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Proximal dynamics in Multi-Agent Network Games
Sergio Grammatico

Abstract—We consider dynamics and protocols for agents seek-
ing an equilibrium in a network game with proximal quadratic
cost coupling. We adopt an operator theoretic perspective to
show global convergence to a network equilibrium, under the
assumption of convex cost functions with proximal quadratic
couplings, time-invariant and time-varying communication graph
along with convex local constraints, and time-invariant commu-
nication graph along with convex local constraints and separable
convex coupling constraints. We show that proximal dynamics
generalize opinion dynamics in social networks and are applicable
to distributed tertiary control in power networks.

I. INTRODUCTION

Motivation: Distributed decision making in networks popu-
lated by rational agents is currently an active field of research
across several areas, such as network systems and control,
signal processing, computational game theory and operations
research. Application domains are in fact numerous and in-
clude power systems [1], [2], demand side management [3],
[4], [5], network congestion control [6], [7], social networks
[8], [9], consensus and flocking [10], [11], robotic and sensor
networks [12], [13].

Advantageously, distributed computation and communica-
tion setups allow each agent to keep its own data private and
exchange information with selected agents only. Typically, in
networked multi-agent systems, the state (or decision) vari-
ables of each agent evolve as a result of local decision making,
e.g. local optimization subject to private constraints, and
distributed communication with some other agents, according
to a communication graph. It then follows naturally that the
aim of the agents is to reach a collective equilibrium state,
where no agent can benefit from updating its state variables.

Literature overview: In this paper, we study network games
with proximal, hence quadratic, cost coupling between neigh-
boring agents, that are related to the literature of distributed
multi-agent equilibrium seeking in network games and dis-
tributed multi-agent optimization.

Network games among agents with convex compact local
constraints have been considered in [14] under the assumption
of strongly convex quadratic cost functions and time-invariant
communication graph; in [15] [16], under the assumption
of differentiable cost functions with Lipschitz continuous
gradient, strictly monotone pseudo-gradient game mapping
(hence strictly convex cost functions), and undirected, possibly
time-varying, communication graph. Multi-agent games with
convex compact local and also coupling constraints have been
considered in [17] under the assumption of strongly convex
twice differentiable cost functions with bounded gradients,
with strictly increasing congestion cost term.

The author is with the Delft Center for Systems and Control, TU Delft,
The Netherlands. E-mail address: s.grammatico@tudelft.nl.

Whenever the communication graph is a complete graph
with uniform weights, network games reduce to aggregative
games, studied e.g. in [15], [18], [19] and [4], the latter under
the assumption of strongly convex quadratic cost functions and
time-invariant communication graph. Incentive mechanisms
for agents playing aggregative games with strongly convex
cost functions, convex local and coupling constraints have first
been studied in [20], and more generally in [21], both with
time-invariant communication graph.

Multi-agent convex constrained optimization has been con-
sidered in [22], under the assumption of uniformly bounded
subgradients, and either homogeneous constraint sets or
time-invariant, complete communication graph with uniform
weights; in [23] under the assumption of differentiable cost
functions with Lipschitz continuous and uniformly bounded
gradients; and in [24]. We note that in [23], [24], convergence
is proven for agent dynamics with vanishing step sizes, which
slows down the convergence rate and prevents the protocols
to be translated into a continuous-time counterpart, as usual
for example in power systems [1], [2], [25], [26].

In general, the theory of generalized (quasi-) variational
inequalities [27], [28] and their solution algorithms are ap-
plicable to both game equilibrium seeking, under the as-
sumption of convex differentiable cost functions [28, §10,
§12], [29, §12], [30, Part II], and to convex optimization [31,
§25]. However, the presence of a structured, possibly time-
varying, communication graph in multi-agent network games
and multi-agent optimization generates the need to design
distributed computation and structured information exchange.

Paper contribution: We develop a mathematical framework
for multi-agent network games with proximal quadratic cost
couplings and show global convergence of multi-agent prox-
imal dynamics and protocols. Thus, we adopt an operator
theoretic perspective, which is new in the area of multi-agent
and network systems, and allows us to be the first to address
network games with non-smooth objective functions, time-
varying communication and coupling constraints. Technically,
our main contributions are summarized next.
• We consider time-invariant (§II, III) and time-varying

(§IV) dynamics and protocols for agents playing net-
work games with convex cost functions and proximal
couplings, convex local constraints and separable convex
coupling constraints (§V).

• We show that proximal dynamics in multi-agent network
games are fixed point iterations with specific structure.

• We derive a distributed protocol for multi-agent network
games with separable convex coupling constraints (§V).

• We exploit operator theory (§VI) to show global conver-
gence of some classes of multi-agent dynamics (§VII).

• We show that proximal dynamics in multi-agent network
games generalize opinion dynamics in social networks
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(§VIII-A) and are applicable to distributed tertiary control
in power networks (§VIII-B).

In Section IX, we conclude the paper and provide an outlook
on some open research avenues.

Notation and basic definitions: R, R>0, R≥0 respectively
denote the set of real, positive, and non-negative real numbers;
R := R ∪ {∞}; N denotes the set of natural numbers; for
a, b ∈ N, a ≤ b, N[a, b] := [a, b]∩N. A> denotes the transpose
of A. Given vectors x1, . . . , xN ∈ Rn, x :=

[
x1; . . . ; xN

]
denotes

[
x>1 , . . . , x

>
N

]> ∈ RnN . I denotes the identity matrix;
0 (1) denotes a matrix/vector with all elements equal to 0
(1); to improve clarity, we may add the dimension of these
matrices/vectors as subscript. A ⊗ B denotes the Kronecker
product between matrices A and B. ‖A‖ denotes the maximum
singular value of matrix A. Id : Rn → Rn denotes the identity
operator. ιS : Rn → {0, ∞} denotes the indicator function for
the set S ⊆ Rn, i.e., ιS(x) = 0 if x ∈ S, ∞ otherwise.

For a function f : Rn → R, dom(f) := {x ∈ Rn |
f(x) < ∞}; ∂f : dom(f) ⇒ Rn denotes its subdif-
ferential set-valued mapping, defined as ∂f(x) := {v ∈
Rn | f(z) ≥ f(x) + v>(z − x) for all z ∈ dom(f)};
proxf : Rn → dom(f) denotes the proximal mapping, defined
as proxf (x) := argminy∈Rn f(y) + 1

2 ‖x− y‖
2.

For a set-valued mapping A : Rn ⇒ Rm, fix (A) :=
{x ∈ Rn | x ∈ A(x)}, zer (A) := {x ∈ Rn | 0 ∈ A(x)} de-
note the graph, the sets of fixed point and zeros, respectively.

II. MULTI-AGENT NETWORK GAMES WITH
LOCAL CONSTRAINTS

We consider N noncooperative agents, where each agent
i ∈ N[1, N ] has state variable xi ∈ X i ⊆ Rn. We assume that
the agents interact through a directed communication graph
with N ×N adjacency matrix

P := [ ai,j ] =

[ a1,1 ··· a1,N
...

. . .
...

aN,1 ··· aN,N

]
, (1)

where ai,j ∈ [0, 1] is the weight of the communication from
agent j to agent i, and ai,j = 0 implies no communication
from agent j to i. We attach to each agent i a local cost
function J i, and assume that the agents are seeking a collective
equilibrium state as defined next.

Definition 1: Network equilibrium. A collective vector x̄ =[
x̄1 ; x̄2 ; · · · ; x̄N

]
is a NetWork Equilibrium (NWE) if (∀i ∈

N[1, N ])

x̄i ∈ argmin
y∈X i

J i
(
y,
∑N
j=1 ai,j x̄

j
)
. (2)

�

Remark 1: Nash and Wardrop-like equilibria. The network
equilibrium concept in Definition 1 reduces to a Nash equi-
librium or to a Wardrop-like equilibrium (Wardrop equi-
librium with finite number of players) in special cases.
In (1), if ai,i = 0 for all i, then an NWE reduces
to the network version of Nash equilibrium as in [9],
[14], [16]. We note that if (2) in Definition 1 is re-
placed by x̄i ∈ argminy∈X i J i

(
y, ai,i y +

∑N
j 6=i ai,j x̄

j
)

=:

argminy∈X i J̃ i
(
y, x̄−i

)
, then an NWE is a Nash equilibrium

for the network game with cost functions {J̃ i}Ni=1. If ai,i > 0
for all i, then an NWE reduces to a network version of a
Wardrop-like equilibrium. �

Throughout the paper, we assume that the local constraint
sets are compact and convex, and that the local cost functions
are convex, analogously to [15, Assumption 1], [16, Assump-
tion 2], but not necessarily strictly convex.

Standing Assumption 1: Compact, convex sets. For all i ∈
N[1, N ], the set X i ⊂ Rn is nonempty, compact and convex.

�

Standing Assumption 2: Convex cost functions. For all i ∈
N[1, N ], the function J i : Rn×Rn → R is defined as (∀y, z ∈
Rn)

J i (y, z) := f i◦(y) + ιX i(y) + 1
2 ‖y − z‖

2
, (3)

where f i := f i◦+ ιX i : Rn → R is lower semi-continuous and
convex. �

The addend 1
2 ‖y − z‖

2 in (3) is a proximal term used to
penalize the distance between the local state and the weighted
average of the states of the neighboring agents. We show later
in Section VI-C that Standing Assumption 2 implies that the
pseudo-gradient game mapping is monotone, not necessarily
strictly monotone as in [15, Assumption 2], [16, Assumption
3]. We note that in Standing Assumption 2 the local cost
functions need not to be differentiable, nor their gradient need
to be Lipschitz continuous and bounded as instead assumed in
[15, Assumption 3], [16, Assumption 3]. We implicitly assume
that each agent can read the variables of its neighboring agents
that interfere with its cost function, namely, we assume that
the communication graph is the interference graph.

Standing Assumptions 1, 2 ensure the existence of an
NWE. We note in fact that, for all i, argminy∈RnJ i(y, zi) =
proxfi(zi), where at an NWE as in Definition 1 we have
that zi =

∑N
j=1 ai,j x

j . Now, let us group together the
proximal operators and define the mapping proxf : RnN →
(X 1 × · · · × XN ) ⊂ RnN as

proxf := diag
(
proxf1 , . . . , proxfN

)
(4)

to represent the local optimization of the agents, and let us
define the (nN)× (nN) matrix

A := P ⊗ In (5)

to represent the distributed communication between neighbor-
ing agents. Then, it follows that the existence of an NWE can
be shown via a fixed point argument.

Lemma 1: Network equilibrium as fixed point. A collective
vector x̄ =

[
x̄1 ; · · · ; x̄N

]
is a network equilibrium for the

game in (2) if and only if x̄ ∈ fix (prox ◦A). �

Proof: It follows directly from Definition 1.

Proposition 1: Existence of network equilibrium. There ex-
ists a network equilibrium for the game in (2). �

Proof: The mapping prox ◦ A is continuous and takes
values on a compact set, hence fix (prox ◦A) 6= ∅ [32,
Theorem 4.1.5 (b)]. The proof then follows by Lemma 1.

We note that uniqueness of an NWE does not necessarily
hold, see for instance [29, Example 12.4]. We refer to [29,
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§12.4] for sufficient conditions that ensure uniqueness of Nash
equilibria in noncooperative games.

III. TIME-INVARIANT MULTI-AGENT DYNAMICS

A. Distributed Banach dynamics

We first analyze simple proximal dynamics, that are (∀i ∈
N[1, N ], ∀k ∈ N)

xi(k + 1) = argmin
y∈Rn

J i
(
y,
∑N
j=1 ai,j x

j(k)
)

= proxfi

(∑N
j=1 ai,j x

j(k)
)
,

(6)

and in collective compact form

x(k + 1) = proxf (Ax(k)) . (7)

We discuss later in Section VI that the proximal dynamics
in (7) represent the Banach fixed point iteration [31, Equation
1.67] applied to the mapping proxf ◦ A, hence let us call
them Banach dynamics.

In this subsection, we assume that the adjacency matrix
satisfies the following linear matrix inequality.

Assumption 1: Averaged adjacency matrix. The matrix P
in (1) is such that[

(2η−1)I + (1−η)(P>+P ) P>

P I

]
< 0 (8)

for some η ∈ (0, 1). �

We note that Assumption 1 holds true if the adjacency
matrix is doubly stochastic, as assumed in [14, Remark 1],
[15, Assumption 5], [16, Assumption 1], and all self loops are
present, as assumed in [22, Assumption 2].

Proposition 2: Doubly stochastic adjacency matrix with
self loops. If the matrix P = [ai,j ] in (1) is doubly stochastic,
i.e., (∀i, j ∈ N[1, N ]) ai,j ∈ R≥0,

∑N
j=1 ai,j =

∑N
i=1 ai,j =1,

and such that mini∈N[1,N ] ai,i =: a > 0, then it satisfies
Assumption 1. �

Proof: See §VI-B.

We can now show global convergence of the Banach dy-
namics to an NWE.

Theorem 1: Global convergence of distributed Banach dy-
namics. If Assumption 1 holds, then the sequence (x(k))

∞
k=0

defined as in (7) converges, for any initial condition, to a
network equilibrium x̄, and (∀k ∈ N)

dist
(
x(k),fix

(
proxf ◦A

))
≤ 1

(1− η) (k + 1)
‖x(0)− x̄‖2 . (9)

�

B. Distributed Krasnoselskij dynamics

Whenever the communication matrix is doubly stochastic
but not all self loops are present, the Banach dynamics cannot
ensure convergence in general, as illustrated in the following
example.

Example 1: Non-convergence of Banach dynamics. The Ba-
nach dynamics for the game with N = 2 agents, n = 1,
f1 = f2 = 0, X 1 = X 2 = [−1, 1], P = [ 0 1

1 0 ] and
for x1(0) = −x2(0) = 1 evolve as x1(k) = −x2(k) =
−x1(k + 1) = x2(k + 1) = 1 for all k ∈ N, that is, x(k)
oscillates persistently, hence does not converge. �

Instead, global convergence to an NWE can be achieved via
averaged proximal dynamics. Specifically, for some α ∈ (0, 1),
we consider (∀i ∈ N[1, N ], ∀k ∈ N)

xi(k + 1) = (1− α)xi(k) + α proxfi

(∑N
j=1 ai,j x

j(k)
)
,

(10)
so that the collective dynamics read as

x(k + 1) = (1− α)x(k) + αproxf (Ax(k)) . (11)

Analogously to the Banach dynamics in (7), we discuss
later in Section VI that the dynamics in (11) represent the
Krasnoselskij fixed point iteration [31, Equation 5.12 (fixed
step size)] applied to the mapping proxf ◦ A, hence let us
call them Krasnoselskij dynamics.

We show next global convergence of the distributed Kras-
noselskij dynamics to an NWE, under the assumption that the
adjacency matrix has norm at most unitary.

Assumption 2: Nonexpansive adjacency matrix. The matrix
P in (1) is such that ‖P‖ ≤ 1, i.e., (8) holds with η = 1. �

Proposition 3: Doubly stochastic adjacency matrix. If the
matrix P = [ai,j ] in (1) is doubly stochastic, i.e., (∀i, j ∈
N[1, N ]) ai,j ∈ R≥0,

∑N
j=1 ai,j =

∑N
i=1 ai,j = 1, then it

satisfies Assumption 2. �

Proof: Since P is doubly stochastic, we have that
‖P‖1 = ‖P‖∞ = 1, hence by Hölder’s inequality, ‖P‖ ≤√
‖P‖1 ‖P‖∞ = 1.
Theorem 2: Global convergence of distributed Krasnosel-

skij dynamics. If Assumption 2 holds, then the sequence
(x(k))

∞
k=0 defined as in (11) converges, for any initial condi-

tion, to a network equilibrium x̄, and (∀k ∈ N)

dist
(
x(k),fix

(
proxf ◦A

))
≤ 1

α (1− α) (k + 1)
‖x(0)− x̄‖2 . (12)

�

IV. TIME-VARYING MULTI-AGENT DYNAMICS

In this section, we extend the setup in Section II and the
convergence results in Section III to the case in which the
communication between agents is time dependent. Thus, we
consider a time-varying adjacency matrix

P (k) := [ ai,j(k) ] (13)

and, analogously to (5), we define A(k) := P (k)⊗ In.
In the time-varying case, the notion of NWE and its

existence are unclear in general. Thus, let us formulate the
following existence assumption.

Assumption 3: Existence of persistent network equilibrium.
There exists k̄ ∈ N such that

E :=
⋂
k≥k̄ fix

(
proxf ◦A(k)

)
6= ∅. (14)

�
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A. Time-varying Banach and Krasnoselskij dynamics

We are ready to generalize Theorems 1 and 2 in Section III
to the time-varying case. Namely, we show global convergence
of the time-varying Banach dynamics (∀k ∈ N)

x(k + 1) = proxf (A(k)x(k)) (15)

and the time-varying Krasnoselskij dynamics (∀k ∈ N)

x(k + 1) = (1− α)x(k) + αproxf (A(k)x(k)) , (16)

where α ∈ (0, 1).
For the time-varying Banach dynamics, we assume that

the adjacency matrix is persistently averaged, analogously
to Assumption 1, while for the time-varying Krasnoselskij
dynamics, we assume that the adjacency matrix is persistently
nonexpansive, analogously to Assumption 2.

Assumption 4: Persistently averaged adjacency matrix.
There exists k̄ ∈ N such that, for all k ≥ k̄, the matrix P (k)
in (13) is such that[

(2η−1)I + (1−η)(P (k)>+P (k)) P (k)>

P (k) I

]
< 0 (17)

for some η ∈ (0, 1). �

Assumption 5: Persistently nonexpansive adjacency matrix.
There exists k̄ ∈ N such that, for all k ≥ k̄, the matrix P (k)
in (13) is such that ‖P (k)‖ ≤ 1, i.e., (17) holds with η = 1.

�

It follows from Propositions 2, 3 that if the adjacency matrix
is persistently doubly stochastic, then Assumption 5 holds true;
if in addition, the adjacency matrix has all self loops persistent,
e.g. as in [22, Assumptions 2, 3], then Assumption 4 is sat-
isfied. With persistently averaged or nonexpansive adjacency
matrix, global convergence of the time-varying Banach and
Krasnoselkij dynamics, respectively, holds as shown in the
next statements.

Theorem 3: Global convergence of distributed time-varying
Banach dynamics. If Assumptions 3, 4 hold, then the sequence
(x(k))

∞
k=0 defined as in (15) converges, for any initial condi-

tion, to some vector x̄ =
[
x̄1 ; · · · ; x̄N

]
, and (∀k ∈ N) (9)

holds. �

Theorem 4: Global convergence of distributed time-varying
Krasnoselskij dynamics. If Assumptions 3, 5 hold and α ∈
(0, 1), then the sequence (x(k))

∞
k=0 defined as in (16)

converges, for any initial condition, to some vector x̄ =[
x̄1 ; · · · ; x̄N

]
, and (∀k ∈ N) (12) holds. �

We emphasize that the convergence to a specific NWE does
depend on the time-varying communication graph. Whenever
some communication graph with adjacency matrix P̄ that
can generate a persistent network equilibrium recurs infinitely
often, then we can show that the agents reach an NWE for the
game in (2) with adjacency matrix P̄ .

Assumption 6: Feasible recurrent adjacency matrix. It
holds that lim infk→∞

∥∥P (k)− P̄
∥∥ = 0, where the matrix P̄

satisfies Assumption 2, and that fix
(
proxf ◦

(
P̄ ⊗ In

))
⊆ E ,

with E defined as in (14). �

Corollary 1: Global convergence of distributed time-
varying dynamics. Let Assumptions 3, 6 hold. If either As-
sumption 5 holds and α ∈ (0, 1), or Assumption 4 holds and
α ∈ (0, 1], then the sequence (x(k))

∞
k=0 defined as in (16)

converges, for any initial condition, to x̄ ∈ fix
(
proxf ◦ Ā

)
,

where Ā := P̄ ⊗ In. �

V. MULTI-AGENT NETWORK GAMES WITH
LOCAL AND COUPLING CONSTRAINTS

In this section, we extend the setup in Section II to the case
in which the agents are subject to both local and coupling
constraints, the latter of the kind g(x) ≤ 0.

Namely, for each agent i ∈ N[1, N ], we consider a joint
local and coupling constraint set that depends on the other
agents, that is,

X̃ i(x−i) :=
{
y∈X i |g

(
[· · · ; xi−1; y ; xi+1 ; · · · ]

)
≤0
}

=:
{
y∈X i |gi

(
y, x−i

)
≤0
}
.

(18)
Let us then generalize Definition 1 to the case of network

games with coupling constraints.

Definition 2: Generalized network equilibrium. A collective
vector x̄ =

[
x̄1 ; x̄2 ; · · · ; x̄N

]
is a Generalized NetWork

Equilibrium (GNWE) if (∀i ∈ N[1, N ])

x̄i ∈ argmin
y∈X̃ i(x̄−i)

J i
(
y,
∑N
j=1 ai,j x̄

j
)
. (19)

�

Remarkably, we can transform a generalized network game
into an auxiliary (extended) network game [30, §3] and then,
based on the latter, design a protocol that ensures convergence
to a GNWE. With this aim, we start with the definition of the
following auxiliary NWE.

Definition 3: Extended network equilibrium. The pair(
x̄, λ̄

)
, with x̄ =

[
x̄1 ; x̄2 ; · · · , x̄N

]
, is an Extended Net-

Work Equilibrium (ENWE) if (∀i ∈ N[1, N ])

x̄i ∈ argmin
y∈X i

J i
(
y, x̄−i

)
+ λ̄>gi

(
y, x̄−i

)
(20)

λ̄ ∈ argmin
ξ∈RM

≥0

− ξ>g(x̄). (21)

�
For the existence of an equilibrium, we need to assume that

the dual variables are bounded, which is implied by a standard
constraint qualification, e.g. the Slater or the Mangasarian–
Fromovitz constraint qualifications [29, p. 346, pp. 447–448].

Standing Assumption 3: Bounded dual variables. There ex-
ists λ̂ ∈ R>0, with [0, λ̂ ]M =: L ⊂ RM≥0, such that the system
of inclusions in (20), (21) is equivalent to

x̄i ∈ argmin
y∈X i

J i
(
y, x̄−i

)
+ λ̄>gi

(
y, x̄−i

)
(22)

λ̄ ∈ argmin
ξ∈L

− ξ>g(x̄). (23)

�

As usual in generalized games [30, Part II, §3], let us also
consider separable convex coupling constraints that are affine.
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Remark 2: Separable convex coupling constraints. A game
with separable convex coupling constraints, g(x) =∑N
i=1 g

i(xi) ≤ 0, can be reformulated with affine coupling
constraints, by letting, for all i, gi(xi) ≤ yi be an additional
local constraint in the augmented local variable [xi ; yi], and∑N
i=1 y

i ≤ 0 be the affine coupling constraint. �

Standing Assumption 4: Affine coupling constraints. The
mapping g : (Rn)N → RM in (18) is defined as

g(x) := C x+ c =
[
C1 | · · · | CN

]
x+ c, (24)

for some matrices C1, . . . , CN ∈ RM×n and vector c ∈ RM .
�

Analogously to an NWE, also an ENWE in (20)–(21) can be
characterized as a fixed point, and in turn related to a GNWE
in (19). To show that, first, we exploit a basic property of the
proximal mapping [31, Proposition 12.28], namely that the
inclusion in (23) holds if and only if

λ̄ = argmin
ξ∈L

− ξ>g(x̄) + 1
2

∥∥ξ − λ̄∥∥2

= proxιL
(
λ̄+ g(x̄)

)
= projL

(
λ̄+ g(x̄)

)
.

(25)

Then, to combine (20) for all i ∈ N[1, N ] and (25) together in
compact form, let us define the mapping F : RnN × RM →
(X 1 × · · · × XN )× L ⊂ RnN × RM as

F := diag
(
proxf , projL

)
(26)

and the mapping G : RnN × RM → RnN × RM as

G(·) := G ·+
[
0
c

]
:=

[
A −C>
C I

]
· +

[
0
c

]
. (27)

Thus, it follows from Lemma 1 that the pair
(
x̄, λ̄

)
is

an ENWE if and only if [x̄ ; λ] is a fixed point of F ◦ G.
Note in fact that [x̄ ; λ] = (F ◦ G) ([x̄ ; λ]) if and only if
x̄ = proxf

(
Ax̄− g(x̄)>λ̄

)
as it follows from (20) and

λ̄ = projL
(
λ̄+ g(x̄)

)
as in (25).

We are now ready to formalize that an ENWE in (20)–(21)
generates a GNWE as defined in (19).

Lemma 2: Generalized network equilibrium from fixed
point. A collective vector x̄ =

[
x̄1 ; . . . ; x̄N

]
is a general-

ized network equilibrium for the game in (19) if
[
x̄ ; λ̄

]
∈

fix (F ◦ G), for some λ̄ ∈ L. �

Proof: It follows from [33, Theorem 3.1], analogously to
[19, Theorem 1].

Proposition 4: Existence of generalized network equilib-
rium. There exists a generalized network equilibrium for the
game in (19). �

Proof: The mapping F ◦G is continuous and valued on a
compact set, hence fix (F ◦ G) 6= ∅ [32, Theorem 4.1.5 (b)].
The proof then follows by Lemma 2.

Lemma 2 allows us the reformulate the GNWE problem
as an NWE problem. However, the affine mapping G in (27)
does not inherit from the linear mappingA · the properties that
are sufficient for the convergence of the proximal dynamics
studied in Section II. Indeed, the extended proximal dynamics
[x(k + 1) ; λ(k + 1)] = F (G ([x(k) ; λ(k)])) may fail to
converge, since ‖G‖ > 1 in general.

A. Distributed Tseng protocol

To design a distributed protocol that ensures global conver-
gence to a GNWE for the game in (19), we reformulate the
fixed point problem arising in Lemma 2 into an equivalent
zero finding problem. Technically, we exploit the following
equivalence result.

Lemma 3 (from [31, Proposition 25.1 (iv)]): Fixed points
as zeros. fix (F ◦ G) = zer (JF + Id− G) , where JF :=
diag

(
∂f1, . . . , ∂fN , ∂ιL

)
. �

In view of Lemma 3, splitting methods are applicable for
the equilibrium seeking. Inspired by the Tseng splitting [31,
§25.4], we derive the following forward-backward-forward
distributed protocol:

[
x̃(k)

λ̃(k)

]
= ((1− α)Id + αG)

[
x(k)
λ(k)

]
(28)

x(k+1/2) = proxαf (x̃(k))

λ(k+1/2) = projL(λ̃(k))
(29)[

x̃(k+1/2)

λ̃(k+1/2)

]
= ((1− α)Id + αG)

[
x(k+1/2)
λ(k+1/2)

]
(30)[

x(k + 1)
λ(k + 1)

]
=

[
x̃(k + 1/2)

λ̃(k + 1/2)

]
+ α (Id− G)

[
x(k)
λ(k)

]
. (31)

We note that the update of the dual variable λ(k) shall be
carried out by an (additional) agent that has full information
on the coupling constraint, namely on the quantity g (x(k)).
The protocol consists of four steps as summarized next:

(28) the agents exchange state information via the mapping G
and then average the new information with their current
state;

(29) the agents perform their local optimization in parallel via
the weighted proximal mappings proxαfi and proxαιL =
projL, that is, for all i ∈ N[1, N ],

xi(k+1/2) = proxαfi

(
x̃i(k)

)
, λ(k+1/2) = projL

(
λ̃(k)

)
;

(30) analogously to (29), the agents exchange state infor-
mation via the mapping G and then average the new
information with their current state;

(31) the agents update their states based on the outcome of
the first step in (28) and of the third step in (30).

We conclude the section by establishing global convergence
of the distributed Tseng protocol in (28)–(31).

Theorem 5: Global convergence of distributed Tseng pro-
tocol. Let α ∈ (0, 1/ ‖G‖). Then the sequence (x(k))

∞
k=0

defined as in (28)–(31) converges, for any initial condition, to
a generalized network equilibrium for the game in (19). �

Finally, note that for the global convergence of the dis-
tributed Tseng protocol, in Theorem 5, we do not assume that
the communication matrix P is averaged or nonexpansive.

VI. AN OPERATOR THEORETIC PERSPECTIVE TO
MULTI-AGENT NETWORK GAMES

In the following, we adopt an operator theoretic perspective
to multi-agent dynamics. Specifically, in view of the compact
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notations that describe the collective multi-agent dynamics,
namely the Banach dynamics in (7), the Krasnoselskij dy-
namics in (11), the time-varying dynamics in (15) and (16),
and the forward-backward-forward protocol in (28)–(31), we
give to them the interpretation of fixed point iterations with
special structure. Thus, in the next subsection, let us review the
definitions and results that are necessary for the convergence
proofs in Section VII.

A. Operator theoretic definitions and results

Definition 4: Nonexpansive mapping. A mapping T :
Rn → Rn is nonexpansive (NE) if (∀x, y ∈ dom(T ))

‖T (x)− T (y)‖ ≤ ‖x− y‖ . (32)
�

Definition 5: Averaged mapping. A mapping T : Rn → Rn
is η-averaged (η-AVG), with η ∈ (0, 1), if (∀x, y ∈ dom(T ))

‖T (x)− T (y)‖2

≤ ‖x− y‖2 − 1−η
η ‖(Id− T ) (x)− (Id− T ) (y)‖2

(33)

or equivalently if there exists a nonexpansive mapping B :
Rn → Rn such that T = (1− η)Id + ηB. �

Note that if T is η̄-AVG, then it is η-AVG for all η∈(0, η̄],
and that the inequality in (33) with η=1 is equivalent to that
in (32), hence AVG mappings are NE.

The convergence proofs for the main statements in the paper
are based on the following technical results.

Lemma 4 ([31, Proposition 5.15]): Banach iteration. As-
sume that: (i) fix (T ) 6= ∅; (ii) T : Rn → Rn is η-averaged.
Then the Banach iteration

z(k + 1) := T (z(k)) (34)

is such that limk→∞ z(k) = z̄ ∈ fix (T ). �

Lemma 5 ([31, Theorem 5.14]): Krasnoselskij iteration.
Assume that: (i) fix (T ) 6= ∅; (ii) T : Rn → Rn is
nonexpansive; (iii) α ∈ (0, 1). Then the Krasnoselskij
iteration

z(k + 1) := (1− α) z(k) + α T (z(k)) (35)

is such that limk→∞ z(k) = z̄ ∈ fix (T ). �

Lemma 6: Time-varying Banach–Krasnoselskij iteration.
Assume that: (i) ∃k̄ ∈ N s.t.

⋂
k≥k̄ fix (Tk) 6= ∅; (ii)

∃η ∈ (0, 1) s.t. (∀k ∈ N) Tk : Rn → Rn is η-averaged;
(iii) α ∈ (0, 1]. Then the iteration

z(k + 1) := (1− α) z(k) + α Tk (z(k)) (36)

is such that limk→∞ z(k) = z̄ ∈
⋂
k≥k̄ fix (Tk). �

Proof: It follows from [34, Proposition 3.4 (iii)],
since every cluster point of the sequence (z(k))

∞
k=k̄ is in⋂

k≥k̄ fix (Tk).

Definition 6: Monotone mapping. A set-valued mapping
A : Rn ⇒ Rn is (strictly) monotone (MON) if

(u− v)
>

(x− y) ≥ 0 (> 0)

for all x 6= y ∈ dom(A), (u, v) ∈ A(x) × A(y). A is ε-
strongly monotone, with ε ∈ R>0, if A − ε Id is monotone.
A is maximally monotone if (∀(x, u) ∈ gph (A)) (x, u) ∈
gph (A)⇔ (∀(y, v) ∈ gph (A)) (u− v)

>
(x− y) ≥ 0. �

Definition 7: Resolvent operator. The resolvent operator of
a set-valued mapping A : Rn ⇒ Rn is the mapping JA :
Rn → Rn defined as JA := (Id +A)

−1. �

Lemma 7 ([31, Theorem 25.10, Remark 25.10]): Tseng
splitting algorithm. Assume that: (i) zer (A+ B) 6= ∅; (ii)
A : Rn ⇒ Rn is maximally monotone; (iii) B : Rn → Rn
is `-Lipschitz continuous and monotone; (iv) α ∈ (0, 1/`).
Then the iteration

z̃(k) = z(k)− αB(z(k))

z(k+1/2) = JαA (z̃(k))

z̃(k+1/2) = z(k+1/2)− αB(z(k+1/2))

z(k + 1) = z̃(k+1/2) + αB(z(k))

is such that limk→∞ z(k) = z̄ ∈ zer (A+ B). �

B. Application to multi-agent networks

In this subsection, we analyse the mappings that arise in
multi-agent network games under an operator theoretic lens,
to provide some preliminary results for the main proofs in
Section VII.

Lemma 8: If the matrix P satisfies Assumption 1, then the
mappings P · and A · = (P ⊗ In)· are η-averaged. �

Proof: By Schur complement, the linear matrix inequality
in (8) is equivalent to P>P 4 (2η− 1)I + (1− η)(P>+P ).
Therefore, the linear mapping P · is η-AVG by Definition 5,
as well as A·.

Lemma 9: If the matrix P satisfies Assumption 2, then
the mappings P · and A · = (P ⊗ In) · are nonexpansive,
and (∀α ∈ (0, 1)) the mappings ((1− α)IN + αP ) · and
((1− α)InN + αA) · are α-averaged. �

Proof: ‖P‖ ≤ 1 implies that P · and A · are NE by Defi-
nition 4. Then ((1− α)IN + αP ) · and ((1− α)InN + αA) ·
are α-AVG by Definition 5.

We can now prove Proposition 2.
Proof (Proposition 2): Let η := 1 − a, where

a := mini∈N[1,N ] ai,i ∈ (0, 1). By Definition 5, P · is
η-AVG if and only if P = (1 − η)IN + ηB for some
matrix B = [bi,j ] such that B· is NE. Specifially, (∀i)
bi,i = (ai,i − (1 − η))/η, and (∀j 6= i) bi,j = ai,j/η.
Thus,

∑N
j=1 bi,j = 1

η (ai,1 + . . .+ ai,N − 1 + η) = 1, and∑N
i=1 bi,j = 1

η (a1,j + . . .+ aN,j − 1 + η) = 1. Next, since
a ∈ (0, 1), η ∈ (0, 1) and (∀i) bi,i ≥ 0. Therefore, B is
doubly stochastic, and by Proposition 3 and Lemma 9, B· is
NE. Since P · is η-AVG, then A· is η-AVG as well due to
Definition 5.

Lemma 10: The mappings proxf in (4) and F in (26) are
1
2 -averaged, hence strictly monotone. �

Proof: It follows from [31, Proposition 12.27, Example
20.5] and Definition 5.
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Lemma 11: The mapping Id− G from (27) is monotone.
�

Proof: By [4, Lemma 3], Id− G is MON if and only if
2 I−(G>+G) < 0, which is equivalent to 2IN−(P+P>) <
0. The latter holds due to the Gershgorin circle theorem.

C. Non-strict monotonicity of the pseudo-gradient game map-
ping

To conclude the section, we show and discuss the mono-
tonicity of the pseudo-gradient game mapping, and refer to
solution algorithms for monotone variational inequalities.

Let us consider the Nash game associated with the network
game in (2), that is, the game with best responses

xi ∈ argmin
y∈X̃ i(x−i)

J i
(
y, ai,i y +

∑N
j 6=i ai,j x

j
)
, (37)

for all i ∈ N[1, N ]. The pseudo-gradient game mapping
Θ : (Rn)N → (Rn)N is defined as the matrix of partial sub-
gradients [27, p. 197], i.e., Θ = [θi,j ] where (∀i, j ∈ N[1, N ])

θi,j(x) := ∂xjJ i
(
xi,
∑N
h=1 ai,h x

h
)
,

hence in view of J i in (3), we have

Θ = diag
(
(∂f i)Ni=1

)
+ ((IN − P )⊗ In) · . (38)

Proposition 5: Monotone pseudo-gradient game mapping.
The mapping Θ in (38) is monotone. �

Proof: It is sufficient to show that Θ is the sum
of two MON mappings [31, p. 351]. First, the mapping
diag

(
(∂f i)Ni=1

)
is MON [31, Example 20.3, Proposition

20.3]. Then, it follows from [4, Lemma 3] that the map-
ping ((IN − P )⊗ In) · is MON if and only if IN − P +
(IN − P )

>
= 2IN − (P + P>) < 0, which holds true due to

the Gershgorin circle theorem.
Since the pseudo-gradient game mapping Θ is monotone,

solution algorithms for monotone variational inequalities [28,
§12], [30, Part II, §2–4] are applicable to derive Nash equi-
librium seeking dynamics, under the assumption of convex
differentiable cost functions, convex local constraints and
separable, convex differentiable coupling constraints.

While in the literature the pseudo-gradient game mapping
is typically assumed to be strictly MON [15, Assumption 2],
[16, Assumption 3], the mapping Θ in (38) is MON, but not
strictly/strongly MON, nor cocoercive (that is, 1

2 -AVG under
positive scaling). Therefore, projected gradient dynamics [28,
§12] cannot ensure convergence in general, see [28, Example
12.1.3] for an example with non-convergent dynamics.

VII. MAIN PROOFS

Proof of Theorem 1: By Lemma 8, A· in (5) is η-AVG
and by Lemma 10, the mapping proxf in (4) is 1

2 -AVG.
We note that the composition of AVG mappings is an AVG
mapping itself [34, Proposition 2.5], specifically 1

2−η -AVG.
Then convergence follows by Lemma 4. Since proxf ◦ A
is 1

2−η -AVG, (∀x̄ ∈ fix
(
proxf ◦A

)
), ‖x(h+ 1)− x̄‖2 ≤

‖x(h)− x̄‖2 − (1 − η) ‖x(h+ 1)− x(h)‖2. If we sum

over h, then we have that (k + 1) ‖x(k + 1)− x(k)‖2 ≤∑k
h=0 ‖x(h+ 1)− x(h)‖2 ≤ 1

1−η ‖x(0)− x̄‖2. The inequal-
ity in (9) then follows since dist

(
x(k),fix

(
proxf ◦A

))
≤∥∥(proxf ◦A

)
(x(k))− x(k)

∥∥2
= ‖x(k + 1)− x(k)‖2. �

Proof of Theorem 2: By Lemma 9, the mapping A·
in (5) is NE. Thus, the mapping proxf ◦ A is the
composition of two NE mappings, hence it is NE itself,
and convergence holds by Lemma 5. Analogously to
the proof of Theorem 1, we exploit the fact that the
mapping (1 − α)Id + α

(
proxf ◦A

)
is α-averaged, that is,

(∀x̄ ∈ fix
(
proxf ◦A

)
), ‖x(h+ 1)− x̄‖2 ≤ ‖x(h)− x̄‖2−

1−α
α ‖x(h+ 1)− x(h)‖2. If we sum over h, then we have that

(k + 1) ‖x(k + 1)− x(k)‖2 ≤
∑k
h=0 ‖x(h+ 1)− x(h)‖2 ≤

α
1−α ‖x(0)− x̄‖2. The inequality in (12) then
follows since dist

(
x(k),fix

(
proxf ◦A

))
≤∥∥(proxf ◦A

)
(x(k))− x(k)

∥∥2
= α2 ‖x(k + 1)− x(k)‖2.

�

Proof of Theorem 3: Convergence follows by applying
Lemma 6 with Tk := proxf (A(k) ·). Then the proof is
analogous to the proof of Theorem 1, since, for all k ∈ N,
Tk is 1

2−η -AVG by Definition 5 and [34, Proposition 2.5]. �

Proof of Theorem 4: Convergence follows by applying
Lemma 6 with Tk := (1 − α)Id + αproxf (A(k) ·). Then
the proof is analogous to the proof of Theorem 2, since, for
all k ∈ N, Tk is α-AVG. �

Proof of Corollary 1: It follows from Theorems 3, 4 that
x(k) → x̄ and, since α > 0, that proxf (A(k) x̄(k)) → x̄.
Due to Assumption 6, there exists a subsequence indexed by
h ∈ H ⊆ N, {ai,j(h)}∞h∈H, such that limh→∞, h∈HA(h) =
Ā. Thus, we have that limh→∞, h∈HA(h)x(h) = Ā x̄.
We conclude that x̄ = limk→∞ proxf (A(k)x(k)) =
limh→∞, h∈H proxf (A(h)x(h)) = proxf

(
Ā x̄

)
. �

Proof of Theorem 5: It follows by applying Lemma 7 with
A := JF and B := Id − G. A is 1

2 -AVG and MON by
Lemma 10; B is affine, hence Lipschitz continuous, and MON
by Lemma 11. �

VIII. APPLICATIONS

A. Opinion dynamics in social networks

Opinion dynamics in social networks have been modeled in
the context of multi-agent network games [8], [9], [35]. In this
subsection, we build upon this literature and conceive opinion
dynamics as multi-agent proximal dynamics, possibly multi-
dimensional, interdependent, locally constrained, with possibly
time-varying social interactions.

We consider N agents, where each agent i ∈ N[1, N ] has a
vector of opinions on n ≥ 1 topics. Specifically, for all i, we
consider xi ∈ X i ⊆ [0, 1]n, where xiτ = 0 represents the most
negative opinion of agent i on the topic τ ∈ N[1, n], xiτ = 1
represents the most positive opinion of agent i on the topic τ ,
and xi ∈ X i can represent limitations on the opinion of agent
i on individual topics and also across the n topics.

For each agent i, we consider an initial opinion vector
xi(0) ∈ X i and an ideal opinion x̂i ∈ X i, which is the opinion
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Fig. 1. Samples of Barabási–Albert scale-free (left) and Watts–Strogatz small-world (right) networks (with Fruchterman-Reingold layout) used in the numerical
experiments on social networks. Self loops are not shown for ease of visualization.

the agent would reach without interactions with other agents,
and which need not to be equal to xi(0). Then, we model the
opinion dynamics as (∀i ∈ N[1, N ], ∀k ∈ N)

xi(k + 1)

= argmin
y∈X i

f i◦(y − x̂i) + 1
2

∥∥∥y −∑N
j=1 ai,j(k)xj(k)

∥∥∥2

= proxfi
◦( · −x̂i)+ιXi

(∑N
j=1 ai,j(k)xj(k)

)
.

(39)
The cost function in (39) has two addends: f i◦(y − x̂i)

penalizes the deviation of the local opinion from the ideal
opinion x̂i, namely, it weights the stubbornness of agent i,

while the term 1
2

∥∥∥y −∑N
j=1 ai,j(k)xj(k)

∥∥∥2

penalizes the de-
viation of the local opinion from the weighted average among
the opinions of the neighboring agents, possibly including the
current local opinion xi(k) as a memory effect if ai,i(k) > 0.
Therefore, in the extreme case that f i◦ = 0 and X i = [0, 1]n,
agent i is typically referred as follower, while in the other
extreme case that ai,j(k) = 0 for all j 6= i and k ∈ N, or
X i = {x̂i}, agent i can be referred as fully stubborn.

If we assume that (∀i ∈ N[1, N ]) f i◦ is lower semi-
continuous, convex and positive semi-definite, X i is nonempty,
compact and convex, P (k) = [ai,j(k)] is doubly stochastic
for all k ∈ N, and that a persistent network equilibrium
exists, then convergence to an NWE follows from the results
in Section IV for the time-varying communication case, or in
Section II for the time-invariant one.

Remark 3: Generalized opinion dynamics. The multi-agent
network game model in (39) reduces to the model in [35] if
f i◦(y − x̂i) = 1

2

∥∥y − xi(0)
∥∥2

Qi
for some Qi < 0, xi(0) = x̂i,

P (k) = [ai,j(k)] = [ai,j ] = P for all k; also, in [35] it holds
that X i = Rn for all i. If n = 1, X i = [0, 1] and f i◦(y− x̂i) =

θi 1
2

(
y − xi(0)

)2
for some θi ≥ 0, then the model in (39)

reduces to the Friedkin–Johnsen and De Groot models in [36],
[37], [8]; furthermore, in [37] it is assumed that all agents are
followers, and in [8] it is assumed that there exists i such that

θi > 0 and that P (k) = P = [ai,j ] = [aj,i] = P> for all k. �
Next, we investigate numerically and illustrate opinion

dynamics on directed time-invariant graphs that have the
topology of Barabási–Albert and Watts-Strogatz scale-free
networks, with the addition of self loops of random weight -
Figure 1 shows two examples of such networks. We consider
row stochastic, but not doubly stochastic, weighted adjacency
matrices to explore the behavior of opinion dynamics beyond
our theoretical guarantees.

We run several numerical experiments to compare the
distributed Banach dynamics in (7) on Barabási–Albert and
Watts-Strogatz networks for different numbers of agents,
N ∈ N[10, 40], and n = 2 topics. For each experiment,
for all i ∈ N[1, N ], we sample an ideal opinion x̂i and
an initial one xi(0) with uniform distribution from the set
{[0; 0], [0; 1], [1; 0], [1; 1]} and the set [0, 1]2, respectively; we
impose a polyhedral constraint set X i = {y ∈ [0, 1]n | 1>y ≤
θi1}, and a piecewise-affine convex cost function f i◦(y) =
max{0, θi2

∥∥y − x̂i∥∥
1
− θi3}, where the triple

(
θi1, θ

i
2, θ

i
3

)
is

sampled uniformly in the set [0, 2]× [1/2, 1]× [0, 1/2].
Experiments illustrated in Figure 2 suggest that the conver-

gence speed is not much affected by the network size.

B. Distributed tertiary control in power networks
Tertiary control in power networks has been considered as

the solution to the optimal economic dispatch problem in terms
of maximal social welfare [1], [2], [25], [26].

In this subsection, we formulate the problem as a multi-
agent network game, where the agents (generators, flexible
storage and loads) communicate among neighbors to reach a
network equilibrium.

We assume that each agent i ∈ N[1, N ] can decide on its
variable xi = ui, which is the controllable power injection
ui ∈ X i := [ui, u

i] at bus i, to minimize its operating cost
f i◦(u

i) := θi

2

(
ui
)2

, for some θi ∈ [0, 1/2].
We consider the typical security constraints |δi − δj | ≤

γ := π/4 that limit the power flow on each branch (i, j) ∈ E
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Fig. 2. Average number of iterations required for convergence
(‖x(k + 1)− x(k)‖∞ ≤ 10−4) versus network size N , for Barabási–Albert
(blue, solid line) and Watts–Strogatz (red, dashed line) networks, together with
max-min intervals (shaded areas).

[1, §II-D], where δi is the phase angle deviation at bus i.
In compact form, we have −γ ≤ E δ ≤ γ, for some
matrix E ∈ {−1, 1}|E|×N , where δ := [δ1 ; . . . ; δN ] and
γ := γ 1|E|.

As in [1, Equation 30], we relate the phase angles and
the power injections via the linearized DC injection equation
ui+ûi =

∑N
j=1 βi,j (δi−δj) for all i, where ûi is the nominal

injection for agent i and βi,j is the effective susceptance of
the edge (i, j). In compact form, we can write Bδ = u+ û,
for some matrix B ∈ RN×N , u := [u1 ; . . . ; uN ] and
û := [û1 ; . . . ; ûN ], hence derive the approximation δ '
B† (u+ û). In addition, we want the net power balance to be
zero or relatively small, e.g. not higher than some threshold
ε ≥ 0, for the stabilization of the network frequency [2, §2].
The approximated power network constraints then read as the
set of affine coupling constraints

−γ ≤ EB† (u+ û) ≤ γ
0 ≤ 1>N (u+ û) ≤ ε.

We run some numerical experiments on the IEEE New Eng-
land test power network, shown in Figure 3, with susceptance
parameters obtained from the Power Systems Toolbox. We set
one undirected communication link between generators 1 and
7, namely, nodes 39 and 36 of the physical graph, and simulate
a scenario where the imbalance is generated as follows: the
largest power injection, at node 39, is reduced by 20% and the
largest load demand, at node 1, is increased by 20%, compared
to their nominal values.

We compare the power imbalance under the Banach dy-
namics (for the mapping F ◦ G) from (7), the Krasnoselskij
dynamics from (11) and the Tseng protocol dynamics from
(28)–(31) in several experiments. In our numerical experience,
the Banach dynamics have the fastest convergence, although
their global convergence is not supported theoretically. Figure
4 shows a representative simulation.

Fig. 3. IEEE New England test power network.
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Fig. 4. Power imbalance regulated via the Banach dynamics (red dotted
line), the Krasnoselskij dynamics (green dashed line) and the Tseng protocol
dynamics (blue solid line).

IX. CONCLUSION AND OUTLOOK

Global convergence of selected classes of equilibrium seek-
ing proximal dynamics hold in multi-agent network games,
under the assumption of convex cost functions with proximal
quadratic coupling, time-invariant and time-varying communi-
cation along with convex local constraints, time-invariant com-
munication along with convex local constraints and separable
coupling constraints.

More generally, equilibrium seeking dynamics for multi-
agent network games with the simultaneous presence of con-
vex cost functions, time-varying communication and convex
(possibly non-differentiable) coupling constraints are currently
unexplored. The analysis of equilibrium seeking dynamics for
multi-agent network games with communication graph that
is possibly different from the interference graph and with
coupling constraints would be a relevant extension to this
paper. We have modeled the information exchange between
agents via a linear mapping and assumed non-expansiveness,
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which holds true if the adjacency matrix is doubly stochastic.
However, we believe that our convergence results can be
extended to multi-agent network games with row-stochastic
adjacency matrix, and also, under appropriate regularity as-
sumptions, to nonlinear information exchange mappings.
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