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Abstract

Estimating the transmembrane currents travelling through the epicardium and local ac-
tivation times based on atrial epicardial electrograms can greatly help in the study of
cardiac arrhythmias such as atrial fibrillation. This work focuses on the accurate esti-
mation of the aforementioned signals and features. To do this, two least squares-based
regression methods were used to estimate transmembrane currents from electrograms and
then find their local activation times by searching for the maximum negative slope. The
first least squares optimization method consists of using standard least squares, while the
second consists of regularized least squares, by combining both lasso and ridge regression,
to deal with signal sparsity and multicollinearity, respectively. Furthermore, to improve
estimation results, multiresolution analyses based on wavelet decompositions and princi-
pal components analysis were used to filter out parasitic components that were present
in the estimated transmembrane currents by separating them from the main activation
complex of the decomposed signals.

Using these algorithms on simulated data, it was shown that promising results can
be achieved for both transmembrane current estimations and LAT estimations. Several
wavelet support sizes were tested on the simulated data to observe performance changes.
These were compared to an already existing LAT estimation algorithm. The results mainly
confirm the efficiency of the proposed methods on severely diseased tissue corrupted by
conduction blocks and noise.
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Introduction 1
The heart has the important role of pumping blood throughout our bodies while providing
nutrients for the different tissues of the human body and helping eliminate waste made by
those same tissues. This repeating process happens as the heart takes in oxygen-deficient
blood through its right side and pumps oxygenated blood coming from the lungs back into
the circulatory system. In order to achieve this pumping mechanism, the cardiac muscle
cells rhythmically contract the heart walls when they are activated by an action potential
(AP). These APs are triggered by the sinoatrial (SA) node, the pacemaker of the heart,
which sets the heart rate. In order for the heart to contract, the APs travel through
the heart tissue starting from the SA node, depolarising the transmembrane potential of
cardiac muscle cells and progressively activating them.

However, this process can sometimes be affected by certain complications found in
tissues of the heart. The rhythmic pumping of the heart is generated by electric currents
traveling through its tissue and contracting it, but these electric pathways may be dis-
turbed by zones of reduced conductivity or no conductivity at all. This disorder causes
the heart to deviate from its rhythmic pumping, thus it is called a cardiac arrhythmia.

In this project, the studied cardiac arrhythmia type affects the atrial tissues of the
heart, namely atrial fibrillation (AF) [10]. This condition reduces the ability of the heart
to maintain a healthy rhythm and can lead to worse complications, such as heart failure.
One of the few treatment methods for atrial fibrillation is called catheter ablation. This is
an invasive surgical procedure where diseased tissue is removed by introducing a catheter
all the way to the heart [11].

Hence, it is important to further study the mechanisms behind AF and how this condi-
tion influences conductivity. These can be studied with the help of epicardial electrograms
(EGMs), which record the electrical activity of the heart at the epicardium, the outmost
layer of the heart. One of the most significant parameters that can be studied are the
local activation times (LATs), which represent the times at which the cells are activated
by the APs. This constructs an ill-posed inverse problem since it is nonlinear, with high
dimensions, and stochastic. Estimation of LATs may also prove problematic due to EGM
fractionation, caused by far-field contributions. There are several methods used to esti-
mate LATs, a highly relevant one being deconvolution as described in [12], which is used
to compare with the results obtained using the methods proposed in this paper. This
method aims to find the maximum negative deflection by estimating the transmembrane
current using deconvolution and ℓ1-norm regularization using the first-order time deriva-
tive of the transmembrane currents, however, transmembrane current estimation accuracy
is not an objective.

This thesis studies the accuracy of estimating transmembrane currents from EGMs
using least squares optimization on a matrix EGM model. Furthermore, it computes
LATs based on these estimations by finding the steepest descent (SD) of these signals. To
obtain even more accurate LAT estimations, wavelet decomposition algorithms and PCA
are used to filter the transmembrane current estimations before computing the SD.
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The remaining part of this thesis is structured as follows. Chapter 2 delves further
into the anatomy and physiology of the heart, electrocardiograms (ECGs) and EGMs,
AF, and the mathematical models describing the physiology of the heart. Moreover, it
also describes how the SD is defined. Chapter 3 defines the matrix version of the EGM
mathematic model, the noise extension of this model, how parasitic contributions affect
the EGMs, and the transmembrane current estimation algorithms. The latter item of
this list includes the deconvolution method detailed in [12], and two versions of least
squares optimization for the matrix version of the EGM simulation model. Chapter 4
offers an introduction to how wavelets work, describes how the filtering based on wavelet
decompositions and PCA is performed, and contains examples of how these methods work
on the estimated transmembrane currents. Chapter 5 details the tissue simulation setups
used to test the algorithms outlined in this project and contains the final simulation
results, which are then reflected upon. Finally, Chapter 6 summarizes the main findings
of this thesis and proposes directions for future work.
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Background 2
This chapter is meant to provide the reader with the basic concepts upon which this work
is built and, moreover, to dive into low-level concepts concerning the electrical activity of
the heart and the mechanisms behind atrial fibrillation (AF). Section 2.1 elaborates on
the anatomy and physiology of the heart, including its electrical activity at a cellular level.
Furthermore, this section explains the methods through which the electrical activity of
the heart is recorded and how it can be interpreted. Following this, Section 2.2 describes
the AF process and possible treatments. Finally, Section 2.3 contains the mathematical
models used to simulate the electrical activity of the atria and models that can estimate
this activity.

2.1 The Human Heart: Anatomy and Physiology

2.1.1 Heart Anatomy

The heart was considered to be the center of intelligence in ancient Greece. Although
this was proven to be false, the heart still plays one of the most important roles in the
human body. It helps to circulate the blood throughout the whole cardiovascular system,
delivering nutrients and oxygen to the various tissue and cell types, while helping in
disposing of their waste at the same time. The heart is located in the medial thorax
cavity, the mediastinum, weighs around 250 to 350 grams, and is roughly the size of a
closed human fist. The right half of the heart deals with receiving the oxygen-deficient
blood coming from the body, which then carries on into the pulmonary circuit where
carbon dioxide is exchanged for oxygen inside the lungs. The left half of the heart receives
oxygenated blood from the pulmonary circuit, which is then pumped back to the systemic
circuit made up of body tissues, in order to supply them with oxygen and nutrients. The
structure of the heart can be observed in detail in Figure 2.1. The oxygen-deficient blood
enters the right atrium through the two Venae Cavae, coming from the systemic circuit,
and through the coronary sinus, coming from the myocardium. It is then sent to the
pulmonary system from the right ventricle. Coming out of the pulmonary system, the
oxygenated blood is received by the left atrium and, subsequently, pumped back into the
systemic circuit by the left ventricle. As to maintain the one-way blood flow and blood
pressure, the heart has four valves, which open accordingly as the blood flows in and out.
Two atrioventricular (AV) valves separate the atria and the ventricles, the pulmonary
valve separates the right ventricle and pulmonary trunk, and the aortic valve separates
the left ventricle and the aorta. The right AV valve is called the tricuspid valve and the
left one is called the mitral (bicuspid) valve. The heart wall is composed of three layers.
The outer layer is the epicardium, the middle layer is the myocardium, and the inner layer
is the endocardium [13].
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Figure 2.1: Front cross-section of the heart, depicting the main chambers and associated blood vessels.
Adapted from [1].

2.1.2 Electrical Activity of the Heart

The cardiac muscle cells, also called cardiac myocytes, are short, branched, and intercon-
nected. Most of them are contractile cells and contract during the event of depolarization
triggered by an action potential (AP). The main factor that aids this process is Ca2+,
which is released into the cytoplasm of cardiac myocytes, triggering contractions. The
heart contains two types of muscle cells, with the majority of them being contractile car-
diac myocytes. However, the second type of muscle cells are the pacemaker cells, which
are self-excitable and non-contractile. This means they can spontaneously depolarize,
which in turn leads to the depolarization of the whole heart, thus the heart is autorhyt-
mic. Due to the gap junctions that tie the cardiac myocytes, once one cell is excited,
the rest follow, allowing the wave of depolarization to spread throughout the heart. The
typical AP of a pacemaker cell can be seen in Figure 2.2, where it can be noticed that
the AP generation threshold of -40mV is reached with the help of pacemaker potentials,
which are the reason behind the instability of the pacemaker cells resting potential as well.
Moreover, in Figure 2.3 the AP of usual contractile cardiac myocytes is depicted, where it
can be seen that the depolarization causes the membrane potential to instantly go from
a resting state of approximately -90mV to roughly 30mV when an AP is triggered. This
peak is then continued by a plateau and finally a rapid repolarization of the membrane
during the so-called absolute refractory period. The contraction period of heart myocytes
matches the absolute refractory period, so the heart has enough time to relax and refill
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Figure 2.2: Plot depicting the AP of a pacemaker cell and the pacemaker potential. Adapted from [2].

Figure 2.3: AP of a ventricular contractile cardiac muscle cell, its potential, and absolute refractory
period ( 250ms). Adapted from [3].

[13].
The pacemaker cells are largely found in the sinoatrial (SA) and AV nodes. The

excitation pathway of the heart starts at the SA node. This pathway and its steps can
be fully observed in Figure 2.4. The SA node represents one of the most important
regions of the heart, also named the pacemaker, having the fastest depolarization rate of
the conduction system and setting the heart rate with its sinus rhythm (SR). The next
element in the sequence of excitation is the AV node, where the depolarization wave is
delayed by 0.1s, permitting the atria to complete their contraction before the ventricles
contract as well. The delay is caused by the smaller diameter of the muscle fibers and fewer
gap junctions in this region. The depolarization wave then goes through the Common/AV
bundle (or bundle of His), which makes up the only electrical connection between the atria
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Figure 2.4: Front cross-section of the heart, describing and highlighting in yellow the sequence of excita-
tion. Adapted from [4].

and the ventricles. Continuing the AV bundle, are the right and left bundle branches,
which lead the wave towards the heart’s apex. Finally, the subendocardial conducting
network has the role of depolarizing the contractile cardiac myocytes of both ventricles
[13].

The conduction of APs across the cardiac myocytes does not happen in an isotropic
manner. It was found that signals have a higher conduction velocity (CV) longitudinally
along the cardiac muscle cells. In order to quantify this phenomenon, an anisotropy ratio
between the longitudinal and transversal CVs has been defined. This property is an
important parameter in determining inclination towards arrhythmias [14].

2.1.3 Electrocardiograms and Electrograms

2.1.3.1 Electrocardiography

The first method for measuring the electrical activity of the heart as described earlier is
electrocardiography (ECG or EKG). Through this non-invasive method, the composite of
all APs fired at a certain moment in time can be measured. The machine that performs the
measurements is called an electrocardiograph which records the heart’s electrical activity
with the help of electrodes placed on the skin of the patient. The electrodes are normally
placed on the lower arms, lower legs, and across the chest wall. During a usual 12-lead
ECG, three of the electrodes are used in a bipolar configuration, either between the arms
or between an arm and a leg, while the other nine electrodes function in a unipolar
configuration. The ECG is a useful tool and detecting acute myocardial ischemia and
infarction, hypothermia, cardiac arrest, and many others [13, 15].

The typical ECG graph of the SR, along with its components, can be observed in
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Figure 2.5: ECG graph displaying the major components of such a measurement, namely the four rec-
ognizable waveforms (P, QRS, ST, and T), the three sets of intervals (PR, QRS, and QT/QTc), and the
two main segments (PR and ST). Adapted from [5].

Figure 2.5. There are five waveforms present in such a graph. The P wave marks the
start of atrial depolarization, after which the aria contracts. Following this is the QRS
complex corresponding to the stimulus being spread throughout the ventricles. During
the ST segment, the APs reach their plateau phase, as depicted in Figure 2.3, meaning
that the whole ventricular myocardium is depolarized. Immediately after, the T wave
represents ventricular repolarization. Finally, atrial repolarization cannot be observed in
the ECG graph since it is overshadowed by the QRS complex [13, 15].

2.1.3.2 Electrograms

Although ECGs provide a relatively easy non-invasive cardiac mapping method, the data
provided by them is coarse as the heart signals have to travel through several other tis-
sues in order to reach the body surface. Hence, a more precise method for mapping the
depolarisation waves traveling through the heart comes in the form of atrial or ventric-
ular Electrograms (EGMs). These recordings are collected by either placing a matrix of
electrodes on the heart’s walls during open heart surgery or by using contact catheters
introduced through a large vein [16, 17]. EGMs contain local and high spatial resolution
data regarding the electrical activity of the heart, as they are in direct contact with it
and thus not affected by other surrounding structures. Epicardial EGMs are recorded on
the outer layer of the heart wall, while endocardial EGMs are recorded on the inner layer
of the heart wall.

Depending on the electrode configurations, there are mainly two types of EGMs.
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Figure 2.6: The bars in A represent a section of the myocardium as the depolarization wave passes
through it and showcases how the positive wave (R-wave) and negative wave (S-wave) are recorded. A
complete unipolar EGM recording can be observed in B, along a complete bipolar EGM, recorded as the
difference between two closely located unipolar EGMs. Adapted from [6, p. 12].

Unipolar EGMs record the difference in electrical activity between one electrode and
the reference electrode, which in most settings is connected to the Wilson Central Ter-
minal [16]. An example of this type of recording and how it is generated can be seen in
Figure 2.6, with a positive peak followed by a sudden negative deflection. As the depo-
larization wave nears the electrode, the positive potential is recorded, followed by a null
potential as the wave is directly under the electrode, and finally the negative potential as
the wave heads away from the electrode. Another type of EGM electrode configuration
is bipolar recording. In order to obtain this type of EGM, two closely spaced unipolar
EGMs are subtracted from each other. This process is equivalent to a high-pass spatial
filter, meaning that bipolar EGMs are less susceptible to noise and far-field processes,
providing a better mapping of the depolarization wave. A bipolar EGM can be observed
in Figure 2.6B. Although bipolar EGMs have several advantages and are often used in
clinical studies, due to their complexity they cannot be separated into their unipolar com-
ponents [18]. Therefore, finding the local activation times (LATs) or interpreting spatially
fractionated bipolar EGMs is a highly challenging process. Hence, when studying AF,
unipolar EGMs are preferred, which are used in this thesis as well.

2.1.3.3 EGM Analysis

Several properties can be derived from an EGM in order to either characterize it, analyze
wave propagation inside the tissue or any other tissue anomalies, or investigate AF. Some
of the most relevant such properties are further described in this subsection.

Local activation times When the tissue is depolarized, the LAT coincides with the exact
moment when the cell(s) under a specific electrode is (are) activated. This can be detected
as the steepest descent in a single atrial beat EGM [19]. A more accurate derivation of
the LAT can be found by looking at the steepest descent of the transmembrane current
[12]. An example EGM with its LAT can be observed in Figure 2.7a.
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Figure 2.7: Figure depicting (a) an example of a unipolar EGM with the corresponding LAT and (b) the
activation map of an ideal tissue where each cell fully conducts the depolarization wave.

Activation map The activation map is a color-coded image for its corresponding matrix
of electrodes, where each point represents the LAT recorded by the electrode at that
location. The activation map is derived during a whole beat, where each cell goes from
resting state to being activated, and then back to resting state again. An activation map
example for the ideal case where each cell fully conducts the depolarizing wave can be
observed in Figure 2.7b.

Slow conduction zones and conduction blocks Slow conduction zones or conduction blocks
can be found in tissue areas where the absolute difference between the LATs of neigh-
boring cells exceeds a certain threshold. Hence, the segment between them represents a
problematic conduction zone.

Deflections and fractionation The deflections of an EGM represent the steep descents
with an average negative slope value smaller than a certain threshold. While a normal
EGM has only one deflection, a fractionated EGM can have multiple due to remote
activations, inhomogeneous activations, or other artifacts [20]. Figure 2.8 displays an
example of a fractionated EGM with three deflections. Such fractionated EGMs are
of great importance in the study of AF occurrence and development since this EGM
characteristic is one of the effects of AF.

2.2 Atrial Fibrillation

2.2.1 What is AF?

The electrical activity of the heart, as explained in the previous section, can sometimes
be abnormal. Such disturbances happening during the heart’s depolarization are called
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Figure 2.8: An example of a fractionated EGM with three deflections.

arrhythmia. Atrial fibrillation is a type of arrhythmia during which the atrial tissue of
the heart depolarizes in a rapid and highly irregular manner. Moreover, this can lead to a
similar condition in the ventricular tissue. Currently, the cause of this irregular contraction
of the atria is not exactly known. It is described in [21] that roughly 1-3% of Europeans
suffer from AF, mostly older people, especially with AF being an age-related condition.
In its initial or short forms, AF is not necessarily dangerous and it can be asymptomatic.
However, in the long run, the progression of AF can cause several complications such as
blood clots, stroke, heart failure and other issues, meaning that in this case, AF has to
be extensively treated [22]. Although AF is mostly found in older people or people with
other heart-related comorbidities, it can also exist by itself under the name of lone AF
[23].

Atrial fibrillation can be classified into three categories according to its duration and
frequency of incidence. These are paroxysmal (brief and spontaneous), persistent (contin-
uous, several tens of hours), or permanent (chronic, happening continuously, unresponsive
to preventive measures) [24]. Furthermore, it was shown in [25] that paroxysmal AF can
develop into longer episodes leading to an increased risk of developing other related med-
ical conditions.

Atrial fibrillation can be diagnosed using ECGs. When AF is present, the ECG deviates
from its normal parameters. Consequently, it can be observed in Figure 2.9 that during
AF the intervals between the R peaks are no longer periodic, but irregular. Furthermore,
P-waves are absent during AF, instead, they are replaced with low-amplitude fibrillatory
waves, as the APs are misfired in the atria [26].

2.2.2 AF Mechanisms

There are many previous studies debating the mechanism behind the origin and persis-
tence of AF, and thus many theories have been developed regarding the pathology of AF.
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Figure 2.9: The top graph displays a regular SR, with the usual P waves and regular RR intervals. The
bottom graph displays an ECG recording of AF, where the P waves are absent, the RR intervals are
chaotic, and fibrillatory waves are present. Adapted from [7, p. 12].

Figure 2.10: Visual representation of the four different AF mechanisms. Adapted from [6, p. 14].

The main mechanisms described in the existent literature are: ectopic foci, reentry, rotor,
breakthroughs, and multiple wavelets [27].

Visual support of the aforementioned AF mechanisms can be observed in Figure 2.10.
Starting with ectopic foci, this mechanism assumes that spontaneous depolarizing waves
are fired from other locations than the SA and disrupt the SR (Fig. 2.10A) [27, 28]. Rotors
are linked to the concept of reentry, where a wave propagates on a circular path around a
conduction block, such as scar tissue, and without stopping. Rotors are however regions of
functional reentry and as such they can change their position within the tissue, initiating
AF (Fig. 2.10B) [28]. The endo-epicardial breakthroughs are another AF mechanism
where a depolarizing wave travels unevenly through the heart muscle layers causing a
spontaneous activation site in the epicardium (Fig. 2.10C) [29]. Finally, a wavelet traveling
through the heart muscle could break into multiple wavelets, due to a conduction block,
traveling in different directions and at contrasting velocities, corresponding to the chaotic
behavior of AF (Fig. 2.10D) [30]. These interpretations regarding the mechanisms behind
AF are subject to differences in recording equipment and analysis and are not necessarily
contradictory between each other.
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2.2.3 AF Treatment

There are mainly two ways of treating AF, early diagnosis being essential for such a
condition. One way of treating AF is through medication with the other being ablation
[11]. Nonetheless, ablation proved to be more efficient than drugs. Ablation therapy is
a method where a catheter is introduced through blood vessels all the way to the heart.
There, it is used to scar or destroy problematic areas which might be the origin of AF
by either heating or cooling. There are generally four types of ablation therapy, namely
pulmonary veins isolation ablation, where tissue connecting the pulmonary veins to the
heart is scarred [31], atrioventricular node ablation, where chaotic atrial waves are pre-
vented from propagating to the ventricles [32], linear atrial ablation, where long scarring
lines are executed in the atria [33], and EGM guided ablation, where first problematic
tissue is identified by searching for fractionated EGMs or low voltage areas, which are
then ablated [34].

The lack of complete understanding towards the pathology of AF leads to restricted
success rates when treating this complication. One study shows that 75% of patients
were cured of AF through ablation, with the majority needing more than one surgical
intervention [35]. Hence, the developemt of AF requires more research in order to develop
more efficient treatment methods.

2.3 Mathematical Models

2.3.1 AP Propagation Model

In order to express the mathematical model of an EGM, first the AP mathematical model
has to be explored. To do this, the cell membrane, separating the intracellular and
extracellular domains, has been translated into a simplified electrical model containing a
capacitor in parallel with voltage sources and resistances, corresponding to ionic channels
and driving forces [36]. Hence, the capacitive current passing through a cell membrane is
formulated as

C
dV (t)

dt
= Ist(t)− Iion(t, V ), (2.1)

where V (t) is the transmembrane potential at time instant t , C ≈ 1µFcm−2 is the total
membrane capacitance, Ist is the external stimulus current, and Iion is the total ionic
current, as described in the Courtemanche model [36]. A simplified circuit model of the
cell membrane, as described previously, can be observed in Figure 2.11.

In order to include the flow of current and APs in the atrial tissue, the generalized
cable theory or the mono-domain approach is used to further expand Eq. (2.1) [37]. In the
mono-domain approach, a two- or three-dimensional grid is used to discretize the heart
muscle tissue, while a reaction-diffusion equation represents the cell-to-cell depolarization
wave. Furthermore, the mono-domain method assumes that both the intracellular and ex-
tracellular domains have the same anisotropy ratio. Although the mono-domain approach
has certain disadvantages, such as not accounting for certain currents that can only be
modeled in the bi-domain approach or not accounting for external sources (pacemaker,
defibrillator), it is easier to solve and has fewer parameters. Thus, the reaction-diffusion
equation for an AP propagating in 2D tissue can be modeled as

C
dV (xc, yc, tc)

dt
= Itm(xc, yc, tc) + Ist(xc, yc, tc)− Iion(xc, yc, tc, V ), (2.2)
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Figure 2.11: Ionic electric circuit model of the cell membrane for the AP model, where the membrane
capacitance is represented by Cm, while the other four branches model the transmembrane current flow
of potassium (K), sodium (Na), chloride (Cl), and other remaining ions (Leak). Adapted from [8].

where V (xc, yc, tc) is the per cell potential at location (xc, yc) and time tc, and Itm is the
transmembrane current [12]. Moreover, Itm, which accounts for the spatial diffusion of
membrane potentials, is expressed as

Itm(xc, yc, tc) = S−1
v ∇ · Σ(xc, yc)∇V (xc, yc, tc), (2.3)

where S−1
v = 0.24µm−1 is the cellular surface-to-volume ratio, Σ(xc, yc) is the intracellular

conductivity tensor, ∇ is the gradient operator, and ∇· is the divergence operator.

2.3.2 Continuous EGM Model

The continuous EGM model can be formulated as a weighted sum of transmembrane
currents, with the weights r representing the cell-to-electrode distance. Moreover, for a
cell at position (xc, yc) and an electrode at position (xm, ym) at a constant height z0 above

the tissue, r =
√

(xc − xm)2 + (yc − ym)2 + z20. Hence, the EGM can be formulated as

Φ(xm, ym, tc) =
1

4πσe

∫
A

Itm(xc, yc, tc)

r
dA(xc, yc) , (2.4)

for m = 1, 2, . . . ,M where M is the total number of electrodes, A is the area in which the
modeled cells are located, A(xc, yc) is the area variable, and σe the constant extra-cellular
conductivity [38].

2.3.3 Discrete EGM Model

A space-discretized model is more suitable and practical in regard to the computations
that are to be discussed in the following chapters of this thesis. Initially, similarly to
Eq. (2.4), the model is written as
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Φ(y, t) =
1

4πσe

∫
A

Itm(x, t)

r
dA(x) , (2.5)

where y and x are the location vectors of the electrodes and cells, respectively.
Subsequently, consider the array of electrodesM and ym the location vector of electrode

m ∈ 1, 2, . . . ,M , and likewise xn for the discretized array of the N cells locations, each
with an area of a = ∆l2. Furthermore, the distance rm,n between electrode m and cell n
is formulated as

rm,n =
√

||ym − xn||2 + z20. (2.6)

Hence, the space-discretized EGM model measured at a specific electrode m and time t
is

Φ(ym, t) =
a

4πσe

N∑
n=1

Itm(xn, t)

rm,n

. (2.7)

2.3.4 Convolution EGM Model

In order to more easily simulate action potential propagation and EGMs, the discrete
EGM model can be written as a convolution as well. The integral in Eq. (2.4) has
the form of a two-dimensional spatial convolution of the transmembrane current with a
distance kernel R0 expressed as

R0(xc, yc) =
1√

x2c + y2c + z20
, (2.8)

where the electrode diameter is assumed negligible. In order to spatially sample the EGM,
the sampling operator S0 is introduced as

S0(xc, yc) =
M∑

m=1

δ(xc − xm)δ(yc − ym), (2.9)

where δ(x) is the Dirac delta impulse. Hence the continuous model in Eq.( 2.4) can be
written in the form of a 2D spatial convolution (operator ∗∗) given by [12]

Φ(xm, ym, tc) =
1

4πσe
S0(xc, yc)(R0(xc, yc) ∗ ∗Itm(xc, yc, tc)). (2.10)

Equation 2.10 can also be formulated in a matrix format. Consequently, the 3D cell grid
is translated into a uniform 2D cell grid, with an inter-cell distance ∆x and N = rc × cc,
where rc and cc are the number of rows and the number of columns of the grid, respectively.
Moreover, Eq. (2.10) is also sampled in time with the period Ts, resulting in T samples.
Therefore, the 2D EGM convolution model can be formulated as

Φ[x, y, t] = cS0[x, y](R0[x, y] ∗ ∗Itm[x, y, t]), (2.11)

where x, y, t are the integer sampling grid indices and c = ∆x2/(4πσe). Furthermore,
R0[x, y] has a spatial support size of (2b+1)× (2b+1) and thus the 2D sampling grid has
to be expanded by b samples in each direction when convoluting with the distance kernel.
S0[x, y] will filter out the spatial locations where no electrodes are present by replacing
them with 0 and leaving only the M locations where measurements are present.
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2.3.5 Action Potential Template

It is assumed for this model that when each specific cell is activated it will generate a
time-delayed version of the same stereotype AP, represented by V0(t) [6]. This results
in modeling the depolarization wave as a convolution between time-delayed Dirac delta
functions and V0(t). Thus, the transmembrane potential at each cell can be formulated
as

V (xc, yc, tc) = δ(tc − τc) ∗ V0(t), (2.12)

where the delay τc is the activation time of cell c.

2.3.6 Action Potential Propagation Model in MATLAB

The Courtemanche model is based on a set of ordinary differential equations (ODEs) that
describe the dynamics of ionic currents flowing into and out of a cardiac cell, which results
in the generation of an action potential. The ODEs are non-linear and require numerical
integration to be solved. In the simulation, several parameters are initialized such as the
capacitance of the cell, the maximal conductances of the ionic channels and the reversal
potentials for each ionic current, and some initial conditions for the state variables of the
model such as the membrane potential.

In the code, as described in [12], the method used to discretize the ODEs, namely the
reaction-diffusion equation, is a finite difference method with no flux boundary condi-
tion. This is a numerical technique used to solve differential equations by approximating
the derivatives with finite differences. The method involves dividing the domain of the
problem into a grid of discrete points and approximating the derivatives at each point
using the values of the function at neighboring grid points. In this case, a problem with
no flux boundary condition, the boundary conditions specify that there is no flow of the
solution across the boundary of the domain. This means that the solution must have a
zero derivative normal to the boundary. To apply the finite difference method with no
flux boundary condition, typically a central difference approximation for the derivative at
the boundary points is used.

In terms of finally generating the EGM, the ”point stimulation” method is used to
simulate a current injection at a specific location in the cell matrix, which then calculates
the voltage at other locations on the cell matrix to simulate the measurement of an
extracellular potential through iteration. More specifically, first, there is the initialization
of parameters for spatio-temporal sampling of the EGM: the code defines the range of
rows and columns of electrodes in the recording area. A stimulating current matrix is
used, where the stimulating current is present at one or more points in it, which is used
to calculate the total current, including the ionic currents. The membrane potential is
updated in each loop to simulate the propagation of the AP, which in turn updates the
total current passing through the membrane and so on. These simulated currents are
used to compute the EGMs using the discrete mathematical model described earlier. The
code also calculates the ground truth LATs map, this is the time between the earliest
activation of a cell (exceeding the -40mV activation threshold) and the activation of the
cell that is being measured.
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2.3.7 Local Activation Times Estimation

The method used to estimate LATs is the steepest descent (SD) algorithm. With SD, the
LAT of a given EGM ϕ(t) is determined as being its global derivative minimum moment
[6]. Therefore, the activation time τ of an EGM is computed using the following equation

τ = argmin
t

δϕ(t)

δt
. (2.13)

However, this method is prone to errors due to EGM fractionation. This is mainly
caused by far-field influences and conduction blocks, which can lead to the SD algorithm
detecting a false activation point due to the activity of other cells, other than the one(s)
directly under the recording electrode, being present in the signal. This phenomenon is
more thoroughly described in Section 3.1.2.

18



19



Estimating the
Transmembrane Current 3
This chapter elaborates further on the discretized models that are employed to simulate
EGMs. Moreover, it also describes the algorithms that are used to locally estimate the
transmembrane currents from the simulated EGMs. The algorithms used for this opera-
tion are ordinary least squares (OLS) and regularized least squares (RLS). All signals are
normalized before operating with them, meaning they are divided by the largest value in
the data set.

3.1 Discrete EGM Matrix Model

The discretized EGM model presented in Section 2.3.3 can also be written in a matrix-
vector form. Following the model described in Eq.( 2.7), the inverse of the distances of
all cells to electrode m can be written as rm = [1/rm,1, 1/rm,2, . . . , 1/rm,N ]. Moreover,
c = a/(4πσe) which incorporates all constants is defined. Thus, the EGM model at a time
instance t and electrode position m can be written as

Φ(ym, t) = c rmitm(t), (3.1)

where itm(t) = [Itm(x1, t), Itm(x2, t), . . . , Itm(xN , t)]
T .

The next step is defining ϕm = [Φ(ym, 0),Φ(ym, 1), . . . ,Φ(ym, T − 1)] which incor-
porates all T time instances in a vector for each m electrode, the M × N matrix
R = [r1, r2, . . . , rM ]T which stacks all of the inverse distances vectors, and the N × T
matrix I = [itm(0), itm(2), . . . , itm(T − 1)] with T representing the number of samples,
which contains all of the transmembrane currents vectors. Hence, the matrix EGM model
is formulated as

Φ = cRI, (3.2)

where Φ = [ϕ1,ϕ2, . . . ,ϕM ]T is an M × T matrix containing all M EGM measurements
for each time instance.

3.1.1 Adding Noise to Recordings

The transmembrane current and implicitly, the EGM signals are simulated based on a
model only accounting for the electrophysiological properties of the atrial tissues. How-
ever, when recording an EGM multiple factors can affect the signal quality such as slight
equipment errors or slight tissue displacements. Hence, to have a more appropriate data
set that nears real actual measurements, noise is added to the signal. The EGM model
then becomes

ΦZ = Φ+Z, (3.3)

where Z = [z1, z2, ...,zM ]T is a matrix containing the noise vectors in time for each
electrode measurement. The noise component is modeled as additive white Gaussian
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noise. Each vector component zm, where m ∈ {1, 2, . . . ,M}, is a time-series signal
distributed as N (0, σ2

mIID), where IID is the identity matrix. The simulations including
noise have an SNR of 10 dB. The SNR is defined as

SNR =
||ϕm||22
||zm||22

. (3.4)

3.1.2 Parasitic Contributions and Electrogram Fractionation

In scenarios where the atrial cardiac tissue exhibits inhomogeneity or multiple excitation
wavefronts propagate in the vicinity of an electrode, a phenomenon known as ectopic
foci, non-local contributions from the ’distant active membrane’ may be present in the
EGM at a certain electrode, causing it to be significantly fractionated [39]. This happens
as more distant cells can be activated at a significantly earlier time point than the ones
directly under the electrode, however, the electrode can pick up contributions of the more
distant cells as well. As a consequence, the LATs found through the steepest descent
method, which is detailed in Section 2.3.7, may correspond to a far-field excitation rather
than those of the local activity. This renders the estimation of LATs vulnerable to errors,
and ultimately, this impacts the accuracy of other parameters that rely on LATs, such as
conduction velocity or tissue conductivity [40]. Thus, this makes analyzing the recorded
EGMs more difficult in regard to AF since the exact origin of the components is unknown
[41]. However, the fractionation of an EGM can also be the cause of local inhomogeneities.
The conduction blocks found in the heart’s tissue are usually caused by an increased
amount of collagen, which although is the structure that controls the mechanical rigidity
of the heart, can separate the muscle fibers when it exceeds its healthy volume [9]. This
process can be observed in Figure 3.1, where the depolarization wavefront has to follow
an irregular path due to the conduction blocks caused by tissue fibrosis. A fractionated
EGM example is also included in the figure which contains influences from other distant
cells as well, depicting how the asynchronous activation of cardiac cells caused by diseased
tissue negatively influences EGM recordings.

This being said, an important pre-processing step of EGMs before estimating the LATs
directly on them is smoothing the EGM signals. This is done by sliding a moving-average
filter of a certain window size across the signals.

3.2 Estimating Transmembrane Current through Deconvolu-
tion

Finding the transmembrane current Itm is both a deconvolution and an interpolation
problem [6]. In order to solve the deconvolution, a loss function is used, minimizing
the least square error between the target value Φ and the estimated value S0(R0 ∗ ∗Itm).
Nevertheless, this problem is ill-posed, since the number of EGMs is lower than the number
of modeled cells. Hence, regularization techniques have to be used in order to make use
of prior knowledge. The sharp deflection of an EGM in the context of wave propagation
and AF studies can be well observed in the first-order derivative of the transmembrane
current I

′
tm[x, y, t]. This temporal derivative should not contain more than a few nonzero

elements, represented by the fast temporal deflections. Most fractionated EGMs have a
small number of deflections, thus this assumption can hold. In this case, the regularization
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Figure 3.1: The irregular path followed by a depolarization wave through diseased tissue, where the my-
ocardial fibers are separated by fibrosis. Due to highly erratic cell activation times caused by conduction
blocks, parasitic deflections are recorded in the example EGM as well. Adapted from [9, p. 209]

function of choice is the ℓ1-norm, since this sum of absolute values is known to induce
sparsity in the solution. This will ensue in the following optimization problem as presented
in [6]

min
Itm

||Φ− S0(R0 ∗ ∗Itm)||22 + λ||I ′

tm||1, (3.5)

where

||Itm||22 :=
∑
x

∑
y

∑
t

|Itm[x, y, t]|2, ||I
′

tm||1 :=
∑
x

∑
y

∑
t

|I ′

tm[x, y, t]|

and λ imposes the regularization weight [12]. Eq. (3.5) is a highly complex problem to
solve due to the coupling between the ℓ1-norm and ℓ2-norm. Thus, the Split Bregman
algorithm is used to split the ℓ1-norm and ℓ2-norm components by employing new variables
[42]. The new Z1 = R0 ∗ ∗Itm and Z2 = I

′
tm splitting variables are used to split the

optimization problem, which then becomes

min
Itm,Z1,Z2,B1,B2

||Φ− S0Z1||22 + µ1||Z1 − (R0 ∗ ∗Itm)−B1||22

+ λ||Z2||1 + µ2||Z2 − I
′

tm −B2||22,
(3.6)

where B1 and B2 are the Bregman iterative parameters, and µ1 and µ2 are the penalty
parameters [12].

This optimization problem can be broken into five steps, where during each step one
by one the values of the unknown parameters Itm, B1, B2, Z1, and Z2 are updated. The
aim of this optimization problem is to obtain a good spatial accuracy of I

′
tm, hence the

morphology of Itm was not of importance and can drastically vary spatially.
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3.3 Least Squares Optimisation to Estimate Transmembrane
Current

3.3.1 Ordinary Least Squares (OLS)

A second, relatively popular algorithm used to solve an inverse problem is the OLS which
involves finding the solution to a system of linear equations that minimizes the sum of
the squares of the residuals, which in this case can be formulated as

min
I

||Φ− cRI||22. (3.7)

The solution to this optimization problem is the matrix ILS that minimizes the sum of
the squares of the residuals, i.e., the difference between the observed values Φ and the
predicted values cRI. Since the system described by the cell grid and electrode grid is
underdetermined, as the number of cells is greater than the number of electrodes, the
Singular Valued Decomposition (SVD) algorithm is used to find a solution to the OLS
problem. The R matrix can be decomposed using SVD as R = UΣV ∗, where U is a size
M ×M unitary matrix, Σ is a M × N diagonal matrix with non-negative real numbers
on its diagonal, V is a size N × N unitary matrix, and V ∗ is its Hermitian. Given this
SVD, the OLS solution can be formulated as

ILS = c−1(V Σ†UT )Φ, (3.8)

where Σ† is the Moore-Penrose inverse of Σ.
The estimated transmembrane currents using OLS can be seen in Figure 3.2c and can

be compared to the initial transmembrane currents in Figure 3.2a and to the fractionated
EGMs recordings in Figure 3.2b. It can be observed that the fractionated EGM contains
parasitic contributions from far-field sources, which can also be found in the OLS esti-
mation. However, the estimation is less noisy and resembles the initial transmembrane
current, especially the main complex.

3.3.2 Regularized Least Squares (RLS)

Since the transmembrane current estimation system is underdetermined, a regularization
parameter can be added to the OLS optimization problem to constrain the solution by
penalizing the error, based on the prior knowledge that the transmembrane currents are
sparse in nature and any parasitic contributions to these signals can be correlated to the
main activation wave. Thus a penalty parameter is added to the linear regression problem,
which embodies a combination of both ℓ1 (lasso) and ℓ2 (ridge regression). Hence, the
OLS problem above is extended to the following equation, as presented in [43]

min
I

[
1

2M
||Φ− cRI||22 + λPα(I)

]
, (3.9)

where λ is the main regularization parameter, controlling the importance of the penalty
term, which is given as

Pα(I) = (1− α)
1

2
||I||22 + α||I||1. (3.10)
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(c) (d)

Figure 3.2: Plots of (a) the initial transmembrane current, (b) the fractionated EGM recording, (c)
the estimated transmembrane current using OLS, and (d) the estimated transmembrane current using
regularized least squares observed at a random position on the tissue grid.

Although the RLS optimization problem contains the EGMs and transmembrane currents
in their vectorized form, the optimization is performed per each column, thus at each point
in time for all electrodes and cells.

The penalty term is a combination of both lasso and ridge regression regularization.
Ridge regression is ideal when all predictors are highly correlated with each other. It
can help reduce the impact of multicollinearity, which can lead to unstable estimates of
the regression coefficients, but also reduce the impact of outliers in the data, particularly
when these influence the regression estimates. Shortly, any erratic behavior caused by high
correlations in the signal is removed. Lasso instead does not take into account correlated
predictors. The ℓ1-norm promotes sparsity by assuming that most estimates are close to
zero, with only a small amount being larger and non-zero.

Hence, using the elastic net described by Eq. (3.10) means that it will perform similarly
to the lasso method, however, it can deal with multicollinearity as well and any erratic
values caused by outliers will be removed. The α value chosen for this configuration
is 0.7, meaning the lasso part of the penalty term has a greater influence, promoting
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the sparse nature of the transmembrane currents, but also allowing the ridge regression
part of the optimization problem to deal with multicollinearity. This suits estimating
I, since the signals of transmembrane currents are non-zero for only a short amount
of time, corresponding to the passing of an AP, so at each point in time only a small
amount of the electrodes or cells are active. Moreover, it can exclude any deflections
which are considered outliers, and they can be correlated as they might originate from the
same source, as in delayed contributions from other neighboring cells. The optimization
problem above is then solved through coordinate descent step methods as described in
detail in [43]. The main regularization parameter λ is chosen by computing a sequence of
models and selecting the optimal value using 10-fold cross-validation.

The estimated transmembrane currents using regularized least squares can be observed
in Figure 3.2d and can be compared to the initial transmembrane currents in Figure 3.2a
and to the fractionated EGMs recordings in Figure 3.2b. While the RLS estimate does
contain the extra parasitic information, which cannot be observed in the initial transmem-
brane current plot, the RLS estimation performs slightly better than the OLS estimation,
damping the noise present in the fractionated EGM more efficiently around the main
complex.
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Filtering and Optimizing
Transmembrane Current
Estimations 4
Having obtained the transmembrane current estimations, it can be observed that these
can oftentimes be heavily fractionated. Hence, a denoising method should be used to
obtain better estimates, which in this case relies on wavelet transformations. This chapter
describes the basic concepts behind wavelets and how they decompose a signal at several
scales and resolutions. Furthermore, it explains how this decomposition can be used to
perform a multiresolution analysis of a signal and why this type of analysis is beneficial for
de-noising, in combination with principal component analysis (PCA). Finally, examples
of filtered transmembrane current signals are illustrated to showcase the outcome of this
process.

4.1 Introduction to Wavelets

The characteristics of a signal f(t) can be better analyzed and processed when it is
represented as a linear decomposition by

f(t) =
L∑
l=0

alψl(t), (4.1)

where l represents an integer index for the sum, al are the expansion coefficients, L
represents the number of expansion coefficients and functions, and ψl(t) represent a set
of real-valued functions of time named the expansion set [44]. The basis, which is what
this set is called if the decomposition of f(t) is unique, is orthogonal when the following
equation is satisfied

⟨ψk(t), ψl(t)⟩ =
∫ T

0

ψk(t)ψl(t)dt = 0 k ̸= l. (4.2)

Moreover, the basis is called orthonormal if, besides being orthogonal, satisfies the follow-
ing constraint as well

⟨ψk(t), ψl(t)⟩ = δ(k − l), (4.3)

meaning the basis vectors are also normalized to the unity form.
If the basis is indeed orthonormal, then the coefficients can be found using the following

inner product

ak = ⟨f(t), ψk(t)⟩ =
∫ T

0

f(t)ψk(t)dt. (4.4)

In the case of a wavelet transform, the signal expansion becomes a two-parameter
system as follows

f(t) =
K∑
k=0

J∑
j=0

aj,kψj,k(t), (4.5)

27



where j and k are integers, and ψj,k represent the wavelet transform functions, which
usually construct an orthogonal basis [44]. The decomposition coefficients aj,k are named
the discrete wavelet transform (DWT) of the signal f(t) and Eq. (4.5) is the inverse DWT.

There is a significant amount of wavelet expansion sets, which can be used for certain
specific signal models and share three properties [44]. First, a wavelet system is a two-
dimensional decomposition set that can represent signals of different dimensionalities as
shown in Eq. (4.5). Second, the wavelet transform is able to locally represent a signal in
both time and frequency, unlike the Fourier transform which only localizes frequencies.
This is true since the stages of the expansion go gradually from high-frequency components
to lower-frequency components of the signal, while each stage is represented in the time
domain. Finally, the wavelet transform is highly efficient, as most of its transforms can
be computed using O(N) operations, where N is the number of signal samples, which
means multiplications and additions increase on a linear scale proportionally to the signal
length.

The first-generation wavelet systems are derived from an initial scaling function and
wavelet function by using two operations, namely scaling and translating [44]. For a
wavelet function, this parameterization is obtained using a mother wavelet function ψ(t)
as follows

ψj,k(t) = 2j/2ψ(2jt− k) j, k ∈ Z, (4.6)

where Z represents the set of all integers, k represents the time or space location
parametrization, j represents the frequency or scale parametrization, and the factor 2j/2

helps maintaining a constant norm independent of the factor j. As k changes the location
of the wavelet changes on the horizontal axis and as j changes, the shape of the wavelet
changes in scale. The parameterization process is the same for the scaling function as well.
In the following sections, the multiresolution principles are described, which demonstrate
how a signal can be decomposed into multiple scales at different resolutions, using these
parametrized versions of the scaling and wavelet functions.

A second type of wavelet decomposition is the continuous wavelet transform (CWT),
used for the case where a signal is a function of a continuous variable and, thus, this
transform needs to be a function of two continuous variables. Hence, the wavelet expansion
then becomes

F (a, b) =

∫ ∞

−∞
f(t)w

(
t− a

b

)
dt, (4.7)

having the inverse

f(t) =

∫ ∞

−∞

∫ ∞

−∞
F (a, b)w

(
t− a

b

)
dadb, (4.8)

where w(t) is the basic wavelet and a, b ∈ R represent real continuous variables.

4.1.1 Scaling Functions

The traditional notation of a scaling function is ϕ(t), however, since it is in conflict with
the EGM notation used in this work, υ(t) will be used instead. A set of scaling functions
can be parametrized by integer translates of the initial scaling function and is formulated
as [44]

υk(t) = υ(t− k) k ∈ Z. (4.9)
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Figure 4.1: Vector spaces spanned by scaling functions, nested in order of their resolution.

Such a set of scaling functions can span a subspace V0 described as

f(t) =
K∑
k=0

akυk(t) ∀f(t) ∈ V0. (4.10)

In order to expand a subspace generated by scaling functions, they are converted to a
two-dimensional set by scaling and translation as follows

υj,k(t) = 2j/2υ(2jt− k). (4.11)

Hence, a signal f(t) ∈ Vj is defined as [44]

f(t) =
K∑
k=0

akυ(2
jt+ k). (4.12)

4.1.2 Multiresolution Analysis

The multiresolution analysis (MRA) relies on the idea that a space containing higher-
resolution signals will also include the ensuing spaces with lower-resolution signals [44].
Mathematically, this can be described by

Vj ⊂ Vj+1 ∀j ∈ Z. (4.13)

Following the definition of Vj, the elements of a subspace are the scaled elements of the
next subspace, as in

f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1. (4.14)

This relationship is illustrated in Figure 4.1.
Due to the nesting nature of the subspaces generated by the scaling functions, it means

that if υ(t) ∈ V0, it must also satisfy that υ(t) ∈ V1, the subspace spanned by υ(2t) [44].
Therefore, the scaling functions can be formulated as

υ(t) =
N∑

n=0

h(n)
√
2υ(2t− n), n ∈ Z, (4.15)

where the coefficients h(n) represent a sequence of numbers that make up the scaling
function coefficients, with N being the total number of coefficients, while the

√
2 keeps

the scaling function norm at two.
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Figure 4.2: Nested scaling function and wavelet vector spaces.

4.1.3 Wavelet Functions

The relevant features of a signal are better described not by the scaling functions, but
by relatively different functions ψj,k(t) that contain the differences between the spaces
spanned by the scaling functions [44]. These are called wavelet functions. The scaling
functions and wavelets need to be orthogonal as in

⟨υj,k(t), ψj,l(t)⟩ =
∫ T

0

υj,k(t)ψj,l(t)dt = 0 ∀j, k, l ∈ Z. (4.16)

This condition leads to certain advantages. A simpler calculation of the expansion co-
efficients is permitted by orthogonal basis functions and the signal energy is partitioned
in the wavelet decomposition through Parseval’s theorem [44]. A wavelet function ψj,l(t)
spans the subspace Wj, similarly to scaling functions.

As mentioned before, the wavelet functions span the subspaces given by the difference
between the subspaces generated by the scaling functions. Thus, the coarser details
described by a wavelet can be found in a space spanned by the next finer scaling function
(i.e. W0 ⊂ V1) [44]. This property is represented in Figure 4.2.

Given the properties above, a wavelet function can be defined as a weighted sum of a
finer shifted scaling function by the following equation

ψ(t) =
N∑

n=0

h1(n)
√
2υ(2t− n), n ∈ Z, (4.17)

where h1(n) represents an application-specific sequence of numbers that make up the
wavelet function coefficients. Furthermore, the wavelet coefficients are related to the
scaling function coefficients by [44]

h1(n) = (−1)nh(1− n). (4.18)

Finally, following the mother wavelet described in Eq. (4.17), a set of expansion functions
can be formulated as observed in Eq. (4.6).

Given Eq. (4.6) and Eq. (4.11), a general expression for the expansion of a signal g(t)
can be formulated as [44]

g(t) =
K∑
k=0

cj0(k)υj0,k(t) +
K∑
k=0

∞∑
j=j0

dj(k)ψj,k(t), (4.19)
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where the choice of j0 represents the coarsest spanned scale, the first summation represents
a coarse approximation of the signal g(t) and, as j increases in the second summation,
higher resolution details are added. Practically, the samples of the signals represent the
finest scale. For an orthogonal wavelet system, the scaling function coefficients and wavelet
coefficients can be computed as follows

cj(k) = ⟨g(t), υj,k(t)⟩ =
∫ T

0

g(t)υj,k(t)dt (4.20)

and

dj(k) = ⟨g(t), ψj,k(t)⟩ =
∫ T

0

g(t)ψj,k(t)dt, (4.21)

respectively.

4.1.4 Filter Banks

In order to observe how the wavelet coefficients decompose a signal, the relationship
between the decomposition coefficients at a coarser scale can be described based on the
decomposition coefficients at a finer scale [44]. Given Eq. (4.11) and Eq. (4.15), the
following can be derived

υ(2jt− k) =
N∑

n=0

h(n)
√
2υ(2j+1t− 2k − n). (4.22)

Substituting m = 2k + n in the previous equation gives

υ(2jt− k) =
M∑

m=0

h(m− 2k)
√
2υ(2j+1t−m). (4.23)

Given Eq (4.20) and Eq. (4.23), the scaling function coefficients can be written as

cj(k) =
M∑

m=0

h(m− 2k)

∫ T

0

f(t)2(j+1)/2υ(2j+1t−m)dt, (4.24)

where f(t) is the decomposed signal. The integral part in the previous equation represents
the scaling function coefficients at scale j + 1 and hence

cj(k) =
M∑

m=0

h(m− 2k)cj+1(m). (4.25)

Consequently, the same relationship can be derived for the wavelet coefficients as

dj(k) =
M∑

m=0

h1(m− 2k)cj+1(m). (4.26)

Equations 4.25 and 4.26 constitute digital filtering and downsampling operations [44].
In order to find the coefficients at a coarser level j − 1, the coefficients at scale j are
convolved with the time-reversed recursion coefficients h(−n) and h1(−n), followed by
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Figure 4.3: Two-scale two-band (low-pass and high-pass filtering) expansion graph.

Figure 4.4: Two-scale two-band (low-pass and high-pass filtering) reconstruction graph.

downsampling them. The filter represented by h(−n) is a low-pass filter, while the fil-
ter represented by h1(−n) is a high-pass filter. Each corresponds to its level of detail
computation, namely the low-pass filter transitions the signal to a coarser level and the
high-pass filter deals with the signal details at its corresponding scale. For ease of nota-
tion, both h(n) and h0(n) will be used from now on for the scaling function coefficients.
A graphical representation of the filtering and downsampling by equations 4.25 and 4.26
can be seen in Figure 4.3. There, two coarser scales are derived by iterating the two
aforementioned equations. To reconstruct the initial signal from its decomposition, the
opposite operations are performed. Thus, starting from the coarsest scale, the scaling
function coefficients and wavelet coefficients are upsampled and then each convolved with
h0(n) and h1(n), respectively. This is done repeatedly until the initial signal is finally
reconstructed. This process can be observed in Figure 4.4, for a two-scale expansion.

4.2 Electrogram Multiresolution Analysis

To illustrate the wavelet decomposition process described up till now, a five-scale decom-
position is performed on an estimated EGM signal using the LSQ methods described in
Chapter 3, simulated on diseased tissue. A five-scale expansion was chosen, as based
on multiple experiments this value yielded the optimal amount of decomposition details
to observe the EGM signals for relevant parameters and filtering, and computing even
coarser scales would not offer any new signal characteristics. The signal expansions per-
formed in this work are computed using the ”symlet” (”sym”) wavelets family, which is a
generally efficient choice for signal denoising. As an example, the initial scaling function
and mother wavelet of the sym4 wavelet set can be observed in Figures 4.5a and 4.5b,
respectively. The number four in the wavelet name, sym4, stands for the number of its
vanishing moments. The vanishing moments of a wavelet function refer to the number
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(a) (b)

Figure 4.5: Graphs depicting (a) the initial scaling function and (b) the mother wavelet of the sym4
wavelet set.

of moments of the function that are equal to zero (derivatives of the function) or its
capability to represent the smoothness of a function [44]. Therefore, for closely-spaced
distinct features in a signal, a wavelet with fewer vanishing moments (smaller support)
is required to accurately identify them in the decomposition, given they are prominent
enough, whereas, for a signal with sparsely-spaced features, wavelets with more vanishing
moments can be used to distinguish the desired features of the signal. By applying the de-
composition process described in the previous section, using the wavelet family displayed
in Figure 4.5, a five-scale decomposition of an EGM is computed. It can be observed in
Figure 4.6. The first row shows the initial signal, the following five rows represent the
wavelet coefficients from fine to coarse for each of the five scales, and the last row displays
the scaling function coefficients at the coarsest scale. It can be seen in Figure 4.6 that
the noisy and parasitic components of the signal can be mainly found in the first two
finest scales, as that is where most high-frequency information can be found. Hence, by
omitting them when reconstructing the signal, a denoised version of the initial signal may
be computed. However, this will be elaborated in the following sections.

4.2.1 Principal Component Multiresolution Analysis

PCA (Principal Component Analysis) is a mathematical technique used in data analysis
to transform a set of correlated variables into a new set of uncorrelated variables, called
principal components. The principal components are ordered in terms of the amount of
variance they explain in the original data, with the first principal component explain-
ing the largest amount of variance and each subsequent component explaining a smaller
amount. PCA finds a linear combination of the original variables that best captures the
variation in the data. This linear combination is called the first principal component.
Subsequent principal components are found by finding linear combinations of the remain-
ing variables that are uncorrelated with the first principal component and explaining the
remaining variation in the data.

The first step in PCA is to standardize the data by subtracting the mean and dividing
by the standard deviation. This is followed by computing the covariance matrix of the
standardized data. The eigenvectors and eigenvalues of the covariance matrix are then
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Figure 4.6: Five-scale decomposition of EGM signal simulated on diseased tissue. Starting from the top
plot, the initial signal, followed by wavelet coefficients at each scale, and finally, the scaling function
coefficients at the coarsest level are displayed.

derived. The eigenvectors represent the principal components of the data, while the
eigenvalues represent the amount of variance explained by each principal component. By
removing the appropriate amount of irrelevant principal components, signal errors can
be eliminated. However, problems may occur in PCA if certain events are localized at
different positions in time and frequency, or in the case of stochastic processes, with their
energy changing in time and/or frequency [45].

Principal Component Multiresolution Analysis (PCMRA) is a process where the de-
noising procedure of a signal is improved by using PCA at each scale of the MRA of a
signal and then again on the reconstructed signal, thus eliminating the influence of prob-
lems such as those described in the previous paragraph [45]. After deriving the principal
components of the wavelet coefficients at each scale and on the scaling function coefficients
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at the coarsest scale, only a significant set of them is kept at each scale, based on a certain
thresholding method. After performing the scale-based PCA, the signal is reconstructed
and PCA is again performed on it. A graphical representation of this whole process can
be seen in Figure 4.7.

Figure 4.7: Pipeline of the PCMRAmethodology, whereW represents the wavelet decomposition process.

For the experiments performed in this thesis, the ”symlet” wavelet family was used,
testing for multiple values of vanishing moments, as it will be shown later. The contri-
butions of the first one or two finest scales wavelet coefficients, according to noise levels,
are entirely ignored, as they mostly contain noise details, while the thresholding method
used for the PCA at the other scales is the Kaiser method. This means that only the
components associated with eigenvalues exceeding the mean of all eigenvalues are used.

Before moving to estimate the LATs on the filtered, improved signals, they are again
decomposed using the Stationary Wavelet Transform (SWT) and reconstructed after,
omitting again the first one or two decomposition levels, as explained earlier. Compared to
the DWT, the SWT has the property of translation-invariance, which means it better deals
with artifacts that would usually appear when using the DWT around discontinuities of
the decomposed signal [46]. Hence, by using the SWT, several artifacts that might appear
from the PCMRA algorithm or are still present in the signals after filtering are removed.
In SWT, instead of downsampling and upsampling the signal itself, the filters themselves
(h and h1) are upsampled by a factor of 2j−1 at each level j of the decomposition, which
gives the SWT translation invariance [47]. Since the filters are of dyadic lengths (power
of 2), the currents are symmetrically extended to deal with this and any border effects
that might ensue. After filtering with SWT, the signals are resized to their initial length.

The filtered results can be observed in Figure 4.8. In Figure 4.8a the initial simulated
transmembrane current can be observed, followed by its corresponding EGM with added
white Gaussian noise in Figure 4.8b, the estimated transmembrane current in Figure 4.8c,
the estimated transmembrane current after being filtered using PCMRA in Figure 4.8d,
and finally the estimated transmembrane current after being filtered SWT as well in
Figure 4.8e. It can be seen that going from the initial transmembrane current estimation
to its final filtered form, the clarity of the signal increases with more parasitic components
being removed and the signal is smoother, with a lot of noisy high-frequency components
having been filtered.

Finally, the steepest descent as described earlier is used on the PCMRA and SWT
filtered signal to estimate the LATs. However, this will prove to be prone to errors in
certain cases, as it will be shown in the following chapter.
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Figure 4.8: Plots depicting the (a) transmembrane current tissue level (ground truth) at a random
electrode position on the grid, (b) its corresponding noisy fractionated EGM (c) the transmembrane
current RLS estimation based on the EGM, (d) the transmembrane current estimation current after
the first filtering stage using PCMRA, and (e) the transmembrane current estimation after the second
filtering stage using SWT.
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Atrial Electrical Signals
Simulation Setup and Results 5
This chapter elaborates upon the types of tissues and stimulation points along the tissues
that were used in order to simulate EGMs. Furthermore, it shows and discusses the
estimated transmembrane currents and LATs, that were computed using the methods
described in the previous chapters.

5.1 Simulation Setup for Fractionated Electrograms Generation

In order to assess the methods proposed in this thesis, two different patterns of tissue
heterogeneity are used to simulate tissue conductivity maps. This is done to generate
fractionated EGMs that are similar to real clinical data. The size of the tissue cell matrix
is 101× 83, with an inter-cellular distance of ∆x = 0.7 mm.

The first type of simulated conduction pattern T1 consists of healthy, homogeneous
tissue, which fully conducts the depolarization wave across it, having no zones of impaired
conduction. The second heterogeneity pattern T2 consists of zones of no conduction, in
the form of randomly placed lines of conduction blocks, and percolation, with randomly
placed dots of conduction blocks, both of which prevent cells from coupling on the grid
[48, 49]. Finally, in order to test how the algorithms perform in different scenarios, three
random variations have been generated for tissue type T2(a/b/c). The first testing set-up
has only one stimulation point, at the bottom left of the whole 101 × 83 grid, while the
second set-up has three stimulation points spread across the tissue grid. The stimulation
points in the latter set-up case are called ectopic foci. The conduction map of tissue
type T1 can be observed in Figure 5.1, while the conduction maps of the tissue type T2
variations can be observed in Figure 5.2. The dark-blue areas are zones of no conduction.
Moreover, the purple hexagram corresponds to the single stimulation point set-up, while
the orange hexagrams are the stimulation points corresponding to the ectopic foci set-up.

The activation maps display the actual activation time of each cell in the 101 × 83
matrix, represented by the moment where the potential of the cell reaches the -40 mV
during its depolarization phase. The white dots in the activation maps depict cells that
were not activated due to conduction blocks. The simulated activation maps for tissue
type T1 for both the single stimulation point and the ectopic foci set-ups can be seen in
Figure 5.3, the simulated activation maps for the three variations of tissue type T2 for
the single stimulation point set-up can be seen in Figure 5.4, and the simulated activation
maps for the three variations of tissue type T2 for ectopic foci set-up can be seen in
Figure 5.5. As can be seen for the single-point stimulation set-ups, the LATs are the
lowest in the bottom left corner, corresponding to the red-colored area, while for the
ectopic foci set-ups, the red-colored areas in the activation maps correspond to the three
stimulation points for the ectopic foci setting. However, for tissue type T2c in Figure 5.5c,
the bottom left stimulation point is inactive as it is located directly inside a conduction
block zone.

The EGMs are generated using Eq. (2.4), in the form of Eq. (3.2), and recorded for a
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Figure 5.1: Simulated conductivity maps of the first tissue type T1. The purple hexagram represents the
stimulation point in the case of a single stimulation current being applied to the tissue, while the orange
hexagrams correspond to the three stimulation points in the case where multiple stimulation currents are
applied to the tissue.

(a) (b) (c)

Figure 5.2: Simulated conductivity maps of (a) the first variation of tissue type T2, (b) the second
variation of tissue type T2, and (c) the third variation of tissue type T2. The purple hexagram represents
the stimulation point in the case of a single stimulation current being applied to the tissue, while the
orange hexagrams correspond to the three stimulation points in the case where multiple stimulation
currents are applied to the tissue.

15 × 9 electrode matrix, which covers an area of 43 × 25 central cells. This results in a
total of 135 simulated EGMs. The inter-electrode distance is ∆y = 3∆x and the electrode
matrix is assumed to be at a constant height of z0 = 1 mm. The total simulation time is
500 ms and the transmembrane currents are simulated at a frequency of 20 kHz, however,
the EGMs were downsampled to match a frequency of 1 kHz, which corresponds to actual
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(a) (b)

Figure 5.3: Simulated activation maps of (a) tissue type T1 with one stimulation point and (b) tissue
type T1 with ectopic foci. The white spots represent cells that did not activate.

(a) (b) (c)

Figure 5.4: Single stimulation point simulated activation maps of (a) the first variation of tissue type T2,
(b) the second variation of tissue type T2, and (c) the third variation of tissue type T2. The white spots
represent cells that did not activate.

clinical data [50].
The transmembrane currents are estimated from EGMs using three distinct methods

in this work. The first method involves using the deconvolution algorithm as described in
[12], the second method involves using OLS, and the third method uses RLS. Furthermore,
the method for estimating the LATs using SD on the EGMs is titled SDϕ. The EGMs are
smoothed using a moving average Loess window of size 15 prior to LATs estimation. The
LATs are computed using the SD method on both EGMs and estimated transmembrane
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(a) (b) (c)

Figure 5.5: Ectopic foci simulated activation maps of (a) the first variation of tissue type T2, (b) the
second variation of tissue type T2, and (c) the third variation of tissue type T2. The white spots represent
cells that did not activate.

currents. The LATs estimated from the computed transmembrane currents are derived
using SD−DeconI , SD−OLSI , and SD−RLSI , for the deconvolution, OLS, and RLS
transmembrane current estimation models, respectively. The deconvolution algorithm
uses smoothed EGMs to estimate the transmembrane currents, while for the OLS and
RLS algorithms, this proved to have negative effects, as certain components of the EGMs
that were important for the estimation were lost after smoothing. However, the currents
estimated using RLS and OLS are filtered using the PCMRA and SWT methods before
LAT estimation.

While only a single conductivity map is used for tissue type T1 since it corresponds to
healthy tissue and no other variations exist, for tissue type T2 three randomly generated
variations are used to test how the algorithms perform in different scenarios. Furthermore,
for each transmembrane current and LAT estimation experiment involving the OLS and
RLS methods, wavelets with different supports (number of vanishing moments) are tested
in order to observe how this influences the estimated transmembrane current filtering
and consequently the LATs estimation. The number of vanishing moments (NoVM)
used for PCMRA and SWT is the same for each iteration, as using different NoVM for
filtering with PCMRA and then SWT did not yield relevant results, but rather most often
increased the estimation errors. This might happen since by changing the support of the
wavelet between PCMRA and SWT, the signal features are separated differently during
the expansion and thus filtered differently, yielding an inaccurate signal. However, this is
still subject to future testing.

The performance of transmembrane current estimation is evaluated using dynamic
time warping (DTW). This is an efficient method for measuring the similarity between
two temporal signals that are different in time or speed. DTW accomplishes this feat
by matching every point from the first time series to one or more from the second time
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series and the other way around, the first points from each of the two series have to be
matched, but not necessarily to only themselves, same goes with the ending points of the
two time series, and finally the mapping between the two series has to be monotonically
increasing (no cross-matching between points from the two signals). In summary, the
two time series are stretched across a common time frame such that their points are
matched by minimizing the Euclidean distance between them. The result of DTW is
the minimum distance between the two signals. This metric is great for evaluating the
symmetry between the ground truth currents and the estimated currents, since their
sampling rates differ because the EGMs are downsampled to match a 1kHz frequency
and are thus shorter in length. The currents estimated using deconvolution are left out
of this part since the main focus of this method is to only single out the main slope of
the transmembrane current which corresponds to the cell depolarization and inherently
the LAT, thus the estimated currents are far from resembling the shape of the initial
simulated transmembrane currents [12]. These will only be compared in terms of LATs
estimation. Furthermore, to evaluate the LATs estimation performance, the mean RMSE
is used between the estimated LATs and the ground truth LATs.

5.2 Single Depolarization Wavefront

The first configuration used to simulate EGMs, and estimate LATs and transmembrane
currents consists of stimulating the tissue from a single point, as depicted in Figures 5.1
and 5.2 by the purple hexagram. The estimation performance for transmembrane currents
and LATs is evaluated for both tissue types. First, the transmembrane current estimation
is evaluated using DTW between the estimated values and the ground truth, along with
signal examples at certain points on the tissue grid. For OLS and RLS estimation, the
DTW is computed per each NoVM used for the wavelet decompositions in PCMRA and
then SWT. This is then followed by evaluating the LATs estimation performance for each
of the SDϕ, SD−DeconI , SD−OLSI , and SD−RLSI estimation methods. Moreover,
for OLS and RLS, the LATs estimations are evaluated at each NoVM.

5.2.1 Tissue type T1

The first analyzed tissue type is T1, where no conduction blocks are present, also known as
fully healthy tissue. First, the transmembrane current estimation performance is analyzed
with the help of the DTW, as explained in the previous paragraph.

The first method used to estimate transmembrane currents for tissue type T1 is OLS.
The mean DTW value between the ground truth currents and the raw estimated currents
based on the simulated EGMs is 3.805. The second method used to estimate transmem-
brane currents for tissue type T1 is RLS, which yields an average DTW of 3.484 for the
raw initial estimations. The mean DTW value between the ground truth currents and
the EGMs is 7.563. Furthermore, the DTW values evaluated after each filtering phase
per NoVM can be observed in Figure 5.6a for the OLS method and in Figure 5.6b for the
RLS method. Finally, a summary containing the mean DTW values based on the raw
estimations, and the best mean DTW values after each filtering phase per each estimation
method can be observed in Table 5.1. The best mean DTW values after each filtering
phase are accompanied by the corresponding NoVM at which they were evaluated.
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(a) (b)

Figure 5.6: DTW between ground truth transmembrane currents and estimated transmembrane currents
of tissue type T1 after filtering by PCMRA and then SWT for (a) OLS estimations and (b) RLS estima-
tions.

Table 5.1: Mean DTW values for tissue type T1 between the ground truth simulated transmembrane cur-
rents and the transmembrane current estimations using OLS and RLS (initial estimations, after PCMRA,
and after both PCMRA and SWT filtering). The DTW values for the filtered estimations are the lowest
computed over the 20 iterations of the NoVM. The amount of vanishing moments for which the best
DTW value was obtained is displayed in brackets after the DTW values in the Table.

Step
Method

OLS RLS

Initial Estimation 3.805 3.484
Post-PCMRA(NoVM) 3.597(3) 3.542(3)
Post-SWT(NoVM) 3.985(3) 3.774(5)

Although the mean DTW values do not differ too much from one another, the RLS
initial estimation is the most accurate. With T1 tissue resembling ideal conditions, the ini-
tial estimations are already satisfactory, however, the constrained version of least squares
performs better in this case, while the OLS estimations still need to be filtered by PCMRA
to yield a better DTW value. This happens due to the fact that OLS estimations could
contain more artifacts than RLS, since the OLS optimization problem is underdetermined
and no regularization is applied. Since certain signal components are left out for the fully
filtered versions (PCMRA and SWT) when reconstructing the signal from the wavelet
decomposition, their DTW values are the lowest. Moreover, the main trend shows that as
the wavelet support increases, the MSE increases. Tissue type T1 resembles fully healthy
and conductive tissue, with all cells being activated by the depolarization wave, meaning
all electrodes record only the contributions of the cell(s) underneath them and the current
estimations are already accurate enough. When performing PCMRA and SWT filtering,
high-frequency information is removed, more specifically the first two finest decomposition
levels are trimmed. As the wavelet support increases, the decomposition may gradually
include more details connected with the main activation complex in the first two finest
levels. Hence, the filtered estimations mainly resemble less the shape of the initially sim-
ulated currents. The irregularly high values at the beginning of the plots in Figure 5.6
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Table 5.2: Mean DTW values for tissue type T1 between the ground truth simulated transmembrane
currents and the transmembrane current estimations using OLS and RLS, for the signals filtered by
removing only the finest decomposition level.

Step
Method

OLS RLS

Post-PCMRA(NoVM) 3.597(3) 3.172(3)
Post-SWT(NoVM) 3.985(3) 2.995(5)

(a) (b)

Figure 5.7: DTW between ground truth transmembrane currents and estimated transmembrane currents
of tissue type T1 after filtering by PCMRA and then SWT, by removing only the first finest level of the
decomposition, for (a) OLS estimations and (b) RLS estimations.

are caused by the fact that the sym1 wavelet resembles the shape of a rectangular pulse,
hence, the reconstructed signals have sharper, more rectangular shapes.

If removing the contributions of the first two finest decomposition levels causes the
reconstructed signals to be less similar to the ground truth currents, removing only the
first finest level of the decomposition can improve the similarity between signals. This
happens as more information related to the main activation complex is included in the re-
construction and contrary to not removing any levels of the decomposition at all, removes
any artifacts that might result from the current estimation process. The improved DTW
values for the estimated signals filtered by only removing one level of the decomposition
can be observed in Table 5.2. In addition, the DTW values evaluated after each filtering
phase per NoVM can be observed in Figure 5.7a for the OLS method and in Figure 5.7b
for the RLS method.

Although the same ascending trend that is displayed in the plots of Figure 5.6 can be
observed in the plots of Figure 5.7, the DTW values are lower this time, since more high-
frequency information is used for the signal reconstruction. It can also be seen that RLS-
related estimations are more similar to the ground truth than OLS-related estimations.
Following these results, for the LATs estimation step, only the first finest level of the
decomposition is removed while filtering the estimated transmembrane currents.

The next step in the algorithm is LATs estimation using SD. A summary containing the
best LATs estimation performance for the wavelet-filtered estimated currents using OLS
and RLS, and the LATs estimated directly on the smoothed EGMs and the transmem-
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Table 5.3: RMSE values for tissue type T1 between the ground truth simulated LATs and the estimated
LATs based on the EGMs and transmembrane current estimations using deconvolution, OLS and RLS
(initial estimations, after PCMRA, and after both PCMRA and SWT filtering). The RMSEs for the
LATs obtained from the filtered estimated currents are the lowest values computed over the 20 iterations
of the NoVM. The amount of vanishing moments for which the best RMSE was obtained is displayed in
brackets after the RMSEs in the Table.

Step
Method

SDϕ SD −DeconI SD −OLSI SD −RLSI

Initial Estimation 0.385 0.422 0.655 0.882
Post-PCMRA(NoVM) - - 0.558(20) 0.584(16)
Post-SWT(NoVM) - - 0.571(5) 0.551(12)

(a) (b)

Figure 5.8: RMSE between ground truth LATs and estimated LATs of tissue type T1 after filtering the
estimated currents by PCMRA and then SWT for (a) OLS estimations and (b) RLS estimations.

brane currents estimated using deconvolution can be observed in Table 5.3. Moreover, for
the LATs estimated on the filtered transmembrane currents, the corresponding NoVM for
which the best performance was attained is displayed after the RMSE value in brackets.
A full representation of how the LATs estimations RMSEs look per each NoVM iteration
can be observed in Figure 5.8a and Figure 5.8b for the OLS and RLS estimated currents,
respectively.

Based on the results presented in Table 5.3 it can be concluded that using the SDϕ

LATs estimation produces the best outcome. Since the tissue on which the transmem-
brane currents are simulated is ideal, the smoothed EGMs are already accurate enough
to estimate the LATs, as no parasitic components are present. Therefore, this means that
the stronger the cell activation AP signal is for the cells under the electrode, in this case
because the tissue is healthy, the more accurate the EGM is, and hence the LATs estima-
tion is better. All three other methods perform worse than SDϕ as certain temporal and
signal morphology information is translated during the current estimation optimization
problems. Furthermore, for both SD−OLSI and SD−RLSI the PCMRA filtering grad-
ually improves the LATs estimation for wavelets with larger and larger support, which can
be seen in Figure 5.8, as the single main activation complex is better separated from other
signal components. Further filtering the estimated currents by SWT seems to improve the
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SD − RLSI LATs estimation. Nonetheless, for SD − OLSI estimations, further remov-
ing high-frequency information by applying SWT as well after PCMRA proves to have a
minimal effect, as the best LAT result seems to be slightly worse than the PCMRA-only
filtered estimation result. As a concluding remark, all RMSEs in Table 5.3 are lower than
1, consequently to the fact that most LATs estimation errors that stem from the 135
estimated currents per each method revolve around 0ms and ±1ms, with only a minor
amount of outliers of ±2ms.

5.2.2 Tissue type T2

The second tissue type to be analyzed is T2, where conduction blocks are present in
the form of lines and dots, simulating diseased tissue. Hence, the EGMs generated in
tissue T2 are fractionated as explained in Section 3.1.2 of Chapter 3. In order to study
how the estimation algorithms perform on different set-ups, three random variations of
tissue type T2 are used as detailed at the beginning of this chapter. The transmembrane
current estimation performance is first analyzed for each variation, followed by studying
the LATs estimation performance. Even though for tissue type T1 only the first finest
level of the wavelet decomposition was removed during filtering, for tissue type T2 this
does not suffice, as in the majority of the cases the EGMs are heavily fractionated and
contain estimation artifacts. Therefore, when filtering estimated transmembrane currents
generated based on tissue type T2, the first two finest levels of the wavelet decomposition
are removed, as this proved to produce better results in terms of LATs estimation as well.

The results of the similarity analysis between the ground truth currents and the esti-
mated currents for each of the three variations of tissue T2 can be seen in Table 5.4. In
addition, the mean DTW values between the ground truth currents and the EGMs are
6.067, 7.062, and 6.058, for tissues T2a, T2b, and T2c, respectively. It can be observed
that although in some cases PCMRA filtering improves the DTW values, especially for
RLS estimations, on average wavelet filtering does not greatly help with improving the
similarity between the ground truth currents and estimated currents for diseased tissues.
Furthermore, Figure 5.9 displays how the mean DTW values vary for each NoVM that
was tested for both the OLS and RLS estimated transmembrane currents filtering per
each variation of tissue T2. A similar trend can be observed as was seen for the T1 tissue,
however, in this case, the spikes and troughs of the plots are much more prominent. This
shows how certain wavelet supports help in separating certain signal parameters better
than others, which also depends on the complexity and definition of the decomposed
signals.

The main LATs estimation results can be observed in Table 5.5 for each tissue variation,
and each current estimation and filtering method. Generally, the unfiltered versions of
OLS and RLS perform worse. However, RMSEs obtained from the LATs based on filtered
estimations are better, with the exception of tissue T2b, where the deconvolution-based
estimations yielded a better LATs RMSE. In the plots of Figure 5.10, it can be seen that
there is not one best support size and that no actual trends can be derived. Certain wavelet
support sizes manage to isolate more parasitic components better in the finest levels and
separate the main activation complex of the signals in the remaining decomposition levels
than others. A single wavelet cannot be the most optimal for all 135 signals that stem
from the electrode matrix. Hence, in some cases, heavily fractionated EGMs might still
yield outliers after the estimation and filtering of the transmembrane currents. In other
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: DTW between ground truth transmembrane currents and estimated transmembrane currents
of tissue type T2 after filtering by PCMRA and then SWT for (a) OLS estimations of tissue T2a, (b)
RLS estimations of tissue T2a, (c) OLS estimations of tissue T2b, (d) RLS estimations of tissue T2b, (e)
OLS estimations of tissue T2c, and (f) RLS estimations of tissue T2c.
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Table 5.4: Mean DTW values for the tissue type T2 variations between the ground truth simulated trans-
membrane currents and the transmembrane current estimations using OLS and RLS (initial estimations,
after PCMRA, and after both PCMRA and SWT filtering). The DTW values for the filtered estimations
are the lowest computed over the 20 iterations of the NoVM. The amount of vanishing moments for which
the best DTW value was obtained is displayed in brackets after the DTW values in the Table.

Tissue → T2a T2b T2c

Step
Method

OLS RLS OLS RLS OLS RLS

Initial Estimation 3.826 3.991 3.995 3.907 3.754 3.839
Post-PCMRA(NoVM) 3.853(3) 3.684(2) 3.819(3) 3.560(3) 3.886(4) 3.844(3)
Post-SWT(NoVM) 4.123(3) 3.823(4) 4.023(4) 3.786(8) 4.062(4) 4.072(1)

Table 5.5: RMSE values for the tissue type T2 variations between the ground truth simulated LATs and
the estimated LATs based on the EGMs and transmembrane current estimations using deconvolution,
OLS and RLS (initial estimations, after PCMRA, and after both PCMRA and SWT filtering). The
RMSEs for the LATs obtained from the filtered estimated currents are the lowest values computed over
the 20 iterations of the NoVM. The amount of vanishing moments for which the best RMSE was obtained
is displayed in brackets after the RMSEs in the Table.

Tissue
Step

Method
SDϕ SD −DeconI SD −OLSI SD −RLSI

T2a
Initial Estimation 2.801 2.876 2.670 2.606

Post-PCMRA(NoVM) - - 2.787(9) 1.701(20)
Post-SWT(NoVM) - - 2.713(5) 1.481(12)

T2b
Initial Estimation 3.115 1.558 3.658 3.215

Post-PCMRA(NoVM) - - 2.191(7) 1.775(8)
Post-SWT(NoVM) - - 1.808(7) 1.613(6)

T2c
Initial Estimation 5.173 4.772 5.453 5.000

Post-PCMRA(NoVM) - - 2.736(8) 2.080(8)
Post-SWT(NoVM) - - 2.382(8) 1.927(8)

cases, although beneficial for most estimated transmembrane currents, the wavelet filtering
might remove relevant signal components from other estimated currents, which can lead
to bad LAT estimations and consequently a higher RMSE.

5.3 Triple Depolarization Wavefront

The second configuration used to simulate EGMs, and estimate LATs and transmem-
brane currents consists of stimulating the tissue from three different points, as depicted in
Figures 5.1 and 5.2 by the orange hexagrams. The estimation performance for transmem-
brane currents and LATs is evaluated for both tissue types. First, the transmembrane
current estimation is evaluated using DTW between the estimated values and the ground
truth, along with signal examples at certain points on the tissue grid. For OLS and RLS
estimation, the DTW is computed per each NoVM used for the wavelet decompositions
in PCMRA and then SWT. This is then followed by evaluating the LATs estimation
performance for each of the SDϕ, SD − DeconI , SD − OLSI , and SD − RLSI estima-
tion methods. Moreover, for OLS and RLS, the LATs estimations are evaluated at each
NoVM. For tissue type T1 only the first finest decomposition level is removed during
wavelet filtering, while for the tissue type T2 variations the first two finest are removed,
as explained in the previous section for the single depolarization wavefront configuration.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: RMSE between ground truth LATs and estimated LATs of tissue type T2 after filtering the
estimated currents by PCMRA and then SWT for (a) OLS estimations of tissue T2a, (b) RLS estimations
of tissue T2a, (c) OLS estimations of tissue T2b, (d) RLS estimations of tissue T2b, (e) OLS estimations
of tissue T2c, and (f) RLS estimations of tissue T2c.
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Table 5.6: Mean DTW values for tissue type T1 (triple stimulation) between the ground truth simulated
transmembrane currents and the transmembrane current estimations using OLS and RLS (initial esti-
mations, after PCMRA, and after both PCMRA and SWT filtering). The DTW values for the filtered
estimations are the lowest computed over the 20 iterations of the NoVM. The amount of vanishing mo-
ments for which the best DTW value was obtained is displayed in brackets after the DTW values in the
Table.

Step
Method

OLS RLS

Initial Estimation 5.808 4.965
Post-PCMRA(NoVM) 5.708(3) 4.907(3)
Post-SWT(NoVM) 6.533(3) 5.008(9)

(a) (b)

Figure 5.11: DTW between ground truth transmembrane currents and estimated transmembrane currents
of tissue type T1 (triple stimulation) after filtering by PCMRA and then SWT for (a) OLS estimations
and (b) RLS estimations.

5.3.1 Tissue Type T1

The results of the similarity analysis between the ground truth currents and the estimated
currents for tissue type T1 for the triple depolarization wavefront configuration can be
seen in Table 5.6. In addition, the mean DTW value between the ground truth currents
and the EGMs is 9.132. Furthermore, Figure 5.11 displays how the mean DTW values
vary for each NoVM that was tested for both the OLS and RLS estimated transmembrane
currents filtering for tissue type T1. The same principal observations can be made here
as were done for the single depolarization wavefront case.

The main LATs estimation results can be observed in Table 5.7 for tissue type T1, per
each current estimation and filtering method. Moreover, a full representation of how the
LATs estimations RMSEs look per each NoVM iteration can be observed in Figure 5.12a
and Figure 5.12b for the OLS and RLS estimated currents, respectively. Once again,
the same observation can be made as the ones mentioned in the single depolarization
wavefront case, although this time the RMSE values are mainly closer in range to one
another, meaning the OLS and RLS perform better in this case.
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Table 5.7: RMSE values for tissue type T1 (triple stimulation) between the ground truth simulated LATs
and the estimated LATs based on the EGMs and transmembrane current estimations using deconvolution,
OLS and RLS (initial estimations, after PCMRA, and after both PCMRA and SWT filtering). The
RMSEs for the LATs obtained from the filtered estimated currents are the lowest values computed over
the 20 iterations of the NoVM. The amount of vanishing moments for which the best RMSE was obtained
is displayed in brackets after the RMSEs in the Table.

Step
Method

SDϕ SD −DeconI SD −OLSI SD −RLSI

Initial Estimation 0.404 0.494 0.577 0.899
Post-PCMRA(NoVM) - - 0.571(20) 0.584(20)
Post-SWT(NoVM) - - 0.531(12) 0.571(16)

(a) (b)

Figure 5.12: RMSE between ground truth LATs and estimated LATs of tissue type T1 (triple stimulation)
after filtering the estimated currents by PCMRA and then SWT for (a) OLS estimations and (b) RLS
estimations.

5.3.2 Tissue Type T2

The results of the similarity analysis between the ground truth currents and the estimated
currents for each of the three variations of tissue T2 for the triple depolarization wavefront
configuration can be seen in Table 5.8. In addition, the mean DTW values between the
ground truth currents and the EGMs are 6.498, 6.504, and 6.236, for tissues T2a, T2b,
and T2c, respectively. Furthermore, Figure 5.13 displays how the mean DTW values vary
for each NoVM that was tested for both the OLS and RLS estimated transmembrane
currents filtering per each variation of tissue T2. The same principal observations can be
made here as were done for the single depolarization wavefront case.

The main LATs estimation results can be observed in Table 5.9 for each of the three
variations of tissue T2, per each current estimation and filtering method. In the plots of
Figure 5.14, it can be seen once again that there is not one best support size and that
no actual trends can be derived, as mentioned for the single depolarization wavefront
configuration as well. Moreover, it can be seen in Figure 5.14a and Figure 5.14c that
for a NoVM of 1, the RMSE values are abnormally high. This might be caused by the
fact that since the wavelet support is too small, and electrodes record AP influences from
three different stimulation points, the relevant features of the signal could be included
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: DTW between ground truth transmembrane currents and estimated transmembrane currents
of tissue type T2 (triple stimulation) after filtering by PCMRA and then SWT for (a) OLS estimations
of tissue T2a, (b) RLS estimations of tissue T2a, (c) OLS estimations of tissue T2b, (d) RLS estimations
of tissue T2b, (e) OLS estimations of tissue T2c, and (f) RLS estimations of tissue T2c.
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Table 5.8: Mean DTW values for the tissue type T2 (triple stimulation) variations between the ground
truth simulated transmembrane currents and the transmembrane current estimations using OLS and RLS
(initial estimations, after PCMRA, and after both PCMRA and SWT filtering). The DTW values for
the filtered estimations are the lowest computed over the 20 iterations of the NoVM. The amount of
vanishing moments for which the best DTW value was obtained is displayed in brackets after the DTW
values in the Table.

Tissue → T2a T2b T2c

Step
Method

OLS RLS OLS RLS OLS RLS

Initial Estimation 4.330 4.401 5.108 4.450 4.053 4.028
Post-PCMRA(NoVM) 4.253(3) 4.120(2) 4.623(3) 4.287(3) 4.100(2) 3.737(3)
Post-SWT(NoVM) 4.810(5) 4.466(9) 5.550(3) 4.495(9) 4.387(2) 3.852(5)

Table 5.9: RMSE values for the tissue type T2 (triple stimulation) variations between the ground truth
simulated LATs and the estimated LATs based on the EGMs and transmembrane current estimations
using deconvolution, OLS and RLS (initial estimations, after PCMRA, and after both PCMRA and SWT
filtering). The RMSEs for the LATs obtained from the filtered estimated currents are the lowest values
computed over the 20 iterations of the NoVM. The amount of vanishing moments for which the best
RMSE was obtained is displayed in brackets after the RMSEs in the Table.

Tissue
Step

Method
SDϕ SD −DeconI SD −OLSI SD −RLSI

T2a
Initial Estimation 3.057 2.505 2.552 5.421

Post-PCMRA(NoVM) - - 1.789(17) 1.529(7)
Post-SWT(NoVM) - - 1.215(17) 1.321(16)

T2b
Initial Estimation 5.597 2.833 5.826 5.787

Post-PCMRA(NoVM) - - 3.123(14) 3.084(6)
Post-SWT(NoVM) - - 3.026(8) 2.992(6)

T2c
Initial Estimation 5.350 3.427 4.363 4.608

Post-PCMRA(NoVM) - - 3.676(19) 2.539(15)
Post-SWT(NoVM) - - 2.935(9) 2.508(20)

with parasitic components in the first two decomposition levels and thus are removed.
Otherwise, it can be observed for this configuration as well that a higher NoVM leads to
better results.

The LATs estimation performance is more diverse here, as in each case a different
method performs better. However, whereas the RLS-based results are the best for only
tissue T2c, they are really close in range to the best RMSE values computed for the other
two tissues. This shows that once again on average the RLS-based estimations display a
better performance, similar to the single depolarization wavefront configuration.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: RMSE between ground truth LATs and estimated LATs of tissue type T2 (triple stimulation)
after filtering the estimated currents by PCMRA and then SWT for (a) OLS estimations of tissue T2a,
(b) RLS estimations of tissue T2a, (c) OLS estimations of tissue T2b, (d) RLS estimations of tissue T2b,
(e) OLS estimations of tissue T2c, and (f) RLS estimations of tissue T2c.
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Conclusion 6
The aim of this thesis was to analyze how accurate estimates of transmembrane currents
could be computed using regression in the form of least squares. Furthermore, LATs
estimation was looked into by computing the SD on the estimated transmembrane currents
before and after applying certain filters in the form of wavelet decompositions and PCA.

This being said, two transmembrane current estimation methods have been introduced,
OLS, which represents the standard version of least squares, and RLS, which represents a
regularized version of least squares, by using a combination of lasso and ridge regressions
in the penalty term. The reason behind is to promote signal sparsity, while also dealing
with multicollinearity.

In order to improve transmembrane current estimations and inherently LATs esti-
mation, wavelet decompositions and PCA methods were introduced to show parasitic
components can be separated from the main activation complex by performing a mul-
tiresolution analysis. Furthermore, it was shown how this process works and how it deals
with a noisy estimation based on a noisy EGM as well.

Finally, these algorithms were tested for several simulation set-ups, namely for healthy
tissue and disease tissue. In addition, for each tissue type, two stimulation configurations
were used. One where only one stimulation point was used, at the bottom left of the cell
grid, and a second one where three stimulation points were used along the cell grid. By
testing on these set-ups, the performance of the detailed algorithms was analyzed and the
effect of fractionated EGMs on all estimations was discussed.

The main ideas extracted from the simulation results are as follows. The OLS
and RLS-based transmembrane current estimations are significantly more similar to the
ground truth transmembrane currents than the EGMs are. On average, wavelet-filtered
RLS-based estimations have slightly better performance, especially for LATs estimation.
Nonetheless, in certain cases, wavelet-filtering still cannot improve the estimations, as the
EGMs are heavily fractionated and outliers still persist in the signals. This causes the re-
sults to be higher than desired. It was also observed that in certain select tissue configura-
tions, the OLS and RLS-based estimations were close in range to the deconvolution-based
ones. Moreover, for healthy tissue, or generally tissue where the cells activation is pow-
erful enough, i.e. the stimulation point is under the electrode matrix, and the recorded
EGMs are thus already accurate, EGM denoising is merely sufficient before estimating the
LATs directly on the EGMs. All in all, the size of the wavelet support is seen to matter
in both transmembrane current estimations and LAT estimations. No one good universal
support size could be found. This happens as signals have different morphologies and
complexities, depending on the type of tissue and how obstructed the electric pathways
are in the tissue. Even so, it can be seen that smaller support sizes help transmembrane
current estimations be more similar to the ground truth transmembrane currents, since
these separate closely-spaced parasitic contributions and artifacts better from the main
activation complex details. In addition, bigger support sizes improve LAT estimations.
Although they are more aggressive and eliminate more details from the currents that can
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be found in the finest levels, since on average they make current estimations less similar
to the ground truth, they are mainly better at isolating the maximum negative slope.

Having said this, some recommendations for future work can be made. A first line of
future research would focus on the optimization of the α parameter in the RLS regression
problem, by experimenting and systematically determining better values. Second, tests
could be made on EGMs with biologically accurate added noise and equipment-specific
added noise, to resemble real conditions better. Different anisotropy ratios could be used
as well, since in real-life conditions, the depolarization wavefront might travel at differ-
ent speeds on different axes. Regarding the wavelet decomposition, it was observed that
removing higher frequency subspaces improves certain estimations, nonetheless, instead
of completely removing those subspaces, thresholding methods could be used on all sub-
spaces, in order to not lose relevant signal information. It was shown that if in certain
cases less high-frequency information was removed, the estimations were better. More-
over, results showed different wavelet support sizes yield better results, thus, adaptive
wavelets could be used to better fit the morphology of the decomposed signals. Finally,
these algorithms should be tested on clinical data to test their performance in real-life
conditions.
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