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Abstract

As single-cell RNA sequencing techniques im-
prove and more cells are measured in individ-
ual experiments, cell clustering procedures be-
come increasingly more computationally inten-
sive. This paper studies the runtime perfor-
mance impact of a specialized clustering algo-
rithm for data converted to a binary format,
in order to reduce computational burden. We
experimentally show that our specialized algo-
rithm runs faster than the Seurat library on
small datasets, and that with proper dimension-
ality reduction and approximation techniques,
the algorithm could be more scalable than cur-
rent methods. Optimizations for cluster quality
and memory efficiency are not considered in this

paper.

1 Introduction

Single-cell RNA sequencing (scRNAseq) techniques allow
researchers to measure the gene expression levels of individ-
ual cells. Many data analysis methods for this sScRNAseq data
exist to improve biological insight [1]. As techniques for scR-
NAseq improve and datasets with over two million cells [2]
are currently being generated, data analysis methods become
increasingly more computationally intensive. A commonly
used downstream analysis method for this data is cell cluster-
ing, where cells are grouped together based on gene signature
similarity between cells. Since this approach requires that ev-
ery cell is compared to every other cell, it can result in com-
putationally intensive procedures. Currently, datasets can in-
clude more than 40.000 genes and over two million cells [2],
leading to very high time and memory costs. Because of this,
it becomes increasingly more important to find a resource-
and time-efficient method to perform these clustering proce-
dures.

To address the computational challenges posed by large-
scale scRNAseq datasets, current algorithms (Seurat [3]) use
a multistep approach involving pre-processing, dimension-
ality reduction, k-Nearest-Neighbour (k-NN) algorithms and
community detection algorithms to generate clusters [4]. In
the pre-processing steps, the data is normalized, variable fea-
tures are selected, and the data is centered and scaled. Fol-
lowing this, dimensionality reduction is performed using ap-
proximate Principal Component Analysis (PCA) in order to
make further computations feasible. After this step, an ap-
proximate k-Nearest-Neighbour algorithm is used to create a
connectivity graph. Finally, a community detection algorithm
(e.g., Leiden [5]) is applied to generate the final clusters from
this graph. (Figure 1). However, in many cases, this process
still requires a lot of time and memory.

Along with recent developments that allow for more cells
to be measured in individual experiments, overall sparsity in
datasets is increasing as well [6]. In this context, higher spar-
sity means that a higher proportion of the data values is zero.
Bouland et al. [7] argue that even though zeros may be mea-
sured due to either technical or biological factors, they still

provide relevant biological information. In the same paper, it
is also shown that for sparser datasets, a binary data represen-
tation is as informative as count-based data representations.
The binary representation only takes into account whether a
gene was measured in a cell, as opposed to storing how fre-
quently each gene was measured in each cell (Figure 2).

Moreover, Bouland et al. show that storing the scRNAseq
data in a binarized form can achieve a 17-fold reduction in
storage requirements and suggest that a specialized cluster-
ing algorithm for binary scRNAseq data could allow for sig-
nificant improvements in terms of runtime and peak memory
usage. For example, lower memory usage and use of binary
logic operations instead of numerical operations could save a
significant amount of time for clustering procedures.

The goal of this research is to create and evaluate a special-
ized clustering algorithm for binarized data. Specifically, we
introduce two approaches: An exact binary algorithm where
every cell is compared to every other cell, and an approx-
imated binary algorithm where cells are only compared to
cells that are likely to be similar (Section 4). We aim to
find differences in runtime when using binary clustering al-
gorithms compared to a traditional method. Furthermore, bi-
nary metrics are compared against each other in terms of run-
time. However, we do not go into detail on either memory
constraints or optimizing for biological accuracy. Further-
more, even though reading the data into memory is a step
where runtime gains can be made, evaluation of this is out
of scope for this study due to the number of different pos-
sible file formats and data representations. ScCRNAseq data
analysis tools can sometimes support importing data from
up to 11 different file formats or pre-processing tools [8].
All algorithms, experiments, and raw results are available on
https://github.com/mdek2053/Binaryclustering.

The runtimes of different approaches were evaluated ex-
perimentally, since theoretical runtime analysis can be very
complex and usually does not accurately reflect runtimes in
practice. The results show that binary algorithms run faster
than Seurat when fewer features are used and that algorithms
that approximate nearest neighbours run faster on datasets
with more cells. We conclude that binary clustering has the
potential to be faster and more scalable than traditional clus-
tering methods, but that binary dimensionality reduction and
approximation techniques are required for scalable binary al-
gorithms.

2 Results

The runtimes of three approaches were compared: 1) Seurat,
2) an exact binary algorithm, and 3) an approximated binary
algorithm. (See section 4). Raw results can be found in the
online repository.

Binary clustering performs significantly faster than
Seurat on smaller datasets

Both binary clustering algorithms take significantly less time
than Seurat when applied to smaller datasets. On datasets
of 1.000 cells, the mean runtime of Seurat is 1.2 seconds,
compared to 0.02 s and 0.21 s for the exact and approximate
binary approaches respectively (Figure 3a). This holds on
datasets for 10.000 cells as well, where the means are 7.34
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Figure 1: Conventional scRNAseq clustering workflow. The raw gene expression matrix is normalized, variable genes are selected, and the
data is scaled and centered to produce a new matrix to which Principal Component Analysis (PCA) can be applied. After PCA is applied,
every cell is expressed with a fixed number of principal components. Using these principal components, a k-Nearest-Neighbour (k-NN) graph
is created. Finally, a community detection algorithm, such as Leiden, is applied to assign each cell to a cluster.
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Figure 2: Raw scRNAseq data (left) converted to binary scRNAseq
data (right). Every value of 0 remains a 0, but every value greater
than 1 becomes a 1.

s for Seurat, 0.55 s for Binary exact, and 3.66 s for binary
approximated (Figure 3b).

This difference occurs because binary algorithms can com-
pare cells more efficiently, skip PCA, and have less overhead.
PCA is the most time-consuming step in the Seurat workflow
for smaller datasets, as it takes an average of 53% of the total
runtime for datasets of 1.000 and 10.000 cells (Figures 5a and
5b).

Approximated methods scale better when cell counts
increase

Both approximated methods, Seurat and Binary approxi-
mated, scale much better than Binary exact. When applying
the algorithms to 10 times more cells, the runtimes of ap-
proximated approaches grow by average factors of 8.9 and
18.7 respectively. In contrast, the average factor by which the

exact binary algorithm grows for a 10-fold increase in cells is
86.1 (Figure 4).

This can be attributed to a difference in runtime complex-
ity. The exact algorithm compares all cells in O(n?) time, be-
cause every cell is compared to every other cell. Conversely,
the implementation of the approximated nearest neighbour li-
brary allows building the k-NN graph in O(n - log(n)) time.
(Section 4) This means that especially for larger datasets, the
exact method will scale significantly more.

When gene counts rise, Seurat scales much less than
binary methods on larger datasets

For datasets with 100.000 cells, doubling the number of genes
increases the runtime of Seurat by an average factor of 1.2. In
comparison; Binary exact scales with an average factor of 1.5
and Binary approximated with an average factor of 1.7 for
doubling the number of genes (Figure 3c).

Further investigation into the runtime of different stages
of the Seurat workflow shows that the k-NN graph does not
scale when the number of genes increases, because it uses a
fixed number of dimensions. Moreover, Seurat uses an ap-
proximated version of PCA as well, which scales with only
an average factor of 1.5 when doubling the number of genes
(Figure 5).

Creating a k-NN graph using binary data is orders of
magnitude faster than using continuous data

Even though the full clustering procedure is not always faster,
k-NN graph creation with binary data is still much faster than
with continuous data, since the binary approach creates a k-
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Figure 3: Mean runtimes compared across three clustering algorithms, shown for different cell counts. Variances are shown for every
point but are too small to be visible for some. (a) shows the values for 1.000, (b) for 10.000, and (c) for 100.000 cells.
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Figure 4: Mean runtimes across different clustering algorithms, shown for different gene counts. Variances are too small to be visible
on any plot due to the logarithmic scale. (a) shows the values for 500, (b) for 1.000, and (c) for 2.000 genes.
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Figure 5: Mean runtimes compared among three clustering algorithms, shown for different cell counts. Variances are shown for every
point but are too small to be visible for some. (a) shows the values for 1.000, (b) for 10.000, and (c) for 100.000 cells.
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Figure 6: Mean runtime for different similarity metrics. (a) shows the runtimes for datasets with 1.000 cells, and (b) shows them for
10.000 cells. The ”Zero” metric, which always returns zero, was also included.

NN graph using 500, 1.000 or 2.000 dimensions, while Seu-
rat only uses 10 continuous dimensions after applying PCA.
When normalizing the runtimes of the k-NN graph creation
stages in Seurat and Binary approximated for the number of
dimensions, the Binary approximated approach is around 118
times faster than Seurat. This is a valid comparison since both
algorithms use the same k-NN algorithm, with the only dif-
ference being comparison logic. For both binary methods,
creating the k-NN graph accounts for over 99% of the total
runtime.

Manhattan is fastest and Pearson is slowest

When comparing different binary metrics using the exact bi-
nary algorithm, Manhattan distance results in the lowest run-
times, with means of 0.14 and 0.66 for datasets with 1.000
and 10.000 cells, while Pearson similarity results in the high-
est runtimes, with means of 0.17 s and 0.82 s respectively.
(Figure 6). Overall, the trend is that metrics with more cal-
culations take more time, and metrics that use square roots
tend to take more time, since this is the most time-consuming
mathematical operation used in any of the metrics. However,
the mean runtime for every metric is over 80% of the mean
runtime for the Pearson similarity.

3 Discussion

As suggested by Bouland et al. in [7], binarizing data and
applying a specialized algorithm can, in some cases, sig-
nificantly reduce the runtime compared to existing methods.
However, for larger datasets, the binary algorithms do not per-
form as well as existing algorithms, even though the aim was
to create a more scalable algorithm. This can be attributed to
the fact that even though we showed that k-NN graph creation
on binary data is approximately 118 times faster than creat-
ing it using continuous data, applying PCA allows the k-NN
graph to be computed using a fixed, small number of dimen-
sions. PCA is so effective because it can convert sparse input
data into very information-dense continuous output data. In
contrast, retaining this level of information with binary out-
put is not feasible unless more dimensions are used. More-
over, the fact that PCA runtimes do not scale proportionally to

an increase in genes and k-NN graph creation does not scale
at all, allows Seurat to perform better on datasets with more
genes. Finally, it was found that applying different distance
metrics does not result in runtime gains or losses greater than
20%.

Improving the scalability of the binary clustering
algorithm

The results emphasize that dimensionality reduction is essen-
tial for a binary clustering algorithm to be competitive in
terms of runtime. A binary clustering algorithm could be
competitive with existing methods in terms of runtime if a
binary dimensionality reduction method that satisfies the fol-
lowing constraints can be realized:

1. The binary dimensionality reduction can retain sufficient
information in less than approximately 118 times the
amount of required principal components.

2. The binary dimensionality reduction is not slower than
current dimensionality reduction methods for numerical
data.

Pratap et al. [9] show that binary dimensionality reduction
can be performed efficiently for sparse datasets while main-
taining estimates for several distance measure and outputting
data in a binary format. If such an algorithm satisfies the
aforementioned constraints in practice, it must be applied in
order to achieve scalability in future iterations.

Furthermore, the results show that approximated methods
are necessary in order to achieve scalable algorithms. The
only binary distance metric that the Annoy library supports
is the Hamming distance. This could either be extended or a
specialized approximate nearest neighbour library for binary
data could be developed.

Finally, binary clustering could be significantly faster if an
efficient popcount operation for longer bit vectors is used.
Mula et al. [10] show that significant gains can be made
compared to the built-in popcount operations for longer bit
vectors.



Future research

The results still leave questions that should be addressed in
future research. Bouland et al. [7] show that binary data can
be stored much more efficiently. This could result in large
runtime gains when loading the data compared to other for-
mats. Moreover, the choice of &k value could have a large im-
pact on runtime as well. The several possible improvements
mentioned in the previous paragraph should be tested in prac-
tice against the benchmarks set in this paper. Finally, using
more powerful hardware, larger datasets should be evaluated
too.

Apart from runtime evaluations, it is imperative to consider
cluster quality as well. The choice of k, similarity metric,
and community detection algorithm could all have an impact
on biological accuracy. In addition, the impact of several ap-
proximation and dimensionality reduction methods on cluster
quality and accuracy should be researched as well.

Finally, in case it is not feasible to make the entire pipeline
up to creating the k-NN graph work entirely on binary data
in a time-efficient manner, a specialized version of PCA that
converts sparse binary input to dense continuous output could
be used. This can still yield significant improvements in run
time while decreasing storage and memory requirements, as
described in [7]. A method to compute principal components
on sparse binary datasets is proposed by Lee et al. in [11].

Responsible research

For the sake of transparency and reproducibility, all relevant
information is available in either this paper or in the public
repository. This paper should give a broad overview of the
experiment and research, while all the algorithms, scripts for
experiments, and results are available online. Furthermore,
it should be mentioned that some pilot experiments were run
beforehand. The results of these experiments were discarded
since they were conducted on either older versions of the al-
gorithm or with incorrect configurations. Finally, the main
experiments are reproducible using the code from the reposi-
tory and the hardware and software configurations mentioned.

Conclusion

Binary clustering shows promise because, with some addi-
tions and modifications, it could be more scalable than ex-
isting clustering algorithms. Proper binary dimensionality re-
duction and approximation techniques are essential in achiev-
ing this.

4 Methods

Metric selection

The metrics for evaluation were selected based on recent re-
search into scRNAseq clustering. Metrics were taken from
[12] and [13]. For most of the metrics, Choi et al. [14], de-
fine binary versions for most of the selected metrics. Metrics
that were impossible to convert to a binary version are left
out. Furthermore, some metrics are equivalent to each other
when used on binary data, so duplicates were also removed.
This results in the following list of metrics:

1. Bray-Curtis distance [14]

Ochiai distance ! [14]
Dice’s index [14]
Euclidean distance [14]
Manbhattan distance [14]
Jaccard similarity [14]
Kulsinski’s index 2 [17]
Pearson correlation 3 [14]
9. Yule’s Q [14]

®© Nk »N

4.1 Binary algorithm implementations

The binary clustering algorithm was implemented in C++*,
using the igraph [18], Rcpp [19], and Annoy” libraries. The
igraph library was used for Leiden and Louvain clustering,
Rcpp was used for integration with R [20] and Annoy was
used for efficiently approximating nearest neighbours. The
source code is available in the online repository.

Workflow

The algorithm follows a simplified version of the traditional
workflow of clustering algorithms. The data is loaded into
memory, pre-processed, connected to form a k-NN graph, and
clustered (Figure 7). The k-NN graph can be either generated
exactly or approximated. Every step can be triggered individ-
ually from R, although only the final step returns the results.

Data representation

The scRNAseq data is loaded as a csv file and stored in a
binary format. Each cell is stored as a vector of unsigned
longs, with each gene represented as one bit. This allows 64
features to be stored in one unsigned long. During the pre-
processing step, the popcount (amount of 1 values) for each
cell is computed and stored along with the raw binary data.
Following this, either an exact nearest neighbour graph can
be, or the nearest neighbours can be approximated using the
Annoy library. Finally, the clusters are generated by using
the previously generated k-NN graph as input for the igraph
library and applying a clustering algorithm.

Approximate k-NN graph generation

The approximation techniques are implemented using the
Annoy library. The approximation consists of two stages: in-
dex tree creation and nearest neighbour retrieval [21]. In the
first stage, trees are built by recursively dividing the space
into subspaces of approximately equal size. In the experi-
ments for this paper, 50 trees were built, which is the Seurat
default. The second stage iterates over all cells and queries all
trees for every cell. This way, cells are only compared to other

'[14] also defines a binary cosine similarity, but this instance
uses a squared denominator, unfaithful to the non-binary formula
as found in other work, such as [15]. [16] mentions that ”For binary
vectors, the cosine measure is also called the Ochiai coefficient”.

2[14] defines two versions of this metric, but neither is the one
used in [12].

3[14] defines both the Pearson coefficient p as well as multiple
metrics using this coefficient. We use the coefficient p as the metric.

“https://cplusplus.com/

Shttps://github.com/spotify/annoy
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is applied to assign each cell to a cluster.

cells that are in the same subspace in any of the trees, instead
of being compared to all other cells. The runtime complexity
of the entire process is O(n - log(n)).

This process is divided over the maximum number of
hardware-supported threads. As of now, Hamming distance
(equivalent to binary Manhattan distance) is the only sup-
ported metric for this library. This metric is implemented by
summing the popcounts of the XOR of each unsigned long
in the cell vector. The XOR of two bits gives a 0 if they are
equal and a 1 if they are not equal. Counting the 1 values in
the result of the XOR gives exactly the amount of dimensions
in which the values differ. This value is, by definition, equal
to the Hamming distance. __builtin_popcount is used to
implement the popcount.

Exact k-NN graph creation

The exact technique is implemented in a more traditional
way by simply comparing each cell to every other cell. The
cells are divided into chunks of equal size and divided over
the maximum numbert of hardware-supported threads. Each
thread compares all cells in its respective chunk to every other
cell in the entire dataset. Although the creation of a similarity
matrix is supported, all experiments used the direct creation
of a k-NN graph since this is more time-efficient.

Metric implementation
For the exact approach, more binary metrics are supported.
Here, the main principles applicable to all metrics are illus-
trated, while the implementations can be found in either Ap-
pendix A or in the public repository.

We defined metrics the same way as in [14]. In short, when
comparing two binary vectors v and u, each feature can have

| [ linu [ Oinwu |
linv || a=count(l, 1) | ¢=count(l, 0)
Oinv || b=count(0, 1) | d=count(0, 0)

Table 1: Definitions of a, b, ¢ and d. a is equal to the number of
pairs where both values are 1, b to the number of (0, 1) pairs, ¢ to
the number of (1, 0) pairs, and d to the number of (0, 0) pairs.

either a (1, 1) pair (features are present in both v and u), a
(0, 1) pair (feature is only present in u), (1, 0) pair (feature is
only present in v) or a (0, 0) pair (feature is present in neither
v nor u). We define a, b, ¢ and d to be the number of (1, 1)
pairs, (0, 1) pairs, (1, 0) pairs, and (0, 0) pairs respectively
(Table 1). The number of dimensions in the vector should
always equal a + b + ¢ + d.

The value of a is computed in a similar way to the Annoy
library: By summing the popcounts of the AND of each of
the unsigned longs in the cell vector. Performing an AND
operation only results in a 1 if the initial features were (1, 1).
Therefore, counting the 1 values in the resulting vector yields
the amount of (1, 1) pairs in the two initial vectors, which is
equal to a by definition. Popcounts are also computed using
the __builtin_popcount function.

After the value of a is computed, b, ¢ and d can be com-
puted (if required) in constant time. This is because the pop-
count for each cell was computed beforehand. The popcounts
of the two cells represent the values (a + b) and (a + ¢), so
the values of b and ¢ can be found by subtracting a from the
popcounts. After this, d can be found by subtracting a, b and
c from the length of the vector. Using these four values, every
metric can be computed.



4.2 Experiment

Datasets

Since the most relevant property of datasets for the experi-
ments was size, 10 random samples of different sizes were
taken from the "Human Lung Cell Atlas” [2] dataset, avail-
able at https://beta.fastgenomics.org/p/hlca. The
sparsity of datasets does not impact the performance of the bi-
nary algorithms because an equal amount of computations is
performed for any proportion of ones and zeros. The random
samples have 1.000, 10., and 100.000 cells, and 500, 1.000,
and 2.000 genes respectively, resulting in nine datasets. The
gene counts were chosen to simulate realistic sizes after vari-
able gene selection [22]. The cell counts were chosen to
represent somewhat realistic dataset sizes. Furthermore, one
dataset with 500.000 cells and 500 genes was used to evalu-
ate behaviour on very large datasets. Due to hardware con-
straints, no larger datasets could be evaluated.

Hardware & Compilation

All experiments were conducted on a machine with 16 GB
of memory, an AMD Ryzen 5 CPU with 8 threads and a
frequency of 2.1 GHz, running 64-bit Ubuntu 20.04.6. The
binary algorithm was compiled using the g++ version 9.4.0
compiler and the -Ofast and -march=native flags. For the
required libraries, include and link flags were added to the
compile command as well.

Setup

The experiments were conducted using three separate R
scripts. The first script measures the runtime of Seurat, the
second one measures the runtime of both versions of the bi-
nary algorithms, and the third one measures the runtime of
different binary metrics. All experiments use a value of 30
for k, as this is the default value for Seurat. All scripts are
available in the online repository.

To evaluate the runtime of Seurat, the data was loaded into
memory, normalized, scaled, PCA was applied, and the k-
NN graph was constructed using the first 10 principal com-
ponents. Contrary to the standard workflow as described in
[4], variable feature selection was skipped because the gene
counts in the dataset are already representative of gene counts
after variable feature detection [22]. Moreover, no steps after
k-NN graph creation were evaluated, as binarized data has no
effect on runtime afterwards. Start times, intermediate times,
and end times were recorded using the Sys.time () method.
The PCA and k-NN creation steps were measured individu-
ally, while normalizing and scaling the data is grouped un-
der Pre-processing. Reading data is not included in any time
measurement, as this heavily depends on the data format and
is out of scope for this research. For each dataset, 10 run-
times were recorded, except for the 500.000 x 500 dataset,
for which one runtime was recorded due to time and hard-
ware constraints.

The experiments for the binary algorithms were conducted
similarly. For this, the data was only read into memory, pre-
processed, and converted into a k-NN graph. Measuring the
runtimes was also done similarly to the Seurat experiments,
by starting measurements only after reading data and stop-
ping after the k-NN graph was generated. The same sample

sizes that the Seurat experiment uses were used in evaluation
of both the exact and approximate binary algorithms.

Finally, the runtime of different binary metrics was evalu-
ated by randomizing the order of the list of metrics and eval-
uating them consecutively. For this experiment, only the run-
time of the k-NN graph creation was measured, since that
is the only stage that is affected by the different metrics in
terms of runtime. This experiment was conducted using the
six smallest datasets, ranging from 1.000 x 500 to 10.000 x
2.000. For each of these datasets, 10 runtimes were recorded
for each metric.
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A Metric implementations

auto jaccardDistance = [](const CellData& left, const CellData& right) {
int diff = ANDCount(left.chunks, right.chunks);

return 1.f - (diff / (float)(left.count + right.count — diff));
}s

auto euclideanDistance = [](const CellData& left, const CellData& right) {
int diff = XORCount(left.chunks, right.chunks);
return std::sqrt((float)diff);

}s

auto ochiaiDistance = [](const CellData& left, const CellData& right) {
int diff = ANDCount(left.chunks, right.chunks);
return 1.f — (diff / std::sqrt((float)left.count * (float)right.count));

b

auto manhattanDistance = [](const CellData& a, const CellData& b) {
return (float)XORCount(a.chunks, b.chunks);
}s

auto kulsinskiDistance = [](const CellData& left, const CellData& right) {
int a = ANDCount(left.chunks, right.chunks);

int lcnt left.count;
int rcnt right.count;
int N = left.size;

int numerator = lcnt + rcnt — 3 % a — N;
int denominator = lcnt + rcnt — 2 % a — N;

return numerator / (float)denominator;

auto pearsonSimilarity = [](const CellData& left, const CellData& right) {

float a = ANDCount(left.chunks, right.chunks);
float b = left.count — a;

float ¢ = right.count - a;

float d = left.size — a — b - c;

return (a * d — b % ¢) / std::sqrt(left.count % right.count % (b + d) % (c + d));

auto yuleQSimilarity = [](const CellData& left, const CellData& right) {

float a = ANDCount(left.chunks, right.chunks);
float b = left.count — a;
float ¢ = right.count - a;
float d = left.size — a — b - c;
return (a = d — b % ¢c) / (a x=d+ b *x c);
b
// Bray—Curtis distance is 1 — sorensen similarity

auto sorensenSimilarity = [](const CellData& a, const CellData& b) {
int symdif = XORCount(a.chunks, b.chunks);
return 1.0f — (symdif / (float)(a.count + b.count));

b



auto diceSimilarity = [](const CellData& left, const CellData& right) {
int a = ANDCount(left.chunks, right.chunks);
return 2 % a / (float)(left.count + right.count);

}s
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