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SUMMARY

This research focuses on a critical challenge in modern power systems: the effective co-
ordination between transmission system operators (TSOs) and distribution system op-
erators (DSOs) to harness distributed flexibility for grid stability and efficiency. As energy
systems undergo a fundamental transformation toward decentralized, decarbonized,
and digitalized operations, the ability to accurately estimate and activate aggregated
flexibility in distribution systems is becoming a cornerstone of secure and sustainable
grid management.

First, this research proposed and validated an algorithm for aggregated distribution sys-
tem flexibility estimation. This algorithm enables DSOs to effectively aggregate distri-
bution system flexibility to characterize the set of feasible active and reactive power ad-
justments that can be offered to TSOs under operational constraints. This algorithm
evaluates the feasibility of all possible flexibility combinations, estimating the density of
feasible combinations as a reliability metric. This contribution provides reliability con-
siderations in flexibility areas and provides a fast estimation approach for meshed and
radial topologies, disjoint, convex, and non-convex flexibility areas.

Second, this research developed a flexibility area estimation approach considering the
real-time uncertainty in distribution systems due to limited observability. This method
utilizes probabilistic machine learning to enable TSOs to select a safety probability given
the task uncertainty. This method enables adopting the flexibility area estimation in
distribution systems with limited measurements, which can support TSOs in utilizing
distributed flexibility. Thus, the resulting flexibility areas are robust to measurement
errors.

Third, this research developed and released an open-source Python package that encap-
sulates functionalities for flexibility area estimation. This tool provides a programmatic
interface for system operators, researchers, and third-party service providers to compute
and visualize flexibility areas. The package is modular, extensible, promoting collabora-
tive innovation in this domain.

Fourth, this doctoral research developed a TSO-DSO coordination framework for flex-
ibility activation aimed at improving the overall dynamic performance due to the ac-
tion of primary controls. This work recognized that inverter-based resources affect the
post-disturbance response in power systems, and controlling these resources can im-
pact the post-disturbance power system stability. Therefore, this doctoral research pro-
posed a dynamic system-aware coordination scheme that leverages flexibility at the dis-
tribution level to avoid post-disturbance instabilities in the interconnected distribution-
transmission system. Case studies on the Dutch Zealand system showed how this frame-
work can indicate and mitigate instability risks for TSOs while utilizing existing measure-
ment platforms. This framework does not require sensitive information exchange.

The implications of this work extend beyond technical contributions. The growing pen-
etration of distributed energy resources, such as solar and electric vehicles, introduced
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Xiv SUMMARY

new operational paradigms that challenge the conventional unidirectional flow of con-
trol and information. TSOs and DSOs must now interact more frequently and effec-
tively, especially as power systems transition from centralized to a more decentralized
dispatch. This doctoral research provides and proposes algorithms and methodologies
to enable such interactions.

On a broader societal level, this doctoral research supports the integration of higher
shares of renewable energy by developing algorithms that appraise the flexibility of de-
centralized actors to support power system operation. It contributes to the ongoing de-
carbonization of the energy sector by making system balancing and stability more dis-
tributed and cost-effective. The work also promotes digital transparency and open in-
novation through the public release of software tools, allowing academic and industrial
stakeholders to co-develop future extensions.



SAMENVATTING

Dit onderzoek richt zich op een cruciale uitdaging in moderne energiesystemen: de
effectieve coordinatie tussen transmissiesysteembeheerders (TSOs) en distributiesys-
teembeheerders (DSOs) om gedistribueerde flexibiliteit te benutten voor netstabiliteit
en efficiéntie. Nu energiesystemen een fundamentele transformatie ondergaan naar ge-
decentraliseerde, CO2-arme en gedigitaliseerde bedrijfsvoering, wordt het vermogen om
geaggregeerde flexibiliteit in distributiesystemen nauwkeurig te schatten en te activeren
een hoeksteen van veilig en duurzaam netbeheer.

Ten eerste stelt dit onderzoek een algoritme voor en valideert het voor het schatten van
geaggregeerde flexibiliteit in distributiesystemen. Dit algoritme stelt DSO’s in staat en
zo de flexibiliteit van distributiesystemen effectief te aggregeren om de set van haalbare
aanpassingen van het actieve en reactieve vermogen te karakteriseren die aan TSOs kun-
nen worden aangeboden onder operationele beperkingen. Dit algoritme evalueert de
haalbaarheid van alle mogelijke flexibiliteitscombinaties en schat de dichtheid van haal-
bare combinaties als betrouwbaarheidsmaatstaf. Deze bijdrage behandelt betrouwbaar-
heidsoverwegingen van flexibiliteitsgebieden en biedt een snelle schattingsmethode voor
vermaasde en radiale topologieén, disjuncte, convexe en niet-convexe flexibiliteitsge-
bieden.

Ten tweede heeft dit onderzoek een benadering ontwikkeld voor het schatten van flexibi-
liteitsgebieden, rekening houdend met de realtime onzekerheid in distributiesystemen
als gevolg van beperkte observeerbaarheid. Deze methode maakt gebruik van probabi-
listisch machine learning om TSOs in staat te stellen een veiligheidskans te selecteren,
gegeven de taakonzekerheid. Deze methode maakt het mogelijk om de schatting van
flexibiliteitsgebieden toe te passen in distributiesystemen met beperkte metingen, wat
TSOs kan ondersteunen bij het benutten van gedistribueerde flexibiliteit. De resulte-
rende flexibiliteitsgebieden zijn daardoor bestand tegen meetfouten.

Ten derde heeft dit onderzoek een open-source Python-pakket ontwikkeld en uitgebracht
dat functionaliteiten voor het schatten van flexibiliteitsgebieden bevat. Deze tool biedt
een programmatische interface voor systeembeheerders, onderzoekers en externe dienst-
verleners om flexibiliteitsgebieden te berekenen en te visualiseren. Het pakket is modu-
lair en uitbreidbaar en bevordert collaboratieve innovatie in dit domein.

Ten vierde ontwikkelde dit promotieonderzoek een TSO-DSO-codrdinatiekader voor flexi-
biliteitsactivering, gericht op het verbeteren van de algehele dynamische prestaties als
gevolg van de werking van primaire regelaars. In dit onderzoek werd vastgesteld dat in-
vertergebaseerde bronnen de respons van elektriciteitssystemen na een verstoring bein-
vloeden, en dat de besturing van deze bronnen de stabiliteit van het elektriciteitssysteem
na verstoring kan beinvloeden. Daarom stelde dit promotieonderzoek een dynamisch,
systeembewust coodrdinatieschema voor dat flexibiliteit op distributieniveau benut om
instabiliteit na verstoring in het onderling verbonden distributie- en transmissiesysteem
te voorkomen. Casestudies op het Nederlandse Zeeland-systeem lieten zien hoe dit ka-
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der instabiliteitsrisico’s voor TSO’s kan aangeven en beperken, terwijl gebruik wordt ge-
maakt van bestaande meetplatformen. Dit kader vereist geen uitwisseling van gevoelige
informatie.

De implicaties van dit werk reiken verder dan technische bijdragen. De groeiende pene-
tratie van gedistribueerde energiebronnen, zoals zonne-energie en elektrische voertui-
gen, heeft nieuwe operationele paradigma’s geintroduceerd die een uitdaging vormen
voor de conventionele unidirectionele stromen van besturing en informatie. TSO’s en
DSO’s moeten nu frequenter en effectiever met elkaar samenwerken, vooral nu elektrici-
teitssystemen de overgang maken van een gecentraliseerde naar een meer gedecentrali-
seerde distributie. Dit promotieonderzoek biedt en stelt algoritmen en methodologieén
voor om dergelijke interacties mogelijk te maken.

Op breder maatschappelijk niveau ondersteunt dit promotieonderzoek de integratie van
een groter aandeel hernieuwbare energie door algoritmen te ontwikkelen die de flexibi-
liteit van decentrale actoren beoordelen ter ondersteuning van de werking van het elek-
triciteitsnet. Het draagt bij aan de voortgaande decarbonisatie van de energiesector door
de balancering en stabiliteit van het systeem meer gedistribueerd en kostenefficiént te
maken. Het werk bevordert ook digitale transparantie en open innovatie door de open-
bare vrijgave van softwaretools, waardoor academische en industriéle belanghebbenden
samen toekomstige uitbreidingen kunnen ontwikkelen.



INTRODUCTION

Demetris CHRYSOSTOMOU

A system is not the sum of its parts, but the product of their interactions.

Russell L. Ackoff

This chapter introduces the need to estimate the flexibility available in distribution sys-
tems and to coordinate between TSO and DSO, which are key aspects of this dissertation.
This chapter explains the scientific and social urgency for this coordination and flexibility
estimation, reflections from the related literature, and a list of scientific gaps. This chapter
includes the doctoral research scope and questions, the overall methodology of this disser-
tation, and concludes with the outline for the following sections.

Parts of this chapter have been published in: D. Chrysostomou, J. L. Rueda Torres, and J. L. Cremer, "Explor-
ing Operational Flexibility of Active Distribution Networks with Low Observability", 2023 IEEE Belgrade Pow-
erTech, 2023. DOI: 10.1109/PowerTech55446.2023.10202841. [1].

Parts of this chapter have been published in: D. Chrysostomou, J. L. Rueda Torres, and J. L. Cremer,
"Exploring Operational Flexibility of Active Distribution Networks with Low Observability", ArXiv. DOLI:
https://doi.org/10.48550/arXiv.2304.04192



2 1. INTRODUCTION

Power system operation includes transmission systems (TSs), operated by the transmis-
sion system operators (TSOs), and distribution systems (DSs), operated by the distribu-
tion system operators (DSOs). One key difference between the transmission and dis-
tribution systems is that the TS operates at higher voltage levels than the DS. Before
the rise of decentralized or distributed generation (DG), the TSs were responsible for
transmitting energy from the large conventional power generation sites to the distribu-
tion system substations. The distribution systems would then distribute the energy from
the substation to the consumers. Hence, the power flow between the transmission and
distribution systems was unidirectional [2]. In the absence of DG, a TSO would utilize
statistical or persistence models of the expected load consumption to operate and plan
its generation, to ensure the demand-generation balance. In case of forecast errors or
unexpected events such as the loss of a generator, the TSO would resolve the issues by
applying control actions and utilizing its generation capabilities. However, the renew-
able energy sources (RES) and DG growth altered the dynamics between the DS and the
TS and invoked the possibility of a bidirectional power flow between them [2].

The most prominent renewable sources of energy depend on uncontrollable weather
conditions, such as wind speed or solar radiation. Thus, researchers pursued identify-
ing the weather parameters affecting the efficiency of installations [3],[4]. Simultane-
ously, forecasting the operating points of renewable sources of energy became a great
challenge for power engineering researchers [5], [6]. Prolific methods for wind gener-
ation forecasting, have been based on artificial neural networks (ANNSs) [6]. Fig.1.1(a)
shows the total capacity of different energy resources in the Netherlands each year us-
ing data from the Entso-E transparency platform [7]. The total photovoltaic and wind
capacity has increased greatly over the last 10 years, whereas conventional fossil-based
generation capacity has not expanded but rather decreased slightly. These data high-
light the shift from conventional to renewable, mostly-decentralized generation. In ad-
dition, Fig.1.1(b), Fig.1.1(c), Fig.1.1(d) show the total fossil, PV and wind generation in
the Netherlands, for each quarter of an average day for each season in 2019 and 2024.
The data obtained by Entso-E [7] show a large variability between different days of the
same season, highlighting the uncertainty and variability that TSOs and DSOs must en-
dure for a reliable operation. The total PV and wind generation increased in the 5 year
margin, which also increased the variability in the daily contribution by PV, wind, and
fossil generation. The total values for PV-generation in Fig.1.1(c) only include the PV
generation identified by the Dutch TSO, TenneT, with the majority of PV generation data
being unavailable.

The rise of distributed generation has reduced the controllability and capabilities that
the TSO would have to resolve forecast issues and unexpected events. Simultaneously,
renewable sources of energy increased the fluctuations within the power grid. There-
fore, the need for fast response capabilities from the TSO and the DSOs has increased.
The increased uncontrollability, unpredictability, unobservability, and variability of re-
newable energy sources have made cooperation and coordination between distribution
and transmission system operators a necessity [8]. This doctoral research employs data-
driven approaches and machine learning models to help coordinate the TSOs and DSOs
to utilize the distribution system flexibility for stable operation.

This doctoral research considers the DER support for steady-state operation and time-
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Figure 1.1: In (a) the installed production capacity in the Netherlands per year for biomass (=), fossil gas
(=), fossil coal (=), hydro (™=), nuclear (==), other (™), solar (™), waste (=), offshore wind (=), and
onshore wind (==) energy. The 2024 (==) and 2019 (==) Netherlands total (b) fossil, (c) PV, (d) wind generation
per quarter of a day for each season.

varying disturbances. DER support for congestion management, or voltage control, would
rather require steady-state simulations to consider whether the support respects the
DS voltage and loading constraints. Time-varying disturbances, such as faults, would
require considering the network dynamics to evaluate the post-disturbance system re-
sponse for the available DER support.

1.1. MEGAMIND

The MEGAMIND program, short for MEasuring, GAthering, and MINing Data for Self-

management in the Edge of the Electricity System, is a cross-disciplinary initiative funded
by the Dutch Research Council (NWO) under its Perspectief scheme. MegaMind is led by
Prof. Koen Kok at TU Eindhoven and supported by TU Twente, TU Delft, Tilburg, TNO,

and nine industry partners: TenneT, Liander, Stedin, Enexis, PWC, IBM, Transdev, Smart

State Technology, and Equans.

MegaMind aims to enhance local electricity systems by integrating Al and addressing

regulatory barriers. MEGAMIND focuses on the edge of the power system, the distribu-

tion systems, and devices that connect to them. The project leverages distributed Al to

monitor the network efficiently, predict potential overloads or imbalances, and enable
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smart, autonomous coordination of devices to maintain grid stability.

A core pillar of MEGAMIND is ensuring that innovation in legislation and regulation
keeps pace. Researchers in energy law are crafting regulatory frameworks for transpar-
ent, equitable data and energy sharing, preserving privacy, competition, and public val-
ues while enabling digital innovations.

The program is structured around 10 research tracks, one for each researcher. Further-
more, the program includes three work packages:

1. Grid-edge decision-making mechanisms and architectures.
2. Distributed multi-stakeholder energy operation technologies.
3. Data sharing and data governance methodologies for sustainability.

TU Delft participated in the MegaMind project through the research track (RT) 10: Sta-
bility of DSO-TSO operations. The researcher for RT10 is Demetris Chrysostomou, with
supervision team from Prof. Ir. M.A.M.M. van der Meijden, (TenneT and TU Delft), Dr.
ir. J.L.Rueda Torres (TU Delft), and Dr. ir. Jochen. L. Cremer. User partners mainly in-
volved with RT10 include TenneT, Enexis, IBM, Stedin, and Liander. RT10 spans all work
packages.

Throughout the MegaMind project, the RT10 team maintained frequent discussions and
updates with TenneT to adapt the research and consider directions impactful in real-
world applications. Furthermore, discussions were also regularly performed with Lian-
der and Stedin to consider realistic scenarios and guide the developed algorithms to real-
world issues.

RT10 research activities include this Ph.D. thesis, participation in knowledge and aware-
ness sessions, panel participation, posters and presentations, industry workshops, and
3 deliverables:

1. Report on “Future scenarios and research boundaries”. Delivery month: October
2023.

2. Generic power system model in Digsilent PowerFactory, for simulation of inter-
connected future-like DSO-TSO power networks. Delivery month: October 2023.

3. Report on “Frequency stability performance of future integrated DSO-TSO sys-
tems”. Delivery month: October 2025.

1.2. TSO-DSO COORDINATION

TSO-DSO coordination becomes significant to allow DSOs and TSOs to facilitate and
utilize flexibility from DS to ensure the resilient operation of the overall system. A re-
cent report on TSO-DSO challenges and opportunities [9] clusters these challenges in (i)
customers, business, market, data and information exchange, (ii) system planning, fu-
ture flexibility, and asset lifecycle, (iii) system operations, dynamics, and control rooms
of the future. For the first cluster [9] recognized the observability and effective control
over new interconnected devices at different voltage levels as a key mid-term challenge.
For short-term challenges, one focus is on increasing the TSO-DSO coordination and
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cooperation to reduce the costs of administrative burdens and aligning processes. For
the second cluster, [9] short-term challenges include extensive grid modeling to ensure
effective analysis of impacts and integrating automatic RES control and intelligent load
shedding. For cluster (ii), a main long-term challenge is improving resilience in extreme
conditions, with mitigating directions including increasing monitoring for early identi-
fication and redundancy planning. For the third cluster, [9] key short-term challenges
include monitoring ancillary services, enhancing active system management, establish-
ing control governance, and the lack of proper coordination mechanisms, resulting in
harmful effects. Key long-term challenge includes the system’s resilience through shared
risk assessment, which requires risk assessment models, data-sharing, and coordination
between stakeholders.

The review in [10] classifies TSO-DSO coordination techniques in TSO-managed, DSO-
managed, and hybrid-managed TSO-DSO models. These techniques focus on support-
ing the TSO to utilize flexibility from DS DER and consumers, but also to avoid potential
conflicts with the DSO. In the TSO-managed model, TSOs are responsible for the DER
dispatch, but TSOs also need to consider the DS constraints. TSO-managed approaches
can have high computational and modelling challenges for TSO, and require a large data
transfer of DS operating conditions from DSOs to the TSOs [10]. In the hybrid approach,
TSOs are responsible for the DER dispatch while DSOs validate the TSO bids to consider
DS constraints. Hybrid approaches can have less computational requirements and data
transfer requirements, but complicate the coordination process. In the DSO-managed
approach, TSOs consider the system dispatch while DSOs validate and consider the DER
dispatch, facilitating distribution-level markets [10]. DSO-managed approaches do not
need operational data transfer and limit the modelling requirements, but can still have
computational challenges for DSOs. Between the coordination approaches [10] found
the DSO-managed as the most commonly implemented. For DSO-managed coordi-
nation, flexibility areas (FA) enable DSOs to aggregate and visualize the total flexibility
available in DS at the TSO-DSO interconnection, considering the DS constraints.

1.3. DISTRIBUTION SYSTEM OBSERVABILITY

The expected high impact of DG intrigued researchers to analyze their modeling within
the DS and their effects on system power quality, safety, and reliability [11]. Therefore,
the complexity of accurately modeling a DS with high DG penetration posed a significant
challenge to researchers and system operators [12]-[14].

To deal with uncertainties in DS, researchers have focused on areas such as distribu-
tion network state estimation (DSSE), topology estimation, and parameter estimation.
DSSE methodologies typically differ from the conventional transmission system state es-
timation methods due to some inherent differences between transmission and DS [14].
Those differences include the lower line reactance to resistance (X/R) ratio in DS, the
larger number of nodes present in DS, and the higher uncertainty of system parameters
due to inaccurate data or measurement devices. The non-observability of DGs provides
further uncertainties to DSOs and TSOs, deteriorating their capability of accurately mod-
eling the DSs. Therefore, as illustrated in [15], many researchers and EU projects on the
DSO-TSO cooperation emphasize in increasing the grid observability and controllability.
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1.4. AGGREGATED DISTRIBUTION SYSTEM FLEXIBILITY

Flexibility in power systems is a term used from various directions. These directions
include market design [16], a specific resource type [17], or the aggregated DS flexibility
offered at the TSO-DSO interconnection [18]-[20]. This doctoral research focuses on the
DS flexibility at the TSO-DSO interconnection, in the context of TSO-DSO coordination.
The objective of existing algorithms that estimate DS flexibility is to explore the limits of
active and reactive power on the TSO-DSO boundary nodes. Flexible and distributed en-
ergy sources providing this flexibility are devices that can alter their operation to help the
network avoid technical issues [19]. The flexibility of moving the current operating point
to a new one is typically illustrated in a two-dimensional plot, the FA. This plot shows
the active and reactive power on the TSO-DSO boundary nodes, as shown in Fig. 1.2.
The red circle illustrates the initial operating point. The orange area shows the feasible
apparent power values in which the operating point can shift using the flexibility of DS
sources. The blue area illustrates the values in which the operating point shift through
flexibility service providers (FSPs) could breach the DS constraints.

SO should know the available range of flexibility to timely detect in which directions and
how much they can shift the TSO-DSO interconnection’s operating point to ensure the
system’s stability and operation. Therefore, a higher range of flexibility can instigate a
larger space for the SO to alter the power change between the TS and DS. In addition to
the flexibility range, SO should know the population of each flexible point. More popu-
lated FA points indicate more feasible options for flexibility shift combinations. There-
fore, SOs could have more options for FSP setpoints to reach each point, optimize costs,
and maximize reliability considerations.

FA estimation methods primarily rely on the DS operating conditions (OC) as input data
[19], [21]-[26]. However, DSs often suffer from limited real-time observability, as mea-
surement units are only deployed on a subset of network components [1], [27]-[29].
Some methods have incorporated forecasting uncertainty into day-ahead FA estima-
tions [18], [20], [30]. However, the issue of limited observability remains unaddressed
in real-time FA estimation.

1.5. REPRESENTING DISTRIBUTION SYSTEM AGGREGATED DY-

NAMIC RESPONSE

The increase of DER in DS, and inverter based resources alters the impact of DS in the
overall power system dynamics [31], [32]. Therefore, TSOs should not further rely on
static load models to represent DSs [33], [34] but rather consider the DS response to dy-
namic events when evaluating the overall system stability. However, TSOs do not directly
incorporate dynamic DS models in their dynamic studies, as:

1. The modeling complexity and maintenance for a system including DSs and TS can
challenge TSOs [35].

2. DSs can have limited real-time observability and high DER uncertainty [14], [15].

3. Co-simulating transmission and DS dynamics can be computationally challenging
[33], [34].
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Figure 1.2: Example flexibility area of a load and a generator connected to the TSO-DSO interconnection in
parallel. Feasible flexibility samples (w), infeasible flexibility samples (m), and initial operating point (m).

Aggregated dynamic response representation (ADRR) methods, also referenced as dy-
namic equivalent models, for DS aim to support dynamic studies for TSOs and DSOs
by reducing the complexity of DS modeling and simulation. However, prior ADRR ap-
proaches generally assume fixed TS dynamic properties and do not enable control of
grid-forming (GFM) inverter-based resource (IBR) outputs within the DS. This assump-
tion of fixed, high TS inertia limits the ability to accurately capture DS responses, par-
ticularly when assessing the impact of controlling GFM IBR setpoints. Therefore, ADRR
models should incorporate variable TS dynamic characteristics and support GFM IBR
control within the DS.

1.6. SCIENTIFIC GAPS

The increasing number of DG in DS, and the low DS observability challenge the system
operators’ capability to maintain stable operation, utilize DS flexibility, and coordinate
to consider the network’s integrity. The low inertia in power systems due to the decrease
in synchronous generation also challenges the dynamic stability in power systems. Thus,
TSOs should consider the impact of DER setpoints on the system stability and control
these DER setpoints to minimize instability risks.

Fig.1.3 visualizes the prior research on TSO-DSO coordination relating to the identified
scientific gaps that this thesis aims to address. Prior research for DS flexibility in TSO-
DSO coordination focused on aggregating the steady-state flexibility through flexibility
areas. These flexibility areas can inform the TSOs on the feasible operating condition
shifts. These feasible shifts can include static services such as congestion management
or voltage support, and dynamic services such as automatic frequency restoration re-
serve (aFRR) or manual frequency restoration reserve (mFRR). However, prior research
did not provide a TSO-DSO coordination method to visualize and control the DS dy-




8 1. INTRODUCTION

TSO-DSO
Coordination
For DS
Flexibility

Aggregating
DS Dynamic
Response

Aggregating
DS

Flexibility

Limited DS
Observability

Figure 1.3: Prior research on TSO-DSO coordination relating to the identified scientific gaps.

namic response to large disturbances such as faults. Prior research on aggregated DS
flexibility did not provide tractable aggregation algorithms to consider the FA reliability
or feasibility density. Prior research in aggregated DS flexibility neglected the limited DS
observability that can challenge the confidence and accuracy of the estimated FAs.

For steady-state consideration of DS flexibility, the main scientific gaps of related litera-
ture include:

1. While robustness and reliability are significant for system operators, considering
reliability metrics for FAs can be intractable with prior FA estimation approaches.

2. FA estimation methods can be computationally expensive, whereas simplified,
faster approaches have generalization issues for meshed DSs and cannot estimate
cases where distinct, non-convex FAs exist.

3. Existing approaches for aggregated DS flexibility estimation in real-time assume
full observability, challenging their adoption by system operators.

For ADRR, the main scientific gaps of related literature include:

1. ADRR approaches do not provide a coordination process enabling TSOs to con-
trol DS conditions, nor to evaluate the control actions’ impact on the DS’s post-
disturbance response.

2. ADRR approaches do not consider grid-forming inverters, and their impact on
post-disturbance stability.

1.7. RESEARCH OBJECTIVE AND QUESTIONS

Considering the scientific gaps of Sec.1.6, the objective of this doctoral research is “to de-
velop approaches to estimate the steady-state and dynamic flexibility in distribution sys-
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tems under limited observability to support secure TSO-DSO operation”. This objective
aims to address the scientific gaps of Fig.1.3, to result in the research directions of Fig.1.4;
recognizing the connection between aggregating DS flexibility, limited DS observability,
and aggregating the DS dynamic response in the context of TSO-DSO coordination to
utilize DS flexibility.

TSO-DSO Coordination
For DS Flexibility

Aggregating Aggregating

DS Dynamic

Limited DS
Observability

Figure 1.4: Proposed research on TSO-DSO coordination to address the identified scientific gaps.

1.7.1. Q1: HOW CAN FLEXIBILITY AREA ESTIMATION ALGORITHMS INCLUDE
RELIABILITY METRICS WITH COMPUTATIONAL EFFICIENCY?

By answering this research question, the impact of FA algorithms for system operators
can be improved, as robustness and resilience are important for TSOs and DSOs to en-
sure grid operational stability. The dependency on specific flexibility combinations and
operating conditions close to the constraint thresholds can challenge DSOs and TSOs.
Dependency on limited flexibility combinations could mean that the TSOs are vulnera-
ble to any unreliability of FSPs (e.g., failure to achieve the requested setpoints). In ad-
dition, such dependency could also mean that TSOs need to suffer any flexibility costs
requested by the FSPs in the limited feasible combinations. FA setpoints close to non-
feasible conditions can also challenge DSOs, as any issue of unexpected change or over-
/under-shoot for the FSP setpoints could lead the DS to non-feasible operation. There-
fore, considering reliability metrics in the FA can improve the impact and adoption of FA
estimation algorithms for TSOs and DSOs.

This research question represents reconsidering the assumptions and simplifications of
prior approaches. Prior approaches, in the process of relieving computational burden,
focus on exploring the extreme limits of FAs. However, FA operating points that can be
reached with more feasible flexibility options are more reliable, e.g., system operators
can select among any of the feasible combinations, without relying on limited options.
However, evaluating the feasibility of all possible flexibility combinations rather than
only the extreme feasible limits requires developing a more fundamental FA estimation
approach rather than incrementally modifying prior approaches. To answer Q1, a key
question derived is “how can the feasibility of each flexibility combination be evaluated
with computational tractability?”
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1.7.2. Q2: HOW CAN FLEXIBILITY AREA ESTIMATION ALGORITHMS GENER-
ALIZE TO MESHED AND RADIAL NETWORK TOPOLOGIES, INCLUDING

DISJOINT AND NON-CONVEX FLEXIBILITY AREAS?

By answering this research question, the applicability of FAs can be improved, which
would enhance the adoption of FAs in power system operation. Limiting FA estimation
approaches to specific network structures or types of flexibility resource can mitigate the
appeal for their adoption, as system operators urge more robust and generally applicable
algorithms in their operation.

This research question also represents reconsidering assumptions and simplifications in
prior FA estimation approaches. Typical prior FA estimation algorithms focus on radial
networks. However, non-radial DS topologies are present and emerging. Further, in the
process of improving the computational speed or convergence properties of prior FA ap-
proaches, prominent FA estimation approaches fail to estimate disjoint and non-convex
FAs. In answering Q2, more foundational questions arise:

1. How can the flexibility from multiple resources be aggregated, including non con-
vexities?
2. How can flexibility estimation algorithms include flexibility resources with a non-

continuous set of flexibility setpoints?

These foundational questions were identified after the relevant literature review, ex-
plored in later sections.

1.7.3. Q3: HOW CAN FLEXIBILITY AREA ESTIMATION INCORPORATE THE LEVEL

OF OBSERVABILITY ON DISTRIBUTION SYSTEMS?
Answering this question can alleviate an important gap in realizing flexibility areas in
power system operation. DSOs have limited measurements in DSs, which can limit the
application of FA estimation algorithms that require the initial network state as input. In
answering this research question, a more fundamental question arising is “What is the
impact of limited DS observability on estimated FAs?”

1.7.4. Q4: WHAT IS THE IMPACT OF CONTROLLING INVERTER-BASED RE-
SOURCES ON THE OVERALL SYSTEM’S DYNAMIC STABILITY?

The rise of IBRs alters the DS dynamics, and TSOs should consider the more complex DS

responses when evaluating the overall system stability. However, examining the impact

of control actions on IBRs on the overal system stability could potentially support TSOs

in ensuring dynamic system stability. Therefore, this research question aims to examine

if controlling DS IBRs can indeed be impactful for instability prevention.

1.7.5. Q5: HOW CAN TRANSMISSION AND DISTRIBUTION SYSTEM OPERA-
TORS COORDINATE TO CONTROL DISTRIBUTION SYSTEM RESOURCES

IN REAL-TIME TO ENSURE STABILITY?
By answering this research question, a method for TSO-DSO coordination can be de-
veloped to enable TSOs consider DS dynamic response, and directly control the DS re-
sources. Such method could improve the dynamic stability of the overal power system,
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considering the proliferation of DER and reduction of conventional energy resources.
However, in answering Q5, further questions arise:

1. How can TSOs consider and evaluate the impact of inverter-based resources in
DSs for dynamic simulations?

2. How can DSOs classify the types of inverter-based resource operations?

3. What existing real-time measurements can help the DS FA estimation and ADRR?

1.8. OVERALL METHODOLOGY

This doctoral research investigates interrelated approaches to improve coordination be-
tween TSOs and DSOs to enable the utilization of DS flexibility. These approaches ad-
dress critical aspects of modern DS operation in the context of increasing IBR penetra-
tion, grid decentralization, and limited DS observability.

Step 1

Distribution

Network Tensor Convolution+ algorithm to tractably

Initial State evaluate all flexibility combinations, for convex
and non-convex flexibility regions.

Distribution System
Aggregated Flexibility Area

Flexibility
Offers

Distribution
Network
Available
Measurements }- Bayesian Neural Networks to estimate Uncertainty Constrained
Flexibility uncertainty associated with the distribution Distribution System
Offers system observability in flexibility areas. Aggregated Flexibility Area

Safety
Percentage }_

Transmission
Network

Machine learning-based method to represent
the distribution system dynamics and to enable
controlling inverter-based resources to

minimize instability risks.

TSO-DSO coordination for
inverter-based resources
control to prevent instability

Distribution
Network (for
data generation)

RTI & PMU
Measurements

Figure 1.5: Methodology steps in addressing research questions.

Fig. 1.5 illustrates the methodology steps and developed approaches to address the re-
search questions. The first approach develops an algorithm for the aggregation of DS
flexibility for TSO-DSO coordination, with explicit consideration of computational effi-
ciency and reliability metrics. The goal is to provide the TSO with tractable yet accu-
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rate flexibility representations derived from the underlying distribution network con-
straints. The proposed algorithm utilizes convolution operations to aggregate flexibility
areas, and tensor operations to evaluate the feasibility of each flexibility combination.
The output of this algorithm returns not only the range of FA, but also the density of
feasible combinations for each FA operating point. Hence, this algorithm enables the
DSO to communicate actionable flexibility offers that the TSO can confidently use in
system-wide decision-making. To increase the outreach of the developed algorithm and
further enhance the adoption of FA estimation apporaches by researchers and industry
professionals, a Python package for FA estimation was also developed and mad available
through the Python package index (PyPi). The details and examples for the package are
included in Appendix 1.

The second approach utilizes Bayesian neural networks to estimate the initial conditions
of the DS constrained variables and approximate the aleatoric and epistemic uncertain-
ties associated with the DS measurements. This approach develops an FA estimation
method that enables system operators to select the safety margins in the estimated FA,
considering uncertainties due to the limited DS observability.

The third approach explores the DS flexibility for dynamic stability, in the context of
TSO-DSO coordination. The proposed coordination scheme focuses on enabling TSOs
to control DS IBRs to minimize instability risks after potential disturbances. This ap-
proach embeds a DS ADRR model that TSOs can use to evaluate the DS response to
dynamic events, and identify the impact of IBR setpoint control actions. This approach
considers measurements available to DSOs that can further support the ADRR perfor-
mance under varying DS operating conditions.

1.9. LIST OF SCIENTIFIC CONTRIBUTIONS
The scientific contributions pertaining to the objective and research questions are:

* Developed the TensorConvolution+ algorithm [36]. This algorithm addresses Q1,
and Q2. It efficiently evaluates the feasibility of all possible FSP flexibility combi-
nations and quantifies the density of feasible combinations as a reliability metric.
This algorithm generalizes to meshed and radial DS topologies, and includes dis-
joint and non-convex FAs. Thus, Chapter 3 contributions include:

1. Proposed the first method capable of tractably evaluating all discrete combi-
nations of flexibility, thus enriching the characterization of FAs.

2. Introduction of the convolution operation in flexibility estimation, leverag-
ing convolution properties to reduce the complexity of the FA estimation
problem.

3. Using tensor structures in flexibility estimation to efficiently store and assess
the feasibility of discrete flexibility combinations.

* Proposed an approach for FA estimation with BNNs to consider the estimation
and DS observability uncertainties, addressing Q3. Chapter 4 analyses the perfor-
mance of BNN approaches considering the impact of network sizes, assumptions
about noise levels, and data distributions for the power system task. The proposed
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FA approach also includes an algorithm for networks with 2 PCC. Therefore, Chap-
ter 4 contributions include:

1.

Developing an FA estimation approach considering the uncertainty for DS
constraint margins due to limited DS observability and estimator uncertainty.

Developing BNN model structures to estimate FAs considering real-time un-
certainties and data distributional changes.

. Creating an approach approximating and representing FAs in networks with

2-PCCs.

* Proposed a TSO-DSO coordination method using an ADRR model to enable TSOs
to select and evaluate flexibility setpoints for the DS IBR. This method addresses
Q4 and Q5. Hence, Chapter 5 contributions include:

1.

Developing a TSO-DSO coordination method for dynamic stability, consid-
ering the aggregated dynamic response of DS estimated with measurements
available to system operators.

Creating an algorithm for risk-based evaluation and selection of TSO actions
to prevent instability, within the proposed TSO-DSO coordination method.

. Developing a ML-based approach to aggregate and represent the DS dynamic

response to dynamic events, considering for variable dynamic system prop-
erties, the aggregated DS power output, and the IBR type of primary control,
combining sequential and non-sequential features.

* Released an open-source Python package for aggregated FA estimation in Appendix
A. This package aims to support the adaptability of FA estimation algorithms and
the reachability of TensorConvolution+.

1.10. OUTLINE OF THESIS
The thesis outline is:

» Chapter 2: Background on existing FA literature, ADRR models, and ML applica-
tions.

* Chapter 3: Proposes a new approach for FA estimation, evaluating the feasibility
of all flexibility combinations, and including the density of feasible combinations.

* Chapter 4: Proposes using Bayesian neural networks to estimate and consider the
uncertainty of the DS operating conditions when estimating FAs.

* Chapter 5: Proposes a new TSO-DSO coordination to control DS IBRs for dynamic
stability using LSTM-based models.

* Chapter 6: Concludes on the overall research findings, addressing the research
questions, and introducing future research directions.
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Each chapter is associated with a famous quotation reflecting the chapter’s topic or in-
tention. The introduction chapter included the quotation “A system is not the sum of
its parts, but the product of their interactions” from Russel L. Ackoff, which reflects the
overall impact of TSO-DSO coordination, and the complexity in aggregating or evaluat-
ing DS flexibility to consider the feasibility and network stability. In addition, this quota-
tion reflects the intent of the introductory section to explain the connection between the
research directions as also shown in Fig.1.4. The background section is introduced with
the quotation “The theory, hypothesis, framework, or background knowledge held by
an investigator can strongly influence what is observed” from Norwood Russell Hanson.
This quotation emphasizes the significance of background knowledge in comprehend-
ing the impact of the subsequent chapters. The third chapter is introduced with the quo-
tation “Act always so as to increase the total number of choices” from Heinz von Foerster.
This quotation highlights one of the main appeals of flexibility areas and the proposed
TensorConvolution+ algorithm, i.e., to provide TSOs with information on the feasible
flexibility options to optimize their system operation. The fourth chapter includes the
quotation “What we observe is not nature itself, but nature exposed to our method of
questioning” from Werner Heisenberg, emphasizing the importance of acknowledging
the impact of limited DS observability for the FA estimation problem, and how includ-
ing prediction uncertainty through BNNs can further represent the task uncertainty. The
fifth chapter includes the quotation “An ounce of prevention is worth a pound of cure”
from Benjamin Franklin, highlighting that it is better to take steps to prevent a problem
from happening than to deal with the consequences after it occurs. This is reflected by
the fifth chapter’s proposed approach for post-fault instability prevention. Finally, the
sixth chapter includes the quotation “If you cannot measure it, you cannot improve it”
from Lord Kelvin, reiterating the main theme of this doctoral research, where knowledge
and information on flexibility and DS conditions are crucial for the power system opera-
tion, i.e., TSOs can utilize DS flexibility if they are informed on its availability, feasibility,
and characteristics.
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BACKGROUND

The theory, hypothesis, framework, or background knowledge held by an investigator can
strongly influence what is observed.

Norwood Russell Hanson

This section provides the necessary background on key topics relevant to this research. It
begins by introducing the concept of distribution system flexibility areas, including defini-
tions, prominent estimation methods, and the application of flexibility areas in TSO-DSO
coordination. It then reviews the current practices in the power industry for utilizing DS
flexibility, with a focus on Dutch frameworks. In addition, it examines distribution system
aggregated dynamic response representation models, prominent approaches, and limita-
tions. Finally, the section examines machine learning applications, with a focus on power
systems tasks, including supervised and unsupervised methods, emphasizing both the op-
portunities and limitations of data-driven approaches.

Parts of this chapter have been published in: D. Chrysostomou, J. L. Rueda Torres, and J. L. Cremer, "Explor-
ing Operational Flexibility of Active Distribution Networks with Low Observability", 2023 IEEE Belgrade Pow-
erTech, 2023. DOI: 10.1109/PowerTech55446.2023.10202841. [1].

Parts of this chapter have been published in: D. Chrysostomou, J. L. Rueda Torres, and J. L. Cremer,
"Exploring Operational Flexibility of Active Distribution Networks with Low Observability", ArXiv. DOLI:
https://doi.org/10.48550/arXiv.2304.04192

17



18 2. BACKGROUND

This chapter includes background on distribution system flexibility area estimation, in-
dustry applications to utilize distribution system flexibility, ADRR models and applica-
tions, and machine learning applications in power systems.

2.1. AGGREGATED DISTRIBUTION SYSTEM FLEXIBILITY AREAS

Flexibility can be defined in a variety of ways depending on the point of view, or pur-
pose of usage. Table 2.1, includes the flexibility definitions within the relevant literature,
which are typically non-analytical. This inconsistency of a definition for a common goal,
and the consistency of non analytical definitions, provoked this research to create an al-
ternative generalised definition for flexibility.

Existing algorithms approach the flexibility estimation problem as range exploration.
The objective of existing algorithms that estimate this flexibility is to explore the limits
of active and reactive power on the TSO-DSO boundary nodes. Flexible and distributed
energy sources providing this flexibility are devices that can alter their operation to help
the network avoid technical issues [19]. Prior FA estimation algorithms can mainly be
categorized as power flow (PF)-based and optimal power flow (OPF)-based approaches.
This section first introduces the proposed generalized flexibility area definition, and later
describes the prominent PF-based and OPF-based approaches through that definition.
For the proposed definition, the following non-linear equation system is adopted:

x(8) = f(x(@), u(n), v(1), wy), 2.1
X(0) = r(x(8), wo), (2.2)
y(@) = h(x(2), u(®), (1), wy). (2.3)

t € Ry is the time component to include the time-variance of the system, x(¢) € X € R2x"
is the time-dependent state matrix representing the active and reactive power at each
of the network’s n nodes. Furthermore, u(t) € U is the action matrix representing the
active, reactive power shifts for each controllable device. The output y € ¥ c R? is the
TSO-DSO interconnection’s observable active and reactive power flow. The matrices
Wy, Wy, Wy are the system noise, the matrix v(z) € R2*" includes the real and imaginary
voltage values per network node, and #(t) are the observable nodal voltages. Further-
more, r(-) is the function limiting the states observable by the SO (i.e., for a completely
observable system r(:) = id(-), the identity function). h(:) is the function for flexibility
estimation, which uses the actions and observable states to estimate which y are reach-
able. The system is subjected to inequality technical constraints, e.g., due to allowable
min-max limits for voltage magnitudes CVMi” < gy (x(1), v(8), u(r)) < ', branch current
flow gy (x (1), v(), u(t) < clm“x, and system stability cgl"'/’} < gpvr(x (1), v(D), u(r)) < cfyip
where DVR is the dynamic variable time response. DVR represents the stability of the
network when flexibility is activated, such as dynamic frequency excursions within the
time frame of primary frequency control.

Through this representation, the set of equilibrium points X,, where the power network
is steady in the absence of an input and a disturbance, is defined as:

Xe = {xel f(x(1),0, v(1),0) = 0}. (2.4)
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Table 2.1: Flexibility definitions identified within relevant literature.

Flexibility definitions within literature

“The capability of a distribution network to adjust its active and reactive power flow
at the TSO-DSO connection node by using optimization techniques” [21].

“The modification of generation injection and/or consumption patterns in reaction
to an external signal (price signal or activation) in order to provide a service to the
system.”[19].

“Capability of active distribution networks to provide ancillary services (e.g. fre-
quency control/power balancing, congestion management, or voltage support/se-
curity) at the TSO-DSO interface so as to aid the secure operation of the transmis-
sion network. .. TSO can activate this flexibility & notify the DSOs to change the
setpoints accordingly.”[22].

“A service, like active/reactive power reserves, that a resource provides to the grid
by adjusting its operating point”[18].

“The ability of the system components to adjust their operating point, in timely and
harmonized manner, to accommodate expected, as well as unexpected, changes in
system operating conditions”[37].

“The response of a specific resource to an external signal (e.g., price signal or acti-
vation) through the modification of its injection and/or consumption pattern, thus
providing a service to the system”[38].

“the ability of a system to deploy its resources to respond to changes in netload,
where netload is defined as the remaining system load not served by variable gen-
eration”[39].

“Encompass controllability and observability information about the underlying
power system which is constrained by the dynamics of its resources”’[40]. “The
ability of a power system to cope with variability and uncertainty in both gener-
ation and demand, while maintaining a satisfactory level of reliability at a reason-
able cost, over different time horizons”[40]. “The system’s capability to respond to a
set of deviations that are identified by risk management criteria through deploying
available control actions within predefined time-frame and cost thresholds”[40].
“flexibility refers to the capability of modifying energy usage schedules without vi-
olating operational constraints or compromising occupants’ comfort”[17].
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The definition of the flexibility range for the time window [7¢,71], and the initial state
x(7p), can be the set of all y(71) € Y in which the system can converge after a disturbance
or an action, validating the network constraints. Disturbance can be an event (e.g. a
fault) that will cause the FSPs to automatically respond through their controllers, and
shift the state from the initial equilibrium point. This range is the orange area of the
flexibility example in Fig. 1.2.

If assumed that there are either a finite amount of equilibrium points reachable from
x(7p), or y(t) is rounded to k decimals when represented or illustrated, then there is
a possibility of multiple y; (1) = y2(71) reachable from different actions u;(-) # uz(:).
Therefore, a set cannot include all reachable y(f). Nevertheless, a multi-set can be the-
oretically defined to include the number of actions leading to each y(#). A multiset is
an element collection in which some elements may occur more than once [41], where
Y is the set of distinct elements, and m : Y — Z. is the multiplicity, which defines the
number of times each element of set Y exists.

2.1.1. PROPOSED DEFINITION

The flexibility of the system described by (2.1)-(2.3) on the time interval [y, 7] is the
multiset of all y(71) € Y, and mys,) : Y — Z, whose corresponding x(71) is an equilib-
rium point, in which the system can converge after a disturbance or an action, validating
the network constraints.

This definition generalizes to the dynamic response of power networks through (2.1),
the time variability through the continuous and time-dependent (2.1)-(2.3), and low ob-
servability through the inclusion of r(-), X(¢) in (2.2)-(2.3). Considering the disturbance
term allows the response of active components, such as grid-forming inverters, to be in-
cluded as flexibility resources, even without explicitly being shifted through a real-time
activation action u(t). The term u(¢) is the time-variable shifts of FSPs’ power output,
i.e., flexibility activation. Finally, this definition includes the range and multiplicity of
flexibility by describing flexibility as a multiset instead of a set. Fig. 2.1 shows the flexi-
bility when multiplicity m is also accounted for, i.e., the number of different actions u(#)
that reach the same feasible y(#) as in (2.3). The projection into the PQ plane results in
the range of flexibility as illustrated in Fig. 1.2. The multiplicity of flexible points at the
boundaries of the PQ-plane projection is significantly lower than the centers. Hence,
most actions leading to those points are non-feasible due to the network’s technical con-
straints, or reaching those points is possible only through limited action combinations.
On the other hand, the highly populated flexible points (with large m) near the center
suggest multiple options for the SO.

FLEXIBILITY ESTIMATION OBJECTIVES AND CONSTRAINTS
The objectives for the estimation of the proposed multiset described flexibility are

max (range(hor) ), (2.5)
max(m(y;)) Vyierange(hor)izy, (2.6)
here range(-) is the flexibility range. ho r is the composition of flexibility estimation

function & and observable state limitation function r [42]. The first objective (2.5) ex-
plores all possible active and reactive power shifts y reachable from an initial starting
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Figure 2.1: The flexibility area of Fig. 1.2 when considering m the multiplicity.

time 7 until the time 7,. The second objective (2.6) explores the multiplicity m of each
reachable shift. Thus, the number of action combinations that exist for each reachable
shift. Considering h(:) and r(:) in the objectives highlights the influence of the flexibil-
ity estimation algorithm and the observable states on the result. Accordingly, improving
the flexibility estimation could be through upgrading the estimation algorithms A(-), up-
grading the network observability levels r(-), or both.

As shown in the generalized flexibility definition, the constraints accompanying the net-

work are nodal under and over-voltage cﬁ“'”, e, the branch loading limitations cl’”“x,

and the minimum and maximum system dynamic variable time response cg"",’}?, Hon-
However, including additional constraints based on the needs of the flexibility estimat-
ing authority is feasible. As an example, a system operator who has a limitation on funds
for flexibility activation can add a constraint g.(u) < c.. This additional constraint de-
pends on the activation actions, which form costs depending on the shift amount, dura-

tion, and type of FSP.

2.1.2. POWER FLOW-BASED APPROACHES

Power flow-based approaches, starting from observable networks sample various shifts
in the controllable flexibility sources. Using these shifts, they solve power flows to detect
whether the new operating points would meet the constraints or not [20], [24]. Termi-
nation conditions for such algorithms can be the number of power flows run or time
spent. Hence, the overall methodology followed by such algorithms has the following
four steps:

1. Identify the shift capabilities U of each FSP and the initial operating state x of all
network nodes.

2. Sample an operation shift for each FSP within the identified shift capabilities u €
U.

3. Run power flow to obtain the new TSO-DSO node’s operating state y and check if
it is feasible regarding network constraints.

4. Termination condition reached?
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* Ifyes, plot flexibility area Y.

* Ifnot, starting from the initial operating state, sample a different shift per FSP
and go to step 3.

This methodology does not include the (2.2) since step 3 runs the power flow in the com-
plete network, thus taking x as an input. The dynamics of (2.1) are ignored since these
approaches are for steady state, and output Y does not include multiplicity.

The advantages of power flow-based algorithms include no need for linearization nor
convexification of the objectives (2.5)-(2.6). Therefore, non-linear variables (e.g., on-
load tap changers (OLTC)) do not affect their performance and can result in non-convex
flexibility areas. Limitations of these algorithms include being significantly slower than
OPF-based approaches [19], and their performance’s dependence on the sampling dis-
tributions used for the FSP actions, i.e., which actions u are sampled and passed to (2.3)
to find feasible points y.

2.1.3. OPTIMAL POWER FLOW-BASED APPROACHES
OPF-based approaches use multi-objective optimization (MOO) to compute the flexibil-
ity areas. In general terms, the four objectives that can theoretically be pursued are:

min (Prs0-pso), 2.7)
max (Prso-pso), (2.8)
min (Q1s0-pso), (2.9)
max (Qrso-pso), (2.10)

where Prso-pso, Qrso-pso are the active and reactive power flowing from the TSO to
the DSO, respectively. The approaches adapt the OPF constraints to include flexibility
source operating point shifts.

Objectives (2.7)-(2.8) and (2.9)-(2.10) conflict with each other. Thus, these multi-objective
optimization problems cannot combine all objectives in one. Therefore, OPF-based al-
gorithms solve four MOOs for each FA min (Prso-pso) and min (Qrso-pso),

min (Prso-pso) and max (Qrso-pso), max (Prso-pso) and min (Qrso-pso), and

max (Prso-pso) and max (Qrso-pso). These MOOs are solved with approaches such as
the € constraint method [22], [43], weighted sum method [19], and radial reconstruction-
based method [18], [23].

The difference between e-constrained and weighted sum-based approaches is how they
combine objectives. The e-constrained considers only one of the objectives to be opti-
mized and considers the other objectives as inequality constraints greater than €. The
€ is adjusted to approach different limits of the flexibility area. The weighted sum ap-
proach optimizes a single objective, the weighted summation of each objective of the
initial MOO problem. The weights are adjusted to approach different flexibility areas.
These two optimization-based approaches have the limitation that their resulting flex-
ibility areas are convex hulls, which might not represent the actual case as explained
in [19]. These approaches either perform linearization of non-linear control variables
(OLTC) [19], [22] or do not include non-linear control variables [43]. Radial reconstruc-
tion iteratively considers an angle 0 of active and reactive power proportions, and it finds
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the active and reactive power limits along the line of 8 [18]. Radial reconstruction-based
approaches include both convex optimization [18] and non-convex optimization [23].
The advantages of OPF-based approaches are their speed and independency with FSP
shift sampling distributions. A limitation of the above algorithms is not dealing with dis-
joint flexibility areas, which can be the case when FSPs include discrete variables [19].
OPEF-based approaches ignore the dynamics of (2.1) and assess the steady-state perfor-
mance. The OPF considers the complete network, thus ignoring (2.2). The output of
these approaches aims only at objective (2.5).

2.1.4. ASSESSING THE EXISTING APPROACHES WITH THE PROPOSED DEFI-
NITION

The approaches analyzed in the previous two subsections can be characterized based on
the proposed definition in terms of low observability, multiplicity, and time continuity.
The two approaches based on power flow and OPF need the initial network state x(¢) to
explore the boundaries of the area. Therefore, the h(-) of (2.3) takes x(#) as an input, and
the low observability of (2.2) is neglected. Thus, the objectives (2.5) and (2.6) are altered
into:

max (range(h)zyr,1), (2.11)
max (m(y;)) Vy;erange(h) iz, (2.12)

Regarding the objectives, OPF-based approaches’ objectives (2.7)—(2.10) are aligned with
the proposed objective of (2.5) since pushing the limits of feasible Prso-pso, Qrso-pso
maximizes the set of feasible y, and the range of h. However, OPF-based approaches do
not deal with (2.6) since (2.7)-(2.10) do not include multiplicity. The power flow-based
approaches can deal with the objectives (2.11) and (2.12) as they can sample actions
leading to a similar flexibility point. However, power flow-based approaches sample ac-
tions using predefined distributions. Hence, the multiplicity reported by power-flow-
based approaches can be faulty and biased toward these distributions. In addition, mul-
tiplicity results are not visualized nor referenced within the found literature.

The two approaches do not perform dynamic simulations in terms of state continuity
and transients. The approaches also do not account for the response that inverter-based
generators can have to external disturbances. Thus, the continuous state dynamics are
discretized, and the system of (2.1)-(2.3) becomes:

x(T+A7) = f(x(0), u(®), v(@), 0,), (2.13)
y(@) = h(x(1), u(1), v(1), Wy), (2.14)

Furthermore, the action or shift capabilities of flexibility service providers are typically
assumed not to be constrained by resource time characteristics. Hence, At is assumed
large enough that all machines can change their outputs to their limits. Thus, u(z) is
sometimes replaced by u.

2.1.5. FLEXIBILITY SERVICES
Evaluating the operating point shifting capabilities (without violating system constraints)
of controllable devices within the distribution grid, can inform the transmission system
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Table 2.2: Type of flexibility services referenced in relevant literature.

Ancillary services
Type of service Referenced within paper
Voltage regulation [18], [20]-[24], [43], [44]
Frequency stability [18], [20], [22], [23]
Power quality/support [18], [20], [22], [43]
Congestion management [18], [20], [22], [23], [44]

Generic terms

Quality and security of supply (18], [20], [22]
Balancing, stability and efficiency [20], [21]
Deal with forecast uncertainty, react to sudden || [19]
changes

operator which nodes can be used and how much active and reactive power can be re-
quested to solve technical problems. These technical problems are frequency stability,
voltage regulation, power quality, and congestion management.

The time horizon of the flexibility area utilization can be determined by its computa-
tional time and the inclusion of uncertainty and forecast data. Algorithms that take tens
of minutes to compute the flexibility area, should not be useful for real-time operation
[44]. On the other hand, not including the uncertainty when defining the load, or RES
generation values, can be inaccurate on the planning time-frame [18]. The services pro-
vided by the flexibility area, can range through all time frames, from operational plan-
ning to real time operations [19].

The aforementioned literature typically specifies the types of ancillary services that can
be offered through flexibility areas, or use some generic terms to explain the contribution
that flexibility areas can have. Accordingly, Tab.2.2 includes services referenced within
the literature. The research in this doctoral thesis considers the generic terms for FAs’
contributing factors in power systems. This selection highlights that FA estimation algo-
rithms primarily do not depend on the type of service for which the TSO would use the
FSP flexibility.

2.2. INDUSTRY APPLICATIONS FOR DISTRIBUTION SYSTEM FLEX-

IBILITY

Report [8] outlines the operational challenges presented, or expected to be present by
2030, to the TSOs and DSOs. Those challenges include an electric system based on re-
newable sources, the development of real-time markets, decentralized generation, and
new actors in the system. Furthermore, fast response to events or errors to ensure demand-
generation balancing by the system operators is a significant challenge given the ex-
pected decrease of conventional generation sites on the transmission level.

In response to these challenges, system operators created flexibility platform to allow
DERs to trade energy with the TSO and DSOs for economic returns. These flexibility
platforms primarily focus on trade coordination, dispatching, and settlement of energy
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or system services between system operators and the DERs [7]. Additionally, these flex-
ibility platforms focus on flexibility that can help balance the electricity system and re-
solve constraints. Functions performed by such platforms include [7] asset registration
and pre-qualification, notification of flexibility requirements and submission of offers,
the priority of access, matching, price formation, issuing dispatching instructions and
activation, as well as validation and settlement. [7] categorizes the operational models
of flexibility platforms as administrative flexibility scheme coordinators, market inter-
mediaries, and marketplaces. TSOs mainly use those platforms for short-term balance
between active power supply and power demand maintenance, for balancing and con-
gestion management. DSOs use those platforms mainly for congestion management.
The challenges of these platforms are the DER integration, TSO-DSO coordination, and
market design [7]. DER integration challenges include the prequalification requirements
for DERs, such as minimum capacity thresholds. Even when DERs pass the require-
ments, the economic costs for them in order to participate in the markets might be high.
Other revenue possibilities for DERs, and punishments when unable to deliver the flex-
ibility they were asked to reserve, can disincentivize the DER operators from participat-
ing in the markets. Challenges for the TSO and DSO coordination include information
exchange between the system operators. This information exchange becomes more ex-
igent as the complexity, uncertainties, and unobservable or uncontrollable areas of dis-
tribution systems increase. Hence, obtaining information on distribution system con-
straints, and flexible devices is important. Notable platforms in industry for flexibility
consideration include GOPACS, DA/RE, and RTI. These platforms support system oper-
ators to utilize distributed flexibility as response to events, but do not inform TSOs on
the available DS feasible flexibility to support their operating decisions, i.e., are event-
driven. In addition, these platforms currently only support grid congestion services. The
FA algorithms in this thesis aim to inform TSOs on the available flexibility to support
their operational decisions and do not depend on specific services.

GOPACS Platform Within the Netherlands, GOPACS (Grid Operators Platform for Con-
gestion Solutions) acts as a market intermediary platform. This platform is owned by the
Dutch grid operators. GOPACS supports the coordination of market-based procurement
of congestion management services from energy markets within the Netherlands. Cur-
rently, flexibility providers offer their services through the ETPA market platform. ETPA
allows short-term electricity trading in 15-minute blocks. The minimum flexibility ser-
vice provider capacity for participation is 0.1 MW. Furthermore, the economic compen-
sation provided by the operators to the flexibility providers is with regards to the acti-
vation costs in €/ MW h. The operating time window of the GOPACS platform is within
hours, i.e., a system operator can request flexibility until hours prior to the activation.

GOPACS allows the TSO and DSOs to issue a congestion notification to the markets. For
each notification of a congestion, the system operator acquires at least two orders (eg,
one to buy and one to sell) from the intraday markets. Flexibility providers (such as
DER participating in the markets) can submit an order based on the congestion notifi-
cation. Flexibility providers who are within the congested area can submit a buy or sell
order. Providers outside the congested area can submit the opposite order than the or-
der from the providers within the congested area, to balance the changes. The GOPACS
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Figure 2.2: GOPACS operation example.

platform is informed about the bids and the service providers’ location and runs an op-
timization algorithm. The optimization algorithm’s objective includes the minimization
of mismatch between buy order prices and sell order prices while solving the congestion.
This mismatch is named IDCONS (intraday congestion spread). For each order and its
location, the GOPACS algorithm checks whether the order can solve the congestion and
if it does not provoke a congestion somewhere else in the grid. The final IDCONS is paid
by the network operator who submitted the initial request.

Fig 2.2 illustrates an example of the GOPACS operation. The TSO (yellow circle), recog-
nizes a congestion on a connection with the distribution network (red area), and sends
a congestion notification on the GOPACS platform. The flexibility service providers that
agree to submit their bids for congestion management purposes are then available to
submit offers to ETPA. ETPA also checks whether there are offers submitted prior to the
congestion notification, which agrees to be used for congestion management if needed.
Within the example Fig.2.2, a buy offer is submitted from a flexibility service provider

from the congestion region, and other offers are submitted by the flexibility service providers

from other regions (blue circles). Offers submitted on the ETPA that did not agree to
participate to IDCONS, are not considered by the GOPACS algorithm. The GOPACS al-
gorithm will then match the offers from the congestion region with the opposite orders
from outside that region to ensure balanced power flow and cover the cost differences.
Accordingly, from Fig.2.2, the GOPACS algorithm will match the buy offer from the con-
gestion area with one or more sell offers from the other regions.

DA/RE Platform DA/RE platform was developed in Germany and is focused on en-
abling and smoothing the participation of flexibility providers to the Redispatch 2.0 con-
gestion management scheme.

This platform does not participate in markets (which have a voluntary nature) since Re-
dispatch 2.0 mandates participation from all flexibility providers (with capacity greater
than 100kW), and economically neutral operators. The economically neutral providers
principle ensures that the economic compensation provided to the flexibility providers
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by the operators only covers expenses related to the adjustments required for the flexi-
bility activation and loss of other revenue opportunities. DA/RE can be operated within
minutes prior to the deployment of flexibility services, and it compensates in €/ MW h.
The process followed by the DA/RE platform can be summarized in 6 steps:

1. The TSO or DSO submits redispatch requirements.

2. Theredispatch requirements are aggregated along with the planning data from the
other system operators.

3. A central optimization algorithm selects which flexibility providers will activate
their flexibilities based on:

* Network restriction from all operators.
* Simultaneously optimizing for all network levels.

* Operating costs.

4. The selected flexibility providers inform the platform about their expected operat-
ing costs, to estimate the economic compensation.

5. An automatic or manual activation of the chosen flexibility services is performed.

6. The data measured from the flexibility activation are used to compute the actual
operating costs.

Real-Time Interface The Real-Time Interface (RTI) in the Netherlands is a standard-
ized technical solution designed to facilitate real-time communication between DSOs,
the TSO, and large DERs, such as solar PV systems, wind farms, and battery storage units.
RTIbecame mandatory in 2024 for newly connected generating installations above 1M W.
The primary objective of RTI is to enable real-time monitoring and control of DER out-
put, thereby enhancing grid security while allowing more renewable energy to be con-
nected without extensive infrastructure upgrades. Presently, RTI considers congestion
management. However, RTI expansions for additional services are planned in the fu-
ture.

Technically, the RTI consists of two key components: a system operator endpoint and
a customer endpoint. The customer endpoint is installed behind the meter and com-
municates with the system operator through secure communication channels. The in-
terface allows system operators to send active or reactive power setpoints, request cur-
tailment actions, and receive real-time measurements of voltage, current, active, and
reactive power. To ensure reliability, devices installed at the customer endpoint must
be certified according to the national technical specification maintained by Netbeheer
Nederland.

This doctoral research considered the measurement units required in the context of RTI
to provide realistic measurement assumptions in the developed data-driven algorithms.
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2.3. DISTRIBUTION SYSTEM AGGREGATED DYNAMIC RESPONSE
REPRESENTATION
The expected high impact of distributed generation (DG) intrigued researchers to an-
alyze their modeling within the distribution systems, and their effects on distribution
system power quality, safety, and reliability [11]. However, uncertainties associated with
the DG placement and operation challenge the assessment of DG-equipped feeder per-
formance [12]. Therefore, the complexity of accurately modeling DSs with high DER
penetration posed a significant challenge to system operators [13], [14]. When consider-
ing dynamic simulations, TSOs should consider the dynamic response of interconnected
DS, but fully modeling DS feeders could be highly complex and computationally chal-
lenging.
The primary purpose of DS equivalent modeling, or ADRR, is to provide simple DS mod-
els for the system operators to perform dynamic studies. The main approaches for ADRR
are white box, black box, and grey box [45].
The white box approach is applicable for cases where the complete DS structure is known.
Thus, white box models use prior knowledge and physical insights [45]. However, as
DS have limited observability, and DER details can be unknown to DSOs, white box ap-
proaches are not common. Black box approaches do not utilize any physical network
information but rather fit models to approximate the dynamic responses of collected
data [45]. Grey box approaches can be considered a combination of black box and white
box since they estimate parameters similarly to black box models but also use a known
structure of the equivalent model [45], [46]. A grey box approach will model the equiv-
alent network components but not specify the parameters based on system knowledge
[46]. Hence, the diversification of black box, grey box, and white box approaches can be
based on the physical insight into the DS.

2.3.1. WHITE BOX

As white box approaches expect complete network structure knowledge, and distribu-
tion networks suffer from reduced observability, there are not many recent equivalent
modeling studies focused on these approaches. One study that could be considered as
white box is [47]. This study, unlike the rest of the referenced studies, is not focused on
system dynamic studies, but rather for PV impact studies. Accordingly, the approach in
[47] simplifies and represents the feeders to the specified buses of interest.

2.3.2. GREY BOX

Grey box methodologies can further be categorized in coherency based, system iden-
tification based, and dynamic model reduction based. Coherency based methods try
to identify groups of generators that are coherent. Dynamic model reduction methods,
such as modal methods, are based on linearized models of external systems, while sys-
tem identification methods are based on comparisons between measurement and sim-
ulation responses [48].

Dynamic model reduction methods There are multiple possible dynamic model re-
duction methods when linearizing the system, such as Hankel norm [46], Krylov, or
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modal reduction [49]. Furthermore, modal reduction can be split into approaches such
as selective modal analysis or matrix transformation technique [48]. The general ap-
proach when applying dynamic model reduction methods involves removing the eigen-
values of the linearized system located further from the origin [48].

The equivalent model developed in [48] is represented as a single generator or load.
However, in the process of linearization, the system can become less accurate, or sen-
sitive to the single operating condition in which it is linearized [46]

System identification methods These methods appear to be the most prominent out
of the found literature on grey box models. One strength of these methods, is the avoid-
ance of linearization of the network representation around an operating point.

One of the main issues of system identification methods, is detecting which parameters
will be fine-tuned for the equivalent model. Therefore, [50] also performed trajectory
sensitivity analysis. This approach, allowed [50] to investigate how sensitive the mea-
sured output variables (measured signals on the PCC) are to each parameter to be used in
the equivalent microgrid. After the set of parameters to be tuned was decided, the ADRR
evolutionary algorithm was applied to identify their values. [50] argues that a voltage
source converter, a synchronous generator, and a composite load are suitable for ADRR.
[51] also applied this representation, where an evolutionary particle swarm optimization
algorithm detected the values of the parameters of this representation. Other represen-
tations, such as a converter connected generator, and a composite load in parallel, were
used [46].

Generally, grey box approaches are prominent, but are developed and valid for lim-
ited ranges of DS operating conditions. Thus, grey box approaches might have issues
with generalizing to alternate operating conditions or topological shifts. Considering
the highly variable state in DSs, the research in this thesis developed a black box-based
approach, considering a wide range of DS operating conditions.

2.3.3. BLACK BOX

Black box approaches do not rely on physical knowledge of the system, but use mea-
surements to identify the response that the ADRR model should give to different distur-
bances. Accordingly, machine learning-based approaches are the most prominent for
black box ADRR models [52]-[54]. One advantage that these methods have compared to
grey or white box methods, is that they do not require DS simplifications, do not apply
linearization to the DS model, and can fit a large amount of data, including high vari-
ability of disturbance scenarios and DS conditions.

[52] recognized that the forward calculation of a long-short-term memory unit (LSTM)
canrepresent the discretized differential equation of an aggregated load. [52] also identi-
fied that adding fully connected neural network hidden layers on top of the LSTM hidden
layers can represent the discrete algebraic equations of an aggregated load. [53] utilized
arecurrent artificial neural network to represent the active and reactive power flows from
the ADN to the transmission grid.




30 2. BACKGROUND

2.4. MACHINE LEARNING

Machine learning (ML) is a branch of artificial intelligence (AI) that focuses on designing
algorithms that enable computers to identify patterns and make decisions or predictions
based on data. Instead of relying on a fixed set of rules, machine learning models build
statistical representations of the underlying data to perform tasks such as classification,
regression, clustering, or control. ML has become a foundational tool across various do-
mains, including natural language processing, computer vision, power systems, health-
care, and finance.

At a high level, machine learning techniques can be categorized into supervised, unsu-
pervised, and reinforcement learning, each addressing different types of problems and
scenarios. This thesis deployed supervised ML models, as the applications are mainly
predictive and require direct input-output mapping.

2.4.1. UNSUPERVISED LEARNING

Unsupervised learning deals with data not explicitly labeled. The unsupervised learning
objective is discovering unknown patterns, structures, or relationships in the data. Tech-
niques such as clustering [55] (e.g., grouping loads based on consumption behavior) and
dimensionality reduction [56] (e.g., principal component analysis to reduce data com-
plexity) are common applications. Unsupervised learning can be particularly helpful in

preprocessing and data analysis tasks, where human-labeled data is scarce or unavail-
able.

2.4.2. REINFORCEMENT LEARNING

Reinforcement learning (RL) was inspired by trial-and-error in psychology, optimal con-
trol, and engineering [57], where an agent learns to make sequential decisions through
environment interactions. The agent obtains rewards or penalties in response to its ac-
tions and aims to learn a policy that maximizes the total reward accumulated over time.
RL is well-suited for problems where feedback is delayed and actions influence future
outcomes, such as in robotics, game playing, or energy management in power systems
(e.g., electric vehicle charging scheduling) [58]. Key components of an RL framework
include the agent, environment, states, actions, and the reward signal.

2.4.3. SUPERVISED LEARNING

In supervised learning, model training involves data with known target labels or out-
puts. The objective of supervised learning is to learn a function that maps inputs to out-
puts while generalizing effectively to unseen data. Typical supervised learning tasks are
classification (e.g., identifying whether a DS is overloaded or not) and regression (e.g.,
predicting DER output active power). This thesis mainly deployed supervised learning
algorithms.

Supervised learning algorithms can be diversified into numerous categories depending
on the task characteristics. Fig.2.3 diversifies major supervised learning categories and
subcategories. Nevertheless, due to the rapidly evolving nature of ML, these categories
are consistently expanding. Supervised linear models are a foundational class of ML al-
gorithms that learn a linear relationship linking input features and target outputs from
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labeled data. Ensemble models consider the predictions of multiple base learners to
enrich overall performance and robustness. Neural networks (NNs) are machine learn-
ing models inspired by the human brain structure, formed from interconnected layers
of nodes (neurons). The uncertainty in DS conditions guided this research to BNNs. In
addition, the sequential and non-sequential data impacting ADRRs guided this research
to hybrid architectures, consisting of RNNs and FNNs.

NEURAL NETWORKS

In supervised learning, NNs learn complex, non-linear mappings from inputs to outputs
through backpropagation and gradient descent. For a simple feedforward NN with L
layers, the forward pass is defined as:

K =x,

ht=pWn® +bh,

7=pWERE 4+ bk, (2.15)

where x is the input, Wl, b! are the [t layer’s weights and biases, and ¢(-) is a non-linear
activation function. y is the model prediction.

Activation function An activation function introduces non-linearity into a NN, en-
abling it to model complex patterns beyond simple linear relationships. Common acti-
vation functions encompass the rectified linear unit (ReLU), sigmoid, and tanh. Without
activation functions, a multi-layer neural network could be represented as a single-layer
linear model.

Loss function A supervised NN is trained with a loss function that quantifies the dif-
ference between predicted y and the target values y. Typical NN loss functions for re-
gression include the mean squared error (MSE), the root mean squared error (RMSE),
and the mean absolute error (MAE) functions. Typical classification losses include hinge
loss and sigmoid cross entropy loss for binary classification, and softmax cross entropy
loss for multi-class classification.

Backpropagation Backpropagation is the fundamental algorithm used to compute gra-
dients in NNs. Backpropagation calculates the loss gradient concerning the NN weights
by recursively applying the chain rule from the output layer back to the input. These gra-
dients inform how each parameter will be adjusted to reduce the loss. Backpropagation
makes training deep NNs computationally feasible and efficient by reusing intermediate
computations.

Parameter Update A parameter update is the process of adjusting the weights and bi-
ases in a model to reduce the missmatch between predictions and true outputs. Guided
by the gradients computed through backpropagation, an optimizer like gradient descent
or Adam modifies the parameters in small steps. This iterative adjustment process en-
ables models to learn from data over time and to enhance their performance.
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Figure 2.3: Supervised learning diversification into widely used categories.
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BAYESIAN NEURAL NETWORKS

Bayesian Neural Networks are a probabilistic extension of conventional neural networks
where weights are treated as distributions rather than fixed values. This allows the model
to capture epistemic uncertainty, reflecting confidence in its predictions. Training a BNN
involves estimating the posterior distribution over weights given the data, often using
variational inference or Monte Carlo sampling. The output of a BNN is typically a pre-
dictive distribution rather than a single point estimate, making it useful in safety-critical
or uncertainty-aware applications.

KL Divergence The Kullback-Leibler (KL) divergence is a measure of how one proba-
bility distribution diverges from another, often interpreted as the information lost when
approximating a true distribution with a simpler one. Minimizing the KL divergence can
be similar to minimizing the negative log likelihood (NLL). NLL is a common objective
in BNNs and supervised learning.

Bayes Theorem The Bayes theorem is a key rule in probability theory that describes
how new evidence can update the probability of a hypothesis. Bayes theorem is ex-
pressed as:
(a1p) = B P (2.16)
p - P(B) ) .
where P(B) is the marginal likelihood. The Bayes theorem underlies Bayesian inference
approaches.

LONG SHORT-TERM MEMORY

LSTM networks are a specialized type of recurrent neural network (RNN) designed to
model sequences and retain long-term dependencies. Unlike standard RNNs, LSTMs
use gates (input, forget, and output gates) to manage the information flow through mem-
ory cells, effectively mitigating the vanishing gradient issue in training. This makes LSTMs
highly effective in tasks where both recent and distant past information can be impor-
tant.







TENSOR CONVOLUTION-BASED
AGGREGATED FLEXIBILITY
ESTIMATION IN ACTIVE
DISTRIBUTION SYSTEMS

Act always so as to increase the total number of choices.

Heinz von Foerster

Power system operators require advanced applications in the control centers to tackle in-
creasingly variable power transfers effectively. One urgently needed application concerns
estimating the feasible available aggregated flexibility from a power system network, which
can be effectively deployed to mitigate issues in interconnected networks. This chapter
proposes the TensorConvolution+ algorithm to address the above application. Unlike re-
lated literature approaches, TensorConvolution+ estimates the density of feasible flexibil-
ity combinations to reach a new operating point within the p-q flexibility area. This den-
sity can improve the decision-making of system operators for efficient and safe flexibility
deployment. The proposed algorithm applies to radial and meshed networks, is adaptable
to new operational conditions, and can consider scenarios with disconnected flexibility
areas. Using convolutions and tensors, the algorithm efficiently aggregates the combina-
tions of flexibility providers’ adjustable power output that can occur for each flexibility
area set point. Simulations on the meshed Oberrhein and radial CIGRE test networks il-
lustrate the effectiveness of TensorConvolution+ for flexibility estimation with high nu-
merical confidence and a minor computing effort. Additional simulations highlight how
system operators can interpret the estimated density of feasible flexibility combinations for
decision-making purposes, the algorithm's capability to estimate disconnected flexibility
areas, and adapt to new operating conditions.
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3.1. INTRODUCTION

The coordination between transmission system operators (TSOs) and distribution sys-
tem operators (DSOs) faces challenges in data exchange [81] as the flexibility services
from providers connected to the distribution networks (DNs) become important for ser-
vices such as balancing and congestion management. TSOs need to anticipate the avail-
able DN flexibility, to effectively use this flexibility in their operation. DSOs must ensure
that said flexibility services respect the DN operational constraints and use these services
in distribution-level markets [10]. Between existing approaches for TSO-DSO coordina-
tion, the DSO-managed approach requires exchanging non-sensitive information from
the DSOs to the TSOs. This information is flexibility areas (FAs); areas in the active and
reactive power plane designating the extreme values of flexibility that the DN can “offer”
to the transmission network at their point of common coupling (PCC) [18]. The DSO-
managed coordination process involves two tasks for DSOs. In the first task, the DSO
obtains offers from flexibility service providers (FSPs), estimates the theoretically feasi-
ble FA as in [18]-[26], [30], [38], [82], and informs the TSO of that FA. The TSO can request
an operating point (OP) within the FA from the DSO. The DSO performs the second task,
optimizing the individual FSP shifts achieving the TSO request while respecting the DN
constraints and minimizing the costs as in [83], [84].

In existing FA estimation algorithms, the area surrounded by the FA curve’s extreme val-
ues is mainly assumed as equally reachable and feasible. However, a different set of flex-
ibility combinations can reach each FA OB, and the algorithms cannot guarantee the FSP
availability and actual desired response [84], [85]. Therefore, each FA OP should not be
viewed as equal, but represent the density of feasible flexibility combinations through
which the OP can be reached. This additional information on FA OP can influence the
TSO to select OP based on expected delivery, reliability, and effectiveness. Currently, to
the best of the authors’ knowledge, no algorithm provides information on the density of
feasible flexibility combinations (DFC). Hence, TSOs may be unable to select safe and
efficient shifts for FA OPs. This chapter focuses on FA estimation, considering all combi-
nations and providing the DFC for each FA OP efficiently.

Early distribution network FA estimation studies [20], [24] effectively proposed power
flow (PF)-based algorithms. These algorithms provide simple and coherent methods for
FA estimation but have limitations in exploring the flexibility area space [24] and high
computational time [20]. Optimal power flow (OPF)-based approaches are faster and
apply multi-objective optimization such as e-constraint method [22], [85], weighted sum
method [19], [26], and radial reconstruction-based method [18], [23]. OPF-based ap-
proaches provide straightforward and efficient algorithms to identify the FA limits, im-
proving the potential of system operators to include flexibility in their decision-making.
However, OPF-based approximations may have limited validity in meshed networks, as
highlighted by [21], [26], [38]. The vast majority of studies use radial networks [18]-[25],
[38], [82], [85].

The authors of [30] introduced an efficient chance-constrained FA on meshed networks,
showcasing the benefits of power flow routers for FAs. The results of [30] showed rela-

Parts of this chapter have been published in: D. Chrysostomou, J. L. R. Torres and J. L. Cremer, "Tensor
Convolution-Based Aggregated Flexibility Estimation in Active Distribution Systems," in IEEE Transactions
on Smart Grid, vol. 16, no. 1, pp. 87-100, Jan. 2025, doi: 10.1109/TSG.2024.3453667 [36].
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tively slower performance than the other OPF-based algorithms. A limitation of OPF-
based algorithms, as identified by [19], [38], is the incapability to deal with FAs that are
disconnected, which might be the case for FSPs with limited offered flexibility setpoints.
This chapter’s proposed algorithm performs in radial and meshed network topologies
and can estimate disconnected FAs.

The objective of existing FA estimation approaches is to identify the limits of the aggre-
gated DN flexibility [18]-[23], [25], [26], [30], [82]. Evaluating each possible FSP shift
combination through existing approaches is intractable, as they are tailored to the above
objective. The authors of [85] considered the reliability of each FSP in the algorithm as
the confidence in delivering the offered flexibility. The approach of [85] does not eval-
uate all possible flexibility shift combinations to reach an OP between any set of FSPs.
Nevertheless, the results of [85] showcased great insights on the inner area of FAs, but
the task was computationally expensive with an average time of 970s. This chapter’s
proposed FA estimation approach considers all possible flexibility shift combinations
and reports the DFC to reach each FA OP.

Existing FA estimation approaches mainly require the OC of the DN as input data to
perform OPF and PF simulations as [19], [21]-[26]. However, DNs have typically lim-
ited real-time observability with measurement units on limited network components
[1], [27]1-[29]. To deal with uncertainties from renewable sources, [30] applied a chance-
constrained method, and [18] applied robust optimization. [20] included the probability
distributions of forecast errors to determine the probability of feasibility. The proposed
algorithm can use the FA estimated under expected DN OC (bus voltages, power injec-
tions, and line loading), to adapt and approximate the FA in correlated real-time OC with
observability limited to a subset of network components.

Deep learning-based algorithms have been recently explored for the FA estimation prob-
lem [86], and in tasks related to FA estimation such as OPF [87], [88] and PF [89], [90].
Deep learning models can improve efficiency in performing these tasks. However, some
limitations concerning low generalization to unseen network topologies and requiring
large training datasets can challenge the application of deep learning in algorithms for
FA estimation. The proposed algorithm does not employ deep learning models and does
not require training.

The proposed TensorConvolution+ algorithm deals with issues on the exploration of in-
ner FA, evaluates all FSP combinations and informs on the DFC to reach each FA OP.
Existing alternative algorithms explore the extreme limits that flexibility combinations
can achieve. Evaluating all combinations informs the system operators on which PCC
operating points have more feasible flexibility options. A higher DFC can correspond
to safety regarding network constraints, less dependency on specific FSPs, and more
options to optimize costs in algorithms such as [83], [84]. Alternative approaches can-
not tractably evaluate all possible discrete combinations, whereas TensorConvolution+
is time efficient. In addition, TensorConvolution+ handles the limitation of existing FA
estimation algorithms in dealing with disconnected FAs and discrete FSPs. This chapter’s
contributions are:

* Developing the first method to evaluate all possible discrete combinations of flex-
ibility, improving the information encompassed in FAs.
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Figure 3.1: DSO-managed approach for TSO-DSO Coordination. Steps order (©).

* Introducing the application of convolutions in flexibility estimation, and analyzing
useful properties of convolution to simplify the FA problem’s complexity.

* Introducing the application of tensors in flexibility estimation, to store and evalu-
ate the feasibility of flexibility combinations.

Case studies on the 70-bus and 109-bus meshed medium voltage Oberrhein networks
and the 15-bus CIGRE medium voltage radial network with photovoltaic and wind plant
modules show the algorithm’s capability to work for diverse network topologies, the need
for DFC in FAs, the above contributions and the algorithm’s adaptability to partially ob-
servable OCs.

The following sections are (II) flexibility estimation algorithm; introducing the problem
formulation and objectives, (III) tensor convolutions; the application of tensors and con-
volutions in the algorithm, (IV) case studies; on the need for DFC and algorithm contri-
butions, and (V) conclusion.

3.2. FLEXIBILITY ESTIMATION ALGORITHM

In DSO-managed coordination, as illustrated in Fig.3.1 the first DSO task concerns the FA
estimation. This task informs the TSO about the available shifts s® = [Ap?,Ag°] T from
the initial PCC OP [p?, °]7, considering the DN network constraints. The FA estimation
impacts the TSO selection of an aggregated shift, and subsequently the DSO second task
of FSP shift optimization. Therefore, the FA estimation problem requires (i) exploring
possible FSP shift combinations and (ii) evaluating whether each combination results in
a feasible OC for the network constraints.

The requirement (i) on FA estimation approaches determines which area can be reached
using FSP shifts. The set of FSPs is QFS?. The generic infinite set of shifts is Q° = {s|s =
[Ap,Aq)T € R?}. Each FSP i € QFSP offers a set of shifts as QF < Q°. The function o :
Qs - QS maps each shift of FSP i from its bus to the PCC. Thus, the set of shifts from
each FSP, as observed at the PCC is Qf ={sls=0(3),Vs¢€ Qf} < Q5. The set of all shift
combinations at the PCC between all FSPs is:

0°=0f x0f x .08 5y, € RH, 3.1)

Q| = MepsplQF], (3.2)
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where x is a set cartesian product and | - | is a set cardinality. Each combination 7 € Q¢
corresponds to one tuple of FSP-shifts, and 7 — {s1, $2, .., SiqFse)} = H(m). Thus, function
H(m) represents obtaining a set of individual FSP shifts participating in the combination
7.

The issue fulfilling requirement (i) is that the number of flexibility combinations grows
exponentially as FSPs and their offered shifts increase. Due to this issue, state-of-the-art
approaches do not explore all possible FSP shift combinations. The proposed approach
estimates all possible combinations, i.e. all 7 € Q°.

The requirement (ii) on FA estimation approaches determines whether each discrete FSP
shift combination considers the network constraints. Let the reachable shifts at the PCC
s° expanded by the index 7 for each 7 € Q€ as:

s9=Y s 3.3)
seH(m)
as each combination 7 leads to one s°. Using (3.3), the set of reachable shifts at the PCC
from all possible combinations is:

Q5% =52, vr e Q¢ c Q. (3.4)

As shown in Fig.3.2, multiple combinations 7 can reach the same PCC OP shift s°, i.e.
359 = S;‘; s.t. 71,7 € Q€. Therefore, the authors expand Q¢ by the index s°, indicating the
set of combinations leading to each s° as:

Q5 = {nls2 = s°Yr e Q¢ c Q°. (3.5)

The cardinality IQg,I represents the number of possible combinations reaching s°. For
example in Fig.3.2, for s° = [3,3]7, the |Q| = 2 (from 71, 72). However, out of the 2
combinations, only one leads to a feasible voltage (r,). Therefore, an FA estimation ap-
proach should account for the network constraints. Feasible shift combinations require
network constraints to be fulfilled at the resulting shifted OCs. Every shift combination
7 when applied, can impact the voltage magnitude vy, ,; of every network bus b € Q5,
and the loading I, , of every line or transformer z € QF. The set of feasible combinations
reaching each s is:

FC B
Qoo =7l (Vmin < Vpr < UmaxVb € Q7,

(3.6)
1zl < ImaxVz € QF), ¥ € Q51 < Q5.

Umax> Vmin are the maximum and minimum allowed voltage for network buses, Inax is
the maximum allowed loading for network lines and transformers. The set of all shifts
at the PCC that are feasible is QFS’ = {s°|1 < 1QfC Vs € Q%°} = Q%°. For each s° its
DFC = |Qf€|/max . s |QEC], the normalized cardinality of Q5.

The issue of fulfilling requirement (ii) is that evaluating the impact of all combinations
7 on all network components is computationally expensive. Hence, evaluating the im-
pact of all possible combinations is intractable in existing approaches. State-of-the-art
approaches simplify the issue to identify all s for which at least 1 feasible shift combi-
nation exists, i.e. Q7S”. The proposed approach evaluates all possible combinations and
estimates |Q°| of all 5% € QFs’.
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Figure 3.2: Example for 2 shift combinations (771 as «- ,72 as «++) from the initial OP (e) to reach p° + Ap? =
3MW, ¢° + Ag° = 3MVAR, but only 7 feasible for bus b due to the maximum voltage constraint ().

The proposed algorithm is TensorConvolution+ with input as the network topology, the
initial OCs, and the FSPs. When adapting FAs for new OCs, the needed input is a sub-
set of the network components’ new voltage and loading magnitudes. Hyperparameters
include the resolution §p,dq of Q, i.e. increments in Q° elements, and the sensitivity
thresholds ¢, ¢;. Fig.3.3 shows the algorithm’s steps. TensorConvolution+ initially runs
PF simulations to generate samples for requirements (i) and (ii). The algorithm decom-
poses the flexibility constrained by each network component (e.g., bus, line), and uses
tensors and convolutions to efficiently process the samples for requirement (ii). Then,
TensorConvolution+ returns the FA constrained by all network components. If all com-
binations fulfill the network constraints, i.e. Qfoc = QSCOVS" € QSD, then convolutions
are applied to deal with requirement (i). Fig.3.4 shows the output FA of the proposed
algorithm. Each blue-colored pixel has a value of 1 and represents a reachable but not
feasible OP for the network constraints. Each pixel with values between (1,2] represents
a reachable and feasible OP and its DFC, i.e., larger values have more feasible options
than lower values. The area covered by all colored pixels represents the reachable set
Q5° from FSP offers, related to requirement (i). The feasible area represents QFS’ and
DFC, related to requirements (i), (ii).

3.2.1. REDUCING REQUIRED POWER FLOW SIMULATIONS
Computing all inputs to (3.6) requires estimating vy, 5, [, » as:

Upr=Ubot+ Y. Avps VbeQF vreQf, 3.7
SEH ()

lz,n = lz,O + Z Alz,s Vze QLvV” € Qg” (3.8)
seH(m)

where vy, [0 are the OC’s values for b € QF and z € QL. Variables Avy,5, Al ¢ are the
shift s impacts on b, z, estimated using PF simulations. The number of PF simulations
needed to explore all possible FSP shift combinations is (3.2). To simplify this combina-
tion complexity, the authors apply:

Assumption 1: The impact of each FSP’s output shift on a network component is not
affected by other FSPs’ output shifts, i.e., AvysILAv, V5§ € Q?,Vﬁ € Q?, Vi #1eQFSP

Al ALYS € QY VSeQd, Vi ieQfsP,



3.2. FLEXIBILITY ESTIMATION ALGORITHM 41
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When adopting assumption 1, the proposed algorithm requires one PF simulation for
each possible FSP shift. Hence, the required PF simulations are decreased from (3.2) to
Y icQFsP |Q‘§|.

3.2.2. ANALYZING FSP SENSITIVITIES OF NETWORK COMPONENTS

This section analyzes the sensitivities of network components to FSP shifts through the
impacts Avy g, Al ;. This analysis further reduces the complexity O ((IQBI +1Q5) - IQE,, I)
in estimating (3.7) and (3.8). The analysis starts with:

* Observation (a): each network component’s voltage or loading is not sensitive to
all FSPs.

* Observation (b): not all network components can reach their voltage or loading
limitations due to the FSP shifts.

Exploiting (a), the FSP sensitivity sets for each b € QF and z € QF are:

Q5P = tile, = max(|Avp,|), i € Qfshy, 3.9)
s€Q

QESP = (i) < max(|AL, ), i € QFSF}, (3.10)
s€QS

i

where ¢y, ¢, are sensitivity thresholds. The FSPs that do not impact the constraints of
a network component are Qgsp’ ={ili € QFSPy Q’;SP}VY e QB U QL. For example, in a
network with 2 feeders connected to the PCC, the components on the first feeder can be
insensitive to shifts from FSPs connected to the second feeder. The sets in (3.9)-(3.10)
replace Q¢ with QF, the set of combinations for which y € Q% U Q" is sensitive to its
constraints. This analysis reduces the constraint-evaluated combinations from IQS,I to
|Q$,5" IVye QOB U QL; the set of sensitive combinations per component as:

_ 0 C C
sto_{m Y, s=s'VreQpicQy. (3.11)
SEH ()

In DN OCs with higher margin from the network constraints, IQ$ 50 | << |Q§0 l.
Exploiting (b) the sets of non-sensitive components are the ones whose voltage or load-
ing cannot reach the constraints when accumulating the highest impact from the FSPs,
as:

B = bl(wpo+ Y max(Avs,s) < Umax) A

QFSPSEQ
B (3.12)
Wmin<vpo+ Y, min(Avy),Ybe Q%
zleSPSEQ
O =(allzo+ Y, max(Aly) < lnad), A
ZEQFSPS€Q
(3.13)

Umin<lzo+ Y min(Alyy)), vzeQl.

QFSP SEQ
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Figure 3.5: FAs for Minkowski sum and Convolution of F(:) for i i€ QFSP_ The FAs include squares of feasible
shifts(#), and initial operating points (m).

The analysis of observations (a) and (b), reduces the combinations evaluated in (3.7)-
(3.8) by replacing Qg, with Q$ 00 QB with QB \ Q8 and QF with QL \ QL. Thus, the com-

plexity becomes O((10%\ 0| +1Q\ Q') -10€ ).

3.3. TENSOR CONVOLUTIONS

3.3.1. CONVOLUTIONS FOR FLEXIBILITY SHIFT AGGREGATION

This section introduces convolutions, to aggregate shifts without considering network
constraints. Convolutions can efficiently combine the flexibility sets, and accumulate
the number of combinations leading to each s, i.e. |Q§7 |. Relating, the Minkowski sum
can be applied to efficiently combine flexibility sets without considering network con-
straints [91], e.g. combining feasible flexibility sets from multiple feeders connected to
the PCC. However, the Minkowski sum does not consider how many combinations from
the input sets lead to each s°. In Fig.3.5(b), the Minkowski sum, and in Fig.3.5(c), the
two-dimensional (2D) discrete convolution of two flexibility sets. In Fig.3.5(c), each re-
sulting point includes the number of combinations reaching it.

The proposed algorithm aggregates shifts without considering constraints in two cases.
! !

First, when QF = QB QL = QL thus Qg, = Qfoc. Second, for each component y € QBu

QL where 1 < |Q$ | < 1QC], the algorithm explores all Q¢ combinations; the cartesian

product between Q$ and all FSPs in Qfsp', ie. QC=0f x..x Q\SQfSP'l x Q$

Let any 2 FSPs i,0) offering shifts Q?, and Q? respectively, as in Fig.3.5(a). The 2D dis-
crete convolution for each shift s° = [Ap°,Ag°]” is defined as:

(F;xF)(Ap°,Aq°)= Y. Y (FiAp,Ag)
Ap oA o0 (3.14)

“F;(Ap° - Ap,Ag° - Ag)),

where (- * -) (x, y) is a convolution of two functions for the input x, y, and F;Vi € Q75 is
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Figure 3.6: Convolution of F;(-), F;() for i, i€ QFSP at Ap® =2,Aq° = 0.

an indicator function as:

1, ifseQs,
Fi(s) = l (3.15)
0, otherwise.

Fig.3.6 visualizes the convolution process for a single Ap®, Ag°. The circled overlapping
pixels in Fig.3.6(c) represent all possible combinations reaching p°+Ap?, g° + Aq,. Use-
ful properties from the convolution [92] are applied as:

1. Associativity and commutativity: The order of FSPs i, (or more) does not affect
the convolution output.

2. Impulse response: The convolution of an FA with a delta function results in the FA
shifted by the delta offset.

The appendix B proves a third property stating: The discrete convolution of shifts between
k FSPs considers all possible discrete combinations between these k FSPs for s°. The result-
ing value for each s° is the sum of all combinations from the k FSPs that can reach it.
The proposed approach describes the combined FA function for a sequence £ of con-
volutions for k FSPs as:

Fa(s%) = { (%), 57 €, (3.16)
0, otherwise,
where:
Q% =07 x Q5 x...x Q3 3.17)
QS =lsxlsy =) s¥reQS}ca¥. (3.18)
SET

m_y (s°) € N is the number of shift combinations of FSP sequence % = 1,2,...k reach-
ing s°. For the remainder of the chapter, F; * F; corresponds to applying (3.14) for all
[Ap°,Aq°] Te Qi,, where & = i,i. This operation is efficient and widely available within
computer vision and machine learning software libraries.
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Figure 3.7: Convolution of F(-) for i, j € QFSP for an s°. Out of all reachable shifts (=), 2 combinations are
possible for the alignment (<).

3.3.2. TENSORS COMBINING FLEXIBILITY IMPACTS

This section describes the algorithm to estimate the FA of each constraint-sensitive net-
work component, i.e., b€ Q8 \QF, ze QL \ QL. The proposed algorithm uses tensors to
efficiently explore, represent, and process the information obtained through PF simula-
tions.

Intuitively, as shown in Fig.3.6, during a 2D discrete convolution, every FSP combina-
tion reaching s° is accumulated. However, applying (3.7)-(3.8) before the accumulation
is needed to check whether each combination is feasible or not for the network con-
straints. Hence, the authors propose avoiding the summation step of convolution and
storing the alignment of each step in new dimensions. For example, using convolution,
the 2 combinations of Fig.3.7(a) result in an entry value of 2 for the matrix in Fig.3.7(b).
Through the proposed tensor-convolution as in Fig.3.7(c), the entry for Ap® =0,Ag° =2
is a matrix of the element-wise multiplication between the F;, and the shifted-flipped
F;. The resulting tensors store the information of which combinations 7 are available
through this alteration.

After this tensor-convolution process, the combination of 2 FSPs results in a 4 dimen-
sional tensor, and each additional FSP adds 2 dimensions. The function for this process
is ¥, and the tensor convolution operation is .

W(F),F, ..., Fy) = Fy#F,...% Fr,, € R?F. (3.19)

As shown in Sec.3.2.2 observations, the impactful FSPs for each component’s constraints
and the sensitive network components are limited, mitigating dimensionality issues.
Nevertheless, if a limited RAM requires reduced tensor dimensionality, the algorithm
can aggregate pairs of FSPs into one only for the component causing the issue. The algo-
rithm determines which pair is closer through the electrical distance shown in [93]; the
impedance of the lines between each FSP pair.
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OBTAINING COMBINATION IMPACTS

For each restrictive network component b € Q8 \QF', z € QL \ QF, for each of their imp-
catful FSPs i € Qgsp,j € Q5P the impact functions @; ,(s), ®; - (s) are:

Avy, ifse Q3

D; p(s) = ' ! (3.20)
0, otherwise,
Aly,, ifseQS,

®;2(s) = { ] (3.21)
0, otherwise.

Estimating (3.7)-(3.8) is needed to check if the resulting vy, , are feasible for the network
constraints. Thus, the algorithm needs to sum the associated Av caused by every FSP
within 7 for every 7 effective on b. The authors propose iteratively taking i € Q} 5" and

applying:

Tip = W (Eo, s Fim1) 3 Qi 2 W (Frn, o Figrse) i (3:22)

The above result, T; 5, is the tensor of voltage impacts from i, on b, whose entries repre-
sent each 7. T; ;, does notinclude the voltage shifts caused by other FSPs. After obtaining
T; Vi € Q) 5P, the proposed algorithm performs element-wise tensor addition as:

B . 21QFSP|
ry= ZiEQZSP T;p, € R 1 (3.23)

This addition aggregates the contribution to the voltage shift from all impactful FSPs for

component b for each combination 7, i.e., each I';, entry value is equal to - s¢ ry() AVp, s

for a unique w € Qgso. The boolean tensor Tlf"’"l = Fo*...%Fgrsp shows which combina-
’ b

tions 7 belong to Qg, i.e. T;f""l entries are 1 where a combination exists and 0 where not.
The proposed algorithm applies the following to classify each combination as feasible or
not:

Zp = AU(Tp + g 1r,) 0 TP, e RH%™, (3.24)

AV () = 1, ifvmin < Up < Vmax (3.25)
0, otherwise.

Where 11, is a tensor of ones, with the shape of I';,. The operation o is the tensor Hadamard
product. The addition I'y, + vy - 11, estimates the resulting voltages at component b for
every possible combination of flexibility shifts. The filter A” returns 1 for all combina-
tions within the network constraints. The Hadamard product sets 0 for all combina-
tions not offered by the FSPs. The corresponding variables for loading components are
[, TPool Al(l,), and Z,.
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Figure 3.8: Element-wise minimum of FAs.

TENSOR TO FLEXIBILITY MAPPING

The Zj, 2, have dimensionalities of 2 - IQ‘;SP [,2- IQQ7 SP) respectively. The first 2 dimen-
sions correspond to the PCC s°; as in Fig.3.7(c). The rest constitute the constraint-
validated combinations reaching each PCC s°. Therefore, summating all tensor entries
except the first 2 dimensions returns the flexibility area constrained by the component
b or z. Intuitively, this operation restores the accumulation step of convolution. Using
the Einstein summation convention allows easy and efficient summing operations over
multiple dimensions of tensors in Python [94]. The function C : { — 2 represents the
summation of all tensor’s E entries from any ¢ dimensions to the first 2 dimensions:

Ay =C(Ey),€R?, (3.26)

where y € QB UQ! is any network component. Each Ay entry corresponds to a different
s°. Each entry value of Ay is the number of combinations in Q$ , feasible for y for an s°.

ADDING FSPS INSENSITIVE FOR COMPONENTS
Ay excludes contributions from FSPs causing negligible voltage or loading impacts on
y € QB uQl. The proposed algorithm performs 2D convolution between Ay and the F of

Q)z:“sp g Jb» i1} to consider the feasibility of all possible combinations
in QC for component 7, as:

all elements in

— 2
Yy = Ay x Fjy + Fjr.., e R, (3.27)

Let u,7 be the row and column indices of Y, Vy € QB U QL. The bijective function A
maps each s° to a unique g, 7, i.e. 1: s — (u, 7). Each entry value of Y, is the number of
combinations in QC feasible for y for a unique s°.

3.3.3. COMBINING SENSITIVE NETWORK COMPONENTS’ FAS

To combine the FA of all components into one, the authors apply:

Assumption 2: |Q5F | = minycos 0t (Yy, o)

Using assumption 2 allows estimating the FA of each component before approximating
the final FA at the PCC as their element-wise minimum. For instance, Fig.3.8 illustrates
a scenario with 3 network components, one non-restrictive and two restrictive due to
different constraints.
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(a) Feasible combinations by other (b) Non-linear FSP Fj .
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(c) F g * YYA (d) Dirac function property.

Figure 3.9: Convolution of a discrete variable’s F; (-) with the feasible combinations from other FSPs. The
convolution result of Fig.3.9(c) is the same as displacing Fig.3.9(a) by the Fig.3.9(b) shifts as in Fig.3.9(d).

3.3.4. DIRAC FUNCTIONS FOR NON-LINEAR FSP

The proposed algorithm can deal with disconnected areas and non-linear FSPs, explor-
ing the impulse response property introduced in Sec.3.3.1. Non-linear FSPs can cause
disconnected areas as in [19], [38]. Non-linear FSPs could be on-load tap changers [19],
[38] or generators/loads offering specific shift set points rather than a range of shifts [95].
Depending on the network component sensitivity or insensitivity to the non-linear FSPs,
the algorithm performs different estimations to combine the non-linear FSP flexibility
with the FA from the rest of the FSPs.

If the component y € QF U Q! is insensitive to the non-linear FSP j; € Q$SP ', the pro-
posed algorithm initially performs (3.27), excluding j; to get Yy, as in Fig.3.9(a). To add
the flexibility from non-linear FSPs one could convolve Y, with the indicator function
of jg, i.e, Fj, of Fig.3.9(b), as in Fig.3.9(c). Alternatively, exploiting the Dirac function
property of convolutions, the algorithm displaces Y, by each shift Ap, Ag from j; and
sums these displaced results, as in Fig.3.9(d). The summation results to Y.

If j4, is sensitive for b € QB, the algorithm ignores the j; impact on b until after (3.23).
Then, for each j; shift s e Q?d whose impact is Avy, s, the matrix AZ,S is:

Al = C(A”(Fb + (Vo + Avpg) - 1r,) 0 T{,’”“’). (3.28)

The (3.28) encompasses adding the impacts of all linear FSP shifts to the impact of a
non-linear FSP value, filtering the results based on the network constraints as in (3.24),
(3.25), and summing feasible combinations for each s as in (3.26). Thus, each AZ}S mea-
sures all feasible combinations between the linear FSPs and a non-linear FSP value s.
Subsequently, the proposed algorithm sums AZVSVS € Q]S.d displaced by the s offsets. The
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summation result describes Ay, used in (3.27). The (3.28) also holds for z € QL but with
loading variables instead.

3.3.5. ADAPTABILITY TO PARTIALLY OBSERVABLE OPERATING CONDITIONS
Let FSPs that offer the same flexibility shifts for related OCs. In that case, the proposed
algorithm assumes the shift impacts Avy, Vs € Q7Vi e QFSP, vbe QF, Al Vse QfVie
QFSP,vz € Q! to be similar. Therefore, the tensors T', Iz, T2, T?2°! are also similar
for these related OCs. The proposed algorithm can store the tensors I', ', Tlf""l, Tzho"l,
and adapt the flexibility in subsequent FA estimations by applying A?, A on the stored
tensors and the new OCs I, 0Vz € QX \ QL v,0Vb € QB \ QF'. The proposed algorithm
applies tensor train decomposition to reduce the space needed to save multiple high-
dimensional tensors; a method that allows efficient representation of high-dimensional
tensors with a small number of parameters without losing significant information [96].
For example, let an FA be estimated for expected (e.g. day ahead) OCs. Let real-time
measurement units be placed on the DN components that are sensitive to constraints
and flexibility shifts, i.e., Q8 \ QP , QL \ QL. TensorConvolution+ stores the tensors of the
expected OCs FA and uses the real-time measurements from the sensitive components
to approximate the partially observable OCs FA.

3.4. CASE STUDIES

Fig.3.10 illustrates the test networks; the meshed medium voltage Oberrhein network’s
substations 0 (OB0) (70 buses) and 1 (OB1) (109 buses), and the radial CIGRE medium
voltage network (15 buses). The authors modified OB0 and OB1 to get meshed networks
and provide more challenging scenarios for the algorithm. These modifications led to
initial OCs with a minimum voltage in OBO of 0.95p.u. and OB1 of 0.958p.u.. These
modifications increased the sensitivity of network components to FSPs. The algorithm’s
inputs were the network and the locations of load and generator FSPs. The algorithm’s
parameters were the dp,0q, ¢, ¢y, Imax, Umax> Vmin- In all case studies the loading con-
straint was Imax = 100% and the threshold parameters were ¢, = 0.001p.u.,c; = 1% for
the CIGRE network, ¢, = 0.0001p.u.,¢; = 1% for OBO, and ¢, = 0.005p.u.,¢c; = 1% for
OBL1. The other inputs and parameters are referenced below and vary between the case
studies. In all case studies, the FSPs were assumed to offer flexibility covering any p, g
setpoint with apparent power less than their initial apparent power except in case study
C where one FSP was non-linear and case study B.3.

Study A considered 3 FSPs in the CIGRE network, offering their full flexibility. The 3
FSPs were loads 3,11 and generator 8. The FSP costs were 40 €/MW, 50 €/MW, and
60 €/MW. The exhaustive baseline approach performed PF simulations for all possible
shift combinations between the FSPs for each d p = 0.25MW, § g = 0.25MVAR increment.
The voltage constraints were vpin = 0.95p.uU., Vmax = 1.05p.u.. The simulations recorded
the cost and feasibility for the network constraints per combination. Study B.1 consid-
ered 2 FSPs in radial OBO, load 57, and generator 29 to compare the TensorColvolution+
performance to the exhaustive PF baseline with a § p = 0.025MW, g = 0.025MVAR in-
crement. The voltage constraints were vy = 0.95p.U., Vmax = 1.05p.u.. Missing values
were linearly imputed. Study B.2 considered 360 estimations of FAs for 2-15 FSPs on
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Figure 3.10: Test network lines (—), buses (e), high to medium voltage transformer stations (=), transformers

(©), external grid (w) .

the OBO, and OB1. Each estimated FA had a random set of FSPs between the network
loads and generators. For the cases with |[Q75”| = 10, the random FSPs were sampled
from 2 sets relating to different network regions. The 240 estimations had narrow volt-
age constraints with cpin = 0.95p.u., cmax = 1.05p.u., and 120 estimations wide voltage
constraints with cmin = 0.9p.u., cmax = 1.1p.u.. In narrow voltage constraints estima-
tions, around 400 pixels (as in Fig.3.14), and in wide voltage constraints around 670 pix-
els were explored. The number of pixels determined the values of 6 p, 5 g from the total
capacity of flexibility offers per scenario. For each estimated FA, 1000 samples of flex-
ibility shifts were generated with a Monte Carlo baseline. Each feasible sample gener-
ated from the baseline was assigned to a pixel on the proposed algorithm’s estimated
FA. If the pixel was estimated feasible by the TensorConvolution+, then the estimation
was correct. The percentage between the correctly assigned feasible pixels over the total
number of feasible pixels explored is ar. The percentage between the explored and not
explored pixels is a,. The 1000-sample sets were sampled from 2 conventional (uniform,
Kumaraswamy) and 1 harder distributions, amounting to 3000 samples. The CIGRE net-
work shows the effects of radial topologies and higher resolutions with 11 FSPs, loads
9,14,16,17, and generators 0, 1,2, 3,4, 5, 6 and narrow voltage constraints. The output for
the CIGRE network was around 10000 pixels with §p = 0.01MW,6 g = 0.02M V AR. Study
B.3 compares 3 FAs estimated using an OPF-based algorithm and TensorConvolution+.
The FAs included 5 and 6 FSPs on the CIGRE network. Study C considered 7 FSPs offering
any setpoint in their flexibility range, loads 12, 14,16 and generators 0, 1,2, 3,8. The wind
plant FSP (generator 8) only offered full curtailment (2 setpoints) to produce a discon-
nected area. The voltage constraints were set at 0.94-1.06p.u., a challenging case where
not-feasible shifts exist, but both areas in the disconnected FA include feasible shifts.
Study D considered 9 FSPs, loads 3,5,6,9,17, and generators 4,5,6,8 in the CIGRE net-
work. These FSPs varied in offered capacity, S from 0.03MVA to 1.5MVA. The step-size of
6p =0.1MW,6q = 0.2MVAR led to approximately 1500 pixels while neglecting 3 FSPs of
0.03,0.03, and 0.04MVA. The voltage constraints were vpin = 0.95p.u., Vmax = 1.05p.u..
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Figure 3.11: Selecting safe and cheap shifts with the unnormalized DFC (uDFC) in Fig.3.11(a). Additional
information on shift minimum costs (Min. Cost) in Fig.3.11(b). Possible shifts include a (=); very cheap, but
not safe, B (- ); cheap and safe, and {: ( ) expensive and not safe.

Study E scenarios considered visually different FAs for the same FSPs between initial
and altered OCs. The FSPs in the CIGRE network case were loads 3,5,6,9,17 and gen-
erator 8, with 6p = 0.2MW,5qg = 0.2MV AR. For the altered OCs, the power factor of
loads 0,7,8,12 and 15 was reversed for the CIGRE network. In OBO, shifts were randomly
sampled for all non-FSP generators and loads using normal distribution centered at the
expected OC’s values, with a standard deviation of 0.2. The FSPs in the OB0 case were
loads 18,22 and generators 26,50, with 6p = 0.068MW,6q = 0.068MV AR. The voltage
constraints were Unin = 0.95p.U., Vmax = 1.05p.u..

The algorithm’s output is an FA Pandas data frame. The times referenced correspond
to estimating the data frame. Simulations were performed on an Intel Core i7-1185G7
CPU with 16 GB RAM and an NVIDIA A100 GPU with 40GB VRAM. The GPU is avail-
able in Google Colab [97]. The algorithm’s implementation in Python also included the
PandaPower, SciPy, PyTorch, scikit-learn, and Numpy libraries.

3.4.1. DEC IMPROVING TSOS FLEXIBILITY SHIFT SELECTION

This case study exemplifies the improvement in flexibility shift selection using DFC.
Fig.3.11 illustrates the simulation results on the CIGRE network, and Tab.3.1 summarizes
the results for shifts a, §,(. Fig.3.12 illustrates the PF results for the cheapest flexibility
shift combinations reaching a, §,{. The a shift’s results are unsafe as multiple buses have
approximately 0.95pu voltage magnitude, and only 1.1% of the available combinations
for a are feasible. The few combinations available for { make this shift’s combinations
expensive, and less reliable (dependent on specific FSPs). The 193 feasible combina-
tions for f make this selection less dependent on specific combinations. In addition,
has safer results for the network constraints than a and costs cheaper than {. Thus, using
DEFEC, the TSOs can select safe and cost-efficient shifts.

3.4.2. ANALYSING TENSORCONVOLUTION+ PERFORMANCE
This case study visually and quantitatively evaluates the TensorConvolution+ perfor-
mance in terms of FA DFC, range, and computational speed.
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Table 3.1: Comparing shifts «a, ,{ with unnormalized DFC (uDFC), number of not-feasible combinations
(NFC), feasible combinations percentage (FCP), and minimum cost(Min.Cost).

Shift ‘ uDEFC [-] NFCI-] FCP[%] Min. Cost [€]
a 2 174 1.1 37.9
B 193 0 100 66.5
4 5 0 100 177.5
1.03 100
M, o, Bl
. 1.01 & ]
1 ) 60 k=
o0
0.99 £ i
\ ’ 0985 |40 —
5 =
- 0.97 r::ﬂs 20 3
0.96
0.95 0
(a) PFfor a. (b) PF for B. (c) PFfor(.

Figure 3.12: PF results for cheapest flexibility combinations for shifts «, §,{, where network voltage constraints
are 0.95-1.05p.u.

PERFORMANCE ANALYSIS FOR DFC

Fig.3.13 illustrates the resulting FA of the proposed approach and the ground truth, an
exhaustive PF-based approach on the radial version of OB0. The root mean squared
error between all pairs of pixels between Fig.3.13(a) and Fig.3.13(b) is 0.13, validating
the observable high similarity between the two FAs.

To analyze the computational times using the CPU, the exhaustive PF-based approach
needed 3 hours, 39 minutes, and 5 s for 480702 PF simulations. Increasing the number of
FSPs increases the number of PF simulations needed largely. For this case study, when
adding 1 more FSP, the number of PF simulations needed for the exhaustive PF-based
approach is 1300032. This number highlights the challenge the proposed approach ad-
dresses. The proposed algorithm needed 42.8s, a speed-up of over 300 times.

PERFORMANCE ANALYSIS FOR FLEXIBILITY RANGE

Tab.3.2 summarizes the average evaluation metrics of the scenarios on meshed OB0 and
OB for narrow and wide voltage constraints. The metrics Acy and Ac; are the mean ay
and a, over the estimated FAs. These results show a great performance of TensorConvo-
lution+ for the FA range. Fig.3.14 illustrates an example alignment of each distribution’s
samples with the algorithm’s FA estimation, as used to estimate ar and a, for each of the
360 FAs.

Multiple cases required more than the available RAM in the narrow voltage constraints
OBO estimations for 6,7 FSPs. In those cases, TensorConvolution+ aggregated at least
one pair of FSPs to one FSP for at least one network component to reduce the tensor
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Figure 3.13: The FA for TensorConvolution+ in Fig.3.13(a) and PF-based approach in Fig.3.13(b). The FAs in-
clude the DFC (W) for feasible shifts from the initial OP (%) and not-feasible shifts ().
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Figure 3.14: Monte Carlo-based results from different distributions aligned with the TensorConvolution+ out-
put. Feasible TensorConvolution+ output pixels (W). Not feasible TensorConvolution+ output pixels (ll). Fea-
sible Monte Carlo samples (7). Not feasible Monte Carlo samples (7).

dimensions.

Fig.3.15 shows the computational time to estimate the FA for different FSP numbers.
The authors multiplied the number of PF simulations needed for the exhaustive algo-
rithm with the time the GPU spent for 1 PF simulation (0.038s for OB0O and 0.039s for
OB1) to estimate the average time the baseline would need to estimate the 360 FAs. The
exhaustive PF-based algorithm would be intractable for the majority of the FAs. The
average time needed for the TensorConvolution estimations of Fig.3.15 varied between
6-36s and the average time over the 360 estimations was 11s. For a high resolution of
10000 pixels and 11 FSPs in the CIGRE network, the proposed algorithm needed 50s to
estimate the FA. The maximum number of FSPs impacting a component for the CIGRE
network’s FA was 4 due to the radial network structure. All estimations were performed
on the GPU.
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Table 3.2: Evaluation of Algorithm for OB0, OB1 Networks (Net.), with narrow and wide voltage constraints
(VO).
‘ Hard Uniform Kumaraswamy
VC Net. |QFP| | Ac%  Ac%  Acg%  Acc%  Acg%  Ac%
Narrow OBO 2-7 99 99 99 100 99 99
Narrow OB1 2-7 99 99 100 100 100 100
Wide OBO 10-15 99 99 99 99 98 98
X X « X
X « ) M
105 X 105 1010 X X
= . = ©
£ : £ : E 106
3 3
= 10 ) = 10 ) &
. 102
100 o 4 o ° ) 100 |* ° o 0 0 0 0 0
2 3 45 6 7 2 3 45 6 7 10 11 12 13 14 15
No. FSPs No. FSPs No. FSPs
(a) OBO with narrow voltage (b) OB1 with narrow volt- (c) OBO with wide voltage
constraints. age constraints. constraints.

Figure 3.15: Computational time of TensorConvolution+ (9) and estimated computational time for exhaustive
PE-based approach (X) per FSP amount.

COMPARISON WITH OPF-BASED METHOD

An OPF-based algorithm was employed to compare with the TensorConvolution+ esti-
mations. The OPF-based algorithm employed weighted-sum multi-objective optimiza-
tion with objectives max(0Ap° + (1-60)Ag°), max(—0Ap°+ (1-0)Ag°), max(OAp°® — (1 -
0)Aq°), and max(—0Ap° — (1 -0)Aq°). For each objective, 6 varied between 0-1 with
step size as a hyper-parameter. Due to convergence issues, the transforming loading
limitations were ignored in the OPF algorithm. The FSP flexibility in this section was
considered square where the active and absolute reactive power were between 0 and the
nominal power of the FSP.

TensorConvolution+ and the OPF-based algorithm were compared in three cases on the
CIGRE network. The cases varied in resolutions and network sensitivity to constraints.
First, a case with FSPs the loads 14, 16 and generators 2,4, 6. The first case resolution was
6p=0.01MW,5q = 0.02MV AR (= 690 pixels) and a # with 0.1 increments for the OPF-
based algorithm (44 OPFs). The second case included FSPs the loads 14,16 and gener-
ators 2,4,5,6. The resolution for the second case was dp = 0.02MW,dqg = 0.04MV AR
(= 300 pixels), and a 8 of 0.2 increments (24 OPFs). The third case included FSPs the
loads 3,5,6,17, and the generator 8. The third case resolution was 6p = 0.15MW, 6q =
0.3MV AR (= 1050 pixels), and a 6 with 0.1 increments (44 OPFs). The results of Fig.3.16
illustrate the FAs obtained for the three cases. The two algorithms agree on the shape
of the FAs. However, the TensorConvolution+ algorithm also explores the inner area
feasibility and estimates the DFC. Regarding computational burden, using the GPU for
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Figure 3.16: Comparing FAs from TensorConvolution+ and OPF based algorithm.

cases 1,2,3, TensorConvolution+ required 9s,5.4s,23.3s, and the OPF-based algorithm
required 37.6s,21s,36.3s respectively.

3.4.3. ESTIMATING DISCONNECTED FLEXIBILITY AREAS

This case study showcases the proposed algorithm’s capability to estimate disconnected
FAs and to deal with non-linear FSPs. Fig.3.17(a) illustrates the proposed algorithm’s
result compared to the result from 10000 samples of Fig.3.17(b) using the Monte-Carlo-
based algorithm with "Hard" distribution. The PF-based algorithm was not capable of
effectively exploring the disconnected areas, as the exact limits of feasible areas are un-
clear. The proposed algorithm was capable of estimating the FA, the range, and DFC in
8.55 using the CPU or 7.4s using the GPU.
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Figure 3.17: Disconnected FA Predicted by TensorConvolution+ and the Monte-Carlo-Based algorithms.
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Figure 3.18: FA with DFC for feasible combinations (W), density of uncertain combinations (DUC) for feasibility
(™), and not feasible FSP shift combinations (l) from initial OP (%).

3.4.4. INCLUDING FLEXIBILITY FROM SMALL FSPs

This study shows the proposed algorithm’s capability to include contributions from small
FSPs. The increments 6 p,d g between FSP shifts determine the FA resolution. In cases
with large differences in the flexibility between the larger and smaller FSPs, reducing the
resolution is impractical. Thus, the algorithm initially neglects all FSPs offering flexibil-
ity lower than 6p,§q and estimates the FA from the rest. Then, using bi-linear spline
interpolation increases the resolution of the estimated FA to add the smaller FSPs. The
algorithm convolutes the enhanced FA with the previously neglected FSPs’ shifts. The
additional area obtained in the last result constitutes the uncertain FA (not tested for
the network constraints). In this study’s results, after neglecting 3 small FSPs, the algo-
rithm increased the pixels of the evaluated area 5 times and aggregated the previously
neglected FSPs. Fig.3.18 visualizes the resulting FA. The uncertain FA addition process
caused 11.09s delays using the GPU, with the rest of the FA estimation process needing
53.2s.
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Figure 3.19: Adaptability of FAs from initial OCs to altered OCs.

3.4.5. ADAPTING FAS FOR PARTIALLY OBSERVABLE OCS

This case study showcases the algorithm’s capability to adapt FAs for altered partially
known OCs. For the CIGRE network, the algorithm used the tensors computed for Fig.3.19(a),
and the partial initial OCs of Fig.3.19(c) to estimate the FA in Fig.3.19(e). The OC change
from Fig.3.19(a) to Fig.3.19(c) increased the CIGRE network’s buses’ sensitivity to the
over-voltage constraints. For OBO0, the algorithm used the tensors computed for Fig.3.19(b),
and the partial initial OCs of Fig.3.19(d) to estimate the FA in Fig.3.19(f). The OC change
from Fig.3.19(b) to Fig.3.19(d) reduced the OBO component sensitivities to FSP shifts.
The adapted areas of Fig.3.19(e) and Fig.3.19(f) approximate the ground truths of Fig.3.19(c)
and Fig.3.19(d). However, the adapted FAs required the initial OCs from limited compo-
nents; 13 components in the CIGRE network, and 11 in OBO.

Using the GPU, estimating Fig.3.19(a) and Fig.3.19(b) and storing the tensors required
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286s and 636s. The ground truths of Fig.3.19(c) and Fig.3.19(d) required 13.2s and 17.6s
respectively. The adapted areas of Fig.3.19(e) and Fig.3.19(f) required 6.8s and 8.3s, re-
spectively. Adapting FAs using the computed values for prior FAs is a capability absent
in existing algorithms. The required computing time for TensorConvolution+ can be re-
duced to approximately half through this capability.

3.4.6. DISCUSSION

The proposed algorithm can evaluate the feasibility for the network constraints for all
combinations between the FSP shifts. The studies show that this evaluation can benefit
system operators in selecting shifts. Shifts with higher DFC offer more feasible flexibility
options for system operators. Bigger DFC relates with a higher margin from the net-
work constraints (Fig.3.12) and lower costs (Tab.3.1). The results show that TensorCon-
volution+ is the most computationally efficient algorithm for FA estimation with DFC
among the algorithms studied. Simulations between the exhaustive PF-based alterna-
tive showed that the proposed algorithm could improve the computational speed over
300 times for 2 FSPs. The speed improvement increases with FSPs (Fig.3.15) as the re-
quired PFs for the exhaustive approach are (3.2). Most existing algorithms do not eval-
uate all flexibility combinations but focus on estimating the FA range. The proposed
algorithm has high confidence in estimating the FA range, with an average Acy = 99%.
Identifying which FA regions are feasible and which are not is important for system op-
erators to adopt FAs. Existing algorithms can have issues estimating disconnected FAs,
causing estimation delays or incorrectly assuming in-between regions as feasible [19].
The proposed algorithm makes use of the impulse response property of convolution
(Sec.3.3.1) to estimate disconnected areas with low computational burden. The results
show that the algorithm can estimate disconnected FAs in 7.4s with distinct feasible
regions (Fig.3.17). The results demonstrated that the proposed algorithm perform for
meshed and radial network topologies, which was a challenge for existing algorithms.

The parameters d p,d q, and c,, ¢; influence the proposed algorithm’s performance. Low-
ering 0 p, 0 q, increases the FA resolution and computational burden. For a total offered
flexibility P;o;, recommended 6 p = 0.05- P;o;,0g = 0.1- Q¢ result to approximately 400-
pixel FA. Lowering c,, ¢; increases the complexity of (3.7)-(3.8). Recommended values
0f 0.001 = ¢, = 0.0001,1 = ¢; = 0.1 are based on the initial OC minimum margins from
the constraints. The proposed algorithm’s main limitation is the memory usage to store
all flexibility combinations in tensors. As FSPs and constraint-sensitive DN components
increase, this limitation becomes more notable. Aggregating FSPs for the components
requiring unavailable memory can reduce this limitation. Alternatively, using memory-
efficient software can mitigate the limitation. Another limitation concerns the need for
complete network observability for (non-adapted) FA estimation.

3.5. CONCLUSION

This chapter develops an approach to estimate the flexibility of distribution systems for
TSO-DSO coordination. This approach has a near-term practical value for power system
operators. This chapter introduces applying tensors and convolutions for the flexibil-
ity estimation task, utilizing their useful properties. The proposed density of feasible
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combinations (DFC) improves deciding on operating points that guarantee higher flexi-
bility. The proposed algorithm makes computing and identifying these operating points
tractable. The tractability is realized by minimizing the required PF simulations, ap-
plying convolutions, and using tensors. Convolutions aggregate flexibility from FSPs,
including DFC. Tensors store the impacts of FSP shift combinations to determine the
combination feasibility. Moreover, the algorithm applies the Dirac function to represent
discrete FSPs. This application allows estimating disconnected FAs with low computa-
tional burden.

Case studies on 15—, 70—, and 109—bus systems show the proposed algorithm’s perfor-
mance on meshed and radial networks for connected and disconnected FAs. The results
show high numerical confidence in the FA range and DFC. The algorithm estimated the
FA around 300 times faster than the alternative approach. The algorithm’s average du-
ration of 11s renders the approach promising for further development toward near-real-
time TSO-DSO coordination.

Future work can investigate dealing with limited observability in distribution systems.
The investigation will explore deep learning-based approaches or techniques from sys-
tem identification that may advance this flexibility estimation approach. Subsequent
work will pursue further improvement of the proposed approach’s memory efficiency.
Future research will also explore algorithms that can adapt to changing network topolo-
gies. Changing network topologies alters the impacts of FSPs on network components.

Thus, approximating the impact alterations should allow adapting FAs for changing topolo-

gies.






SELECTION FOR FLEXIBILITY
AREAS USING PROBABILISTIC
MACHINE LEARNING UNDER
MEASUREMENT UNCERTAINTY

What we observe is not nature itself, but nature exposed to our method of questioning.

Werner Heisenberg

Coordination between transmission system operators (TSOs) and distribution system op-
erators (DSOs) can support TSOs in using distribution system (DS) flexibility while en-
suring feasible operation. Flexibility areas can support TSO-DSO coordination, aggre-
gating the total feasible flexibility within the DS. However, existing real-time estimation
approaches do not consider the limited measurements within DS. This chapter proposes a
Bayesian neural network (BNN) to estimate the operating conditions that bound the op-
erational flexibility, including epistemic and aleatoric uncertainties. These uncertainties
stem from the limited real-time measurements in DSs and the measurement noise. TSOs
can select a threshold that confirms a probability of safety, considering uncertainty mar-
gins. The chapter also provides FA estimation in DS topologies with 2 points of common
coupling (PCC) with the transmission system. Case studies in the CIGRE and Oberrhein
networks compare the proposed BNNs to baseline statistic-based approaches for forecast
and measurement uncertainty in FAs. The case studies show the proposed FA estimation

Parts of this chapter are in: D. Chrysostomou, J. L. R. Torres and J. L. Cremer, “Selection for Flexibility Areas
using Probabilistic Machine Learning Under Measurement Uncertainty”, Under Review, 2025.
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under various safety margins and systems with 2-PCC. Case studies also assess various
measurement noise levels and evaluate model performance for different DS topologies.

4.1.INTRODUCTION

Flexibility from service providers (FSPs) in DSs can ensure a resilient and efficient trans-
mission system (TS) and DS operation. FSPs can modify their active and reactive power
net injection upon request by the TSOs or DSOs to avoid or address TS or DS issues, such
as congestion.

Aggregated DS flexibility areas (FAs) can facilitate the coordination between DSOs and
TSOs for DS flexibility. DSOs can inform TSOs about the total feasible flexibility avail-
able within DSs using FAs, without requiring the exchange of details on DS topology,
and operating conditions. A flexibility combination is feasible if the resulting operating
condition fulfills all power flow constraints in the DS, and line loading and bus voltages
do not exceed rated values. By summarizing the capabilities of FSPs within DS, FAs en-
able TSOs to access the flexibility needed for balancing supply and demand, managing
congestion, and enhancing system stability at the transmission level while ensuring DS
feasibility. This TSO-DSO coordination approach simplifies the DSO-TSO interaction,
ensures data privacy, and reduces the complexity of operational coordination while still
using the potential of DS flexibility to support grid reliability and efficiency.

Existing FA estimation approaches mainly require the operating condition (OC) of the
DS as input, as [21]-[25]. However, DSs can have limited real-time observability with
measurement units on limited network components [1], [27]-[29], e.g. 5-40% in medium
voltage (MV) DS [98]. Thus, DSOs might not know the exact physical feasibility margins
from all DS constraints due to this limited observability. These margins are important
for DSOs to evaluate the feasibility of flexibility combinations. Although some existing
approaches address forecasting uncertainty in day-ahead FA estimations [18], [20], [30],
existing FA approaches neglect the limited observability in real-time FA estimation.
This chapter proposes a new approach for FA estimation, using probabilistic BNNs to as-
sess the risk for non-feasible flexibility due to limited DS observability and DS constraint
approximation error. BNNs extend conventional neural networks by including uncer-
tainty estimation in the predictions [99], [100], capturing inherent uncertainty from the
available measurements and the uncertainty in model parameters. These probabilistic
estimates indicate the model prediction confidence and problem uncertainty, which can
be important for robustness in tasks involving critical infrastructure, such as the power
grid. The main tractable approaches in BNNs include variational inference [77], Monte
Carlo dropout [76], and deep ensembles [78]. The proposed approach enables the TSOs
to select the safety percentage in the resulting area. A lower safety returns a larger FA
for TSOs to select an operating point, whereas a higher safety better secures feasibility
on the selected operating point. Nevertheless, the proposed approach also includes the
density of feasible combinations for each operating point and the given safety. Thus, for
a low-safety FA estimation, a higher-density operating point provides more reliability in
finding alternative flexibility combinations.

FA estimation approaches apply steady-state simulations, typically using power flows
(PF) [20], [24], or optimal power flows [18], [22], [23]. PF-based approaches typically
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apply Monte-Carlo sampling for a predetermined number of combinations. OPF-based
approaches apply different multi-objective optimization (MOO) techniques. These ap-
proaches typically rely on an initial DS forecast or approximated state to evaluate the
feasibility of different flexibility combinations. To deal with uncertainties from renew-
able sources in aggregated flexibility area estimation, [30] applied a chance-constrained
method, and [18], [101] applied robust optimization. [20], [102] included the probability
distributions of forecast errors to determine the probability of feasibility, and [103] fo-
cused on forecast uncertainty generation. The approaches of [18], [20], [30], [101]-[103]
consider the forecast uncertainties rather than real-time observability uncertainty and
map these uncertainties to the network constraints using the power-flow relationships.
The proposed approach approximates the network constraint margin uncertainty using
BNNs, considering the real-time measurements and limited DS observability.

Existing FA estimation approaches rely on TS-DS interconnections with a single point of
common coupling (PCC) [18], [20], [22]-[24]. However, DS ring topologies with 2 PCCs
are increasingly adopted and can improve the DS losses [104]. The main challenges for
estimating FA of TS-DS connected with multiple PCCs are the dependencies between the
PCCs [38] and the complexity of representing these dependencies. This chapter provides
an approach to estimate and represent network flexibility with 2 PCCs.

Distribution system state estimation (DSSE) algorithms consider the challenge of lim-
ited observability in DSs by estimating the system’s state using available measurements
and pseudo-measurements. These algorithms primarily estimate nodal voltage mag-
nitudes and angles [14], [28], [105], [106], though some also estimate nodal active and
reactive powers [107] or additional metrics as line loading [108]. DSSE approaches ap-
plied Bayesian models for non-Gaussian pseudo-measurement uncertainties [107], to
fuse measurements with varying sampling rates [105], or to generate data samples to
train deep learning-based DSSE models [106], [109]. Bayesian models for DSSE often
model uncertainties but typically provide a single expected state estimate [105], [107].
These DSSE approaches generally focus on estimating voltage magnitudes and angles.
The proposed FA estimation approach applies BNNs to estimate the probabilistic DS
constraint margins, accounting for the available measurements to provide a FA that is
constrained by the safety margins selected by the TSO. The proposed approach also in-
cludes real-time interface (RTT) measurement considerations. RTI is a platform in the
Netherlands that mandates DER with a capacity higher than 1MW to provide real-time
measurements to system operators.

This chapter develops an approach for FA estimation with BNNs to consider the esti-
mation and DS observability uncertainties. This chapter analyses the performance of
BNN approaches considering the impact of network sizes, assumptions about noise lev-
els, and data distributions for the power system task. The proposed FA approach also
includes an algorithm for networks with 2 PCC. Therefore, the main contributions are:

1. FA estimation approach that considers the uncertainty for the DS constraint mar-
gins due to limited DS observability and estimator uncertainty.

2. BNN model structures to estimate FAs considering real-time uncertainties and
data distributional changes.

3. Approach approximating and representing FAs in networks with 2-PCCs.
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The case studies use the CIGRE 15—bus MV network and Oberrhein 70—, 109—, and
179-bus MV networks. The case studies compare the proposed BNN model to alter-
native approaches for FA uncertainty, and demonstrate the proposed approach for FA
estimation in DS with 1 and 2 PCCs.

4.2. LIMITED OBSERVABILITY IN STEADY STATE FLEXIBILITY AREA

ESTIMATION

4.2.1. PROBLEM INTRODUCTION

Let a DS state described by X(¢) € R"*2, V() € R", L(t) € R* at time ¢. The matrix X(¢) is
the active and reactive power injected at each of the n nodes, V() is the voltage magni-
tude at each n, and L(¢) is the loading at each of the k lines and transformers. The FSPs
can linearly modify X(#) by increasing or reducing the injection on a subset of the DS
nodes 7. However, the impact on the network component loading and voltage is non-
linear. Thus, a combination of flexibility shifts from FSPs at ¢ is U(t, 7) € QU (£,7) c R?*?,
where QU (t,7) is the set of all flexibility combinations at ¢, and 7 is the duration until the
new state is achieved. Applying U (¢, 7) would result in a new state after 7 as:

XEt+1)=X®+B-U(t,71), 4.1)
V(t+1)=V(@)+F'(X(),V(®),U(t,1), 4.2)
L(t+7) = L(t) + F{(X(0), L(1), U(1, 7)), 4.3)

where B € {0,1}"*" is a binary matrix with 1 on each FSP’s corresponding node and 0
otherwise, e.g. if only the 5 FSP is connected on the 1°/ node, the first row of B will be
1 only on the fifth element. F?(-), F*(-) are the non-linear functions of flexibility impacts
on network component voltage and loading, respectively.

A network includes voltage constraints cgﬁn, cy'®, and loading constraints c}na". The ob-
jective of a steady-state FA estimation algorithm is to describe the feasible area (consid-
ering DS constraints) of active and reactive power exchange at 7 PCCs between the TSO
and DSO, given all available flexibility combinations QU (¢, 7). A single PCC’s active and
reactive power exchange is xpcc(t). As shown in [1], [110], an additional dimension for
the density of feasible combinations can further demonstrate the reliability in achieving
a PCC operating point. Reliability in terms of a plethora of alternatives to achieve said
operating point. Thus, the FA objective is to identify Y (¢ + 1) cR" *3 as:

Y(t+71)= {y(t+r) = FA(X(I),L(I),V(t),U(t,T))I,

U, eQV(t,7), ™" < V(£ +1) < ¢,
L(t+7) <P, (4.4)
where y(t+ 1) € R™3 describes the active power, reactive power, and density of fea-
sible combinations (DFC) [110] for each PCC operating point. Function FA() applies

each U(t,7) € QU(¢,7) on (4.1)-(4.3) and aggregates the feasible combinations for each
Xxpcc(t+T1)as[110].
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Figure 4.1: Overview of proposed FA estimation process.

4.2.2. FA UNCERTAINTY

Existing approaches mainly apply (4.1)-(4.3) by solving the power flow relationships.

However, DSOs do not deterministically know X(#), V(#), L(?) to estimate the FAs. De- u
pending on the intended FA estimation speed, the X(#), V (?), L(#) source for uncertainty

can be:

1. In the day-ahead estimation of FAs, DSOs forecast the DS operating conditions,
which can differ in real-time.

2. In the real-time estimation of FAs, DSOs only measure a subset of the network
components.

Addressing the day-ahead FA estimation forecast uncertainty, existing approaches [18],
[20], [30] include the standard deviation in DER injection forecasts for X (¢) to provide
robust or chance constrained FAs. However, for limited observability in real-time, exist-
ing approaches neglect the resulting FA error [1]. This research addresses the impact of
real-time limited DS observability on the FA estimation task.

FA estimation uncertainty can be split into aleatoric and epistemic. Aleatoric uncer-
tainty is inherent in data and cannot be reduced, e.g., measurements and pseudo- mea-
surements have noise that causes uncertainty. Epistemic uncertainty relates to the model’s
structure, parameters, or assumptions due to limited data. Different data distributions
and patterns can be absent in the model development, however appear in model deploy-
ment. Existing FA estimation approaches for forecasts focus on aleatoric uncertainty.
Considering this uncertainty, a safety margin for the DS loading and voltage constraints
can alleviate any potential impact from the miscalculation of the initial DS conditions.

4.2.3. PROPOSED FA ESTIMATION APPROACH

Fig.4.1 shows the proposed FA estimation. The DSO provides the measured and pseudo-
measured DS variables and the percentage p” for safety margin. FSPs provide their of-
fered flexibility, to obtain the U(t,7). The proposed approach estimates F?(-), F!(-) and
the tensors of flexibility impacts on the constrained voltage and loading variables using
the modified TensorConvolution+ algorithm of [110]. The BNN estimates the distribu-
tions of the constrained DS voltage and loading variables using the available measure-
ments and pseudo-measurements. Using these distributions, the p”, and the estimated
flexibility impact of each FSP combination, the proposed approach evaluates the feasi-
bility of each flexibility combination. The approach then aggregates the filtered feasible
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Figure 4.2: Feasibility evaluation example.

combinations as in [110] and returns the flexibility area. Thus, the proposed approach
adds minor computational burden to [110], mainly for the BNN estimation. Fig.4.2 il-
lustrates how the considered uncertainty and accepted safety by the TSO can influence
the flexibility considered feasible. For the TSO-selected safety and uncertainty levels in
Fig.4.2, the impact from the flexibility combination could result in over-voltage. Thus, in
this example, the proposed algorithm would consider the combination non-feasible.
The proposed approach first assumes a local approximation of voltage and loading sen-
sitivity to a flexibility action. If two DS states {X (¢), V (), L(£)}, (X (1), V(£), L(#)} are within
a small ball of radius ¢, then YU (¢, 1) € QY (¢, 7):

FU(X(8),V(8),U(t,T)) = FY(X(8), V(8),U(t,T)) (4.5)
FIX), L), U, 1) = F{(X (0, L0, U(t,7)) (4.6)

Thus, this local approximation assumption represents the sensitivity functions as similar
for close DS states.

Let QP be the set of DS buses excluding the PCC buses, Q" the set of DS lines and trans-
formers, i.e. |Q*| = k. Let X (1), V(t), L(#) be the expected network state values consid-
ering the measured and pseudo-measured variables, i.e., measured variables have lower
noise. Considering the limited observability, any estimated values for voltage and load-
ing V (1), L(¢) will have some mismatch €, €] from the actual voltage and loading values
V(#),L(t). The proposed probabilistic estimator represents this imperfect estimation
and task’s stochasticity by estimating the distribution for each bus voltage v;(£)ViQ?,
and line or transformer loading ; (1)V j € Q*, given the measured and pseudo-measured
values. Thus, the proposed probabilistic model estimates a a normal distribution for
each v; (1), 1j(1) as A (uy, (1), 0%, (D), Vi € QF, N (u; (t),ofj(t)),v]' € Q1 where p,, (1), 02 (1)
are the model’s expected value and standard deviation for the voltage magnitude of bus
i at ¢, and B (t),o%j( t) are the model’s expected value and standard deviation for the

loading of line or transformer j at ¢. Using these standard deviations, the proposed ap-
proach applies the quantile function H(:) (inverse of cumulative distribution function)
to select a safety level for the network constraints. The quantile function takes a proba-
bility and a distribution as inputs and returns the margin r. The probability of a sample
being inside the margin r equals the input probability p”. For example for p = 84%, the
H(-) of a normal distribution will return r = 1, for the margins u,, () £ r -0, (¢). Hence,
84% of samples from the input distribution would be within the u,, () £ 0, (¢). Through
H(-), the TSOs can select the safety percentage for the FA, p” %, being the probability of
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the actual network state being within the estimated margins, modifying (4.4), (4.2), and
(4.3) to:
Y(t+71) = {y(t+7) = FAX (@), L0, V(1), UL, 1),
u,neV),
cIUmn Spy(t+1)—1-0,(DVi€E Qb,

o, (E+T) +7-0,, (1) < MV ie QP

iy, (E+ 1) + 10, (1) < "V j e QY @.7
r=H(p"), (4.8)
o (E+7) =y, (8) + F(X(0), V(), U(t,7)),Vie QF, 4.9)
pa; (£ +7) = pg, (0) +F{X (@), L, U(t,1)),Vj e QM. (4.10)

4.2.4. Two-PCC FA ESTIMATION

Considering two PCCs in FA estimation would require aggregating feasible points in 4 di-
mensions, the active and reactive power per PCC. Visualizing these 4 dimensions can be
challenging, while this increased dimensionality can worsen the implementation com-
plexity or computational burden for the FA estimation. The proposed approach con-
siders that the TSO can select and decouple the flexibility for active and reactive power.
Alternatively, estimating two single-PCC FAs, one for each PCC can represent the prob-
lem while neglecting dependencies between the PCC operating points.

The proposed approach modifies y(t + 1) of (4.7) selecting the first two dimensions as
(i) active powers of the two PCCs and (ii) reactive powers of the two PCCs. The third
dimension is the density of feasible combinations. This approach initially runs power
flows to estimate FV(-), F ! (-) as in Fig.3.3. However, the sensitivity matrices’ (and impact
Tensors’) first two dimensions are the TSO’s selection of active or reactive powers. If the
TSO considers active and reactive power flexibility from the two PCCs, then the DSO can
perform 2 simulations, selecting two of the 4 dimensions for each simulation. However,
this selection will decouple the two sets of dimensions.

4.3. BAYESIAN NEURAL NETWORK BASED APPROACH
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Figure 4.3: Overview of proposed BNN model output estimation process.

Figure.4.3 illustrates the proposed BNN model process in estimating the bus voltage
magnitude and the line and transformer loading distributions. The BNN model esti-
mates the distributions per datapoint Z times, each time with different model parame-
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ters to approximate the epistemic uncertainty. For each parameter setting z € Z and in-
put features y = [vec(X), V, L] € R¥"*k, the BNN estimates the output means Hzv; Mzl
and aleatoric standard deviations U?’Ui,O'Z‘ I for bus voltages and line or transformer
loading. The loading variables have different scales and variability from the voltage and
power injection variables. Hence, the proposed approach first performs standard scaling
on all input features.

The proposed supervised BNN uses a training dataset D with |D| data points. During
training, the model processes the dataset D in batches. The model uses these batches to
compute predictions, compare them to the true labels using a loss function, and update
its parameters via backpropagation. Each datapoint d € D includes input features y4
and targets ¢g = [v;Vi € Q¥ [;Vje QM e RI"HI2Y | yec(.) vectorizes an input matrix
and || is a set cardinality.

Conventional supervised feed-forward neural networks (FNNs) return point predictions
for the above targets ¢, given the input features y,4, and trained parameters W. These
FNNs approximate the underlying input-output relationship using the available training
data. However, these point predictions are also impacted by the inherent noise within
the training data and the data distributions, which might differ from the real-life appli-
cations. Therefore, understanding what the models do not know can be critical for ML
[T11].

BNNs consider the aleatoric and epistemic uncertainties in their estimations. To con-
sider these uncertainties, BNNs do not make point predictions but rather predict distri-
butions of possible outputs for the given inputs:

p(v,-l)(,D)=fp(v,-|)(,W)p(W|D)dW,ViEQb, (4.11)

p(lj|X,D)=fp(lj|)(, W)p(WID)dW,V j € Q*, (4.12)

where p(-) is a probability distribution, p(v;|x, W), p(l;|x, W) are the likelihoods of the
outputs given the inputs and model parameters, p(W|D) is the posterior distribution
over the model parameters. The integral represents the marginalization over all possi-
ble model parameters W. The v;,[; in (4.11) and (4.12) are the values from the dataset
targets, split to return one normal distribution per target.

4.3.1. EPISTEMIC UNCERTAINTY

To consider the Epistemic uncertainty, BNNs do not have a single setting of parame-
ters but rather use different settings of parameters weighted by the posterior probabili-
ties [100], the p(W|D) term. As (4.11), (4.12) can be computationally challenging, main
approaches such as variational inference[77], Monte Carlo dropout [76], and deep en-
sembles [78] approximate (4.11),(4.12). Variational inference uses a variational posterior
q(W|D) to approximate the true posterior p(W|D), thus optimizing the parameters of
the distribution g(W|D). Monte Carlo dropout applies dropout during training and in-
ference time. During inference, the BNN model estimates the output distributions for
the same inputs multiple times, with the activated dropout resulting in different neu-
rons being deactivated each time. Therefore, for Z estimations for the same inputs, Z
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different parameter settings are used, approximating (4.11),(4.12) with:

1 Z
pilp, D)= — 3 pwily, We),  We~q(WID), Vi eQ?, (4.13)
z=1
1 & .
pUjlx. D)~ — Y pUjlx, W,), W,~q(W|D),VjeQ". (4.14)
z=1

Deep ensembles train Z independent FNNs, resulting in Z different parameter settings,
applying (4.13), (4.14).

4.3.2. ALEATORIC UNCERTAINTY

To consider and estimate aleatoric uncertainty, BNNs include standard deviation o ,, ,az I

for each predicted outputin the p(v;|x, W), p(l;|x, W) terms of (4.11),(4.12), and (4.13), (4. 14) u
The proposed BNN for FA estimation considers aleatoric uncertainty as heteroscedastic

[111], i.e., dependent on each data point rather than being constant for all data, e.g.,

varying environmental factors can impact measurements and pseudo-measurements

differently between prediction instances.

4.3.3. BNN MODEL OUTPUT DISTRIBUTION ESTIMATION
The mean value, and the epistemic, aleatoric, and total standard deviation per output
are:

1 Z . b
Mo, = EZ v Vi€Q?, (4.15)
0y, =1/ (05)2+(0},)?, (4.16)
Z
o4 = —Z(Uﬁ,y,-)z, VieQ?, (4.17)
\ z=1
Z b
Uii:\ EZ (Hzw; — )%, VieQ?, (4.18)
1 V4
. A
py = E; alp VjeQh, (4.19)

o1, =,/0)2+(0} )2, (4.20)

1 o
UZ:\E;(UZ’Zj)Z’ vjeal (4.21)
1 Z 1
0] =\| 5 2 (e, —11))?, VjeQ (4.22)
j \ZZ:1 j i

(4.16), (4.17), (4.18), (4.20), (4.21), (4.22), use variances before estimating standard devi-
ations, as variances can be additive for independent estimations. (4.17),(4.21) estimate
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the aleatoric variances for each target as the average variance from the Z BNN output
standard deviations [111]. (4.18), (4.22) estimate the epistemic variances for each tar-
get as the average variance of the mean predictions for each target distribution [111].
(4.16),(4.20) add aleatoric and epistemic variances to obtain the total variance [111].

4.3.4. MODEL TRAINING LOSS FUNCTION

As the BNN estimates a distribution per output, the negative log-likelihood (NLL) func-
tion measures how well the estimated distributions represent the actual distribution
generating the data [78], [112], [113]. NLL considers the confidence in the aleatoric un-
certainty, and the error between the predicted mean and the target values as:

|D| _
LniL(0) = — M

1 2
IDI =6 2-(07(?11)2 i EZOg(Gad) 423

X

’Y Xd Z,V;

OMT include voltage and loading variables that differ in scale and deviation. For VI, the
loss can also include a regularization term on the Kullback-Leibler divergence. Different
scales and variances for a subset of outputs can impact the loss function to focus on the
subset that produces a higher numerical loss, e.g., a 0.5p.u. voltage mismatch is severe,
whereas a 0.5% loading mismatch is minor. Hence, the proposed approach performs
standard scaling in the target outputs during training, to ensure (4.23) is not impacted
by the different output units. This scaling results in standardized (4.15)-(4.22). Thus,
the proposed BNN output estimation (Fig.4.3) performs inverse standardization on the
outputs to obtain p.u. voltage and % loading scaling.

The BNN outputs, iy, = [z, Vi € Q% . ¥j e QN7 0% = (0%, Vi€ Qb,og,ljv]' €

4.4, CASE STUDIES

The case studies used the CIGRE MV network, the networks from the separated Oberhein
substations 0 (Ob0), 1 (Ob1l), and the connected Oberrhein network (Ob) as visualized
in Fig.4.4. All case studies considered the PCC buses, the HV-MV transformers, and the
buses bellow the HV-MV transformers as observable (v, I, B, Q measurements). In the CI-
GRE network, the wind turbine with 1.5MW capacity would require RTT measurements.
For Oberrhein networks, all buses connected to 3 lines or more were considered observ-
able.

The case study in Sec.4.4.1 included the CIGRE network of Fig.4.4 in a meshed (closed
switches) and radial topology (open switches) with 4 FSPs. For each FSP, Sec.4.4.1 con-
sidered all shifts [AP, AQ] with steps 0.1MW constrained by the FSP’s initial output. For
each shift, 100 different DS operating conditions were sampled by changing the power
injection X(¢) of all non-observable loads and generators with mean 0 and standard de-
viation aP™ € {1,2,5,10,20,50}% for pseudo-measurement errors.

The case study in Sec.4.4.2 compares the proposed BNN model’s performance to mod-
ified uncertainty evaluations from FA estimation literature. Appendix C includes the
comparative analysis performed on BNN structures: a variational inference (VI), Monte
Carlo dropout (MCD), and deep ensemble (DE) models. The MCD model had the high-
est consistency under different test set distributions.
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For the baseline design, existing forecast-based evaluations map the uncertainty of nodal
injections to the network constraints using the power flow relationships [20], [30], [102],
[103]. For example, [30] assumed a mathematical linear relationship between power in-
jection forecast errors and deviations in voltage magnitudes and angles. However, the
[30] formula is rather complex, includes participation factors, and excludes the loading
variables. The [20] approach runs multiple power flows for different forecasts to ap-
proximate the probability of feasibility. This case study approximates the constraint un-
certainty mapping using power flows and data statistics. This statistical approximation
considers a forecast DS operating condition per hour for each of the Fig.4.4 systems. For
each hour forecast, the statistical approximation estimates 100 “actual” operating con-
ditions with oP™, and !4,y the load, and PV correlation, respectively. The average
standard deviation from the 100 samples returns the o, Vi € Qb o, Ve Q* for each

forecast condition. For each network, the approximated o, Vi € Qb o VjE Q* used

datasets with 0P™ = 20%, ¢! = 60%, ¢P" = 70%, like the BNN training datasets. The case
study of Sec.4.4.2 also considers a second baseline, where the measured buses included
U’UW,U;]" power and loading measurement standard deviation, instead of o™, to create
a measurement-based statistical approach. The baseline test datasets for each network
vary the o”™ € {10, 20,50}% and 0,71 = 0;" € {1,2,5}% as the BNN test datasets. For each
baseline model’s test set evaluation, the estimated mean resulted from the power flow
solutions, whereas the standard deviations were the training set hourly standard devia-
tions.

The evaluation metrics for the BNNs and the baselines were (i) the prediction interval
coverage probability [114]-[118] for 95% (PICPgs):

1
= —= (4.24)
DI 7=1 |0 otherwise

% {1 if pg € [py, +1.96-0y,]
where D are the validation and test sets, and Oy, = loy,Vie Qb,alej e OMT. The
PICPg5 metric shows how well the model confidence reflects the actual test data, i.e.,
PICPg5 should be as close to 0.95, whereas PICPg5 > 0.95 shows under-confident model,
and PICPgs5 < 0.95 overconfident model. An overconfident model estimates too narrow
uncertainty intervals. Additional evaluation metrics are (ii) the root mean squared er-
ror (RMSE) between the mean predictions and the actual values [78] (should be as close
to zero as possible), (iii) the negative log-likelihood [78], [100], [112] (should have the
lowest value).

The case study in Sec.4.4.3 estimates safety-constrained FAs in the OB1 with, ¢}'** =
1.05, c,']“'” = 0.95, and 5 FSPs. The active and reactive power discretization steps were
0.05MW, 0.1MVAR, respectively. The o, =0.01p.u.Vi € Qb, oy = 4% for all the lines and
2% for the measured transformers. The FSP flexibilities were any power setpoint within
each FSP’s nominal apparent power.

The case study in Sec.4.4.4 estimates safety-constrained FAs in the OB with 2 PCC, with
7 FSPs. The active and reactive power discretization steps were 0.03MW, 0.03MVAR, re-
spectively. The uncertainties were the same as Sec.4.4.3. Due to the initial DS condi-
tions being outside the 0.95 — 1.05p.u. limits, the constraints were c*" = 0.9p.u. and
c)'%* = 1.1p.u.. The FSP flexibilities for the active power scenarios were any setpoints
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S N

(a) OB. (b) ObOmand Ob1 =. (c) CIGRE MV.

Figure 4.4: Test network lines (—), buses (o), HV-MV transformer stations (u), transformers (<), external grid
(w), CIGRE observable buses (o), RTI observable buses (»), switches («%). (b) shows how Ob separates into Ob0
and Obl.

below the initial active power. For reactive powers, the flexibilities were between —150%
and 150% from the initial reactive powers for the loads and between —50% and 50% from
the initial active power outputs for the generators (as the initial setpoints had 0 reactive
power).

4.4.1. SENSITIVITY LOCAL APPROXIMATION

This case study analyses the impact of different pseudo-measurement deviation lev-
els on the sensitivity between DS operating conditions, for the validity of the assump-
tion in Sec.4.2.3. The FA estimation algorithm approximates the sensitivity of network
buses F'(-) and lines F'(-) to FSP shifts using measured and pseudo-measured values
(X(0),V(0),L(1),U(t, 1)} instead of the actual, unobserved values {X (¢), V (¢), L(), U (¢, 7)},
assuming F?, F! to remain approximately constant for pseudo-measured operating con-
ditions close to the real operating conditions. Fig.4.5 compares the absolute percentage
difference in sensitivities between actual and pseudo-measured conditions (AF"%, AF'%).
The simulations only included F? (X (1), V(£), U(t, 7)) > 0.0005p.u., F- (X (¢), L(t), U(t, 7)) >
0.5%, to avoid instabilities from low-sensitive components to FSP shifts.

The results had average line loading sensitivites F*(X (1), L(t), U(t,T)) between —16.52%
and 9.23%, and average voltage sensitivities Fl(f((t),i(t), U(t, 1)) between —0.017p.u.
and 0.019p.u. for the radial network. For the mesh network, the average loading and
voltage sensitivities were [-4.32,5.13]%, and [-0.009,0.008] p.u., respectively. From the
results in Fig.4.5, the sensitivities remain approximately consistent, with an average de-
viation less than 5% for loading and less than 1% for voltage with pseudo-measurements
with 20% or less standard deviation. For 50% deviation, the loading sensitivities deviate
by an average of = 11% for loading in the meshed network.

AFl is higher in the meshed network, whereas AF is higher in the radial network. Ad-
dressing the first observation, in radial networks, the load flow paths are relatively lim-
ited; in mesh networks, the power injection deviations can redistribute the load flow
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Figure 4.5: Voltage and loading sensitivity deviations for operating conditions with different pseudo-
measurement standard deviation for the CIGRE radial (m) and mesh (m) topologies.

paths. Addressing the second observation, the limited paths in radial networks could
mean that a different power injection on a bus would impact all upstream or downstream
bus voltages.

4.4.2. BNN COMPARISON WITH BASELINES

Fig.4.6 compares the PICPg5, RMSE, and NLL between the baselines and the proposed
BNN of Sec.4.3 for varying test set noise deviations and networks. The results indi-
cate that the network structure and noise levels impact the BNN less than the base-
lines. In PICPg5, the BNN outperforms the baselines with an average PICPg5 v = 0.91, and
PICPg5! = 0.94 compared to the measurement-based PICPg5 v = 0.73, and PICPg5/ = 0.78,
and forecast-based PICPg5v = 0.67, and PICPg5/ = 0.77. The baseline models consis-
tently underestimate the uncertainty, with values significantly lower than 0.95, except in
the lower-noise scenarios for loading variables. In these scenarios, 0.9 < PICPg5/ < 0.95.
However, this means that the uncertainty estimation for loading can be accurate if the
noise is half of the one considered during estimation. The baseline exclusion of epis-
temic uncertainty in the estimations contributes to this significant underperformance
compared to the BNN. As Fig.4.7 shows, the epistemic uncertainty can be a substantial
part of the total uncertainty. Fig.4.6(c)-Fig.4.6(f) show that the BNN drastically improves
the voltage and loading RMSE and NLL compared to the baselines. Further, BNN is less
impacted by the different noise levels and networks than the baselines. The BNN has,
on average, more than 4 times improved voltage RMSE and more than 3 times improved
loading RMSE compared to the baselines.

Fig.4.7 shows example MCD predictions on the vertical axis with measurement inputs
on the horizontal axis. The uncertainties of Fig.4.7 have a 95% confidence margin (2
standard deviations). To improve the visualization clarity, 90% of the datapoints were
removed in Fig.4.7 in densely populated regions. The figures show that epistemic uncer-
tainty depends on the dataset’s number of examples. In the regions with more concen-
trated datapoints (closer to 0 in the horizontal axes), the epistemic uncertainty is smaller
than the less-populated regions. This difference highlights that more training examples
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Figure 4.6: Comparison of forecast-based statistical baseline (™), measurement-based statistical baseline
(==) and MCD BNN (==) models under varying pseudo-measurement (and measurement) noise and network

size. The network size corresponds to the number of buses.

can reduce the model uncertainty in the parameter space and the epistemic uncertainty.
Fig.4.7 also illustrates that the aleatoric uncertainty varies between datapoints.
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Figure 4.7: Voltage and loading predictions by MCD model for CIGRE DS with mean (—), epistemic uncer-
tainty (--), aleatoric uncertainty (- ), total uncertainty (--), and true data (e).

Considering the computational burdens, the baselines would not require additional es-
timations as the FA estimation would solve the power flows to estimate the sensitivities
in Fig.3.3. However, the MCD BNN would add a negligible prediction duration, as Ap-
pendix C Tab.C.2 shows (between 0.09 —0.3s).

4.4.3. MEASUREMENT UNCERTAINTY-CONTROLLED FA ESTIMATION

This section shows the proposed FA esimation process of Sec.4.2.3. Using the BNN mean
prediction and uncertainty, the TSO can select a safety margin on the FAs with the p”
input as in Fig.3.3. Fig.4.8 shows the proposed approach for FA estimation with different
safety levels, p” = 50%, 68% (+ the estimated standard deviation), 84% (r = 1), and 95%
(+2x the estimated standard deviation). DFC is the density of feasible combinations for
each FA point. The increasing safety margin further restricts the FA feasible space. The
uncertainty levels in Fig.4.8(c)-4.8(d) show that even the initial DS operating condition
can be out of the selected safety margins.

The FA estimation durations using the Google Colab’s A100 GPU required 15.6,16.2,17.1,
and 18.7s for Fig.4.8(a)-4.8(d), respectively. The difference in computational time as the
margins increase is due to the increased number of network buses and lines that can
reach the network constraints.

4.4.4. TwOo-PCC FA ESTIMATION

This case study shows the proposed FA estimation approach for DS with 2-PCCs as ex-
plained in Sec.4.2.4. Fig.4.9 shows the resulting FAs for the 2—PCCs when considering
only active power in Fig.4.9(a) or only reactive power flexibility in Fig.4.9(b). The di-
agonal shapes in Fig.4.9 show the correlation between the two PCCs’ power exchange,
e.g., a flexibility shift to decrease the active power at PCC; can also reduce the active
power at PCC, for the majority of flexibility combinations. However, some combinations
(low DFC) can also shift each PCC'’s power unequally, e.g., decreasing the active power in
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Figure 4.8: Safety-Constrained FAs of OB1 5 FSPs with different safety probabilities p”. Feasible shifts (). Not
feasible FSP shift combinations (l). Initial operating point ().

Fig.4.9(a) of PCC; by 0.5MW and maintaining the active power of PCC; at 21.5MW.
Using these FAs, the TSO can select any feasible active or reactive power setpoint for the
correlated PCCs. The FA estimation required 11.1s for Fig.4.9(a) and 7.5s for Fig.4.9(b)
with the A100 GPU.

4.4.5. DISCUSSION

Through the proposed approach, TSOs can consider real-time uncertainties when ac-
counting for the available flexibility, unlike prior FA approaches. These real-time un-
certainties are due to limited measurements, input noise, and model parameters. Using
BNNs, the estimated uncertainties can generalize better to different noise levels and net-
works compared to the statistical baselines extended from [20], [30], [102], [103].

The results of Sec.4.4.2 show the proposed BNN structure improves the uncertainty es-
timation in all metrics compared to the statistical baselines. The baselines underesti-
mate the uncertainty in the majority of tests (PICPg5 < 0.95). The measurement and
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Figure 4.9: Safety-Constrained FAs of OB with 7 FSPs for active power flexibility support in (a) and reactive
power flexibility support in (b). Feasible shifts (). Initial operating point (%).

pseudo-measurement noise increase impacts the baselines significantly more than the
MCD BNN in all metrics. In terms of computational burden, MCD requires low train-
ing times (0.8-1.2 hours) and prediction duration 0.1-0.3s). The computational burden
added to [110] for FA estimation is mainly the BNN prediction duration, with FA estima-
tions requiring between 7.5-18.7s.

The results of Appendix C indicate BNN approaches can perform well for the power-
system task, maintaining a relatively consistent PICPg5, RMSE, and NLL when trained in
different networks. Between VI, MCD, and DE BNNs, the MCD has, on average, the best
| PICPgs5, RMSE (for v and [), and NLL (for v and /).

A limitation of the proposed approach is the underconfidence in test sets with lower
noise than the training sets (PICPg5 > 0.95). To mitigate this limitation in case of low
pseudo-measurement and measurement noise, DSOs can utilize real-life data to train
another BNN MCD in = 1 hour.

4.5, CONCLUSIONS

System operators can use the proposed approach to select safety levels in real-time FA
estimations, considering the limited observability in DS. Aiming for real-time operation,
the proposed approach is fast and considers the uncertainty from limited real-time DS
measurements. In addition, with the proposed approach, TSOs can select active and
reactive power flexibility aggregation in DS with 2-PCCs.

The proposed BNN structure improves the accuracy of the estimated uncertainty and
RMSE compared to the baselines. The proposed BNN improves the RMSE compared to
baselines by an average = 4x for voltage and = 3x for loading. The average MCD BNN
test uncertainty using PICPg5 shows slight overconfidence with 0.91 for voltage and 0.94
for loading, unlike the baselines that show significant overconfidence.

Future work includes evaluating the BNN performance in real data from distribution
networks and studying the impact of alternative measurement locations in DS.







MACHINE LEARNING-BASED
METHOD TO SUPPORT TSO-DSO
ADAPTIVE COORDINATION WITH
ACTIVE POWER MANAGEMENT FOR
INSTABILITY PREVENTION

An ounce of prevention is worth a pound of cure

Benjamin Franklin

Coordination between power system operators can improve the power system stability and
effectively deploy resources in distribution systems (DS). The research work of this chapter
provides a coordination method to mitigate the impact of dynamic events on transmission
systems (1S). The proposed method uses a machine learning (ML)-based model to estimate
the collective dynamic response of DS under varying TS dynamic properties, DS operating
conditions, and share of inverter based resources (IBRs). In addition, the ML-based model
enables TS operators (TSOs) to provide feedback to DS operators (DSOs) for controlling
the IBRs’ active power output to prevent post-fault instabilities. The proposed TSO-DSO
coordination method includes a risk-based active power setpoint optimizer for instability
prevention. The proposed method uses existing measurement and IBR control platforms
available in DS and estimates the post-fault DS dynamic response considering IBR active
power control actions. Case studies on synthetic models of TS and DS covering the Zeeland
province in the Netherlands illustrate the application of the proposed coordination and
the instability risk mitigation when optimizing IBR setpoints.
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5.1. INTRODUCTION

Inverter-based resources (IBRs) in distribution systems (DSs) affect the overall power
system dynamic stability. DS IBRs operating in grid-forming (GFM) mode can support
the dynamic stability of transmission systems (TSs) that suffer from low inertia. Trans-
mission system operators (TSOs) need to anticipate and evaluate the impact of control-
ling DS IBRs on system stability as IBRs in DSs replace TS resources. However, including
active components, distributed generation, and IBRs in DSs makes modeling, maintain-
ing, and co-simulating TSs and DSs challenging [120].

Coordination between TSOs and distribution system operators (DSOs) is a topic of in-
creasing interest [10], [121], [122]. As distributed energy resources (DER) flexibility be-
comes necessary, TSOs and DSOs must coordinate to avoid causing issues to one an-
other [122]. Existing TSO-DSO coordination methods differ in the central entity and
data exchange requirements [10]. DSO-centric coordination allows low data exchange
between TSOs and DSOs using flexibility areas [1], [18], [36]. However, flexibility areas
evaluate and estimate the available flexibility through steady-state simulations. Evalu-
ating the flexibility for dynamic stability is underrepresented in TSO-DSO coordination
methods.

TSOs must ensure their system’s security, withstanding imminent contingencies without
service interruptions [123], [124]. The typical industry practice is deterministic, where
all probable contingencies are treated with equal risk [124]. However, risk-based security
assessment becomes more applicable as the contingency probability, risks, and conse-
quences differ [123], [124]. Probabilistic approaches can consider the contingency like-
lihood, probability, and consequences of instability [123]. The proposed coordination
helps TSOs assess the risks and costs of probable contingencies compared to flexibility
costs.

Different share between grid-following (GFL) and GFM inverters impacts the dynamic
response of DSs [125]. GFM inverters improve the dynamic performance of power sys-
tems with enhanced response to load [126] and fault [125] events. However, GFM in-
verters have stability issues after faults due to current saturation [126]-[128]. Thus, con-
trolling GFM IBRs to increase the headroom between the IBR output and the current
limitation improves the system stability under disturbances. Different TS inertia alters
the response of the DS [129], [130], and the system inertia is highly variable [130], [131].
Methods for DS aggregated dynamic response representation (ADRR) aim to support dy-
namic studies for TSOs and DSOs by alleviating the DS modeling and simulating com-
plexity. Existing ADRR approaches do not support controlling DS GFM IBR outputs and
typically consider fixed TS dynamic properties throughout the ADRR development. Con-
sidering TSs with fixed, high inertia in ADRR modeling does not accurately represent the
DS response for TSOs to assess the impact of controlling GFM IBR setpoints. Thus, DS
ADRR models should account for the variable TS dynamic properties and support con-
trolling the DS GFM IBR setpoints.

This research proposes a TSO-DSO coordination method that enables TSOs to evaluate
and request flexibility from GFM IBRs for dynamic support. Flexibility corresponds to

Parts of this chapter are in: D. Chrysostomou, J. L. R. Torres and J. L. Cremer, “Machine Learning-based Method
to Support TSO-DSO Adaptive Coordination with Active Power Management for Instability Prevention”, Inter-
national Journal of Electrical Power & Energy Systems, 2025 [119].
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the DS resources whose operation can be altered by TSOs or DSOs to support system op-
eration [132]. A DS ADRR is a key component in enabling this coordination, accounting
for the variable TS dynamic properties, types of IBRs, and IBR setpoints. The proposed
TSO-DSO coordination requires measurements currently available to system operators,
identifies the GFM IBR setpoints minimizing instability risks, and includes a classifier
identifying extreme instabilities.

DS ADRR approaches mainly use system identification approaches that rely on mea-
sured or simulated data [46], [120]. The scarcity of data with large disturbances limits
the potential for measurement-based ADRR models. System identification-based ADRR
approaches can diversify to black box and grey box. Black box approaches use data to
fit a model of an unknown, typically machine learning (ML)-based structure [52], [133].
Grey box approaches assume a DS equivalent structure, e.g., aload, a synchronous, and
a static generator, and use data to fit the structure’s parameters [46], [54]. Grey box mod-
els are easier to integrate with software for dynamic simulations. However, the grey
box modeling selection of a specific system structure and parameters can impair the
model representation for variable operating conditions. To allow representing various
operating conditions, [33], [134] provide different ADRR model parameters for different
operating condition clusters. With increased diversity in IBRs and DERs in DSs, grey
box approaches require more complex structures with several components [135], [136],
whereas ADRR models should ease the DS modeling and simulation complexity. Apply-
ing a grey box approach can be challenging for a ring system topology [136], and includ-
ing external variables in grey box model structures can be challenging in mapping the
external variables and structure components. Black box methods do not have these re-
strictions in operating conditions, IBR diversity, external variables, or system topology.
As ML algorithms become more prominent, integrating ML models into dynamic simu-
lation software becomes anticipated. ML-based ADRR models explored long-short-term
memory (LSTM) recurrent neural networks (RNNs) [52], Gaussian process models [133],
and artificial neural networks [53]. RNNs are developed for sequential data but can-
not effectively include static features. [133] included static features with repeated power
outputs and voltage inputs. The proposed black box approach utilizes RNNs but also
considers static features for the initial operating conditions, IBR share, and TS inertia.

DS models used in ADRR approaches typically assume knowledge of the IBR types, as
GFL [120], [134]. However, GFM inverters become increasingly used [137]. To account
for differences in DS generation types, [134] model considers the mixture of synchronous
and asynchronous generation but assumes asynchronous DER. [34] modeled GFM and
GFL IBR types and used the DS IBRs and synchronous generator inertia to provide an
ADRR model with a more accurate response. [34] assumed the DSOs know detailed
characteristics of the IBRs, e.g., the inertia, droop, and damping constants, and a high
TS inertia. [136] modeled GFM IBRs but also assumed known IBR characteristics and
developed a complex ADRR model structure with one branch for each GFM inverter
counteracting the ADRR appeal for DS model simplification. This research represents
IBRs with GFL and GFM types and estimates these types using measurements without
assuming detailed IBR parameter knowledge.

Preventive dynamic security assessment studies require dynamic models of the under-
lying systems to identify remedial actions [138]. These security assessment studies con-
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sider equally credible contingencies [139], [140] or include contingency probabilities for
instability risks [123]. These studies typically focus on TS operating conditions to min-
imize instability risks. The proposed method focuses on controlling DS IBRs and the
impact of DS IBR dynamics that preventive dynamic security assessment studies mainly
exclude.

This chapter proposes a TSO-DSO coordination method where TSOs can use the ADRR
model to select and evaluate flexibility setpoints for the IBRs. Therefore, the main con-
tributions are:

1. Developing a TSO-DSO coordination method for dynamic stability based on the
estimation of the aggregated dynamic response of DS using measurements avail-
able to system operators.

2. Extension of the method to also include an algorithm for risk-based evaluation
and selection of TSO actions to prevent instability.

3. Proposing an approach representing the aggregated DS dynamic response account-
ing for variable dynamic system properties, the aggregated power output, and the
type of primary control of IBRs, combining sequential and non-sequential fea-
tures.

Case studies are performed on the synthetic system model of the Zeeland region in the
Netherlands. The case studies showcase the classification of IBR types, active power set-
point optimizer, and ADRR model performance with regression and high instability clas-
sification. The following subsections are Sec.5.2 TSO-DSO coordination; the proposed
coordination approach and key components, Sec.5.3 DS aggregated dynamic response
representation for variable TS dynamic properties and IBR share; the proposed ADRR
model structure, Sec.5.4 case studies; the case studies, and Sec.5.5 conclusion.

5.2. TSO-DSO COORDINATION

As the share of DER increases, IBR flexibility can help TSOs achieve operational stability.
Assessing IBR flexibility for dynamic events is challenging for TSOs as:

1. TSOs would need real-time information on the available flexibility in DSs from
each IBR type,

2. TSOs would need models to consider the post-disturbance dynamic response of
interconnected DSs,

3. TSOs would need functionality to select DS IBR setpoints to improve the TS dy-
namic stability.

To mitigate these challenges, this chapter introduces the coordination illustrated in Fig.5.1.
The DSO applies the IBR classifier algorithm to inform the ADRR model about the real-
time DS operating condition. The TSO uses the operating condition to evaluate the sta-
bility of the post-fault system. If the ADRR detects instability, the GFM IBR active power
setpoint optimizer identifies the risk-minimizing setpoint for the GFM IBRs and informs
the DSO. The DSO validates that the requests respect DS network constraints and sends



5.2. TSO-DSO COORDINATION 83

the validated requests to the IBRs through RTI. If TSO requests are invalid for the con-
straints of the DS network, the TSO is informed to explore an alternative risk mitigation
without altering IBR setpoints.
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Figure 5.1: Overview of the proposed TSO-DSO coordination with DSO-operated actions (== ) and TSO-
operated actions (— ).

5.2.1. ESTIMATING THE REAL-TIME IBR OUTPUTS IN DSS

DSOs have limited measurements in DSs [29]. This section describes how the proposed
coordination considers the available measurements through the existing Dutch real-
time interface (RTI) project to estimate the real-time IBR outputs in DSs. In 2020, Dutch
DSOs and the TSO developed the RTI project to improve real-time communication be-
tween large DERs and DSOs, TSOs [141]. Through RTI, DERs with capacity 1-50{M W],
connected to the medium voltage, are required to measure and exchange information
with the DSOs about the active power, reactive power, phase voltages, and phase cur-
rents. These limits correspond to type B generators in the European network code on
requirements for generators [142]. Example DER in MVs for RTI include PV systems and
wind turbines [141].

RTI measurements can have intervals of less than 60[s]. Using RTI, the DSOs and TSO
can request new power setpoints from DER to ensure their system’s stability. The DSOs
and TSO must include the reason for the requests.

The proposed coordination creates a database of IBR output deviations provided by RTI
for DSOs to classify each IBR as GFM or GFL. These deviations are load change dis-
turbances that occur continually [124], i.e., a sudden load consumption change. The
database includes the wind speed deviation as uncertainty caused by variable weather
conditions. These wind deviation values are attainable from real-time regional weather
radars. Set QP characterizes the database as:

QPB = {(Alvlj1,Aij1,APj;,AQ 01 j € QPER 1€ QP (5.1)

where QPER is the set of DER providing measurements through RTI, and Q® is the set
of load disturbances. A|v| b Aij, AP, AQj are the voltage, current, active, and reac-
tive power changes of the j DER terminals after the [/ load event. o, is the wind speed
standard deviation measurement during each / event. These o; measurements should
be based on regions between wind turbines, as wind measurements for each individual
turbine might be unavailable to DSOs.

While the IBR share impacts the DS response to dynamic events [125], DSOs are unaware
of specific DS IBR types of operation. Thus, in the proposed coordination, the DSO ap-
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plies the IBR classifier in Alg.1 using QP to classify each IBR as GFM or GFL, resulting
in the sets Q¢ and QCFL respectively. The proposed approach assumes that DSOs
know which DERs are synchronous machines, QSM, e.g., gas and steam turbines. This
assumption differs from alternative approaches that assume knowing the IBR types and
DER parameters [34], [136].

Algorithm 1 Classifying IBR types
QDB QDER QSM

Input:

Output: QGFM ,QGF L
1: QGFM_ @ QGFL_ )
2: for j € QPER\ QM do

3: Y0
4 for (APj;,00) € QPE do > from (5.1)
5: v —y+¥Y(APj,0)) > using (5.2)
6: end for
7: if y > 0 then
8: QGFM - QGFM U {]}
9: else
10: QGFL — QGFLy (j}
11: end if
12: end for

13: return QGFM, QGFL

Following DS disturbances such as load changes, GFM IBRs typically reduce or increase
the output power to mitigate the disturbance and maintain stable voltage and frequency
[143]. In contrast, GFL IBRs typically continue to inject power following the system volt-
age and frequency [143]. GFL IBRs, including the ones used in the case studies, can also
offer frequency support with droop, with the GFM IBR response typically being stronger
[144]. The active power threshold diversifying GFM from GFL responses is AP[%]. The
classifier takes a weighted assignment ¥ € [—1, 1] on the IBR type after each event / in
line 5 of Alg.1, as:

tanh(w), ifog; #0,

Y(APj, o) = 91 N (5.2)
sign(|APj;| - AP), otherwise,

where ¥ > 0 for GFM type, and ¥ < 0 for GFL type. The ¥ magnitude is the weight for
the class assignment confidence. The classifier considers wind speed variability during
each event as a source of uncertainty. Wind deviations can cause changes in IBR outputs
unrelated to the load events. Thus the recorded AP;; are:

APj;=APj+e(op)[%], (5.3)

where AP i1 is the change caused by the actual inverter type of IBR j responding to event
1. The e(0;) is the uncertainty caused by the wind variability. Inverters and controllers of
wind turbines typically include damping mechanisms to reduce output deviations due
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to weather conditions [145]. These mechanisms reduce the impact of €(g;) on APj;.
Nevertheless, an event [ with low o; compares to a low e(o).

Since QP2 stores multiple load events, Alg.1 gets ¢ = |Q®| samples to classify each IBR
as GFM or GFL. The class assignment from each sample has a weight of confidence from
(5.2). Alg.1 sums the weighted class assignments for each IBR. If the accumulated ¥
from all events is non-negative, then the IBR is classified as GFM in lines 7 — 8 of Alg.1.
Otherwise, the IBR is classified as GFL in lines 9 — 10 of Alg.1. Let a classification metric
with a probability of correct classification ﬁy € [0,1] for a single load event I. Given ¢
independent load events, the probability of the correct class being predicted for an IBR
for the majority of events is:

¢
n=-5-

which is the cumulative distribution function of the binomial distribution.

The DSO uses the QM QCFL gutputs from the IBR classifier and the constant flow of
real-time measurements from RTI to output vector A of parameters that could impact
the DS response to dynamic events:

A=l X Pp X Qp Y P Y Qp
jEQGFM jEQGI-M jEQGFL jEQGFL
Y. P Y QpPVjeQt™M Q;vjeqtt,

jeasM 7 jeqsM

S;vjedt™Mr. (5.5)

Where P is active power, Q is reactive power, and S is apparent power.

5.2.2. TSOS SELECTING IBR SETPOINTS

This section analyzes the GFM IBR setpoint optimizer of Fig.5.1, which enables TSOs
to select IBR setpoints to minimize instability risks for the post-fault response of the
interconnected DS and TS. ADRR models can address the second challenge of Sec.5.2,
where a DSO provides a DS ADRR model that the TSO can deploy to perform dynamic
simulations. The proposed ADRR model includes the IBR setpoints as inputs for the TSO
to evaluate the impact of flexibility actions on the DS response and to address the third
challenge of Sec. 5.2.

Unlike small load disturbances, large disturbances in TSs, such as line faults, are less
frequent but can cause instability and high costs for TSOs [124]. The TSO can use the
proposed coordination process to avoid instabilities caused by large disturbances. In
Fig.5.1, the TSO informs the DSO about the setpoint request for all IBRs and the dy-
namic event (reason for request). The DSO validates DS constraint-feasibility for the
TSO requests using distribution system state estimation (DSSE). DSSE approaches con-
sider measured nodes and pseudo-measured (or forecasted) nodal power injections to
estimate the DS state [28]. In the proposed approach, the DSO can apply DSSE using
RTI measurements for the IBRs excluded in the TSO requests, the new setpoints for GFM
IBRs in the TSO requests, and pseudo-measurements for the remaining DS nodes to es-
timate the DS state. If the requested state respects the DS constraints, the DSO forwards
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the requests to the GFM IBRs through RTI. Alternatively, the DSO informs the TSO that
the setpoints are invalid, so the TSO can explore alternative risk-mitigation sources from
neighboring DSOs or TS-connected resources. RTI requires the DSOs to provide the IBR
with this reason for the request.

The current saturation issue of droop-controlled GFM inverters causes instability if the
active power output of the inverter exceeds the limit, as analyzed in [127]. In the pro-
posed approach, TSOs can simulate disturbances in TS with ADRR representing the DS,
considering the potential increase in GFM IBR active power after probable disturbances.
If these simulations indicate that an increase in the active power output of GFM IBR
would cause instability due to current saturation, reducing the GFM IBR setpoints could
result in greater headroom, avoiding reaching maximum current. The proposed ap-
proach compares the risks associated with the probability of disturbance and the costs
of instability to avoid unnecessary setpoint reductions.

Alarge disturbance event e has a probability of occurrence p°(e) € [0, 1]. If event e causes
instability, the potential costs for the TSO can be C'(e) [€], caused by loss of load in the
area or outage costs [124]. Alternatively, the costs of adjusting the GFM IBR setpoints to
prevent instability can be C"(e)[€/%)]. The active power setpoint for GFM IBR is P*[%].
The p'(e,{, A, P*) € [0,1] is the probability of instability for TS operating condition ¢, and
DS attributes of vector A, after e, if P* is applied. p‘(e,(, A, P¥) is independent of §°(e).
Thus, the risk for the TSO, R(e,(, A, P%), for eis:

R(e,{, A, P*) = p°(e) - R(e,(, A, P°) (5.6)
+(1-p%e)-C"(e)- (100 - P)[€],
R(ey () AyPS) = Cl(e) N ﬁl(e) C, A)PS) (57)

+C"(e)- (100 - PY)[€].

Where R(e,{, A, P%) is the risk for the TSO if e occurs. Thus combining (5.6) and (5.7)
leads to:

R(e)C)A)PS)=ﬁ0(e)'Cl(e)',ﬁl(e)()A)PS) (58)
+C"(e)- (100 - PY)[€].

Let P5[%], the maximum setpoint addressing the potential instability event. TSOs can
either neglect the potential impact of e or apply P* by assessing the risks of these actions
as:

Re,¢, A, P)) (%), (5.9)

S* __ . _
P = argmlnPSE{Ps,IOO}(

where P**[%] is the minimum-risk setpoint.

The GFM IBR active power setpoint optimizer of Fig.5.1 and Alg.2 identifies the minimum-
risk setpoint P**, of resolution § P[%], for GFM IBR to avoid the potential instability from
the large disturbance e. The optimizer first identifies the maximum feasible setpoint P§
and then applies (5.9) to obtain P**. To estimate P¥, Alg.2 performs a tree search for
a list of setpoint levels I'’. The inputs A are the TSO stability thresholds, i.e., limits for
frequency, voltage, rate of change of frequency (RoCoF), and active and reactive power
deviations. A are the simulated values for the above thresholds. P} . [%] is the minimum
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setpoint evaluated by the algorithm. A is the value for A if PS is applied. The function
F5(A, PY) applies the selected setpoints P° to the GFM IBR attributes of A, representing
controlling the GFM IBR setpoints on line 6 of Alg.2. F¥!"(e,{, A) performs the dynamic
simulation considering e and the DS and TS operating condition on line 7 of Alg.2. If no
setpoint can solve the instability, the PS = 100 from line 3 of Alg.2 shows that none of the
changes provided a solution, thus (5.9) returns no action on line 25 of Alg.2. The setpoint
optimizer does not intend to control the voltage or frequency post-fault response to spe-
cific follow trajectories, but rather reduce the risks for post-fault instability, considering
the ADRR and TS simulated responses.

Algorithm 2 GFM IBR Active Power Setpoint Optimizer

Input: e,{, A, 6P A, PS . ,0°(e)
Output: P*

1 TS —[PS. ,PS. +O6RPS. +20P..,100]
2: P§yp — 100

3: PS—100

4: whileTS!'=[ ]do

5: PS —T9 {%J ] > Get the median value
6 A—F5APY)

7 A—FM(e(, A)

8 if A <= A then

9: if P°+6P < P;,,, then

10: [ —[P°+0P.,P;,,]

11: else

12: IS ]

13: end if

14: Ps—ps

15: me.n — pPS

16: else

17: if P} . <P°-0P then

18: I¥—[PS. PS. +08P.,PS—8P]
19: else
20: =11
21: end if
22: P e —P¢
23: end if

24: end while .
25: P$* — (5.9) with e,(, A, PS
26: return P**

In the proposed coordination, TSOs can identify potential communication failures by
detecting disruptions in the information flow between RTI measurements and vector A
input for the DS ADRR, as in Fig.5.1. In such cases, TSOs should use previously measured
vector A instances until communication is restored. If simulations indicate instability,
TSOs should only consider instability preventive measures outside the DS controllable
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devices until RTT communications are re-established. Given the preventive nature of the
proposed coordination, the GFM IBR response time to TSO setpoint requests can be on
the scale of seconds, e.g., 30s.

5.3. AGGREGATED DYNAMIC RESPONSE REPRESENTATION

This section describes the proposed DS ADRR model, which comprises an ADRR regres-
sor and an ADRR classifier. The DS ADRR model, as shown in Fig.5.1, enables the TSO
to simulate the post-fault response of the DS considering the setpoints for DS IBRs. The
proposed coordination of Fig.5.1 uses the IBR Classifier and vector A from (5.5) to inform
the DS ADRR model on the DS condition. The setpoint optimizer of Sec.5.2.2 allows the
TSO to optimize and evaluate GFM IBR setpoints using the DS ADRR model.

The proposed ADRR model includes a regressor representing the DS response to a large
TS disturbance in a simulation and a classifier to detect high instabilities and termi-
nate the simulation process. Power systems simulation software such as PowerFactory
rely on iterative numerical methods. Highly instable conditions can cause no results or
non-convergence issues in the numerical methods. These issues can further delay the
simulations, lead to possibly erroneous results, or terminate the simulations early. Ex-
treme spikes caused by these instable conditions can dominate optimization losses and
reduce the overall ADRR model accuracy. The proposed ADRR structure identifies these
highly instable conditions to inform TSOs about the high instability. The proposed ADRR
model considers a regressor that outputs the DS active and reactive powers at the DS-TS
point of common coupling (PCC) and a classifier that identifies high instabilities and
terminates the simulation.

5.3.1. ADRR REGRESSION MODEL

Existing ADRR approaches typically do not require non-sequential features or do not
use RNNs that focus on sequential features. Sequential features x(¢) are essential to cap-
ture the temporal dependencies of dynamic simulations. The non-sequential features z,
which include vector A from (5.5), provide information on the initial operating condition
and sensitivity of the DS to the IBR outputs. Sequential features depend on the dynamic
simulation time-step ¢, e.g., total DS active power output P(¢). The simulation time-step
does not impact non-sequential features, e.g., initial DS active power output. As shown
in Fig.5.2, RNN layers retain the outputs from prior inputs to effectively capture the x(#)
temporal dependencies. Emerging RNN architectures such as LSTMs and gated recur-
rent units have gated mechanisms to keep long- and short-term dependencies in the
sequential variables. To capture temporal dependencies, a feedforward neural network
(FNN) would require input vectorized sequences of variables that can be less effective
than RNNs.

The proposed model of Fig.5.3 uses the RNN specialization for sequential features x(¢)
and applies a linear dense layer on non-sequential features z. The sequential input fea-
ture matrix x(#) includes the PCCs’ voltage magnitudes |v|(f) and angles 8(¢), the fre-



5.3. AGGREGATED DYNAMIC RESPONSE REPRESENTATION 89

x(t-0.01) Jx(t—-0.01)

r Py (1) ° N
0 = x(t-0.01) ° Jx (@)
x(b)

(a) RNN. (b) FNN.

Figure 5.2: NN dealing with sequential features. In (a), RNN layers (n) retain prior iteration outputs. In (b),

dense layers (ﬂ) must include the sequence of inputs to identify temporal dependencies.

quency f(t) and their previous values in a window p as:

x(0) =[x(0), Xt -1),.., X(t—p-71)], (5.10)

%0 = llvlpcey, Ivlpce,, Orca,, Opce,, F17 (1), (5.11)

where 7[s] is the simulation time-step, and PCCy, PCC, are the 2 PCCs in ring DS topolo-
gies. The non-sequential inputs are the PCCs’ initial power outputs chc’ Q%CC, the TS
inertia characteristic constant H, and the features vector A from (5.5):

_ 0 0 0 0 T\T
z2=[Ppcc) Ppec, Qpecy Qpecy H AT - (5.12)

As Fig.5.3 shows, the proposed model performs feature fusion, concatenating the dense
and RNN layer outputs. A FNN uses the combined outputs to predict the DS response.
The vector of observed active and reactive power at each PCC at each time step ¢ is:

y() = [Ppcey, Precy, Qpecy, Qpec, 1 (2). (5.13)

For a single-PCC DS, y would exclude the features and outputs for PCC,. For DSs with
more PCCs, y would expand the features and outputs for each additional PCC, e.g.,

lvlpces.
The function describing the proposed model of Fig.5.3 is:

Jt)=FLN (FFF(.(0),92)). (5.14)

Where 7, (t) is the output of the RNN layers and j, is the output of the dense layer. FF'F
is the feature fusion function, concatenating the RNN and FNN model outputs. FL’Z;VN
is the FNN model that takes the fused features as inputs, and outputs the y(¢) € R%; to
approximate the observed y(t). The wgy are the learnable weights of the FNN model.

The proposed RNN, as in [52], deploys = LSTM RNNs in parallel with their outputs being

concatenated in vector () as:

Jx(8) = [PRN N> - JrRNN=)T (D), (5.15)
IruNg () = Fig N (x(0), Jrivng (1= D)VE € 10,1, (5.16)
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Feature

Fusion

Figure 5.3: Proposed ADRR Regression Model.

where Fff,év N'is the ¢™ RNN model and w; the learnable weights. The dense layer output
is:

J.=Fpl), (5.17)

where FBZL is the dense layer and w; the learnable weights.
The regression objective is to find parameters w = {wry, w:¥¢ € Z, w;} to minimize the
error between the model outputs and observed DS outputs. Hence, the loss function L
is the root mean squared error (RMSE) between y and j as:

1 k=x
= D% Y > (k1) - plk-1))?, (5.18)
deD k=0

where | D| is the length of dataset D with samples d = (x(0), .., x(x-1), ¥(0), .., y(x-T), 2) € D.
k is the number of time steps for each simulation.

5.3.2. CLASSIFICATION OF INSTABILITIES

High instabilities can be present in simulations with low TS inertia. ADRR models could
inform TSOs and help them avoid these high instabilities. Unlike related literature, the
proposed ADRR model also includes a classifier for high instabilities during the simula-
tion to inform the TSO. Excluding the high instability classifier means including simula-
tions with extreme values and fluctuations that could dominate the regression model’s
loss and learning process.

Classifying extreme instabilities requires analyzing sequential data to detect high fluctu-
ations. However, assigning each sequence value as a unique feature in an FNN can be
inefficient. The most prominent methods for time-series classification first process each
signal to get low dimensional features and apply ML-based techniques to classify using
these low dimensional features [146]. The proposed approach applies feature-based (FB)
time series classification [146].

The classifier first gets the input y that includes the simulation results between the 0.5[s]
before, and 1.5[s] after the disturbance as:

|2t —0.5), &(t, = 0.5+ 1),.., &(te + 1.5)

X=14 A o ) (5.19)
Y(te—0.5), (1. —0.5+71),.., P(te + 1.5)

where f,[s] is the event time. Since the proposed coordination uses ADRR to simulate
potential events as in Fig.5.1, f, is an input to the simulation. Considering the typically
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small 7 in dynamic simulations, y can be a high dimensional matrix. The proposed ap-
proach applies the feature extractor function FFF to analyze the time series of each signal
in y and get a low dimensional vector 7 as:

m=FE(y). (5.20)
The FF'F estimates correlation coefficients across all signals. For each signal, FF'F esti-
mates the variance, discrete Fourier transform coefficients, the mean power of frequency
bands from the signal power spectrum, and the number of peaks in the signal. The clas-
sifier FNN uses the 7 feature vector and labels the output as highly instable or not:

Py =Ful(m €01, (5.21)

where Fgf, wy, are the FNN classifier and its weights.

5.4. CASE STUDIES

The case studies showcase the proposed coordination’s components in classifying IBR
types, selecting IBR setpoints to minimize post-fault instability risks, providing ADRR,
and classifying highly instable conditions.

5.4.1. TEST SYSTEM AND SYNTHETIC DATA GENERATION

The system used includes the synthetic TS and DS models of the Zeeland province in the
Netherlands, shown in Fig.5.4. The diagram includes the DS of which the ADRR model
is developed (surrounded by red dashed lines), the TS, the DER of a second DS (sur-
rounded by blue dashed lines), and the external grid for the rest of the TS. The TS has
150[kV] and 380[kV] buses. The DS has 52.5[kV] and 10.6[kV] buses. The model is in
DigSilent Powerfactory. TSO TenneT provided the TS and [147], [148] the DSs. The DSs
were modified to include the 2024 DER capacity and load consumptions. The DS line
and transformer capacity were increased by 4 times from [147] to accommodate the in-
creased DER capacity. The system includes GFM IBR (Droop Control System), GFL IBR
(WECC WT Control System Type 4A), and synchronous machines.

Two sets of data were generated: one for the IBR classifier and one for the ADRR model.
The IBR classifier dataset includes 93 load event simulations, while the ADRR model
dataset includes 1545 fault-event simulations (faulted lines were randomly sampled from
the 9 options in Fig.5.4). Appendix D includes details on data generation.

CASE STUDY SETTINGS

The case study of Sec.5.4.2 investigates the threshold for the IBR classifier, comparing
the application of AP to other RTI measurements A7, and AQ. A combination metric is
also compared to AP, which classifies an IBR as GFM or GFL if two or more thresholds
are exceeded from Aﬁ, A?, and A@.

The case study of Sec.5.4.3 uses the test system including the DS, excluding the ADRR.
The risk example assumed C'(e) =~ 400k[€] due to outage, C"(e) ~ 100[€/%], and the
fault e happening once every 2 years.

The case study of Sec.5.4.4 compares the proposed ADRR model to baselines:
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Figure 5.4: Test system diagram, with the DS' _ ., external grid *, neighbouring DS' _ i, loads %7, PV modules
A
@, wind turbines @, synchronous machines ", RTI measurement locations . The \ indicate the simulated

fault event locations.

(i) An FNN as [53], showcasing the impact of excluding LSTM in ADRR. This model
includes the ADRR classifier.

(i) An LSTM including sequential and repeated non-sequential input features fol-
lowed by an FNN, showcasing the impact of excluding feature fusion and dense
layer for non-sequential features in ADRR. This model is a natural extension of
[52], [149] to include non-sequential features. This model includes the ADRR clas-
sifier.

(iii) The proposed structure, excluding the ADRR classifier. This model studies the im-
pact of including extreme values observed in highly instable samples in ADRR.

(iv) An LSTM followed by an FNN, excluding non-sequential features, such as [52],
[149]. This model studies the impact of excluding non-sequential features in ADRR.

The model comparison metric was the RMSE on a test set of simulated events.
The case study of Sec.5.4.5 analyzes the proposed ADRR classifier and compares it with
baselines:

1. A classifier with additional features, the 5 coefficients when fitting the signal with
the autoregressive moving-average (ARMA) model [150]. ARMA features are com-
monly used for FB time series classification as dynamic features [146].

2. Adistance-based (DB) classifier [146], using dynamic time warping to estimate the
distance between the signals as a similarity score. Using this similarity score, a k-
nearest neighbors classifier predicted if each test sample was highly instable.
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Figure 5.5: Changes in p, g on the GFM (®) and GFL (®) IBR terminals after load steps of different magnitudes.
The AP, AQ axes are in logarithmic scale.

The precision metric is the ratio of correctly classified samples as highly instable to all
samples classified as highly instable. The recall metric is the ratio of samples correctly
classified as highly instable to all highly instable samples. The accuracy metric is the
ratio of correct predictions to all predictions.

Appendix D includes more details on model structure and training for the case studies.

5.4.2. CLASSIFYING IBR TYPES

This case study analyses the selection of threshold AP of Sec.5.2.1. The threshold clas-
sifies each IBR as GFM or GFL using the pre- and post-load-event active powers. This
study also explored the application of a current (A7) threshold, a reactive power (AQ)
threshold, or the combination metric to classify an IBR as GFM or GFL.

Fig.5.5 shows a scenario where the weather conditions did not impact the IBR outputs
within the measurement interval, i.e., €(o;) = 0. From this scenario, the changes in active
power signified a clear distinction between the GFM and GFL responses. Thus, for AP,
any value between [0.004,0.255][%] returned a classification accuracy of ac = 100[%].
The value AP = 0.255[%] was selected, as small threshold values are prone to weather
and measurement noise. From the changes in the current and reactive power, there was
a difference between the GFM and GFL responses, but no thresholds could separate the
two types for all data. A A7 = 0.222[%] led to ac = 99.8[%], and AQ = 0.0084[%] led to
ac =98.9[%].

Random noise from external weather factors impacting the measured signals affects the
probability of correct classification by the above thresholds. Fig.5.6(a) shows the impact
of different noise levels, o, on the percentage of correctly classified events. Each point
shows the average ac from 200 noise samples. The average ac for AQ deteriorated faster
with the increase of o, as AQ << Ai,AP and a smaller threshold is more sensitive to
noise. The results of Fig.5.6(a) indicate that the combination metric offers no advantage
compared to AP, which outperforms all thresholds. Therefore, the Algorithm 1 used AP
as a metric. Let a probability of assigning the correct class to an IBR from a single event
approximate the percentage of correct classifications as in Fig.5.6(a). Then, ﬁz; > ﬁ}' as




5. MACHINE LEARNING-BASED METHOD TO SUPPORT TSO-DSO ADAPTIVE
94 COORDINATION WITH ACTIVE POWER MANAGEMENT FOR INSTABILITY PREVENTION

100 J‘LL\‘.-‘-\ '\ I T T L] T T1171] 100 J!> .__! _.__,_ __;_‘ _‘ W
s &+
l\\ “:\* « >,)‘ . . + ¥
_ h-% o« -’ - |
g " LN % ," o
< AN Ny — / .7
s 80 - LN i 8 a
2 "ny ¥, ER ] |
g N TG
z " &, /¥
L " 70 % .
60 [- -
Ll Lol Lol I \\\-\ ﬁ' | |
10-2 1071 100 0 20 40
Noise o/[%] No. of measurements, L[-]
(a) Uncertainty impact. (b) Binomial distribution CME

Figure 5.6: In (a), the impact of added noise on IBR class prediction from a single event, using AQ (), AP (),
A7 (@) or the combination metric (). In (b), the contribution from using class assignments from multiple
events as in (5.4), with added noise in AP with ¢ = 0.01[%] (W), 0 = 0.1[%] (&), 0 = 1[%] (%), 0 = 2[%] (#),
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Figure 5.7: The response of the DS at the PCC 1 after the same fault with setpoints of PS = 100[%] ()
50[%] (—), P$ = 75[%] (----), P = 65[%] (—), and P* = 70[%] (-~)

PS=

¢ increases. Fig.5.6(b) shows the contribution of multiple measurements with similar
uncertainty levels in increased probability for correct prediction, using (5.4).

5.4.3. GFM IBR ACTIVE POWER SETPOINT OPTIMIZER

This case study investigates the setpoint optimizer of Alg. 2 in Sec.5.2.2. The setpoint op-
timizer simulates the DS response under different reduced GFM outputs to identify the
maximum feasible setpoint and evaluate the risk of applying the setpoint. Fig.5.7 shows
the simulated responses of different GFM setpoints. When reduced to 65[%] or 50[%], the
post-disturbance DS response did not breach the stability constraints for RoCoF, under-
/over frequency, or under/over voltage. Thus, PS = 65[%]. Without any action, C'(e) =

400k[€], whereas applying (5.9) would suggest requesting PS = 65[%) if 0°(e) = 0.9[%].
Deterministically controlling the setpoints whenever instability can happen (p°(e) =
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Figure 5.9: In (a), the total duration for the setpoint optimizer with 6P = 1{%] for different TS H. In (b), the
duration for simulations with varying 6 P for TS H = 2[s] (M), and H = 3[s] (@). P axis is in logarithmic scale.

100[%]), could for example require applying P° = 65(%], 40 times per year, resulting in
=~ 280k[€]. Probabilistically applying (5.9) only when (°(e) > 0.9[%] (e.g. 20 times per
year) would result in = 140k[€].

Fig.5.8 shows how alow TS H requires a larger GFM IBR active power reduction to avoid
reaching saturation after the disturbance. In TSs with low inertia, disturbances lead to
larger frequency deviations and more volatile dynamic responses. GFM IBRs, which
aim to regulate frequency and voltage through active and reactive power injection, can
face higher demands after these disturbances. These demands can push the GFM IBRs
to their current saturation limits. Upon reaching these limits, GFM IBRs can lose syn-
chronous stability [127].

At H = 4[s], alow setpoint value of 50[%] let to instable conditions. Therefore, for higher
inertia H = 3.5[s], setting P;; in = 25[%] can avoid such issues and reduce the iterations of
Alg.2. As TS H increases, the post-fault frequency deviations are less volatile. Therefore,
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GFM IBRs require lower active power changes to address frequency deviations. Existing
ADRR approaches represent TS with high inertia. Thus, in existing approaches, IBRs
do not apply significant power output adjustments to control the system frequency and
voltage and do not reach their saturation current.

Considering the computational burden, the duration for the GFM IBR active power set-
point optimizer can vary depending on the instability levels and resolution 6 P. Fig.5.9
shows the durations spent under varying TS inertia and 6 P using an i7-1185G7 CPU. For
highly instable simulations, PowerFactory might need more numerical iterations, step
adaptations, or matrix re-estimations, causing delays per simulation. Thus, for the cases
with low TS inertia in Fig.5.9(a), the setpoint optimizer needed more time as more simu-
lations were not feasible. However, the simulations in Fig.5.9(a) considered a 6 P = 1[%)].
TSOs can increase the resolution to reduce the number of iterations for the setpoint opti-
mizer. Fig.5.9(b) shows how increasing 6 P can reduce the optimizer duration. However,
a 6 P increase can result in larger GFM IBR setpoint reductions, which could increase the
costs for TSOs. As the proposed coordination considers preventive actions, this compu-
tational burden is not restrictive for TSOs.

5.4.4. ADRR REGRESSION MODEL

This case study compares the proposed ADRR regression model of Sec.5.3.1 to the base-
lines through the RMSE metric for predictions of the ADRR test set. Fig.5.10 shows ex-
ample model predictions and RMSEs. Tab.5.1 compares the proposed model to baseline
ADRR models. Tab.5.1 shows the proposed structure outperforms the fine-tuned base-
lines. Model (i) shows a higher mismatch between training and test errors, indicating a
potential for overfitting compared to the other models.

The training duration for model (ii) was more substantial than the rest, as the number
of non-sequential features is larger than the sequential, and replicating their values is
inefficient. All model training times allow frequent (e.g., monthly) re-training intervals.

The proposed ADRR model structure of Fig.5.3 outperforms the baseline structures. The
model (i) structure is as [53], model (iv) structure is as [52], [149], whereas model (iii) is
as [52], [149] extended to include non-sequential features in the LSTM inputs. Models
(), (iD), (iv), unlike [52], [53], [149], also include the classifier as it improves the RMSE,
as shown by model (iii) performance compared to the proposed model. Comparing the
proposed model with model (i), including RNNs is important for sequential features.
Replicating and considering the non-sequential features as sequential is inefficient and
can deteriorate the performance, as in model (ii). This result is expected as the non-
sequential features outnumber the sequential. Removing the non-sequential features
also deteriorates the performance, as in model (iv). Excluding the ADRR classifier for
high instabilities burdens the regression model with high value and fluctuation predic-
tion, deteriorating the model performance as with model (iii).

This case study also estimated the DS response using the proposed ADRR model for the
setpoint optimizer task of Fig.5.7. Fig.5.11 shows the ADRR model response led to the
exact conclusions as the simulated DS response. These conclusions were the maximum
feasible setpoint of 65[%], with 50[%] being feasible, and 70, 75,100[%] non-feasible. The
ADRR outputs of Fig.5.11 approximate the simulations of Fig.5.7.
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Table 5.1: Alternative Structures Performances
Model TrainingValidation Test  Training
RMSE RMSE RMSE [hours]
Proposed  0.83 0.98 0.94 8
@) 1.06 1.29 1.29 7
(ii) 3.98 4.26 3.61 18
(iii) 2.96 3.2 3.03 8
(iv) 2.21 2.39 2.32 8
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Figure 5.10: Example RMSE levels from model predictions (=), compared to the simulated signals ().

5.4.5. HIGH INSTABILITY CLASSIFICATION
This case study investigates the high instability classifier of Sec.5.3.2. Fig.5.12 shows ex-
amples of highly instable and regressor samples. Tab.5.2 compares the performance of
the proposed FB model, the alternative FB model with added ARMA features, and the DB
model. The prediction time indicates the delay each ADRR classifier adds to the ADRR,
including the sample feature extraction. This classification delay only happens once per
simulated event. Including the ARMA features does not improve the model accuracy,
precision, or recall, but highly delays the prediction and feature extraction processes.
The delay the proposed FB model adds once for each dynamic simulation (0.3[s]) is mi-
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Figure 5.12: Example samples classified as highly instable (a) and not (b).

nor. The FB models outperform the DB in accuracy and recall. The 100[%] precision in-
dicates that all models correctly identified all non-highly-instable simulations in the test

set. The proposed high instability classifier shows the highest accuracy with the lowest
delays among the options.

5.4.6. DISCUSSION

Considering the challenges for TSOs assessing the IBR flexibility for dynamic events, the
case studies show the applicability of the proposed coordination. The IBR classifier can
identify GFM and GFL IBRs considering AP using RTI measurements. The ADRR model
represents the post-disturbance DS response. The GFM IBR active power setpoint opti-
mizer can use the ADRR model’s GFM IBR setpoint inputs to reduce instability risks. The

identified setpoints when using the proposed ADRR model are similar to the simulations
with the DS. Insights from the simulated responses are:

1. The system can withstand faults without reducing the GFM IBRs setpoints when
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Table 5.2: Classification Model Performances

Model Test Test Pre- Test Feature Prediction
Accuracy cision Recall Extraction and [s]
[%] (%] [%] Training
[minutes]
FB 99.7 100 98 0.63 0.3
FB with ARMA 99.7 100 98 110 4.7
DB 99.0 100 94.1 0.11 0.57
the TS inertia is high.

2. GFM IBRs require a headroom to avoid reaching their saturation current when the
TS inertia is low.

3. The GFM IBR maximum feasible setpoint increases as the TS inertia increases.

4. Reducing the GFM IBR setpoints multiple times to prevent instabilities can cost
less than suffering outages due to instabilities.

5. Probabilistically reducing the setpoints, considering instability risks, reduces the
costs of preventing instability.

This research does not refute the GFM IBRs’ positive impact on system stability and TSO
support by providing inertia and fast frequency response. Nevertheless, this research of-
fers a coordination process to limit the instability risks from the IBRs’ current saturation
issues. Using the proposed coordination, TSOs can also inform DSOs and IBR about the
reason for the requested setpoint, as RTI requires.

The proposed coordination utilizes existing RTI frameworks for automated control of
IBR by DSOs. Existing RTI applications consider capacity management, but future ap-
plications include voltage quality, system protection, and recovery applications [141] re-
lating to the proposed application. The proposed communication between the TSO and
DSOs does not require extensive sensitive information, as the ADRR does not include DS
models. TSO setpoints for IBR can have values between 0 —99%, and the reason can be
encoded to a single digit. Thus, communication requirements are minimal.

The proposed application of the ADRR model does not directly control safety compo-
nents, but rather informs TSOs of possible actions to prevent instability, involving hu-
man oversight. Therefore, to the best of the author’s knowledge, the proposed coordi-
nation should comply with the European Union’s Al Act [151]. Nevertheless, TSOs and
DSOs should proceed with further considerations and evaluations before considering
the proposed coordination to further ensure compliance with the Al Act and other Euro-
pean Union and national laws.

The test set included scenarios unseen during ADRR training, which varied in operating
conditions, TS inertia, fault locations, and fault durations. The proposed ADRR results
indicated a low RMSE for this test set and variability of scenarios. However, topolog-
ical or structural changes in DSs can challenge data-driven ADRR models. Therefore,
for structural and topological changes, additional data generation and ADRR model re-
training or calibration are needed. A further limitation, the proposed approach did not
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co-simulate the ADRR model and transmission network, due to the absence of ML-based
models in PowerFactory dynamic simulations. Therefore, DSOs and TSOs can validate
and adopt the proposed coordination when dynamic simulation software accepts ML-
based models.

5.5. CONCLUSION

The proposed TSO-DSO coordination method allows TSOs to simulate the DS response
to potential faults, evaluate the impact of different GFM IBR setpoints, and control these
setpoints to prevent instabilities. This application addresses one of the key challenges
recognized by the European DSO Entity and ENTSO-E [9]; the system’s resilience through
shared risk assessment, which requires risk assessment models, data-sharing, and coor-
dination across stakeholders. The coordination uses RTT to classify the IBR types, iden-
tify the DS condition, and control the IBR setpoints. The proposed ADRR approach ac-
counts for the transmission system’s dynamic properties and share of IBR types that im-
pact the DS response to dynamic events. The proposed ADRR model also allows TSOs
to modify DS GFM IBR setpoints and analyze their impact. The proposed risk-based
evaluation and setpoint selection can identify the TSO’s minimum-risk setpoints.

In the Netherlands, the IBR response to dynamic events can impact the stability in TS
with low inertia (e.g., below 4[s]). Thus, controlling the IBR setpoints under low-inertia
TSs reduces instability risks, considering the probability of a dynamic event. Including
the TS dynamic properties, DS operating condition, and IBR share improves the predic-
tion performance by 59(%] (RMSE reduced from 2.32 to 0.94).

Future work includes exploring flexibility areas in the proposed coordination process
to inform TSOs on the potential feasibility of the IBR control setpoints on the DS steady-
state constraints. The adaptability of ADRR models to different topologies should also be
studied. More diverse GFM and GFL models within the DS will also be explored in future
work. The impact of GFM inverter inertial response provision will be considered and
analyzed in subsequent research. Later work will also explore the expansion of grey box
models for comparative analysis with the proposed ADRR model. Subsequent studies
will explore the preventive capabilities of the proposed coordination for cascading faults.



CONCLUSION

This research addressed key challenges in TSO-DSO coordination by focusing on the es-
timation and activation of flexibility from DS. This research’s outputs include algorithms
to estimate the aggregated DS system flexibility, including reliability metrics with com-
putational efficiency. A probabilistic method was introduced to quantify the uncertainty
associated with these flexibility estimates, ensuring more robust decision-making under
real-world variability. Additionally, this research proposed a novel approach for TSO-
DSO coordination, considering the dynamic stability of the interconnected TSs and DSs.
This work also released an open-source Python package that implements methods to
estimate and visualize aggregated DS flexibility areas. This tool aims to support trans-
parency, reproducibility, and practical uptake by grid operators, FSPs, and researchers.
The societal and industrial relevance of this work is significant. With the growing pen-
etration of renewable energy and electrification of demand, grid flexibility is becom-
ing a cornerstone for ensuring secure and cost-effective power system operation. The
proposed methods offer system operators a practical pathway to assess and unlock the
flexibility potential of DS without compromising operational constraints. TSOs can use
the developed coordination strategies to enhance system stability by dynamically inter-
acting with DSOs in a structured and data-informed manner. FSPs, on the other hand,
benefit from clear operational boundaries and confidence intervals that improve market
participation strategies.

By bridging methodological innovation with real-world applicability, this research con-
tributes to a more integrated, resilient, and decarbonized energy system. The open-
source nature of the developed tools further supports knowledge transfer, training, and
collaborative innovation between academia, industry, and regulatory stakeholders.

6.1. RECAP OF THE PROBLEM AND OBJECTIVES

The stated objective of this research is to “to develop approaches to estimate the steady-
state and dynamic flexibility in distribution systems under limited observability to sup-
port secure TSO-DSO operation”, which aims to address research questions Q1, Q2, Q3,

101
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Q4, and Q5. This objective highlights the identified need to increase the coordination
between TSOs and DSOs to utilize distributed flexibility. Toward realizing this need, al-
gorithms need to consider the limited observability in distribution systems and the com-
plexity in simulating and evaluating the operational stability of interconnected TS and
DS systems. The developed approaches and algorithms in Chapters 3-5 address the re-
search questions that comprise this research objective.

6.2. Q1: HOW CAN FLEXIBILITY AREA ESTIMATION ALGORITHMS
INCLUDE RELIABILITY METRICS WITH COMPUTATIONAL EF-
FICIENCY?

To answer this research question, a new FA algorithm was proposed in Chapter 3. To in-
clude reliability metrics, the proposed algorithm evaluates the feasibility of all possible
flexibility combinations. This evaluation enables the algorithm to include a metric on
the density of feasible combinations leading to each operating point. A higher density
of feasible flexibility combinations indicates more options to achieve an operating con-
dition using flexibility. More options indicate less dependency on specific FSP setpoint
combinations, and safer conditions considering the DS constraints.

The proposed algorithm reconsiders simplifications of prior approaches that focused
on exploring the range of aggregated flexibility. The proposed approach, to effectively
evaluate the feasibility of all discrete flexibility combinations, also addressed the more
fundamental question “how can the feasibility of each flexibility combination be evalu-
ated with computational tractability?” Convolution operations can aggregate all discrete
combinations between FSPs, and can represent the number of combinations leading to
each FA point. Nevertheless, to evaluate the feasibility of each flexibility combination,
the approach in Chapter 3 modifies the convolution operations, by excluding the sum-
mation part of the estimation and using tensors to store the flexibility combination im-
pacts on network constraints.

6.3. Q2: HOW CAN FLEXIBILITY AREA ESTIMATION ALGORITHMS
GENERALIZE TO MESHED AND RADIAL NETWORK TOPOLO-
GIES, INCLUDING DISJOINT AND NON-CONVEX FLEXIBIL-
ITY AREAS?

To answer this research question, the proposed FA estimation algorithm developed a
convolution-based approach, without alternative aggregation techniques such as Minkowski
sum, and without mathematical simplifications that linearize FSP flexibility in prior OPF-
based FA approaches. The convolution operations work for disjoint and non-convex FAs,
and the proposed FA algorithms’ formulations do not depend to the DS topology (e.g.,
generalize to both radial and meshed networks). The algorithm proposed in Chapter 3
shows the approach and validates this generalization to meshed and radial DS topolo-
gies, and disjoint and non-convex FAs. The approach of Chapter 4 also extends the ap-
plication of FA estimation algorithms to FAs with 2—PCCs. In answering this research
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question, the below more fundamental questions were initially addressed:

1. How can the flexibility from multiple resources be aggregated, including non con-
vexities? As indicated in Chapter 3 and Appendix B, the proposed approach recog-
nized how convolution can aggregate flexibility from multiple resources, including
non-convex shapes. This characteristic differs from prior approaches, which ap-
plied convex simplifications or the Minkowski sum for fast flexibility aggregation.

2. How can flexibility estimation algorithms include flexibility resources with a non-
continuous set of flexibility setpoints? The proposed approach in Chapter 3 uti-
lizes the Dirac function convolution property to effectively consider non-continuous
flexibility setpoints.

6.4. Q3: HOW CAN FLEXIBILITY AREA ESTIMATION INCORPO-
RATE THE LEVEL OF OBSERVABILITY ON DISTRIBUTION SYS-
TEMS?

This question was first addressed by exploring the more fundamental question “What
is the impact of limited DS observability on estimated FAs?”. Initial results indicated
that the limited observability in DSs can impact the FA feasibility levels, where operat-
ing conditions of unobserved DS components can be closer or more distant to the DS
constraints, altering the set of feasible flexibility combinations [152].

To incorporate the uncertainty in DSs from limited observability, this research developed
a BNN-based FA estimation approach in Chapter 4. In this approach, TSOs can select a
safety percentage on flexibility feasibility, considering uncertainty levels due to limited
DS observability. BNNs estimate the uncertainty levels for the measured DS conditions.
The proposed approach uses these uncertainty levels and the safety percentage to add
safety margins when evaluating the feasibility of flexibility combinations. The BNNs in-
clude epistemic and aleatoric uncertainty in their estimations.

6.5. Q4: WHAT IS THE IMPACT OF CONTROLLING INVERTER-
BASED RESOURCES ON THE OVERALL SYSTEM’S DYNAMIC

STABILITY?

Addressing this research question, Chapter 5 considered the existing literature, modeled
GFM and GFL IBRs in DS, and examined various operating conditions between the TS
and the DS in the Dutch Zealand region while simulating dynamic events such as TS line
faults. The results indicated that the current saturation issue of GFM IBR can bring in-
stability in low-inertia TSs after large disturbances such as line faults. Under low-interia
TSs, large disturbances lead to more volatile dynamic responses. GFM IBRs rapidly adapt
their output to maintain the network voltage and frequency with limited support from
the TS. Therefore, GFM IBRs need larger headroom to avoid reaching current saturation.
Therefore, controlling GFM IBR to increase their headroom before reaching saturation
current in low inertia networks can reduce post-fault instability risks.
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6.6. Q5: HOW CAN TRANSMISSION AND DISTRIBUTION SYS-
TEM OPERATORS COORDINATE TO CONTROL DISTRIBUTION

SYSTEM RESOURCES IN REAL-TIME TO ENSURE STABILITY?

To control DS resources in real-time to ensure stability, a TSO-DSO coordination should
consider the available measurements in DSs, the technical and computational feasibil-
ity of the solution, and data confidentiality. Addressing this research question, Chapter
5 considered computational burdens, TSO-DSO confidentiality, and existing platforms
in the Netherlands, to enable real-time monitoring and controlling of DS IBRs. Through
these considerations, Chapter 5 introduced a new approach for TSO-DSO coordination
and showed its potential impact for instability risk minimization. In, the proposed co-
ordination, the DSO develops a machine learning-based ADRR model representing the
DS dynamic response to faults, considering the IBR outputs and DS operating condition.
The TSO uses the ADRR model to simulate the dynamic response of the interconnected
TS and DS to possible faults. If instability is detected, a GFM IBR active power setpoint
optimizer finds the maximum GFM IBR setpoints that can provide enough headroom
to avoid instability due to the probable events. If reducing the GFM IBR setpoints can
minimize instability risks, the TSO informs the DSO of the new setpoints. The DSO vali-
dates the steady-state feasibility of these setpoints and then requests them from the IBR
through RTI.

6.7. DISCUSSION AND FUTURE WORK

This research develops algorithms and ML-based approaches to address key issues in
power system operation, on TSO-DSO coordination, and DS flexibility utilization. These
approaches span from steady-state to dynamic simulations and propose algorithms span-
ning from convolution operations to LSTMs and BNNs. Nevertheless, power systems
require further adaptation of operational methods to enable this transition to a green,
more distributed power grid.

Future work will mainly be on developing, exploring, and utilizing new optimization-,
and ML-based approaches to support the transition to green and decentralized energy
systems. Considering the similarity between graphs and power system networks, future
work includes further exploration of GNN approaches for power system applications. In
addition, the potential for federated learning for cross-organizational collaboration will
be explored. Finally, future work will continue exploring the utilization of probabilistic
machine learning models to consider the uncertainty in power systems tasks.
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TENSORCONVOLUTIONPLUS: A
PYTHON PACKAGE FOR
DISTRIBUTION SYSTEM FLEXIBILITY
AREA ESTIMATION

Power system operators need new, efficient operational tools to use the flexibility of dis-
tributed resources and deal with the challenges of highly uncertain and variable power
systems. Transmission system operators can consider the available flexibility in distribu-
tion systems (DSs) without breaching the DS constraints through flexibility areas. How-
ever, there is an absence of open-source packages for flexibility area estimation. This chap-
ter introduces TensorConvolutionPlus, a user-friendly Python-based package for flexibil-
ity area estimation. The main features of TensorConvolutionPlus include estimating flexi-
bility areas using the TensorConvolution+ algorithm, the power flow-based algorithm, an
exhaustive PF-based algorithm, and an optimal power flow-based algorithm. Additional
features include adapting flexibility area estimations from different operating conditions
and including flexibility service providers offering discrete setpoints of flexibility. The Ten-
sorConvolutionPlus package facilitates a broader adaptation of flexibility estimation al-
gorithms by system operators and power system researchers.

Parts of this chapter have been published in: D. Chrysostomou, J. L. R. Torres and J. L. Cremer, "TensorCon-
volutionPlus: A python package for distribution system flexibility area estimation", SoftwareX, 2025. DOI:
https://doi.org/10.1016/j.s0ftx.2025.102241, [153].

Parts of this chapter have been published in: D. Chrysostomou, J. L. R. Torres and J. L. Cremer, "Ten-
sorConvolutionPlus: A python package for distribution system flexibility area estimation", ArXiv. DOI:
https://doi.org/10.48550/arXiv.2501.06976
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METADATA
Tab. A.1 describes the proposed package’s code metadata.

Nr. | Code metadata description Metadata

Cl | Current code version v0.1.1

C2 | Permanentlink to code/repository | https://github.com/Demetris-Ch/
used for this code version TensorConvolutionFlexibility

C3 | Permanent link to Reproducible | https://codeocean.com/capsule/
Capsule 4767295/tree/v1

C4 | Legal Code License CC-BY

C5 | Code versioning system used git

C6 | Software code languages, tools, | Python
and services used

C7 | Compilation requirements, oper- | Python=> 3.10, matplotlib= 3.8.2,
ating environments & dependen- | networkx> 3.1, numpy= 1.24.3,
cies pandapower= 2.13.1, pandas= 1.5.3,
scikit-learn= 1.3.0, scipy= 1.11.2,
seaborn>= 0.13.2, tntorch= 1.1.1,
torch=2.0.1, tqdm= 4.66.1

C8 | Link to developer documenta- | https://demetris-ch.github.io/
tion/manual TensorConvolutionFlexibility/

C9 | Support email for questions D.Chrysostomou@tudelft.nl

Table A.1: Code metadata.

A.1. MOTIVATION AND SIGNIFICANCE

Power systems encounter an operational transition as renewable energy sources (RES)
penetration rises, and the conventional generation output decreases. This operational
transition includes coordinating transmission system operators (TSOs) and distribution
system operators (DSOs). RES are mainly connected to distribution systems (DSs) and
have high variability and uncertainty, challenging the TSOs and DSOs who need to main-
tain their system balance. However, RES and active users in DSs can also offer flexibility
to contribute to the reduction of these challenges. This flexibility corresponds to the
RES or active users changing their generation or consumption setpoints to support the
system operators. The RES and active users that offer flexibility constitute the flexibil-
ity service providers (FSPs). Therefore, TSOs and DSOs need operational tools that can
efficiently allow communicating and using FSP flexibility [81][154].

TSO-DSO coordination approaches can be categorized in TSO-managed, DSO-managed,
or TSO-DSO hybrid models [10][155], with recent TSO-DSO coordination approaches
also developing multi-interval TSO-DSO coordination [156]. The proposed package is
focused on DSO-managed coordination, where the DSO validates the feasibility and ag-
gregates the FSP flexibility to inform the TSO of the available, feasible FSP services. The
DSO can validate and aggregate the FSP flexibility using Flexibility areas (FAs) [10]. FAs
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are areas in the active (P) and reactive (Q) power plane, illustrating which setpoints TSOs
can achieve at a TSO-DSO interconnection node when utilizing feasible flexibility from
the DSs.

FA estimation approaches mainly apply power flows (PF) or optimal power flows (OPF)
[18]-[23], [25], [26], [30], [82], [152] to explore the limits of the offered flexibility in the PQ
space. PF-based algorithms are simple and consistent but slow, whereas OPF-based al-
gorithms are faster but can have convergence issues. A recently proposed FA estimation
algorithm, TensorConvolution+ [110], explores the limits and the density of feasible flex-
ibility shift combinations to reach each FA setpoint. TensorConvolution+ applies convo-
lution and tensor operations to combine flexibility shifts and evaluate their feasibility for
the system’s technical constraints. Additional functionalities of the TensorConvolution+
approach include storing tensors from prior estimations and adapting FAs for altered
operating conditions (OCs). Forecast errors in distribution systems can provide uncer-
tainty in day ahead FA estimation, with recent approaches exploring chance constraint
[30], robust optimization [101][18], or probabilistic [20][157][102][158] algorithms. The
proposed package implements deterministic FA estimation. Fast FA estimation algo-
rithms can potentially be used in close to real-time, reducing the impact of forecast er-
rors [22]. Existing FA estimation approaches include case studies with real-world sys-
tems and data. For example [38] used data from the French DSO whereas [159] used the
Swiss TS. The proposed software currently supports systems in the pandapower format.
Thus, users should import their systems in the pandapower format, or use the existing
pandapower systems.

The operational transition and data availability in power systems provided opportuni-
ties for digitalizing power systems. This digitalization corresponds to more intelligent,
effective, green power grid operations [160]. Data-driven approaches for power system
operations are emerging with works on dynamic [161] and static simulations [162][28],
from protection gaps [161], to dynamic security assessment [123] and probabilistic ap-
proaches [162]. The main drivers for change in power systems are decarbonization, dig-
italization, and decentralization, with flexibility as a key for decarbonization [163]. The
digitalization of power systems resulted in the emergence of open-source tools. Power
systems open-source tools include the PandaPower [164] in Python, PSAT [165] in Mat-
lab and GNU/Octave, MatPower [166] in Matlab. More recent tools with increased ef-
ficiency include [167] in C++. As highlighted by [164], software developed in languages
with open-source licenses, such as Python, C++, and Julia, can be used as stand-alone
or extended with other libraries. These advantages of open-source libraries drove re-
searchers to design more specialized power system-related packages such as [168]-[171].
FA estimation is an emerging field in power engineering that can improve the power sys-
tem stability and utilization of flexibility from decentralized resources. However, cur-
rently, there are no open-source FA estimation packages. An open-source package for
FA estimation can accelerate the adoption of FAs by power system operators and attract
more researchers to this emerging field.

The developed Python-based package for FA estimation focuses on the TensorConvolu-
tion+ algorithm [110] but also includes a traditional PF-based algorithm, an exhaustive
PF-based algorithm, and an OPF-based algorithm.
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Figure A.1: TensorConvolutionPlus package usage through the script ( ) FA_Estimator and its main func-
tionalities ( ).

A.2. SOFTWARE DESCRIPTION

The software framework is implemented in Python. The package can be installed from
the Python package index (PyPi). The code implementation is available on GitHub. The
documentation for the package’s main functions, classes, supporting functions, and case
studies is available online and was built using the Sphinx library [172].

The seven main software functionalities are two PF-based algorithms, one OPF-based al-
gorithm, and four versions of the TensorConvolution+ algorithm. Fig.A.1 illustrates the
usage of the package functionalities. The user calls the FA_Estimator script of the Ten-
sorConvolutionPlus package and selects one of the main functionalities. The selected
algorithm functionality estimates the FA and stores locally:

1. The FA image in a portable document format (PDF) file.
2. The FA results in a comma-separated values (CSV) file.

3. Atext file with the simulation information on duration and algorithm-specific de-
tails.

The tcp_plus_save_tensors also includes additional files from the FA results. The user
inputs depend on the functionality.

A.2.1. SOFTWARE ARCHITECTURE

The proposed software architecture intends to allow efficient modification and expan-
sion of specific sub-processes of the FA estimation problem. Tab.A.2 highlights the roles

of the Python scripts implementing the package functionalities. The json_reader script
checks if each input is within the acceptable options to avoid erroneous results. If json_reader
detects an unacceptable input, the FA estimation does not begin, and the user is in-
formed about the input causing the issue and the acceptable values. Users can identify
which scripts and functionalities to modify or expand to fulfill additional needs. For ex-
ample, to add or modify the plotting functions of the package, one would modify the
plotting script. For more complex modifications, such as adding different sampling
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techniques for the PF-based algorithms, the data_sampler and json_reader would be the
only scripts requiring modification. The user could modify the sample_from_rng func-
tion in data_sampler to sample FSP shifts using a new distribution when the new distri-
bution keyword is selected. The json_reader modification corresponds to adding new
acceptable options, the new sampling distribution keyword in self.distribution in the
function tester of the class SettingReader. An input outside the acceptable options in the
json_reader stops the process before the simulation to avoid erroneous or untested re-
sults. This architecture also allows potential future expansions to new FA estimation al-
gorithms, where an additional script can be created and integrated with the json_reader
and FA_Estimator scripts without impacting other processes. For new FA estimation al-
gorithms, the json_reader would need to create any new variables for the algorithms in
the __init__ of the class SettingReader, and add the acceptable options for each variable
in the tester function. The new algorithms should be created as a new functionality in
the FA_Estimator script. Depending on the needs of the new algorithms, the user can call
sampling functions from the data_sampler, plotting functions from the plotting script,
or other generic functions from the utils script.

Script Role
FA_Estimator Package main script which includes the main functionalities.
json_reader (i) Read input settings and create a SettingReader object with

the algorithm parameters.
(ii) Validate that the inputs are within the acceptable options.

data_sampler Sample flexibility shifts from flexibility providers.

scenario_setup Update network and SettingReader object based on the algo-
rithm input parameters.

opf Perform the OPF-based FA estimation algorithm.

monte_carlo Perform the PF-based FA estimation algorithms.

conv_simulations Perform the TensorConvolution+ algorithm functionalities.

utils Provide generic functions to the other scripts.

plotting Generate figures of resulting FAs.

Table A.2: Package script roles.

The package’s GitHub repository includes the Python scripts under the "src/TensorCon-
volutionPlus" directory. The package dependencies include pandapower to perform PF
and OPF operations, PyTorch for tensor operations, SciPy for convolution operations,
tntorch and scikit-learn for additional TensorConvolution+ subprocesses. NumPy and
pandas are used for data storage, processing, and sampling, tqdm illustrates the FA esti-
mation progress, and matplotlib and seaborn generate the figures.

A.2.2. SOFTWARE FUNCTIONALITIES

The FA_Estimator scriptincludes the main functionalities as in Fig.A.2. The monte_carlo_pf

and exhaustive_pf functions apply PF-based FA estimation algorithms. The opf function
applies the OPF-based FA estimation. The tc_plus, tc_plus_merge, tc_plus_save_tensors,
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tc_plus_adapt functions perform different versions of the TensorConvolution+ algorithm.
The common inputs for all main functionalities are the network pandapower object
(net), the network name (net_name), indices of load FSPs (fsp_load_indices), indices of
distributed generation FSPs (fso_dg indices), scenario type for initial topology and OCs

(scenario_type), and system constraints for maximum component loading [%] (max_curr_per),

maximum voltage [p.u.] (max_volt_pu), and minimum voltage [p.u.] (min_volt_pu). All
functionality inputs are optional. However, to estimate FAs, at least one distributed gen-
eration or load FSP is required. The remaining scripts, at the right of Fig.A.2, provide
functions and sub-processes to implement the main functionalities.

monte_carlo
—> monte_carlo_pf

json_reader
> exhaustive_pf

scenario_setup

> tc_plus
‘ data_sampler
..‘——% FA_Estimator —1—> tc_plus_merge —_—>
TensorConvolutionPlus L > tc_plus_save_tensors

> tc_plus_adapt
conv_simulations

—> opf

Figure A.2: Package main functions ( ) relationship (— ) with python scripts (-).

A.3. IMPLEMENTATION AND EMPIRICAL RESULTS

The main building blocks for the implemented FA estimation algorithms are (i) initial-
izing network and FA estimation settings, (ii) performing simulations for FSP flexibility
shifts on the network, (iii) processing the simulation results, and (iv) plotting and stor-
ing the simulation results. All functions have similar block (i), the Alg.3. The plotting
functions differ between the functionalities.

A.3.1. PF-BASED FUNCTIONS
The PF-based functions differ from the FSP flexibility shift sampling functions. There-
fore, the main difference between the PF-based functions is:

* monte_carlo_pf uses a probability distribution (input) to obtain no_samples (in-
put) of flexibility shift combinations.

* exhaustive_pf uses the increments dp, dq (inputs) for P and Q to sample all possi-
ble discretized flexibility shift combinations.



A.3. IMPLEMENTATION AND EMPIRICAL RESULTS 127

Algorithm 3 Initialize network and FA estimation settings.

Require: fsp_load_indices and/or fsp_dg indices,
initialize SettingReader object with estimation settings,
check if SettingReader has acceptable values,
if net is None then,

net — pandapower network with name=net_name,
change net topology and OC for scenario_type,
end if
return SettingReader with net.

Alg 4 illustrates the algorithm for both the PF-based functions after the samples are ob-
tained. The samples array includes the FSP shift combination samples. PCC is the point
of common coupling between the TSO and the DSO.

Algorithm 4 PF-based FA estimation.

Require: samples, SettingReader, net,
init_net — net,
for sample € samples do,
apply sample on net,
run PF on net,
if net OC are within system constraints then,
store sample index and PCC B, Q as feasible,
else
store sample index and PCC P, Q as not-feasible,
end if
net — init_net,
end for
store FA PDE CSV, and text file.

EMPIRICAL RESULTS

The PF-based functions can illustrate consistent performance under various network
structures and FSP combinations. However, as FSPs increase, the performance dete-
riorates. The Monte-Carlo-based algorithm could require large no_samples to capture
the margins of the flexibility area. The exhaustive PF-based algorithm can become in-
tractable for more than 3 FSPs and small dp, dgq.

A.3.2. OPF-BASED FUNCTION

The OPF-based algorithm applies four multi-objective optimizations (MOO). These op-
timizations aim to identify the maximum feasible active (Ppcc) and reactive power (Qpcc)
at the PCC achieved using the available flexibility as:

1. max(aPpcc+ (1—a)Qpcc),

2. max(—aPpcc+ (1 —a)Qpcc),
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3. max(aPpcc + (@ —-1)Qpcc),
4. max(—aPpcc + (@—1)Qpcc).

The variable a € [0, 1] provides a plane in which the active and reactive power shifts are
combined. Therefore, the algorithm iteratively changes « in steps provided through the
additional input the opf _step. For example, an opf step= 0.1 results in 11 iterations per
MOO, thus 44 OPFs to estimate the FA.

EMPIRICAL RESULTS

The OPF-based function has convergence issues for different network structures. The
OPF-based function can converge for the radial CIGRE MV network when ignoring trans-
former loading limitations but might not converge in other networks, e.g., the Oberrhein
network. These issues are due to the OPFs performed for each MOO failing to converge
to identify an optimal solution within the constraints and network settings.

A.3.3. TENSORCONVOLUTION+ FUNCTIONS

The TensorConvolution+ functions correspond to the algorithm proposed in [110]. The
function fc_plus corresponds to the generic approach of the algorithm, whereas the rest
accommodate specific use cases.

TensorConvolution+ initially creates samples of all flexibility shifts for each FSP with in-
crements dp, dq (inputs) for active and reactive power, respectively. The samples do not
include combinations of FSPs. Thus, the number of samples increases linearly with the
addition of FSPs. The flex_shape input characterizes the boundaries of each FSP flexibil-
ity. Currently, the FSP shapes can be:

1. Smax: The FSP output apparent power cannot exceed its maximum apparent power,
resulting in a semi-oval flexibility shape.

2. PQmax: The FSP active and reactive power outputs cannot exceed the maximum
apparent power, resulting in a rectangular flexibility shape.

Using these samples and the outputs of Alg.3, the function fc_plus performs Alg.5 to esti-
mate and plot the FA. The TensorConvolution+ algorithm applies convolutions to com-
bine the flexibility shifts between FSPs. However, as FAs consider the network constraint
limitations, the FA algorithm needs to first filter the feasible and non-feasible combi-
nations. Thus, for sensitive network components (close to network constraints), Ten-
sorConvolution+ modifies the convolution operation to avoid the summation step and
stores the resulting impacts from combined FSP shifts to tensors. The first two dimen-
sions of the tensors correspond to the PCC active and reactive powers, whereas the addi-
tional dimensions include the impact of a specific flexibility combination on a sensitive
network component. Following these tensor operations, TensorConvolution+ filters out
the FSP combinations resulting in non-feasible conditions and sums all but the first two
tensor dimensions, as the convolution summation step.[110] provides further illustra-
tive and mathematical analysis of TensorConvolution+. The main differences between
tc_plus, tc_plus_merge, tc_plus_save_tensors, and tc_plus_adapt:
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Algorithm 5 fc_plus FA estimation.

Require: samples, SettingReader, net,
init_net — net,
QY — set of net components,
for sample € samples do,
run PF on sample and record impact on network components,
end for
QFSPs — set of FSPs with capacity smaller than dp, dq,
impacts — the FSP impacts on each y € Q7,
uFA — the unconstrained FA using convolutions on all FSP € QFS?,
Q}Ifsp — set of FSPs that impact y more than the sensitivity thresholds,
QY — remove all y from QY that cannot reach the system constraints from the maxi-
mum FSP impacts,
for y € QY do,
=y < apply tensor-convolution for all feasible Q}If SP combinations,
Ay < sum Zy in all dimensions except the first 2,
Y, — apply convolution between Ay and the QFsPy Q{f SP shifts,
end for
if QY = @ then,
FA—uFA,
else
FA < the element-wise minimum between Y Vye Qr,
end if
normalize FA,
get axes of result and create a result data frame,
if QFSPS # @ then,
FA; — bilinear interpolation on FA to increase its size,
FAgy, — convolute FA; with the FSPs in QFSPs,
normalize FAgy,,
end if
store FA PDE CSV, and text file.

e tc_plus_save_tensors stores extracted information and sensitivity tensors locally.
This functionality reduces the tensors’ memory requirements using tensor train
decomposition (TTD). This reduction causes delays and is therefore excluded from
the tc_plus function.

* tc_plus_adapt does not sample flexibility shifts nor estimates network component
sensitives, as it adapts from the FA estimated in previous simulations for the same
FSP offers.

* tc_plus_mergeis useful when memory limitations do not allow estimating FAs with
the fc_plus function. The fc_plus_merge function estimates the electrical distance
between all FSPs. When a network component is sensitive to more than max_FSPs
(input), this function merges the flexibility between the two electrically closest
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components iteratively until the network component is sensitive to max_FSPs.

EMPIRICAL RESULTS

The TensorConvolution+ functions perform computationally better in GPUs, where ten-
sor operations can be faster. Simulations in different network topologies showcased con-
sistent performance with TensorConvolution+.

TensorConvolution+ can have memory issues and terminate the simulation for networks
with multiple components close to the system constraints, small dp, dqg, and increased
FSPs. GPUs with higher VRAM reduce these limitations. When memory issues persist,
tc_plus_merge can mitigate these issues but could reduce the estimation accuracy.

A.4. ILLUSTRATIVE EXAMPLES

All examples were performed using the A100 GPU in Google Colab [97]. To use the pack-
age, the user can perform two steps. The first step is installing the package through pip
as:

pip install TensorConvolutionPlus
The second step is importing the package’s FA_Estimator in a Python script as:
from TensorConvolutionPlus import FA_Estimator as TCP

The user can use any main function from Fig.A.2 using the imported TCP. The following
subsections showcase the main functions of the package after the above steps.

A.4.1. PF AND OPF FUNCTIONALITIES

This section includes examples using the Monte Carlo PE exhaustive PF, and OPF func-
tionalities. These examples used the Python script code:

TCP.monte_carlo_pf (net_name=’MV OberrheinO’, no_samples=1000,

fsp_load_indices=[1, 2, 3], fsp_dg_indices=[1, 2, 3], distribution=
>Uniform?’)

s TCP.monte_carlo_pf (net_name=’MV Oberrhein0’, no_samples=6000,

fsp_load_indices=[1, 2, 3], fsp_dg_indices=[1, 2, 3], distribution=
>Uniform’)

TCP.monte_carlo_pf (net_name=’MV Oberrhein0O’, no_samples=20000,
fsp_load_indices=[1, 2, 3], fsp_dg_indices=[1, 2, 3], distribution=
>Uniform’)

TCP.monte_carlo_pf (net_name=’MV OberrheinO’, no_samples=40000,
fsp_load_indices=[1, 2, 3], fsp_dg_indices=[1, 2, 3], distribution=
>Uniform’)

TCP.exhaustive_pf (net_name=’MV Oberrhein0’, dp=0.01, dq=0.02,
fsp_load_indices=[5], fsp_dg_indices=[5])

TCP.opf (net_name=’CIGRE MV’, opf_step=0.1, fsp_load_indices=[1, 4, 9],
fsp_dg_indices=[8])

Fig.A.3 illustrates the expected output FA for each line respectively. In terms of com-
putational burden, the simulations required 55 s for Fig.A.3(a), 5 minutes and 5 s for
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Fig.A.3(b), 18 minutes for Fig.A.3(c), 36 minutes for Fig.A.3(d), 36 minutes and 18s for
Fig.A.3(e), and 33.7s for Fig.A.3(f). Fig.A.3(e) performed 43121 power flows and Fig.A.3(f)
executed 44 OPFs. The Monte Carlo-based results showcase clearer FA margins for 20K
and 40k samples than lower values. However, the number of samples for clearer margins
can also depend on the number of FSPs. Monte Carlo-based functions can be better than
the exhaustive PF-based function in exploring FA margins for scenarios with more FSPs.
Lowering the resolution for the exhaustive approach for producing clear FA margins can
be intractable as FSPs increase.
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Figure A.3: PF-based and OPF-based FA estimations.

A.4.2. TENSORCONVOLUTION+
This section illustrates examples using the TensorConvolution+ FA estimation function-
ality, using the Python lines:

TCP.tc_plus (net_name=’MV Oberrhein0O’, fsp_load_indices=[1, 2, 3], dp
=0.05, dq=0.1, fsp_dg_indices=[1, 2, 3])

s TCP.tc_plus(net_name=’MV OberrheinO’, fsp_load_indices=[1, 2, 3], dp

=0.075, dq=0.15, fsp_dg_indices=[1, 2, 3])

TCP.tc_plus_merge (net_name=’MV Oberrhein0O’, fsp_load_indices=[1, 2, 3],
dp=0.025, dq=0.05, fsp_dg_indices=[1, 2, 3], max_fsps=5)
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7 TCP.tc_plus(net_name=’MV Oberrhein0O’, fsp_load_indices=[1, 2], dp=0.05,

dq=0.1, fsp_dg_indices=[1, 2, 3])

TCP.tc_plus(net_name=’MV Oberrhein0O’, fsp_load_indices=[1, 2], dp
=0.025, dq=0.05, fsp_dg_indices=[1, 2, 3])

TCP.tc_plus(net_name=’CIGRE MV’, fsp_load_indices=[3, 4, 5], dp=0.05,
dq=0.1, fsp_dg_indices=[8], non_linear_fsps=[8])

Fig.A.4 shows the expected output FAs from the above lines respectively. Fig.A.4(a) re-
quired 13.1s whereas the second line reduces the resolution, with Fig.A.4(b) requiring
7.6s. Increasing the resolution from the first line to dp = 0.025,dq = 0.5 exceeded the
A100 GPU memory, stoping the simulation. Thus, running the #c_plus_merge function
merged FSPs when more than 5 FSPs impacted a network component and estimated the
FA of Fig.A.4(c) for this higher resolution in 37.9s. The fourth line reduced the number of
FSPs to 5 from Fig.A.4(a) with the same resolution, resulting in Fig.A.4(d) in 9s. Increas-
ing the resolution of Fig.A.4(d) to dp = 0.025,dq = 0.5 did not cause memory issues for
the GPU, resulting in Fig.A.4(e) in 26.5s. The last line includes an FSP offering discrete
setpoints of flexibility. The input non_Ilinear_fsps specifies which of the FSPs referenced
in the fsp_dg indices can only offer 2 setpoints; current output or full output reduction.
The duration for Fig.A.4(f) was 17.8s.
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Figure A.4: TensorConvolution+ algorithm examples with all linear FSPs in (a)-(e), merging of FSPs in (c) and
one non-linear FSP in (f).
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A.4.3. TENSORCONVOLUTION+ ADAPT

To adapt FA estimations using estimations from expected or prior operating conditions,

TensorConvolution+ requires storing the relevant information from these prior FA esti-

mations locally. Therefore, the package’s user should first call the fc_plus_save_tensors

function to store the information. This function performs TTD to reduce the space re-

quired to store tensors but requires more extensive computational time than fc_plus to

execute the additional TTD and storing operations. After tc_plus_save_tensors is exe-

cuted, then tc_plus_adapt can use the stored information to estimate FAs for altered

related OCs if the network topology and FSPs are consistent. Bellow, an example script

storing the information, altering the operating conditions, and adapting the FA for the

new operating conditions:

# Stepl: Define the consistent FSPs for the storing and adapting
functions

fsp_load_indices = [1, 2, 3]

fsp_dg_indices = [1, 2, 3]

# Step 2: Estimate the FA and store the relevant information for
adaptation

TCP.tc_plus_save_tensors(net_name=’MV Oberrhein0O’, fsp_load_indices=
fsp_load_indices, dp=0.05, dq=0.1, fsp_dg_indices=fsp_dg_indices)

# Step 3: Modify the network operating conditions

net, net_tmp = pn.mv_oberrhein(separation_by_sub=True)
net.load[’sn_mva’] = list(net.load[’p_mw’].pow(2).add(net.load[’q_mvar’
].pow(2)).pow(0.5))

net.load[’scaling’] = [1 for i in range(len(met.load))]
net.sgen[’scaling’] = [1 for i in range(len(net.sgen))]
net.switch[’closed’] = [True for i in range(len(mnet.switch))]
# Step 4: Fix the network structure

3 net = fix_net(net) # This function is included in the documentation (C8

of Tab.1)

# Step 5: Sample a new operating condition with randomness

5 rng = np.random.RandomState (212)

net, rng = rand_resample (net, fsp_load_indices, fsp_dg_indices, rng,
0.05, 0.01, 0.05, 0.01) # This function is included in the
documentation (C8 of Tab.1)

# Step 6: Adapt the FA using the locally stored information

TCP.tc_plus_adapt (net=net, fsp_load_indices=fsp_load_indices,
fsp_dg_indices=fsp_dg_indices)

# Step 7: Estimate the FA without adapting to compare with the above-
adapted result

TCP.tc_plus(net=net, fsp_load_indices=fsp_load_indices, fsp_dg_indices=
fsp_dg_indices, dp=0.05, dq=0.1)

The expected output FA from the storing function is the same as in Fig.A.4(a). However,
this function also stores:

1. TTD results for 20 network components with total size 241 MB.

2. FA axes values with total size 2K B.

3. Matrix of the unconstrained convolution results with total size 4K B.
4. Dictionary with FSP impacts 382K B.

5. Dictionary of impactful FSPs per network component 4K B.
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The storing function required 61s. Fig.A.5 illustrates the expected output for the adapted
FA and the FA without adaptation, i.e., not using the stored information. The FAs of
Fig.A.5 have a high resemblance. The GPU needed 1.4s for the adapted FA of Fig.A.5(a)
and 10.4s for the FA of Fig.A.5(b).
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Figure A.5: TensorConvolution+ example in adapted FA estimation.

A.5. IMPACT

TensorConvolutionPlus is the first open-source package for FA estimation. Users can
execute the package functionalities with ease. The package can estimate FAs only with
two lines of Python code, importing the package and calling the selected functionality.
Existing power systems-related libraries do not offer FA estimation functionalities, but
rather power flows and optimal power flows. Other FA frameworks have been proposed
to make use of such power flows. However, to the best of the authors knowledge, this
proposed package is the first that focuses directly on the FA estimation algorithms and
is ready to use without requiring the implementation of FA algorithms. Existing works
have released code implementations for FA estimation [152][173][174], but no dedicated
FA package has been available. This package release enhances FA estimation accessibil-
ity, reusability, and ease of integration, providing a standardized and user-friendly so-
lution. Nevertheless, the structure also allows using networks developed by the user.
The software design strengthens the potential for further expansion, improvement, and
adoption of FA estimation methods. The package structure enables users to expand FA
estimation subprocesses without modifying other subprocesses. For example, possible
expansions for the PF-based functions include new shapes from the flexibility resources
or new sampling distributions for the Monte Carlo-based function. These expansions
should not impact Alg.4 but only the scripts data_sampler for the new sampling shapes
or distributions, json_reader to accept the new input keywords, and FA_Estimator to ob-
tain the new inputs and call the new data_sampler functions.

The developed package includes different FA estimation approaches, allowing users to
select and identify the best-performing approach for their tasks. Nevertheless, this pack-
age focuses on the TensorConvolution+ [110] algorithm, which can require more com-
plex implementation compared to OPF-based and PF-based algorithms. Through this
package, researchers will be able to familiarize themselves with the FA estimation topic
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and the TensorConvolution+ algorithm and further advance the field of FA estimation.
Similarly, power system operators can use this package directly for their networks and
case studies, improving the potential of adopting FAs in their operations. Recent publi-
cations explore the application of FA for improved TSO-DSO coordination frameworks
and more efficient real-time grid operation [159][10]. The proposed package can further
facilitate these applications by alleviating the burden of reimplementing the FA estima-
tion algorithms. Existing power system workflows in Python can integrate with the pro-
posed package if the systems are in a pandapower format. Power system workflows in
other languages or software such as DigSilent or Matlab would first require integration
with Python before using TensorConvolutionPlus.

A.5.1. LIMITATIONS

The main limitation of the released package is the absence of unit testing for future pack-
age versions. Individual limitations from the main functionalities include the GPU mem-
ory overflow for TensorConvolution+ and convergence failures for the OPF-based func-
tionality. For TensorConvolution+, the memory overflow can be reduced by using the
tc_plus_merge functionality. Another mitigation can extend the increments dp, dq, re-
sulting in lower resolution FAs. For the OPF-based convergence failures, simplified OPF
implementations might mitigate the issues, but were not tested in the present package
release.

A.6. CONCLUSIONS

Power system digitalization and developing open-source power system specialized tools
are significant for intelligent and effective power grid operations. In the absence of open-
source tools for FA estimation, the developed package can improve the reachability and
adoption of TensorConvolution+ and FA estimation algorithms in academia and indus-
try. With a user-friendly structure, the package allows straightforward installation and
execution of FA estimation.

The package documentation showcases example usages and details on the scripts and
their functions. The package structure diversifies between FA sub-processes. This diver-
sification allows users to better understand and expand the FA estimation algorithms in
specific sub-processes, such as the FSP shapes, without impacting the remaining sub-
processes. This research is part of the MegaMind project which involves Dutch system
operators and grid companies. The package will be pursued for integration with relevant
industrial partners in future developments. Unit testing implementation will also be
pursued in future work to facilitate consistency in later package versions. Future pack-
age expansions include implementing FA functionalities using alternative power system
tools and libraries, and comparing the performance to the present functionalities. This
package will be maintained with updates reviewed annually. Pull requests are welcome
and will be tested and reviewed by the authors before merging. Improvement on the
GPU requirements of TensorConvolution+ and the OPF implementations will also be
pursued in future developments.






PROOF: EXPLORING ALL FEASIBLE
COMBINATIONS

The authors use a proof through induction to show that the convolution between any k
FSPs will result in the total number of shift combinations between these k FSPs leading
to the point Ap®,Aq°. Let’s assume 2 FSPs, i and i. Due to (3.15), the inner part of (3.14)
can be described as:

F;(Ap,AqQ)F;(Ap° —Ap,Aq° - Aq) =

1, ifap°-ap,aqg°-aq1Tes (ap,aqT eqd,
{ p°-ApAq°-Aq >[ApAq ; (B.1)

0, otherwise.

Therefore, each counted point is from shifts existing in the FSP i and i capabilities.
From (B.1), all points of Ap, Aq that are counted, resultin Ap; + Ap; = Ap®, Ag; + Ag; =
Ag°. Thus, counted shifts only lead to Ap°, Ag°. As the summations in convolution are

Z"p:_oo Zoq:_oo, all possible combinations of Ap, Aq are explored. Hence, the convo-
lution counts all available shifts from i, 7 € QFSP, that lead to the OP p° + Ap®, g° + Ag°.
Thus, the result of (B.1) for all s°, for & = i, can be expressed through:

_ my(s9), ifs°eQS,,

Fx(s9 = % () H (B.2)
, otherwise,

Q% = lsxlsa =), s ¥neQlx Q). (B.3)

SET

m_y (s°) € N is the number of combinations of % for s°.

Parts of this chapter have been published in: D. Chrysostomou, J. L. R. Torres and J. L. Cremer, "Tensor
Convolution-Based Aggregated Flexibility Estimation in Active Distribution Systems," in IEEE Transactions
on Smart Grid, vol. 16, no. 1, pp. 87-100, Jan. 2025, doi: 10.1109/TSG.2024.3453667 [36].
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Extending to more FSPs, let the convolution of £ = 1,.., k FSPs be described by an ex-
tended version of (B.2), the relationship (3.16). Then, the convolution of F 7 and Fy.4
is:

(Fa *Fre)Ap®,0q9) = Y Y
Ap=—oc0Ag=—00 (B.4)

Fro1(Ap, AqQ)Fx (Ap° — Ap,Aq° — Aq).
The inner part of (B.4), expressed through (B.2) and (3.15) is:
Fri1(Ap, AqQ)Fx (Ap° —Ap,Aq° - Aq) =
my ([Ap,Aq1T), if[Ap®—Ap,Aq°—Ag)T

€Q} |, [Ap,AqlT €QS,

0, otherwise.

(B.5)

Each non-zero point is obtained from combinations within the FSP capabilities. From
Zop:_oo Zoq:_oo, all possible combinations from the FSPs are explored. Therefore, if any
combination reaching Ap°, Aq° exists, it will be counted. Furthermore, the summation
of combinations from a subset of the FSPs (m_z ([Ap, Aq] Ty), will ensure that if Ap,Aq
can be used to reach s° = [Ap°®, Ag°] T then the total number of feasible combinations is

accounted. Therefore, the convolution result of £ +1 =1, ...,k + 1 FSPs is described by:

_ m s9, ifs°eQS, |
Fyn(s9={m#n6) K +1 (B.6)
0, otherwise,
c S.AS S
Q7 =QyxQy x . xQy
(B.7)

S C N
Q%1 = Sanlswr =) sVreQf, 1cQ.
SETT

The above result is similar to (B.2), (3.16). Therefore, the convolution between any num-
ber of FSPs will result in all the possible shift combinations for each reachable shift.



BNN COMPARATIVE ANALYSIS

The comparative analysis included 1 training, 1 validation, and 3 test sets for each of the
4 networks in Fig.3.10. All datasets followed residential load, PV, and wind turbine (where
available) hourly profiles and assumed a 40% increase in generation capacity and 20% in
load consumption as [28]. For each hour, the datasets sampled different operating con-
ditions for the load consumption, PV, and wind turbine generations. The CIGRE dataset
also included topological changes between all switch combinations in Fig.3.10, and 3
binary features on the status of each switch. The test sets varied in measurement and
pseudo-measurement noises (and correlations in CIGRE). The CIGRE network also in-
cluded an RTI-measured bus (generation with capacity > 1MVA ) with noise double from
the respective measurement noise. TabC.1 includes the information for each dataset, o
is the measurement voltage standard deviation. The BNN model settings were:

1. VI: Avariational inference model with 4 dense layers, 1 dense variational layer with
multivariate normal posterior distribution, with Tanh(-) activation function, and
Z =100.

2. MCD: A Monte Carlo dropout model with 4 dense layers, 0.1 dropout, with ReLU ()
activation function, and Z = 100.

3. DE: A deep ensemble model with 20 FNNs (Z = 20) of 3 dense layers, with ReLU (-)
activation function.

All models were trained with a 0.0001 learning rate. VI and MCD were trained for 500
epochs, and each DE FNN was trained for 250 epochs. MCD and DE had 512 hidden
units for all layers. For VI, the hidden units were 256,128, 128,32 for the dense, 32 for the
variational layer in CIGRE, and 256,128, 128,64 for the dense, and 64 for the variational
layer in OBO, OB1, OB.

For each network, the models were trained once in the corresponding “Tr.” dataset of
Tab.C.1. Each test set was used to evaluate the models trained on the same network.
The validation sets were used to store the model parameters with the best performance
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Table C.1: Dataset Settings.

Name Usage Net. Size yld yPv op,of" oy oP™
- % % % % %
Tr.C train CIGRE 33k 60 70 2 1 20
V.C validate CIGRE 7k 60 70 2 1 20
Tel.C test CIGRE 7k 60 70 1 0.5 10
Te2.C test CIGRE 7k 60 70 2 1 20
Te3.C test CIGRE 7k 60 70 5 3 50
Ted.C test CIGRE 7k 30 35 1 0.5 10
Te5.C test CIGRE 7k 30 35 2 1 20
Te6.C test CIGRE 7k 30 35 5 3 50
Tr.OBO train OBO 16k 60 70 2 1 20
V.OBO validate OBO 3k 60 70 2 1 20
Tel.0BO test OBO0 3k 60 70 1 0.5 10
Te2.0B0O test OBO 3k 60 70 2 1 20
Te3.0B0O test OBO0 3k 60 70 5 3 50
Tr.OB1 train OB1 15k 60 70 2 1 20
V.OB1 validate OB1 3k 60 70 2 1 20
Tel.0OB1 test OB1 3k 60 70 1 0.5 10
Te2.0B1 test OB1 3k 60 70 2 1 20
Te3.0B1 test OB1 3k 60 70 5 3 50
Tr.OB train OB 15k 60 70 2 1 20
V.OB validate OB 3k 60 70 2 1 20
Tel.0OB test OB 3k 60 70 1 0.5 10
Te2.0B test OB 3k 60 70 2 1 20
Te3.0B test OB 3k 60 70 5 3 50
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Figure C.1: Comparison of VI (==), MCD (=) and DE (==) models under varying pseudo-measurement (and
measurement) noise and network size. The network size corresponds to the number of buses.
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Table C.2: Model Computational Aspects.

Training Duration Prediction Duration
Net. [hours] [s]
Vi MCD DE VI MCD DE

Cigre | 1.8 1 8.1 0.28 0.09 0.01
OBO | 10.6 0.8 6.2 04 0.12 0.04
OB1 | 16.6 0.7 77 036 0.16 0.04

OB 14.7 1.2 9.8 0.46 0.3 0.03

during training for each network. Fig.C.1 illustrates the model performances for each
metric under the varying noise levels and network sizes.

Considering PICPg5, all models were slightly underconfident (0.95 — 1) in the low and
medium noise scenarios, excluding the MCD which was overconfident in the low noise
v for OB1 (0.89) and OB (0.85), and slightly overconfident for OB1 (0.92). In all mod-
els, a lower correlation in the test sets reduced PICPg5 but maintained its levels between
0.91 — 1 for the low and medium noise. All models were impacted by the high noise sce-
narios, with MCD maintaining the best performance in most. Considering the voltage
RMSE metric, all models showed fluctuations for the different test sets. MCD showed
deterioration for lower and higher noise in the larger networks, which can indicate fit-
ting to the noise uncertainty. However, MCD also showed a consistently better RMSE
than VI and DE for higher noise levels. Considering the loading RMSE, the VI was highly
impacted by the topological changes within the CIGRE datasets, whereas MCD and DE
maintained a similar RMSE for all topologies and networks. The MCD mainly outper-
formed the DE and VI in loading RMSE and was less impacted by the test set noise vari-
ations. The NLL metric showed similar levels for all low and medium noise scenarios in
all networks and models. However, MCD maintained almost consistent performance in
all scenarios with minor noise impacts compared to VI and DE. The VI model was neg-
atively impacted by the different DS topologies in the training dataset and reduced PV
and load correlations in the test sets. The MCD and DE did not show significant impacts
from the DS topologies. The reduced test set PV and load correlations did not signifi-
cantly impact the MCD and DE, except for a slight improvement for the I PICPg5 and a
slight deterioration for the [ NLL. The results indicate that the MCD model is the most
consistent among the 3 BNNs, especially with increased noise levels. Nevertheless, all
BNN models showed low RMSEs, NLL, and close to 0.95 PICPgs.

Tab.C.2 shows the training and prediction durations per model and network using the
Google Colab CPU. The number of input features, neurons, and outputs highly impacted
the VI training time, with x6 —9 larger durations for OB0O, OB1, OB than CIGRE. MCD
required significantly less time than DE, as MCD only trained one BNN, whereas DE
trained 20 BNNs. The prediction durations were small for all networks, with DE being
the fastest. The difference between MCD and DE prediction duration was potentially
caused by the larger Z and the MCD having more layers (and parameters).



MACHINE LEARNING-BASED
INSTABILITY PREVENTION
COORDINATION CASE STUDY
DETAILS

D.1. IBR CLASSIFIER DATASET

The IBR classifier dataset includes 93 load events from simulations with initially stable
operating conditions. The load events were randomly sampled between the DS loads,
with active and reactive power steps uniformly sampled between [-15, 15][%] and min-
imum absolute active power change at 0.5[MW]. H varied between 1-20[s]. The DER
outputs and load consumption followed a typical summer profile in the Netherlands,
with added random uniform noise with +25[%] bounds.

D.2. ADRR MODEL DATASET

The sampled parameters between simulations were the DER outputs, the DS load con-
sumption, the external grid inertia, the faulted lines, and the fault durations. To in-
crease the convergence of simulations, multiple simulations were performed with re-
duced noise, fixed power factor, or excluding profiles. H varied between 1-20[s]. The
faulted lines were randomly sampled from the 9 options in Fig.5.4. The fault duration
before clearance was randomly sampled between 0.1-0.25[s] as [120] from a uniform
distribution. The ADRR dataset had 1545 simulations, of which 284 were highly instable,
and the rest are the regression data. The ADRR high instability classifier dataset includes
all 1545 simulation data. The min-max normalization technique was applied to the re-
gressor dataset features.

143



D. MACHINE LEARNING-BASED INSTABILITY PREVENTION COORDINATION CASE STUDY
144 DETAILS

D.3. CASE STUDY SETTINGS

The case study of Sec.5.4.3 uses the test system, including the DS, excluding the ADRR.
The risk example assumed C'(e) = 400k[€] due to outage, C"(e) = 100[€/%], and the
fault e happening once every 2 years. The total durations for the setpoint optimizer were
recorded using an i7-1185G7 CPU.

For the case study of Sec.5.4.4, the proposed ADRR regression model had 50 RNNs with 3
LSTM layers with 32 neurons, a dense layer with 64 neurons, and an FNN with 3 hidden
layers with 256,128,128 neurons. In fine-tuning, the Tanhshrink activation function for
the FNN showed better performance than common alternatives such as Tanh or ReLu.
The baselines for the ADRR model are:

(i) An FNN with the sequential and non-sequential input features, four hidden layers
with 1024, 512,512,256 neurons, and Tanhshrink activation function. The sequen-
tial features also included the 4 previous values at each timestep (u = 4).

(ii) 100 RNNs with 2 LSTM layers of 64 neurons with the x(¢) and repeated z features
as inputs, followed by a 2-hidden-layer FNN of 128,64 neurons with Tanhshrink
activation.

(iii) The proposed structure, excluding the ADRR classifier. This model studies the im-
pact from the extreme values observed in highly instable samples in ADRR.

(iv) The proposed structure, excluding the non-sequential features. This model stud-
ies the impact of the non-sequential features in ADRR.

All models had p = 4, a learning rate of 0.0003, and 300 epochs, excluding (i), which was
trained for 3000 epochs. The stored models were the ones with the minimum valida-
tion error during training. All models had the same training, validation, and test sets,
excluding (iii), which split the complete dataset into 60[%], 20[%], 20[%] training, valida-
tion, and test sets. The training durations for ADRR regression and classifier models were
recorded using an L4 GPU.

For the case study in Sec.5.4.5 the classifier training process added a normal noise with
5[%] standard deviation on y(#) to represent y(¢) of x. as in (5.19), accounting for the
ADRR regression model. The proposed FB model has one hidden layer with 64 neurons
and a Tanh activation function. The best-performing DB model used 5 nearest neigh-
bors.
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