An a l y s i s of some aspects of aggregate i n t e r l o c k on the ba s i s of 
tha model developed 

The model that has been developed allows a f u r t h e r a n a l y s i s of the 
phenomenon. Some aspects w i l l be de a l t w i t h : 

a. T h e _ r o l e _ o f _ f r i c t i o n _ b e t w e e n _ t h 

I t was shown that e q u i l i b r i u m i n the contact area was obtained 
by combinations of normal ( y i e l d i n g ) s t r e s s e s and shear ( f r i c ­
t i o n ) s t r e s s e s . I t was shown that with a f r i c t i o n c o e f f i c i e n t 
equal to 0.5 the best f i t t i n g of the curves to the experimental 
r e s u l t s was obtained. By doi ig a c a l c u l a t i o n w i t h a f r i c t i o n 
c o e f f i c i e n t u = 0 the i n f l u e i ce of f r i c t i o n can be v i s u a l i z e d . 
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A c a l c u l a t i o n i s c a r r i e d out f o r a mix with maximum aggregate 
s i z e D =16 mm, a =48 N/mm2, p, = 0.75 and u = 0.0 resp. max pu k 
0.5. The r e s u l t s are shown i n F i g . 5.6 f o r some crack widths 
(w = 0.2, 0.6 and 1.0 mm). 
I t i s seen that the f r i c t i o n increases the shear s t r e s s by up 
to about 50%, whereas the normal r e s t r a i n t stresses to provide 
e q u i l i b r i u m are reduced. 

F i g . 5.6 The r o l e of f r i c t i o n between aggregate and matrix i n the 
t r a n s f e r of stresses i n a crack 

b• ï^e_contributiqn_of_the_vari^ 
f e r _ o f _ s t r e s s e s _ i n _ a _ c r a c k . 

By a s l i g h t m o d i f i c a t i o n i n the d e r i v a t i o n of the equations r e -
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presenting the r e l a t i o n s between stresses and displacements i n 
the crack i t i s po s s i b l e to a s c e r t a i n the c o n t r i b u t i o n of only 
a part of the aggregate p a r t i c l e s . 

The equation (3.15) was found by i n t e g r a t i n g the product of 
equation (3.7) and (3.11) over the range D -> D .By i n t e g r a t -

o max 
ing only over the range D •* n.D (n < 1) the cumulative d i s -

o max 
t r i b u t i o n function i s obtained, representing the p r o b a b i l i t y 
that an a r b i t r a r y point i n the concrete body, located i n a Z-
i n t e r s e c t i o n plane, i s s i t u a t e d i n an i n t e r s e c t i o n c i r c l e with 
a diameter D < D , with as an a d d i t i o n a l c o n d i t i o n that i t must o' 
also be si t u a t e d i n a sphere with a diameter D < n.D . An 

max 
elabora t i o n of t h i s i n t e g r a t i o n r e s u l t s i n a modified expression 

(3.15): 

p (D < D ) = p, ( l - n J + l .455 D ° - 5 D ~ ° - 5 - 0.50 n" 1 " 5 D 2 D~ 2 + 
c O K o max o max 

+ 0.036 n 3 - 5 D 4 D 4 + 0.006 n 5 - 5 D 6 D 6 + o max o max 

+ 0.002 n " 7 - 5 D 8 D - 8
 + 0.00. n " 9 ' 5 D 1 0 D " 1 0 ) o max o max 

The p r o b a b i l i t y density f u n c t i o n i s obtained by d i f f e r e n t i a t i o n 
with respect to D Q : 

p ' ( D ) = p. .(0.727 D - 0 - 5 D - 0 - 5 - n " 1 * 5 D D ~ 2 + 
c o r k o max o max 

+ 0.144 n 3 - 5 D 3 D 4 + 0.036 n 5 - 5 D 5 D 6 + o max o max 

• 0.016 n ~ 7 - 5 D 7 D ~ 8 • 0.01 n " 9 " 5 D 9 D " 1 0 ) 

o max o max 

On s u b s t i t u t i n g t h i s expression into (3.19), and (3.19) into 



(3.42 - 3.45), the same set of f i n a l equations (3.46 - 3.49) i s 
obtained, with only a modified expression f o r — ) : 

max 

F ( _ £ _ ) . 0 . 7 2 7 ( ^ ) 0 - 5 - n " 1 - 5 ^ ) 2 * 0.144 n - 3 - 5 ^ ) 4 • 
max max max max 

+ 0.036 n " 5 - 5 ^ ) 6
 + 0.016 n " 7 " 5 ^ ) 8 

max max 

+ 0.0,0 n " 9 - 5 ( / - ) 1 0 

max 
(5.2) 

w =0.1 mm 

x(N/mm 2 ) / W D m « 
, 0.» D m a x 

w = 0.6mm 

w=1.0mm~| 

o ( N / m m 2 ) 

F i g . 5.7 Contributions of the various aggregate f r a c t i o n s to the 
t r a n s f e r of stres s e s i n cracks f o r crack widths w = 0.1, 
0.6 and 1.0 mm (Mix: a =48 N/mm2, p = 0.75, u = 0.50, 

pu 
D =16 mm) max 

1 17 



I w = 0.1 mm I 
1.0 Dmax 

0.» Umax 
0.7 Dmax 

— 0.4 D m a x 

06 Dmax 
08 Dmax 
10 Dmax 

o(N/mm2) 

F i g . 5.8 Contributions of the various aggregate f r a c t i o n s to the 
t r a n s f e r of stresses i n cracks f o r crack widths w = 0.1, 
0.6 and 1.0 mm (Mix a =48 N/mm2, p, = 0.75, u = 0.50, pu r k 
D = 32 mm) max 

With these equations the c o n t r i b u t i o n s of a number of f r a c t i o n s 
have been e s t a b l i s h e d and represented f o r a small (0.1 mm), an 
average (0.6 mm) and a large (1.0 mm) crack width. Two mixes 
were analysed, both with a =48 N/mm2, u = 0.50, p, = 0.75, 

pu k 
but d i f f e r e n t maximum aggregate s i z e (D = 16 mm and D = 

max max 
32 mm) . ( F i g . 5.7 and 5.8). 
The curves i n these diagrams represent the r e l a t i o n s between 
o, i , w and A, i f only the p a r t i c l e s with a diameter between 
0 and a varying f r a c t i o n of D are considered. I t i s seen that 

max 
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the small aggregate f r a c t i o n s lose importance as the crack width 
increases. 

To o b t a i n some idea of the e f f e c t of the sc a l e of the aggregate, 
two mixes were compared. Both had the same p r o p e r t i e s , except 
f o r the maximum p a r t i c l e diameter, which was 16 mm and 32 mm 
r e s p e c t i v e l y . The r e s u l t s of t h i s comparison are shown i n 
F i g . 5.9. 

T.(N/mm2) Theoretical Model p k -0 ,75 , u-0 .50 , Q- p u=AB N / m m 2 

o(N/mm2) 

F i g . 5.9 The e f f e c t of the maximum aggregate p a r t i c l e s i z e on the 
t r a n s f e r of stres s e s i n a crack. Maximum diameter 
D =16 and 32 mm. Mix p r o p e r t i e s : p, = 0.75, u = 0.50, max r k 
a = 48 N/mm2, F u l l e r aggregate d i s t r i b u t i o n 
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I t i s seen that the normal s 
t h i s v a r i a t i o n , but that the 
according as the crack width 
firmed by the r e s u l t s of the 
gation ( F i g . 5.2 and 5.3). 

ress a i s not very s u s c e p t i b l e to 
shear s t r e s s T i s more a f f e c t e d 
i s greater. This tendency i s con-
experimental part of t h i s i n v e s t i -

d. E f f e c t _ o f _ g r a d i n g _ c u r v e . 

In the previous analyses and i n the experiments a F u l l e r - c u r v e 
was always adopted. However, i n p r a c t i c e most Codes allow a per­
m i s s i b l e grading curve region. The i d e a l F u l l e r - c u r v e i s near 
the lower boundary of t h i s area. To study the i n f l u e n c e of the 
grading curve a curve i s chosen which approximates to the upper 
l i m i t given i n the Netherlands Code of P r a c t i c e , the VB'74, f o r 
D = 16 mm and D = 32 mm ( F i g . 5.10 and 5.12). max max 
The r e l a t i o n s between stresses and displacements f o r the con­
c r e t e confirming to the grading curves B i n F i g . 5.10 and 5.12 
were c a l c u l a t e d . Other values adopted f o r D =16 mm and 

max D = 32 mm were p, = 0.75, u = 0.50 and a =48 N/mm2. max k pu 
Although these concretes have the same maximum p a r t i c l e d i a ­
meter D as the comparable F u l l e r mixes, they contain a much 

max J 

higher proportion of sand p a r t i c l e s . The r e s u l t s p r e v i o u s l y 
obtained under b, where the c o n t r i b u t i o n of the i n d i v i d u a l aggre 
gate f r a c t i o n s to the t r a n s f e r of stresses i n a crack was estab­
l i s h e d , were used f o r the c a l c u l a t i o n s . The r e s u l t s f o r the con­
c r e t e s , designed w i t h the grading curves B are represented i n 
the F i g s . 5.11 and 5.13 by the dashed l i n e s , and are compared 
with the r e s u l t s f o r the F u l l e r concretes c a l c u l a t e d e a r l i e r 
( F i g . 5.9). 
I t i s seen that i n both cases the i n f l u e n c e of the grading curve 
on the normal stre s s e s a i s not great, but i s s i g n i f i c a n t f o r 
the shear s t r e s s e s . The most pronounced d i f f e r e n c e s are obtained 
f o r l a r g e r crack widths. This i s to be expected, since the sandy 
mixes according to curve B provide a smaller p o t e n t i a l contact 
area f o r l a r g e r crack width. 
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12 4 8 16 32 
sieve aperture (mm) 

F i g . 5.10 Pe r m i s s i b l e grading curve region i n the VB'74 f o r 
D = 32 mm max 

T(N/mm2) Theoretical Model -:32mm, |i = 0.5, pk=0.75, op u = 48 N/mm2 

o(N/mm2) 

F i g . 5.11 The e f f e c t of the grading curve on the t r a n s f e r of 
stresses i n a crack f o r two comparable mixes confirming 
to d i f f e r e n t grading curves (D = 32 mm, p. = 0.75, 

max k a =48 N/mm2, u = 0.50) pu 
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051 2 S 16 
sieve aperture (mm) 

F i g . 5.12 Perm i s s i b l e grading curve region i n the VB'74 f o r 
D = 16 ram max 

X (N/mm2) Theoretical model D m a x = i 6 m m JJ = O.50 cr p u = 48N/mm 2 

curve A (Fig 5.12) 
curve B 

a(N/mm2) 

F i g . 5.13 The e f f e c t of the grading curve on the t r a n s f e r of 
stresses i n a crack f o r two comparable mixes confirming 
to d i f f e r e n t grading curves (D =16 mm, p, =0.75, 

max k a =48 N/mm2, y = 0.50) pu 



e. Cy_clic_loadirig. 

From t e s t s [ 40, 89 2 i t i s known that i n the case of c y c l i c 
loading a considerable d i f f e r e n c e e x i s t s between the behaviour 
of the crack plane during the f i r s t loading c y c l e and the sub­
sequent c y c l e s . The shear s t r e s s - s h e a r displacement r e l a t i o n ­
ship of the i n i t i a l c y c l e i s nearl y l i n e a r , and a f t e r unloading 
a considerable amount of h y s t e r e s i s can be observed. The shear 
stress-shear displacement r e l a t i o n s h i p f o r the l a t e r l o a d i n g 
cycles i s h i g h l y n o n - l i n e a r , and a hardening type of behaviour 
i s observed. This o v e r a l l behaviour can be explained w i t h the 
theory developed. As an example a f i c t i t i o u s specimen according 
to F i g . 5.14 i s considered. 

external restraint rods 

shear loading 
crack plane 

F i g . 5.14 F i c t i t i o u s specimen considered 

The specimen c o n s i s t s of two p a r t s , separated by a crack, the 
i n i t i a l width of which i s assumed to be w =0.50 mm. The two 

o 
halves are loaded by shear f o r c e s , w h i l e enlargement of the 
crack w i d t h . i s counteracted by ex t e r n a l r e s t r a i n t rods. The 
s t i f f n e s s of these rods i s assumed to be such that an increase 
of the crack width of Aw = 0.1 mm r e s u l t s i n an increase of the 
normal s t r e s s on the crack plane of Aa = 0.5 N/mm2. The maximum 
shear s t r e s s a p p l i e d i s assumed to be T = 3 N/mm2. 
The assumed concrete q u a l i t y i s f = 33.4 N/mm2 w i t h D 

cc max 
32 mm, so that the r e l a t i o n s represented i n F i g . 5.3 can be 
used to construct the ascending branch OA of the T - A r e l a t i o n 
( F i g . 5.15). 
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F i g . 5.15 Response to c y c l i c loading of f i c t i t i o u s specimen, c a l ­
c u lated with t h e o r e t i c a l model 

A d e s c r i p t i o n of t h i s procedure i s given i n Appendix I I . The un­
loading branch i s c a l c u l a t e d by a d i f f e r e n t method: j u s t before 
unloading, the r e l a t i o n s (3.50) are v a l i d : 

"1 = °pu ( A x - ( 5 ' 3 ) 

x: = a p u (A y + u.A x) (5.4) 

At that moment the f r i c t i o n s t i l l has i t s maximum value 
(u = 0.50). This s i t u a t i o n can be compared w i t h that of a 
body on an i n c l i n e d plane, with f r i c t i o n a l forces a c t i n g be­
tween the body and supporting surface, and the r e s u l t a n t of the 
h o r i z o n t a l force V and v e r t i c a l force N a c t i n g i n the d i r e c t i o n 
of the l i n e b-b'. Unloading i s done by d i m i n i s h i n g the ho r i z o n ­
t a l (shear) force V. Movement of the two halves of the specimens 
r e l a t i v e l y to each other can only occur i f V i s so small that 
the maximum f r i c t i o n a l r e s i s t a n c e i n the other d i r e c t i o n i s 
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reached (comparable w i t h the s i t u a t i o n i n F i g . 5.16, where the 
r e s u l t a n t i s i n the d i r e c t i o n of a-a'). 

N 

a! 

\ 

V 

F i g . 5.16 Body on a rough i n c l i n e d plane as an analogy f o r the 
behaviour of a crack under c y c l i c loading 

Movement of the crack faces occurs i f u has become —p. At that 
moment the normal s t r e s s on the surface of the aggregate p a r t i ­
c l e s , o r i g i n a l l y equal to a , i s reduced to a value a , as a 

PU P i 
r e s u l t of the reduction of V. 
S u b s t i t u t i n g these values i n t o (5.3), the normal s t r e s s a c t i n g 
between the crack faces i s expressed as: 

However, j u s t before s l i d i n g back, the e x t e r n a l normal s t r e s s 
i s s t i l l the same as at the s t a r t of unloading, since the ex­
t e r n a l r e s t r a i n t rods have not been subjected to any change i n 
length during the period during which V was reduced. 
So, because Oj = Oi, combination of (5.3) and (5.5) r e s u l t s i n : 

°1 = 0 

P i 
(A x • u.A y) (5.5) 

o 
P i 

a 
P " 
(A + p.A ) 
x y 

(5.6) 
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I f the crack planes are about to move, the shear s t r e s s T 2
 C A N 

be formulated by r e p l a c i n g u i n (5.4) by -y, and by . 

T 2 = a (A - y.A ) (5.7) 
P i y x 

S u b s t i t u t i o n of (5.6) i n t o (5.7) r e s u l t s i n : 

A - y.A 
(-5 * 

pu A + p.A y x 
T 2 - o_.. ( A

X ^ „ / ) . ( A , - y.A.) (5.8) 

T 2 can be expressed as a f u n c t i o n of T j , comparing (5.8) with 
(5.4) 

T 2 = (5.9) 

wit h 

A - y.A A - y.A 
r = x y _y x 

A + y.A ' A + y.A 
x y y x 

In t h i s way i t i s p o s s i b l e to determine the p o s i t i o n of point B 
i n F i g . 5.15. For the case considered i t was c a l c u l a t e d that 
A = 3.13 x 10" 2 ran and A = 4.49 x 10~ 2 mm . With y = 0.50 a x _ y 
value 5 = 0.080 i s obtained. 
I f the f r i c t i o n a l r e s i s t a n c e of the crack faces i s exceeded, a 
displacement w i l l occur. This displacement w i l l continue u n t i l 
no areas of contact and no e x t e r n a l forces remain. To reach 
t h i s stage the crack width has to a t t a i n i t s o r i g i n a l value, 
but the shear displacement need not r e t u r n to zero. This i s ex­
pla i n e d with the a i d of F i g . 5.17. 
The p o s i t i o n of the crack faces before loading i s represented 
i n F i g . 5. 17.a. At peak s t r e s s l e v e l the crack width has been 
increased by Aw and the shear displacement by A. As a r e s u l t of 
the r i g i d - p l a s t i c character of the matrix m a t e r i a l a c a v i t y 
has been formed (shaded area i n F i g . 5.17.b). Due to t h i s c a v i t y 
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the "no contact phase" a f t e r unloading i s reached before the 
shear displacement has returned to zero ( F i g . 5.17.c). 

a b c 

F i g . 5.17 Three c h a r a c t e r i s t i c stages during the f i r s t l oading 
c y c l e : a. Before loading 

b. Peak s t r e s s 
c. A f t e r unloading 

The "no contact phase" i s considered to be reached, i f i n the 

can e a s i l y be c a l c u l a t e d (Appendix I I , using the formulas of 
Appendix I) that the remaining shear displacement A i s equal 
to 0.41 mm (point C i n F i g . 5.15). To r e s t o r e the two halves 
of the specimen to t h e i r n e u t r a l p o s i t i o n a small shear force 
may be necessary, since the rubble between the crack faces due 
to d e t e r i o r a t i o n of matrix m a t e r i a l during loading may cause 
some f r i c t i o n a l r e s i s t a n c e (point D i n F i g . 5.15). I f the shear 
force i s ap p l i e d i n the other d i r e c t i o n , the same type of be­
haviour can be expected, since those parts of the crack surfaces 
where contact occurs i n t h i s reversed c y c l e are not yet damaged 
(F i g . 5.17). Hence a s i m i l a r loading and unloading curve can 
be expected ( F i g . 5.15, points A', B', C , D'). 
In the subsequent loading cycles the presence of the c a v i t i e s 
worn out i n the f i r s t c y c l e of loading considerably a f f e c t the 
behaviour of the specimen. At f i r s t a shear displacement w i l l 

most unfavourable case (R = ! D 
max 

e x i s t s . For the case considered (D 

and u = 0) contact no longer 
( =32 mm, w =0.5 mm) i t max o 
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occur at a small shear f o r c e , u n t i l contact between the opposing 
areas occurs ( A > 0.41 mm (point E ) ) . Then i n a short i n t e r v a l 
of A f u l l contact between the c a v i t i e s w i l l be obtained. In t h i s 
short i n t e r v a l a process of gradual wearing-off w i l l occur at 
places of high contact stresses (point X i n F i g . 3.34.c). Hence 
a stee p l y ascending branch (EFG) may be expected, s l i g h t l y 
s h i f t e d from the foregoing loading l i n e . On unloading, behaviour 
s i m i l a r to that i n the f i r s t c y c l e may be expected (GHI -
F i g . 5.15). 
A comparison of the T - A r e l a t i o n based on the t h e o r e t i c a l model 
( F i g . 5.15) w i t h experiments c a r r i e d out by L a i b l e , White and 
Gergely [_ 40 J , shows f a i r l y good agreement i n behaviour 
( F i g . 2.9). 

f. Oomp_arison_with_other_static_tes ts . 

Tests on cracks i n p l a i n concrete were performed by, among oth­
ers, Paulay and Loeber [ 60 ] , who a p p l i e d constant crack widths 
(w = 0.13, 0.25 and 0.51 mm). The concrete had a D of 19 mm 

max 
and an average cube compressive strength of f = 37 N/mm2. 

0 0.1 0.2 0.3 OX 0.5 0.6 0.7 0.8 
». A (mm) 

F i g . 5.18 Comparison between the experimental r e s u l t s of Paulay/ 
Loeber |_ 60 J and the p r e d i c t i o n s of the t h e o r e t i c a l 
model developed 
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The experimental r e s u l t s have been compared with the r e s u l t s of 
the t h e o r e t i c a l model, on the assumptions that D = 19 mm, 

max 
u = 0.50, p^ = 0.75 and a =57 N/mm2 (according to equation 5.1). 
This comparison i s represented i n F i g . 5.18. The agreement be­
tween experimental and t h e o r e t i c a l v alues, taking i n t o consider­
a t i o n the d i f f e r e n c e s i n grading curve and experimental set-up 
between both i n v e s t i g a t i o n s , i s s a t i s f a c t o r y . 

g. Simglified_eg_uations_for_the_r 
A_,_w. 

On the basis of a re g r e s s i o n a n a l y s i s , s i m p l i f i e d equations have 
been derived which f i t the experimental r e s u l t s . In these equa­
ti o n s only the cube crushing strength has been considered as a 
v a r i a b l e . The aggregate scale e f f e c t has not been taken i n t o 
account, since i t i s only of minor i n f l u e n c e i n the range t e s t e d . 
The formulas derived are s u i t a b l e i n p r i n c i p l e f o r the type of 
mixes used ( F u l l e r - c u r v e s ) , the i n t e r v a l of D (16 < D 

max = max = 
32 mm), and the range of A and w-values te s t e d . The curves which 
most c l o s e l y f i t t e d the r e s u l t s are: 

% + { 1 . 8 w - ° - 8 0
 +(0.234 w-0' 707 - 0.20).f' }A 

cc 
(T > 0) (5.10) 

and 

f 
-^-+{1.35w~ 0 , 6 3 + (0.191 w ~ ° ' 5 5 2 - 0. 15). f }A (a > 0) (5.11) 
20 cc = 

A comparison of these b i l i n e a r approximations w i t h the e x p e r i ­
mental r e s u l t s of the various s e r i e s i s represented i n the F i g s . 
5.19 - 5.22. 
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T (N/mm 2 ) 
Mix 1; Dmax = 1 6 m m : ^ c = 3 7 6 N/mm2 

co) 1.0 mm 

(N/mm 2) 

F i g . 5.19 Comparison of equation (5.10) and equation (5.11) with 
experimental r e s u l t s (Mix 1) 

M i * 3 ; D m a x = 1 6 m m . -fcc = 59.1 N/mm2 
I (N/mm 2 ) 

CT (N/mm 2) 

F i g . 5.20 Comparison of equation (5.10) and equation (5.11) with 
experimental r e s u l t s (Mix 3) 
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X (N/mm 2) Mix A: D m a x = 16mm, f^c= 13.4 N/mm 2 

10 
3 
8 
7 

w=0.1 
G-) 

0.2 
(x) 0.3 

(*) 
0.4 
(v) OS 

; ° ) 
0.6 0.7 mm 

(•) 
6 
5 o • 

4 
3 

/ /*X / » / / —fc***'^-' • *̂**"* 

2 
1 0..8 . 1,0 1.2 1.4 2.0 2.2 2A 2,6 . 

1 • • A (mm) 

2 
3 
4 
5 

• 
• 

"~~~~-^») 0.7 mm 

6 
7 • w (+) 

= 0.1 
Q2(x) (*) 

0.3 
0.4(v) 05 r 7 ~ ^ ( ° ) 0.6 

a (N/mm 2) 

F i g . 5.21 Comparison of equation (5.10) and equation (5.11) w i t h 
experimental r e s u l t s (Mix 4) 

T (N/mm 2 ) Mix 5: D m a x = 32mm, f c c = 33.2 N/mm2 

CT (N/mm 2) 

F i g . 5.22 Comparison of equation (5.10) and equation (5.11) w i t h 
experimental r e s u l t s (Mix 5) 
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Transmission of forces across r e i n f o r c e d cracks 

Components involved i n the transmission of forces 

P r i o r to analysing the o v e r a l l mechanism, the i n d i v i d u a l components 
are considered. As f a r as necessary, expressions are derived, ena­
b l i n g an estimation of the forces a c t i n g across the crack, as a 
f u n c t i o n of the displacements between the crack faces. As already 
s t a t e d , the o v e r a l l behaviour must be a f u n c t i o n of the i n t e r a c t i o n 
between aggregate i n t e r l o c k , dowel a c t i o n and a x i a l forces i n the 
reinforcement. 

a - Aggregate_interlock. 

Adequate information can be obtained by c o n s u l t i n g the f i r s t 
p a rt of t h i s chapter. 

b. A x i a l _ f o r c e s _ i n _ t h e _ r e i n f o r c e m e n t . 

The r e l a t i o n s between the a x i a l forces i n the r e i n f o r c i n g bars 
and the s l i p can be obtained by using a f i n i t e d i f f e r e n c e method, 
as proposed by Rehm et a l . \_ 63 ] (see s e c t i o n 2.3). 



O 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 08 1.0 
•w(mm) •w(mm) 

c d 

F i g . 5.23.a-d Equivalent s t r e s s normal to the crack plane as a 
fun c t i o n of the crack width f o r various amounts of 
s t i r r u p s with various diameters and four concrete 
q u a l i t i e s 

This has been c a r r i e d out f o r a l l bars c r o s s i n g the crack plane, 
taking i n t o account the bar diameters, the r e l a t e d r i b areas and 
the concrete q u a l i t i e s . D e t a i l e d information on t h i s c a l c u l a t i o n 
can be found i n [ 85 ] . These r e l a t i o n s have been used to con­
s t r u c t diagrams i n which the equivalent s t r e s s normal to the 
crack plane i s represented as a f u n c t i o n of the crack width 
( F i g . 5.23.a-d). 

c. p^wel_ac^ion. 

The a v a i l a b l e knowledge about dowel a c t i o n and i t s p h y s i c a l 
background has been reviewed and discussed i n s e c t i o n 2.2. I t 
was shown that the behaviour can be approximately described by 
the model of a beam on an e l a s t i c foundation. For the case that 
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no a x i a l force i s a c t i n g , the dowel force can be expressed by 
equation (2.13): 

F = 3 . 5 6 ^ 7 5 G ° - 7 5 A (5.12) d t 

Tests by several authors |_ 17, 59, 70 J demonstrated that 
does not depend on the bar diameter it. In experiments by Paulay 
[ 59 J , c a r r i e d out wi t h a constant concrete q u a l i t y of 
£' 30 N/mm2, the value of G, was found to be a decreasing cc f ° 
fun c t i o n of A ( F i g . 2.19). A comparison of (5.12) with these 
experimental r e l a t i o n s r e s u l t s i n an expression f o r G^, equal to 

G = 188 A " 0 - 8 5 (5.13) 

However, G^ must also be a f u n c t i o n of the concrete strength. 
Because the modulus of e l a s t i c i t y i s gen e r a l l y r e l a t e d to 
the concrete strength according t o : 

E = c = c i V * c 7 

a s i m i l a r r e l a t i o n has been adopted f o r the foundation modulus: 

G f - C 2 yf'cc 

Using t h i s r e l a t i o n , equation (5.13) i s modified to 

G f = 34 V^c*" 0- 8 5 (3.14) 

This r e l a t i o n , however, i s only based on experiments without 
a x i a l t e n s i l e forces i n the bars, i . e . , f o r w = 0. Tests, c a r r i e d 
out by E l e i o t t [ 17, 90 ] showed that an a x i a l t e n s i l e force i n 
a bar reduces i t s dowel s t i f f n e s s considerably (see als o F i g . 
2.24): a t e n s i l e s t r e s s of 175 N/mm2 i n a bar with <t 12.8 mm 
reduced the dowel s t i f f n e s s by about 50%, w h i l s t an increase to 
350 N/mm2 r e s u l t e d again i n a reduction of 40%. For the e x p e r i ­
ments i n the author's own program, a s t r e s s l e v e l of 175 N/mm2 
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i s approximately obtained f o r a crack width of w = 0.2 mm and a 
str e s s of 350 N/mm2 f o r w = 0.4 mm ( F i g . 5.23). Taking these 
values i n t o account, an approximate r e d u c t i o n f a c t o r can be 
formulated as: 

0.20 (w + 0.2) -I (5.15) 

Combining (5.12, 5.14 and 5.15), an approximate e s t i m a t i o n of the 
dowel f o r c e i s obtained, taking i n t o account the i n f l u e n c e s of 
crack width, shear displacement, bar diameter and concrete 
q u a l i t y : 

10 (w + 0.2)" 1 A 0 " 3 6 j l -.75 f l0.38 
cc (5.16) 

Comparing the values, obtained w i t h (5.16) f o r the measured 
crack opening path, with the t o t a l shear force i n the exp e r i ­
ments, i t i s seen that dowel a c t i o n i s of minor importance 
( F i g . 5.24). 

x( N/mm2) 
12 

0.1 0.2 0.3 0.4 0.5 
»- A (mm ) 

5.24 C o n t r i b u t i o n of dowel a c t i o n , c a l c u l a t e d w i t h equation 
(5.16), to the t o t a l shear s t r e s s i n a crack, f o r the 
basic s e r i e s made with concrete mix 5, r e i n f o r c e d w i t h 
2, 4, 6 and 8 s t i r r u p s é 8 mm 
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5.2.2 Comparison between r e i n f o r c e d and unreinforced cracks 

For unreinforced cracks i t was shown that there i s a unique r e l a ­
t i o n s h i p between the s t r e s s e s i and a and the displacements w and A. 
This implies that i f two of these parameters are given, the two 
remaining ones are also known. I f , for instance, a c e r t a i n combi­
nat i o n of w and a i s given (point A i n F i g . 5.25), the r e l a t e d 
values of A and T are known. 

F i g . 5.25 Construction of T - A and w-A r e l a t i o n s f o r given r e s t r a i n t 
s t i f f n e s s 

I f , more g e n e r a l l y , the e x t e r n a l r e s t r a i n t s t i f f n e s s i s given (the 
c o l l e c t i o n of points A), both the w-A r e l a t i o n and the T - A r e l a t i o n 
can be constructed. An important property of the mechanism i s that 
an increase i n r e s t r a i n t s t i f f n e s s (greater a f o r the same w, point 
B i n F i g . 5.25) r e s u l t s i n a greater A or i n a "steeper" crack open­
ing path. 
This s e n s i t i v i t y to the r e s t r a i n t s t i f f n e s s i s the main d i f f e r e n c e 
between the response of unreinforced and r e i n f o r c e d cracks to shear 
forces. Whereas f o r unreinforced cracks even small d i f f e r e n c e s i n 
r e s t r a i n t s t i f f n e s s were p e r c e p t i b l e ( F i g . 4.2), f o r r e i n f o r c e d 
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cracks a v a r i a t i o n of t h i s s t i f f n e s s over a wide i n t e r v a l ( F i g . 
5.23) d i d not r e s u l t i n any s i g n i f i c a n t d i f f e r e n c e i n the w~A r e l a ­
t i o n s ( F i g . 4.12). Hence, an attempt to construct the T ~ A and the 
w-A r e l a t i o n s f o r r e i n f o r c e d cracks on the basis of the aggregate 
i n t e r l o c k diagrams and the r e s t r a i n t s t i f f n e s s i n the way i n d i c a t e d 
i n F i g . 5.25, p o s s i b l y c o r r e c t i n g the value w i t h a small dowel term, 
i s doomed to f a i l . This i s demonstrated i n the F i g s . 5.26 and 5.27 
f o r the concrete mixes 1 and 4. I t i s seen that good agreement i s 
achieved only f o r low reinforcement r a t i o s (p^ < 0.56%), w h i l e i n ­
c r e a s i n g l y l a r g e d e v i a t i o n s are observed w i t h i n c r e a s i n g values of 
P . The same tendencies were observed i n other s e r i e s . 

F i g . 5.26 Comparisons between experimental r e s u l t s ( s o l i d l i n e s ) 
f o r b a s i c s e r i e s 4 ( f = 19.9 N/mm2, 2, 4 and 6 s t i r -

cc 
rups i 8 mm), with h y p o t h e t i c a l ones, constructed on 
the basis of F i g . 5.27 (dotted l i n e s ) 
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F i g . 5.27 Comparisons between experimental r e s u l t s ( s o l i d l i n e s ) 
f o r b a s i c s e r i e s 1 ( f ^ = 30 N/mm2, 2, 4, 6, 8 s t i r r u p s 
<t 8 mm and 2 s t i r r u p s 4 mm) w i t h h y p o t h e t i c a l ones, 
constructed according to F i g . 5.27 (dott & l l i n e s ) 

I t was be l i e v e d that l o c a l disturbance of the crack s t r u c t u r e 
around the bars was resp o n s i b l e f o r t h i s d i f f e r e n c e i n behaviour. 
This disturbance may be caused by l o c a l s p l i t t i n g forces o r i g i n a t ­
ing from the r i b s of the r e i n f o r c i n g bars when these are p u l l e d out 
of the concrete by a x i a l t e n s i l e forces ( F i g . 5.28). 
In t h i s way concentrations of loose a s p e r i t i e s are formed, which 
c o n t r i b u t e i n t h e i r own way to the transmission of forces across 
the crack ( F i g . 5.29). This mechanism i s l i k e l y to be rat h e r com­
p l i c a t e d . Not only y i e l d i n g of matrix m a t e r i a l occurs, but als o 
s l i d i n g f r i c t i o n at the contact points between the aggregate p a r t i ­
c l e s and r o l l i n g f r i c t i o n , due to which the p a r t i c l e shape may have 
an i n f l u e n c e . Furthermore the volume of loose p a r t i c l e s increases 
w i t h continuing e x t r a c t i o n of the r e i n f o r c i n g bars. 
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/ A \ .splitting crack 
^L^LJl^L^ F 

F i g . 5.28 D e t e r i o r a t i o n of 
the concrete by 
s p l i t t i n g forces 
around the bar 

F i g . 5.29 Two mechanisms of aggre­
gate i n t e r l o c k i n a 
crack, crossed by r e i n ­
forcement 

The d i f f e r e n c e s i n crack s t r u c t u r e can a l s o be observed a f t e r open­
ing of the specimens. F i g . 5.30 shows a crack face of a specimen, 
tested with e x t e r n a l r e s t r a i n t bars: only a small amount of f i n e 
m a t e r i a l was found to be torn o f f the crack faces. So the i n t e r ­
l o c k i n g forces must indeed have been transmitted v i a p a r t i c l e s 
embedded i n the concrete. F i g . 5.31 shows a crack face of a s p e c i ­
men, r e i n f o r c e d w i t h two s t i r r u p s 6 8 mm, a f t e r opening of the 
crack. A considerable amount of loose p a r t i c l e s was released. A f t e r 
removal of remaining p a r t i c l e s , crater-shaped holes around the 
bars were revealed. I t i s l i k e l y that these holes were mainly 
formed before y i e l d i n g of the bars, during the a c t u a l shear t e s t , 
and only to a minor extent during crack opening a f t e r the t e s t s , 
since the greatest increase i n s t r e s s i n the s t e e l , and attendant 
s l i p of the r e i n f o r c i n g bars, combined w i t h s p l i t t i n g of the ad­
jacent concrete, occurs before y i e l d i n g . 
In order to i n v e s t i g a t e the hypothesis that l o c a l disturbance of 
the crack s t r u c t u r e i s responsible f o r the d i f f e r e n c e i n behaviour 
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between r e i n f o r c e d and unreinforced c r a c k s , an a d d i t i o n a l s e r i e s 
of A specimens was cast. These specimens were made of mix 1, w i t h 

= 36.1 N/mm2, and were again r e i n f o r c e d with 2, A, 6 and 8 
s t i r r u p s <t> 8 mm: around the s t i r r u p legs s o f t sleeves were secured 
to both sides of the crack over a dista n c e of 20 mm. These sleeves 
e l i m i n a t e d l o c a l s p l i t t i n g forces and thus the a c t i v a t i o n of the 
a d d i t i o n a l mechanism of aggregate i n t e r l o c k ( F i g . 5.29). The e f f e c t 
of the sleeves on the r e s t r a i n t s t i f f n e s s , c a l c u l a t e d as e a r l i e r 
w i t h the f i n i t e d i f f e r e n c e method, proved to be in c o n s i d e r a b l e 
( F i g . 5.32). I f the behaviour hypothesis were c o r r e c t , these s p e c i ­
mens would behave i n the same way as the unreinforced specimens 
with e x t e r n a l r e s t r a i n t bars. Indeed i t appeared that the crack 
opening path was dependent on the r e s t r a i n t s t i f f n e s s of the r e i n ­
forcement. The r e s u l t s of the te s t s are represented i n F i g . 5.33 
(dashed l i n e s ) . 

F i g . 5.30 Crack face of a specimen tested with e x t e r n a l r e s t r a i n t 
bars 



F i g . 5.31 Crack face of a specimen, r e i n f o r c e d w i t h 2 s t i r r u p s 
<b 8 mm, showing crater-shaped holes around the r e i n ­
f o r c i n g bars ( a f t e r removal of loose m a t e r i a l ) 

o(N/mm2) fjc-36N/mm2 

bars with sleeves 
8¿8 , 

0 0.2 0.4 0.6 08 1.0 
»w ( mm ) 

F i g . 5.32 E f f e c t of sleeves on the r e s t r a i n t s t i f f n e s s f o r 
specimens w i t h 2, 4, 6 and 8 s t i r r u p s 4 8 mm, and 
f =36 N/mm2 ( c a l c u l a t e d ) 
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x(N/mm2) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
w(mm) 

c 

F i g . 5.33 Comparison between the r e s u l t s of the t e s t s on specimens 
w i t h r e i n f o r c i n g bars, provided w i t h short sleeves, and 
two specimens w i t h e x t e r n a l r e s t r a i n t bars: (a) crack 
opening path (b) shear stress-shear displacement r e l a ­
t i o n , (c) r e s t r a i n t s t i f f n e s s 

A d i r e c t comparison can be made wi t h the r e s u l t s of two t e s t s w i t h 
e x t e r n a l r e s t r a i n t bars, c a r r i e d out e a r l i e r ( s o l i d l i n e s ) . A l l 
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the specimens were of the same concrete q u a l i t y . F i g . 5.33 .C shows 
a comparison between the (measured) r e s t r a i n t s t i f f n e s s of the un-
r e i n f o r c e d specimens w i t h the ( c a l c u l a t e d - using F i g . 5.32) r e ­
s t r a i n t s t i f f n e s s of the r e i n f o r c e d specimens. The specimen with 
6 s t i r r u p s (s - 6 & 8) had a s t i f f n e s s against crack opening approxi­
mately equal to that of specimen 1/.0/7.8. ( F i g . 5.33.c). I t i s 
seen that the crack opening path ( F i g . 5.33.a) and the T - A r e l a t i o n 
( F i g . 5.33.b) are a l s o almost the same. Furthermore the s t i f f n e s s 
against crack opening of specimen I/.0/3.6 i s intermediate between 
those of the specimens s - 2 i> 8 and s - 4 <t> 8 ( f o r w > 0. 1 mm and 
A > 0.13 mm). In t h i s case, too, the p o s i t i o n s of the w-A r e l a t i o n 
( F i g . 5.33.a and the T - A r e l a t i o n ( F i g . 5.33.b) are i n agreement 
with what could be expected on the basis of the s t i f f n e s s against 
normal crack opening. 
In s p i t e of the apparently complex character of the mechanism of 
transmission of forces around the r e i n f o r c i n g bars, the experiments 
on r e i n f o r c e d specimens r e v e a l two c h a r a c t e r i s t i c modes of behav­
i o u r . 

1. The mechanism i s not a c t i v e f o r low values of the reinforcement 
r a t i o (see f o r instance F i g . 5.26 and 5.27). I t seems that i f 
the " n a t u r a l " crack opening d i r e c t i o n does not exceed a c e r t a i n 
c r i t i c a l value the loose p a r t i c l e s around the bars do not lock 
and as such do not i n f l u e n c e the behaviour. 

2. I f l o c k i n g of the loose p a r t i c l e s occurs, s t r u t s w i t h r e l a t i v e ­
l y high s t i f f n e s s are apparently formed, since f o r a l l r e i n ­
f o r c i n g percentages greater than about 0.6% the crack faces 
are forced to f o l l o w the same crack opening path. 

5.2.3 Q u a n t i t a t i v e a n a l y s i s of the behaviour of r e i n f o r c e d cracks 

In the previous s e c t i o n i t was shown that the mechanism of t r a n s ­
mission of forces across r e i n f o r c e d cracks i s not simply a f u n c t i o n 
of aggregate i n t e r l o c k (as e s t a b l i s h e d f o r unreinforced c r a c k s ) , 
dowel a c t i o n and a x i a l r e s t r a i n t s t i f f n e s s of the embedded r e i n ­
forcement. I t appeared that aggregate i n t e r l o c k can be subdivided 
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i n t o two p a r t s : aggregate i n t e r l o c k type I , t r a n s m i t t i n g forces v i a 
embedded p a r t i c l e s , and aggregate i n t e r l o c k type I I , representing 
the forces which act between the crack faces v i a concentrations of 
loose p a r t i c l e s around the r e i n f o r c i n g bars. 
The o v e r a l l behaviour i s , as a r e s u l t , a f u n c t i o n of four compo­
nents, three of which can adequately be described as a f u n c t i o n 
of the displacements w and A: dowel a c t i o n , a x i a l r e s t r a i n t s t i f f ­
ness and aggregate i n t e r l o c k type I . Hence i t i s obvious to study 
the r o l e of aggregate i n t e r l o c k type I I as the missing l i n k i n the 
polygon of f o r c e s . 
The e q u i l i b r i u m of one h a l f of a t e s t specimen i s represented i n 
F i g . 5.34. 

F i g . 5.34 E q u i l i b r i u m of forces i n a r e i n f o r c e d crack, i n which 
two types of aggregate i n t e r l o c k are d i s t i n g u i s h e d 

The f o r c e s , which are i n d i c a t e d by s o l i d l i n e s , are known f o r any 
displacement combination (w, A): the e x t e r n a l shear force F g was 
measured by a load c e l l , the dowel force EF, can be c a l c u l a t e d with 

d 
equation (5.16), the a x i a l r e s t r a i n t forces H, of the reinforcement 
normal to the crack plane, can be obtained from F i g s . 5.23.a-d, 
and the shear and normal forces r e s u l t i n g from aggregate i n t e r l o c k 
type I can be c a l c u l a t e d w i t h equation (5.10) and (5.11). Since 
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aggregate i n t e r l o c k type I I seems to be narrowly r e l a t e d to the 
crack opening path, which i s nearly constant f o r a l l concrete 
types, i t i s resolved i n t o a component normal and a component 
t a n g e n t i a l to t h i s path ( I ^ and I^j.) • 
The components I and I have been c a l c u l a t e d f o r a l l specimens 
of the b a s i c s e r i e s (Table 4 . I I ) , f o r a great number of d i s p l a c e ­
ment combinations (w, A). I t appeared that f o r low amounts of r e i n ­
forcement (2 s t i r r u p s 4 8 mm, = 0.56%), both components were 
very small ( t h i s agrees w i t h the observations i n F i g . 5.26 and 
5.27). For i n c r e a s i n g amounts of reinforcement the value I i n ­
creased considerably, but the value I remained r e l a t i v e l y un­
important, i r r e s p e c t i v e of the amount of reinforcement. 
This implies that approximately e q u i l i b r i u m of forces i s obtained 
i f the polygon of forces i s simply closed by a l i n e , normal to 
the crack opening path ( F i g . 5.35.a). 

aggr. 
interlock 
vertical 

aggr int. 
horizontXjdA 

restraint 
stress retwrs dowel 

action 

F i g . 5.35.a Polygon of 
forces 

F i g . 5.35.b Schematic representa­
t i o n of forces i n a 
r e i n f o r c e d crack 

Considering a l l crack opening paths of the bas i c s e r i e s ( F i g . 4.12), 
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i t was deduced that f o r low and intermediate concrete strengths 
(20 < f < 40 N/mm2) the r e l a t i o n 

cc 

A = 1.40 w 1 , 2 (5.17) 

and f o r high concrete strength ( f ' =56 N/mm2) the r e l a t i o n 
cc 

A = 1.87 w 1 - A (5.18) 

describe the r e s u l t s w i t h adequate accuracy. 
Schematically the mechanism of force transmission i s shown i n 
F i g . 5.35.b. 
Aggregate i n t e r l o c k type I I i s represented by the i n f i n i t e l y s t i f f 
compression s t r u t s S, which are defined to be always perpendicular 
to the c r i t i c a l crack opening path, given by the equations (5.17 
and 5.18). The s t r u t s S permit no crack opening steeper than the 
c r i t i c a l crack opening path, but are not stressed i f the n a t u r a l 
crack opening path i s less steep. 
In the f o l l o w i n g , the experimental r e s u l t s are compared with those 
predicted on the basis of the system of F i g . 5.35. 
F i r s t , i t has to be e s t a b l i s h e d whether the compression s t r u t s are 
a c t i v a t e d or not. This i s done as shown i n F i g . 5.25; the r e l a t i o n 
between the equivalent r e s t r a i n t s t r e s s and the crack width i s 
taken from F i g . 5.23, and the value A i s then determined. The com­
b i n a t i o n (w, A) reveals whether the c r i t i c a l crack opening path i s 
exceeded or not. I f not, the value x can be assessed with the d i a ­
gram, as a f u n c t i o n of w and A, and the t o t a l e x t e r n a l shear s t r e s s 
i s obtained by adding a dowel term, according to equation (5.16). 
I f the c r i t i c a l crack opening path i s indeed exceeded, the s t r u t s 
S are a c t i v a t e d and the crack faces are forced to f o l l o w t h i s path. 
In t h i s case the e x t e r n a l shear s t r e s s i s constructed, using the 
p r i n c i p l e represented i n F i g . 5.35.a. The polygon of forces can be 
constructed for every value of w, s t a r t i n g from point A. For a 
value w the accompanying value A can be c a l c u l a t e d w i t h equation 
(5.17) or equation (5.18). The dowel c o n t r i b u t i o n i s obtained from 
equation (5.16). The normal r e s t r a i n t s t r e s s , caused by the r e i n -
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forcement, can be taken from the diagrams i n F i g . 5.23. The v e r t i c a l 
and h o r i z o n t a l components of aggregate i n t e r l o c k (type I) are as­
sessed, using the r e l a t i o n s (5.10) and (5.11). The d i r e c t i o n of 
the normal on the crack opening path i s obtained from (5.17) or 
(5.18). Consequently the e x t e r n a l shear s t r e s s i s found as AB. 
This c a l c u l a t i o n has been c a r r i e d out f o r a great number of s p e c i ­
mens ( F i g . 5.36.a-v). 
In general, s a t i s f a c t o r y agreement w i t h the experimental r e s u l t s 
i s obtained. In some of the more h e a v i l y r e i n f o r c e d specimens the 
c a l c u l a t e d l i n e s reach a higher peak value than the experimental 
ones, which can be explained by the occurrence of s p a l l i n g regions 
at the top and bottom of the crack, observed during t e s t i n g , which 
weaken the ult i m a t e r e s i s t a n c e ( F i g . 5.36 . C , h, j , k, p ) . Indeed, 
the specimens w i t h lower concrete strength are more s u s c e p t i b l e 
to t h i s strength reduction. (As discussed e a r l i e r , t h i s e f f e c t 
was t h e o r e t i c a l l y demonstrated by Schwing Q 69 ] ) . 
Only i n one of the specimens the s t r u t s S were not found to be 
stressed ( F i g . 5.36.r-v). I f the in f l u e n c e of the stress e s t r a n s ­
verse to the bars on the bond c h a r a c t e r i s t i c s could be taken i n t o 
account, t h i s would probably even increase the accuracy of the 
approximation, since s l i g h t l y higher values f o r T would be obtained 
f o r values w < 0.4-0.5 mm. 
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F i g . 5.36 Comparison between c a l c u l a t e d r e l a t i o n s (dotted l i n e s ) 
and experimental r e l a t i o n s ( s o l i d l i n e s ) 

5.2.4 Specimens w i t h r e i n f o r c i n g bars i n c l i n e d to the crack plane 

I t can be shown that the behaviour of specimens w i t h r e i n f o r c i n g 
bars i n c l i n e d to the crack plane i s not e s s e n t i a l l y d i f f e r e n t from 
that of specimens with reinforcement perpendicular to the crack 
plane. In order to construct the T - W and A-w r e l a t i o n s i t i s neces­
sary to c a l c u l a t e the r e s t r a i n t s t r e s s normal to the crack plane, 
and the dowel a c t i o n of the bars. The r e s t r a i n t s t r e s s normal to 
the crack plane i s , i n the case of i n c l i n e d bars, not only a func­
t i o n of the crack width w, but a l s o of the shear displacement A 
( F i g . 5.37). 
For a displacement (w, A) the t o t a l p u l l - o u t s l i p of the r e i n f o r c ­
ing bar i s equal to w = w s i n 8 + A cos 6. The t o t a l s t e e l f o rce 
F i n the d i r e c t i o n 6 can be c a l c u l a t e d by using F i g . 5.23, r e -s, 8 
p l a c i n g w by w and m u l t i p l y i n g a by the crack area A^ (a i s r e ­
l a t e d to A^ i n F i g . 5.25), and i s subsequently resolved i n t o a 
r e s t r a i n t force normal to the crack plane, equal to F Q . s i n 6, 

S0 
and a shear force p a r a l l e l to the crack plane, equal to F .cos 6. 
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F i g . 5.37 P u l l - o u t s l i p f o r an i n c l i n e d r e i n f o r c i n g bar 

For the dowel a c t i o n of the i n c l i n e d bars an expression suggested 
by Mattock V 50 J has been used, which r e l a t e d t h i s force to the 
dowel a c t i o n of a bar perpendicular to the crack, according to 
the formula 

(5.19) 

o{ N/mm2) 

F i g . 5.38 I n t e r a c t i o n diagram f o r f = 34 N/mm2 and 2 s t i r r u p s 
cc 

</> 8 mm i n c l i n e d to the crack plane w i t h 0 = 112 
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F i g . 5.39 Comparison between c a l c u l a t e d (dotted) and experimental ( s o l i d ) T-w and w-A r e l a t i o n s f o r 
specimens w i t h i n c l i n e d bars 



t hor. aggr. int. 

dowel 
action 

'Axial steel force 

F i g . 5.40 E q u i l i b r i u m i n a crack w i t h reinforcement i n c l i n e d w i t h 
6 = 135° 

The T—W and w-A curves can be constructed, r e q u i r i n g e q u i l i b r i u m 
i n the d i r e c t i o n normal to the crack. The s t r e s s normal to the 
crack, due to aggregate i n t e r l o c k , i s formulated as a f u n c t i o n 
of w and A i n equation (5.10) and equation (5.11). The r e s t r a i n t 
s t r e s s normal to the crack, due to the t e n s i l e force i n the r e i n ­
forcement, i s c a l c u l a t e d , as described p r e v i o u s l y , a l s o as a func­
t i o n of w and A (dashed l i n e s i n F i g . 5.38). Combinations of (w, A) 
for which e q u i l i b r i u m i s obtained can be g r a p h i c a l l y estimated with 
i n t e r a c t i o n s diagrams, an example of which i s given i n F i g . 5.38. 
The corresponding value of z due only to aggregate i n t e r l o c k can 
be read i n the upper part of the diagram. To obt a i n the t o t a l shear 
f o r c e , t h i s value has to be increased by a term r e s u l t i n g from the 
a x i a l s t e e l force and a term r e s u l t i n g from dowel a c t i o n . Further­
more i t has to be checked whether the c r i t i c a l crack opening path 
i s not exceeded. The r e s u l t s of these c a l c u l a t i o n s are represented 
i n F i g . 5.39. The agreement between c a l c u l a t e d and experimental 
r e s u l t s i s s a t i s f a c t o r y . In the c a l c u l a t i o n i t was found that even 
for 6 = 135° the reinforcement was subjected to a t e n s i l e s t r e s s . 
In the case of G > 90° t h i s a x i a l t e n s i l e f o rce i t s e l f has a nega­
t i v e i n f l u e n c e on the shear r e s i s t a n c e , but acts p o s i t i v e l y by 
pr o v i d i n g a r e s t r a i n t s t i f f n e s s against crack opening and, as such, 
a c t i v a t i n g aggregate i n t e r l o c k ( F i g . 5.40). 
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5.2.5 Hypothesis f o r the behaviour of r e i n f o r c e d cracks subjected to 
general combinations of e x t e r n a l loads or imposed displacements 

In the previous s e c t i o n i t was shown that the behaviour of the t e s t 
specimens could be described by d e f i n i n g two types of aggregate 
i n t e r l o c k : type I , i n t e r l o c k over embedded p a r t i c l e s , and type I I , 
i n t e r l o c k over concentrations of loose p a r t i c l e s around the bars, 
f o r c i n g the crack to f o l l o w a c e r t a i n constant crack opening path. 
The f i r s t type can be denoted as the micro-roughness, and the sec­
ond as the macro-roughness of the crack plane. For the t e s t s c a r r i e d 
out, the macro-roughness seemed to be a c h a r a c t e r i s t i c property, 
since a high degree of r e p e a t a b i l i t y of crack opening paths was 
observed. However, nearly a l l specimens had an i n i t i a l crack width 
of l e s s than 0.04 mm, and a l l specimens were subjected only to 
(external) shear f o r c e s . Due to these r e s t r i c t i o n s the informa t i o n 
obtained was l i m i t e d . I t may for instance be wondered what crack 
opening path would be followed, i f the i n i t i a l crack width were 
greater, or, i f the e x t e r n a l shear force were combined w i t h an 
a x i a l t e n s i l e f o r c e . I t seems not u n l i k e l y that a l s o i n other 
points of the w, A plane c r i t i c a l crack opening d i r e c t i o n s e x i s t 
due to l o c k i n g of loose p a r t i c l e s . At present l i t t l e evidence i s 
a v a i l a b l e to support t h i s s u p p o s i t i o n . Besides a few te s t s c a r r i e d 
out w i t h s l i g h t l y greater i n i t i a l crack widths, represented i n 
F i g . 4.8 and 4.9, only a s e r i e s , c a r r i e d out by Mattock |_51 J was 
found i n the l i t e r a t u r e , g i v i n g complementary r e s u l t s . In that 
i n v e s t i g a t i o n comparable precracked specimens, w i t h r e i n f o r c i n g 
r a t i o s of 0.4-2.3%, were subjected to an e x t e r n a l shear load. 
During precracking the crack width reached an average maximum 
value of 0.28 mm. When the l i n e loads were removed, a r e s i d u a l 
crack width of about 0.23 mm remained, t h i s being the average 
width of the crack i n the shear plane before the shear t r a n s f e r 
t e s t . 
F i g . 5.41 shows the crack opening path (supposing that f o r a l l 
specimens w =0.23 mm) f o r t h i s s e r i e s , with f . % 28 N/mm2 

o c c y l 
(which agrees w i t h a cube crushing strength of about f' =35 N/mm2), 
and D =19 mm. I t i s seen that a f t e r a short v e r t i c a l branch an max 
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approximately constant slope i s followed (other t e s t s , on other 

types of concrete did not e x h i b i t the v e r t i c a l branch; see also 

F i g . 2.36.b and [ 8 3 , p. 8 5 ] , so that also here a c h a r a c t e r i s t i c 

crack opening path seems to e x i s t . 

»• w(mm) 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

F i g . 5.41 Crack opening paths f o r specimens, tested by Mattock 
[ 5 1 ] , f o r gravel concrete with f ^ 35 N/mm2, 
D =19 mm, 0.4% < p < 2.3% and w = 0.23 mm max o o 

The average crack opening path obtained i n the present author's 
own t e s t s f o r intermediate concrete strengths i s i n d i c a t e d by a 
dashed l i n e i n F i g . 5.41. I t may be assumed that at every point 
of the w, A plane a c r i t i c a l crack opening d i r e c t i o n e x i s t s , which 
cannot be exceeded, and that the c r i t i c a l d i r e c t i o n s can be repre­
sented by the d e f i n i t i o n of a continuous vector f i e l d . An example 
i s given i n F i g . 5.42, i n which the expression 
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(5.20) 

i s used as a d e f i n i t i o n formula f o r the c r i t i c a l crack opening 
d i r e c t i o n . 
This formula i s so constructed that both f o r the present author's 
own t e s t s , and f o r Mattock's, a f i t t i n g crack opening path i s ob­
tained (see a l s o F i g . 5.42). 
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F i g . 5.42 Vector f i e l d according to equation (5.20), so defined 
that both f o r Mattock [ 5 1 J and the present author's 
own t e s t s a good approximation of the experimental crack 
opening path i s obtained 

I t can be demonstrated that a l s o Mattock's t e s t r e s u l t s [ 5 1 ] can 
be reasonably w e l l described using the procedure described i n sec­
t i o n 5.2.3, with the formulas (5.10), (5.11), (5.16) and F i g s . 
5.23.a _d, i f equation (5.20) i s used to define the c r i t i c a l crack 
opening path. A comparison between c a l c u l a t e d and experimental 
r e l a t i o n s f o r these t e s t s i s represented i n F i g . 5.43. 
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Since, however, only a few t e s t r e s u l t s are a v a i l a b l e , f u r t h e r ex­
periments on r e i n f o r c e d specimens are necessary, focusing on the 
existence of c r i t i c a l crack opening paths f o r a wider range of 
w, A-values. Aspects of load h i s t o r y should also be taken i n t o 
account. 

F i g . 5.43 Comparison between experimental values of t e s t s by 
Mattock Q s i ] ( s o l i d l i n e s ) with c a l c u l a t e d r e l a t i o n s 
(dashed l i n e s ) 



6 A MATHEMATICAL FORMULATION OF THE RELATION BETWEEN STRESSES AND 
DEFORMATIONS OF CRACKED REINFORCED CONCRETE, TAKING INTO ACCOUNT 
THE CRACK PROPERTIES 

6.1 The stress-displacement r e l a t i o n f o r a s i n g l e crack 

A d i s t i n c t i o n has to be made between the two cases of a crack i n 
p l a i n concrete and a crack i n r e i n f o r c e d concrete. The experiments 
demonstrated that i n the case of r e i n f o r c e d cracks the crack open­
ing d i r e c t i o n may be confined to a c e r t a i n l i m i t value. To simulate 
the behaviour displayed by the cracks a compression s t r u t has been 
introduced ( F i g . 5.35), which i s a c t i v a t e d only i f the shear d i s ­
placement tends to exceed the l i m i t value. 

a. The_unreinforced_crack. 

For the sake of s u c c i n c t formulation a modified n o t a t i o n i s used 
f o r the stresses and displacements, r e f e r r i n g to the d i r e c t i o n s 
n (normal to the crack) and t ( t a n g e n t i a l to the crack) 
( F i g . 6.1). 

F i g . 6.1 P r i n c i p a l d i r e c t i o n s n and t 

6^ and & represent the displacements i n normal and t a n g e n t i a l 
d i r e c t i o n s (6 > 0: 6 = crack width, e a r l i e r denoted as w), n n 
5 = shear displacement ( e a r l i e r denoted as A). The associated 
stresses are o (normal s t r e s s ) and a (shear s t r e s s ) , nn nt 
The r e l a t i o n s between a , cr and 6 , 5 can be expressed as: 

nn nt nn nt 
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d a 

d a nt 

nn nt 

tn t t 

d S 

d 6. 

{d a}= B C r ' P {d 6} (6.1) 

where B i , B and B are the crack s t i f f n e s s c o e f f i c i e n t s nt' t t tn 
the s u p e r s c r i p t s cr,p r e f e r to crack and p l a i n concrete. With 
the equations (5.10) and (5.11) s i m p l i f i e d expressions have been 
given f o r the r e l a t i o n s between a a and S , nt nn nn' nt nn' nt 
generalized way these functions are represented by 

In a 

"nn = f n ( 5n> V • V = f t ( V V ( 6 " 2 ) 

D i f f e r e n t i a t i o n of (6.2) r e s u l t s i n expressions f o r the crack 
s t i f f n e s s c o e f f i c i e n t s : 

3 f 3 f 3 f 3 f 
B = T — £ , B = ^ - 7 ^ , B - - 5 - r i , B_ = T ~ (6.3) nn 3 6 nt 3 6\ tn 3 o t t 3 o n t n t 

De t a i l e d formulations f o r these expressions are given i n Appen­
d i x I I I . These r e l a t i o n s are v a l i d f o r i n c r e a s i n g values of 
&n and 6 I, as gen e r a l l y encountered i n the case of monotonic-
a l l y increased loading. A path-dependent form u l a t i o n , taking 
i n t o account p l a s t i c deformations and f r i c t i o n between p a r t i c l e s 
and m atrix, would be p o s s i b l e on the basis of the data presented 
i n the Chapters 3 and 5, but would require more complicated ex­
pressions. Considering the values of the crack s t i f f n e s s coef­
f i c i e n t s , i t can be expected that the crack s t i f f n e s s matrix 
i s not p o s i t i v e d e f i n i t e . However, the unstable behaviour i s 
u s u a l l y s t a b i l i z e d by the r e s t r a i n t provided by the r e i n f o r c e ­
ment and the boundary condi t i o n s (Bazant, Gambarova |_ 3 J ) . 

b. The_reinforced_crack. 

A d i s t i n c t i o n has to be made between the case where the crack 
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opens f r e e l y and the case where crack opening i s confined to a 
l i m i t d i r e c t i o n due to secondary e f f e c t s caused by l o c a l m o d i f i c a ­
t i o n s of the crack s t r u c t u r e around the r e i n f o r c i n g bars due 
to s p l i t t i n g f o r c e s . In F i g . 5.35 i t was shown that i n the case 
of a confined crack opening i t i s p o s s i b l e to simulate the be­
haviour by the i n t r o d u c t i o n of hinged s t r u t s w i t h high s t i f f n e s s . 
The d i r e c t i o n of these s t r u t s depends on the a c t u a l combination 
of displacements (S , 6 ) ( F i g . 6.2). 

I 

F i g . 6.2 Compression s t r u t s as an expedient to simulate the be­
haviour of r e i n f o r c e d cracks 

The r e l a t i o n between stresses and displacements i s now a func­
t i o n of two mechanisms: the compression s t r u t s (aggregate i n t e r ­
lock type I I ) and the p a r t i c l e - m a t r i x i n t e r a c t i o n , as formulated 
i n the previous s e c t i o n (6.1.a) (aggregate i n t e r l o c k type I ) . 
In the next formulation the i n f l u e n c e of dowel a c t i o n i s ne­
g l e c t e d . The average s t r e s s e s , caused by the very s t i f f compres­
sio n s t r u t s , are represented by 

{d a s t r } = [ B
S t r ] { d 8 c r} (6.4) 

where the s u p e r s c r i p t s t r r e f e r s to s t r u t and cr r e f e r s to crack. 
C s tr -1 B J , 

which i s by d e f i n i t i o n r e l a t e d to the crack d i r e c t i o n (n, t ) , 
has to be obtained by the transformation 
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L>tr] = [R
str] [B;tr] [R

str] ( 6 . 5 ) 

with 

and 

[<tr] 

M 2 2 M N 

- M N M 2 - N 2 

E 0 s t r 
0 0 

where M = cos N = s i n and 1J1 i s the angle between the d i r e c 
t i o n normal to the crack and the d i r e c t i o n of the s t r u t s . The 
d i r e c t i o n of the s t r u t s depends on the combination of d i s p l a c e ­
ments: <JJ = 'Kc' > 6j.) (Appendix I I I ) . 
A s u f f i c i e n t l y high s t i f f n e s s could be a t t r i b u t e d to the s t r u t s 

2 0 

f o r example, E ^ = 1 0 ( ^ ° ° ) . 
The stresses i n the crack as a r e s u l t of the p a r t i c l e - m a t r i x 
i n t e r a c t i o n have e a r l i e r been formulated i n equation ( 6 . 1 ) . 

A summation of the st r e s s e s caused by both e f f e c t s y i e l d s 
r, c r , {d a } [ B

c r ' r ] {d 6 c r} 

with [ B
c r ' r ] = [ B

c r ' P ] + [ B
S t r ] 

( 6 . 6 ) 

( 6 . 7 ) 

where the s u p e r s c r i p t c r , r r e f e r s to crack i n r e i n f o r c e d con­
c r e t e . I f the s t r u t s are subjected to t e n s i l e f o r c e s , the 
matrix B S t r i s defined to be [ B S t r ] = [ o ] . 

6 . 2 The r e l a t i o n between stres s e s and displacements i n cracked r e i n -
forced concrete 

The r e l a t i o n between stres s e s and displacements i n cracked r e i n ­
forced concrete i s formulated i n a way s i m i l a r to that p r e v i o u s l y 
proposed by Bazant and Gambarova L 3 J . A s l i g h t m o d i f i c a t i o n i s 
a p p l i e d , enabling the i n t r o d u c t i o n of tension s t i f f e n i n g e f f e c t s . 
A cracked concrete element i s considered, r e i n f o r c e d with s t e e l 
bars i n one d i r e c t i o n . The concrete i s i n t e r s e c t e d by a system of 
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p a r a l l e l cracks of average spacing s; the angular d e v i a t i o n between 
the bars and the crack normal i s equal to G ( F i g . 6.3). 

F i g . 6.3 Reinforced concrete element i n t e r s e c t e d by cracks 

I t i s assumed that the element i s s u f f i c i e n t l y l a r g e compared to 
the spacing of bars and cracks and that the i n t e r n a l forces vary 
gr a d u a l l y and smoothly, so as that they could be assumed to be 
almost uniform over a distance of s e v e r a l bar and crack spacings. 

C c r r—i B ' J from equation 
(6.7 ) , we o b t a i n : 

d 6 
n 

F 
nn 

F 
nt nn 

< 

d 6 t 

> 
F 
tn 

F 
t t 

-
d a 

• (6.8) 

{d 6 c r) = [ F
C r ' r ] {d a C r } 

where [ F C r ' r 2 | i s the f l e x i b i l i t y matrix of the crack and 
[ F C r ' r ] = [ B ^ ' T ' . 
The average s t r a i n s r e s u l t i n g from the "smeared out" cracks are: 
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6 cr nn cr = 2 e. cr (6.9) e s(e) > Y. nt s(e) nn nt 

The s u p e r s c r i p t cr i n d i c a t e s that only deformations d i r e c t l y r e ­
la t e d to the crack displacements are considered. s(e) i s the mean 
crack spacing attended by a s t r a i n c o n d i t i o n {e}. The mean crack 
spacing s(e) depends on a number of i n f l u e n c i n g f a c t o r s : 

- the bond-slip r e l a t i o n , depending on the p r o f i l i n g of the r e i n ­
f o r c i n g bars, the concrete q u a l i t y and the stres s e s i n the sur­
rounding concrete; 

- geometrical e f f e c t s , such as the bar diameter, bar distance and 
concrete cover; 

- the concrete t e n s i l e strength (low strength r e s u l t s i n many 
c r a c k s ) , which i s als o i n f l u e n c e d by the stresses i n the sur­
rounding concrete due to e x t e r n a l f o r c e s ; 

- the angle between r e i n f o r c i n g bars and crack d i r e c t i o n : i n gen­
e r a l the mean crack width i s a f u n c t i o n of the i n t r o d u c t i o n 
length 1 of the bond s t r e s s e s . I f the cracks are perpendicular 
to the d i r e c t i o n of the reinforcement, the average crack spacing 
i s about s = 1.5 1 . I f the angle between cracks and r e i n f o r c e -b 
ment deviates from 90 , the average crack spacing i s reduced as 
a f u n c t i o n of t h i s d e v i a t i o n ( F i g . 6.4). 

F i g . 6.4 Crack spacing r e l a t e d to the o r i e n t a t i o n of the r e i n f o r c e -

Extended reviews and discus s i o n s on crack spacing have been given 

ment 

by, among others, Ivanyi £ 16 ]] and 



G e i s t e f e l d [_ 24 J . 
A combination of the equations (6.8) and (6.9) r e s u l t s i n : 

d cr e nn F 
nn 

. d cr 
£ t t 

d cr F 
tn 

n t 

t t 

d a 

I d a 

d a 1 

n t j 

r (6.10) 

which may be b r i e f l y w r i t t e n as 

{d e c r } = [ D c r ] { d a c} (6.11) 

Here the s u p e r s c r i p t c r e f e r s to the concrete between the cracks. 
The l a s t equation i n d i c a t e s that the stress e s i n the concrete are 
equal to those i n the cracks. The average s t r a i n s of the cracked 
r e i n f o r c e d concrete element e , e and Y can be obtained as 

nn t t nt 
the sums of the s t r a i n s of the s o l i d concrete between the cracks c c c . . cr c r cr e , E and Y and the s t r a i n s due to the cracks £ , E . y _> nn' t t nt nn' t t nt 

{d £} = {d E C R } + {d E C} (6.12) 

T 
where {d E} = (d £ n n> d £ t t> d Y n t ) > T denoting the transpose, and 
{d E° r}, {d e°} are the analogous column matrices f o r s t r a i n s due 
to cracks and to concrete between the cracks. The s t r a i n s i n the 
concrete between the cracks are r e l a t e d to the st r e s s e s by the 
incremental s t r e s s - s t r a i n r e l a t i o n 

{d e c} = [ D c ] { d o C} (6.13) 

c . . . where D i s the tangent f l e x i b i l i t y matrix of concrete. 
S u b s t i t u t i o n of (6.11) and (6.13) i n t o (6.12) y i e l d s 

{d E} = [ o ] { d a C} [ D ] = [ u c r ] + [ D c ] (6.14) 
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where D i s the f l e x i b i l i t y matrix of cracked concrete as a whole 
Equation (6.14) being known, the i n f l u e n c e of the reinforcement 
can be i n s t e r t e d . I t i s assumed that the average s t r a i n s of the 
reinforcement are equal to those of the cracked concrete. The 
e f f e c t of tension s t i f f e n i n g i s im p l i e d i n the s t r e s s - s t r a i n r e ­
l a t i o n of the s t e e l . The averaged stresses are: 

{d a 5} = [ c S ] { d e} ( 6-

where the s u p e r s c r i p t s r e f e r s to s t e e l . Since the cracks are i n 
general i n c l i n e d with respect to the r e i n f o r c i n g bars, the matrix 
[ C S J , which i s by d e f i n i t i o n r e l a t e d to the axes n and t , must 
be obtained by the transformation: 

[ C - ] - [ R " ] T [ C - ] [ K » ] . 

P 2 Q2 2 PQ 

Q2 P 2 _ 2 PQ 

-PQ PQ P2-Q2 

(6.16) 

with 

[<] = 

P„E 6 s 

o(e) 

0 

0 0 

0 0 (6.17) 

0 0 0 

where P = cos 6, Q = s i n 0, 9 i s the angle between the r e i n f o r c i n g 
bars and the d i r e c t i o n normal to the crack ( F i g . 6.3). E

g ( £ ) i s the 
ta n g e n t i a l spring s t i f f n e s s of the r e i n f o r c i n g s t e e l , p i s the 

9 
r e i n f o r c i n g r a t i o i n the bar d i r e c t i o n and a(e) i s a f a c t o r taking 
account of the e f f e c t of tension s t i f f e n i n g . This f a c t o r ct(e) i s 
c l o s e l y r e l a t e d to the mean crack spacing s ( e ) . 
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F i n a l l y the stresses due to the cracked concrete and to the s t e e l 
bars must be added: 

{d a} = {d a°} + {d a 3} 

Because, according to equation (6.14): 

{d a c} = [ D ] _ 1 {d E] 

t h i s r e s u l t s i n 

{d a} = • C • {d E} with | " c ] = [ C S ] + [ D ] " 1 

where ]_ G J i s the t a n g e n t i a l s t i f f n e s s matrix of cracked r e i n ­
forced concrete, r e f e r r e d to the axes n and t . This matrix \_ C ] 
must of course be f u r t h e r transformed to the element co-ordinates. 
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7 RETROSPECTIVE VIEW 

The aim of the i n v e s t i g a t i o n was to study the phenomenon of aggre­
gate i n t e r l o c k as an i n d i v i d u a l mechanism and i t s r o l e i n co-oper­
a t i o n w i t h other components i n r e i n f o r c e d cracks. 

The a n a l y s i s of the f i r s t item r e s u l t e d both i n an adequate i n s i g h t 
i n t o the p h y s i c a l backgrounds of the mechanism and i n a simple 
mathematical formulation. The r e s u l t s apply f o r a great v a r i e t y 
of concrete mixes. However, due to l i m i t a t i o n s i n time and costs 
not a l l aspects could be taken i n t o account: 

" icj.e_shap_e: 

The r e s u l t s have been obtained f o r concretes with n a t u r a l rounded 
aggregate p a r t i c l e s , f o r which a s i m p l i f i c a t i o n to spheres may be 
considered reasonable. In a number of countries crushed aggregate 
i s a l s o used. To see whether the same r e l a t i o n s apply also to 
these types of concretes, or whether m o d i f i c a t i o n s are necessary, 
other t e s t s would be of i n t e r e s t . 

- T he_orientation_of_the_crack^ 
o f _ c a s t i n g : 

I t was shown by the mathematical model d e s c r i b i n g the mechanism 
of aggregate i n t e r l o c k that the stress-displacement r e l a t i o n s 
f o r cracks are a f f e c t e d by the q u a l i t y of the matrix. The y i e l d ­
ing strength of the matrix, as defined i n the model, i s an aver­
age value f o r a heterogeneous m a t e r i a l . E f f e c t s of anisotropy 
of t h i s m a t e r i a l have not been taken i n t o account. However, 
anisotropy may occur, due to the i n f l u e n c e of the d i r e c t i o n of 
c a s t i n g : as a r e s u l t of water gain and sedimentation under coarse 
aggregate p a r t i c l e s a s o f t and spongy lay e r can form, w i t h a 
v a r i a b l e thickness. Hence, i t may make a d i f f e r e n c e whether the 
o r i e n t a t i o n of the l a y e r i s as represented i n F i g . 7.1.a or as 
i n F i g . 7.1 .b. I t would be i n t e r e s t i n g to see whether t h i s d i f ­
ference has a s i g n i f i c a n t i n f l u e n c e . 
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area af fected by water v % ^ T i r B 5 ^ 
gain and sed imenta t ion 

a b 

F i g . 7.1 E f f e c t of water gain and sedimentation on the s t i f f n e s s 

- M a t r i x / p _ a r t i c l e _ s t r g 2 g t h _ r a t i o s : 

In the experiments the p a r t i c l e strength was ge n e r a l l y higher 
than the matrix strength. Even i n the case of a concrete strength 
of f = 60 N/mm2 i n the t e s t s , only a l i m i t e d number of p a r t i c l e s 

cc 
were found to have f r a c t u r e d . However, i f the r e l a t i o n p a r t i c l e 
strength/matrix strength would be lower than i n t h i s i n v e s t i g a ­
t i o n , the crack faces would be le s s p r o f i l e d and the t o t a l con­
tact area could be s i g n i f i c a n t l y reduced. Tests have al s o been 
c a r r i e d out on cracked specimens made of li g h t w e i g h t concrete 
|_ 84, 85 ̂  i n which the crack i n t e r s e c t e d a l l l i g h t w e i g h t p a r t i ­
c l e s but avoided the sand p a r t i c l e s . In s p i t e of the f a c t that 
the sand was d i s t r i b u t e d according to a F u l l e r curve, the r e s u l t s 
obtained by c a l c u l a t i o n with the t h e o r e t i c a l model (only t a k i n g 
account of the sand p a r t i c l e s ) were too low. This i s probably 
caused by the rough surface of the broken l i g h t w e i g h t p a r t i c l e s , 
the i n f l u e n c e of which was neglected. 

In the te s t s on r e i n f o r c e d cracks i t appeared that f o r a wide range 
of reinforcement r a t i o s the crack opening path was not in f l u e n c e d 
by the r e s t r a i n t s t i f f n e s s against crack opening i n normal d i r e c ­
t i o n . The divergence of the crack opening paths was s m a l l , i n s p i t e 
of considerable v a r i a t i o n s i n concrete strength and reinforcement 
r a t i o . Hence, the r e s u l t s obtained i n t h i s part of the i n v e s t i g a ­
t i o n do not cover a l l p o s s i b i l i t i e s of crack opening which can be 
expected i n cracked r e i n f o r c e d concrete i n p r a c t i c a l s i t u a t i o n s . 

c h a r a c t e r i s t i c s of a crack 
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To improve the p r o v i s i o n a l model f o r the behaviour of r e i n f o r c e d 
cracks, as proposed i n t h i s study, f u r t h e r experimental evidence 
i s needed. Above a l l , what i s required are the r e s u l t s of t e s t s 
on r e i n f o r c e d cracks subjected to combinations of shear and ten­
s i o n normal to the crack. 



8 SUMMARY 

As a r e s u l t of the i n c r e a s i n g d i f f i c u l t i e s i n s t r u c t u r a l design 
associated with the increase i n scale and complexity of new s t r u c ­
tures and t h e i r loading c o n d i t i o n s i n recent years, added impetus 
has been given to the development of numerical c a l c u l a t i o n tech­
niques. Above a l l , the non-linear f i n i t e element methods, which 
are s t i l l being r e f i n e d , may become powerful t o o l s i n future design. 
These methods, however, can only show to f u l l advantage i f the 
m a t e r i a l c h a r a c t e r i s t i c s to be i n s e r t e d are adequately known. One 
of the c h a r a c t e r i s t i c s a f f e c t e d by l a c k of information concerns 
the mechanism of transmission of forces across cracks whose the 
faces are subjected to shear displacements. This mechanism i s 
achieved by i n t e r a c t i o n of several components: a x i a l and t r a n s ­
verse s t i f f n e s s (dowel action) of the reinforcement and d i r e c t 
t r a n s f e r of forces between the rough concrete crack faces, gener­
a l l y denoted by the term "aggregate i n t e r l o c k " . Since aggregate 
i n t e r l o c k appeared to be the missing l i n k i n t h i s system w i t h 
regard to the a v a i l a b l e knowledge, a research program was c a r r i e d 
out, focusing on t h i s subject. 

F i r s t , "pure" aggregate i n t e r l o c k , i . e . , aggregate i n t e r l o c k i n 
cracks which are not i n t e r s e c t e d by reinforcement, was s t u d i e d . 
To obtain an i n s i g h t i n t o t h i s mechanism a t h e o r e t i c a l model was 
developed, which was subsequently compared w i t h experimental r e ­
s u l t s . The theory i s based on the assumption that concrete can 
be conceived as a "two-phase" m a t e r i a l which i s composed of a 
c o l l e c t i o n of aggregate p a r t i c l e s w i t h high strength and s t i f f n e s s 
(phase I ) , and a matrix m a t e r i a l c o n s i s t i n g of hardened cement 
paste with f i n e sand with lower strength and s t i f f n e s s (phase I I ) . 
A crack i n t h i s composite m a t e r i a l g e n e r a l l y i n t e r s e c t s the m a t r i x , 
but not the aggregate p a r t i c l e s , because the contact l a y e r between 
p a r t i c l e s and matrix i s of r e l a t i v e l y low q u a l i t y . The transmission 
of forces during shear displacement of the crack faces i s e f f e c t e d 
v i a l o c a l contact areas between the p a r t i c l e s p r o t r u d i n g from one 
of the crack faces and the matrix i n the opposite crack face. The 
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interdependence between forces and displacements of the crack faces 
i s c l o s e l y r e l a t e d to the deformation of the matrix m a t e r i a l . The 
most probable d i s t r i b u t i o n and o r i e n t a t i o n of the contact areas 
were determined by a s t a t i s t i c a l a n a l y s i s . For t h i s a n a l y s i s the 
aggregate p a r t i c l e s were s i m p l i f i e d to spheres, protruding f o r an 
a r b i t r a r y part of t h e i r diameter from one of the crack faces. For 
the d i s t r i b u t i o n of the aggregate p a r t i c l e diameters a F u l l e r curve 
was chosen, frequently used i n the design of concrete mixes, which 
has the advantage of being c h a r a c t e r i z e d by a simple mathematical 
formulation. The c o e f f i c i e n t of f r i c t i o n between p a r t i c l e s and 
matrix at o v e r r i d i n g , and the s t r e s s at which p l a s t i c deformation 
of the matrix occurs, were used as " a d j u s t i n g parameters" i n the 
model. The v a l i d i t y of the theory has been v e r i f i e d by a number 
of experiments i n which the concrete q u a l i t y , the p a r t i c l e s i z e s 
and the e x t e r n a l r e s t r a i n i n g s t i f f n e s s against crack opening had 
been v a r i e d . I t was shown that the experimental r e s u l t s could be 
adequately described by the t h e o r e t i c a l model. By means of a pa­
rameter study c a r r i e d out w i t h the model, the mechanism of t r a n s ­
mission of forces was f u r t h e r analyzed, focusing on the r o l e of 
the i n d i v i d u a l p a r t i c l e f r a c t i o n s , the s c a l e of the aggregate 
p a r t i c l e s and the i n f l u e n c e of the grading curve. I t was demon-
stated that the behaviour of cracks subjected to c y c l i c l o a d i n g , 
as known from the l i t e r a t u r e , can be explained by the model. I t 
was a l s o shown that the concrete q u a l i t y has a great i n f l u e n c e on 
the "crack s t i f f n e s s " . 

The second part of the i n v e s t i g a t i o n was concerned w i t h the ques­
t i o n whether the r e l a t i o n s f o r cracks i n p l a i n concrete, derived 
i n the f i r s t p a r t , are d i r e c t l y a p p l i c a b l e to cracks i n r e i n f o r c e d 
concrete, i n which the r e s i s t a n c e to crack opening i s i n t e r n a l l y 
provided and i n which the r o l e of dowel a c t i o n has to be considered. 
Therefore a number of experiments were c a r r i e d out, i n which the 
reinforcement r a t i o , the bar diameters and the concrete q u a l i t y 
were v a r i e d . I t emerged that the r e l a t i o n s p r e v i o u s l y found f o r 
cracks i n p l a i n concrete could not be d i r e c t l y a pplied to cracks 
i n r e i n f o r c e d concrete. I t was demonstrated that t h i s must be due 



to l o c a l m o d i f i c a t i o n s caused i n the crack s t r u c t u r e i n the imme­
d i a t e v i c i n i t y of the r e i n f o r c i n g bars c r o s s i n g the crack by s p l i t 
t i n g forces transmitted through the r i b s of the bars i n t o the con­
c r e t e . I t was observed that due to t h i s a d d i t i o n a l mechanism a 
pre f e r r e d d i r e c t i o n f o r crack opening e x i s t s , which e x h i b i t e d only 
minor d i f f e r e n c e s f o r the various concrete types tested. I t was 
shown how the r e l a t i o n between forces and displacements f o r cracks 
i n r e i n f o r c e d concrete can be formulated on the basis of the ex­
perimental r e s u l t s . 

F i n a l l y i t was i n d i c a t e d how the r e l a t i o n between stresses and 
deformations f o r cracked r e i n f o r c e d concrete can be formulated, 
t a k i n g account of the c h a r a c t e r i s t i c s of the behaviour of s i n g l e 
cracks. 
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SAMENVATTING 

Vooral de l a a t s t e j a r e n worden voor v e r s c h i l l e n d e doeleinden con­
s t r u c t i e s v e r e i s t met een steeds complexer k a r a k t e r , waaraan voor­
a l s c h a a l v e r g r o t i n g en bijzondere f u n c t i o n e l e eisen debet z i j n . 
B i j het ontwerpen van d i t soort c o n s t r u c t i e s kan vaak n i e t meer 
worden teruggegrepen naar bestaande ontwerpmethoden en rekenregels, 
omdat deze meestal g e l d i g z i j n voor b e t r e k k e l i j k eenvoudige geval­
l e n . In verband met het voorgaande z i j n de l a a t s t e j a r e n sterke 
impulsen gegeven aan de o n t w i k k e l i n g van nieuwe rekentechnieken. 
Vooral de ontwikkeling van de n i e t - l i n e a i r e elementenmethode opent 
i n d i t o p z i c h t brede perspectieven. Een d e r g e l i j k e methode komt 
echter s l e c h t s dan goed t o t z i j n r e c h t , a l s nauwkeurige m a t e r i a a l ­
karakter i s t i e k e n kunnen worden ingevoerd. 
Eén van de mechanismen waarvan te weinig bekend was b e t r e f t de 
overdracht van krachten tussen scheurvlakken i n d i e n deze aan 
p a r a l l e l v e r p l a a t s i n g e n onderhevig z i j n . De krachtsoverdracht kan 
plaatsvinden v i a een i n t e r a c t i e tussen de a x i a l e v e e r s t i j f h e i d en 
de deuvelwerking van de wapening, en "aggregate i n t e r l o c k " , d.w.z. 
de krachtsoverdracht tussen de ruwe beton-scheurvlakken. Omdat ge­
brek aan kennis voornamelijk het l a a t s t e onderdeel betrof i s h i e r ­
naar een onderzoek v e r r i c h t . 

In de eerste p l a a t s i s onderzoek gedaan naar de krachtsoverdracht 
b i j "zuivere aggregate i n t e r l o c k " , d.w.z. aggregate i n t e r l o c k i n 
ongewapende scheurvlakken. Om een i n z i c h t te k r i j g e n i n d i t mecha­
nisme i s een t h e o r e t i s c h model ontwikkeld, dat vervolgens aan 
experimenten i s g e t o e t s t . De t h e o r i e gaat er van u i t dat beton kan 
worden beschouwd a l s een zogenaamd twee-fasen m a t e r i a a l , dat i s 
opgebouwd u i t een verzameling t o e s l a g k o r r e l s met grote s t e r k t e en 
s t i j f h e i d (fase I) en een m a t r i x m a t e r i a a l , bestaande u i t cement-
steen met f i j n e t o e s l a g k o r r e l s , dat een lagere s t e r k t e en s t i j f ­
heid b e z i t (fase I I ) . Een scheur door d i t m a t e r i a a l d o o r s n i j d t i n 
het algemeen wel de matrix, maar n i e t de k o r r e l s , omdat de aan­
hechtingslaag tussen k o r r e l s en matrix van r e l a t i e f lage k w a l i t e i t 
i s . De krachtsoverdracht b i j tegengerichte p a r a l l e l v e r p l a a t s i n g der 
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beide scheurvlakken komt t o t stand t e r plaatse van de contactvlak-
ken tussen de k o r r e l s aan de ene z i j d e van de scheur en de matrix 
aan de andere z i j d e . De r e l a t i e tussen de krachten en de v e r p l a a t ­
singen der scheurvlakken ten opzichte van elkaar hangt samen met 
de mate waarin het matrixmateriaal wordt vervormd. De meest waar­
s c h i j n l i j k e v e r d e l i n g der contactvlakken i s met een s t a t i s t i s c h e 
berekening bepaald. H i e r b i j z i j n de t o e s l a g k o r r e l s t o t b o l l e n ge­
schematiseerd, die voor een w i l l e k e u r i g deel van hun afmetingen 
u i t het scheurvlak kunnen steken. Voor de opbouw van de k o r r e l ­
g r o o t t e - v e r d e l i n g i s een Fullerkromme aangehouden, die b i j het 
samenstellen van beton vaak wordt gehanteerd en het voordeel heeft 
door een eenvoudige mathematische formulering te worden gekarakte­
r i s e e r d . De wrijvingscoëfficiënt t e r p l a a t s e van het k o r r e l o p p e r ­
v l a k en de spanning waarbij het m a t r i x m a t e r i a a l p l a s t i s c h gaat ver­
vormen z i j n a l s "instelparameters" i n het model opgenomen. De g e l ­
d i g h e i d van de t h e o r i e i s getoetst aan een a a n t a l experimenten, 
waarbij de b e t o n k w a l i t e i t , de k o r r e l g r o o t t e en de uitwendige s t i j f ­
h eid tegen openen van de scheur werden gevarieerd. V a s t g e s t e l d werd 
dat de experimentele r e s u l t a t e n zeer goed door het mathematische 
model kunnen worden beschreven. Door een parameterstudie, u i t g e ­
voerd met behulp van het model, werd het mechanisme van k r a c h t s ­
overdracht i n scheuren nader geanalyseerd, waarbij aandacht werd 
besteed aan de b i j d r a g e van a f z o n d e r l i j k e k o r r e l f r a c t i e s aan de 
krachtsoverdracht, de i n v l o e d van de schaal van het korrelmengsel 
en de invloed van de v e r d e l i n g s f u n c t i e van het t o e s l a g m a t e r i a a l . 
Aangetoond werd dat het gedrag van scheurvlakken onder wi s s e l b e ­
l a s t i n g , zoals bekend u i t de l i t e r a t u u r , i n overeenstemming i s met 
de aannamen van het model en h i e r u i t kan worden v e r k l a a r d . Vastge­
s t e l d werd dat de b e t o n k w a l i t e i t een grote invloed heeft op de 
krachtsoverdracht i n scheuren. 

In het tweede deel van het onderzoek werd nagegaan of de gevonden 
wetmatigheden d i r e c t toepasbaar z i j n op scheuren i n gewapend beton, 
waarin de weerstand tegen scheuropening inwendig wordt geleverd 
en waarbij rekening gehouden moet worden met de deuvelwerking van 
de wapeningsstaven. Hiertoe z i j n een aantal proevenseries u i t g e -
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voerd waarin onder meer het wapeningspercentage, de staafdiameters 
en de b e t o n k w a l i t e i t werden gevarieerd. H i e r u i t bleek dat de r e l a ­
t i e s , gevonden voor ongewapend beton n i e t zonder meer mogen worden 
gebruikt voor gewapend beton. Aangetoond kon worden dat d i t toege­
schreven moet worden aan v e r n i e t i g i n g van de scheurstructuur ter 
pl a a t s e van de k r u i s i n g met de wapeningsstaven, door s p l i j t k r a c h t e n 
d ie v i a de ribben van het s t a a l i n het beton worden i n g e l e i d . Vast­
ge s t e l d werd dat door het optreden van d i t mechanisme een voor­
k e u r s r i c h t i n g voor scheuropening o n t s t a a t , d i e voor de v e r s c h i l ­
lende betonsoorten en k w a l i t e i t e n s l e c h t s zeer geringe v e r s c h i l l e n 
vertoont. Aangegeven werd op welke w i j z e de k r a c h t - v e r p l a a t s i n g s ­
r e l a t i e voor scheuren i n gewapend beton, op grond van de beschik­
bare gegevens, geformuleerd kan worden. 

Tot s l o t i s aangegeven hoe de r e l a t i e tussen spanningen en v e r ­
vormingen voor gescheurd gewapend beton kan worden geformuleerd, 
rekening houdend met de gevonden k a r a k t e r i s t i e k e n voor het scheur-
gedrag. 
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10 NOTATION 

p r o j e c t i o n of a contact length i n a Z-plane on the X-axis 

a^ p r o j e c t i o n of a contact length i n a Z-plane on the Y-axis 

f free length 

cube crushing strength 

^ c c y l c y l i n d e r crushing strength 

f^p prism crushing strength 

f r e l a t e d r i b area of a r e i n f o r c i n g bar, c h a r a c t e r i z i n g i t s K 

p r o f i l i n g 

f g y y i e l d i n g s t r e s s of s t e e l 

p p r o b a b i l i t y 
p(%) percentage of aggregate weight passing a sieve with a 

c e r t a i n opening diameter 
p^ p r o b a b i l i t y that an a r b i t r a r y p o i n t i n the concrete i s 

located i n an aggregate p a r t i c l e 

s crack distance 

S ( E ) crack distance at a s t r a i n e 

u embedment depth of a p a r t i c l e , defined as the distance from 
the centre of a s p h e r i c a l aggregate p a r t i c l e to the c e n t r a l 
crack face 

u maximum embedment depth of a p a r t i c l e f o r which contact max 
with the opposite crack face s t i l l e x i s t s . 

w crack width 

w i n i t i a l crack width o 
y dowel d e f l e c t i o n 

t o t a l area of the crack plane 

A cross s e c t i o n a l area of r e i n f o r c i n g bar(s) 
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p r o j e c t i o n on the Y-plane of the t o t a l contact area, ob­
tained over a u n i t crack area 

p r o j e c t i o n on the X-plane of the t o t a l contact area, ob­
tained over a u n i t crack area 

crack s t i f f n e s s c o e f f i c i e n t s 

diameter of a s p h e r i c a l aggregate p a r t i c l e 

maximum diameter of a s p h e r i c a l aggregate p a r t i c l e 

modulus of e l a s t i c i t y of concrete 

modulus of e l a s t i c i t y of s t e e l 

dowel force 

dowel force component p a r a l l e l to the crack plane provided 
by bars i n c l i n e d at an angle 6 w i t h t h i s plane 

a x i a l s t e e l force 

a x i a l s t e e l f o rce f o r bars, i n c l i n e d at an angle 6 w i t h the 
crack plane 

shear s t i f f n e s s modulus of uncracked concrete 

shear s t i f f n e s s modulus of cracked concrete 

foundation modulus of concrete 

radius of a s p h e r i c a l aggregate p a r t i c l e 

maximum radius of a s p h e r i c a l aggregate p a r t i c l e 

radius of the smallest aggregate p a r t i c l e , p r o v i d i n g "maxi­
mum contact" 

G 
shear s t i f f n e s s r e d u c t i o n f a c t o r (= ) 

G 

crack width 

shear displacement 

s t r a i n 
s t r a i n f o r which c r a c k i n g occurs 
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e u l t i m a t e s t r a i n u 
Y shear deformation angle 

u c o e f f i c i e n t of f r i c t i o n between matrix and aggregate p a r t i ­
c l e s 

p reinforcement r a t i o 

P Q reinforcement percentage 

a normal s t r e s s 

a normal s t r e s s at which p l a s t i c deformation of the matrix pu 
occurs 

a s t e e l s t r e s s s 
a s t e e l s t r e s s at s e c t i o n x sx 
a concrete s t r e s s c 
a concrete s t r e s s at s e c t i o n x cx 
T shear s t r e s s , bond s t r e s s 

x u l t i m a t e shear s t r e s s u 
T shear s t r e s s at p l a s t i c deformation of the matrix during 

s l i d i n g of the crack faces 

A shear displacement 

A s l i p of s t e e l bar i n concrete s r 

<l> diameter of a r e i n f o r c i n g bar 

A l l values used i n t h i s report are expressed i n N, mm, N/mm2, 
unless i n d i c a t e d otherwise. 
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APPENDICES 

Appendix I 

Determination of the contact area f o r an i n t e r s e c t i o n c i r c l e w i t h 
radius R as a f u n c t i o n of the crack width w and the shear d i s p l a c e ­
ment A. 

A contact area can only e x i s t i f R < w. I f R > w, three p o s s i b i l i ­
t i e s are d i s t i n g u i s h e d : 

1. A < A ; Phase "No contact"; a = 0; a = 0 
o x y 

2. A < A < A ; Phase "Growing contact"; 

F i e . 1.1 Contact components a and a f o r w < R and A < A < A 
x y o 

The co-ordinates of S and T can be c a l c u l a t e d . To s i m p l i f y t h i s 
c a l c u l a t i o n the xy-axes are rotated through an angle a, so that 
i n the new s i t u a t i o n the displacement i s not c h a r a c t e r i z e d by 

o 

y 

(A, w) but by (v, 0) w i t h v = 2 ( F i g . 1.2). 
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F i g . 1.2 

The co-ordinates of S can be c a l c u l a t e d using F i g . 1.2. S must 
f u l f i l l the conditions 

x i 2 + y i 2 = r 2 

x l = \ V 

which r e s u l t s i n 

y j = Yr2 - i v 2' 

so that: 

( X l, y i ) = ( j v, VR2 ~ i v 2> 

The r e l a t i o n s between the new and the o l d co-ordinates are ex­
pressed by: 

x^ = xi cos a - yi s i n a 

y^ = xj s i n a + yj cos a 

Hence the co-ordinates of S i n the main xy-system are: 

x g = 5 v cos a - ^ R 2 - I v 2 s i n a (1.1) 

y g = 5 v s i n a + \J R2 - l v2 cos a 
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The co-ordinates of point T can be immediately e s t a b l i s h e d ( F i g . 
1.1). 

y T = u + w (1.2) 

x T = - \JR2 - (u + w) 2' 

By s u b t r a c t i n g T from S i t i s found that: 

a = y - y T
 = 5 v si n a + A / R 2 - J v 2'cos a - u - w (1.3) 

a^ = x g - x̂ , = 5 v cos a - "\J R 2 - { v 2' s i n a + ^ R 2 - (u + w) 2' 

Furthermore v and a are r e l a t e d to w and A by: 

v s i n a = w 

v cos a = A (1.4) 

v = V " 2 + A 2' 

So s i n a = , , W , and cos a = = ; (1.5) 
w2 + A 2 

S u b s t i t u t i o n of (1.4) and (1.5) i n (1.3) r e s u l t s i n : 

a v = V R 2 - ; (w 2 + A 2 ) • — I , - |w-u (1.6) 
7 V w2 + A 2 

a = J A - V R 2 " H W 2 + A 2 ) ' " + V R 2 -(u + w) 2' 

V w 2
+ A 2 ' V 

3. A ^ < A ; Phase "Maximum contact; 

I t i s e a s i l y deduced ( F i g . 1.1) that: 

a^ = R - ( u + w ) (1.7) 

a x 
V R 2 - (u + w) 2' 
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Appendix I I 

Construction of the ascending branch of the T - A r e l a t i o n s h i p re­
presented i n F i g . 5.16. 

The r e l a t i o n s between w, A , T and o, according to F i g . 5.3 are 
represented i n F i g . II.1 f o r the crack widths w = 0.5, 0.6 and 
0.7 mm. 

w-0.50 

wr0.50 

o(N/mm ) 

F i g . II.1 T , o, A, w r e l a t i o n s f o r f = 33.4 N/mm2 and D 
cc max 

32 mm 

The i n i t i a l crack width i s w = 0.50 mm. I t i s seen that f o r 
o 

w = 0.50 mm and A = 0.1, 0.2 and 0.3 mm no increase of crack width 
can be expected, since no normal s t r e s s a i s developed. Further­
more i t i s known that an increase of crack width of Aw = 0.1 mm 
r e s u l t s i n an increase of the normal s t r e s s w i t h Ao = 0.5 N/mm2. 
So the f o l l o w i n g p o i n t s form part of the ascending branch. 



w (mm) A (mm) a (N/mm2) t (N/mm2) 

0.50 0.1 0 0.25 
0.50 0.2 0 0.85 
0.50 0.3 0 1.75 
0.60 0.52 0.5 3.10 

C a l c u l a t i o n of point C i n F i g . 5.16 

F i g . I I.2 C a l c u l a t i o n of the r e s i d u a l shear displacement A r a f t e r 
unloading i n the f i r s t c y c l e 

At peak s t r e s s l e v e l ŵ  = 0.6 mm and A = 0.52mm. S u b s t i t u t i n g these 
values i n combination with R = 16 mm i n equation (1.6), i t i s found 
that a =9.95 mm. 

y 
In F i g . II.2 i t i s seen that 

A = A T - Ai r £ i 

C i r c l e I : x x
z + y x

2 = R 2 

y i " a 

> xj = 12.53 mm Aj = R - Xj = 3.47 mm 

C i r c l e I I : x 2
2 + y 2

2 = R2 

y2 = w + a 
x 2 = 12.12 mm A 2 = R - x 2 = 3.i 

So: = A 2 - Aj = 3.88 - 3.47 = 0.41 mm. 
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Appendix I I I 

Crack s t i f f n e s s c o e f f i c i e n t s B , B , B , B 
nn nt tn t t 

The crack s t i f f n e s s c o e f f i c i e n t s are described by (see a l s o 
equation 6.3): 

3 f 3 f 3 f. 3 f 
B nn 3 6 ' nt 3 6 ' tn 3 6 ' t t 3 5 t n t n t 

The functions f and f are described by (see also equation (5.10) 
and equation (5.11)): 

= + { 1 .80 6 ~ 0 - 8 0 + (0.234 S - 0 - 7 0 7 - 0 . 2 0 ) f }6 >0 t 30 n n cc t = 
-f ' 

+ (1.35 6 °* 6 3 + (0. 191 & 0 - 5 5 2 - 0. 1 5 ) f .}6 >0 n n ce t = n 20 

F i g . I I I . ! 

D i f f e r e n t i a t i o n r e s u l t s i n : 

0 ! « < B^ = B = B = B = 0 (or f . i . 10 ) = t = to nn nt tn t t 

6" < 6 < 6 B = B = 0 to = t = no nn nt 

5 ={-1.44 fi-1 - 8 0 - 0.165 f ô _ 1 - 7 0 7
? Â tn 1 n ce n \ 0, 

II = 1.8 6-°- 8 0
 + (0.234 o - ° - 7 0 7 - 0.20)f t t n n cc 



<5_ > S B =(-0.85 6 1 - 6 3 - 0.105 f S ' - 5 5 2 )6 t o nn n c c n t 

B = 1.35 Ô - 0 " 6 3 + (0. 191 6~ 0' 5 5 2 - 0.I5)f' nt n n cc 

B =(-1.44 6"'-80 - 0.165 f S"'' 7 0 7 )ô tn n ce n t 

B = 1.8 S _ 0 - 8 0
 + (0.234 6" 0- 7 0 7 - 0.20)f' t t n n cc 

where f ' 
cc 

t 0 30{1.8 6 °- 8 0
 + (0.234 6 ° ' 7 0 7 - 0. 20) f ' } n n cc 

f ' 
S - c c 

n ° 20{1.35 6 ° - 6 3 + (0.191 6 ° ' 5 5 2 - 0. 15)f ' } n n cc 

where i s the cube crushing strength (cubes 150 3 mm). 

The angle ii between the d i r e c t i o n normal to the crack and the axes 
of the hinged s t r u t s ( F i g . 6.2), l i m i t i n g the crack opening d i ­
r e c t i o n , can at present only be based on a l i m i t e d number of t e s t 
r e s u l t s , i'sing equation (5.20), which i s a p r o v i s i o n a l f o r m u l a t i o n , 
i> i s expresses as: 

<li = arctan { 
6°" 1 8(1.65 + 2.10 6 ) - 1.5 6 t n n t 
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S t e l l i n g e n 

Het i n rekening brengen van de schuifweerstand van scheuren i n de 
formulering van de spannings-vervormingsrelatie van gescheurd ge­
wapend beton door a l l e e n de s c h u i f s t i j f h e i d ten opzichte van de 
ongescheurde fase te reduceren, zoals t o t op heden algemeen ge­
b r u i k e l i j k , i s o n j u i s t : door de s t r u c t u u r van de scheurvlakken 
treedt d i l a t a t i e op, waardoor ook de krachten en de v e r p l a a t s i n g e n 
loodrecht op de s c h e u r r i c h t i n g e n i n beschouwing moeten worden 
genomen. 

De v e r o n d e r s t e l l i n g van Mattock dat het karakter van aggregate 
i n t e r l o c k wordt bepaald door het over elkaar schuiven van de f i j n e 
t o e s l a g k o r r e l s i s o n j u i s t . In de eerste p l a a t s doen vanaf een 
bepaalde k o r r e l g r o o t t e , a f h a n k e l i j k van de p o s i t i e der scheur­
vlakken, a l l e f r a c t i e s aan de krachtsoverdracht mee. In de tweede 
p l a a t s t r e e d t naast g l i j d i n g ook deformatie op. 

Het gedrag van een gewapende scheur onder een s c h u i f b e l a s t i n g kan 
n i e t zonder meer worden v e r k l a a r d u i t de componenten aggregate 
i n t e r l o c k , deuvelwerking en a x i a l e v e e r s t i j f h e i d van de wapening 
zoals deze u i t a f z o n d e r l i j k e proeven naar voren komen: 
i n samenwerkingsverband kunnen de componenten eikaars k r a c h t s ­
overdracht skarakter i s t i eken beïnvloeden. 

Het f e i t dat het afschuifdraagvermogen van l i g g e r s zonder s c h u i f -
wapening n i e t evenredig i s met de liggerhoogte kan n i e t , zoals 
algemeen wordt aangenomen, worden v e r k l a a r d u i t de s c h a a l g e v o e l i g -
heid van aggregate i n t e r l o c k . 

Het gebruik van gemiddelde schuifspanningen ter bepaling van het 
afschuifdraagvermogen van c o n s t r u c t i e d e l e n , zoals i n v o o r s c h r i f t e n 
g e b r u i k e l i j k , geeft een o n j u i s t beeld van de w e r k e l i j k e k r a c h t s ­
overdracht en kan daarom i n de toekomst beter worden vermeden. 

Om een z i n v o l l e d i s c u s s i e over scheurwijdten i n betonconstructies 
mogelijk te maken, i s het n o o d z a k e l i j k dat voor scheurwijdte-
metingen een standaardprocedure wordt afgesproken. 



In de door de VB '74 voorgeschreven waarden voor de toelaatbare 
b e t o n t r e k s t e r k t e i s een r e d u c t i e f a c t o r verwerkt, waarmee t i j d s ­
a f h a n k e l i j k e e f f e c t e n i n rekening worden gebracht. Gezien het 
ontbreken van een goede grondslag voor deze f a c t o r , alsmede de 
i n v l o e d die deze heeft op het wapenen van v e e l soorten construc­
t i e s , i s een grondig onderzoek naar het langeduur-gedrag van 
beton onder trek gewenst. 

Om de d u i d e l i j k h e i d van v o o r s c h r i f t e n te vergroten, zouden a l l e 
hieraan ten grondslag liggende argumentaties eenvoudig achter­
haalbaar moeten z i j n . 

Naarmate de voor het doorrekenen van c o n s t r u c t i e s beschikbaar 
komende computorprogramma's gecompliceerder worden, g r o e i t het 
belang van c o n s t r u c t i e f i n z i c h t . 

Het verminderde aantal v e r p l i c h t e buitenlandse t a l e n op de midde 
bare scholen z a l i n de toekomst zowel het v e r r i c h t e n van weten­
s c h a p p e l i j k werk bemo e i l i j k e n a l s de p l a a t s van de Nederlander 
i n het i n t e r n a t i o n a l e overleg ondermijnen. 

B i j de o n t w i k k e l i n g van m i c r o - e l e c t r o n i s c h e apparatuur t e r v e r ­
g r o t i n g van de mogelijkheden van informatieoverdracht dient n i e t 
a l l e e n aandacht te worden besteed aan v e r g r o t i n g van het i n f o r ­
matie-aanbod, maar ook aan de m o g e l i j k h e i d van terugmelding. 

Wanneer een voetbalploeg spreekt over "ons d o e l " , dan wordt h i e r 
mee het te verdedigen object bedoeld. Het f e i t dat d i t v o l l e d i g 
i n s t r i j d i s met de betekenis van het begrip " d o e l " duidt erop 
dat de v o e t b a l s p o r t een verdedigend k a r a k t e r h e e f t . 

De r a s s e n i n t e g r a t i e zou e r b i j gebaat z i j n a l s Zwarte P i e t n i e t 
meer a l s boeman zou worden a f g e s c h i l d e r d . 

S t e l l i n g e n behorende b i j het p r o e f s c h r i f t 
van J.C. Walraven 
D e l f t , 8 oktober 1980 
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