
Delft University of Technology & European Space Agency

Guidance & Control
Networks for
Time-Optimal
Quadcopter Flight
S. Origer

Guidance & Control
Networks for

Time-Optimal
Quadcopter Flight

by

S. Origer
Student Name Student Number

Sebastien Origer 4662792

Supervisors: Christophe De Wagter, Guido C.H.E. de Croon, Dario Izzo, Robin Ferede

Thesis Duration: February, 2022 - April, 2023

Faculty: Faculty of Aerospace Engineering, Delft University of Technology

In collaboration with: Advanced Concepts Team, European Space Agency

Cover: Parrot Bebop 1 flight in Cyberzoo (TU Delft)

Preface

I am extremely grateful to have had the chance to work for over a year with Robin Ferede, Christophe

De Wagter, Guido C.H.E. de Croon, Dario Izzo, Emmanuel Blazquez and Alexander Hadjiivanov. I

consider you all to not only be great scientists but also great teachers. Your words of encouragement

mean a lot to me and I truly hope to be collaborating with you in the future. I also want to thank my

friends from Delft and Luxembourg for always letting me share my joy regarding this project and giving

me helpful advice along the way. I am really lucky to have met you all and I could not wish for better

friends. Finally, I want to thank my mum, my dad, my brother and my sister for their unconditional

support throughout the last five and a half years in Delft. Without you, none of this would have been

possible.

S. Origer
Delft, April 2023

i

Abstract

Reaching fast and autonomous flight requires computationally efficient and robust algorithms. To this

end, we train Guidance & Control Networks to approximate optimal control policies ranging from

energy-optimal to time-optimal flight. We show that the policies become more difficult to learn the

closer we get to the time-optimal ’bang-bang’ control profile. We also assess the importance of knowing

the maximum angular rotor velocity of the quadcopter and show that over- or underestimating this

limit leads to less robust flight. We propose an algorithm to identify the current maximum angular

rotor velocity onboard and a network that adapts its policy based on the identified limit. Finally, we

extend previous work on Guidance & Control Networks by learning to take consecutive waypoints into

account. We fly a 4 × 3m track in similar lap times as the differential-flatness-based minimum snap

benchmark controller while benefiting from the flexibility that Guidance & Control Networks offer.

ii

Contents

Preface i

Abstract ii

1 Introduction 1

I Scientific Paper 3

II Literature review 19

III Addition results 56
References 66

iii

1
Introduction

Micro air vehicles (MAVs) are very versatile robots with clear applications such as search and rescue

missions, entertainment, cinematography, delivery and inspection. Their size, agility, speed, vertical

take-off and landing capabilities open up a world of possibilities yet to be explored. In addition, their

low cost and the intrinsic challenges of autonomous flight make them the ideal platform to push the

frontiers of robotics research.

Making autonomous and time-optimal flight a reality is relevant as the demand for drones that

can perform tasks autonomously is on the rise. Flying time-optimally is important as the success of

some applications, such as search and rescue missions, hinges on how quickly the drone can reach its

destination. In addition, applications that require long flight ranges, such as inspection of offshore wind

turbines, also stand to benefit from time-optimal control solutions, as the optimal speed for range is

generally relatively fast for multicopters [1]. This is especially important for drones that are not equipped

with a fixed wing, such as quadcopters, as these suffer from limited flight ranges. Autonomous and

time-optimal flight has already been the subject of many studies [2, 10, 14, 13, 9, 12, 7, 4] and drone

racing competitions such as the AlphaPilot challenge [2] are being organized to further promote research

in this field. Since aerodynamics effects become more significant for time-optimal flight [15] and drones

suffer from limited onboard computing power, one of the challenges to overcome is to create robust and

computationally efficient control algorithms.

Traditionally, the problem of autonomous flight is broken down into three major steps: perception

(state estimation), planning (trajectory generation) and control (trajectory tracking). Some of these steps

can be fused together, in fact, one often distinguishes between two types of control strategies: trajectory

tracking methods and trajectory optimization methods. The former first generates the trajectory and

then tracks it with a controller, whereas the latter combines both steps together, i.e. computes the

control commands directly from the states. While state-of-the-art trajectory tracking methods, such

as differential-flatness-based-control (DFBC) [11] or model predictive contouring control (MPCC) [14]

achieve high speeds, it is usually the first step (the trajectory generation) that is too computationally

expensive to be solved onboard of drones [14], unless simplified models are used, such as point-mass

models. This is problematic as disturbances are bound to make the quadcopter deviate from the

pre-computed trajectory.

Recent advances in machine learning show promising results in the three major steps of autonomous

flight [2, 7, 8, 3]. Given a well-posed problem, a large enough training dataset, suitable network

architecture and enough computational power, artificial neural nets can today learn to approximate

any function up to a certain accuracy. The main machine learning paradigms for guidance and control

tasks are reinforcement learning (RL) [7] and imitation learning [3]. RL offers a framework where a

network can learn to deal with uncertainty by adding noise to the environment, which is particularly

useful when parts of the dynamic system remain unmodelled. However, it is also possible to deal

with unmodelled effects using imitation learning [3]. In addition, previous work in the context of

interplanetary transfers [16, 6, 5] and quadcopters [3, 8] has shown that a network can directly learn the

optimal state feedback from a large dataset of optimal trajectories. This has led to the term Guidance &

Control Networks (G&CNETs). G&CNETs offer a direct mapping from states to raw control commands,

they can be inferred at a low computational cost and they are very flexible since there is no need to

1

2

recompute optimal trajectories.

In this work, we improve past work on G&CNETs [3] to increase the quadcopter’s flight speed,

leading to four main contributions. We make the step from energy-optimal to time-optimal control and

provide the loss values when training G&CNETs to approximate the corresponding optimal control

policies. We introduce an adaptive scheme that can estimate the maximum angular velocity of the

propellers and use it to adjust the commands to remain time-optimal. We develop a training method

that allows for the network to output time-optimal raw control commands taking a horizon into account

of the next two waypoints. We demonstrate that the two-waypoints network can deal with dynamic

waypoint locations during the flight.

This thesis document is structured in three parts: Part.I contains the scientific paper, Part.II the

literature review and Part.III additional results which might come in handy to anyone continuing this

work.

Part I

Scientific Paper

3

Guidance & Control Networks for Time-Optimal Quadcopter Flight

Sebastien Origer1,†, Christophe De Wagter1,‡, Robin Ferede1,‡, Guido C.H.E. de Croon1,‡, Dario Izzo2,‡

Abstract— Reaching fast and autonomous flight requires
computationally efficient and robust algorithms. To this end, we
train Guidance & Control Networks to approximate optimal
control policies ranging from energy-optimal to time-optimal
flight. We show that the policies become more difficult to
learn the closer we get to the time-optimal ’bang-bang’ control
profile. We also assess the importance of knowing the maximum
angular rotor velocity of the quadcopter and show that over-
or underestimating this limit leads to less robust flight. We
propose an algorithm to identify the current maximum angular
rotor velocity onboard and a network that adapts its policy
based on the identified limit. Finally, we extend previous
work on Guidance & Control Networks by learning to take
consecutive waypoints into account. We fly a 4 × 3m track
in similar lap times as the differential-flatness-based minimum
snap benchmark controller while benefiting from the flexibility
that Guidance & Control Networks offer.

Index Terms— G&CNET, optimal control, imitation learning,
end-to-end, time-optimal

Video: https://youtu.be/FrwpODT0HKQ

I. INTRODUCTION

M ICRO air vehicles (MAVs) are very versatile robots
with clear applications such as search and rescue

missions, entertainment, cinematography, delivery and in-
spection. Their size, agility, speed, vertical take-off and
landing capabilities open up a world of possibilities yet to be
explored. In addition, their low cost and the intrinsic chal-
lenges of autonomous flight make them the ideal platform to
push the frontiers of robotics research.

Making autonomous and time-optimal flight a reality is
relevant as the demand for drones that can perform tasks
autonomously is on the rise. Flying time optimally is impor-
tant as the success of some applications, such as search and
rescue missions, hinges on how quickly the drone can reach
its destination. In addition, applications that require long
flight ranges, such as inspection of offshore wind turbines,
also stand to benefit from time-optimal control solutions, as
the optimal speed for range is generally relatively fast for
multicopters [1]. This is especially important for drones that
are not equipped with a fixed wing, such as quadcopters,
as these suffer from limited flight ranges. Autonomous and
time-optimal flight has already been the subject of many

*This work was supported by ESA
†Student, ‡Supervisors
1Micro Air Vehicle Lab of the Faculty of Aerospace

Engineering, Delft University of Technology, 2629 HS Delft,
The Netherlands Sebastien.Origer@outlook.com,
C.deWagter@tudelft.nl, R.Ferede@tudelft.nl,
G.C.H.E.deCroon@tudelft.nl

2Advanced Concepts Team, European Space Agency, Keplerlaan 1, 2201
AZ, Noordwijk, The Netherlands. Dario.Izzo@esa.int

Fig. 1. Flight path of the fastest lap using the Parrot Bebop 1 and
a Guidance & Control Network which learned to take two upcoming
waypoints into account to compute the optimal control inputs. The track
is a 4× 3m rectangle, and the four waypoints are positioned at the center
of each orange gate.

studies [2]–[9] and drone racing competitions such as the
AlphaPilot challenge [2] are being organized to further
promote research in this field. Since aerodynamics effects
become more significant for time-optimal flight [10] and
drones suffer from limited onboard computing power, one
of the challenges to overcome is to create robust and com-
putationally efficient control algorithms.

Traditionally, the problem of autonomous flight is broken
down into three major steps: perception (state estimation),
planning (trajectory generation) and control (trajectory track-
ing). Some of these steps can be fused together, in fact,
one often distinguishes between two types of control strate-
gies: trajectory tracking methods and trajectory optimization
methods. The former first generates the trajectory and then
tracks it with a controller, whereas the latter combines both
steps together, i.e. computes the control commands directly
from the states. While state-of-the-art trajectory tracking
methods, such as differential-flatness-based-control (DFBC)
[11] or model predictive contouring control (MPCC) [4]
achieve high speeds, it is usually the first step (the trajectory
generation) that is too computationally expensive to be
solved onboard of drones [4], unless simplified models are
used, such as point-mass models. This is problematic as
disturbances are bound to make the quadcopter deviate from
the pre-computed trajectory.

Recent advances in machine learning show promising
results in the three major steps of autonomous flight [2],
[8], [12], [13]. Given a well-posed problem, a large enough
training dataset, suitable network architecture and enough

computational power, artificial neural nets can today learn to
approximate any function up to a certain accuracy. The main
machine learning paradigms for guidance and control tasks
are reinforcement learning (RL) [8] and imitation learning
[13]. RL offers a framework where a network can learn to
deal with uncertainty by adding noise to the environment,
which is particularly useful when parts of the dynamic
system remain unmodelled. However, it is also possible to
deal with unmodelled effects using imitation learning [13].
In addition, previous work in the context of interplanetary
transfers [14]–[16] and quadcopters [12], [13] has shown
that a network can directly learn the optimal state feedback
from a large dataset of optimal trajectories. This has led
to the term Guidance & Control Networks (G&CNETs).
G&CNETs offer a direct mapping from states to raw control
commands, they can be inferred at a low computational cost
and they are very flexible since there is no need to recompute
optimal trajectories.

In this paper, we improve past work on G&CNETs [13] to
increase the quadcopter’s flight speed, leading to four main
contributions. We make the step from energy-optimal to time-
optimal control and provide the loss values when training
G&CNETs to approximate the corresponding optimal control
policies. We introduce an adaptive scheme that can estimate
the maximum angular velocity of the propellers and use it to
adjust the commands to remain time-optimal. We develop
a training method that allows for the network to output
time-optimal raw control commands taking a horizon into
account of the next two waypoints. We demonstrate that
the two-waypoints network can deal with dynamic waypoint
locations during the flight.

We structure the paper as follows. First, the quadcopter
model, optimal control problem (OCP), imitation learning
procedure and experimental setup are described (Sec.II). We
then consider the task of learning and flying the time-optimal
OCP and show how control policies become more difficult
to learn as we shift from the energy- to time-optimal control
problem (Sec.III). As one flies more time-optimally, the
rotors of the quadcopter saturate more, i.e. the control policy
approaches ’bang-bang’ control. Given this, we assess the
importance of training G&CNETs at a maximum RPM limit
that the rotors of the quadcopter can reach during flight. We
also propose an algorithm that can identify the current maxi-
mum RPM limit in combination with an adaptive G&CNET
which changes its control policy based on the identified limit
(IV). Finally, we improve fast quadcopter flight by extending
previous research on G&CNETs from single waypoint to
consecutive waypoints flight (Sec.V). The resulting controller
is also compared to another benchmark using time-optimal
minimum snap trajectories [11].

Fig.1 shows one lap on a 4× 3m track using a G&CNET
which is trained to take two consecutive waypoints into
account.

Body frame
World frame

z

z

x

x

y

y

1

3

2

4

Fig. 2. Coordinate frames (Body x-axis points to the front of the drone).

II. METHODOLOGY

A. Quadcopter model

In this work, we use two coordinate frames as defined in
Fig.2 and a quadcopter model with 19 states and 4 control
inputs:

x = [p,v, λ,Ω, ω,Mext]
T u = [u1, u2, u3, u4]

T

The state vector x contains the position p = [x, y, z]
and velocity v = [vx, vy, vz] which are both defined in
the world frame. The Euler angles λ = [ϕ, θ, ψ] which
specify the orientation of the body frame, the angular ve-
locities Ω = [p, q, r] in the body frame, the propeller rates
ω = [ω1, ω2, ω3, ω4] and external moments disturbances
Mext = [Mext,x,Mext,y,Mext,z] [13]. The control inputs
u = [u1, u2, u3, u4] are bounded ui ∈ [0, 1], such that
ui = 0 and ui = 1 correspond to the minimal (ωmin)
and maximal rotational speed (ωmax) of the corresponding
propeller, respectively. Specifying the equations of motion
(Eq.1) as:

f(x,u) =





ṗ = v
v̇ = g +R(λ)F

λ̇ = Q(λ)Ω

IΩ̇ = −Ω× IΩ+M+Mext

ω̇ = ((ωmax − ωmin)u+ ωmin − ω)/τ

Ṁext = 0
(1)

where I = diag(Ix, Iy, Iz) is the moment of inertia matrix
and g = [0, 0, g]T with g = 9.81 m s−2 is the acceleration
due to gravity. The rotational matrix R(λ) transforms from
the body to the world frame. We use the notation cθ and
sϕ to denote the cosine and sine of the corresponding Euler
angle, respectively.

R(λ) =



cθcψ −cϕsψ + sϕsθcψ sϕsψ + cϕsθcψ
cθsψ cϕcψ + sϕsθsψ −sϕcψ + cϕsθsψ
−sθ sϕcθ cϕcθ




and Q(λ) is the inverse transformation matrix:

Q(λ) =



1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ/ cos θ cosϕ/ cos θ




The forces F = [Fx, Fy, Fz]
T are computed using the thrust

and drag model from [17]. Note that the superscript □B
denotes the body frame, all model parameters are listed in
Tab.I.

Fx = −kxvBx
4∑

i=1

ωi Fy = −kyvBy
4∑

i=1

ωi

Fz = −kω
4∑

i=1

ω2
i − kzv

B
z

4∑

i=1

ωi − kh(v
B2
x + vB2

y)

(2)

and the moments M = [Mx,My,Mz]
T are defined as:

Mx = kp(ω
2
1 − ω2

2 − ω2
3 + ω2

4) + kpvv
B
y

My = kq(ω
2
1 + ω2

2 − ω2
3 − ω2

4) + kqvv
B
x

Mz = kr1(−ω1 + ω2 − ω3 + ω4)

+ kr2(−ω̇1 + ω̇2 − ω̇3 + ω̇4)− krrr

(3)

We utilize an adaptive method proposed in [13], which
accounts for model mismatches in the moment equations
(Eq.3) to make the G&CNET more robust. The idea is to
use domain randomization during the learning process by
assuming constant external moment disturbances for each
optimal trajectory. The difference between the measured and
modelled moments can then be computed onboard and fed
to the G&CNET.

B. The optimal control problem

The cost function J(u, T) (Eq.4) minimizes two objec-
tives: the total time of flight T and the energy

∫ T
0
||u(t)||2dt.

Both objectives are weighed using the hybridisation param-
eter ϵ, such that ϵ = 1 corresponds to energy-optimal flight
and ϵ = 0 corresponds to time-optimal flight. While not
directly minimizing for time, the energy-optimal term is
useful as it creates smooth control inputs which leave more
room for errors compared to the fully time-optimal ’bang-
bang’ control profile. Denoting X as the state space and
U as the set of admissible controls. The optimal control
problem considered tries to find the optimal control policy
u : [0, 1] → U such that the quadcopter is steered from
initial conditions x0 to a set of final conditions S, while
minimizing the cost function J(u, T):

minimize
u,T

J(u, T) = (1− ϵ)T + ϵ

∫ T

0

||u(t)||2dt

subject to ẋ = f(x,u)

x(0) = x0

x(T) ∈ S

(4)

We follow a similar procedure as in [12] by transcribing
the OCP into a Nonlinear Programming (NLP) problem using
the Hermite Simpson collocation method. The NLP problem

...
...

...x

u1

u2

u3

u4

(ReLU)
120

neurons

(ReLU)
120

neurons

(ReLU)
120

neurons

(Sigmoid)
Output
layer

Fig. 3. Feed forward network architecture.

is formulated with the modelling language AMPL [19],
discretized into N + 1 points and solved using a sequential
quadratic programming solver called SNOPT [20]. AMPL
is used as it allows to inform SNOPT on the gradients
and Hessian of the problem, making it easier for the solver
to converge. We denote the resulting optimal trajectory as
x∗
0 . . .x

∗
N with corresponding optimal controls u∗

0 . . .u
∗
N .

C. The dataset and learning procedure

The G&CNETs in this work are trained via imitation / su-
pervised learning using datasets of optimal state-action pairs,
where the states serve as features and the controls as labels.
Hence each entry in the dataset is (x∗

i ,u
∗
i) i = 0, . . . , N .

Learning the optimal state feedback policy G&CNET(x∗
i) ≈

u∗
i is possible because of the existence and uniqueness of

an optimal state-feedback which is a result of the Hamilton-
Jacobi Bellman equations [14]. The general network archi-
tecture used throughout this work is a feed-forward neural
net as depicted in Fig.3. We use the mean squared error as
loss function:

L = ||G&CNET(x∗
i)− u∗

i ||2

The dataset is split into training data (80%) and validation
data (20%). The weights of the network are updated using
the Adam optimizer [21] without weight decay. The starting
learning rate is set to l = 0.1 · 10−2 and a scheduler is used
to reduce the learning rate by a factor of f = 0.9 whenever
the loss on the validation dataset plateaus for p = 6 epochs.
In order to facilitate the learning process the features are
normalized and an addition output layer is added at the end
to map the control inputs ui ∈ [0, 1] to the corresponding
RPMs.

D. Experimental setup

The experimental platform in this work is the Parrot Bebop
1 quadcopter in combination with the open-source Paparazzi
UAC software [22]. This drone has been designed for the
selfie-drone market, hence it is not a racing drone. Having
a maximum thrust-to-weight ratio of ∼ 1.7 it is not able to
reach the same speeds as drones in the autonomous drone
racing literature. However, this also means that it will allow

kx ky kω kz kh Ix Iy Iz
1.08e-05 9.65e-06 4.36e-08 2.79e-05 6.26e-02 0.000906 0.001242 0.002054

kp kpv kq kqv kr1 kr2 krr τ
1.41e-09 -7.97e-03 1.22e-09 1.29e-02 2.57e-06 4.11e-07 8.13e-04 0.03

TABLE I
MODEL PARAMETERS FOR THE PARROT BEBOP 1 QUADCOPTER. THE MOMENTS OF INERTIA HAVE BEEN TAKEN FROM [18], ALL OTHER PARAMETERS

FROM [13].

us to reach saturation of its controls in the relatively small
flight space at our disposal and that it is safer to test with.
These latter properties were the main motivation for selecting
the Parrot Bebop 1 for this study. The Bebop is equipped
with an MPU6050 IMU and a Parrot P7 dual-core Cortex A9
CPU which we use to run our code in real-time onboard the
drone. In addition, the quadcopter can measure the angular
velocities of the four propellers. We fly the quadcopter at
the faculty of Aerospace Engineering (TU Delft) inside The
Cyberzoo, which is a 10-by-10 meter laboratory equipped
with a motion-capture system (Optitrack). We send position,
velocity and attitude measurements to the drone in real-
time and fuse these with the IMU measurements using an
Extended Kalman filter to provide accurate state estimation
to the G&CNET. The G&CNET then directly outputs RPM
commands which are sent to the motors. In the case of the
differential-flatness-based-controller we use an INDI con-
troller to track the reference trajectory.

III. TIME-OPTIMAL QUADCOPTER FLIGHT

In this section, we train G&CNETs to approximate dif-
ferent control policies, from fully energy-optimal (ϵ = 1.0)
to fully time-optimal (ϵ = 0.0). We simulate the response of
the G&CNET with ẋ = f(x,G&CNET(x)) and show that
for close to time-optimal flight, reaching a low loss L not
only becomes more difficult but it is also more critical as the
quadcopter has less control authority to recover from errors
compared to energy-optimal flight.

The datasets and network architecture

We generate all training datasets by uniformly sampling
the initial conditions for each trajectory in the following
bounds (where the target waypoint is the reference, see the
top figure of Fig.19 in App.VII-C as an example):

x0 ∈ [−5.0,−2.0],m y0 ∈ [−1.0, 1.0],m

z0 ∈ [−0.5, 0.5],m vx0
∈ [−0.5, 5.0],ms−1

vy0 ∈ [−3.0, 3.0],ms−1 vz0 ∈ [−1.0, 1.0],ms−1

ϕ0 ∈ [−40, 40], deg θ0 ∈ [−40, 40], deg

ψ0 ∈ [−60, 60], deg p0 ∈ [−1, 1], rad s−1

q0 ∈ [−1, 1], rad s−1 r0 ∈ [−1, 1], rad s−1

The RPM limits are set to ωmin = 3000 and ωmax = 12000,
respectively, and the initial rotational speeds are sampled in:

ωi0 ∈ [−ωmin, ωmax],RPM i = 1, . . . , 4

For each trajectory we assume constant external moment
disturbances sampled in these bounds:

Mext,x ∈ [−0.04, 0.04],Nm

Mext,y ∈ [−0.04, 0.04],Nm

Mext,z ∈ [−0.01, 0.01],Nm

We set the desired final states for each trajectory to: pf = 0
m, ψf = 45◦, Ωf = 0 rad s−1 and Ω̇f = 0 rad s−2.
The final velocity vf is constrained such that its direction
coincides with the final heading ψf = 45◦, the final velocity
magnitude and all remaining states are left free. These
specific constraints are chosen as they allow the G&CNET
to fly a variety of tracks containing only turns to the right
by moving the target waypoint right before the quadcopter
reaches it. Sec.V goes into more detail regarding single and
consecutive waypoints flight. Each dataset contains 10,000
optimal trajectories which are all sampled in N = 199
points. We choose to train each individual G&CNET for
p = 10 epochs with a training batch size of 256. Fig. 4
shows how a typical optimal control input u∗ for one of
the four rotors varies for different ϵ. Given the same initial
and final conditions, u∗ varies from a smooth control profile
(ϵ = 1.0) to a so-called ’bang-bang’ control profile (ϵ = 0.0)
for fully time-optimal flight, where at all times at least one
of the four rotors is saturating. Note that the time-optimal
solution completes this trajectory in 1.2s compared to 1.65s
for the energy-optimal case.

0.0 0.5 1.0 1.5
Time [s]

0.00

0.25

0.50

0.75

1.00

C
on

tr
ol

in
p

u
t

u

0.0 0.2 0.4 0.6 0.8 1.0
ε

Fig. 4. Optimal control input u∗ for different ϵ (only one rotor is shown).
All trajectories have the same initial and final conditions.

Results & Discussion

We report the resulting loss L and corresponding mean
control error [%] in Tab. II. Clearly, as we weigh the time-

optimal objective in Eq. 4 more heavily by decreasing ϵ,
the loss L goes up. The reason the time-optimal policy is
more difficult to learn is the high number of switching times
as depicted in Fig. 4. The large gradients of the resulting
topology are more difficult to approximate precisely than the
smooth continuous control profile for energy-optimal flight.

In practice, this issue can be mitigated by increasing
the training dataset size, training for longer and eventually
increasing the size of the network. Though one must mention
that a larger network will directly impact the frequency at
which the network can be inferred onboard the drone. In
addition, for time-optimal flight, bringing the loss L down
will not solve all problems. Time-optimal flight means the
drone operates at the edge of its flight envelope, leaving no
room for control authority. This means that recovering from
small control errors becomes much more difficult than for
energy-optimal flight.

We test all G&CNETs in simulation by numerically inte-
grating ẋ = f(x,G&CNET(x)) using Scipy (explicit Runge-
Kutta integration method of order 5 [23]). No perturbations
are added to these simulations and the same equations of
motion and actuator delay as the ones used to solve the
optimal trajectories are used. The solver chooses the step
size and no zero-order hold is implemented. Even with these
conditions, it becomes hard to maintain stable flight for
ϵ = 0.1 and ϵ = 0.0. This suggests that for close to time-
optimal flight, a training loss of L = 1.12 · 10−3 (mean
control error of ±3.35%) is an upper bound to maintain
stability.

ϵ Loss L Control error [%]

1.0 1.24 · 10−4 ±1.12
0.95 1.41 · 10−4 ±1.19
0.9 1.38 · 10−4 ±1.18

0.85 1.35 · 10−4 ±1.16
0.8 1.46 · 10−4 ±1.21

0.75 1.48 · 10−4 ±1.22
0.7 1.60 · 10−4 ±1.27

0.65 1.72 · 10−4 ±1.31
0.6 1.97 · 10−4 ±1.40

0.55 1.79 · 10−4 ±1.34
0.5 2.05 · 10−4 ±1.43

0.45 2.37 · 10−4 ±1.54
0.4 2.99 · 10−4 ±1.73

0.35 2.96 · 10−4 ±1.72
0.3 3.39 · 10−4 ±1.84

0.25 4.82 · 10−4 ±2.20
0.2 5.25 · 10−4 ±2.29

0.15 7.08 · 10−4 ±2.66
0.1 1.12 · 10−3 ±3.35
0 7.01 · 10−3 ±8.37

TABLE II
MEAN SQUARED ERRORS ON VALIDATION DATASETS AND

CORRESPONDING CONTROL ERRORS FOR G&CNETS TRAINED ON

DIFFERENT COST FUNCTIONS.

IV. ACCOUNTING FOR THE VARYING MAXIMUM
ANGULAR VELOCITY OF PROPELLERS

In this section, we investigate the importance of flying
at a reachable maximum RPM limit ωmax by looking at
how under- and overshooting this limit affects the robustness
of the flight. The maximum angular velocity of rotors can
either be wrongly identified in the first place, or momentarily
change during flight due to varying aerodynamic load on
the propellers or even decrease over time as the battery
drains out. We have observed a steady drop of ω̇max =
−1 RPMs−1 on the Parrot Bebop 1 over a test flight of 6min
(See Appendix VII-B). Time-optimal flight is characterised
by control profiles that saturate the rotors for a considerable
portion of time, consider Fig. 5 which shows the commanded
and observed angular velocities of one rotor during a real
flight with ϵ = 0.35. The upper RPM limit ωmax = 12000
cannot be reached. This begs the question, how crucial is it
to fly at the correct ωmax?

0 1 2 3 4 5
Time [s]

4000

6000

8000

10000

12000

ω
[R

P
M

]

Commanded ωcom

Observed ωobs

RPM range [ωmin, ωmax]

Fig. 5. Discrepancy between commanded and observed angular velocity
ω during a real flight with ϵ = 0.35 (only one rotor is shown).

Let’s consider a range of ωmax[10000, 12000] RPM. Fig. 6
shows how the optimal control solution differs for different
ωmax in the case of a time-optimal (ϵ = 0.0) landing. The
quadcopter starts from hover at a height of 5m and needs
to reach the following final conditions: pf = 0, vf = 0,
attitude λf = 0 and angular rates Ωf = 0. No external
moment disturbances Mext are applied in this case. Given
the symmetry of this OCP, the optimal control solution for
all four rotors is the same. In the case where ωmax = 12000
the rotors start saturating 0.1s later than in the case where
ωmax = 10000. Since the optimal control solutions here
consist in applying the maximal breaking force from a certain
switching point onwards until the end, overestimating ωmax
will always result in a crash since the quadcopter will start
breaking too late. This case also suggests that having the
observed angular velocities of the propellers ω as state
feedback is not sufficient to mitigate the effects of incorrectly
identifying ωmax because when the drone observes that the
rotors do not reach the desired ωmax, it is already too
late. Finally, precise switching times between minimal and
maximal control inputs are required to maintain stable flight,

especially because little to no control authority is left as ϵ
approaches zero.

0.0 0.5 1.0 1.5
Time [s]

4000

6000

8000

10000

12000

O
p

ti
m

al
co

nt
ro

l
in

p
u

t
[R

P
M

]

10000 10500 11000 11500 12000
ωmax

Fig. 6. Optimal control input [RPM] for different ωmax (only one rotor
is shown). All trajectories have the same initial and final conditions. The
goal is to perform a time-optimal (ϵ = 0.0) landing from a height of 5m.
Given the symmetry of this OCP all rotors receive the same control input.

Peak tracker algorithm

In the case where the initial guess for ωmax is set too
high, the new limit can be identified onboard as soon as it
is observable. We propose a peak tracker algorithm that sets
ωmax to the highest observed ωobs whenever the integral∫ t
t−∆t

(ωexp − ωobs)dt surpasses a certain threshold pthresh,
see t = 0.21s in Fig. 7. The expected ωexp can be computed
onboard the drone by taking the first order delay of the
commanded ωcom (Eq.1). Depending on the RPM range
[ωmin, ωmax] the parameters of this algorithm to be tuned
are: the time window ∆t over which the integral is computed
and the last peak in observed ωobs is recorded and the
threshold pthresh which triggers a change in ωmax. One
should note that another obvious approach would be to model
ωmax as a function of the quadcopter states x and its battery
voltage. However, this would require system identification
every time one changes the drone. The advantage of our
algorithm is that it can easily be used for any drone, so long
as the angular velocity of the propellers can be measured
onboard. In addition, our algorithm could account for lower
ωmax due to any unexpected failure that cannot be modelled.
The current setup can only correct ωmax after overshooting
it, otherwise, the limit is not observable. We tested the RPM
peak tracker algorithm both in simulation and on the real
quadcopter. In both cases, when the initial ωmax is too
high, it takes less than ∆t = 0.13s after one of the rotors
saturates to correct the limit. We also simulated whether the
peak tracker can continuously correct for a slowly decreasing
ωmax (due to for instance the decrease in battery voltage).
The peak tracker can keep the error between the identified
limit and the correct ωmax below 70 RPM at all times.

Adaptive G&CNET

We considered training a G&CNET on a range of optimal
trajectories with different ωmax. Instead of only learning the

0.0 0.1 0.2 0.3 0.4 0.5
Time [s]

11000

11200

11400

11600

11800

12000

ω
[R

P
M

]

Commanded ωcom

Observed ωobs

Expected ωexp

Maximum ωmax

Identified ωmax,id∫
(ωexp− ωobs) dt

Fig. 7. Identifying the current ωmax (blue line) with the peak tracker
algorithm.

mapping between states x and controls u, we add ωmax as
one of the features. This allows the G&CNET to adapt during
flight by using the output of the peak tracker algorithm as
an additional input, see the new architecture in Fig. 8.

...
...

...
x

ωmax

u1

u2

u3

u4

(ReLU)
120

neurons

(ReLU)
120

neurons

(ReLU)
120

neurons

(Sigmoid)
Output
layer

Fig. 8. Feed forward network architecture for an adaptive G&CNET to
changes in ωmax.

Results and discussion

We first evaluate the effect of over- and undershooting
ωmax in simulation. We train two adaptive G&CNETs using
the same bounds for the initial and final conditions as
in Sec.III except that each training dataset now contains
100,000 optimal trajectories and ϵ = 0.4. The first G&CNET
is trained on optimal trajectories where ωmax is sampled
uniformly in [10000, 11000] RPM and the second G&CNET
[11000, 12000] RPM. Note that for this analysis, one could
just as well train multiple G&CNETs, each specialized for
only one value for ωmax. The adaptive G&CNETs make
it easier to quickly see how changing ωmax affects its
performance. We generate an evaluation dataset separately
which contains 10,000 optimal trajectories, all of which use
ωmax = 11100 RPM. This ωmax value was chosen in order
to simulate over a large range for over- and undershooting
this limit while staying close to the real limit of the Parrot
Bebop 1. Given that the optimal trajectories are not the
true analytical optimal solutions but are solved with a direct
method, one can expect considerable numerical noise due to

integration errors between the nodes. To alleviate some of
this noise, we augment all 10,000 optimal trajectories using
a node-doubling technique. The OCPs considered here are
too complex for SNOPT to converge for N > 400 nodes if
no good initial guess is provided. Hence we solve the OCP
for N = 100, then interpolate the solution x∗ and u∗ using
quadratic splines and finally project the interpolant on a new
grid of nodes (e.g. N = 200) to have a good initial guess
for the solver. Repeating this process allowed us to generate
a high-fidelity evaluation dataset of 10,000 trajectories, with
N = 1000 nodes each (which translates to 5mm between
two consecutive nodes for a 5m long optimal trajectory).
Fig. 9 shows the mean position errors [cm] from these 10,000
optimal trajectories when simulating the response of the
G&CNETs ẋ = f(x,G&CNET(x)) starting from the same
initial conditions as the trajectories in the evaluation dataset.
By manually changing the input ωmax to the network, we
can simulate how this affects the deviation from the optimal
trajectories. Even when the G&CNET knows the correct limit
(boxplot in the center of Fig. 9) its mean position error is
around 4cm, which is due to the nonzero loss during training.
We see a similar trend for over- and undershooting ωmax,
the larger the difference, the larger the mean position error.
This suggests that incorrectly identifying ωmax impacts the
robustness of the flight.

-900
Undershoot ωmax

-400 -100 +0
Correct ωmax

+100 +400 +900
Overshoot ωmax

0

10

20

30

40

M
ea

n
p

os
it

io
n

er
ro

rs
[c

m
]

Fig. 9. Mean position errors [cm] from 10,000 optimal trajectories (1000
nodes per trajectory). For each boxplot the G&CNET either undershoots,
overshoots or is exactly at the correct ωmax [RPM].

However, contrary to our expectations, even large devia-
tions from ωmax are not the most critical contributor to the
reality gap. In our experiments in simulation and on the real
quadcopter, we were able to fly even when ωmax was off
by +1000 RPM. Nevertheless, as we approach time-optimal
flight, there is less room for error and flying as closely as
possible to the optimal trajectory is relevant for robustness.

Consider Fig.10 which shows three real flights with the
same G&CNET (ϵ = 0.5). This G&CNET is trained on
60,000 optimal trajectories and ωmax is sampled uniformly
in [10500, 13000] RPM. We artificially limit the maximum
angular velocity of the propellers to ωmax = 11000 RPM.
The trajectory on the left shows the resulting flight when
the G&CNET receives the correct ωmax as input, the other

two trajectories are flights where the G&CNET receives an
incorrect ωmax as input (overshoot of +500 RPM and +1000
RPM, respectively). Overshoot refers to the G&CNET as-
suming that ωmax is higher than it actually is. The differences
between these three cases are mostly visible during the
first lap. The aggressive start of the G&CNET (from hover
to pitch down of θ = −85◦) and the first turn deviate
substantially from the optimal path the more one overshoots
ωmax.

A way to fly more robustly is to use this same G&CNET
in combination with the peak tracker algorithm. We set the
initial guess for maximum RPM to ωmax = 12000 and we
do not artificially limit the maximum angular velocity of the
propellers. In the case of the Bebop 1, the real physical limit
of the propellers is ωmax = 11300, hence we overshoot the
limit by +700 RPM. It takes the peak tracker 0.2s after the
start of the flight and 0.1s after the first rotor saturates to
identify the correct limit (ωmax = 11300) and feed it to the
G&CNET. The resulting flight is shown in Fig.11. Despite
initially overshooting the correct limit by +700 RPM the
quadcopter does not deviate as much from the optimal path
as is the case in Fig.10.

More research has to be done in this area, it is conceivable
that for more aggressive flight (e.g. ϵ = 0.0), overestimating
ωmax becomes even more critical. Recall Fig.6, where sat-
urating the rotors 0.1s too late would result in breaking 1m
behind the optimal breaking point for a quadcopter travelling
at 10m s−1. In addition, we learned that the range of values
for ωmax one chooses to train a G&CNET on affects how
well the network flies overall. For example, a G&CNET
trained with ωmax uniformly sampled in [10500, 13000]
RPM will fly less consistent laps than a network with a
smaller ωmax range (e.g. [11000, 12000] RPM). This might
indicate that the current network architecture needs to be
revisited to learn the control policies more accurately. One
can see in Fig.10,11 that the G&CNET struggles to fly
through the first waypoint during the first laps.

V. CONSECUTIVE WAYPOINTS FLIGHT

The authors of [9] have analyzed the gaze of human
drone pilots which showed that they looked at multiple gates
in advance as opposed to only fixating on the next gate.
Previous work [12], [13] focused on training and deploying
G&CNET on quadcopters to fly from one point in space to
a specific waypoint. By cleverly setting the final conditions
of the OCP, it is possible to switch the position of the
waypoint right before the quadcopter arrives to make it fly
continuously. The obvious next step is to train the G&CNET
on two consecutive waypoints. The global optimal trajectory
would optimize for the full track, taking all waypoints into
account at one. However, optimizing for a horizon of at least
two waypoints will get the drone closer to optimality than
a single waypoint approach. We propose one way in which
two consecutive waypoints flight can be implemented and
show some of the benefits of such a guidance strategy.

−2 −1 0 1 2
y [m]

−2

−1

0

1

2

x
[m

]

Adaptive G&CNET without peak tracker algorithm
Input to G&CNET: correct ωmax

(No overshoot)

0

1

2

3

4

5

6

7

V
[m

/s
]

−2 −1 0 1 2
y [m]

−2

−1

0

1

2

x
[m

]

Adaptive G&CNET without peak tracker algorithm
Input to G&CNET: incorrect ωmax

(Overshoot of +500 RPM)

0

1

2

3

4

5

6

7

V
[m

/s
]

−2 −1 0 1 2
y [m]

−2

−1

0

1

2

3

x
[m

]

Adaptive G&CNET without peak tracker algorithm
Input to G&CNET: incorrect ωmax

(Overshoot of +1000 RPM)

0

1

2

3

4

5

6

7

V
[m

/s
]

Fig. 10. Trajectories (top view) of a real flight with ϵ = 0.5. Left: no ωmax overshoot. Center: ωmax overshoot of +500 RPM. Right: ωmax overshoot
of +1000 RPM. During training, the optimal trajectories need to pass within a sphere of radius 20cm which is indicated by the blue circles, see Sec.V
for details.

−2 −1 0 1 2
y [m]

−2

−1

0

1

2

x
[m

]

Adaptive G&CNET with peak tracker algorithm
Initial guess for ωmax = 12000 RPM

(+700 RPM over actual limit)

0

1

2

3

4

5

6

7

V
[m

/s
]

Fig. 11. Trajectory (top view) of a real flight with ϵ = 0.5 using the peak
tracker algorithm and an adaptive G&CNET. The initial guess for ωmax is
off by +700 RPM. During training, the optimal trajectories need to pass
within a sphere of radius 20cm which is indicated by the blue circles, see
Sec.V for details.

Methodology to learn complex tracks

Consider the task of flying through a set of gates in a time-
optimal fashion. The optimal approach to one gate depends
heavily on the position and orientation of the next gate.
To learn different optimal trajectories based on the relative
position and orientation of two consecutive gates we add an
intermediate constraint in AMPL. This constraint enforces
the optimal solution to pass through a sphere that is centered
at WP1,pos = [WP1,x,WP1,y,WP1,z]. Although we are not
using the camera of the drone in this work, it is important
that the drone’s heading ψ always points in a direction such
that the next waypoint is in the field of view of the camera.
Hence we also add a term to enforce the heading WP1,psi at

the intermediate waypoint:

WP1,threshold ≥ (x∗i − WP1,x)
2 + (y∗i − WP1,y)

2

+ (z∗i − WP1,z)
2 + (ψ∗

i − WP1,psi)
2

We choose this constraint because it allows to relax the
position and heading error at the intermediate waypoint. It
is difficult to know in advance what the optimal path and
heading at any given stage of a complex track should be.
Implementing the constraint this way gives the solver some
freedom to pass through the intermediate waypoint in a
more optimal way based on the initial conditions and the
relative position of the two waypoints. The bottom figure
in Fig.19 (App.VII-C) shows optimal trajectories with the
intermediate waypoint constraint. Since the trajectories are
now on average longer than for single waypoint flight we
sample them in N = 319 points. We inform the G&CNET
on the relative position of the two upcoming waypoints
WPrel by adding it as an input to the network architecture,
see Fig.12. We do not add ωmax as additional input to
the network architecture here as the size of the network is
reaching its limit in terms of the amount of information it
can carry. In order to always reach the desired saturation
level, we fly conservatively at an ωmax that the quadcopter
can reach.

This methodology lends itself well to learning to fly more
complex tracks as different types of optimal turns can be
generated. In Appendix VII-A we provide a trajectory of
flight in simulation on a figure-eight track. The training
dataset can either be tailored to a track if it is known in
advance or as we will see at the end of this section, it is
also possible to cover a range of relative positions between
the two waypoints such that the G&CNET can fly different
variations of tracks.

Comparison with energy-optimal single waypoint flight

Another advantage of learning to fly while taking more
than one waypoint into account is that the G&CNET flies
more optimally through the entire track. We show this by
performing two real flights on the Bebop with energy-optimal

...
...

...
x

WPrel

u1

u2

u3

u4

(ReLU)
120

neurons

(ReLU)
120

neurons

(ReLU)
120

neurons

(Sigmoid)
Output
layer

Fig. 12. Feed forward network architecture for G&CNETs using multiple
waypoints. We add the input WPrel which informs the network on the
relative position of the two upcoming waypoints.

G&CNETs and subsequently computing the cost (Eq.4 with
ϵ = 1.0) over time. We choose the energy-optimal control
problem here because it is the easiest optimal control policy
for G&CNETs to learn. The same analysis could also have
been done for a different ϵ. Fig.13 shows the resulting
trajectories. The left figure shows the G&CNET which is
only trained on a single waypoint. We switch to the next
waypoint when the Euclidean distance in three dimensions
between the quadcopter and the waypoint is below 1.2m
[13]. We experimented with varying switching distances.
In general, the larger the switching distance, the more the
quadcopter will cut the corner. For smaller switching dis-
tances the position error from the waypoint becomes smaller,
however, the quadcopter slows down as the G&CNET tries
to perfectly meet the final conditions of the OCP. Note that
we use a free final magnitude in velocity, only the direction
of the velocity vector is constrained to be aligned with the
desired final heading angle (ψf = 45◦). The other G&CNET
(center figure) is trained on two consecutive waypoints with
WP1,threshold = 0.2 and WP1,psi = 45◦. This means that
optimal trajectories have to pass through a sphere of radius
20cm with a heading of roughly ψ = 45◦. The G&CNET
is trained on a dataset that contains two ”types” of turns:
trajectories where the two waypoints are 3m apart and tra-
jectories where they are 4m apart. Hence only one extra input
to the G&CNET is required (WPrel in Fig.12) to inform the
network on which of the two possible turns is upcoming. A
visualization of optimal trajectories used to train G&CNETs
in the case of single and consecutive waypoints is provided
in App.VII-C. Compared to the single waypoint flight, we
do not have to trade off position errors from the waypoint
and speed anymore. We switch waypoints every time the
G&CNET passes one, hence 3m before the final waypoint
during the first turn and 4m before the final waypoint the
next turn and so forth. We compute the cost

∫ T
0
||u(t)||2dt

over these flights and plot it in the right-most figure (Fig.13).
The network that is trained on two consecutive waypoints
spends less energy, hence minimizing the cost function better
over time. We also note that the control inputs are smoother

and saturate less in the case of consecutive waypoints flight,
leaving more control authority to recover from errors. This
is likely because the G&CNET trained on a single waypoint
unnecessarily saturates the rotors because it decelerates and
accelerates more.

Comparison with minimum snap benchmark

We also consider flying the 4×3m track as fast as possible
with the G&CNET. We choose the well-known differential-
flatness-based-controller (DFBC) [11] as a benchmark to
compare our G&CNET. This state-of-the-art controller uses
polynomials to generate smooth trajectories by minimizing
snap, the fourth derivative of position. The reference trajec-
tory is then tracked by an outer-loop Incremental Nonlinear
Dynamic Inversion (INDI) controller. Just as for the energy-
optimal case, the G&CNET is trained on trajectories where
the two waypoints are 3m apart and trajectories where they
are 4m apart, only now ϵ = 0.5. The resulting flights are
shown in Fig.14. Since the G&CNET always tries to fly
through the apex of the blue circles in Fig.14, we moved
the waypoints in the polynomial generation for the DFBC
inwards such that they coincide with these apexes to make
the comparison fairer. Both controllers have their advantages,
it is for instance possible to make more aggressive maneuvers
with the G&CNET. This is especially noticeable in the first
lap which the G&CNET performs in 3.22s (DFBC takes
3.46s). The DFBC however can sustain higher velocities
once the transient behaviour at the start is over. The DFBC
performs the second lap in 2.7s compared to 2.88s for the
G&CNET. The commanded and observed angular velocities
during these flights are provided in App.VII-D. The control
inputs of the G&CNET are considerably smoother than
the ones for the DFBC. One should note here that both
controllers still have room for improvement. Weighted least
squares could be implemented in the control allocation for
the INDI used with the DFBC. In addition, the G&CNET
has an unfair advantage in this comparison as it is trained
for ωmax = 11300 RPM which is close to the true limit of
the Bebop. The DFBC however assumes that ωmax = 12000
RPM. Finally, it is possible to fly faster with the G&CNET
(lower ϵ) at the expense of larger position errors and more
unstable flight.

Flexibility of G&CNETs

Finally, we highlight a major of advantage of G&CNET
over the DFBC: the ability to recompute trajectories and
the corresponding optimal controls online. G&CNETs are
very flexible in so far as new optimal controls u∗ are im-
mediately computed even when deviating from the globally
optimal path (so long as the state of the quadrotor has
been represented closely enough in the training data set).
This also means that the G&CNET can handle different
waypoint positions within the training data. The DFBC on
the other hand can only rely on the trajectory which has been
generated offline. The DFBC will always try to stay as close
as possible to this trajectory. This is a problem as deviations
from this trajectory are bound to happen due to the reality

−2 −1 0 1 2
y [m]

−2

−1

0

1

2

x
[m

]

G&CNET - Single Waypoint Flight
Mean velocity = 3.74 [m/s] - Max. velocity = 4.39 [m/s]

First lap time: 3.7 [s] - Second lap time: 3.66 [s]

0

1

2

3

4

5

6

7

V
[m

/s
]

−2 −1 0 1 2
y [m]

−2

−1

0

1

2

x
[m

]

G&CNET - Consecutive Waypoints Flight
Mean velocity = 3.66 [m/s] - Max. velocity = 4.17 [m/s]

First lap time: 3.89 [s] - Second lap time: 3.64 [s]

0

1

2

3

4

5

6

7

V
[m

/s
]

0 2 4 6
Time [s]

0

2

4

6

8

10

C
os

t
of

O
C

P
[-

]

Single Waypoint Flight

Consecutive Waypoints Flight

Fig. 13. Trajectories (top view) of a real flight with energy-optimal G&CNETs. Left: single waypoint flight. Center: consecutive waypoints flight. Right:
cost function over time for both flights. The dots indicate the switching times to the next waypoint(s). The blue circles indicate the position constraint at
the intermediate waypoint.

−2 −1 0 1 2
y [m]

−2

−1

0

1

2

x
[m

]

DFBC
Mean velocity = 4.92 [m/s] - Max. velocity = 5.94 [m/s]

First lap time: 3.46 [s] - Second lap time: 2.7 [s]

0

1

2

3

4

5

6

7

V
[m

/s
]

−2 −1 0 1 2
y [m]

−2

−1

0

1

2

x
[m

]
G&CNET

Mean velocity = 4.62 [m/s] - Max. velocity = 5.33 [m/s]
First lap time: 3.22 [s] - Second lap time: 2.88 [s]

0

1

2

3

4

5

6

7

V
[m

/s
]

Fig. 14. Left: trajectory (top view) of a real flight with a DFBC (min snap). Right: trajectory (top view) of a real flight ϵ = 0.5. The G&CNET is trained
on 2 consecutive waypoints. The blue circles indicate the position constraint at the intermediate waypoint for the G&CNET.

gap. Once deviated this trajectory is no longer optimal and
a new one should be computed. Moving a waypoint also
requires computing a new optimal trajectory offline. Finally,
due to its relatively small network size, the G&CNET can be
inferred onboard the Bebop at a frequency of 450 Hz with
the current network architecture. Both of these characteristics
allow G&CNETs to cancel out approximations errors as
opposed to accumulating these over time.

We consider the task of flying the 4× 3m track, however,
the four waypoints are now randomly moved (before the
G&CNET takes them into account) within a square of
1m2 in the XY plane (see dashed squares in Fig.15). We
train a network on a range of relative waypoint positions
by uniformly sampling WP1,x,WP1,y in a square of 1m2

centered at 3.5m from the final waypoint. The altitude is kept
constant in this experiment for simplicity. Since the relative
waypoint position can now vary in two dimensions, two
extra inputs are required (WPrel in Fig.12) to inform the
network. We train two G&CNETs (one energy-optimal and
one with ϵ = 0.5) and fly these on the Bebop, the resulting
trajectories are shown in Fig.15. In both cases, the networks
manage to adapt their trajectory. The position errors from the
waypoint become notably larger for the faster G&CNET as
the policy is more difficult to learn (Sec.III) and the reality
gap (hardware delays, state estimation errors and modelling
errors) are harder to cope with when one flies more time-
optimally.

A similar observation as in Sec.IV is made here regarding

lower control accuracy when training the G&CNET on a
larger range of data. We flew the 4 × 3m track with fixed
waypoints using the G&CNET that has learned to fly on
a range of different waypoint positions, the G&CNET flies
less consistent laps (Fig.16) compared to the G&CNET that
is specifically trained on the 4 × 3m track (Fig.14). Both
networks roughly have the same network architecture (only
one extra input neuron for the case where both WP1,x and
WP1,y are varied). It is possible that the current network size
needs to be increased for both G&CNETs to fly the 4× 3m
track with the same accuracy.

VI. CONCLUSION

Guidance & Control Networks have been studied in
the context of fast quadcopter flight. We showed that the
control policies for the time-optimal control problem are
considerably more difficult to learn than for the energy-
optimal control problem. For close to time-optimal flight
with the Bebop 1, average control errors of ±3.35% are
already too high to maintain stable flight in simulation. We
demonstrated that the maximum angular speed of propellers
ωmax affects the switching times in the time-optimal control
profile. We then went on to show that the more one over-
or underestimates ωmax, the larger the mean the position
error from the optimal trajectory becomes, which in turn
affects the robustness of the flight. We propose a peak tracker
algorithm to identify ωmax onboard in combination with a
G&CNET that can adapt its control policy based on the
identified value for ωmax. Our algorithm takes 0.1s after one
of the four rotors saturates to identify the new limit, allowing
it to stay close to the optimal trajectory in a real flight even
when initially overestimating ωmax by +700 RPM. Finally,
we extend previous work on G&CNETs by learning to fly
while taking two upcoming waypoints into account. The
new pipeline allows to generate training datasets that contain
specific maneuvers for the G&CNET to learn, allowing it for
instance to fly a figure-eight track in simulation. Compared to
single-waypoint flight we optimize the energy-optimal cost
function better over a 4×3m track since the OCP formulation
for multiple waypoints is more representative of the entire
control task. We considered flying the 4 × 3m track as fast
as possible and benchmarking our G&CNET against the
state-of-the-art differential-flatness-based-controller (DFBC).
We show that G&CNETs can fly the track in similar lap
times as the DFBC and adapt to varying waypoint positions.
This highlights one of the main advantages of G&CNET
compared to other optimality-based approaches, such as the
DFBC: its flexibility to quickly recompute optimal control
inputs.

Future work can be done on identifying the maximum
angular velocity of each individual rotor, thereby not re-
stricting propellers that are experiencing less aerodynamic
load than the most limiting propeller. A more rigorous
constraint could be implemented to make sure the waypoints
are always in the field of view of the camera. The current
dynamic model of the Bebop does not include the effects
of downwash and errors in the thrust and drag model are

common for flights where ϵ < 0.5, hence one could consider
using domain randomization in combination with onboard
measurements to adapt to these model inaccuracies during
flight. Finally, the methodology used in this work for two
consecutive waypoints could be used to train a G&CNET
on a much larger range of possible waypoint combinations,
thereby allowing the network to fly a lot of different tracks.

ACKNOWLEDGMENT

The authors are grateful to Emmanuel Blazquez and
Alexander Hadjiivanov for their valuable inputs and discus-
sions throughout this project and to Erik van der Horst for
his technical support. This research was co-funded under the
Discovery programme of, and funded by, the European Space
Agency.

REFERENCES

[1] L. Bauersfeld and D. Scaramuzza, “Range, endurance, and optimal
speed estimates for multicopters,” 2021. [Online]. Available:
https://arxiv.org/abs/2109.04741

[2] C. De Wagter, F. Paredes-Vallés, N. Sheth, and G. de Croon, “Learning
fast in autonomous drone racing,” Nature Machine Intelligence, vol. 3,
no. 10, p. 923, 2021, copyright: Copyright 2021 Elsevier B.V., All
rights reserved.

[3] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, “Estimation,
control, and planning for aggressive flight with a small quadrotor with
a single camera and imu,” IEEE Robotics and Automation Letters,
vol. 2, no. 2, pp. 404–411, 2017.

[4] A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive
contouring control for time-optimal quadrotor flight,” 2021. [Online].
Available: https://arxiv.org/abs/2108.13205

[5] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni,
K. Saulnier, K. Sun, A. Zhu, J. Delmerico, K. Karydis, N. Atanasov,
G. Loianno, D. Scaramuzza, K. Daniilidis, C. Taylor, and V. Kumar,
“Fast, autonomous flight in gps-denied and cluttered environments,”
Journal of Field Robotics, vol. 35, 12 2017.

[6] S. Li, M. M. Ozo, C. De Wagter, and G. C. de Croon,
“Autonomous drone race: A computationally efficient vision-
based navigation and control strategy,” Robotics and Autonomous
Systems, vol. 133, p. 103621, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0921889020304619

[7] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation
and control for precise aggressive maneuvers with quadrotors,”
The International Journal of Robotics Research, vol. 31, no. 5,
pp. 664–674, 2012. [Online]. Available: https://doi.org/10.1177/
0278364911434236

[8] E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V. Koltun, and
D. Scaramuzza, “Deep drone acrobatics,” RSS: Robotics, Science, and
Systems, 2020.

[9] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning
for quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56, p.
eabh1221, 2021. [Online]. Available: https://www.science.org/doi/abs/
10.1126/scirobotics.abh1221

[10] T. Salzmann, E. Kaufmann, M. Pavone, D. Scaramuzza, and
M. Ryll, “Neural-mpc: Deep learning model predictive control for
quadrotors and agile robotic platforms,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.07747

[11] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE International Conference
on Robotics and Automation, 2011, pp. 2520–2525.

[12] S. Li, E. Öztürk, C. D. Wagter, G. C. H. E. de Croon, and
D. Izzo, “Aggressive online control of a quadrotor via deep network
representations of optimality principles,” CoRR, vol. abs/1912.07067,
2019. [Online]. Available: http://arxiv.org/abs/1912.07067

[13] R. Ferede, C. De Wagter, G. C. H. E. de Croon, and D. Izzo,
“An adaptive control strategy for neural network based optimal
quadcopter controllers,” Master’s thesis, TU Delft Aerospace
Engineering, 2022. [Online]. Available: http://resolver.tudelft.nl/uuid:
b43a9703-082c-47c7-a56e-d50794ee8c1c

−2 −1 0 1 2
y [m]

−2

−1

0

1

2

3

x
[m

]

Energy-optimal G&CNET - Randomly positioned waypoints
Mean velocity = 4.08 [m/s] - Max. velocity = 4.57 [m/s]

0

2

4

6

8

10

T
im

e
[s

]

−2 −1 0 1 2
y [m]

−2

−1

0

1

2

3

x
[m

]

G&CNET with ε = 0.5 - Randomly positioned waypoints
Mean velocity = 4.73 [m/s] - Max. velocity = 5.65 [m/s]

0

1

2

3

4

5

6

7

8

T
im

e
[s

]

Fig. 15. Trajectories (top view) of a real flights with ϵ = 1.0 (left) and ϵ = 0.5 (right). The G&CNETs are trained on 2 consecutive waypoints with
varying relative positions. We randomly position the waypoints within the dashed rectangles. The circles indicate the position constraint for each waypoint.

−2 −1 0 1 2
y [m]

−2

−1

0

1

2

x
[m

]

G&CNET
Mean velocity = 4.63 [m/s] - Max. velocity = 5.73 [m/s]

First lap time: 3.19 [s] - Second lap time: 2.95 [s]

0

1

2

3

4

5

6

7

V
[m

/s
]

Fig. 16. Trajectory (top view) of a real flight ϵ = 0.5. The G&CNET
is trained on 2 consecutive waypoints with varying relative positions. The
blue circles indicate the position constraint at the intermediate waypoint.

[14] C. Sánchez-Sánchez and D. Izzo, “Real-time optimal control via deep
neural networks: Study on landing problems,” Journal of Guidance,
Control, and Dynamics, vol. 41, 10 2016.

[15] D. Izzo and E. Öztürk, “Real-time guidance for low-thrust transfers
using deep neural networks,” Journal of Guidance, Control, and
Dynamics, vol. 44, no. 2, pp. 315–327, 2021.

[16] D. Izzo and S. Origer, “Neural representation of a time
optimal, constant acceleration rendezvous,” Acta Astronautica, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0094576522004581

[17] J. Svacha, K. Mohta, and V. R. Kumar, “Improving quadrotor tra-
jectory tracking by compensating for aerodynamic effects,” 2017
International Conference on Unmanned Aircraft Systems (ICUAS), pp.
860–866, 2017.

[18] S. Sun, C. C. de Visser, and Q. Chu, “Quadrotor gray-box model
identification from high-speed flight data,” Journal of Aircraft,
vol. 56, no. 2, pp. 645–661, Mar. 2019. [Online]. Available:
https://doi.org/10.2514/1.c035135

[19] R. Fourer, D. M. Gay, and B. W. Kernighan, “A modeling language
for mathematical programming,” Management Science, vol. 36, no. 5,
pp. 519–554, 1990.

[20] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization,” SIAM review, vol. 47, no. 1,
pp. 99–131, 2005.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[22] B. Gati, “Open source autopilot for academic research - the paparazzi
system,” in 2013 American Control Conference, 2013, pp. 1478–1481.

[23] J. Dormand and P. Prince, “A family of embedded runge-kutta
formulae,” Journal of Computational and Applied Mathematics,
vol. 6, no. 1, pp. 19–26, 1980. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/0771050X80900133

VII. APPENDIX

A. Example of more complex track

Fig.17 shows the trajectory of a flight in simulation using
a G&CNET which learned to fly a figure-eight.

B. Effect of battery on maximum RPM limit

We tested a G&CNET with ϵ = 0.5 on the Bebop by flying
for 6min on a 4×3m track. Fig. 18 is a zoomed-in figure of
rotor number 4 (see Fig. 2) which saturates most of the time
since the flight path mostly consists of right turns. As the
battery drains out ωmax decreases by roughly 1 RPMs−1.

C. Optimal trajectories for G&CNET training

Fig.19 shows ten optimal trajectories for single and con-
secutive waypoints flight as can be found in the training
datasets for G&CNETs.

−1 0 1
x [m]

−2

−1

0

1

2

y
[m

]

0

1

2

3

4

5

6

7

V
[m

/s
]

Fig. 17. Trajectory (top view) of a flight in simulation with ϵ = 0.4. The
G&CNET is trained on 4 sets of sharp turns. During the flight, we inform the
G&CNET of the relative distance and angle of the two upcoming waypoints
with two extra inputs.

0 50 100 150 200 250
Time [s]

10500

10750

11000

11250

11500

11750

12000

ω
4

[R
P

M
]

Commanded ω4,com

Observed ω4,obs

RPM range [ωmin, ωmax]

Fig. 18. Commanded and observed angular velocity ω during a test flight
with ϵ = 0.5 (only rotor number 4 is shown). The blue line roughly indicates
the downward trend of ωmax.

D. Control inputs: DFBC vs G&CNET

Fig.20 shows the commanded and observed angular veloc-
ities of rotors for the real flights using a Differential-Flatness-
Based-Controller (DFBC) and a Guidance & Control Net-
work (see Sec.V).

−2 −1 0 1 2
y-axis [m]

−5

−4

−3

−2

−1

0

x
-a

x
is

[m
]

−1.0 −0.5 0.0 0.5
y-axis [m]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

z-
ax

is
[m

]

−5 −4 −3 −2 −1 0
x-axis [m]

−2

−1

0

1

2

z-
ax

is
[m

]

Initial conditions

Final conditions

Single waypoint flight

−5 −4 −3 −2 −1 0
y-axis [m]

−5

−4

−3

−2

−1

0

x
-a

x
is

[m
]

−5 −4 −3 −2 −1 0
y-axis [m]

−2

−1

0

1

2

z-
ax

is
[m

]

−4 −2 0
x-axis [m]

−3

−2

−1

0

1

2

3

z-
ax

is
[m

]

Distance threshold from waypoint

Initial conditions

Final conditions

Intermediate waypoint

Consecutive waypoints flight

Fig. 19. Ten optimal trajectories for single and consecutive waypoints flight as can be found in the training datasets for G&CNETs.

0 1 2 3 4 5 6
Time [s]

4000

6000

8000

10000

12000

ω
1

[R
P

M
]

0 1 2 3 4 5 6
Time [s]

4000

6000

8000

10000

12000

ω
2

[R
P

M
]

0 1 2 3 4 5 6
Time [s]

4000

6000

8000

10000

12000

ω
3

[R
P

M
]

0 1 2 3 4 5 6
Time [s]

4000

6000

8000

10000

12000

ω
4

[R
P

M
]

Commanded ωcom
Observed ωobs

RPM range [ωmin, ωmax]

DFBC

0 1 2 3 4 5 6
Time [s]

4000

6000

8000

10000

12000

ω
1

[R
P

M
]

0 1 2 3 4 5 6
Time [s]

4000

6000

8000

10000

12000

ω
2

[R
P

M
]

0 1 2 3 4 5 6
Time [s]

4000

6000

8000

10000

12000

ω
3

[R
P

M
]

0 1 2 3 4 5 6
Time [s]

4000

6000

8000

10000

12000

ω
4

[R
P

M
]

Commanded ωcom
Observed ωobs

RPM range [ωmin, ωmax]

G&CNET

Fig. 20. Commanded and observed angular velocities of rotors for DFBC and G&CNET in SecV.

Part II

Literature review

19

Literature study
Delft University of Technology &

European Space Technology and Research
Centre

Neural Representation of Time-Optimal
Quadrotor Flight

Student number Surname, Given name
4662792 Origer, Sebastien

Thesis starting date: February 7, 2022
Thesis Supervisors: ir. C. De Wagter, Micro Air Vehicle Laboratory (TU Delft)

Dr. D. Izzo, Advanced Concepts Team (ESA-ESTEC)
Prof Dr. G. C. H. E. de Croon, Micro Air Vehicle Laboratory (TU Delft)

This document has been issued on February 27, 2023.

The title page figure shows a bundle of power-optimal trajectories passing through two consecutive
waypoints.

Contents

I Introduction 2

II Literature review 4

1 Optimal Control Theory 5
1.1 General optimal control problem formulation . 5
1.2 History of optimal control theory . 5

1.2.1 The Bellman equations. 6
1.2.2 The Hamilton-Jacobi-Bellman equations . 7
1.2.3 Pontryagin’s Maximum Principle . 8

1.3 Solving an optimal control problem . 10
1.3.1 Indirect Methods . 10
1.3.2 Direct Methods . 11
1.3.3 Dynamic Programming . 14

1.4 Closed loop control . 14
1.4.1 Linear Quadratic Regulator (LQR) . 14
1.4.2 Model Predictive Control (MPC) . 14

1.5 Chapter Summary . 16

2 Artificial Neural Networks 17
2.1 Machine learning paradigms . 17

2.1.1 Supervised learning . 17
2.1.2 Unsupervised learning . 17
2.1.3 Reinforcement learning . 18

2.2 Types of artificial neural networks . 18
2.2.1 Feedforward neural network . 19
2.2.2 Recurrent neural network . 20

2.3 Chapter Summary . 20

3 Time-optimal Guidance & Control of Drones 21
3.1 Trajectory tracking methods . 21
3.2 Trajectory optimization methods . 23
3.3 Chapter Summary . 24

4 Bridging the Reality Gap for G&CNET 26
4.1 Dynamics model & state estimation . 26
4.2 Cost function . 27
4.3 Other approach . 28
4.4 Chapter Summary . 28

III Thesis planning 29

IV Research question 31
4.5 Research Question . 32
4.6 Research Objective . 32

Bibliography 33

1

I
Introduction

2

Introduction
Recent advances in computational power and commercial availability of micro aerial vehicles (MAV),
such as drones, are pushing the scientific community to fully exploit the potential of these fascinating
robots. Drones have an intrinsic advantage to be able to access environments that are otherwise hard
to reach. They are already used in various areas such as safety (surveillance, search and rescue
missions), delivery services, cinematography and entertainment (drone racing). For some of these
applications, their success hinges on how autonomously and fast drones can operate. In addition,
considering the growing number of drones in the sky, it becomes increasingly necessary to develop
autonomous guidance and control systems.

A particular area of interest is how to make the drones arrive to their destination in the minimal
amount of time possible, especially for drones that do not have a fixed wing (such as quadrotors), as
they tend to have a limited flight range [1]. Time-optimal flight is challenging because the drone has
to execute very aggressive maneuvers which pushes the platform to the limits of its flight envelope,
leaving little room to recover from modelling errors and disturbances. On top of this, as drones fly
faster, aerodynamic effects tend to become more significant and harder to model, see [2]. A promising
avenue for autonomous guidance and control is the use of neural networks, so-called Guidance and
Control Networks (G&CNETs, see [3]), due to their low computational cost during inference and ability
to learn the mapping from states to optimal control inputs. This research aims to explore this avenue
and push current G&CNETs to be more robust and time optimal.

Unmanned aerial vehicles (UAVs) can be subdivided based on the number of rotors they possess
or the presence of a fixed wing. Although fixed wing drones offer an attractive solution for missions
that require the vehicle to fly for long periods of time, they lack maneuvrability and vertical take-off and
landing is challenging. Quad-, tri- or hexa-copters on the other hand are much more agile [4, 5] than
their fixed-wing counterparts. This research will focus on the control of quadcopter, because it is the
most common drone used for agile and fast maneuvers.

The literature review (Part II) is subdivided into four main chapters: optimal control theory (Ch. 1),
artificial neural networks (Ch. 2), time-optimal guidance & control of drones (Ch. 3) and bridging the
reality gap for G&CNET (Ch.4). The two remaining parts of this document present a Gantt chart for this
thesis (Part III) and the research question and objective (Part IV).

3

II
Literature review

4

1
Optimal Control Theory

Optimal control theory allows to compute the inputs to a dynamical system such that a predefined cost
function is optimized over a period of time. It will be the mathematical framework used in this research
to solve the problem of time optimal quadrotor flight. Sec. 1.1 describes how optimal control problem
(OCPs) will be formulated in the rest of this work, Sec. 1.2 gives an overview of the history of optimal
control theory by diving into the Bellman equations, the Hamilton-Jacobi-Bellman (HJB) equations and
Pontryagin’s Maximum Principle (PMP). Sec. 1.3 lists common method to solve OCPs, namely indirect
methods, direct methods and dynamic programming (DP). Finally, Sec. 1.4 proposes two well known
closed loop optimal control methods, Linear Quadratic Regulator (LQR) and Model Predictive Control
(MPC). A summary of this chapter is provided at the end (Sec. 1.5).

1.1. General optimal control problem formulation
Before diving into the history and intricacies of optimal control theory, let’s define a general formulation
of an OCP which will be used in the rest of this work. The dynamics of the system are described by a
set of differential equations, where x is the state vector and u represents the control inputs:

ẋ(𝑡) = 𝑓(x(𝑡),u(𝑡), 𝑡)
Let x(𝑡0) and x(𝑡𝑓) be the initial and final conditions, respectively. The cost function to maximize

(or minimize) is then:

𝐽 = ℎ(x(𝑡𝑓), 𝑡𝑓) + ∫
𝑡𝑓

𝑡0
𝑙(x(𝑡),u(𝑡), 𝑡)𝑑𝑡

The former term in the cost function ℎ(x(𝑡𝑓), 𝑡𝑓) (sometimes referred to as Mayer term) represents
the cost of the final states x(𝑡𝑓) and the final time 𝑡𝑓. The latter term sums up the cost over time
(from 𝑡0 to 𝑡𝑓) and is referred to as the running cost. For a control sequence u∗(𝑡)1 to be optimal, the
cost function 𝐽 needs to be minimized (or maximized) over [𝑡0 → 𝑡𝑓], respect boundary conditions and
possible additional constraints.

1.2. History of optimal control theory
The history of optimal control dates back to 1638, when Galileo posed the so-called ”Brachistochrone”
problem. The polymath was interested in finding the trajectory between two points, such that a bead
attached to a wire between these points would arrive in the smallest amount of time possible under the
effects of gravity (without friction) [6]. As it turns out, the Brachistochrone problem can be formulated
as an Optimal Control Problem (OCP), where the control u(𝑡) is the angle between the local horizontal
and the velocity vector of the bead, see Fig. 1.1 from [7]. The control input u(𝑡) can take any value in
the set of admissible controls 𝑈𝑎𝑑 ∶= {u ∶ [0, 𝑡𝑓] → (0, 2𝜋) ∶ u continuous}. Galileo’s conclusion on the
solution of his problem turned out to be incorrect, it is only half a century later, when Johann Bernoulli
1superscript ∗ denotes optimality

5

1.2. History of optimal control theory 6

challenged other mathematicians that the problem was solved. The challenge from Bernoulli sparked
interest in the world of mathematics and eventually led to the development of ”calculus of variations”
[6].

Figure 1.1: Brachistochrone problem formulated as on OCP by [7]

Fast-forward to the 20th century when advances in computational performance give rise to numeri-
cal solvers, Richard Bellman and Lev Pontryagin laid the groundwork for what is known today as optimal
control theory. Richard Bellman formulated the principle of optimality [8], which is at the basis of Dy-
namic Programming (DP). Lev Pontryagin on the other hand developed the first order necessary, but
not sufficient conditions for optimality in a principle named after him: Pontryagin’s Maximum (or Mini-
mum) Principle (PMP). The main difference between these two pillars of optimal control theory is that
dynamic programming suffers from the curse of dimensionality as the entire state space is searched
for an optimal solution. PMP however, avoids this curse and only applies to deterministic problems [9].
In the following, the main mathematical principles that originated from these two mathematicians are
described as done by Todorov [9], who summarized these principles concisely: the Bellman equations
(Subsec. 1.2.1), the Hamilton-Jacobi-Bellman equations (Subsec. 1.2.2) and Pontryagin’s Maximum
Principle (Subsec. 1.2.3).

1.2.1. The Bellman equations
Dynamic Programming (DP) is particularly useful to solve discrete control problems. It stems from
Bellman optimality principle, which relies on the fact that:

”[...] if a given state-action sequence is optimal, andwewere to remove the first state and ac-
tion, the remaining sequence is also optimal (with the second state of the original sequence
now acting as initial state).”[9]

This means that OCP can be solved by starting at the final conditions and finding the optimal state-
control actions recursively since optimal controls are independent of past decisions. An important
quantity in this context is the so-called optimal value function 𝑣(x) (sometimes called cost-to-go func-
tion) [9]. This function gives the minimal cost to complete the optimization problem, starting from state
x. The optimal value function is used in a lot of optimization methods to determine a control law 𝜋(x),
which maps the states to the corresponding optimal controls: 𝜋 ∶ 𝒳 → 𝒰(𝒳). Where 𝒳 and 𝒰 are both
finite sets for the states and admissible controls, respectively. Using the notation in [9], let’s define
𝑛𝑒𝑥𝑡(x,u) ∈ 𝒳 as the state that results from applying the control input u at state x and 𝑐𝑜𝑠𝑡(x,u) ≥ 0
as the cost of applying the control input u at state x. The optimal control law then needs to satisfy:

𝜋(x) = arg min
u∈𝒰(x)

{𝑐𝑜𝑠𝑡(x,u) + 𝑣(𝑛𝑒𝑥𝑡(x,u))} (1.1)

1.2. History of optimal control theory 7

Note that the resulting control law 𝜋(x) is not necessarily unique, there may be multiple optimal
control strategies. The optimal value function needs to satisfy the following equation, for which there
is a unique solution:

𝑣(x) = min
u∈𝒰(x)

{𝑐𝑜𝑠𝑡(x,u) + 𝑣(𝑛𝑒𝑥𝑡(x,u))} (1.2)

Eq.1.1 and 1.2 are the so-called Bellman equations used to solve discrete OCPs. The equations
above are used to solve deterministic problems, nevertheless they can be easily extended to stochastic
problems, where the possible states that result from applying a certain control action are expressed as
a probability distribution. If an OCP has discrete states and actions with stochastic state transitions it
is called a Markov Decision Process (MDP) [9].

1.2.2. The Hamilton-Jacobi-Bellman equations
Optimal controls problems can also be solved for continuous cases, where 𝒳 and 𝒰 are not finite
sets. Let’s derive the so-called Hamilton-Jacobi-Bellman equations for continuous OCP, following the
steps taken in [9]. The state and controls of the system can now take any value in x ∈ ℝ𝑛𝑥 and
u ∈ 𝒰(𝑥) ⊂ ℝ𝑛𝑢 , where 𝑛𝑥 and 𝑛𝑢 are the number of states and control inputs, respectively.

Starting from a stochastic differential equation (using 𝑑w as Brownian motion) of the form [9]:

𝑑x = 𝑓(x,u)𝑑𝑡 + 𝐹(x,u)𝑑w (1.3)

The term 𝐹(x,u) represents the noise of the system. Let’s take the integral of the Eq. 1.3:

x(𝑡) = x(0) + ∫
𝑡

0
𝑓(x(𝑠),u(𝑠))𝑑𝑠 + ∫

𝑡

0
𝐹(x(𝑠),u(𝑠))𝑑w(𝑠)

The last term can be written as:

∫
𝑡

0
𝑔(𝑠)𝑑w(𝑠) = lim

𝑛→∞

𝑛−1

∑
𝑘=0

𝑔(𝑠𝑘)(w(𝑠𝑘+1) −w(𝑠𝑘))

where 0 = 𝑠0 < 𝑠2 < ... < 𝑠𝑛 = 𝑡. Let’s now apply the following Euler discretization along the time
axis:

x𝑘+1 = x𝑘 + Δ𝑓(x𝑘 ,u𝑘) + √Δ𝐹(x𝑘 ,u𝑘)𝜖𝑘
where 𝜖𝑘 ∼ 𝒩(0, 𝐼𝑛𝑤) (𝑛𝑤 is the dimension of the noise vector) and Δ is the time step such that

x𝑘 = x(𝑘Δ). A distinction has to be made between finite and infinite time horizon. Let’s consider a
typical cost function for a finite time horizon (i.e. 𝑡𝑓 is specified):

𝐽(x(⋅),u(⋅)) = ℎ(x(𝑡𝑓)) + ∫
𝑡𝑓

0
𝑙(x(𝑡),u(𝑡), 𝑡)𝑑𝑡

Discretizing the cost function yields:

𝐽(x.,u.) = ℎ(x𝑛) + Δ
𝑛−1

∑
𝑘=0

𝑙(x𝑘 ,u𝑘 , 𝑘Δ)

where 𝑛 represents the amount of time steps such that 𝑛 = 𝑡𝑓
Δ . Since this is a stochastic problem,

the transition between states is expressed as a multivariate Gaussian probability distribution:

x𝑘+1 ∼ 𝒩(x𝑘 + Δ𝑓(x𝑘 ,u𝑘), Δ𝑆(x𝑘 ,u𝑘))
where 𝑆(x,u) = 𝐹(x,u)𝐹(x,u)𝑇. In this case the optimal value function 𝑣 depends both on the

states and time:

𝑣(x, 𝑘) =min
u
{Δ𝑙(x,u, 𝑘Δ) + 𝐸[𝑣(x+ Δ𝑓(x,u) + 𝜉, 𝑘 + 1)]} (1.4)

1.2. History of optimal control theory 8

where 𝑣(x, 𝑛) = ℎ(x) and 𝜉 ∼ 𝒩(0, Δ𝑆(x,u)). Let’s expand the optimal value function using a
second order Taylor series (the time indices are omitted for brevity):

𝑣(x+ 𝛿) = 𝑣(x) + 𝛿𝑇𝑣x(x) +
1
2𝛿

𝑇𝑣xx𝛿 + 𝒪(𝛿3)

where 𝛿 = Δ𝑓(x,u) + 𝜉 and the subscripts □x and □xx stand for the first and the second partial
derivative with respect to x, respectively. Now let’s omit the terms higher than the first-order in Δ and
take the expectation of the optimal value function:

𝐸[𝑣] = 𝑣(x) + Δ𝑓(x,u)𝑇𝑣x(x) +
1
2𝑡𝑟(Δ𝑆(x,u)𝑣xx(x)) + 𝒪(Δ

2)

where 𝑡𝑟(Δ𝑆(x,u)𝑣xx(x)) stands for the trace of the matrix Δ𝑆(x,u)𝑣xx(x) (sum of main diagonal
elements). Substituting the expectation of the optimal value function into Eq. 1.4, taking 𝑣(x) out of the
min operator and dividing by the time step:

𝑣(x, 𝑘) − 𝑣(x, 𝑘 + 1)
Δ =min

u
{𝑙 + 𝑓𝑇𝑣x +

1
2𝑡𝑟(𝑆𝑣xx) + 𝒪(Δ)}

Since 𝑡 = 𝑘Δ, the expression above can be written in the continuous time domain, the left hand side
then becomes:

𝑣(x, 𝑡) − 𝑣(x, 𝑡 + Δ)
Δ

Taking the limit Δ → 0 yields the partial derivative − 𝜕
𝜕𝑡𝑣 or −𝑣𝑡. Hence over 0 < 𝑡 < 𝑡𝑓 and setting

𝑣(x, 𝑡𝑓) = ℎ(x) one gets:

− 𝑣𝑡(x, 𝑡) = min
u∈𝒰(x)

{𝑙(x,u, 𝑡) + 𝑓(x,u)𝑇𝑣x(x, 𝑡) +
1
2𝑡𝑟(𝑆(x,u)𝑣xx(x, 𝑡))} (1.5)

The optimal control law 𝜋(x, 𝑡) then needs to obey:

𝜋(x, 𝑡) = arg min
u∈𝒰(x)

{𝑙(x,u, 𝑡) + 𝑓(x,u)𝑇𝑣x(x, 𝑡) +
1
2𝑡𝑟(𝑆(x,u)𝑣xx(x, 𝑡))} (1.6)

Eq. 1.5 and 1.6 are the so-called Hamilton-Jacobi-Bellman (HJB) equations for continuous-time
stochastic control problems. Bellman notes that the HJB equations suffer from what he calls the ”curse
of dimensionality”. The reason for this is that the only way to guarantee convergence towards the global
optimal value function is the use numerical methods that discretize the entire state space. Unfortunately,
the number of required discrete states scales exponentially with the state vector dimension 𝑛𝑥. Hence,
for complex dynamical systems (such as 12 degrees of freedom quadrotor models) solving the HJB
becomes computationally intractable. Fortunately, Bellman’s efforts led to other numerical approaches
(using parametric models) that yield useful approximate solutions [9].

1.2.3. Pontryagin’s Maximum Principle
Turning now to the other pillar of optimal control theory, Pontryagin’s Maximum Principle (PMP) [10].
Contrary to Bellman’s optimality principle, PMP works only for deterministic systems but does not suffer
from the curse of dimensionality. Let’s derive PMP starting from the HJB equations. Note that other
derivations also exist which use Lagrange multipliers to derive PMP. Following the steps in [9]:

Let’s simplify Eq. 1.5 by keeping the deterministic terms:

− 𝑣𝑡(x, 𝑡) =min
u
{𝑙(x,u, 𝑡) + 𝑓(x,u)𝑇𝑣x(x, 𝑡)} (1.7)

Let’s define the optimal control law 𝜋(x, 𝑡) to be a solution to Eq. 1.7 and let it be differentiable in 𝑥.
Hence u = 𝜋(x, 𝑡) such that:

0 = 𝑣𝑡(x, 𝑡) + 𝑙(x, 𝜋(x, 𝑡), 𝑡) + 𝑓(x, 𝜋(x, 𝑡))𝑇𝑣x(x, 𝑡)
Let’s take the partial derivative with respect to x:

1.2. History of optimal control theory 9

0 = 𝑣𝑡x + 𝑙x + 𝜋𝑡x𝑙u + (𝑓𝑇x + 𝜋𝑇x𝑓𝑇u)𝑣x + 𝑣xx𝑓
Simplifying the equation using �̇�x = 𝑣xxẋ+ 𝑣𝑡x = 𝑣xx𝑓 + 𝑣𝑡x:

0 = �̇�x + 𝑙x + 𝑓𝑇x𝑣x + 𝜋𝑇x(𝑙u + 𝑓𝑇u𝑣x)
As it turns out (𝑙u + 𝑓𝑇u𝑣x) = 0 (assuming this is an unconstrained optimization problem) since this

term is the gradient of the term inside the min operator on the left hand side of Eq. 1.7 with respect to
the control input 𝑢:

− �̇�x = 𝑙x(x, 𝜋(x, 𝑡), 𝑡) + 𝑓𝑇x(x, 𝜋(x, 𝑡))𝑣x(x, 𝑡) (1.8)

Let’s introduce the costate vector 𝜆𝜆𝜆 such that 𝑣𝑥 = 𝜆𝜆𝜆. Pontryagin’s Maximum Principle then dictates
that if there exists an optimal state-control trajectory {𝑥(𝑡), 𝑢(𝑡) ∶ 0 ≤ 𝑡 ≤ 𝑡𝑓}, then are also exists a
trajectory described by a costate vector 𝜆𝜆𝜆(𝑡) such that in Eq. 1.8 𝑣𝑥 can be substituted with 𝜆𝜆𝜆 and 𝜋
with u:

ẋ(𝑡) = 𝑓(x(𝑡),u(𝑡))
−�̇�𝜆𝜆(𝑡) = 𝑙x(x(𝑡),u(𝑡), 𝑡) + 𝑓𝑇x(x(𝑡),u(𝑡))𝜆𝜆𝜆(𝑡)

u(𝑡) = argmin
u
{𝑙(x(𝑡),u, 𝑡) + 𝑓(x(𝑡),u)𝑇𝜆𝜆𝜆(𝑡)}

(1.9)

With 𝜆𝜆𝜆(𝑡𝑓) = ℎx(x(𝑡𝑓)) and x(0) as boundary conditions and 𝑡𝑓 being given (note that the final time
𝑡𝑓 or any final state do not have to be specified in order to solve PMP, so-called transversality conditions
allow to leave them unspecified). Looking at Eq. 1.9, one can think of the costate vector 𝜆𝜆𝜆 as being
the derivative of the optimal value function along an optimal trajectory [9]. PMP is often written in a
simplified form using the Hamiltonian:

𝐻(x,u, 𝜆𝜆𝜆, 𝑡) = 𝑙(x,u, 𝑡) + 𝑓(x,u)𝑇𝜆𝜆𝜆 (1.10)

The optimal control u∗(𝑡) can then be found by taking the derivative of the Hamiltonian with respect
to u and setting it to zero. The resulting compact form for PMP is:

ẋ(𝑡) = 𝜕
𝜕𝜆𝜆𝜆𝐻(x(𝑡),u(𝑡),𝜆𝜆𝜆(𝑡), 𝑡)

−�̇�𝜆𝜆(𝑡) = 𝜕
𝜕x𝐻(x(𝑡),u(𝑡),𝜆𝜆𝜆(𝑡), 𝑡)

u(𝑡) = argmin
u
𝐻(x(𝑡),u, 𝜆𝜆𝜆(𝑡), 𝑡)

(1.11)

The power of PMP lies in the fact that Eq. 1.11 are ordinary differential equations (ODEs). This
allows to solve for trajectories without referencing to neighbouring trajectories, which is the case for
partial differential equations (PDEs) such as Bellman equations (Eq. 1.5 and 1.6). Eq. 1.11 is treated
as a Two Points Boundary Value Problem (TPBVP) which can be solved by standard solvers. Contrarily
to Bellman’s equations, the computational power required to solve PMP grows linearly with the number
states, hence PMP does not suffer from the curse of dimensionality. Note that care must be taken as
solutions to the TPBVP which originates from PMP can be local minima. In practice the problem is
solved multiple times with different initial guesses to reduce the risk of missing the global optimum.

Eq. 1.11 are the so-called necessary conditions for optimality, which means that if these equations
are satisfied the cost function is either maximized or minimized. PMP states that in order to have the
necessary and sufficient conditions for optimality the following equation also needs to be satisfied:

ℋ(x∗(𝑡),u∗(𝑡),𝜆𝜆𝜆∗(𝑡)) ≤ ℋ(x∗(𝑡),u(𝑡),𝜆𝜆𝜆∗(𝑡)) (1.12)

This inequality makes sure that the solution minimizes the cost function.

1.3. Solving an optimal control problem 10

1.3. Solving an optimal control problem
Apart from simple linear quadratic problems which can be solved analytically, numerical methods are
preferred to solve optimal control problems due to their complexity. According to [11], this is why a lot of
efforts in the scientific community have been concentrated on improving such methods since the work
of Bellman [12] was published about seven decades ago. One distinguishes between three methods
to solve optimal control problems: indirect methods, direct methods and dynamic programming.

Indirect methods stem from the field of mathematics called calculus of variations, see [13], which
create a boundary-value problem (BVP). Solutions to this problems are local or global optimal trajec-
tories called extremals. Direct methods on the other hand transcribe the optimal control problem to a
nonlinear programming problem (NLP) by discretizing either only the controls (control parameteriza-
tion) or both the states and controls (state and control parameterization). The problem is subsequently
solved using standard optimization techniques. Finally, the last avenue to solve the Hamilton-Jacobi-
Bellman (HJB) equations is Dynamic Programming (DP), see [9]. This recursive method is useful for
low dimensional problems, but suffers from the curse of dimensionality because the entire state space
has to be searched to find the optimum. It is hence not suitable for more complex drone models which
are needed to formulate time optimal trajectories.

1.3.1. Indirect Methods
To use indirect methods one has to set up the TPBVP resulting from PMP [11]. This branch of opti-
mization (calculus of variations) relies on the first order necessary conditions of optimality (Eq. 1.11)
to find candidates for optimal trajectories called extremals. Note that such extremals are described by
the states and co-states. In some cases, it can be difficult to initialize the solver with an appropriate
guess of the co-states, as these variables do not have an intuitive physical meaning. Finally, so-called
transversality conditions can be added to the TPBVP. These are conditions on the initial or final value of
certain co-states that allow to, for instance, leave the boundary conditions of the corresponding states
unspecified, which is particularly useful for time-optimal flight, as the minimal total flight time is not
known in advance. It also allows to enforce a given relation between different states, an example from
trajectory optimization would be to enforce the final magnitude of the velocity to be equal to the circular
orbit velocity corresponding to the final orbit radius [14].

The most common indirect methods are the following: single-shooting methods, multiple-shooting
methods and collocation methods [11].

Indirect ShootingMethod The idea behind a single shootingmethod is relatively simple. One selects
initial conditions for the state and co-states, the system of equations is the integrated in time (from 𝑡0
to 𝑡𝑓) until final conditions for the states and co-states are reached. These are then compared to the
desired final boundary conditions. In case this difference is higher than a specified threshold, the solver
slightly modifies the initial conditions, propagates the system forward in time again and compares the
final states and costates. This process is repeated until the desired final conditions are met. Care
should be taken to select appropriate initial conditions, as the solver might diverge or converge to a
local minimum instead of the desired global optimum [11]. A popular commercial solver that can be used
for such TPBVP is SNOPT (Sparse Nonlinear OPTimizer). A simple pseudo-code algorithm (Fig. 1.2)
adapted from [11] is presented below:

x0, 𝜆𝜆𝜆0 ← Input
while Error in final conditions is larger than given threshold do

Integrate system from 𝑡0 to 𝑡𝑓
Compute error between final conditions and desired conditions
if Error is below given threshold then

Break
else

x0, 𝜆𝜆𝜆0 ← Update
end if

end while
Figure 1.2: Pseudo-code adapted from [11] describing an indirect single shooting methods

1.3. Solving an optimal control problem 11

The output of an indirect single shooting method is an extremal, i.e. a trajectory described by its
states and co-states.

Indirect Multiple Shooting Method Multiple shooting methods have been developed to overcome
some of the numerical difficulties that can arise for single shooting methods [11]. Especially in the
case of hyper-sensitive2 control problems, errors might grow uncontrollably when integrated over the
entire time horizon [𝑡0, 𝑡𝑓]. It is then useful to split up the time horizon into smaller intervals [𝑡𝑖 , 𝑡𝑖+1],
solve each of these intervals with a single shooting method and enforce continuity of the states and co-
states between each of these intervals. Fig. 1.3 from [11] depicts the basic principle behind a multiple
shooting method, note that the vector y(𝑡) is a vector containing both the states and the co-states
y(𝑡) = [x(𝑡) 𝜆𝜆𝜆(𝑡)]𝑇.

Figure 1.3: Figure from [11] illustrating a multiple shooting method

Hence, this boils down to a larger root-finding problem, as the difference between the states and co-
states between each sub-interval needs to be driven to zero. Despite the increased amount of variable
to solve for, multiple shooting method mitigate some of the numerical instabilities one can encounter
with single shooting methods.

Indirect Collocation Method Indirect collocation methods parameterize the states and co-states
with polynomials. Applying a certain collocation method results in a root-finding problem where each
of these polynomials is changed until the boundary conditions are met. The main difference with direct
methods is that for indirect methods the co-states must also be integrated. More details on collocation
methods are provided for direct methods as these are more common and more powerful.

1.3.2. Direct Methods
As opposed to indirect methods, direct methods transcribe the OCP to a nonlinear programming prob-
lem (NLP) and then solve it. This is done by discretizing either only the controls (control parame-
terization) or both the states and controls (state and control parameterization). Compared to indirect
methods, direct methods provide an approximation of the optimal trajectory.

Direct Shooting Method For direct shooting methods the controls u(𝑡) need to be parameterized,
this can be done using functions 𝜓𝑖(𝑡) and coefficients 𝑎𝑖 (𝑖 = 1, ..., 𝑚) such that [11]:
2Problems for which the interval of time for the TPBVP is too long compared to the rate at which solutions expand and contract
in the neighbourhood of optimal solutions [11]

1.3. Solving an optimal control problem 12

u(𝑡) ≈
𝑚

∑
𝑖=1
𝑎𝑖𝜓𝑖(𝑡)

The dynamics of the system are then enforced by integrating them forward in time using time-
marching algorithms, such as Euler or Runge-Kutta methods [11]. Note that the cost function must
be evaluated using an integration scheme that is consistent with the one used to solve the differential
equations. The resulting NLP tries to minimize this cost while taking into account any given constraints.
The pseudo-code below (Fig. 1.4), adapted from [11], describes a generic single shooting direct method:

a𝑖 ← Input initial guess for parameters
while Cost function is not yet minimized AND Constraints are violated do

Integrate system from 𝑡0 to 𝑡𝑓
Compute error between final conditions and desired conditions
if Error is below given threshold then

Break
else

a𝑖 ← Update parameters such that cost function value decreases
end if

end while
Figure 1.4: Pseudo-code adapted from [11] describing a direct single shooting methods

The output of a single shooting direct method are the parameters 𝑎𝑖 that minimize the cost function
while satisfying the constraints (in case the solver converges).

Direct Multiple Shooting Method The principle behind direct multiple shooting methods is the same
as for indirect methods, except that each sub-interval is solved for using the direct single shooting
algorithm presented above. The problem also boils down to a root finding problem that tries to enforce
continuity between each of the sub-intervals by driving the difference in states to zero.

Direct Collocation Method Direct collocation methods (sometimes called transcription) are popular
as they address the numerical instabilities of shooting methods. They rely on both state and control
parameterization. Based on the type of polynomials used for the parameterization, one distinguishes
between two classes of collocation: orthogonal and non-orthogonal. Typical non-orthogonal transcrip-
tion methods use the Chebyshev or the Legendre polynomials. A non-orthogonal examples is the
Hermite-Simpson collocation, which is going to be the preferred method in this work as it is particularly
well suited for time-optimal control [15]. All of the aforementioned methods use low order polynomi-
als on time sub-intervals, hence they fall under the category of local collocation. There exists another
category called global collocation that uses higher order polynomials on the entire interval [𝑡0, 𝑡𝑓] (pseu-
dospectral methods).

The Hermite-Simpson collocation method provides multiple advantages which are listed below and
is the preferred method in recent work on time-optimal quadrotor flight (MSc thesis Robin Ferede, not
published yet). Therefore a more in-depth background is given on this method. One of the advantages
of the Hermite-Simpson method is that the system dynamics are approximated by piecewise quadratic
functions, which contrary the other collocation methods (such as trapezoidal collocation which approx-
imate using linear functions), yields higher-order accurate solutions [16]. In addition, the Hermite-
Simpson method allows to express the state trajectory as a cubic spline, which has the advantage that
its first order derivative is continuous. Note that the states are discretized at every grid point (collocation
point), whereas the controls are only discretized at so-called mid-points.

In time-optimal flight, the cost function representing the OCP will contain an integral term to be
minimized. In the Hermite-Simpson method, integrals are approximated according to the Simpson
quadrature, which expresses the function that is being integrated as a piecewise quadratic function:

∫
𝑡𝑓

𝑡0
𝑤(𝜏)𝑑𝜏 ≈

𝑁−1

∑
𝑘=0

ℎ𝑘
6 (𝑤𝑘 + 4𝑤𝑘+ 12

+𝑤𝑘+1)

1.3. Solving an optimal control problem 13

where 𝑤(𝜏) is the integrand and ℎ𝑘 = 𝑡𝑘+1 − 𝑡𝑘 is the time step. Note that the subscript 𝑘 + 1
2

denotes a mid-point. The system dynamics are enforced using so-called collocation constraints, which
are obtained by writing the system dynamics f(⋅) in integral form. Following the steps of [16]:

ẋ = f

∫
𝑡𝑘+1

𝑡𝑘
ẋ𝑑𝑡 = ∫

𝑡𝑘+1

𝑡𝑘
f𝑑𝑡

This continuous expression is then transcribed by approximating it with the so-called Simpson
quadrature:

x𝑘+1 − x𝑘 =
1
6ℎ𝑘(f𝑘 + 4f𝑘+ 12 + f𝑘+1) (1.13)

In order to also enforce the dynamics at the mid-points, an interpolant is used to evaluate the states
at the mid-points [16]:

x𝑘+ 12
= 1
2(x𝑘 + x𝑘+1) +

ℎ𝑘
8 (f𝑘 − f𝑘+1) (1.14)

Since Eq. 1.14 depends only on values at the grid-points, it is possible to combine it with Eq. 1.13,
which results in the so-called compressed form. It is also possible to keep both equations separated
by introducing a decision variable representing the states at the mid-points, this formulation is called
separated form. The latter form is usually preferred when the number of time sub-intervals used is
small [16].

Another major advantage of this method is that constraints on the states, controls, path or bound-
aries can easily be implemented at specified grid points. The solution to this NLP problem yields the
values for the states and controls at every collocation point. Such a trajectory can then be interpolated
to obtain the values between these points. In case the collocation points are uniformly space out in
time, the function for the control over time becomes [16]:

u(𝑡) = 2
ℎ2𝑘
(𝜏 − ℎ𝑘2)(𝜏 − ℎ𝑘)u𝑘 −

4
ℎ2𝑘
(𝜏)(𝜏 − ℎ𝑘)u𝑘+ 12 +

2
ℎ2𝑘
(𝜏)(𝜏 − ℎ𝑘2)u𝑘+1

where 𝜏 = 𝑡 − 𝑡𝑘 and 𝑡𝑘+ 12
= 1

2(𝑡𝑘 + 𝑡𝑘+1). Since the system dynamics f(⋅) = ẋ are also expressed
by quadratic polynomials on each sub-interval, the following expression holds:

f(𝑡) = ẋ = 2
ℎ2𝑘
(𝜏 − ℎ𝑘2)(𝜏 − ℎ𝑘)f𝑘 −

4
ℎ2𝑘
(𝜏)(𝜏 − ℎ𝑘)f𝑘+ 12 +

2
ℎ2𝑘
(𝜏)(𝜏 − ℎ𝑘2)f𝑘+1

In order to compute the actual states between the collocation points, the expression above can
simply be integrated:

x(𝑡) = ∫ ẋ𝑑𝑡 = ∫ [f𝑘 + (−3f𝑘 + 4f𝑘+ 12 − f𝑘+1)(
𝜏
ℎ𝑘
) + (2f𝑘 − 4f𝑘+ 12 + 2f𝑘+1)(

𝜏
ℎ𝑘
)2]𝑑𝑡

Let’s now set as boundary conditions x(𝑡𝑘) = x𝑘, the expression above can then be simplified to:

x(𝑡) = x𝑘 + f𝑘(
𝜏
ℎ𝑘
) + 12(−3f𝑘 + 4f𝑘+ 12 − f𝑘+1)(

𝜏
ℎ𝑘
)2 + 13(2f𝑘 − 4f𝑘+ 12 + 2f𝑘+1)(

𝜏
ℎ𝑘
)3

which can be used to compute the states at any time step.

1.4. Closed loop control 14

1.3.3. Dynamic Programming
Solving OCPs in discrete-time using dynamic programming boils down to solving the Bellman equations
(Eq.1.1 and 1.2). One can also use dynamic programming for the continuous-time case, for which the
HJB equations (Eq. 1.5 and 1.6) need to be solved. Unfortunately, models representing the dynamics
of quadrotors are too complex to be solved analytically, which means one needs to rely on numerical
methods to search the entire state-space. As discussed before the curse of dimensionality limits such
methods to problems with few degrees of freedom. In order to derive time-optimal trajectories, dynamic
models considering all the degrees of freedom of a quadrotor need to be used, hence DP is not an ideal
candidate for this research.

1.4. Closed loop control
So far the aforementioned control strategies do not take state feedback into account. This section goes
over two of the main closed loop optimal control methods, namely linear quadratic regulator (LQR) and
model predictive control (MPC).

1.4.1. Linear Quadratic Regulator (LQR)
LQR is a special form of optimal control that it widely used for system with linear dynamics and a
quadratic cost function. In case of nonlinear dynamics one needs to linearize the system around the
state of interest to apply LQR. Consider a linear time-invariant system described by the following dy-
namics and initial conditions:

ẋ = 𝐴(𝑡)x+ 𝐵(𝑡)u
x(𝑡0) = x0
u(𝑡0) = u0

with x ∈ ℝ𝑛𝑥 and u ∈ ℝ𝑛𝑢 . The quadratic cost function takes the following general form for an
infinite time solution:

𝐽(x,u) = ∫
∞

0
x̃𝑇𝑄x̃+ ũ𝑇𝑅ũ𝑑𝑡

where x̃ = x−x0 and ũ = u−u0 are the errors and 𝑄 and 𝑅 are positive definite matrices that can
be tuned to give more or less weight to the state errors or the control effort, respectively. Following the
steps in [17], let’s assume that the form of the optimal cost-to-go function is quadratic: 𝐽∗(x) = x𝑇𝑃x.
One can then solve for 𝑃 using the Riccati Equation:

0 = 𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄
This results in the following optimal control law:

u∗ = u0 + 𝐾(x− x0)
using the following gains:

𝐾 = −𝑅−1𝐵𝑇𝑃
The solution to this problem can be found using dynamic programming [17]. LQR is popular for

its robustness and offers a computationally efficient solution for onboard applications. However the
equations describing the dynamics of a quadrotor are highly nonlinear and the desired cost function is
not necessarily quadratic. Hence LQR is not a suitable approach to the OCP in this research.

1.4.2. Model Predictive Control (MPC)
Model Predictive control on the other hand allows to control linear as-well as nonlinear systems. This
branch of control theory emerged during the late seventies and since then it has created a multitude
of popular control techniques. The basic idea behind MPC is to use an explicit model of the system to
predict future states over a specific time horizon. These predictions are then used to generate a control
law while optimizing a given cost function [18]. The term receding horizon denotes the fact that at each

1.4. Closed loop control 15

time step, the horizon is shifted forward so that the control input that is fed to the system is always the
first one in the sequence of controls that were just computed. Fig. 1.5 from [19] depicts the principle
behind the receding time horizon.

Figure 1.5: Figure from [19] of the receding time horizon for a MPC. The blue line represents the control inputs, the red line the
prediction of future states and the green line is the target state. Note that the star represents the control input that is fed to the

system.

There exists a multitude of different MPC algorithms: Dynamic matrix control, Model Algorithmic
Control, Predictive Functional Control, ... [18]. Depending the model, noise and cost function a certain
MPC algorithm might be better suited than another. Following the definition in [19], let’s focus on a
general formulation of a model predictive controller. The goal is to determine a sequence of control
inputs u(⋅|x𝑗) ∶= {u𝑗+1, ...,u𝑗+𝑘 , ...,u𝑗+𝑚𝑐}, where 𝑇𝑐 = 𝑚𝑐Δ𝑡 denotes the so-called control horizon and
𝑇𝑝 = 𝑚𝑝Δ𝑡 is the prediction horizon. The model is sampled using the time step Δ𝑡. Note that if the
control horizon is shorter than the prediction horizon, it is assumed that the control input is constant
after the control horizon. The implicit control law used to solve for the sequence of control inputs u(⋅|x𝑗)
at each timestep is:

𝐾(x𝑗) = u(𝑗 + 1|x𝑗) = u𝑗+1
A typical formulation of the cost function being minimized at every timestep is:

min
û(⋅|x𝑗)

𝐽(x𝑗) = min
û(⋅|x𝑗)

= [||x̂𝑗+𝑚𝑝 − x∗𝑚𝑝 ||2Q𝑚𝑝 +
𝑚𝑝−1

∑
𝑘=0

||x̂𝑗+𝑘 − x∗𝑘||2Q +
𝑚𝑐−1

∑
𝑘=1

(||û𝑗+𝑘||2R𝑢 + ||Δû𝑗+𝑘||
2
RΔ𝑢)]

where the superscript ̂ denotes a prediction and x𝑘 are the measured states. This cost function
accounts for errors in future states predictions compared to the reference trajectory x∗𝑘 and a terminal
cost term x̂𝑚𝑝 . Control effort and high rates of control (Δu𝑘 = u𝑘 − u𝑘−1) can also be part of the
minimization. Note that in this formulation, the terms are computed using weight matrices, so that
||x||2Q ∶= x𝑇Qx. Q and Q𝑚𝑝 are positive definite matrices whereas R𝑢 and RΔ𝑢 are semi-definite. The
time horizon problem is subject to the following (discrete-time) dynamics:

1.5. Chapter Summary 16

x̂𝑘+1 = F̂(x̂𝑘 ,u𝑘)
and possible constraints on the control inputs:

Δumin ≤ Δu𝑘 ≤ Δumax

umin ≤ u𝑘 ≤ umax

To name just a few, MPC is advantageous for its ability to control systems with complex dynamics
such as nonminimum phase systems, constraints can easily be implemented and the cost function can
be tuned. The efficacy of MPC is highly dependent on how well the model predicts future outcomes.
The main downside of MPC is that it is very computationally expensive to run online, which renders it
impractical for real-time control of drones [19]. However, one should not completely discredit MPC for
quadrotors, as recent advances in computational power and new algorithms make it possible to use it
for online applications [20].

1.5. Chapter Summary
Optimal control theory rests on multiple pillars, which depending on the application offer certain ad-
vantages. Discrete-time OCPs (deterministic or stochastic) can be solved by formulating the Bellman
equations and continuous-time OCPs require the HJB equations. They both rely on the important fact
that the optimality of certain states and corresponding action does not rely on prior states and actions.
Pontryagin’s Maximum Principle only applies to deterministic OCPs but has the advantage that it does
not suffer from the curse of dimensionality. The three main avenues to solve OCPs are indirect meth-
ods, which create a BVP, direct methods which create a NLP and dynamic programming. When an
OCP is too complex to be solved analytically, one can resort to numerical methods, such as DP, which
search the entire state space for a global optimum. Unfortunately, the solver time scales badly with the
system’s dimensionality. In the case of 12 DoF quadrotor models, the problem becomes intractable
due to the curse of dimensionality.

For this research, the Hermite Simpson direct collocation method will be used, as it is particularly
well suited to solve time-optimal trajectories for quadrotors. Direct methods may only provide an ap-
proximation of the true global solution, or sometimes get stuck in local minima, but they tend to converge
faster and more often than indirect methods. This is crucial as a lot of trajectories need to be gener-
ated to form a useful training dataset for G&CNET (See. 3.2). As has been done in another quadrotor
application [3], the AMPL language which helps formulating the OCP and the commercial numerical
solver SNOPT will be used to implement the above mentioned method in Python.

2
Artificial Neural Networks

Artificial neural networks (ANNs) denote any architecture of neurons and layers connected to each
other . Since the early 1990’s ANNs have proven to be powerful to approximate functions or recognize
patterns in data [21]. Applications range from images classification, outlier detection, speech recog-
nition to policy search, just to name a few. A particular area of interest for this research is the use
of ANNs to control systems. This Chapter aims to give a general overview of the different machine
learning paradigms (Sec. 2.1) and of the typical neural net architectures (Sec. 2.2). A summary of this
chapter is provided at the end (Sec. 2.3).

2.1. Machine learning paradigms
Machine learning algorithms are used to create a function by learning from data. The resulting function
or model learns to map the input data to some desired output 𝑓 ∶ 𝒳 → 𝒴. Once trained, the model
can be used on unseen data [22]. This literature study goes over the three main machine learning
paradigms: supervised learning, unsupervised learning and reinforcement learning. All of which make
used of data differently to train an ANN.

2.1.1. Supervised learning
In order to train a neural network using supervised learning, the training dataset needs to be organized in
pairs of so-called features 𝑥𝑖 ∈ 𝒳 and corresponding labels 𝑦𝑖 ∈ 𝒴 (𝑛 pairs {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑛 , 𝑦𝑛), }
[22]). During training the network learns the mapping between the input space 𝒳 and the output space
𝒴, such that when exposed to new data it still outputs the corresponding desired output. Typical ex-
amples of supervised learning applications are outliers detection or image classification. However
supervised learning can also be used for regression problems in control. In that case the features are
the states of the system or any other metric that informs the network enough to predict a continuous
control input to steer the system (G&CNET). Supervised learning is at the heart of this research. By
solving time-optimal trajectories starting from different initial conditions and all ending at the same final
conditions (such as a desired waypoint), a training dataset can be created by discretizing these trajec-
tories. The G&CNET is then trained on these state-action pairs. It learns the mapping of the states to
the corresponding optimal control inputs.

2.1.2. Unsupervised learning
Contrary to supervised learning, unsupervised learning does not label the data (𝑦𝑖). The learning pro-
cess is then purely used to train the network to recognize patterns in the data. Applications of unsu-
pervised learning range from clustering but also computer vision and language processing. The latter
two applications emerged with the rise of self-supervised learning. This technique uses labels that are
embedded in the features [22], hence one does not need to label the entire dataset manually, which
can be a difficult and time-consuming task.

17

2.2. Types of artificial neural networks 18

2.1.3. Reinforcement learning
Finally reinforcement learning (RL) is useful for problems that require a sequence of action in order
to reach a desired goal. It is also used when the exact solution is not known, RL’s trial and error
nature can lead to unconventional solutions one would not have thought of in the first place. The
learning process involves an agent interacting with the environment. A reward function is then used
to inform the agent on how well it performed during an episode, based on this information the current
policy is updated. Shaping the reward function appropriately is not a trivial task, in fact an entire field of
research is dedicated to it. The reward can be sparse (at discrete points in time or space) or continuous.
Popular algorithms to train controllers with RL are deep deterministic policy gradient (DDPG), trust
region policy optimization (TRPO) and proximal policy optimization (PPO) [23]. Note that in the context
of this research, the agent (i.e. the quadrotor) can be trained using RL both in simulation or on the
physical platform, both of which have their pros and cons. Training in simulation inevitably results in a
reality gap from unmodelled effects while training on the real drone is severely limited in terms of flight
time. On top of this, crashes are likely to happen in real life since the agent is exploring the edge of the
flight envelope with trial and error.

2.2. Types of artificial neural networks
An ANN is a sequences of neurons connected between layers. There exist a multitude of different
architectures which describe how these layers and neurons are connected to each other, this section
will go over two of the most common ones: feedforward neural networks (FFNNs) and recurrent neu-
ral networks (RNNs). Before diving into this matter, let’s introduce some notation by considering the
simplest type of network: the perceptron. It consists of only one neuron, takes in multiple inputs and
output a single scalar value 𝑦, see Fig. 2.1 from [22]. The operation that the perceptron performs can
be written as:

𝑦 = 𝜎(
𝑑

∑
𝑗=1
𝑤𝑗𝑥𝑗 + 𝑏)

Figure 2.1: Figure from [22] of the perceptron. The activation function is denoted by 𝜎. Note that this figure does not include
the (optional) bias 𝑏.

where 𝑏 is an optional bias term and 𝜎(⋅) is the activation function. This function is particularly
important as it is the only part that introduces non-linearity (the weights and inputs are linearly summed
together). The learning process then consists in finding the weights 𝑤𝑗 and bias 𝑏 such that a specified
loss function is minimized. A popular loss function is MSE (mean squared error). Examples of popular
activation functions are for instance the logistic sigmoid function:

𝜎(𝑧) = 1
1 + 𝑒−𝑧

2.2. Types of artificial neural networks 19

⋮ ⋮ ⋮ ⋮

𝑥1

𝑥3

𝑥3

𝑥4

𝑥5

𝑥6

𝑦1

𝑦2

𝑦3

Input
layer

Hidden
layer

Hidden
layer

Hidden
layer

Hidden
layer

Output
layer

Figure 2.2: Feed forward neural network architecture

and the hyperbolic tangent (TanH):

𝜎(𝑧) = 𝑒𝑧 − 𝑒−𝑧
𝑒𝑧 + 𝑒−𝑧

Note that there exist countless of different ways to create a ANN: number of neurons, number of
hidden layers, scaling of input data, type of activation function, just to name a few. The same goes
for neural network training, the type of loss function, number of training epochs (number of times one
goes through the entire training data), batch size, learning rate and scheduler are all parameters that
will affect the final performance of the ANN. Unfortunately there is no systematic way to tell in advance
what setup is best suited for a given application, often one will result to trial and error. It is crucial to try
out different network structures as for machine learning the devil is in the details. Another determining
factor in the performance of an ANN is the dataset, which is usually split in a training and validation
dataset. Usually the larger the dataset and the more representative the data is, the better the final
model will perform.

2.2.1. Feedforward neural network
The simplest way to connect neurons to each other is in a feedforward manner. Feedforward neural
networks (FFNN) form an acyclic graph as the data passes through it in only one direction [22]: first
through the input layer, then through the hidden layers and finally through the output layer, see Fig. 2.2
which contains 6 inputs, 4 hidden layers and one output layer. When neural networks are fully con-
nected between each neurons in each layer they are sometimes called multilayer perceptrons. The
most common algorithm to train a FFNN is the first order backpropagation algorithm. Another option
one can opt for the second order Levenberg-Marquardt which helps to improve the rate of convergence,
although this will result in longer training times. The backpropagation algorithm computes the gradient
of the cost function 𝐽 with respect to the weights (and biases if included). The weights are then adapted
using this update rule:

𝑤𝑡+1 = 𝑤𝑡 − 𝜂
𝜕𝐽
𝜕𝑤𝑡

where 𝜂 is the learning rate, which has to be carefully chosen, such as to not get stuck in local
minima or make the algorithm diverge. Care should also be taken to choose an appropriate network
architecture and learning procedure such that overfitting is avoided. This can for instance happen
when more neurons are allocated than necessary, resulting in a model that will perform really well on
the training dataset but terribly on the validation dataset due to loss of generality.

2.3. Chapter Summary 20

2.2.2. Recurrent neural network
Contrary to FFNN, RNNs possess feedback connections on top of feedforward ones. The output of a
RNN can hence be used as one of the inputs to the network or as input to one of the previous hidden
layers. This has the advantage that the network has access to its own history, which might be needed
when the network output depends on a specific sequence of inputs.

2.3. Chapter Summary
This chapter gave a really brief introduction into common machine learning paradigms (supervised
learning, unsupervised learning and reinforcement learning) and the two main types of neural network
architectures (feedforward and recurrent neural networks). One should note the fundamental differ-
ences between the different learning paradigms, supervised learning is used to learn to map the fea-
tures (such as a quadrotor’s states) to given labels (such as the corresponding optimal control inputs).
Unsupervised learning on the other hand does not use labels which allows the network to identify pat-
terns in the data by itself. Finally, an analogy to reinforcement learning is how humans learn, namely
with trial and error. Contrary to supervised learning, RL creates feedback mechanisms by interacting
directly with the environment (either in simulation or on the physical platform). Two main neural network
architectures will be of interest in this research, depending on whether only the current states are given
as inputs (feedforward neural network) or a sequence of inputs (recurrent neural network).

Contrary to other applications of machine learning, such as computer vision, using flight data to
improve G&CNET is not as straightforward. For instance, if a neural network is used to detect obstacles
around the quadrotor, one can easily close the reality gap by retraining the network with the obstacles
it didn’t detect. In that case the obstacles would be manually labelled using flight data (i.e. the images).
This systematic approach is very powerful, however it is not clear yet how flight data can be used in a
similar fashion to improve G&CNET. Ch. 4 will delve deeper into the reality gap for G&CNETs.

3
Time-optimal Guidance & Control of

Drones
Time-optimal guidance and control for autonomous drones has become a central point of attention in
recent years [1, 24, 25]. Drone racing competitions like the AlphaPilot challenge [26] or AgileFlight
[25] are organized to push research towards more autonomous and faster drones. Researches have
tried to tackle this optimal control problem from different angles. One often distinguishes between two
types of control strategies: trajectory tracking methods (Sec. 3.1) and trajectory optimization methods
(Sec. 3.2). The former solves the optimal trajectory and then tracks the pre-computed trajectory with a
controller, whereas the latter combines both steps of generating the trajectory and the corresponding
control inputs together. Although trajectory generation methods are at the center of this research, an
overview of trajectory tracking methods is also provided hereby. A summary of this chapter is provided
at the end (Sec. 3.3).

3.1. Trajectory tracking methods
A main point of concern in the field of time-optimal control is that in order for drones to be fully au-
tonomous, the actuator controls need to be computed onboard of the drone (sometimes referred to
as online). For trajectory tracking methods it is usually the first step (trajectory generation) that is too
computationally expensive to be run online, whereas the control to track a pre-computed trajectory can
be generated online [25]. In order for trajectories to be close to the true time-optimal, one needs to
at least take into account the full set of equations of motion and thrust constraints for each actuator.
Current state-of-the-art solvers take minutes to hours to solve such a time allocation problem [24]. Not
being able to quickly compute the required control inputs has detrimental effects on the robustness of
the platform, as small disturbances cannot be corrected for, leading to sub-optimal trajectories or in the
worst case a crash. Also note that a truly time-optimal trajectory is at the boundary of the flight envelope
of the quadrotor, hence at any point in time, at least one of the four rotors will be at its physical limit,
leaving no room for control authority. Even small modelling errors can lead to crashes just because the
platform lacks control authority to correct its attitude. However modelling errors are bound to occur,
since a single crash can change the aerodynamic proprieties off a drone, hence one needs to make
the platform robust by either replanning the trajectory online or limiting the actuation limits [25].

There is a trade-off between using the full dynamical model, which makes the time allocation prob-
lemmore complex, and using a simpler dynamical model which could be solved online. Computationally
efficient algorithms which can be run online usually model the trajectories as polynomials or model the
drone as a point mass. Point mass models are fast to solve because the trajectory generation prob-
lem has a closed form solution [25]. Researchers managed to solve time-optimal trajectories through
multiple waypoints [26], however the point mass simplification cannot take into account rotations in 3
dimensions which are essential as the quadrotor needs to be rotated to point the thrust vector in the
correct direction. Hence the resulting trajectories are sub-optimal and cannot by themselves result in
time-optimal flight.

21

3.1. Trajectory tracking methods 22

The alternative is to use polynomials to generate trajectories. A popular approach for aggressive
flight is to exploit the differential flatness property of the dynamics of quadrotors. This property allows
to generate smooth trajectories that the under-actuated drone is able to track using robust nonlinear
controllers, as done by [27]. These smooth trajectories consist waypoints defined by their position and
yaw angle and are connected by polynomials. The optimizer subsequently optimizes the trajectory to
make it more time optimal. This method can be run onboard of the drone, but the trajectory generation
can lead to infeasible paths since the optimizer does not take the system’s dynamics into account. On
top of this the full actuator potential is not exploited due to the smoothness of the generated trajectories,
see [1], which leaves room for improvements towards more time optimal maneuvers. The smoothness
of the control inputs stems from the fact that they are sampled using their derivatives. However, the
control profile for time optimal flight usually resembles bang-bang control, which consists of step inputs
that allow aggressive maneuvers.

[1] have managed to circumvent the issue of reduced actuator potential in smooth trajectories.
In order to optimize a trajectory using numerical methods (i.e. make it time optimal), one needs to
associate a cost to each waypoint. This is problematic as one does not know in advance what time to
allocate to each waypoint. The authors present a solution that allows to optimize the trajectory and the
time optimality simultaneously by introducing two variables that complement each other: a progress
variable and a variable representing the proximity to the next waypoint. While the authors succeeded in
generating aggressive maneuvers, even beating professional human pilots in terms of lap consistency
and lap times, the method cannot be run online as it is computationally expensive and requires a model
predictive controller to track the generated trajectory.

Model predictive control (MPC) is a common control strategy for drones. It has the advantage that
it can take into account actuator constraints while simultaneously optimizing an objective function, as
explained by [2]. Unfortunately, MPC suffers from high computational requirements and the necessity
to have an accurate dynamical model. The latter issue was addressed in [2] by making use of neural
networks tomodel the complex aerodynamic effects of the drone using a distributed integration scheme.
Not only are neural networks well suited to capture the nonlinearities of the drone’s dynamics, since it
also has a low computational cost during inference, it doesn’t exacerbate the expensive computational
requirement that MPC controllers have. The authors tested their framework on a real drone, but the
reference signals had to be computed offline and sent to the drone, which were then tracked by a
Proportional–Integral–Derivative (PID) controller.

Note that one should not discredit the usefulness of point mass models as they have been used
successfully to quickly generate a reference trajectory which is then tracked by a Model Predictive
Contouring Controller (MPCC) [25]. This state-of-the-art control method allows to replan the trajectory
in real-time, which makes it robust to model mismatches and external disturbances. The MPCC in
[25] separates the time-optimal objective from the trajectory generation part, which only consists of a
3-dimensional path generated by a point mass model. The controller then produces the inputs such
that the generated path is completed in the minimal amount of time and the position error to the path is
minimized. Only considering the full equations of motion and actuator constraints during control opti-
mization allows to implement a computationally efficient algorithm. Note that the optimization problem
also uses a receding horizon which further decreases the computational load. Since the trajectories
generated by a point mass model can be physically infeasible, the authors use a contouring weight,
which tells the optimizer how closely it needs to follow the reference trajectory. This contouring weight
is dynamically changed when the quadrotor passes through a gate, as this is the most critical part, the
weight is then relaxed for the segments between the gates. Unfortunately, the algorithm is still to com-
putationally expensive to be fully run onboard of a quadrotor, as the real-life flight tests had to result to
an offboard computer to generated the control inputs.

From the research cited above, it can seem like researchers are counting on more powerful hard-
ware in the future to solve the algorithms that cannot be run onboard today. However, as transistors
become smaller and smaller, it is likely that one will reach the point where Moore’s law, which states
that:

“[...] the speed of computers, as measured by the number of transistors that can be placed
on a single chip, will double every year or two [...]” [28]

3.2. Trajectory optimization methods 23

won’t hold anymore. With this in mind, the most promising avenue is to generate algorithms that are
computationally lighter. In [29], the authors treated the onboard computability as a strict requirement.
The guidance and control algorithm is very similar to [25], where the controller is able to track non-
feasible trajectories generated by a point mass model. The authors cut down on the amount of cal-
culations required to find the minimal time trajectory using Dijkstra’s algorithm. Solving this problem
requires to find combinations of velocities along all three axis such that the resulting trajectory is time
optimal. To do so, velocities are sampled in a velocity graph. Unfortunately, Dijkstra’s algorithm scales
quadratically with the amount of edges on the velocity graph, which is why the authors sample the ve-
locities uniformly (instead of randomly) to minimize the amount of edges. This efficient process is then
repeated by refocusing a smaller cone of sampled velocities around the previously found trajectory.
The algorithm is stopped when the ratio of the time between two trajectories is less than some thresh-
old. This algorithm can be solved in 3.48𝑚𝑠 on a desktop and in 13.3𝑚𝑠 on a Jetson TX2, which is a
powerful embedded computer that can be implemented on a drone. The computational requirement is
reduced even more by only replanning the trajectory every second control iteration. The resulting adap-
tive algorithm is tested in real life by moving a gate during the flight and creating wind disturbances.
This constitutes the state-of-the-art in terms of onboard, adaptive and time-optimal quadrotor flight.
The only limitation that the authors mention is the fact that the state estimation is done by an offboard
motion capture system [29]. Note that the state estimation problem is just as important as the guidance
and control problem for time-optimal flight, however it is usually treated as a separate problem.

3.2. Trajectory optimization methods
Trajectory optimization methods treat the two problems of generating optimal trajectories and the corre-
sponding optimal controls as a single block. While directly solving OCPs as introduced in Ch. 1 cannot
be done onboard of drones, advances in machine learning such as [30] have shown that neural net-
works are able to learn the mapping between the current states and the corresponding optimal controls.
Essentially learning the solution to the Hamilton–Jacobi–Bellman equations (Eq. 1.5 and 1.6). Since
then, the use of neural networks as guidance and control networks (G&CNET) has been demonstrated
numerous times, most notably in the field of interplanetary trajectory optimization, see [31–34], but also
for quadrotors, see [3]. Another major advantage of neural nets is that they require low computational
power during inference, which is a crucial factor for quadrotors because of their limited onboard ca-
pacity. The main downsides of such approaches is the time-consuming training process which usually
requires a large amount of training data. In addition, neural networks are not well suited to be tuned
for a specific platform after training. While these methods have their limitations, they are a promising
approach as the entire control pipeline is informed about the quadrotor dynamics, current states and
possible constraints.

Reinforcement learning is a popular approach, similar to how a human pilot would learn to fly a
drone with trial and error, RL has the power to inform the network on what states or attitudes are
desired and which ones should be avoided (such as flying too close to a gate). This fact is leveraged in
[35] by training an adaptive model using reinforcement learning, that replans trajectories online at a low
computational cost. For each training episode a new random track is generated such that the agent is
exposed to a large variety of maneuvers. The OCP is formulated as an infinite-horizon Markov Decision
Process (MPD). The RL process then tries to find the optimal control policy such that a progress and
safety reward is optimized. Since the total time of flight is not known in advance, the progress reward
is formulated by projecting the quadrotor path onto a straight line that connects the centers of the
previous and next gate. A safety reward is then used to encourage the drone to fly through the middle
of the gate. Note that this results in suboptimal trajectories, as time-optimal flight often requires the
quadrotor to fly right at the apex of the gates. However, there is a trade-off between time optimal flight
and finishing the race without a crash, hence informing the agent on the riskiness of flying close to the
borders of a gate is a sensible thing to implement. In addition, since RL tends to suffer from long training
times, the authors adapt the difficulty of the randomly generated tracks based on how well the agent
is performing to maximize the amount of successful episodes. Using the relative gate observation to
represent the state of the drone as inputs, the network outputs the corresponding thrust commands.
While this method works really well in simulation, the authors only validated the generated trajectories
by performing a real test flight on a deterministic track, where a MPC was used to track the generated
trajectory.

3.3. Chapter Summary 24

The authors of [36] leveraged not only the advantages of supervised (imitation) learning to learn
from optimal trajectories, but also refined the G&CNET by training it using model-free reinforcement
learning. The G&CNET is initialized using a supervised learning scheme. The training data consists of
optimal trajectories obtained by solving the discretized HJB equations for a simplified dynamic model
since the full 12 degrees of freedom model is intractable (curse of dimensionality). These optimal
trajectories for a lower order drone model speed up the RL process as the agent does not have to start
learning from scratch. On top of this, the reinforcement learning step can be performed using the full,
higher order drone model, which is crucial to robustify the controller. In order to account for observation
errors, which are bound to happen on the physical platform, the authors model the observations in the
RL environment as a Brownian stochastic process. The resulting neural controller takes the drone’s
states as inputs and outputs the optimal thrust vector. Subsequent low level controllers then compute
the corresponding rotor commands. Unfortunately the authors only verified their controller in simulation,
but not on a real drone yet.

Prior work on G&CNETs also focused on training only using supervised learning [3]. The training
dataset consists of 250,000 trajectories that are partially time- and power-optimal. For this the cost
function of the OCP is defined as follows:

𝐽(𝜖, 𝑡𝑓 ,u(𝑡)) = (1 − 𝜖)𝑡𝑓 + 𝜖∫
𝑡𝑓

0
(𝑢1(𝑡)2 + 𝑢2(𝑡)2)𝑑𝑡 (3.1)

eq. 3.1 contains a continuation parameter 𝜖 which weighs the two objectives. This approach is useful
is purely time-optimal trajectories (𝜖 = 0) lead to very aggressive maneuvers, making the platform more
prone to crashes. The power-optimal case (𝜖 = 1) leads to smoother control inputs while still resulting
in quick lap times (as minimizing 𝑡𝑓 also minimizes the total power). Two G&CNETs are trained, one
with 𝜖 = 0.5 and one with 𝜖 = 0.2. Note that a reduced order (2-dimensional) drone model is used
to represent the dynamics, 𝑢1 and 𝑢2 correspond to the left and right rotor control inputs, respectively.
The resulting OCP is solved using the Hermite-Simpson transcription (Subsec. 1.3.2). The AMPL
language is used to formulate the OCP as it allows to inform the numerical solver (SNOPT - Sparse
Nonlinear OPTimizer) on the gradients and Hessian of the problem, which is advantageous as such
nonlinear problems tend to be difficult to solve, even with powerful commercial solvers. Each node in
the resulting trajectories are then added as a state-action pair to the training dataset, where the states
are the features and the action is the label. A simple network architecture consisting of only 3 layers
with 100 neurons each suffices to learn the mapping between states and control action. Note that
softplus activation functions for the hidden layers are particularly well-suited for such applications as
they allow to obtain a continuous representation of the control inputs [34], which prevents infeasible and
discontinuous jumps in the resulting control profile. The authors of [3] also added a delay to account for
the fact that on the real quadrotor, it takes some time between observing the current states, computing
the control inputs and sending these inputs to the rotors. Even once the controller has the desired
control inputs, it takes some time to reach the new commanded RPMs. Note that this G&CNET learns to
map the states to the optimal thrust and pitch acceleration, hence it still requires a lower level controller
(Incremental Nonlinear Dynamic Inversion (INDI)) to compute the corresponding rotor inputs. This low
level controller is indispensable in this case as the G&CNET was only trained on trajectories generated
by a 2-dimensional model. The INDI makes sure during the flight test that the drone keeps flying in a
straight line and keeps its yaw angle atΨ = 0∘. The flight tests showed promising results, outperforming
a controller based on the differential flatness property in terms of quadrotor speed. Since [3] has been
published, multiple MSc students from TU Delft have worked on improving this work. Rohan Camlesh
Chotalal extended the work to a 6-DoF dynamic model (MSc thesis not published at this time) and
Robin Ferede worked on reducing the reality gap and performing consistent, power-optimal laps (MSc
thesis not published at this time).

3.3. Chapter Summary
The fundamental difference between trajectory tracking methods and trajectory optimization methods
is that the former treats the guidance and control problems separately, whereas the latter solves both
problems in one step. In order to make drones fully autonomous, these algorithms will have to be com-
putationally light, such that they can be run onboard. Usually, the trajectory generation problem is the
most computationally expensive to solve. Most trajectory tracking methods resort to reduced order, or

3.3. Chapter Summary 25

even point mass models to generate time-optimal trajectories, as solving the full equations of motions
OCP can take minutes to hours. The first attempts at time-optimal flight relied on the generation of
polynomials by exploiting the differential flatness property of quadrotors. This method is computation-
ally light, but does not allow to generate the time-optimal bang-bang control due to the smoothness
of the control inputs. MPC and MPCC are very popular in literature as they allow to take the actuator
constraints into account while solving the optimization problem simultaneously. While most work rely
on an external computer to generate the control inputs with a MPC, one paper managed to make the
MPCC algorithm light enough such that it can be run onboard [29]. Trajectory optimization methods
are less common in literature, mainly due to the fact that it is difficult to tune such algorithms and the
training of neural networks is very time-consuming. Within trajectory optimization methods, RL is the
prevalent choice to train quadrotors, whereas supervised learning approaches remain limited. Given
the promising results in [3] and recent MSc thesis work by Rohan Camlesh Chotalal and Robin Ferede,
the use of G&CNET will further be explored in this work.

4
Bridging the Reality Gap for G&CNET

The reality gap is term used to define the differences between the simulated environment and real
life. This gap exists in all control applications for quadrotors, however in this chapter only the reality
gap for G&CNET is considered. It stems mainly from unmodelled dynamics (or inaccurate models)
(Sec. 4.1) and the cost function used to generate optimal trajectories (Sec. 4.2). Sec. 4.3 lays out
another approach to bridge the reality gap without changing the dynamic model or the cost function,
namely abstraction. A summary of this chapter is provided at the end (Sec. 4.4).

4.1. Dynamics model & state estimation
The models used in theory or in simulation do not capture all the dynamics that a real drone encounters,
they are simplifications of the complex real-life phenomena. System noise (model inaccuracies) and
sensor noise (external disturbances) are present and cause the system to behave differently in real-
life than in simulation, leading to a suboptimal trajectory or a crash. Note that given the computational
power currently available, it is unrealistic to aim for a perfect quadrotor model or perfect state estimation.
The mismatch due to this reality gap is bound to happen and cause errors relative to the theoretical
optimal trajectory. Hence, the goal should be to have a dynamical model and a state estimation step
that are ”good enough” such that the system has enough time to correct these errors.

One option to make a G&CNET more robust against the noisy and biased inputs from sensors is
to train the network on noisy input data using reinforcement learning. This has already been done in
[36]. In order to account for the uncertainty in states estimates during the network training, the authors
used a differential operator proposed by [37]. This operator models the observations (in this case the
quadrotor velocity) as a Brownian stochastic process which is meant to resemble the observations that
the controller will encounter in real life, hence making it more robust to these uncertainties. Since this
research focuses largely on the guidance and control aspect of quadrotors, the state estimation step will
be taking care off by a motion capture system called Opti-Track, as is done in [3]. The measurements
from Opti-Track in combination with possible Kalman filters offer state estimation that is more accurate
than onboard sensors could offer. Hence, it is not expected that the state estimation step will be the
limiting factor towards time-optimal flight. Note however that onboard state estimation is still an active
field of research, which is crucial to eventually deploy fully autonomous drones.

For this research the model inaccuracies are likely going to have a detrimental effect on the sim-
to-real transfer for time-optimal flight. An option to bridge this gap is to slightly vary the model at each
episode (for reinforcement learning) or for each generated optimal trajectory (for supervised learning).
This method is called domain randomization and has been used to train a network to recognize gates
under different lightning conditions [38], but also in the context of G&CNET. Robin Ferede has shown
that exposing the G&CNET to slightly different external moment disturbances during training facilitates
the transfer to real life. The resulting G&CNET can then use onboard sensor data from the inertial mea-
surement unit (IMU) to be informed on external moment disturbances (MSc thesis and corresponding
scientific paper not published yet).

26

4.2. Cost function 27

Finally, an obvious solution is tomake the already existingmodel more accurate, i.e. perform system
identification on the quadrotor. It is known that not all processes are well modelled, for instance the
ramp-up behaviour of actuators on the drone is often modelled using a simple linear model which might
differ drastically from the real life behaviour. In addition, quadrotors tend to pitch up when their forward
velocity increases, a behaviour that is not well modelled either. While improving such models will likely
improve the resulting behaviour of the G&CNET, it is not a good systematic solution as a single crash
can change the aerodynamic properties of the drone. In addition, this method does not transfer well
when one wants to use a completely different drone.

4.2. Cost function
In the context of optimal control, an inaccurate systemmodel is not the only contributor to the reality gap,
the cost function used to generate optimal trajectories has to be chosen really carefully. Note that if one
had a ”perfect model”, it would be already possible to fly the quadrotor in the same way as in simulation.
The reason the cost function is considered in the reality gap is that it might not fully describe the goal
of the application. Purely minimizing time might not be the sole interest of the robot when deployed
in real life, robustness also has to be taken into account. Similar to a human pilot, the decision he or
she makes will be based on a combination of factors. This decision process is difficult to write down
mathematically in a cost function. Even if it were possible to come up with a ”human-like” cost function,
one can still run into convergence problems when solving the corresponding OCP. An optimal control
strategy might also change during flight, an obvious solution would be to train the G&CNET on different
training datasets which all consist of trajectories generated with different cost functions. Unfortunately,
unless one informs the network, the G&CNET will likely output an average-out control input, which does
not resemble either of the true optimal inputs. This problem can be illustrated by so-called bifurcation
points. Imagine a point in front of an obstacle where avoiding the obstacle from the left or from the right
both constitute optimal trajectories. A G&CNET trained on both trajectories might output the average
control input, which would result in a straight (suboptimal) trajectory into the obstacle.

Figure 4.1: Example of 48 optimal trajectories generated using AMPL and SNOPT. The trajectories are required to traverse two
consecutive waypoints (the center of red circle and the orange dot, respectively).

A possible avenue which will be explored is to train the G&CNET on two consecutive waypoints
instead of just the upcoming one. Coming back to the human pilot analogy, if the pilot knows the
relative position of two consecutive gates, he or she will pass through the first gate taking the second
gate’s position and orientation into account. It is also possible to only train the G&CNET on the next
waypoint, right before reaching that waypoint, one needs to switch to the next waypoint, otherwise the
quadrotor will fly into a region of space that does not contain trajectories from the training dataset. This
will result in the asymptotic behaviour of the G&CNET, while this is an interesting field of research, it
is very difficult to guarantee the stability of the controller outside of the training data. Fig. 4.1 shows
a small bundle (collection of trajectories) which could be used to train a G&CNET. The blue dots are
the randomly sampled initial conditions and the orange dot is the final position (second waypoint). In
this case a constraint was added to the optimization problem which requires the minimal Euclidean
distance between the quadrotor and the first waypoint (center of red circle) to be below some variable

4.3. Other approach 28

threshold, here the threshold varies between 15𝑐𝑚 and 30𝑐𝑚. Note that one can also opt for a fixed
threshold, however there is a risk that the bundle of trajectories becomes very thin at the first waypoint
since every trajectory passes through the apex of the gate in order to minimize time. The thinner the
bundle of trajectories is, the more likely it is that the quadrotor ends up in states that are outside of
the training data. Most likely a trade-off has to be struck between providing the G&CNET with the
theoretical optimal trajectories (which is a very difficult OCP for the G&CNET to follow) and suboptimal
trajectories (which is an easier OCP to track).

It is also possible to improve the cost function with coach-supervised learning. One can perform
multiple flight tests with different cost functions and see which cost function performs best in terms of
robustness and speed on certain parts of the track. An adaptive cost function could then be formulated
which alters the objective based on the quadrotor’s states. This might also give insight into what aspects
of the OCP can be relaxed. In theory, the more feasible the OCP is, the easier it will be for G&CNET
to guide the drone while satisfying the constraints (and cost function) of this OCP.

4.3. Other approach
A final method to bridge the reality gap in the field of control is abstraction. The idea behind abstraction is
train the network on higher-level observations, which are less environment or platform dependent than
the raw sensor data. Classical controllers can then be used in combination with the neural net for the
low level control. [39] have shown that abstraction can be a solution to more robust neural controllers.
The authors used evolutionary algorithms (EAs) to train three micro air vehicles to form a triangle. The
transfer from simulation to reality worked for the controller that was trained using abstraction. Another
example of abstraction is in [35], where for the real life deployment of the quadrotor the authors only
used the neural network to output the optimal trajectory, this trajectory is then tracked using a classical
MPC. However, such a network would not be a Guidance & Control Network, since it only takes care
of the guidance part. This research solely focuses on making G&CNET more time-optimal, hence
abstraction will not be used to bridge the reality gap here.

4.4. Chapter Summary
In the context of G&CNET, the two main contributors to what is called the reality gap, i.e. the difference
between the simulated environment and real life, are model mismatches and inadequate cost functions.
Striving for a perfect dynamic model is not realistic as aerodynamic properties tend to change over
time and due to crashes. A more promising approach is to make the G&CNET robust against model
mismatches by training it on trajectories that are generated using a model which contains randomly
sampled external disturbances, a process called domain randomization. The cost function used to
solve the optimal trajectories determines the behaviour of the G&CNET. It will influence how aggressive
the maneuvers of the quadrotor are, how robust it is, how feasible the corresponding OCP is and the
convergence rate of the numerical solver. A promising approach is to formulate the OCP such that the
trajectories pass through two consecutive waypoints, as this informs the network on a larger portion of
the entire track.

It is not clear yet whether model mismatches or inappropriate cost functions are the limiting factor
when trying to fly quadrotors time-optimally. This is the subject of the preliminary research of this work.
Ever more time-optimal G&CNETs will be created by incrementally reducing the continuation parameter
𝜖 in Eq. 3.1. The resulting networks will then be evaluated on the Parrot Bebop 1 drone (Fig. 4.2) to
identify the cause of crashes and guide this thesis.

Figure 4.2: Figure from [3] showing the Parrot Bebop 1 drone.

III
Thesis planning

29

2 7 14 21 28 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 5 12 19 26 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30 6 13 20 27
2/22 3/22 4/22 5/22 6/22 7/22 8/22 9/22 10/22 11/22 12/22 1/23 2/23

Thesis planning: Sebastien Origer
 Start of thesis - Orientation (2 weeks)
 Initial meeting
 Kick-off meeting
 Thesis start

 Literature study (20 weeks)
 Optimal Control Theory
 State of the art control methods for drones
 Past efforts to reduce reality gap
 Machine learning for control applications
 Write literature study
 Formulate research question and objective
 Submit literature study
 Prepare literature study presentation
 Present literature study

 Preliminary work (13 weeks)
 Set up Gitlab repository for trajectory generation
 Train G&CNET with different levels of aggressiveness
 Organize Cyberzoo test flights
 Identify reality gap in current G&CNET
 Test time-optimal G&CNETs
 Test G&CNETs trained on two consecutive waypoints
 Consolidate work & plan tests for September

 Holidays
 Summer

 Main thesis work (16 weeks)
 Investigate ways to formulate 2 consecutive waypoint in OCP
 Train & test resulting G&CNET in simulation and real flight test
 Investigate ways to perform domain randomization
 Train & test resulting G&CNET in simulation and real flight test
 Investigate ways to relax OCP constraint
 Train & test resulting G&CNET in simulation and real flight test
 Mid-Term Review
 Incorporate feedback & perform different experiments
 Perform validation & benchmark experiments
 Write thesis & scientific paper

 Holidays
 Christmas

 Main thesis work: final steps (7 weeks)
 Green light Review
 Incorporate feedback and finish writing thesis & scientific paper
 Hand in thesis
 20 working days mandatory waiting time
 Prepare defence & presentation
 Thesis Defence

Powered by TCPDF (www.tcpdf.org)

IV
Research question

31

Research question and objectives
This research focuses on the neural representation of time-optimal quadrotor flight. This research
focuses only on the guidance and control problem of time-optimal flight. In order to fully deploy au-
tonomous drones, one would have to also address the state estimation problem. As estimating states
is usually treated as a whole separate problem, using for instance visual odometry to determine the
drone’s position and attitude, it is not treated in this research, hence it is assumed that accurate state
estimates are available (using the motion capture system Opti-Track).

Previous work [3] has already shown that G&CNETs trained using supervised learning can success-
fully guide and control drones but do not reach time optimality yet. Hence, this research will focus on
bridging the reality gap in order to fly faster while retaining the robustness of existing G&CNETs. This
research comprises of tests in simulation and real flights at the Cyberzoo (TU Delft). Given the limited
computational power onboard of quadrotors, the G&CNET resulting from this work needs to be light
enough to be run onboard. That being said, the research question and objective are formulated below.

4.5. Research Question
The main research question of this thesis is:

“Can current G&CNETs perform more time-optimally without losing robustness and still
meet the computational requirement to be run onboard of a quadrotor?”.

4.6. Research Objective
The main research objective of this thesis is:

“To improve current G&CNETs in terms of their time-optimality by reducing the reality gap
introduced by model inaccuracies and the optimal control formulation.”.

To bridge the reality gap caused by modelling inaccuracies the idea presented by Robin Ferede will
be extended. Robin uses domain randomization to train the G&CNET on a range of external moment
disturbances. This research will include corrections for the drag forces and thrust, as well as corrections
in actuator delay.

To bridge the gap caused by the optimal control formulation, optimal trajectories passing through
two consecutive waypoints will be considered. In addition, flight data will be analysed to come up with
a novel cost function which facilitates the OCP.

The relevance of this work is apparent in the numerous applications of quadrotors, some of which
depend on fast flying capabilities to be successful. Search and rescue missions, delivery service,
cinematography and drone racing are only a few of these applications. In addition, this research is
relevant as there aren’t many methods to systematically improve G&CNETs. Performing extensive
system identification will improve the performance of a G&CNET but transfers poorly when a different
quadrotor needs to be used and is not robust to changes in aerodynamic properties. Understanding
better what drives the performance of machine learning for control applications has repercussions on
a myriad of robotic applications.

32

Bibliography
[1] Foehn, P., Romero, A., and Scaramuzza, D., “Time-optimal planning for quadrotor waypoint flight,”

Science Robotics, Vol. 6, No. 56, 2021. doi:10.1126/scirobotics.abh1221, URL https://
doi.org/10.1126%2Fscirobotics.abh1221.

[2] Salzmann, T., Kaufmann, E., Pavone, M., Scaramuzza, D., and Ryll, M., “Neural-MPC: Deep
Learning Model Predictive Control for Quadrotors and Agile Robotic Platforms,” , 2022. doi:10.
48550/ARXIV.2203.07747, URL https://arxiv.org/abs/2203.07747.

[3] Li, S., Ozturk, E., Wagter, C. D., de Croon, G. C. H. E., and Izzo, D., “Aggressive Online Control of
a Quadrotor via Deep Network Representations of Optimality Principles,” 2020 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2020. doi:10.1109/icra40945.2020.
9197443, URL https://doi.org/10.1109%2Ficra40945.2020.9197443.

[4] Kaufmann, E., Loquercio, A., Ranftl, R., Mueller, M., Koltun, V., and Scaramuzza, D., “Deep Drone
Acrobatics,” 2020. doi:10.15607/RSS.2020.XVI.040.

[5] Verbeke, J., and Schutter, J. D., “Experimental maneuverability and agility quantification for
rotary unmanned aerial vehicle,” International Journal of Micro Air Vehicles, Vol. 10, No. 1,
2018, pp. 3–11. doi:10.1177/1756829317736204, URL https://doi.org/10.1177/
1756829317736204.

[6] Sargent, R., “Optimal control,” Journal of Computational and Applied Mathematics, Vol. 124,
No. 1, 2000, pp. 361–371. doi:https://doi.org/10.1016/S0377-0427(00)00418-0, URL
https://www.sciencedirect.com/science/article/pii/S0377042700004180, nu-
merical Analysis 2000. Vol. IV: Optimization and Nonlinear Equations.

[7] Pesch, H. J., “The Princess and Infinite-Dimensional Optimization,” Documenta Mathematica,
2012.

[8] Bellman, R., Dynamic Programming, Dover Publications, 1957.

[9] Todorov, E., “Optimal control theory,” Bayesian brain: probabilistic approaches to neural coding,
2006, pp. 268–298.

[10] Pontryagin, L., Mathematical Theory of Optimal Processes, CRC Press, 1987.

[11] Rao, A. V., “A survey of numerical methods for optimal control,” Advances in the Astronautical
Sciences, Vol. 135, No. 1, 2009, pp. 497–528.

[12] Bellman, R., and Dreyfus, S., “Functional Approximations and Dynamic Programming,” Math-
ematical Tables and Other Aids to Computation, Vol. 13, No. 68, 1959, pp. 247–251. URL
http://www.jstor.org/stable/2002797.

[13] Bliss, G., Lectures on the calculus of variations, University of Chicago Press, 1961.

[14] Bryson, J. A. E., and Ho, Y.-C., Applied Optimal Control: Optimization, Estimation, and Control,
Taylor & Francis Group, 1975.

[15] Rösmann, C., Makarow, A., and Bertram, T., “Time-optimal control with direct collocation and
variable discretization,” , 2020. doi:10.48550/ARXIV.2005.12136, URL https://arxiv.
org/abs/2005.12136.

[16] Kelly, M., “An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation,”
SIAM Review, Vol. 59, No. 4, 2017, pp. 849–904. doi:10.1137/16M1062569, URL https:
//doi.org/10.1137/16M1062569.

33

Bibliography 34

[17] Foehn, P., and Scaramuzza, D., “Onboard State Dependent LQR for Agile Quadrotors,” 2018
IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2018. doi:10.1109/
icra.2018.8460885, URL https://doi.org/10.1109%2Ficra.2018.8460885.

[18] Camacho, E., and Bordons, C., Model Predictive Control, Vol. 13, 2004. doi:10.1007/
978-0-85729-398-5.

[19] Kaiser, E., Kutz, J. N., and Brunton, S. L., “Sparse identification of nonlinear dynamics for model
predictive control in the low-data limit,” Proceedings of the Royal Society A: Mathematical, Physi-
cal and Engineering Sciences, Vol. 474, No. 2219, 2018, p. 20180335. doi:10.1098/rspa.2018.
0335, URL https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2018.
0335.

[20] Torrente, G., Kaufmann, E., Foehn, P., and Scaramuzza, D., “Data-Driven MPC for Quadrotors,”
CoRR, Vol. abs/2102.05773, 2021. URL https://arxiv.org/abs/2102.05773.

[21] Narendra, K., “Neural networks for control theory and practice,” Proceedings of the IEEE, Vol. 84,
No. 10, 1996, pp. 1385–1406. doi:10.1109/5.537106.

[22] Qin, T.,Machine Learning Basics, Springer Singapore, Singapore, 2020, pp. 11–23. doi:10.1007/
978-981-15-8884-6_2, URL https://doi.org/10.1007/978-981-15-8884-6_2.

[23] Azar, A. T., Koubaa, A., Ali Mohamed, N., Ibrahim, H. A., Ibrahim, Z. F., Kazim, M., Ammar,
A., Benjdira, B., Khamis, A. M., Hameed, I. A., and Casalino, G., “Drone Deep Reinforcement
Learning: A Review,” Electronics, Vol. 10, No. 9, 2021. doi:10.3390/electronics10090999,
URL https://www.mdpi.com/2079-9292/10/9/999.

[24] Foehn, P., Romero, A., and Scaramuzza, D., “Time-Optimal Planning for Quadrotor Waypoint
Flight,” CoRR, Vol. abs/2108.04537, 2021. URL https://arxiv.org/abs/2108.04537.

[25] Romero, A., Sun, S., Foehn, P., and Scaramuzza, D., “Model Predictive Contouring Control for
Time-Optimal Quadrotor Flight,” , 2021. doi:10.48550/ARXIV.2108.13205, URL https://
arxiv.org/abs/2108.13205.

[26] Foehn, P., Brescianini, D., Kaufmann, E., Cieslewski, T., Gehrig, M., Muglikar, M., and Scara-
muzza, D., “AlphaPilot: Autonomous Drone Racing,” , 2020. doi:10.48550/ARXIV.2005.
12813, URL https://arxiv.org/abs/2005.12813.

[27] Mellinger, D., and Kumar, V. R., “Minimum snap trajectory generation and control for quadrotors,”
2011 IEEE International Conference on Robotics and Automation, 2011, pp. 2520–2525.

[28] Mollick, E., “Establishing Moore’s Law,” IEEE Annals of the History of Computing, Vol. 28, No. 3,
2006, pp. 62–75. doi:10.1109/MAHC.2006.45.

[29] Romero, A., Penicka, R., and Scaramuzza, D., “Time-Optimal Online Replanning for Agile Quadro-
tor Flight,” , 2022. doi:10.48550/ARXIV.2203.09839, URL https://arxiv.org/abs/
2203.09839.

[30] Bardi, M., Dolcetta, I. C., et al.,Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman
equations, Vol. 12, Springer, 1997.

[31] Sánchez-Sánchez, C., and Izzo, D., “Real-time optimal control via deep neural networks: study
on landing problems,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 5, 2018, pp.
1122–1135.

[32] Izzo, D., and Öztürk, E., “Real-Time Guidance for Low-Thrust Transfers Using Deep Neural Net-
works,” Journal of Guidance, Control, and Dynamics, Vol. 44, No. 2, 2021, pp. 315–327. doi:
10.2514/1.G005254.

[33] Tailor, D., and Izzo, D., “Learning the optimal state-feedback via supervised imitation learning,”
Astrodynamics, Vol. 3, No. 4, 2019, pp. 361–374.

Bibliography 35

[34] Izzo, D., and Origer, S., “Neural representation of a time optimal, constant acceleration ren-
dezvous,” , 2022. doi:10.48550/ARXIV.2203.15490, URL https://arxiv.org/abs/
2203.15490.

[35] Song, Y., Steinweg, M., Kaufmann, E., and Scaramuzza, D., “Autonomous Drone Racing with
Deep Reinforcement Learning,” , 2021. doi:10.48550/ARXIV.2103.08624, URL https://
arxiv.org/abs/2103.08624.

[36] Nagami, K., and Schwager, M., “HJB-RL: Initializing Reinforcement Learning with Optimal Control
Policies Applied to Autonomous Drone Racing,” Robotics: Science and Systems XVII, 2021.

[37] Carmona, M. A., Munishkin, A. A., Boivin, M., and Milutinović, D., “Stochastic Optimal Approach
to the Steering of an Autonomous Vehicle through a Sequence of Roadways,” 2019 American
Control Conference (ACC), 2019, pp. 3279–3284. doi:10.23919/ACC.2019.8814762.

[38] Loquercio, A., Kaufmann, E., Ranftl, R., Dosovitskiy, A., Koltun, V., and Scaramuzza, D., “Deep
Drone Racing: From Simulation to Reality With Domain Randomization,” IEEE Transactions on
Robotics, Vol. PP, 2019, pp. 1–14. doi:10.1109/TRO.2019.2942989.

[39] Scheper, K. Y. W., and de Croon, G. C. H. E., “Abstraction, Sensory-Motor Coordination, and
the Reality Gap in Evolutionary Robotics,” Artificial Life, Vol. 23, No. 2, 2017, pp. 124–141. doi:
10.1162/ARTL_a_00227, URL https://doi.org/10.1162/ARTL_a_00227.

Part III

Addition results

56

Addition results

Introduction
This Chapter describes additional results which might come in handy to anyone who wants to continue

this project. The following topics are covered: tips are provided on how to solve complex trajectories,

trajectories with a high number of nodes and improving the quality of the training dataset when using

AMPL. Flight data of a real flight is provided as well as a discussion of which parts of the dynamic

model fail when moving towards time-optimal flight. Findings on how to improve the guidance &

control network training procedure are described. A comparison between the energy-optimal and the

time-optimal objectives is provided. Finally, an example of a real flight where the waypoints are set to

different altitudes is given.

Solving optimal trajectories in AMPL
In order to generate the training datasets for the Guidance & Control Networks (G&CNETs), thousands

of optimal trajectories are generated using the modelling language AMPL. This section explains how

AMPL can be used to solve complex trajectories, increase the amount of nodes for a given trajectory and

gives possible ways to improve the quality of the training data.

Solving complex trajectories
Solving complete tracks is interesting for two reasons: it allows to see how close the quadcopter is flying

to global optimal trajectory, even when it has only learned to fly to a specific waypoint or to fly a turn.

In addition, for time-optimal flight, it gives an indication for what the optimal time of flight is for an

entire track. In the case of the Parrot Bebop 1, the minimum time of flight for the 4 × 3m track is 2.57s

when starting from hover and using a waypoint distance constraint of 1cm.

AMPL can easily solve short trajectories and relatively simple optimal control problems using the

6-degrees-of-freedom quadcopter model. However, in the current setup it becomes difficult for the

solver to converge as soon as the tracks become more complex if no good initial guess is provided. We

experimented with three approaches, all of which use continuation (i.e. using the solution of a similar

optimal control problem as an initial guess) to aid the solver. Consider solving the 4 × 3m track used

in this work in one go by setting four intermediate waypoint constraints as described in Part.I. If the

waypoint constraint (distance from the intermediate waypoints) is too small and no good initial guess is

provided, then AMPL does not converge. A way to mitigate this is by using constraint relaxation. By

first setting the waypoint distance constraint to 1m and then using continuation, one can incrementally

enforce the solution to pass closer to the waypoint (up until 1cm, see Fig.1.1). Continuation can also

be used by combining different solutions together. Fig.1.2 shows how the 4 × 3m track is solved by

first individually solving each leg of the track (each portion between two consecutive waypoints). The

solutions of all four legs are then "glued" together and used as an initial guess to solve the complete

track. Finally, it is also possible to solve each turn first and then "glue" the solutions together, see Fig.1.3.

This last method also works well for even more complex tracks. We managed to solve a track containing

seven waypoints with left and right turns by first solving each turn individually. Without continuation

such tracks cannot be solved directly by AMPL.

The final solutions for the entire track in Fig.1.1, Fig.1.2 and Fig.1.3 are actually all slightly different.

This is likely due to a variety of reasons:

• We are using a direct method, hence the solutions are approximations of the true optimal trajectory.

• The solutions of the solver have numerical noise due to integration errors between the nodes.

• We might be stuck in a local minimum.

• The way in which ones uses continuation strongly influences the quality of the final solution.

57

58

Figure 1.1: From top to bottom: waypoint distance constraint relaxation to solve the entire track, then using continuation, the

subsequent optimal control problems can be solved. The green crosses and red circles indicate the waypoint positions and

distance constraint, respectively.

59

Figure 1.2: From top to bottom: solving the entire 4 × 3m track by first solving each leg (the trajectories between each waypoints)

and then glueing the solutions together to provide the solver with a good initial guess. The green crosses indicate the waypoint

positions.

60

Figure 1.3: From top to bottom: solving the entire 4 × 3m track by first solving each turn and then glueing the solutions together

to provide the solver with a good initial guess. The green crosses indicate the waypoint positions.

61

Figure 1.4: Wall time of solver versus number of nodes of optimal control problem.

Node doubling technique
The amount of nodes over which the optimal control problem is discretized has also shown to strongly

affect convergence and the solution itself. As described in Part.I, increasing the number of nodes might

be desirable to alleviate some of the numerical noise present in the solution. This can be done by first

solving the problem for a low number of nodes, then interpolating the optimal solution with quadratic

splines and projecting this interpolant on a new grid of nodes. Using continuation, it is for instance

possible to solve optimal trajectories with 1000 nodes, which is not possible if no good initial guess is

provided. In addition, a major disadvantage of machine learning technique is that generating training

data can take a lot of time. By using continuation one can drastically decrease the wall time needed for

the solver to converge. Consider Fig.1.4, where we first solve a given optimal control problem with 100

nodes. Using continuation it is possible to solve this same trajectory with 800 nodes in 40s. Without

continuation AMPL does not even converge for 800 nodes and for 400 nodes it takes almost 6min to find

a solution.

Possible ways to improve training dataset quality
Since the network tries to approximate all training trajectories as best of possible, it is conceivable that

sub-optimal trajectories have a detrimental effect on the accuracy of G&CNETs. One way to decrease the

likelihood of local minima in the training dataset is to solve a given trajectory multiple times with AMPL,

each time giving a different random initial guess. In case AMPL converges to the same solution most

of the time, one can be more confident that this solution is close to the global optimum. Now that we

have one "good" solution, we can use continuation to solve optimal control problems with neighbouring

initial conditions. This way the quality of each solution is increased and the resulting training dataset is

more likely to be coherent. In some rare cases, multiple optimal paths exist, for instance flying around

an object from the left or the right side. Solving such an optimal control problem multiple times would

prevent injecting ambiguous cases to the training dataset since the solutions would not converge often

enough to the same solution.

In the current setup the initial conditions for the optimal trajectories are uniformly sampled within

certain bounds. One way to improve the learning process and the performance of the resulting G&CNET

could be to generate training datasets which are tailored to the track. This work has not explored

whether or not a uniform distribution of initial conditions is necessarily required. One way one can

tailor the training dataset is by testing an existing G&CNET in simulation or on the real quadcopter.

Every point in state-space of the flight data is a valid initial condition for the training dataset. Care

should be taken as AMPL sometimes converges to weird solutions that are clearly sub-optimal, however

these are considered successful solutions by the solver. By solving similar trajectories and comparing

these one can spot and filter out these sub-optimal trajectories from the training dataset which will

likely result in a lower loss during training.

62

Time-optimal flight with G&CNETs: shortcomings
It is possible to fly the Parrot Bebop 1 with a G&CNET trained with 𝜖 = 0.35 using the following cost

function:

𝐽(u, 𝑇) = (1 − 𝜖)𝑇 + 𝜖

∫ 𝑇

0

| |u(𝑡)| |2𝑑𝑡

−2 −1 0 1 2
y [m]

−2

−1

0

1

2

x
[m

]

G&CNET with ε = 0.4
Mean velocity = 4.88 [m/s] - Max. velocity = 6.54 [m/s]

First lap time: 2.95 [s] - Second lap time: 3.01 [s]

0

1

2

3

4

5

6

7

V
[m

/s
]

Figure 1.5: Trajectory of a real flight with 𝜖 = 0.5.

where u are the controls and 𝑇 is the

time-of-flight. However, in the current setup

flights with 𝜖 < 0.5 do not fly the 4 × 3m

track consistently on the same path. Part.I

explains why some of these instabilities are

due to the loss during training. In this section

we eloborate a bit more on the reality gap

which is also a strong contributor to unstable

flight. This gap is mainly caused by delays

in the hardware, state estimation errors with

the Optitrack system and modelling errors.

Fig.1.5 shows the velocity map of a G&CNET

with 𝜖 = 0.4 (hence only slightly more time-

optimal than the one used in Part.I). Clearly

the network struggles to keep the quadcopter

on the optimal path. The commanded and

observed angular velocities of all four rotors

during the flight are shown in Fig.1.6. The

two back rotors (𝜔3 and 𝜔4) saturate during a

considerable portion of the flight. Compared

to the flight with 𝜖 = 0.5 in Part.I there is

even less control authority left to correct for

errors.

0 2 4 6 8
Time [s]

4000

6000

8000

10000

12000

ω
1

[R
P

M
]

0 2 4 6 8
Time [s]

4000

6000

8000

10000

12000

ω
2

[R
P

M
]

0 2 4 6 8
Time [s]

4000

6000

8000

10000

12000

ω
3

[R
P

M
]

0 2 4 6 8
Time [s]

4000

6000

8000

10000

12000

ω
4

[R
P

M
]

Commanded ωcom
Observed ωobs

RPM range [ωmin, ωmax]

G&CNET with ε = 0.4

Figure 1.6: Commanded and observed angular velocities of the four rotors.

63

Fig.1.7 shows the errors between modeled and measured moments which are fed to the adaptive

G&CNET, following the method proposed by [3]. While the G&CNET learned to take into account these

modeling errors there are a couple of reasons why the current setup might be insufficient to fly stably:

• One of the main assumption of the method proposed in [3] is the there is a constant external

moment disturbance acting on the drone, which is not the case in Fig.1.7.

• The error that is fed to the network is delayed since it is low-pass filtered (cut-off frequency of

9Hz). However the quadcopter is doing aggressive maneuvers, leading to rapid changes in the

sign of the error (see 𝑡 = 1s in Fig.1.7).

• The magnitudes of the moment errors around the y-axis and z-axis are outside of the bounds

which are used to generate the training dataset (𝑀𝑒𝑥𝑡,𝑦 ∈ [−0.04, 0.04],Nm and 𝑀𝑒𝑥𝑡,𝑧 ∈
[−0.01, 0.01],Nm).

0 1 2 3 4 5 6
Time [s]

−0.03

−0.02

−0.01

0.00

0.01

0.02

M
ex
t,
x

[N
m

]

G&CNET with ε = 0.4

0 1 2 3 4 5 6
Time [s]

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

M
ex
t,
y

[N
m

]

0 1 2 3 4 5 6
Time [s]

−0.02

−0.01

0.00

0.01

0.02

M
ex
t,
z

[N
m

]

Figure 1.7: Differences between modelled and measured moments along all three axes. These signals are fed to the G&CNET

following the adaptive method proposed in [3]. The red vertical lines roughly indicate the times at which the quadcopter passes a

waypoint.

The quadcopter model used in this work also does not take into account its downwash, which could

be one of the causes for the model errors in acceleration. We noticed that the drone particularly had

difficulties maintaining its altitude for lower 𝜖. Fig.1.8 shows the measured and modeled acceleration

64

in the z-axis (world frame, see Part.I). It might be beneficial to either perform more in depth system

identification in the future or one could try a similar approach as in [3] only this time for thrust and drag,

i.e. using domain randomization for the training trajectories by adding external forces disturbances.

This model error (difference between the two signals shown in Fig.1.8) can then be computed onboard

and fed to the G&CNET.

0 1 2 3 4 5 6
Time [s]

−18

−16

−14

−12

−10

−8

−6

−4

A
cc

el
er

at
io

n
z-

ax
is

(W
or

ld
fr

am
e)

[m
/s

2
]

G&CNET with ε = 0.4

Measured acceleration (z-world)

Modeled acceleration (z-world)

Figure 1.8: Measured and modeled acceleration in the z-axis (world coordinate system, see Part.I).

G&CNET training procedure

...
...

...
x

𝑢1

𝑢2

𝑢3

𝑢4

(ReLU)

120

neurons

(ReLU)

120

neurons

(ReLU)

120

neurons

(Sigmoid)

Output

layer

Figure 1.9: Feed forward network architecture.

The standard network architecture used in

this work is shown in Fig.1.9. This section

provides the finding when comparing the

final loss (mean squared error) of different

training setups. The current architecture is

reaching its limit in terms of the amount of

information it can learn to approximate. Us-

ing the same training setup and only adding

one hidden layer or doubling the amount

of neurons in the hidden layer have both

shown to result in a lower loss. The G&CNET

also stands to benefit from larger training

datasets. We tried dataset with 10000, 40000

and 100000 optimal trajectories, in every case

the loss decreased for larger dataset. We

also tried using Softplus activation functions

instead of ReLU for the hidden layers, as Softplus are advantageous to obtain a continuous representation

of the optimal controls. There was no apparent difference in final loss when comparing both activation

functions, hence we kept the ReLU as the network can be inferred faster onboard of the quadcopter with

this activation function. Future work could try to further improve the loss by training longer, using

different batch-sizes and rigorously removing all sub-optimal trajectories in the training dataset.

65

Comparison between energy- and time-optimal objectives

Figure 1.10: Epsilon versus time-of-flight. Corresponding trajectories

are shown in Fig.1.11.

A rough indication of how much time there

is to gain when moving from the energy-

optimal control problem to the time-optimal

control problem is provided here. Let’s con-

sider flying in a straight line 5m forward,

starting from hover. The resulting trajecto-

ries for a range of 𝜖 ∈ [0.0, 1.0] are shown

in Fig.1.11 where the coloring of the trajecto-

ries corresponds to the one used in Fig.1.10,

which shows the time-of-flight for each of

them. The time-optimal trajectory has con-

siderably larger excursions in the z-direction

(Fig.1.11) and its time-of-flight is 0.5s lower

than for the energy-optimal case. While min-

imizing energy indirectly minimizes the time

spent in the air, it is still considerably slower

than the time-optimal objective.

Figure 1.11: Optimal trajectories ranging from energy-optimal (blue) to time-optimal (red).

Flying at different altitudes with a G&CNET

Figure 1.12: Real flight with 𝜖 = 0.4. The quadcopter spirals up and down by 1m.

Finally, in this entire work the

flights are kept in the XY-plane

for simplicity. However, it is def-

initely possible to fly at different

altitudes. This is shown in Fig.1.12

which is a real flight using 𝜖 = 0.4.

The waypoints are positioned such

that the quadcopter incrementally

spirals up and then down by 1m

in total. The reasons why larger

altitude differences where not yet

tested are because the initial al-

titudes for the training dataset

are sampled within a small range

(𝑧0 ∈ [−0.5, 0.5],m) and to avoid

losing track of the quadcopter in

the Cyberzoo (which can happen

close to the ceiling).

References

[1] Leonard Bauersfeld and Davide Scaramuzza. Range, Endurance, and Optimal Speed Estimates for
Multicopters. 2021. doi: 10.48550/ARXIV.2109.04741. url: https://arxiv.org/abs/2109.04741.

[2] C. De Wagter et al. “Learning fast in autonomous drone racing”. English. In: Nature Machine
Intelligence 3.10 (2021). Copyright: Copyright 2021 Elsevier B.V., All rights reserved., p. 923. issn:

2522-5839. doi: 10.1038/s42256-021-00405-z.

[3] Robin Ferede et al. “An Adaptive Control Strategy for Neural Network based Optimal Quadcopter

Controllers”. MA thesis. TU Delft Aerospace Engineering, 2022. url: http://resolver.tudelft.
nl/uuid:b43a9703-082c-47c7-a56e-d50794ee8c1c.

[4] Philipp Foehn, Angel Romero, and Davide Scaramuzza. “Time-optimal planning for quadrotor

waypoint flight”. In: Science Robotics 6.56 (2021), eabh1221. doi: 10.1126/scirobotics.abh1221.
eprint: https://www.science.org/doi/pdf/10.1126/scirobotics.abh1221. url: https:
//www.science.org/doi/abs/10.1126/scirobotics.abh1221.

[5] Dario Izzo and Sebastien Origer. “Neural representation of a time optimal, constant acceleration

rendezvous”. In: Acta Astronautica (2022). issn: 0094-5765. doi: https://doi.org/10.1016/
j.actaastro.2022.08.045. url: https://www.sciencedirect.com/science/article/pii/
S0094576522004581.

[6] Dario Izzo and Ekin Öztürk. “Real-Time Guidance for Low-Thrust Transfers Using Deep Neural

Networks”. In: Journal of Guidance, Control, and Dynamics 44.2 (2021), pp. 315–327. doi: 10.2514/1.
G005254.

[7] Elia Kaufmann et al. “Deep Drone Acrobatics”. In: RSS: Robotics, Science, and Systems (2020).

[8] Shuo Li et al. “Aggressive Online Control of a Quadrotor via Deep Network Representations of

Optimality Principles”. In: CoRR abs/1912.07067 (2019). arXiv: 1912.07067. url: http://arxiv.
org/abs/1912.07067.

[9] Shuo Li et al. “Autonomous drone race: A computationally efficient vision-based navigation and

control strategy”. In: Robotics and Autonomous Systems 133 (2020), p. 103621. issn: 0921-8890. doi:

https://doi.org/10.1016/j.robot.2020.103621. url: https://www.sciencedirect.com/
science/article/pii/S0921889020304619.

[10] Giuseppe Loianno et al. “Estimation, Control, and Planning for Aggressive Flight With a Small

Quadrotor With a Single Camera and IMU”. In: IEEE Robotics and Automation Letters 2.2 (2017),

pp. 404–411. doi: 10.1109/LRA.2016.2633290.

[11] Daniel Mellinger and Vĳay Kumar. “Minimum snap trajectory generation and control for

quadrotors”. In: 2011 IEEE International Conference on Robotics and Automation. 2011, pp. 2520–2525.

doi: 10.1109/ICRA.2011.5980409.

[12] Daniel Mellinger, Nathan Michael, and Vĳay Kumar. “Trajectory generation and control for

precise aggressive maneuvers with quadrotors”. In: The International Journal of Robotics Research
31.5 (2012), pp. 664–674. doi: 10.1177/0278364911434236. eprint: https://doi.org/10.1177/
0278364911434236. url: https://doi.org/10.1177/0278364911434236.

[13] Kartik Mohta et al. “Fast, Autonomous Flight in GPS-Denied and Cluttered Environments”. In:

Journal of Field Robotics 35 (Dec. 2017). doi: 10.1002/rob.21774.

[14] Angel Romero et al. Model Predictive Contouring Control for Time-Optimal Quadrotor Flight. 2021.

doi: 10.48550/ARXIV.2108.13205. url: https://arxiv.org/abs/2108.13205.

[15] Tim Salzmann et al. Neural-MPC: Deep Learning Model Predictive Control for Quadrotors and Agile
Robotic Platforms. 2022. doi: 10.48550/ARXIV.2203.07747. url: https://arxiv.org/abs/2203.
07747.

66

https://doi.org/10.48550/ARXIV.2109.04741
https://arxiv.org/abs/2109.04741
https://doi.org/10.1038/s42256-021-00405-z
http://resolver.tudelft.nl/uuid:b43a9703-082c-47c7-a56e-d50794ee8c1c
http://resolver.tudelft.nl/uuid:b43a9703-082c-47c7-a56e-d50794ee8c1c
https://doi.org/10.1126/scirobotics.abh1221
https://www.science.org/doi/pdf/10.1126/scirobotics.abh1221
https://www.science.org/doi/abs/10.1126/scirobotics.abh1221
https://www.science.org/doi/abs/10.1126/scirobotics.abh1221
https://doi.org/https://doi.org/10.1016/j.actaastro.2022.08.045
https://doi.org/https://doi.org/10.1016/j.actaastro.2022.08.045
https://www.sciencedirect.com/science/article/pii/S0094576522004581
https://www.sciencedirect.com/science/article/pii/S0094576522004581
https://doi.org/10.2514/1.G005254
https://doi.org/10.2514/1.G005254
https://arxiv.org/abs/1912.07067
http://arxiv.org/abs/1912.07067
http://arxiv.org/abs/1912.07067
https://doi.org/https://doi.org/10.1016/j.robot.2020.103621
https://www.sciencedirect.com/science/article/pii/S0921889020304619
https://www.sciencedirect.com/science/article/pii/S0921889020304619
https://doi.org/10.1109/LRA.2016.2633290
https://doi.org/10.1109/ICRA.2011.5980409
https://doi.org/10.1177/0278364911434236
https://doi.org/10.1177/0278364911434236
https://doi.org/10.1177/0278364911434236
https://doi.org/10.1177/0278364911434236
https://doi.org/10.1002/rob.21774
https://doi.org/10.48550/ARXIV.2108.13205
https://arxiv.org/abs/2108.13205
https://doi.org/10.48550/ARXIV.2203.07747
https://arxiv.org/abs/2203.07747
https://arxiv.org/abs/2203.07747

References 67

[16] Carlos Sánchez-Sánchez and Dario Izzo. “Real-Time Optimal Control via Deep Neural Networks:

Study on Landing Problems”. In: Journal of Guidance, Control, and Dynamics 41 (Oct. 2016). doi:

10.2514/1.G002357.

https://doi.org/10.2514/1.G002357

	Preface
	Abstract
	Introduction
	I Scientific Paper
	II Literature review
	III Addition results
	References

