
Delft University of Technology
Faculty Electrical Engineering, Mathematics &

Computer Science
Bachelor of Science in Applied Mathematics

An airborne wind farm

Optimising the design of an offshore wind farm
using airborne wind energy systems

Tutor: Marieke Kootte
Author: Tim Bosman

Delft, The Netherlands
April 2025

Nomenclature

α Entrainment constant Park model

ρ Density

A Rotor area

Awing Wing area

CD Drag coefficient

CL Lift coefficient

Cp Power coefficient

D Outer diameter of flightpath

d Inner diameter of flightpath

Dw Outer wake diameter

dw Inner wake diameter

E Entrainment constant Kaufman-Martin model

P Wind power

R Rotor radius

u Wind velocity

u∞ Initial wind velocity

ur Wind velocity directly behind rotor

uw Wind velocity in wake

x Distance in downstream direction

z Hub height

z0 Surface roughness

1

Abstract

In this research, the feasibility of airborne wind energy systems (AWES) in wind farms was
investigated. Thereafter an optimal layout for a wind farm using AWES was constructed.
The EU seeks to have carbon-neutral power generation by 2050, for which wind energy
could be a viable solution. Conventional wind turbines, however, use up a lot of resources.
An alternative in AWES is considered because of their larger power-to-mass ratio.

First two models are introduced. A modified version of the Park model by Jensen (1983)
and the Kaufman-Martin model by Kaufman-Martin et al. (2022). These were then
used to predict the wake effects of AWES. To compare them to reality, the Offshore
Windpark Egmond aan Zee (OWEZ) was replicated. Here, instead of the conventional
wind turbines of model Vestas 90-3MW, AWES of model Makani M600 were placed. It
was found that the wake effects generated by the Makani M600 were significant and not
negligible, as previously thought. The wind was fixed to come from one direction where
the systems were completely submerged in the wake of its downstream component. Here
the power-to-mass ratio of the replicated OWEZ was 3.9 times higher than that of the
OWEZ.

Using the same dimension of the OWEZ, a genetic algorithm was used to find an optimal
layout for an AWES wind farm. The Park model was used for this algorithm. In the first
simulation the algorithm was allowed to place the Makani M600 systems freely across the
area. For the second simulation the placement was grid-constrained, to correspond to
real-life situations more. It was found that the power-to-mass ratio was 5.7 and 5 times
higher than that of the OWEZ respectively. Therefore, in conclusion, the wake effects of
AWES are considerable and because of its higher power-to-mass ratio it is preferable to
use AWES instead of conventional wind turbines for future development.

2

Contents

1 Introduction 5

2 Wake models 6

3 AWES 8

3.1 Lift- and drag-mode . 8

3.2 Feasibility . 9

4 The model 11

4.1 Park model . 12

4.2 Kaufman-martin model . 17

4.2.1 Numerical approximation . 20

4.2.2 Stability . 22

5 Implementation 26

5.1 OWEZ . 27

5.1.1 Park model . 29

5.1.2 Kaufman-Martin model . 31

5.1.3 Comparison . 33

5.1.4 Scaling for a higher altitude . 34

5.2 Optimized layout . 36

5.2.1 Free choice . 37

5.2.2 Grid-constrained placement . 39

5.2.3 Comparison & Outlook . 41

6 Results 43

3

7 Conclusion 44

8 Discussion 45

8.1 Limitations . 45

8.2 Future research possibilities . 46

A Python code 52

A.1 OWEZ using Park model, analytically . 52

A.2 OWEZ using Kaufman-Martin, numerically 54

A.3 Optimized layout, Park model, no constraints 59

A.4 Optimized layout, Park model, grid-constrained 63

4

1 Introduction

The future of energy generation lies in renewable energy, with wind power being its
most efficient energy source[1]. Offshore wind energy in particular is a popular energy
generation method as it uses otherwise unused space. More importantly, the wind flow
is more homogeneous offshore, due to the absence of tall buildings, hills or trees. These
wind turbines are then clustered together in wind farms for cost efficiency.

Since wind turbines extract energy from the wind, the wind behind the rotor has a lower
energy content. This results in a turbulent wind with a lower velocity[2]. This downstream
wind is called the wake of a turbine[2]. The wind turbine power equation is dependent
on the wind velocity. Hence, a lower wind velocity results in a lower energy extraction.
The wake of upstream wind turbines therefore, has a negative influence on the energy
extraction of downstream wind turbines. These negative effects are called wake effects.
Barthelmie et al. (2010) state that in conventional wind farms, downstream rows of wind
turbines generate up to 40% less energy than the first row of wind turbines [4]. Therefore,
it is important to place the wind turbines strategically to minimise the wake effects in
the wind farm and optimise energy production. Conventional wind farms make use of
horizontal-axis wind turbines (HAWTs).

In 2023 all of the offshore wind farms had a capacity of 67GW[5], which, if used to its
full potential, made up only 2% of the global energy demand[6]. However, the EU seeks
to be carbon neutral by 2050. With the amount of material it uses, scalability towards
net-zero carbon emissions becomes a problem when only using the current technology.
To solve this, new technologies with higher power-to-mass ratios such as airborne wind
energy (AWE) emerge[36]. AWE is the overarching name of concepts that convert wind
energy into electricity, most commonly using autonomous kites or aircraft attached to the
ground by a tether[7]. These systems used to convert wind energy to electricity are called
airborne wind energy systems (AWES).

Wake effects weren’t considered significant for AWES. Due to the large swept area of the
airborne wind energy systems and the small size of the airborne devices, the wake effects
were often ignored[8][9]. Therefore recent studies, such as Malz et al. (2018) and Roque
et al. (2020), studying airborne wind energy (AWE) farms did not consider wakes[10][11].
Recent studies such as [23][12][14][13][49][15] have shown that the wake effects of AWES
are considerable and therefore are not to be neglected.

This research focuses on the research question: What is the feasibility of airborne wind
energy systems in a wind farm and what would be an optimal layout for such a wind
farm? To answer this question, first models used to describe the effects of wakes are
discussed in section 2. Thereafter, the concept of AWES itself is discussed in 3. In
section 4, two models are derived to predict the wake effects of AWES, which are later
implemented in section 5. In 5.1, the Offshore Windpark Egmond aan Zee (OWEZ),
which uses conventional wind turbines, is replicated using AWES. Thereafter, in 5.2, an
optimal layout for the AWES wind farm is found. Lastly the results of section 5 are
discussed in section 6.

5

2 Wake models

Wakes can be divided into two regions: near wakes and far wakes. Near wakes are the area
approximately up to two rotor diameters (2D) behind the rotor [16]. Here the properties
of the rotor are distinctly recognisable and of influence in the flow field: the shape of the
blade directly affects the wake. About two to five rotor diameters (2D-5D) downstream
is called the transition region. The region beyond this is called the far wake. In the far
wake the focus lies on the influence of wind turbines in wind farms, rather than individual
properties of the actual rotor. The properties of the rotor here are only of influence in
two ways: a wind velocity deficit and an increase in turbulence intensity[17]. During this
research, the effects of the near-wake are not considered as they are not of interest to the
modelling of wind farms.

Using the Navier-Stokes1 (NS) equations, it is possible to compute and describe the flow
field in the wakes. The science of using these NS equations to predict liquid and gas flows
is called Computational Fluid Dynamics (CFD)[19]. However, due to their mathematical
complexity, it is computationally expensive to use this to model the wake[24]. Simpler
models to predict wake effects were developed. The first wake model was developed by
Jensen (1983)[20], which was further developed by Jensen, Katic and Højstrup (1987)[21].
Jensen (1983) uses the assumption that the wake develops linearly with the downstream
distance. Here the near wake region is neglected. This model is often called the Park
model. Karakouzian et al. (2022) then applied this model to airborne wind energy
systems (AWES)[23]. The Park model, together with the adaptation of Karakouzian et
al. (2022), will be further discussed in section 4.1.

An entrainment-based2 model published by Kaufman-Martin et al. (2022) tackles the
wind farm design problem from another angle[49]. It uses the entrainment hypothesis to
develop a lower-order model for the flow velocity of an annular wake generated by the
flight path of an AWES. The entrainment hypothesis was introduced by G.I. Taylor et
al. (1956) to model the impact of turbulent entrainment[51]. This hypothesis states that
the mean inflow velocity across the boundary of a turbulent flow is proportional to a
characteristic velocity of the flow [52]. This model is further discussed in 4.2.

Ainslie (1988) introduced another model in which the NS equation is replaced by an
approximation of the thin shear layer and the viscous terms dropped[25]. In the paper,
a wake model based on the numerical solution of the NS equations is given. For this an
eddy viscosity (EV) turbulence model is used. Eddies are vortices whose flow direction
differs from the general flow[26]. The formation of eddies is caused by a difference in
pressure when the flow passes the wind turbine, causing it to swirl back on itself, becoming
turbulent. The model relies on the difference between the free stream flow and the shear
layer of the wake. This is a thin layer just behind the rotor with a concentrated vorticity
and large variations in the tangential velocity[27]. Although this model is considered to

1The Navier-Stokes equations are partial differential equations, describing the relation between pres-
sure, velocity, temperature and density in the flow field[18].

2Entrainment is a phenomenon in the atmosphere where non-turbulent flow is captured by turbulent
flow

6

be reliable for conventional wind turbines, application to AWES goes hand in hand with
assumptions for characteristic variables used in the model, which makes the EV use its
credibility. Therefore the EV model is not further discussed in this research.

7

3 AWES

There are many different configurations of AWES, developed by various companies. How-
ever, all the designs of AWES have the same fundamental idea. It consists of an airborne
device connected to a ground station by a tether[30]. This device then circles in the air in
a figure-eight or circular pattern to gain velocity using crosswinds. Since a circular pat-
tern gives us a higher cycle-averaged power output, this pattern will be used throughout
the rest of this research[31].

The way of power generation for AWES can be split into two main concepts: onboard
generation (drag-mode) and ground-based generation (lift-mode). Crosswind airborne
power systems were first captured by Loyd (1980) in which lift- and drag-mode airborne
power systems were first introduced[33]. As these systems rely on airborne devices heavier
than air, both lift- and drag-mode rely on aerodynamic drag to be operational. Because
the effect of wakes is investigated, it is assumed there is always enough aerodynamic drag
for the airborne device to fly. In figure 1 these systems are visualized side by side.

Figure 1: Visualization of (A) drag-mode and (B) lift-mode [32]

3.1 Lift- and drag-mode

The lift-mode airborne power systems make use of ground-based energy generation. An
airborne device is directly attached to a winch, connected to an electric generator, by
a tether. In lift-mode, usually, the airborne device is a kite. The kite uses crosswinds
to fly in a helical pattern in the wind direction. This makes the tether reel out such
that the winch rotates, driving the electric generator. This is known as the ’reel-out’
phase. When the tether reaches maximum length, the kite changes pattern to a pattern
producing much less lifting force. Then the tether is retracted by the winch, where the
power consumption of the retraction phase is about 1% [36][38]. This cycle then repeats
itself for continuous energy generation.

8

The drag-mode airborne power system uses on-board generation. Usually the airborne
device used in drag-mode is a plane. Similar to the lift-mode system, the plane is con-
nected by a tether to the ground station. However, here the electrical generators are on
board the plane in the form of small turbines. These turbines generate power which is
then transmitted through the tether to the ground station. Here the tether has a fixed
length when in full operation, as opposed to the lift-mode system. An advantage of drag-
mode systems is that the turbines can operate at a very high rotation speed in contrast
to the slower-turning generators of HAWTs or lift-mode AWES[36].

Although both modes have the same fundamentals, they do have different characteristics.
For example: Betz’s law describes the maximum power that a wind turbine can extract
from the wind, regardless of its aerodynamic composition. It is derived by taking the
maximum of power coefficient Cp given by:

Cp = 4a(1− a)2 (1)

where induction factor a is the relation between the wind velocity at the rotor and the
free-stream wind velocity[44].

a =
u∞ − ur

u∞
(2)

Note that this is true for HAWTs and not necessarily for all AWES. For a HAWT this
limit is set at 16/27 of the total wind power. For drag-mode AWES this limit is the same.
In lift-mode AWES, however, this changes. The power coefficient of lift-mode AWES is
dependent on a so-called reel-out factor, changing its equation. The maximum for the
Betz limit in lift-mode is given by 4/27 of the wind power during the reel-out phase [39].
For the full derivation of these limits, visit [39].

Furthermore, because the plane in drag-mode systems takes on the same flight pattern, its
wake is more consistent than the lift-mode system. Therefore it is easier to compute the
effect its wake has on wind farms. With that being said, due to its mounted turbines, the
drag coefficient CD of the drag-mode AWES is 1.5 times as high as that of the lift-mode
AWES. A higher drag coefficient results in a lower power generation, discussed in section
5. Drag-mode AWES will be shortened to ’AWES’ for the remainder of this paper as this
research focuses solely on the drag-mode systems.

3.2 Feasibility

A question that arises could be: Why would one prefer AWES over HAWTs? People are
mainly interested in AWES for power generation because of the following reasons:

• In contrast to the wind turbines that are now operational in wind farms, AWES
could capture the wind energy on higher altitudes[34]. Here the wind speed is
typically higher and more consistent than closer to the sea level[35].

• Secondly, and most importantly, AWES can potentially have a much higher power-
to-mass ratio than conventional renewable sources[36]. Because of this, large-scale

9

deployment of AWES is possible at a comparably low cost. Diehl et al. (2013) even
state that theoretically, a system made out of HAWTs would weigh 300 times more
than an airborne wind energy system for the same energy output.

• Lastly, because of the slim design and high altitude, it doesn’t contribute to horizon
pollution and has minimal to no ecological impact[37]. This could raise public
acceptance of airborne wind farms.

However, as stated in Diehl et al. (2013), AWES do come with a price. To be operational,
AWES need to fly. When a HAWT malfunctions, the operation can be shut down and
repaired without any danger of damage. However, in the airborne case, a malfunction in
the airborne wind system could cause the aerial device to crash, potentially destroying the
system. The AWES need to be provided with sophisticated automatic control to prevent
this. In this research the assumption is made that it is perfect.

10

4 The model

To find the energy production of AWES in a wind farm, first, a concept of an airborne
device must be found. In this research, the airborne device used to compute our wake
models is the Makani M600[60]. It is a drag-mode aeroplane with 8 turbines, designed by
Makani Technologies LLC. It was designed for offshore conditions, making it viable for
this research. The relevant parameters of the M600 are displayed in the table below.

Parameter Units Description Intended As-built
l m tether length 400 440
dt m tether diameter 0.025 0.0295
Awing m2 wing area 32.9 32.9
b m wing span 25.7 25.7
D m outer diameter of flightpath 75 145
d m inner diameter of flightpath 49.3 119.3
hmin m minimal altitude 85 110
mplane kg plane mass 1310 1690
mtether kg tether mass 315 390

Table 1: Parameters Makani M600

Figure 2: The Makani M600

11

4.1 Park model

To develop a wind farm for AWES the models mentioned in section 2 are reviewed.
However not every model is viable for AWES. The wind farm wake model developed by
Jensen (1983) can nevertheless be adapted to fit AWES. The model assumes a linear
wake. Here the wake diameter (Dw) is dependent on the downstream distance x and
rotor diameter (D) given by[21]:

Dw = D + αx (3)

α here is, following Jensen, called an entrainment constant. Here, entrainment refers to
drawing the surrounding air into the wake[22]. This process helps the wake grow and
dissipate over distance. The constant α here is given by [40]:

α =
1

2ln

(
z

z0

) (4)

Where z is the hub height and z0 is the surface roughness of the sea. Usually, the surface
roughness is dependent on the site. However, for this research, the surface roughness is
assumed to be constant. For offshore wind turbine sites, typically z0 = 0.0002[41].

Figure 3: Visualization of Park wake model [42]

Wind velocity in the wake, uw, is computed through the following equation:

uw = (1− δu)u∞ (5)

Where u∞ is the velocity of the free-stream wind and δu is the velocity deficit at the
turbine rotor given by:

δu =
u∞ − uw

u∞
= 1− uw

u∞
(6)

Since it is assumed in the Park model that the wake develops only in the stream direction,
the velocity deficit as defined in equation 6 is only dependent on downstream distance x
and no other dimensions.

12

To find δu, an expression which describes a relation between the different wind velocities
must be found. Through the assumption of conservation of momentum and incompress-
ibility3 of the flow inside the wake, an equation satisfying this can be derived.∑

density · area · velocity = 0

−ρπ

(
D

2

)2

ur − ρπ

((
Dw

2

)2

−
(
D

2

)2
)
u∞ + ρπ

(
Dw

2

)2

uw = 0

D2ur +
(
D2

w −D2
)
u∞ = D2

wuw

(7)

This however only gives an image of a wake in HAWT energy systems. To compute the
wake effects of AWES using this same model, a couple of changes must be considered. In
the figures 4 and 5 below, an image of the wake of AWES is given.

Figure 4: General overview of wake effect AWES [46]

Here the flight path of the aerial device (here a kite) is depicted, leaving a wake in the
downstream direction. The outer diameter of the wake develops outwards, while the
inner diameter develops inwards. This is then elaborated further schematically in figure4

5 below.

3A flow is considered incompressible whenever the density of the fluid in the flow remains constant[43]
4In figure 5 u∞, ur and uw are denoted as U∞, U0 and U(x) respectively.

13

Figure 5: Visualization of Park wake model using AWES[46],
Here d(x) = dr − 2βx should be d(x) = dr − 2αx

To rewrite equation 7 such that it satisfies AWES wake effects, the equation must be
adapted. With D being the outside diameter of the flight path, the inside diameter of the
flight path is introduced as d. Using the entrainment constant α and integration factor
i(x) the inside diameter of the wake is given by[46]:

dw = i(x)(d− 2αx) (8)

Where the integration factor i(x) is given by

i(x) =


1

2

(
1 +

d− 2αx

|d− 2αx|

)
, d− 2αx ̸= 0

0, d− 2αx = 0

(9)

Since for d− 2αx > 0, i(x) = 1 and for d− 2αx ≤ 0, i(x) = 0 the integration factor i(x)
ensures that dw eventually goes to zero. Then the wake is no longer an annulus, but a
circle.

In figure 5 the inside diameter of the wake is given by dw = i(x)(d − 2βx). Because
the flight path is assumed to be axisymmetric and the airborne device to be rigid,
dw = i(x)(d − 2αx). Again, through the assumption of conservation of momentum and
incompressibility:

14

∑
density · area · velocity = 0

−ρπ

(
d

2

)2

u∞ − ρπ

((
Dw

2

)2

−
(
D

2

)2
)
u∞ − ρπ

((
D

2

)2

−
(
d

2

)2
)
ur

+ρπ

(
dw
2

)2

u∞ + ρπ

((
Dw

2

)2

−
(
dw
2

)2
)
uw = 0

(
D2 − d2

)
ur +

(
D2

w −D2 + d2 − d2w
)
u∞ =

(
D2

w − d2w
)
uw

(10)
Setting the initial velocity deficit right behind the flightpath in the axial direction as
δu = 1− ur/u∞ and solving for uw/u∞ provides the following equation:

uw

u∞
= 1− δur

D2 − d2

D2
w − d2w

(11)

According to 1D momentum theory, at the end of the near-wake region[44]:

uw = (1− 2a)u∞, 0 ≤ a ≤ 1

2
(12)

where a is the induction factor[46]. The induction factor a is given in terms of the thrust
coefficient CT by[47]:

a = 1−
√
1− CT (13)

With the thrust coefficient given in terms of the thrust force T by:

CT =
2T

ρAu2
(14)

Although CT depends on wind velocity u, the thrust coefficient does not increase with
lower velocities. Since the thrust force T is equally and positively dependent on u, they
cancel each other out. CT is therefore considered to be constant.

Substituting equation 12 in 10 gives an expression for
uw

u∞
:

uw

u∞
= 1− 2a

D2 − d2

D2
w − d2w

(15)

Combining equations 15 and 11 and substituting this and equation 13 in equation 6
provides the sought expression for the velocity deficit in the wake of an individual AWE
system. This is given by:

δu(x) =
2
(
1−

√
1− CT

) (
D2 − d2

)
D2

w − d2w

=
2
(
1−

√
1− CT

) (
D2 − d2

)
(D + 2αx)

2 − i(x)2 (d− 2αx)
2

(16)

15

In the above equation, only systems in the free stream are considered. In a wind farm,
other AWE systems can be influenced by a system’s wake, while not fully submerged by
the wake. This is illustrated in Figure 6 by a wind farm using HAWTs.

Figure 6: Wake effects in a HAWT wind farm[2]

To account for different systems, the initial variables need to be adjusted. Otherwise, the
equations would become less orderly and more difficult to follow. Therefore, the wake-
generating system is denoted as i and the system affected by the wake is denoted as j.
Furthermore, a new variable is introduced: the incident wind speed uinc given by

uinc = (1− δu)u∞ (17)

whenever the wind velocity is incident to a wind system in the free-stream. The incident
wind velocity of wind system i is then denoted as uinc,i. This is the wind speed at AWE
system i before the wake is formed.

As previously mentioned, and seen in figure 6, wind systems can be influenced partially
by another wind system upstream. To take this into consideration for the velocity deficit,
a shadowing factor γα is introduced[48].

γα =
Aintersection

Aflighpath
, γα ∈ [0, 1] (18)

Here Aintersection is the area of the intersection between the wake and the flight path.
Aflightpath is the area of the flight path. The equation for the velocity deficit is then
changed as follows:

1− uw

uinc,i
=

2γα
(
1−

√
1− CT

) (
D2 − d2

)
(D + 2αx)

2 − i(x)2 (d− 2αx)
2 (19)

This formulation now only formulates the wake effect on turbine i. To make the formu-
lation more general the relation between the two turbines must be expressed. For i being
a turbine upstream, and j being the turbine affected by i, equation 19 is generalized as
follows:

δuij = 1− uinc,j

uinc,i
=

2γα
(
1−

√
1− CT

) (
D2 − d2

)
(D + 2αx)

2 − i(x)2 (d− 2αx)
2 (20)

16

Whenever more wakes interact with each other, the velocity deficit is computed as follows:

δuj =

√√√√ N∑
i=1

δu2
ij (21)

Here N is the number of interacting wakes and δuij is the velocity deficit of the wakes
generated by system i affecting system j.

4.2 Kaufman-martin model

An entrainment-based model was developed by Kaufman-Martin et al.(2022)[49]. Here
the assumption is made that the wake effects can be fully described by x-dependent
uw, dw and Dw. The model uses the entrainment hypothesis to model the effects of
turbulent entrainment. In the case of wake effects for the AWES, the flow downstream
of the airborne device is assumed to be pulled into the wake, where the radial velocity is
proportional to the downstream wind velocity. The entrainment from the external flow is
given with radial velocity we = E (u∞ − uw) and the entrainment from the core region by
radial velocity wi = E (ui − uw), where ui is the wind velocity in the core region, and E
is an entrainment constant. Here E is an empirical, non-dimensional parameter, different
to α from section 4.1[50].

Figure 7: (A): Schematic view of the annular wake behind the airborne device. (B):
Schematic cross-section of the annular wake. (C): Top part of the cross-section.

17

The model makes use of the conservation of momentum for the annular wake. It follows
the approach comparable to that of previous studies on circular wakes [53]. Assuming
the flow is incompressible, the conservation of mass in the annular control volume implies
that

ρπ

4

(
D2

w − d2w
)
uw + ρπDwwe∆x+ ρπ (Dw − dw)wi∆x

=
ρπ

4

(
D2

w − d2w
)
uw +

d

dx

[ρπ
4

(
D2

w − d2w
)
uw

]
∆x

(22)

Where the inflow mass flux5 is given by the annular inflow
ρπ

4

(
D2

w − d2w
)
uw and the

entrainment inflow ρπDwwe∆x + ρπ (Dw − dw)wi∆x. The outflow leaving the annular

region is given by
ρπ

4

(
D2

w − d2w
)
uw as well.

d

dx

[ρπ
4

(
D2

w − d2w
)
uw

]
∆x accounts for the

change in mass flux along the axial direction due to variations in wake properties.

After dividing by ρ, π and ∆x, equation 22 can be simplified to:

d

dx

[
1

4

(
D2

w − d2w
)
uw

]
= Dwwe + (Dw − dw)wi

= E (u∞ − uw)Dw + E (ui − uw) (Dw − dw)
(23)

This approach can then be used for the derivation of an equation for the conservation
of momentum6 in the annulus. This is based on the momentum coming into the control
volume being the same as the momentum going out of the control volume. The terms
in the conservation of mass equation 22 are then multiplied by the corresponding axial
velocities. After simplifying, the following equation is obtained.

d

dx

[
1

4

(
D2

w − d2w
)
u2
w

]
= Eu∞ (u∞ − uw)Dw + Eui (ui − uw) (Dw − dw) (24)

Using the same approach it is possible to find the equations for the conservation of mass
and momentum in the core region of the flow. The simplified version of these equations
is given in equations 25.

d

dx

[
1

4
d2wui

]
= −E (ui − uw) dw

d

dx

[
1

4
d2wu

2
i

]
= −Eui (ui − uw) dw

(25)

Performing the product rule on the equation below from equations 25 gives:

d

dx

[
1

4
d2wui

]
ui +

1

4
d2wui

dui

dx
= −Eui (ui − uw) dw (26)

Multiplying equation 25 by ui and subtracting it from equation 26 then gives

1

4
d2wui

dui

dx
= 0 (27)

5Mass flux is defined as the amount of mass transported across a unit area perpendicular to the
direction of mass transport, per unit time[54]

6Momentum is defined to be the product of the mass of a particle and its velocity[55]

18

which implies
ui = constant (28)

Using one-dimensional momentum theory, the assumption is made that ui = u∞ as there
is no interference in the core region. Then the equations 23, 24 and 25 can be rewritten
as follows:

d

dx

[
1

4

(
D2

w − d2w
)
uw

]
= E (u∞ − uw) (2Dw − dw)

d

dx

[
1

4

(
D2

w − d2w
)
u2
w

]
= Eu∞ (u∞ − uw) (2Dw − dw)

d

dx

[
1

4
d2wu∞

]
= −E (u∞ − uw) dw

(29)

Solving this set of ODEs seems above the level of the Bachelor of Applied Mathematics;
however, after rewriting this and introducing new variables it is possible to solve this
set of ODEs numerically. In the following expressions, M is the momentum flux and m
denotes the mass flux. mi is the mass flux in the core region. Here ρ and π are factored
out as well

mw =
1

4

(
D2

w − d2w
)
uw

Mw =
1

4

(
D2

w − d2w
)
u2
w

mi =
1

4
d2wu∞

(30)

These equations are then used to rewrite the system of ODEs in 29 to the following
system:

dmw

dx
= 2E

(
u∞ − Mw

mw

)(√
mi

u∞
+

m2
w

Mw
+

√
mi

u∞

)

dMw

dx
= u∞

dmw

dx

dmi

dx
= −2E

(
u∞ − Mw

mw

)√
mi

u∞

(31)

After computing the results of the above system, the results are converted back into its
desired form by the following equations:

uw =
Mw

mw

dw = 2

√
mi

u∞

Dw = 2

√
mi

u∞
+

m2
w

Mw

(32)

19

The same input parameters for this model were used as in Haas & Meyers (2017)[57]. For
the laminar inflow case entrainment constant E = 0.15 is chosen. For the turbulent inflow
case E = 0.5. Also, the induction factor a was taken from this model and denoted as
a = 1/3, which is the Betz limit for drag-mode AWES. The initial conditions derived by
Kaufman-Martin et al. (2021) are given by the following equations, after which a = 1/3
is substituted [49]:

uw,0 = u∞(1− 2a) =
1

3
u∞

Dw,0 =

√
D2 +

1

4
(D2 − d2)

4a

1− 2a
=

√
2D2 − d2

dw,0 = d

(33)

4.2.1 Numerical approximation

Various methods were considered to solve the system portrayed by equations 31 numer-
ically. All methods are based on time integration based on t. In this system an approx-
imation of the ODE is obtained using x as our ’time’ variable. This means that instead
of time, space is used as a variable. Only since wake effects are x-dependent, instead of
time dependent, this is possible.

Firstly, the Forward Euler method was considered. This is the simplest and best-known
time-integration method. In the general case the numerical approximation of tn+1 denoted
by[45]

wn+1 = wn +∆tf(tn, wn) (34)

Where f(tn, wn) is the derivative of wn with respect to tn. Since wn+1 can be computed
directly from 34 it is called an explicit method. Despite that this method has a low
computational intensity, it can’t be used to solve the system 31 numerically. The For-
ward Euler method does not always provide a stable solution to a complex problem[56].
Therefore this method was not chosen as a method to solve the system 31.

An unconditionally stable method is given by the Backward Euler method. The numerical
approximation at time tn+1 using the Backward Euler method is expressed by

wn+1 = wn +∆tf(tn+1, wn+1) (35)

Note that the term wn+1 is included in both sides of the equations. For that reason the
Backward Euler method is called an implicit method. If f were to be linearly dependent
on w then the solution to 35 is easily computed. For nonlinear initial-value problems
however, the solution to 35 is nontrivial[45]. Numerical nonlinear solvers such as the
Newton-Raphson method need to be implemented. This implies that the computational
intensity at every time step of the Backward Euler method is high. To obtain accurate
results the computational cost of the Backward Euler method would be high when this
method would be used to solve system 31.

20

Finally, the fourth-order method of Runge-Kutta is considered. Despite its explicit nature,
the Runge-Kutta method (RK4 method) has attractive stability properties. The RK4
method uses predictors k1, k2, k3 and k4 to approximate the solution at tn+1 by

wn+1 = wn +
1

6
(k1 + 2k2 + 2k3 + k4) (36)

The predictors are denoted by:

k1 = ∆tf(tn, wn)

k2 = ∆tf

(
tn +

1

2
∆t, wn +

1

2
k1

)

k3 = ∆tf

(
tn +

1

2
∆t, wn +

1

2
k2

)
k4 = ∆tf (tn +∆t, wn + k3)

(37)

To apply the RK4 method to the system of equations in 31 the numerical approximation
denoted in equation 36 must be transformed. Formw the solution at xn+1 is approximated
by

mw,n+1 = mw,n +
1

6
(k1 + 2k2 + 2k3 + k4) (38)

With k1, k2, k3 and k4 again the predictors. Using that

f(xn,mw,n) = 2E

(
u∞ − Mw

mw

)√mi

u∞
+

m2
w

Mw
+

√
mi

u∞

 (39)

extracted from equations 31. The now ∆x-dependent predictors are denoted by

k1 = ∆xf(xn,mw,n)

k2 = ∆xf

(
xn +

1

2
∆x,mw,n +

1

2
k1

)

k3 = ∆xf

(
xn +

1

2
∆x,mw,n +

1

2
k2

)
k4 = ∆xf (xn +∆x,mw,n + k3)

(40)

Similarly the numerical approximations are found for Mw and mi at xn+1. For Mw the
solution at xn+1 is approximated by

Mw,n+1 = Mw,n +
1

6
(k1 + 2k2 + 2k3 + k4) (41)

21

With the predictors now given by

k1 = ∆xg(xn,Mw,n)

k2 = ∆xg

(
xn +

1

2
∆x,Mw,n +

1

2
k1

)

k3 = ∆xg

(
xn +

1

2
∆x,Mw,n +

1

2
k2

)
k4 = ∆xg (xn +∆x,Mw,n + k3)

(42)

With g(xn,Mw,n) given by:

g(xn,Mw,n) = 2E

(
u∞ − Mw

mw

)√mi

u∞
+

m2
w

Mw
+

√
mi

u∞

u∞ (43)

Derived from equations 31. Lastly the numerical approximation for mi at xn+1 is found
by

mi,n+1 = mi,n +
1

6
(k1 + 2k2 + 2k3 + k4) (44)

using predictors:
k1 = ∆xh(xn,mi,n)

k2 = ∆xh

(
xn +

1

2
∆x,mi,n +

1

2
k1

)

k3 = ∆xh

(
xn +

1

2
∆x,mi,n +

1

2
k2

)
k4 = ∆xh (xn +∆x,mi,n + k3)

(45)

With the function h(xn,mi,n) given by the equation below

h(xn,mi,n) = −2E

(
u∞ − Mw

mw

)√
mi

u∞
(46)

again from equations 31.

4.2.2 Stability

For the general form applying
dy

dt
= λy to the system, where y is the analytical solution

of the problem, results in

wn+1 =

(
1 + λ∆t+

1

2
(λ∆t)2 +

1

6
(λ∆t)3 +

1

24
(λ∆t)4

)
wn (47)

22

Therefore the amplification factor is expressed as

Q(λ∆t) = 1 + λ∆t+
1

2
(λ∆t)2 +

1

6
(λ∆t)3 +

1

24
(λ∆t)4 (48)

Note that the numerical scheme is stable if and only if

|Q(λ∆t)| ≤ 1 (49)

Whenever λ ≥ 0 the amplification factor Q(λ∆t) is bigger than one, hence not stable.
Now for λ < 0 the RK4 method is stable whenever

−1 ≤ 1 + λ∆t+
1

2
(λ∆t)2 +

1

6
(λ∆t)3 +

1

24
(λ∆t)4 ≤ 1 (50)

To simplify the equation λ∆t is denoted as a. For the LHS this results in the following
inequality:

0 ≤ 2 + a+
1

2
a2 +

1

6
a3 +

1

24
a4 (51)

This gives a polynomial given by

P (a) = 2 + a+
1

2
a2 +

1

6
a3 +

1

24
a4 (52)

The extrema of this polynomial lie at the zeroes of P ′, which is denoted by

P ′(a) = 1 + a+
1

2
a2 +

1

6
a3 = 0 (53)

Assume there is an arbitrary extreme value of the polynomial denoted by ã. Then

P (ã) = 2 + ã+
1

2
ã2 +

1

6
ã3 +

1

24
ã4

= 1 + P ′(ã) +
1

24
ã4

= 1 +
1

24
ã4

(54)

Since 1+
1

24
ã4 > 0 for all ã. Therefore all extreme values are positive, which means that

the minimum of the polynomial is positive as well. Subsequently, P (a) is positive for all
a. This leaves the inequality 50 with

1 + a+
1

2
a2 +

1

6
a3 +

1

24
a4 ≤ 1 (55)

Which is then written as

a

(
1 +

1

2
a+

1

6
a2 +

1

24
a3
)

≤ 0 (56)

Since a = λ∆t < 0, equation 56 is equivalent to

1 +
1

2
a+

1

6
a2 +

1

24
a3 ≥ 0 (57)

23

Setting the polynomial to 0 and then solving it for a gives only one zero which lies at
a ≈ −2.8. The polynomial is negative for a < −2.8 and positive for a > −2.8. Therefore
a = λ∆t > −2.8 or

∆t < −2.8

λ
(58)

Then |Q(λ∆t)| ≤ 1 is satisfied.

Setting up the matrix
Now it is possible to set up the matrix. Define state vector y(x) as follows:

y(x) =

mw(x)
Mw(x)
mi(x)

 (59)

With the system of equations as in 31 denoted by:

dmw

dx
= 2E

(
u∞ − Mw

mw

)(√
mi

u∞
+

m2
w

Mw
+

√
mi

u∞

)

dMw

dx
= 2E

(
u∞ − Mw

mw

)(√
mi

u∞
+

m2
w

Mw
+

√
mi

u∞

)
u∞

dmi

dx
= −2E

(
u∞ − Mw

mw

)√
mi

u∞

(60)

The stability is checked using the initial conditions of system 30. The initial conditions
of 30 are based on the initial conditions Dw,0, dw,0 and uw,0 which are denoted in the
system of equations 33 given below, using Betz limit a = 1/3:

uw,0 = u∞(1− 2a) =
1

3
u∞ = 2.667m/s

Dw,0 =

√
D2 +

1

4
(D2 − d2)

4a

1− 2a
=

√
2D2 − d2 = 166.8m

dw,0 = d = 119.3m

(61)

Plugging this into 30 gives:

mw,0 =
1

4

(
D2

w,0 − d2w,0

)
uw,0 = 9059.8

Mw,0 =
1

4

(
D2

w,0 − d2w,0

)
u2
w,0 = 24160

mi,0 =
1

4
d2w,0u∞ = 28465

(62)

24

Now the Jacobian matrix of the system 60 can be computed: J =
∂f

∂y
where f = [f, g, h]T

are the right hand sides of the system 60. The Jacobian is then computed:

J =


∂f

∂mw

∂f

∂Mw

∂f

∂mi
∂g

∂mw

∂g

∂Mw

∂g

∂mi
∂h

∂mw

∂h

∂Mw

∂h

∂mi

 (63)

Substituting initial values 62 together with entrainment constant E = 0.31 and free
stream wind velocity u∞ = 8.0 the Jacobian takes on the following values:

J =

 0.041 −0.013 0.006
0.328 −0.101 0.048
−0.011 0.004 −0.003

 (64)

The eigenvalues derived from this Jacobian are λ1 = −0.060, λ2 = −1.4∗10−3+8.6i∗10−4

and λ3 = −1.4 ∗ 10−3 − 8.6i ∗ 10−4. The real parts of the eigenvalues are below zero,
meaning that the system is stable. The stability is checked for stepsize using equation 58
as follows:

∆x < − 2.8

λmin
=

2.8

0.060
= 46.667 (65)

Hence the system is stable for a stepsize of ∆x < 46 as for this λ and ∆x the amplification
factor |Q(λ∆x)| ≤ 1. In the implementation of the Kaufman-Martin model, a stepsize of
∆x = 0.1 meters is used.

25

5 Implementation

The performance of wind farms is measured using their annual energy production (AEP)
or just their power generation. This will also be done for the AWES wind farms, which
consist of the Makani M600 systems. The power equation used for HAWTs in conventional
wind energy is given by:

P =
1

2
ρCpπR

2u3 (66)

Where Cp is the thrust coefficient and R is the span of a wind turbine blade. As estimated
by Loyd (1980), the power P that a drag AWES can generate under idealized assumptions
can be approximated by[33][36]:

P =
2

27
ρAwingu

3CL

(
CL

CD

)2

(67)

where CL is the lift coefficient, CD is the drag coefficient and Awing is the area of the
wing. The lift and drag coefficients are given by

CD =
2D

ρu2Awing
(68)

CL =
2L

ρu2Awing
(69)

Where D and L are the drag and lift forces, respectively. Again, since D and CD are
equally dependent on u in opposite directions, the drag coefficient CD doesn’t shrink.
This holds for the lift coefficient CL as well. Now, the power equation is only given in
the most general form. The power generated by Makani M600 j is expressed as follows:

Pj =
2

27
ρAwingCL

(
CL

CD

)2

u3
inc,j (70)

CD and CL are entirely dependent on the specs of the Makani M600 which are displayed
in table 1. First, the intended parameters of the Makani M600 were considered to be
used. Here the drag and lift coefficients equalled 0.26 and 2.8 respectively. This would
however mean that the power capacity of one Makani M600 calculated by 67 would only
be 1.8 times less than that of the Vestas 90-3MW in contrary to reality. Since the M600
is designed for a power capacity of 600kW and the Vestas for 3MW, the power ratio
between the M600 and the Vestas must be closer to 5. Therefore the parameters of the
M600 as-built were taken for the implementation with CD = 0.312 and CL = 2.56. This
version has a rated7 power capacity of 685 kW at a rated wind speed of 11 m/s, which
is closer to the real value. This version will therefore be used in the implementation as
well.

7Rated power signifies the possible power output the appliance, here M600, can generate under ideal
conditions[64]

26

5.1 OWEZ

For the first simulation, the Offshore Windpark Egmond aan Zee is recreated. However,
instead of HAWTs, now the Makani M600 airborne energy systems are used. These
Makani energy systems are located at the same locations as the 36 turbines of the OWEZ
such that they can be compared. The wind turbines used in the OWEZ are of the Vestas
90-3MW model. The layout of the OWEZ is given in the figure below.

Figure 8: Layout of the OWEZ

Larsen et al. (2013) have analysed the OWEZ. Using a meteorological mast (met mast)
they were able to do high-quality measurements on turbine loads. Despite the high fidelity
of the met mast, wind speed and direction were difficult to measure because of the wake
effects generated by the wind turbines. For this, they used the anemometer of wind
turbine 12 (WT12) at a wind direction of 319◦. At this angle the wake effects of the
turbines are the highest, as here the turbines are aligned and the distance between them
is the smallest. This could be a great example of measuring the wake effects of the Makani
M600, which were first thought to be negligible. The figure below shows the farm’s power
production for every wind direction. Our point of interest will be the 319◦ wind direction.

27

Figure 9: Energy production OWEZ, per wind direction[57]

In this first simulation the turbines were ordered. Each energy system was given a number,
where system 0 was chosen as the origin of the farm system. Since the 4 rows of wind
turbines are a distance of ≈700 meters apart, the wake effects between the rows are
negligible. The M600’s were numbered as follows:

Figure 10: Schematic layout of OWEZ at its geographic coordinates[62]

28

5.1.1 Park model

Now to implement the Park model described in 4.1. To achieve this, the thrust coefficient
CT is needed. As the assumption is made that the plane in our AWES flies at a constant
speed, by Newton’s first law the two opposite forces, thrust and drag, must be the same.
Subsequently, T = D → CT = CD = 0.312.

To compare the values found by the offshore wind farm made out of M600’s the total
power generation needs to be found for wind speeds between 7.5 m/s and 8.5 m/s such
that the results can be compared to figure 9. The incident wind speed at each system
was found using the method described in 4.1. They are displayed in the Figures below.

(a) Wake effect at u∞ = 7.5 (b) Wake effect at u∞ = 8.0

(c) Wake effect at u∞ = 8.5

Figure 11: The incident velocities for 7.5 ≤ u∞ ≤ 8.5 using the Park model

These give a visual overview of the wake effects at different wind speeds. To give a more
complete view of the wake effects the incident velocities for a free stream wind velocity

29

of 8.0 m/s are given in the tables below.

#M600 0 1 2 3 4 5 6 7 8 9 10 11
u∞ = 8.0, (m/s) 3.37 3.64 3.95 4.27 4.62 5.00 5.40 5.84 6.32 6.83 7.40 8.00

Table 2: First row

#M600 12 13 14 15 16 17 18 19 20
u∞ = 8.0, (m/s) 4.38 4.73 5.12 5.54 5.84 6.32 6.84 7.40 8.00

Table 3: Second row

#M600 21 22 23 24 25 26 27 28
u∞ = 8.0, (m/s) 4.76 5.15 5.57 5.88 6.32 6.84 7.40 8.00

Table 4: Third row

#M600 29 30 31 32 33 34 35
u∞ = 8.0, (m/s) 5.15 5.57 5.89 6.32 6.84 7.40 8.00

Table 5: Fourth row

The total power generation for wind speeds between 7.5 m/s and 8.5 m/s is then calcu-
lated by taking the incident wind speed for each system and filling it in in equation 70.
These were subsequently summed which gave a total power generation between approxi-
mately 3.64 MW and 5.30 MW. It must be noted that these values are reached for ideal
circumstances. Comparing these results to figure 9 indicates that the power generation
of conventional wind turbines is still higher than that of the M600’s, which is in line
with expectations. Using figure 9, the power generation at a wind velocity of u∞ = 8.0
m/s is approximated to be 22MW for a conventional turbine for an angle of attack of
319◦. Thereafter, it is quickly observed that the power generation of the M600 wind farm,
as calculated, is 4-6 times smaller. The power capacity of the Makani M600 is 5 times
smaller than that of the Vestas 90-3MW, hence the calculations are in line with literature
[58][59].

Further comparison of the M600 wind farm and the OWEZ leads us to their difference in
mass. Firstly, the individual AWE system of the Makani M600 is considered. In table 1
the mass and the tether are displayed. This gives a total of 2080kg for the airborne device
itself. The major components of the ground station are the winch frame, perch, drum
and tower, which weigh 6200 kg, 900 kg, 2500 kg and 9000 kg respectively[61]. Combine
this with the Makani M600 result of 20 680 kg. The weight of the Vestas 90-3MW is
made up of its rotor, nacelle and tower, which weigh 41,000 kg, 70,000 kg and 285,000 kg
respectively. Summed up, this results in a total weight of 396,000 kg.

30

Combining and then comparing the power and mass of both systems make for an inter-
esting new characteristic. The power-to-mass ratio is an effective term to compare both
the Makani M600 and the Vestas 90-3MW. When the M600 and Vestas reach their rated
capacity of 600kW and 3MW respectively, their power-to-mass ratio equals 29.0W/kg
and 7.58W/kg. This is a difference in power-to-mass ratio of a factor of 3.8. What would
these values become when these systems are situated in the OWEZ? Before answering
this question, first, the Kaufman-Martin model elaborated in 4.2 will be discussed.

5.1.2 Kaufman-Martin model

Now, the Kaufman-Martin is considered for the OWEZ. Again the Makani M600 systems
are in the exact location as the wind turbines of the OWEZ. Following the numerical
approximation described in 4.2.1 results were found for the wake effects incident to the
M600s. The entrainment constant E was set at 0.31. Using a time step of ∆x = 0.1, a
total number of steps of 10000 and a free stream velocity of u∞ = 8.0, the figures below
were obtained:

31

(a) Wake effect at row 1 (b) Wake effect at row 2

(c) Wake effect at row 3 (d) Wake effect at row 4

Figure 12: Incident velocities for u∞ = 8.0

In the figures the incident velocity of the Makani M600 at place 11, 20, 28 and 35 are
not shown as for these systems the incident velocity equals the free stream velocity u∞.
The plots indicate what the incident velocity would be for a distance of x between the
system downstream. The black triangles indicate at what distance the M600 is to the
M600 system downstream whereafter this velocity is taken as the incident velocity for
that particular system. For example, in graph 14b all M600s are at a distance of ≈600m
within each other except M600 #15. This M600 is at a distance of ≈950m downstream
of M600 #16.

In the tables below again the incident velocities at the M600’s are displayed:

32

#M600 0 1 2 3 4 5 6 7 8 9 10 11
u∞ = 8.0, (m/s) 3.39 3.66 3.96 4.28 4.63 5.01 5.42 5.86 6.35 6.88 7.46 8.00

Table 6: First row

#M600 12 13 14 15 16 17 18 19 20
u∞ = 8.0, (m/s) 4.36 4.71 5.10 5.52 5.85 6.34 6.87 7.45 8.00

Table 7: Second row

#M600 21 22 23 24 25 26 27 28
u∞ = 8.0, (m/s) 4.73 5.12 5.54 5.88 6.33 6.86 7.44 8.00

Table 8: Third row

#M600 29 30 31 32 33 34 35
u∞ = 8.0, (m/s) 5.08 5.50 5.84 6.28 6.81 7.38 8.00

Table 9: Fourth row

The total power output is again computed for the free stream velocities u∞ = 7.5 m/s
and u∞ = 8.5 m/s. Between these velocities, the total power generation of the M600
wind farm is calculated to be between approximately 3.65MW and 5.31MW. Here again,
the power-to-mass ratio of the Makani M600 wind farm is 4 - 6 times larger than that
of the OWEZ, using the values in figure 9. In the next section the Park model and the
Kaufman-Martin model are compared.

5.1.3 Comparison

For both the Park and Kaufman-Martin models were evaluated using the OWEZ wind
turbine locations. The incident wind speeds here were computed at a free stream wind
velocity of u∞ = 8.0 m/s. These values are put together in the tables below for compar-
ison.

#M600 0 1 2 3 4 5 6 7 8 9 10 11
Park, (m/s) 3.37 3.64 3.95 4.27 4.62 5.00 5.40 5.84 6.32 6.83 7.40 8.00
KM, (m/s) 3.39 3.66 3.96 4.28 4.63 5.01 5.42 5.86 6.35 6.88 7.46 8.00

Table 10: First row, u∞ = 8.0 m/s

33

#M600 12 13 14 15 16 17 18 19 20
Park, (m/s) 4.38 4.73 5.12 5.54 5.84 6.32 6.84 7.40 8.00
KM, (m/s) 4.36 4.71 5.10 5.52 5.85 6.34 6.87 7.45 8.00

Table 11: Second row, u∞ = 8.0 m/s

#M600 21 22 23 24 25 26 27 28
Park, (m/s) 4.76 5.15 5.57 5.88 6.32 6.84 7.40 8.00
KM, (m/s) 4.73 5.12 5.54 5.88 6.33 6.86 7.44 8.00

Table 12: Third row, u∞ = 8.0 m/s

#M600 29 30 31 32 33 34 35
Park, (m/s) 5.15 5.57 5.89 6.32 6.84 7.40 8.00
KM, (m/s) 5.08 5.50 5.84 6.28 6.81 7.38 8.00

Table 13: Fourth row, u∞ = 8.0 m/s

In the tables, it can be seen that the incident velocity for each M600 lie close to each
other using both models, showing the validity of both approaches.
The total power generation related to the HAWT8 and AWES systems using both models
located in the OWEZ at free stream wind velocity u∞ = 8.0 is denoted in the table below
together with the corresponding power-to-mass ratio.

Model Total power (MW) power-to-mass (W/kg)
Vestas 90-3MW 22 1.54

Makani M600 (Park) 4.42 5.94
Makani M600 (KM) 4.43 5.94

Table 14: Power production OWEZ using Vestas 90-3MW or Makani M600, u∞ = 8.0

The power-to-mass ratio here is especially important. With almost four times less re-
sources used, the power output would be the same. With an eye on the future with
limited resources, this could be a huge step towards a sustainable future, with renewable
energy. These values were obtained for u∞ = 8.0 as in this manner the values could be
compared to valid values pictured in figure 9.

5.1.4 Scaling for a higher altitude

One of the reasons AWES could become feasible is because AWES could capture the
wind speed at higher altitudes. Here the wind speeds are higher and therefore the power

8Estimation based on figure 9

34

generation could be higher as well[35][37]. A study by TNO recorded average wind speeds
of 10.18 m/s at an altitude of 291 meters at the EPL platform in the North Sea[65].
Therefore the models are tested at a free stream wind velocity of u∞ = 10.18. The
incident velocities are displayed in the tables below.

#M600 0 1 2 3 4 5 6 7 8 9 10 11
Park, (m/s) 4.29 4.64 5.02 5.43 5.88 6.36 6.87 7.43 8.04 8.69 9.41 10.18
KM, (m/s) 4.32 4.66 5.04 5.45 5.89 6.37 6.89 7.46 8.08 8.75 9.49 10.18

Table 15: First row, u∞ = 10.18 m/s

#M600 12 13 14 15 16 17 18 19 20
Park, (m/s) 5.57 6.02 6.52 7.05 7.43 8.04 8.70 9.41 10.18
KM, (m/s) 5.55 6.00 6.49 7.03 7.45 8.07 8.74 9.48 10.18

Table 16: Second row, u∞ = 10.18 m/s

#M600 21 22 23 24 25 26 27 28
Park, (m/s) 6.06 6.56 7.09 7.49 8.04 8.70 9.41 10.18
KM, (m/s) 6.02 6.51 7.05 7.48 8.06 8.73 9.46 10.18

Table 17: Third row, u∞ = 10.18 m/s

#M600 29 30 31 32 33 34 35
Park, (m/s) 6.56 7.09 7.49 8.04 8.70 9.41 10.18
KM, (m/s) 6.46 7.00 7.43 8.00 8.66 9.39 10.18

Table 18: Fourth row, u∞ = 10.18 m/s

The total power generated by the wind farm, using both models, is then displayed in
the table below, together with the power-to-mass ratio. The Vestas 90-3MW was not
taken into account at this wind speed, as no other reliable data was found for the power
generation.

Model Total power (MW) power-to-mass (W/kg)
Makani M600 (Park) 9.11 12.2
Makani M600 (KM) 9.12 12.3

Table 19: Power production OWEZ using Makani M600, u∞ = 10.18 m/s

For an increase in free stream wind velocity of only 2.18 m/s, the power-to-mass ratio
increases by a factor of more than 2. This shows the amount of uncaptured power gener-
ation that could be converted to electricity using AWES.

35

This simulation was done to simulate the wake effects generated by the Makani M600 at
a wind direction angle which was least favourable for the power generation. In the next
simulation, an optimised layout will be made for an offshore AWE farm.

5.2 Optimized layout

Whereas the Makani M600s were fully submerged in the wake of its downstream system,
in the second simulation a more realistic wind farm will be reproduced. In this simulation,
the M600s are placed such that the wake effects of the wind farm are minimized. Using
a genetic algorithm (GA) the optimal locations of the AWES are found.

The genetic algorithm is a method to solve both constrained and unconstrained optimi-
sation problems. It is a heuristic search algorithm designed for optimisation problems
of two dimensions. Inherently genetic algorithms were designed for the process of nat-
ural selection and genetics of biological evolution [66]. The steps of the GA are listed
below[67]:

1. Initialisation : First, a ’population’ is created. The initial population consists of
random layouts for wind farms generated randomly. This initial population is the
first ’generation’ of the GA.

2. Evaluation: Then the fitness of each wind farm is determined. They are evaluated
through the total power output of the farm. The higher the total power, the higher
the fitness score the farm is given.

3. Selection: The wind farms are selected based on their fitness score. This step
determines which farms are eligible for reproduction.

4. Crossover: The individual wind farms are then combined using crossover tech-
niques to generate new solutions or ’offspring’.

5. Mutation: To keep diversity, random mutations are introduced in the offspring.
Change of the location of an individual system in the wind farm for example.

6. Replacement: The offspring then replaces some or all of the previous population,
depending on the fitness score. These individual wind farms will move on to the
next generation.

7. Repeat: Steps 2-6 are then repeated until the stopping criterion is met. In this
case, after a hundred generations.

This algorithm is then applied to the Park model using the same dimensions as the
OWEZ. The Kaufman-Martin is not used for this algorithm as this would require a larger
computational capacity. The OWEZ has an area of 27 km2[68], therefore the layout for a
Makani M600 wind farm has comparable dimensions of 3000 × 9000 in meters. The wind
direction is assumed to be from west to east. The population sizing doesn’t have a general

36

rule. To determine this, a simple method is used to dimension the initial population. This
method provided by Gatscha (2016)is given by[69]:

n =
#Grids ∗#Turbines

Iteration
(71)

5.2.1 Free choice

Whenever the M600s may be freely placed in the venture with dimensions 3000 × 9000
in meters, the grid is found by dividing the width by 2D and the height by D as the Park
model is valid for downstream distances of 2D[25] and the M600s must have a distance
of at least D between them to prevent interference. The M600s can therefore be placed
on 10 × 60 = 600 locations. The GA is computed using a hundred generations and 36
M600s. Therefore the population n equals 216. The layouts ensued by the GA are given
at generation 1, 10, 50 and 100 below. Of every generation, the best layout is chosen and
displayed.

37

(a) Best layout after 1 generation; Total
power = 19.14MW

(b) Best layout after 10 generations; Total
power = 19.17MW

(c) Best layout after 50 generations; Total
power = 19.25MW

(d) Best layout after 100 generations; Total
power = 19.31MW

Figure 13: Optimal layouts using the GA after different generations; M600s freely placed

For free stream wind velocity of u∞ = 10.18, the total power generation of the final
optimized layout equals 19.31 MW. Note that using the power equation 70, at a wind

38

speed of u∞ = 10.18, P = 543 KW for the individual M600. Multiply this by 36 results
in a total power output of 19.54 MW. This means that the total power output from the
optimal layout is almost the same as its power capacity. This contradicts the claim that
wake effects are not negligible in AWE. Then why is the output of the wind farm almost
equal to the total power capacity? The answer to this can be reasoned in at least two
ways.
Firstly, the wind is considered to only flow from west to east, as a result of which the GA
places the M600s such that they are not in each other’s wake by placing them on different
y positions. When a wind distribution is introduced, the GA would find other optimal
layouts, resulting in another total power output.
Secondly, the GA can now place the M600s at every coordinate in the area given. This
allows placing the M600 at the positions where the wake effects are the least. Realistically,
wind turbines in a conventional wind farm are placed on a grid as shown in figure 8.

5.2.2 Grid-constrained placement

To depict a realistic wind farm, the optimal layout of the Makani M600 wind farm will be
approached from a different point of view. In this layout, the M600s are constrained to a
grid. To not interfere with the incident M600s the systems need to be at least 5D apart
such that they don’t affect each other with turbulence[70]. 5D equals about 750 meters
for the Makani M600 as built. Therefore the grid cells are 750× 750 meters in the x- and
y-direction respectively. The system’s location is constrained to the vertices of this grid.
Again using the GA an altered optimal layout is found for the Makani M600 wind farm.
Since the grid size is changed, so does the population by equation 71. #Grids now equals
65, therefore the population size now equals 24. The following layouts were found after
1, 10, 50 and 100 generations. Again, from every generation, the best layout is chosen
and displayed:

39

(a) Best layout after 1 generation; Total
power = 16.50MW

(b) Best layout after 10 generations; Total
power = 16.61MW

(c) Best layout after 50 generations; Total
power = 16.81MW

(d) Best layout after 100 generations; Total
power = 17.03MW

Figure 14: Optimal layouts using the GA after different generations; M600s placed on
grid

Again for the free stream wind velocity of u∞ = 10.18 the power generation for every
layout was calculated. The total power output of the best layout after 100 generations
equals 17.03 MW. Compared to the method where the M600s were freely placed, this
is a significant drop in power output.

40

5.2.3 Comparison & Outlook

For both methods, the power-to-mass ratio and total power generated is displayed in the
below table, together with the power capacity of a Makani M600 wind farm.

Total power (MW) power-to-mass (W/kg)
Power capacity 19.54 26.2

GA (free) 19.32 26.0
GA (grid) 17.03 22.9

Table 20: Power production best Makani M600 farm layouts, u∞ = 10.18 m/s

Comparing the GA for placement of the M600s in a wind farm to table 19 the power
generated has more than or almost doubled together with the power-to-mass ratio. In
table 19 the M600s were fully submerged in the wake generated by the system(s) down-
stream to themselves. The GA freely placed the M600s on a venture with the same area.
The difference in power output portrays the influence between full-wake and partial-wake
submergence for the AWES. It illustrates the significance of wake effects for airborne wind
farms.

Furthermore the power-to-mass ratio in table 20 is interesting for future research of AWES
application in wind farms. To put the results obtained from the GA in perspective, the
comparison is made to a wind farm of 36 Vestas 90-3MW turbines. Since the mass of
the Makani M600 is slightly more than 19 times lower than that of the Vestas 90-3MW.
Suppose 19 more of these Makani M600 wind farms were built, they would have a total
power output of between 324 MW and 367 MW, depending on whether the turbines
are freely placed or placed on a grid respectively. This is more than 3 times the power
capacity of the OWEZ, let alone the actual power output. A significant increase.

Figure 9 shows that the median power output of the OWEZ is roughly 32MW, which is
interesting to compare with the layout created by the GA. For a free stream wind velocity
of u∞ = 8.0 the results are as follows:

Total power (MW) power-to-mass (W/kg)
Power capacity, M600 9.48 12.7

GA (free), M600 9.38 12.6
GA (grid), M600 8.22 11.0
OWEZ, Vestas 32 2.2

Table 21: Power production best Makani M600 farm layouts and median OWEZ,
u∞ = 8.0 m/s

For the same power output as the OWEZ, it would suffice to use four optimal Makani
M600 wind farms using the grid-constrained GA. Using these four wind farms would take

41

up only 20% of the mass used in the OWEZ, therefore far less resource consumption for
the same power output.

At first glance of table 20, the method where the GA is used to freely place the M600s
looks preferable. This provides the highest power output and therefore should be the
most viable solution. Despite the optimality of this solution, it is preferable to place
the AWES on a grid. To lower costs, the amount of cable used for the power grid is
to be minimized. Furthermore, for maintenance purposes, it is more efficient to build a
patterned wind farm[71]. Consequently, both methods are suboptimal. Either the design
is not efficient or the power generation is suboptimal. A middle ground must be found
by combining both these methods.

42

6 Results

The goal of this research was to investigate the performance of AWES in wind farms
against conventional HAWTs. First, the OWEZ was imitated using AWES, and the
power output was then compared to the OWEZ using HAWTs. The results indicate a
clear difference in performance between the AWES and the HAWTs. As expected the
total power output of the Makani M600 wind farm was significantly lower compared to the
Vestas 90-3MW wind farm under identical wind conditions. Using both the Park model
(4.1) and the Kaufman-Martin model (4.2) for a free stream wind velocity of u∞ = 8.0
with the turbines aligned with the wind direction (319◦), the M600 array produced a
total power output of order 4-6 times smaller than the HAWTs. This difference in power
generation is explained by the fact that the power capacity of the Makani M600 (600 kW)
and the Vestas 90-3MW (3 MW) differ by a factor of 5. Despite this, since the Vestas
90-3MW weighs roughly 19 times more than the M600, the M600 shows a remarkable
advantage in terms of the power-to-mass ratio. When experiencing full wake effects the
power-to-mass ratio of the M600 is a factor 3.9 times bigger than that of the Vestas
turbine.

After the replication of the OWEZ using the M600 system, then an optimal layout was
found using the GA with a fixed wind direction. Here the systems were not fully sub-
merged in the wake of its downstream neighbour. The results of the GA were even more
promising. The optimal, grid-constrained layout now had a power-to-mass ratio 5 times
higher than that of OWEZ, using the median power production (32 MW) of the OWEZ.
The change from 3.9 to 5 times better power-to-mass ratio is clarified by the lower shad-
owing factor γα of AWES compared to HAWTs. This highlights a key advantage for
AWES. Far fewer resources are used for the same power output. This could translate into
lower material costs and larger scalability opportunities for AWES.

The lower shadowing factor is a result of less wake interference by the AWES in a wind
farm. The incident velocities of the freely placed M600 systems by the GA didn’t differ
much from the free stream wind velocity, as a result of which the power generation was
nearly equal to the power capacity. This backs the earlier assumptions where the wake
effects of AWES were treated as negligible. The results of the grid-constrained GA and
OWEZ replication, however, indicate that the M600 systems underwent substantial wake
effects. Especially in the OWEZ replication, both the Park and Kaufman-Martin models
depicted strong velocity deficits caused by wake effects. In optimised layouts where the
turbines could be placed on a grid or freely, the wake effects were reduced considerably.
Here, for a free stream wind velocity of u∞ = 8.0 the total power output was at least
twice as high compared to the OWEZ replication. Overall, the comparison indicates that
while the wake effects of AWES are not negligible, optimised layouts can mitigate the
wake effects severely.

43

7 Conclusion

This research has found a way of optimizing the design layout of an offshore wind farm
using AWES. After finding an analytical solution for the wake effects using the Park
model and a numerical solution using the Kaufman-Martin model, the OWEZ, consist-
ing of 36 Vestas 90-3MW turbines, was replicated using 36 Makani M600 systems. By
implementation of these models, it was found that the wake effects generated by AWES
are not negligible as they were previously thought to be. In comparison to the OWEZ,
the performance of the Makani M600s in terms of the power-to-mass ratio was 3.9 times
higher for a free stream wind velocity of u∞ = 8.0.

The optimal layout was found using the Park model in a genetic algorithm. To be able
to compare it to the OWEZ, the same dimensions of 3000×9000 meters were used. First,
the algorithm was allowed to place the 36 M600s freely in the domain. Thereafter the
M600s were only allowed to be placed on a grid since this is more common for real-life
implementation of a wind farm. The power generated by the free algorithm and the grid-
constrained algorithm are 19.32 MW and 17.03 MW respectively with a corresponding
power-to-mass ratio of 26.0 W/kg and 22.9 W/kg. This was found for u∞ = 10.18, which
is the mean wind velocity at an altitude of 291 meters at the OWEZ site. For u∞ = 8.0
the power generation is given by 9.38 MW and 8.22 MW respectively with corresponding
power-to-mass ratios of 12.6 W/kg and 11.0 W/kg. These power-to-mass ratios were 5.7
and 5 times higher than that corresponding to the OWEZ for this wind speed. This
means that for the same power output, only %20 of the resources are needed.

In conclusion, the wake effects of AWES are significant for a wind farm and therefore are
not to be neglected. Also, since the power-to-mass ratio of the optimal M600 wind farm
is five times higher than that of the OWEZ using Vestas 90-3MW turbines, this research
has found that for future development it would be preferable to use AWES in a wind farm
instead of the conventional HAWTs.

44

8 Discussion

8.1 Limitations

Although the AWES wind farm showed promising insights, there are several limitations
that need to be discussed for validity of the research. Firstly, the parameters in table 1
for the Makani M600 as-built were developed for a minimal altitude of 110 meters. For
results in 5.1 and 5.2 the average wind velocity of u∞ = 10.18 at an altitude of about
300 meters. Therefore it could be possible that the parameters such as the drag and lift
coefficients vary for different altitudes. However, since these are dependent on velocity
instead of height, and the Makani M600 as-built has a rated wind speed of 11 m/s, the
parameters shouldn’t vary much.

Secondly, to simplify the configuration of the wakes generated by the AWES, it was
assumed that the area of the flightpath and wake of a system was a perfect annulus. In
reality the area of the flightpath of the airborne device is not a perfect annulus, however,
this assumption came forth out of literature such as the Kaufman-Martin model [49][73].
Here the flightpath area and therefore the wake area is assumed to be a perfect annulus,
validating the assumption made in this research.

In the entrainment-based Kaufman-Martin model the mass flow, mass flux in the wake
region and mass flux in the core region are dependent on entrainment constant E. These
variables are used to find results for the velocity deficit, inner wake diameter and outer
diameter. To correctly find these values, a value must be assigned to E. However, this
constant is based on empirical data, and does not have a general equation. Kaufman-
Martin et al. (2022) states that typically E = 0.15 for HAWT models in low-turbulence
inflow. This value however can reach up to 0.6 for high-turbulence flows. This then
leaves E to be in a range of 0.15 ≤ E ≤ 0.6. Since the Kaufman-Martin model exhibited
roughly the same results as the Park model for E = 0.31, this value was chosen as the
entrainment constant. While being grounded by the allowed range, the chosen value has
not been empirically verified. Therefore the results of the Kaufman-Martin model must
be viewed as indicative rather than explicit.

Lastly, the power equation 70, derived by Loyd (1980), is the upper bound of power
generation for AWES. Therefore the results are likely to be overestimated for the actual
power generation using the M600. Whereas in the modeling of this research optimal
conditions were assumed, in reality these conditions vary a lot. These variations would
reduce power generations. Additionally, perfect control and no failures were assumed
for the airborne devices, ignoring potential losses. Since this research focused mainly
on the wake effects of AWES and its performance in a wind farm, the situations where
the conditions are not optimal only bring forth haziness. Using optimal conditions, the
wake effects were captured the most clearly. Situations where these conditions vary were
therefore out of the scope of this research.

45

8.2 Future research possibilities

Building on this study several possibilities for future work arise. To improve the optimized
layout used in this research, and relate it to reality more, the wind distribution at the
OWEZ site could be integrated. The GA now only considers a fixed wind direction from
west to east, whereas in real situations the wind direction turns corresponding to its
wind distribution. This could give a realistic indication of the annual energy production
of a wind farm using AWES. Because of a lack of data, it was not implemented in this
research.

In this research the Makani M600 model was used to model the wake effects of AWES.
Exploring other models as airborne devices for an AWES wind farm would increase the
understanding of wake effects for AWES. After implementation of different models, it
could be determined which airborne device is the most suitable for airborne wind farms.
Together with this only drag-mode AWES were considered. Exploration of lift-mode
AWES in a wind farm could possibly present more feasible results than the drag-mode
AWES. Exploring this could therefore be an interesting future research.

Lastly, this research did not incorporate the total cost or levelized cost of electricity,
while this may be the most important variable for potential investors. While this study
mostly discusses technical performance differences and possibilities for AWES compared to
HAWTs, the actual development of AWES wind farms rely mostly on economic viability.
This should include costs for wind development, maintenance, venture, monitoring and
decommissioning, however these values are not yet available for AWES as it still is in
an early phase of development. For HAWTs a general equation for the levelized cost of
electricity, only for AWES, this is yet to come. Therefore future research considering the
cost of an AWES wind farm would be very viable for the future of AWES and sustainable
energy.

46

References

[1] https://www.technia.com/blog/which-renewable-energy-sources-are-most-
reliable/#:̃:text=At%20present%2C%20wind%20power%20is,without%20its
%20challenges%20and%20disadvantages.

[2] https://www.sciencedirect.com/science/article/pii/S0960148111005155#:%̃3Atext=The%20two%20main%20effects%20of,%20mechanical%20loading%20on%20downwind%20turbines

[3] https://home.uni-leipzig.de/energy/energy-fundamentals/15.htm

[4] Barthelmie, R. J., Pryor, S. C., Frandsen, S. T., Hansen, K. S., Schepers, J. G.,
Rados, K., Schlez, W., Neubert, A., Jensen, L. E., and Neckelmann, S.: Quantifying
the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms, J.
Atmos. Ocean. Tech., 27, 1302–1317, https://doi.org/10.1175/2010JTECHA1398.1,
2010.

[5] https://wfo-global.org/wp-content/uploads/2024/04/WFO-Report-2024Q1.pdf

[6] https://www.statista.com/statistics/280704/world-power-consumption/

[7] https://www.sciencedirect.com/topics/engineering/airborne-wind-
energy#: :text=Airborne%20wind%20energy%20(AWE)%20is,or%20more%20tethers%20%5B3%5D.

[8] Kruijff, M. and Ruiterkamp, R.: A Roadmap Towards Airborne Wind Energy
in the Utility Sector, in: Airborne Wind Energy: Advances in Technology De-
velopment and Research, edited by: Schmehl, R., Springer Singapore, 643–662,
https://doi.org/10.1007/978-981-10-1947-0, 2018.

[9] Echeverri, P., Fricke, T., Homsy, G., and Tucker, N.: The Energy Kite: Selected
Results from the Design, Development, and Testing of Makani’s Airborne Wind Tur-
bines, Part I of III, Tech. rep., https://archive.org/details/theenergykite (last access:
19 May 2022), 2020.

[10] Malz, E., Zanon, M., and Gros, S.: A Quantification of the Performance Loss of
Power Averaging in Airborne Wind Energy Farms, in: 2018 European Control Con-
ference (ECC), https://doi.org/10.23919/ECC.2018.8550357, 2018.

[11] Roque, L. A., Paiva, L. T., Fernandes, M. C., Fontes, D. B., and Fontes, F. A.:
Layout optimization of an airborne wind energy farm for maximum power generation,
in: the 6th International Conference on Energy and Environment Research – Energy
and environment: challenges towards circular economy, Energy Rep., 6, 165–171,
https://doi.org/10.1016/j.egyr.2019.08.037, 2020.

[12] Leuthold, R., De Schutter, J., Malz, E., Licitra, G., Gros, S., and Diehl, M.: Opera-
tional Regions of a Multi-Kite AWE System, in: 2018 European Control Conference
(ECC), 52–57, https://doi.org/10.23919/ECC.2018.8550199, 2018.

[13] Leuthold, R., Crawford, C., Gros, S., and Diehl, M.: Engineering Wake Induction
Model For Axisymmetric Multi-Kite Systems, J. Phys.: Conf. Ser., 1256, 012009,
https://doi.org/10.1088/1742-6596/1256/1/012009, 2019.

47

[14] De Lellis, M., Reginatto, R., Saraiva, R., and Trofino, A.: The
Betz limit applied to Airborne Wind Energy, Renew. Energy, 127, 32–40,
https://doi.org/10.1016/j.renene.2018.04.034, 2018.

[15] Gaunaa, M., Forsting, A. M., and Trevisi, F.: An engineering model for the
induction of crosswind kite power systems, J. Phys.: Conf. Ser., 1618, 032010,
https://doi.org/10.1088/1742-6596/1618/3/032010, 2020.

[16] Vermeer, L. J., Sørensen, J. N., & Crespo, A. (2003). Wind turbine wake aerodynam-
ics. Progress in Aerospace Sciences, 39(6–7), 467–510. https://doi.org/10.1016/S0376-
0421(03)00078-2

[17] Sanderse, B., van der Pijl, S. P., & Koren, B. (2011). Review of CFD for wind-turbine
wake aerodynamics. Wind Energy, 14(7), 799–819. https://doi.org/10.1002/we.458

[18] https://www.grc.nasa.gov/www/k-12/airplane/nseqs.html

[19] https://www.ansys.com/simulation-topics/what-is-computational-fluid-
dynamics#: :text=Computational%20fluid%20dynamics%20(CFD)%20is,mass%2C%20momentum%2C%20and%20energy.

[20] Niels Otto Jensen. A note on wind generator interaction. Number 2411 in Risø-M.
1983.

[21] I Katic, J Højstrup, and NO Jensen. A simple model for cluster efficiency. In Euro-
pean Wind Energy Association Conference and Exhibition, pages 407–410, 1986

[22] https://dictionary.cambridge.org/dictionary/english/entrainment#google vignette

[23] Karakouzian, M. M., Kheiri, M., & Bourgault, F. (2022). A survey of two analyti-
cal wake models for crosswind kite power systems. Physics of Fluids, 34(9), 097111.
https://doi.org/10.1063/5.0102388

[24] https://www.sciencedirect.com/science/article/pii/S026382232300661X?via%3Dihub

[25] John F Ainslie. Calculating the flowfield in the wake of wind turbines. Journal of
Wind Engineering and Industrial Aerodynamics, 27(1):213–224, 1988.

[26] https://www.britannica.com/science/eddy-fluid-mechanics

[27] https://www.sciencedirect.com/topics/physics-and-astronomy/shear-
layer/#: %3Atext=A%20shear%20layer%20is%20defined,in%20the%20ocean%20or%20atmosphere.

[28] https://www.sciencedirect.com/science/article/pii/S0960148119304239?via%3Dihub

[29] https://wes.copernicus.org/articles/7/1093/2022/wes-7-1093-2022.pdf

[30] https://www.copperpodip.com/post/airborne-wind-energy-awe-system-future-of-
wind-energy

[31] https://wes.copernicus.org/preprints/wes-2024-139/

[32] https://www.copperpodip.com/post/airborne-wind-energy-awe-system-future-of-
wind-energy

48

[33] Loyd, M. L. (1980). Crosswind kite power (for large-scale wind power production).
Journal of Energy, 4(3), 106–111. https://doi.org/10.2514/3.48021

[34] Baayen, J. H., Ockels, W. J.: Tracking control with adaption of kites. IET Control
Theory and Applications 6(2), 182–191 (2012). doi: 10.1049/iet-cta.2011.0037

[35] https://arxiv.org/pdf/1808.07718

[36] Diehl, M.: Airborne wind energy: Basic concepts and physical foundations, in: Air-
borne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R., Springer-
Verlag, Berlin, Heidelberg, 3–22, https://doi.org/10.1007/978-3-642-39965-7 5, 2013.

[37] https://skysails-power.com/airborne-wind-fundamentals/#: %3Atext=Higher%20yields,
%20most%20reliable%20and%20steady%20airflow.

[38] https://www.sciencedirect.com/science/article/pii/S2352484722001093#fig1

[39] https://www.sciencedirect.com/science/article/pii/S0960148118304427

[40] Michele Samorani. The wind farm layout optimization problem. In Handbook of
Wind Power Systems, pages 21–38. Springer, 2013.

[41] Technical University of Denmark (DTU) Department of Wind Energy. Wasp 11 help
facility and on-line documentation. chm file, 23 October 2014.

[42] https://www.sciencedirect.com/science/article/pii/S136403211600143X

[43] https://www.simscale.com/docs/simwiki/cfd-computational-fluid-
dynamics/compressible-flow-vs-incompressible-flow/

[44] Wei Yu (2025), “Blade Element Momentum Theory”, AE4135 Rotor/wake aerody-
namics, Delft university of Technology.

[45] Vuik, C., Vermolen, F. J., van Gijzen, M. B., & Vuik, M. J. (2015). Nu-
merical methods for ordinary differential equations (2nd ed.). TU Delft Open.
https://doi.org/10.5074/t.2023.001

[46] https://pubs.aip.org/aip/pof/article/34/9/097111/2845803/A-survey-of-two-
analytical-wake-models-for

[47] A Pena and O Rathmann. The atmospheric stability dependent infinite wind farm
and wake decay coefficient. Wind Energy, in review, 2011.

[48] Jungchul Choi and Martin Shan. Advancement of Jensen (Park) wake model. In
Proceedings of the European Wind Energy Conference and Exhibition, pages 1–8,
2013.

[49] Kaufman-Martin, S., Naclerio, N., May, P., and Luzzatto-Fegiz, P.: An entrainment-
based model for annular wakes, with applications to airborne wind energy, Wind
Energy, 25, 419–431, https://doi.org/10.1002/we.2679, 2022.

[50] Caulfield, C., & Luzzatto-Fegiz, P. (2018). An entrainment model for fully-
developed wind farms: effects of atmospheric stability and an ideal limit for wind
farm performance. https://doi.org/10.17863/CAM.33342

49

[51] Morton BR, Taylor GI, Turner JS. Turbulent gravitational convection from main-
tained and instantaneous sources. Proc R Soc Lond A Math Phys Sci. 1956; 234(1196):
1-23.

[52] https://www.cambridge.org/core/journals/journal-of-fluid-
mechanics/article/entrainment-hypothesis-80-years-old-and-still-going-
strong/01A28B98995042F5B0470F8492672EA3

[53] Ciri, U., & Salvetti, M. V. (2018). A one-parameter model for turbine wakes from
the entrainment hypothesis. Journal of Physics: Conference Series, 1037(7), 072019.
https://doi.org/10.1088/1742-6596/1037/7/072019

[54] Suraishkumar, G.K. (2014). Mass Flux. In: Continuum Analysis of Biolog-
ical Systems. Biosystems & Biorobotics, vol 5. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-54468-2 2

[55] https://www.britannica.com/science/momentum

[56] https://math.libretexts.org/Bookshelves/Differential Equations/Numerically Solving Ordinary Differential Equations (Brorson)/01%3A Chapters/1.02%3A Forward Euler method

[57] Haas, T., & Meyers, J. (2017). Comparison study between wind turbine
and power kite wakes. Journal of Physics: Conference Series, 854(1), 012019.
https://doi.org/10.1088/1742-6596/854/1/012019

[58] https://www.energy-xprt.com/products/makani-model-m600-airborne-wind-
energy-technology-623052

[59] https://en.wind-turbine-models.com/turbines/603-vestas-v90-
3.0#: :text=The%20rated%20power%20of%20Vestas,V90%2D3.0%20is%2090%20m.

[60] Echeverri, P., Fricke, T., Homsy, G., & Tucker, N. (2020). The Energy Kite: Selected
results from the design, development, and testing of Makani’s airborne wind turbines
(Part I). Makani Technologies LLC. https://x.company/projects/makani/#

[61] Echeverri, P., Fricke, T., Homsy, G., & Tucker, N. (2020). The Energy Kite:
Selected results from the design, development, and testing of Makani’s air-
borne wind turbines (Part II, Technical Artifacts). Makani Technologies LLC,
https://x.company/projects/makani/#

[62] Larsen, T. J., Aagaard Madsen , H., Larsen, G. C., & Hansen, K. S.
(2013). Validation of the dynamic wake meander model for loads and power
production in the Egmond aan Zee wind farm. Wind Energy, 16(4), 605-624.
https://doi.org/10.1002/we.1563

[63] https://www.renewables.ninja/

[64] https://ratedpower.com/glossary/rated-power/#: :text=Rated%20power%20definition%3A%20also%20known,the%20solar%20panel%20to%20deliver.

[65] Vitulli, J. A., Eeckels, C. B. H., Bot, E. T. G., Verhoef, J. P., Bergman, G., & van
der Werff, P. A. (2023). Offshore wind energy deployment in the North Sea by 2030:
Long-term measurement campaign. EPL, 2016-2022 (TNO Report No. R10578). TNO.
https://publications.tno.nl/publication/34640885/d83sPl/TNO-2023-R10578.pdf

50

[66] https://nl.mathworks.com/help/gads/what-is-the-genetic-algorithm.html

[67] https://www.datacamp.com/tutorial/genetic-algorithm-python

[68] https://www.noordzeeloket.nl/en/functions-use/offshore-wind-energy/free-passage-
shared-use/offshore-wind-farm-egmond-aan-zee-owez/

[69] Gatscha, S. (2016). Generic optimization of a wind farm layout using a genetic al-
gorithm (Master’s thesis). University of Natural Resources and Life Sciences, Vienna.
https://homepage.boku.ac.at/jschmidt/TOOLS/Masterarbeit Gatscha.pdf

[70] https://renewablesfirst.co.uk/renewable-energy-technologies/windpower/community-
windpower/location-size-no-of-wind-turbines/#: :text=The%20number%20of%20wind%20turbines,turbine%20it%20is%20410%20metres.

[71] Tesauro, A., Réthoré, P.-E., & Larsen, G. C. (2012). State of the art
of wind farm optimization. In Proceedings of EWEA 2012 - European
Wind Energy Conference & Exhibition. European Wind Energy Association.
https://backend.orbit.dtu.dk/ws/portalfiles/portal/7990594/State of the Art of Wind Farm Optimization.pdf

[72] https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/electrical-sustainable-
energy/dc-systems-energy-conversion-storage/research/wind-farm-design-and-
optimization

[73] Mendonça, A. K. S., & Bornia, A. C. (2020). Electric power generation in wind
farms with pumping kites: Levelized cost of energy and sensitivity analysis. Research,
Society and Development, 9(7), e666974528. https://doi.org/10.33448/rsd-v9i7.4528

51

A Python code

A.1 OWEZ using Park model, analytically

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import math

4 import pandas as pd

5 from geopy.distance import geodesic

6 from scipy.spatial.distance import cdist

7 #Parameters

8 rho = 1.225

9 u_inf = 10.18 #mean wind speed OWEZ

10 alpha = 0.038 #entrainment constant

11 D = 145 #outer diameter

12 d = 119.3 #inner diameter

13 Dr = 90 #Rotor diameter

14 z= 110 #altitude axisymmetric

15 z0 =0.0002 #surface roughness

16 C_T = 0.312 #coefficients

17 C_D = 0.312

18 C_L = 2.56

19 C_P = 0.45

20 A_wing = 32.9

21

22 OWEZ = pd.read_csv("/Users/user/Documents/BEP/OWEZ.csv")

23 #coordinates of the wind turbines scaled to be in [-90,90]

24 coordinates = list(zip(OWEZ[’xpos’]/100000 , OWEZ[’ypos’]/100000))

25 met_mast = coordinates.pop()

26 # Create an empty distance matrix

27 num_turbines = len(coordinates)

28 distance_matrix = np.zeros((num_turbines , num_turbines))

29

30 # Compute pairwise distances

31 for i in range(num_turbines):

32 for j in range(num_turbines):

33 if i != j: # Avoid zero distance for same point

34 distance_matrix[i, j] = geodesic(coordinates[i], coordinates[j

]).meters # Convert to meters

35

36 np.fill_diagonal(distance_matrix , np.inf) # Ignore self -distances

37

38 # Convert lat/lon to a simple Cartesian (meters)

39 # Use one turbine as the origin

40 origin = coordinates [0]

41 def geo_to_cartesian(coord):

42 # Approximation for small areas using geodesic distances

43 x = geodesic ((origin [1], origin [0]), (origin [1], coord [0])).meters #

East -West

44 y = geodesic ((origin [1], origin [0]), (coord[1], origin [0])).meters #

North -South

45 if coord [0] < origin [0]:

46 x = -x

47 if coord [1] < origin [1]:

48 y = -y

49 return (x, y)

50

52

51 positions = np.array([geo_to_cartesian(c) for c in coordinates])

52

53 def rotate(positions):

54 theta = np.arctan(positions [10][1]/ positions [10][0])

55 rotation_matrix = np.array ([[np.cos(theta), np.sin(theta)],

56 [-np.sin(theta), np.cos(theta)]])

57 return positions @ rotation_matrix.T

58

59 rotated_positions = rotate(positions) #now flow runs along x-axis

60

61

62 def integration_factor(x):

63 term = d - 2* alpha *x

64 if term !=0:

65 return 0.5 * (1+ term/abs(term))

66 else:

67 return 1

68

69

70 def shadow_factor(overlap , flightpath):

71 return overlap/flightpath

72

73 def velocity_deficit(D, d, x, u_inc , overlap =1.0, flightpath =1.0):

74 Dw = D + 2*alpha * x

75 dw = integration_factor(x) * (d-2* alpha*x)

76 term = 1- C_T

77 numerator = 2* shadow_factor(overlap ,flightpath)*(1-np.sqrt(term))*(D**2

- d**2)

78 denominator = Dw**2 - dw**2

79 return numerator/denominator

80

81 reversed_positions = np.array(rotated_positions [:: -1]) #reversed so that

upstream comes first

82

83 def velocity_at_turbines(reversed_positions):

84 N = len(reversed_positions)

85 u_inc = np.full(N,u_inf) #initialize with freestream velocity

86 #calculate per row , no wake effects between rows

87 for i in range (1,7):

88 dx = abs(reversed_positions[i][0]- reversed_positions[i -1][0])

89 du = velocity_deficit(D, d, dx, u_inc[i])

90 u_inc[i]=(1-du)*u_inc[i-1]

91

92 for j in range (8,15):

93 dx = abs(reversed_positions[j][0]- reversed_positions[j -1][0])

94 du = velocity_deficit(D, d, dx, u_inc[j])

95 u_inc[j]=(1-du)*u_inc[j-1]

96

97 for k in range (16 ,24):

98 dx = abs(reversed_positions[k][0]- reversed_positions[k -1][0])

99 du = velocity_deficit(D, d, dx, u_inc[k])

100 u_inc[k]=(1-du)*u_inc[k-1]

101

102 for l in range (25 ,36):

103 dx = abs(reversed_positions[l][0]- reversed_positions[l -1][0])

104 du = velocity_deficit(D, d, dx, u_inc[l])

105 u_inc[l]=(1-du)*u_inc[l-1]

106

107 reverse_u_inc = np.array(u_inc [:: -1])#reversed again such that turbines

53

are in order

108 return reverse_u_inc

109 incident_velocities = velocity_at_turbines(reversed_positions)

110 print(incident_velocities)

111

112

113 def power_equation(u_inc):

114 powers = []

115

116 for u in u_inc:

117 P=(2/27)*rho*A_wing*C_L *(C_L/C_D)**2*u**3

118 powers.append(P)

119

120 return np.array(powers)

121

122 def total_power(u_inc):

123 total = 0

124 power_per_system=power_equation(u_inc)

125 for p in power_per_system:

126 total +=p

127 return total

128 x=[u_inf]

129 print(’Power AWES:’,total_power(incident_velocities))

130

131 lst= list(range(len(reversed_positions)))

132 plt.bar(lst , velocity_at_turbines(reversed_positions), label = fr"$u_\infty
={u_inf}$")

133 plt.xlabel("#Turbines")

134 plt.ylabel(’Incident velocity in m/s’)

135 plt.ylim (3.0, 9)

136 plt.title(’Wake effect ’)

137 plt.legend ()

138 plt.grid(True)

139 plt.show()

140 #%%

141 closest_turbines = np.argmin(distance_matrix , axis =1)

142 # Print closest turbine for each turbine

143 latitudes = OWEZ[’ypos’]. to_numpy () /100000

144 longitudes = OWEZ[’xpos’]. to_numpy () /100000

145 latitudes = np.delete(latitudes ,36)

146 longitudes = np.delete(longitudes ,36)

147 # Create a scatter plot

148 plt.figure(figsize =(8, 6))

149 plt.scatter(longitudes , latitudes , c=’b’, marker=’o’, label=’Turbines ’)

150 # Label each turbine

151 for i, (lon , lat) in enumerate(zip(longitudes , latitudes)):

152 plt.text(lon , lat , str(i), fontsize=9, ha=’right ’, color=’red’)

153 plt.xlabel("Longitude")

154 plt.ylabel("Latitude")

155 plt.title("Wind Turbine Layout (Geographic Coordinates)")

156 plt.legend ()

157 plt.grid(True)

158 plt.show()

A.2 OWEZ using Kaufman-Martin, numerically

54

1

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import pandas as pd

5 from geopy.distance import geodesic

6 from scipy.spatial.distance import cdist

7

8 rho = 1.225

9 t0 = 0

10 D = 145 #outer diameter

11 d = 119.3

12 E = 0.31

13 Vinf = 10.18

14 z= 110 #altitude axisymmetric

15 z0 =0.0002 #surface roughness

16 C_T = 0.312 #coefficients

17 C_D = 0.312

18 C_L = 2.56

19 A_wing = 32.9

20 Dw0 = np.sqrt (2*D**2-d**2)

21 dw0 = d

22 Vw0 = Vinf /3

23 mw0 = (1/4)*(Dw0 **2 - dw0 **2)*Vw0

24 Mw0 = (1/4)*(Dw0 **2 - dw0 **2)*Vw0 **2

25 mi0 = dw0 **2 * Vinf/4

26 num_steps = 10000

27 h = 0.1 #h*num_steps = 1000!

28

29

30 # Function representing the differential equation: dP/dt = k * P

31 def entrainment1(t,mw,Mw,mi ,E,Vinf):

32 return 2*E*(Vinf -Mw/mw)*(np.sqrt(mi/Vinf+mw**2/Mw) +np.sqrt(mi/Vinf))

33 def entrainment2(t,mw,Mw,mi ,E,Vinf):

34 return Vinf *(2*E*(Vinf -Mw/mw)*(np.sqrt(mi/Vinf+mw**2/Mw) +np.sqrt(mi/

Vinf)))

35 def entrainment3(t,mw,Mw,mi ,E,Vinf):

36 return -2*E*(Vinf -Mw/mw)*np.sqrt(mi/Vinf)

37

38

39

40

41

42 # Fourth -order Runge -Kutta method

43 def runge_kutta_4(f1,f2 ,f3, t0, mw0 , h, num_steps , Mw0 ,mi0 ,E,Vinf):

44 solution = [(t0, mw0 ,Mw0 ,mi0)]

45 solution_scaled = [(t0 ,0,0,0)]

46 t = t0

47 mw = mw0

48 Mw = Mw0

49 mi = mi0

50

51 for _ in range(num_steps):

52 k1 = h * f1(t, mw,Mw,mi ,E,Vinf)

53 k2 = h * f1(t + 0.5 * h, mw + 0.5 * k1,Mw,mi ,E,Vinf)

54 k3 = h * f1(t + 0.5 * h, mw + 0.5 * k2,Mw,mi ,E,Vinf)

55 k4 = h * f1(t + h, mw + k3 ,Mw,mi ,E,Vinf)

56 g1 = h * f2(t, mw,Mw,mi ,E,Vinf)

57 g2 = h * f2(t + 0.5 * h, mw ,Mw + 0.5 * g1,mi ,E,Vinf)

58 g3 = h * f2(t + 0.5 * h, mw ,Mw + 0.5 * g2,mi ,E,Vinf)

55

59 g4 = h * f2(t + h, mw,Mw+ g3 ,mi,E,Vinf)

60 l1 = h * f3(t, mw,Mw,mi ,E,Vinf)

61 l2 = h * f3(t + 0.5 * h, mi ,Mw,mi+ 0.5 * l1 ,E,Vinf)

62 l3 = h * f3(t + 0.5 * h, mi ,Mw,mi+ 0.5 * l2 ,E,Vinf)

63 l4 = h * f3(t + h, mi ,Mw,mi+ l3 ,E,Vinf)

64

65

66 mw = mw + (k1 + 2 * k2 + 2 * k3 + k4) / 6

67 Mw = Mw + (g1 + 2 * g2 + 2 * g3 + g4) / 6

68 mi = mi + (l1 + 2 * l2 + 2 * l3 + l4) / 6

69 t = t + h

70

71 #print(mw)

72 #print(Mw)

73 #print(mi)

74

75 #Terug schalen

76 Vw = Mw/mw

77 dw = 2* np.sqrt(mi/Vinf)

78 Dw = 2* np.sqrt((mi/Vinf)+(mw**2/Mw))

79 solution.append ((t, mw ,Mw,mi)) #om het in een uiteindelijke vector

/ matrix op te slaan.

80 solution_scaled.append ((t,Vw ,dw,Dw)) #om het in een uiteindelijke

vector / matrix op te slaan.

81

82 return solution_scaled

83

84

85

86

87 # Solve the differential equation using Runge -Kutta method

88 solution_scaled = runge_kutta_4(entrainment1 ,entrainment2 ,entrainment3 , t0,

mw0 , h, num_steps , Mw0 ,mi0 ,E,Vinf)

89

90 # Extracting time and population values for plotting

91 t_values = [t for t, _, _, _ in solution_scaled]

92 Vw_values = [Vw for _, Vw, _, _ in solution_scaled]

93 dw_values = [dw for _, _, dw, _ in solution_scaled]

94 Dw_values = [Dw for _, _, _, Dw in solution_scaled]

95

96 OWEZ = pd.read_csv("/Users/user/Documents/BEP/OWEZ.csv")

97 #coordinates of the wind turbines scaled to be in [-90,90]

98 coordinates = list(zip(OWEZ[’xpos’]/100000 , OWEZ[’ypos’]/100000))

99 met_mast = coordinates.pop()

100 # Create an empty distance matrix

101 num_turbines = len(coordinates)

102 distance_matrix = np.zeros((num_turbines , num_turbines))

103

104 # Compute pairwise distances

105 for i in range(num_turbines):

106 for j in range(num_turbines):

107 if i != j: # Avoid zero distance for same point

108 distance_matrix[i, j] = geodesic(coordinates[i], coordinates[j

]).meters # Convert to meters

109

110 np.fill_diagonal(distance_matrix , np.inf) # Ignore self -distances

111

112 # Convert lat/lon to a simple Cartesian (meters)

113 # Use one turbine as the origin

56

114 origin = coordinates [0]

115 def geo_to_cartesian(coord):

116 # Approximation for small areas using geodesic distances

117 x = geodesic ((origin [1], origin [0]), (origin [1], coord [0])).meters #

East -West

118 y = geodesic ((origin [1], origin [0]), (coord[1], origin [0])).meters #

North -South

119 if coord [0] < origin [0]:

120 x = -x

121 if coord [1] < origin [1]:

122 y = -y

123 return (x, y)

124

125 positions = np.array([geo_to_cartesian(c) for c in coordinates])

126

127 def rotate(positions):

128 theta = np.arctan(positions [10][1]/ positions [10][0])

129 rotation_matrix = np.array ([[np.cos(theta), np.sin(theta)],

130 [-np.sin(theta), np.cos(theta)]])

131 return positions @ rotation_matrix.T

132

133 rotated_positions = rotate(positions) #now flow runs along x-axis

134 reversed_positions = np.array(rotated_positions [:: -1])

135

136 def numerical_velocity_deficit(reversed_positions , t0, mw0 , h, num_steps ,

Mw0 , mi0 , E, Vinf ,dw0 , Dw0):

137 N = len(reversed_positions)

138 u_list = np.full(N,Vinf)

139 mw = mw0

140 Mw = Mw0

141 mi = mi0#initialize with freestream velocity

142 #calculate per row , no wake effects between rows

143 Vw = Vinf

144 for i in range (1,7):

145 dx = abs(reversed_positions[i][0]- reversed_positions[i -1][0])

146 steps= int(dx/h -1)

147 solution_scaled = runge_kutta_4(entrainment1 , entrainment2 ,

entrainment3 , t0 , mw, h, num_steps , Mw , mi , E, Vw)

148 Vw = solution_scaled[steps][1]

149 u_list[i] =Vw

150 step_indices=list(range(num_steps +1))

151 Vw_step = [solution_scaled[a][1] for a in step_indices]

152

153 plt.plot([s/10 for s in step_indices], Vw_step , label = f"Makani

M600 {35-i}")

154 plt.plot(step_indices[steps]/10, Vw_step[steps], ’kv’)

155

156 mw = (1/4) *(Dw0 **2 - dw0 **2)*(Vw/3)

157 Mw = (1/4) *(Dw0 **2 - dw0 **2)*(Vw/3) **2

158

159

160 plt.xlabel(’x in meters ’)

161 plt.ylabel(’Incident velocity in m/s’)

162 plt.title(r’Wake effect for $u_\infty = 8.0$’)
163 plt.legend ()

164 plt.grid(True)

165 plt.show()

166 Vw = Vinf

167 for j in range (8,15):

57

168 dx = abs(reversed_positions[j][0]- reversed_positions[j -1][0])

169 steps = int(dx/h -1)

170 solution_scaled = runge_kutta_4(entrainment1 , entrainment2 ,

entrainment3 , t0 , mw, h, num_steps , Mw , mi , E, Vw)

171 Vw = solution_scaled[steps][1]

172 u_list[j] =Vw

173

174 step_indices=list(range(num_steps +1))

175 Vw_step = [solution_scaled[a][1] for a in step_indices]

176

177 plt.plot([s/10 for s in step_indices], Vw_step , label = f"Makani

M600 {35-j}")

178 plt.plot(step_indices[steps]/10, Vw_step[steps], ’kv’)

179

180 mw = (1/4) *(Dw0 **2 - dw0 **2)*(Vw/3)

181 Mw = (1/4) *(Dw0 **2 - dw0 **2)*(Vw/3) **2

182

183 plt.xlabel(’x in meters ’)

184 plt.ylabel(’Incident velocity in m/s’)

185 plt.title(r’Wake effect for $u_\infty = 8.0$’)
186 plt.legend ()

187 plt.grid(True)

188 plt.show()

189 Vw = Vinf

190 for k in range (16 ,24):

191 dx = abs(reversed_positions[k][0]- reversed_positions[k -1][0])

192 steps = int(dx/h -1)

193 solution_scaled = runge_kutta_4(entrainment1 , entrainment2 ,

entrainment3 , t0 , mw, h, num_steps , Mw , mi , E, Vw)

194 Vw = solution_scaled[steps][1]

195 u_list[k] =Vw

196

197 step_indices=list(range(num_steps +1))

198 Vw_step = [solution_scaled[a][1] for a in step_indices]

199

200 plt.plot([s/10 for s in step_indices], Vw_step , label = f"Makani

M600 {35-k}")

201 plt.plot(step_indices[steps]/10, Vw_step[steps], ’kv’)

202

203 mw = (1/4) *(Dw0 **2 - dw0 **2)*(Vw/3)

204 Mw = (1/4) *(Dw0 **2 - dw0 **2)*(Vw/3) **2

205

206 plt.xlabel(’x in meters ’)

207 plt.ylabel(’Incident velocity in m/s’)

208 plt.title(r’Wake effect for $u_\infty = 8.0$’)
209 plt.legend ()

210 plt.grid(True)

211 plt.show()

212 Vw = Vinf

213 for l in range (25 ,36):

214 dx = abs(reversed_positions[l][0]- reversed_positions[l -1][0])

215 steps = int(dx/h -1)

216 solution_scaled = runge_kutta_4(entrainment1 , entrainment2 ,

entrainment3 , t0 , mw, h, num_steps , Mw , mi , E, Vw)

217 Vw = solution_scaled[steps][1]

218 u_list[l] =Vw

219

220 step_indices=list(range(num_steps +1))

221 Vw_step = [solution_scaled[a][1] for a in step_indices]

58

222

223 plt.plot([s/10 for s in step_indices], Vw_step , label = f"Makani

M600 {35-l}")

224 plt.plot(step_indices[steps]/10, Vw_step[steps], ’kv’)

225

226 mw = (1/4) *(Dw0 **2 - dw0 **2)*(Vw/3)

227 Mw = (1/4) *(Dw0 **2 - dw0 **2)*(Vw/3) **2

228

229 plt.xlabel(’x in meters ’)

230 plt.ylabel(’Incident elocity in m/s’)

231 plt.title(r’Wake effect for $u_\infty = 8.0$’)
232 plt.legend ()

233 plt.grid(True)

234 plt.show()

235 return np.array(u_list [:: -1])

236 incident_velocities = numerical_velocity_deficit(reversed_positions , t0,

mw0 , h, num_steps , Mw0 , mi0 , E, Vinf , dw0 , Dw0)

237 def power_equation(u_inc):

238 powers = []

239

240 for u in u_inc:

241 P=(2/27)*rho*A_wing*C_L *(C_L/C_D)**2*(u**3)

242 powers.append(P)

243

244 return np.array(powers)

245 def total_power(u_inc):

246 total = 0

247 power_per_system=power_equation(u_inc)

248 for p in power_per_system:

249 total +=p

250 return total

251 print(incident_velocities)

252 print(’Power AWES RK4:’, total_power(incident_velocities))

A.3 Optimized layout, Park model, no constraints

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import math

4 import pandas as pd

5 from geopy.distance import geodesic

6 from scipy.spatial.distance import cdist

7 import random

8 #Parameters

9 rho = 1.225

10 u_inf = 10.18 #mean wind speed OWEZ

11 alpha = 0.038 #entrainment constant

12 D = 145 #outer diameter

13 d = 119.3 #inner diameter

14 z= 100 #altitude axisymmetric

15 z0 =0.0002 #surface roughness

16 C_T = 0.312 #coefficients

17 C_D = 0.312

18 C_L = 2.56

19 A_wing = 32.9

20

59

21

22 def integration_factor(x):

23 term = d - 2* alpha *x

24 if term !=0:

25 return 0.5 * (1+ term/abs(term))

26 else:

27 return 1

28

29

30

31 def gamma(i_pos , j_pos , x):

32 # Circle radii

33 R = D / 2 # outer radius flight path

34 r = d /2 # inner radius flight path

35 Rw = (D + 2 * alpha * x) / 2 # wake diameter at x

36 rw = max(0, integration_factor(x)*(d-2* alpha*x)/2) #inner wake diameter

at x

37 # Center distance (in 2D)

38 dist = np.linalg.norm(np.array(j_pos) - np.array([j_pos [0], i_pos [1]]))

Only y-distance matters

39 def intersection(Ra , Rb):

40 if dist >= Ra +Rb:

41 return 0.0

42 if dist <= abs(Ra - Rb):

43 return 1.0

44 term1 = Ra**2 * np.arccos ((dist **2 + Ra**2 - Rb**2) / (2 * dist *

Ra))

45 term2 = Rb**2 * np.arccos ((dist **2 + Rb**2 - Ra**2) / (2 * dist *

Rb))

46 term3 = 0.5 * np.sqrt((-dist + Ra + Rb) * (dist + Ra - Rb) * (dist

- Ra + Rb) * (dist + Ra + Rb))

47 return term1 + term2 - term3

48 if intersection(R,Rw) == 1.0:

49 return 1.0

50 elif intersection(R,Rw) == 0.0:

51 return 0.0

52 else:

53 A_overlap = (intersection(R,Rw) - intersection(R,rw) - intersection

(r, Rw)+intersection(r,rw))

54 A_flightpath = np.pi*(R**2-r**2)

55 return A_overlap / A_flightpath

56

57 def velocity_deficit(D, d, x, u_inc , gamma , i_pos , j_pos):

58 Dw = D + 2*alpha * x

59 dw = integration_factor(x) * (d-2* alpha*x)

60 term = 1- C_T

61

62 numerator = 2* gamma(i_pos ,j_pos , x)*(1-np.sqrt(term))*(D**2 - d**2)

63 denominator = Dw**2 - dw**2

64 return numerator/denominator

65

66 def in_wake(i_pos , j_pos):

67 return j_pos [0]>i_pos [0]

68

69 def delta_x(i_pos ,j_pos):

70 return abs(j_pos[0]-i_pos [0])

71

72 def incident_velocities(layout):

73 N = len(layout)

60

74 u_inc=np.full(N, u_inf)

75

76 for j in range(N):

77 deficit = []

78

79 for i in range(N):

80 dx = delta_x(layout[i],layout[j])

81 if i == j:

82 continue

83 if in_wake(layout[i], layout[j]):

84 overlap = gamma(layout[i], layout[j], dx)

85 du = velocity_deficit(D, d, dx, u_inc[i], gamma , layout[i],

layout[j])

86 deficit.append(du)

87

88 if deficit:

89 total_deficit = np.sqrt(np.sum(np.square(deficit)))

90 u_inc[j] = u_inf * (1- total_deficit)

91 return u_inc

92

93 def power_equation(u_inc):

94 powers = []

95

96 for u in u_inc:

97 P=(2/27)*rho*A_wing*C_L *(C_L/C_D)**2*u**3

98 powers.append(P)

99

100 return np.array(powers)

101 def total_power(u_inc):

102 total = 0

103 power_per_system=power_equation(u_inc)

104 for p in power_per_system:

105 total +=p

106 return total

107

108 def random_layout(n, width , height , D):

109 layout =[]

110 attempts = 0

111 max_attempt = 10000

112 while len(layout) < n and attempts <max_attempt:

113 x=np.random.uniform(0,width)

114 y=np.random.uniform(0,height)

115 position = np.array([x,y])

116

117 if all(abs(y-s[1]) >= D or abs(x-s[0]) >=2*D for s in layout) :

118 layout.append(position)

119 attempts +=1

120 if len(layout)<n:

121 print(’Not al turbines could be located ’)

122

123 return np.array(layout)

124

125 #%%

126 def fitness(layout):

127 u_inc = incident_velocities(layout)

128 return total_power(u_inc)

129

130 def initial_pop(popsize , n ,width , height , D):

131 return [random_layout(n, width , height , D) for _ in range(popsize)]

61

132

133 def constraint(layout , width , height , D):

134 sorted_layout = sorted(layout , key = lambda x: x[1])

135 filtered = [sorted_layout [0]]

136 for point in sorted_layout [1:]:

137 if all(abs(point [1] - p[1]) >= D or abs(point [0]-p[0]) >=2*D for p

in filtered):

138 filtered.append(point)

139

140 if len(filtered)<len(layout):

141 return random_layout(n,width , height , D)

142

143 return np.array(filtered)

144

145 def crossover(farm1 , farm2):

146 n = len(farm1)

147 offspring =[]

148 for i in range(n):

149 if np.random.rand() <0.5: #uniform probability

150 offspring.append(farm1[i])

151 else:

152 offspring.append(farm2[i])

153 return constraint(np.array(offspring), width , height , D)

154

155 def mutate(layout , rate , width , height):

156 copy = layout.copy()

157

158 for i in range(len(copy)):

159 if np.random.rand()<rate:

160 xnew = np.random.uniform(0, width)

161 ynew = np.random.uniform(0, height)

162 copy[i]=[xnew ,ynew]

163 return constraint(copy , width , height , D)

164

165 def genetic_algorithm(gen , popsize , rate , n, width , height , D):

166 pop= initial_pop(popsize , n, width , height , D)

167 best_fit = 0

168 best_layout = None

169 saved_layout ={}

170 for g in range(gen): #fitness

171 scores = [fitness(layout) for layout in pop]

172 best_index= np.argmax(scores)

173 if scores[best_index] > best_fit:

174 best_fit = scores[best_index]

175 best_layout = pop[best_index]

176 print(f"Gen {g+1}: Best Power = {scores[best_index]/1e6:.2f} MW

")

177 if g in [0,9,49]:

178 saved_layout[g] = pop[best_index]

179 #selection = top 25%

180 sorted_pop = [x for _, x in sorted(zip(scores ,pop), key = lambda

pair: pair[0], reverse = True)]

181 top = sorted_pop [: popsize // 4]

182

183 #make new population

184 new_pop = top.copy()

185 while len(new_pop) < popsize:

186 index = np.random.choice(len(top) ,2) #choose random parents

from top

62

187 f1 = top[index [0]]

188 f2 = top[index [1]]

189 offspring = crossover(f1,f2)

190 offspring = mutate(offspring , rate , width , height)

191 new_pop.append(offspring)

192

193 pop = new_pop

194

195 return best_layout , best_fit , saved_layout

196

197 gen =100

198 popsize =216

199 rate =0.1

200 n = 36

201 width = 3000

202 height = 9000

203

204 bestlayout , bestfitness , saved_layout = genetic_algorithm(gen , popsize ,

rate , n, width , height , D)

205 print(f"Final Best Power Output: {bestfitness /1e6:.2f} MW")

206

207 inc = incident_velocities(bestlayout)

208 print(inc)

209

210 x, y = bestlayout [:, 0], bestlayout [:, 1]

211

212 def plot_layout(layout , title , width , height):

213 x, y = layout[:, 0], layout[:, 1]

214 plt.figure(figsize =(8, 8))

215 plt.scatter(x, y, c=’blue’, s=100, edgecolors=’black ’, marker=’<’,

label=’Makani M600s ’)

216

217 for i in range(len(layout)):

218 plt.arrow(x[i], y[i], 2*D, 0, head_width =50, head_length =100, fc=’

red’, ec=’red’, alpha =0.3)

219

220 plt.xlim(0, width + 100)

221 plt.ylim(0, height + 300)

222 plt.gca().set_aspect(’equal’)

223 plt.grid(True)

224 plt.xlabel("x-position (m)")

225 plt.ylabel("y-position (m)")

226 plt.title(title)

227 plt.legend ()

228 plt.tight_layout ()

229 plt.show()

230

231 plot_layout(saved_layout [0], "Layout at Generation 1", width , height)

232 plot_layout(saved_layout [9], "Layout at Generation 10", width , height)

233 plot_layout(saved_layout [49], "Layout at Generation 50", width , height)

234 plot_layout(bestlayout , "Final Optimized Layout", width , height)

A.4 Optimized layout, Park model, grid-constrained

1 import matplotlib.pyplot as plt

2 import numpy as np

63

3 import math

4 import pandas as pd

5 from geopy.distance import geodesic

6 from scipy.spatial.distance import cdist

7 import random

8 #Parameters

9 rho = 1.225

10 u_inf = 8.0 #mean wind speed OWEZ

11 alpha = 0.038 #entrainment constant

12 D = 145 #outer diameter

13 d = 119.3 #inner diameter

14 z= 100 #altitude axisymmetric

15 z0 =0.0002 #surface roughness

16 C_T = 0.312 #coefficients

17 C_D = 0.312

18 C_L = 2.56

19 A_wing = 32.9

20

21 gen =100

22 popsize =24

23 rate =0.1

24 n = 36

25 width = 3000

26 height = 9000

27

28

29

30 def integration_factor(x):

31 term = d - 2* alpha *x

32 if term !=0:

33 return 0.5 * (1+ term/abs(term))

34 else:

35 return 1

36

37

38

39 def gamma(i_pos , j_pos , x):

40 # Circle radii

41 R = D / 2 # outer radius flight path

42 r = d /2 # inner radius flight path

43 Rw = (D + 2 * alpha * x) / 2 # wake diameter at x

44 rw = max(0, integration_factor(x)*(d-2* alpha*x)/2) #inner wake diameter

at x

45 # Center distance (in 2D)

46 dist = np.linalg.norm(np.array(j_pos) - np.array([j_pos [0], i_pos [1]]))

Only y-distance matters

47

48 def intersection(Ra , Rb):

49 if dist >= Ra +Rb:

50 return 0.0

51 if dist <= abs(Ra - Rb):

52 return 1.0

53 term1 = Ra**2 * np.arccos ((dist **2 + Ra**2 - Rb**2) / (2 * dist *

Ra))

54 term2 = Rb**2 * np.arccos ((dist **2 + Rb**2 - Ra**2) / (2 * dist *

Rb))

55 term3 = 0.5 * np.sqrt((-dist + Ra + Rb) * (dist + Ra - Rb) * (dist

- Ra + Rb) * (dist + Ra + Rb))

56 return term1 + term2 - term3

64

57 if intersection(R,Rw) == 1.0:

58 return 1.0

59 elif intersection(R,Rw) == 0.0:

60 return 0.0

61 else:

62 A_overlap = (intersection(R,Rw) - intersection(R,rw) - intersection

(r, Rw)+intersection(r,rw))

63 A_flightpath = np.pi*(R**2-r**2)

64 return A_overlap / A_flightpath if A_flightpath >0 else 0.0

65

66 def velocity_deficit(D, d, x, u_inc , gamma , i_pos , j_pos):

67 Dw = D + 2*alpha * x

68 dw = integration_factor(x) * (d-2* alpha*x)

69 term = 1- C_T

70

71 numerator = 2* gamma(i_pos ,j_pos , x)*(1-np.sqrt(term))*(D**2 - d**2)

72 denominator = Dw**2 - dw**2

73 return numerator/denominator

74

75 def delta_x(i_pos ,j_pos):

76 return abs(j_pos[0]-i_pos [0])

77

78 def incident_velocities(layout):

79 N = len(layout)

80 u_inc=np.full(N, u_inf)

81 for j in range(N):

82 deficit = []

83

84 for i in range(N):

85 x = delta_x(layout[i],layout[j])

86 if i == j:

87 continue

88 else:

89 du = velocity_deficit(D, d, x, u_inc[i], gamma , layout[i],

layout[j])

90 deficit.append(du)

91

92 if deficit:

93 total_deficit = np.sqrt(np.sum(np.square(deficit)))

94 u_inc[j] = u_inf * (1- total_deficit)

95

96 return u_inc

97

98 def power_equation(u_inc):

99 powers = []

100

101 for u in u_inc:

102 P=(2/27)*rho*A_wing*C_L *(C_L/C_D)**2*u**3

103 powers.append(P)

104

105 return np.array(powers)

106 def total_power(u_inc):

107 total = 0

108 power_per_system=power_equation(u_inc)

109 for p in power_per_system:

110 total +=p

111 return total

112

113

65

114 def grid_point_generator(width , height , xcell , ycell):

115 x_points = np.arange(0,width+1, xcell)

116 y_points = np.arange(0,height+1,ycell)

117 grid_points = np.array ([[x,y] for x in x_points for y in y_points])

118 return grid_points

119

120 def random_grid_layout(n, grid_points , D):

121 layout =[]

122 attempts = 0

123 max_attempt = 10000

124 while len(layout) < n and attempts <max_attempt:

125 point = grid_points[np.random.randint(len(grid_points))]

126

127 if all(abs(point [0] - p[0]) >=2*D or abs(point [1]-p[1]) >=D for p in

layout):

128 layout.append(point)

129 attempts +=1

130 if len(layout)<n:

131 print(’Not al turbines could be located ’)

132

133 return np.array(layout)

134

135

136 #%%

137 def fitness(layout):

138 u_inc = incident_velocities(layout)

139 return total_power(u_inc)

140

141 def initial_pop(popsize , n , grid_points , D):

142 return [random_grid_layout(n, grid_points , D) for _ in range(popsize)]

143

144 def back_to_grid(point , grid_points): #back to nearest grid point

145 dist = np.linalg.norm(grid_points - point , axis =1)

146 return grid_points[np.argmin(dist)]

147

148 def constraint(layout , grid_points , D):

149 filtered = []

150 for point in layout:

151 nearest_point = back_to_grid(point , grid_points)

152 if all(abs(nearest_point [0]-p[0]) >= 2*D or abs(nearest_point [1]-p

[1]) >=D for p in filtered):

153 filtered.append(nearest_point)

154 if len(filtered)<len(layout):

155 return random_grid_layout(len(layout), grid_points , D)

156 return np.array(filtered)

157

158 def crossover(farm1 , farm2 , grid_points):

159 n = len(farm1)

160 offspring =[]

161 for i in range(n):

162 if np.random.rand() <0.5: #uniform probability

163 offspring.append(farm1[i])

164 else:

165 offspring.append(farm2[i])

166 return constraint(np.array(offspring), grid_points , D)

167

168 def mutate(layout , rate , grid_points):

169 copy = layout.copy()

170

66

171 for i in range(len(copy)):

172 if np.random.rand()<rate:

173 copy[i] = grid_points[np.random.randint(len(grid_points))]

174 return constraint(copy , grid_points , D)

175

176 grid_points = grid_point_generator(width , height , 750, 750)

177 def genetic_algorithm(gen , popsize , rate , n, grid_points , D):

178 pop= initial_pop(popsize , n, grid_points , D)

179 best_fit = 0

180 best_layout = None

181 saved_layout ={}

182 for g in range(gen): #fitness

183 scores = [fitness(layout) for layout in pop]

184 best_index= np.argmax(scores)

185 if scores[best_index] > best_fit:

186 best_fit = scores[best_index]

187 best_layout = pop[best_index]

188 print(f"Gen {g+1}: Best Power = {scores[best_index]/1e6:.2f} MW

")

189 if g in [0,9,49]:

190 saved_layout[g] = pop[best_index]

191 #selection = top 25%

192 sorted_pop = [x for _, x in sorted(zip(scores ,pop), key = lambda

pair: pair[0], reverse = True)]

193 top = sorted_pop [: popsize // 4]

194

195 #make new population

196 new_pop = top.copy()

197 while len(new_pop) < popsize:

198 index = np.random.choice(len(top) ,2) #choose random parents

from top

199 f1 = top[index [0]]

200 f2 = top[index [1]]

201 offspring = crossover(f1,f2, grid_points)

202 offspring = mutate(offspring , rate , grid_points)

203 new_pop.append(offspring)

204

205 pop = new_pop

206

207 return best_layout , best_fit , saved_layout

208

209

210

211

212 bestlayout , bestfitness , saved_layout = genetic_algorithm(gen , popsize ,

rate , n, grid_points , D)

213 print(f" Final Best Power Output: {bestfitness /1e6:.2f} MW")

214 inc = incident_velocities(bestlayout)

215 print(inc)

216

217

218 #%%

219 x, y = bestlayout [:, 0], bestlayout [:, 1]

220

221 def plot_layout(layout , title , width , height):

222 x, y = layout[:, 0], layout[:, 1]

223 plt.figure(figsize =(8, 8))

224 plt.scatter(x, y, c=’blue’, s=100, edgecolors=’black ’, marker=’<’,

label=’Makani M600s ’)

67

225

226 for i in range(len(layout)):

227 plt.arrow(x[i], y[i], 2*D, 0, head_width =50, head_length =100, fc=’

red’, ec=’red’, alpha =0.3)

228

229 plt.xlim(-500, width + 500)

230 plt.ylim(-500, height + 500)

231 plt.gca().set_aspect(’equal’)

232 plt.grid(True)

233 plt.xlabel("x-position (m)")

234 plt.ylabel("y-position (m)")

235 plt.title(title)

236 plt.legend ()

237 plt.tight_layout ()

238 plt.show()

239

240 plot_layout(saved_layout [0], "Layout at Generation 1", width , height)

241 plot_layout(saved_layout [9], "Layout at Generation 10", width , height)

242 plot_layout(saved_layout [49], "Layout at Generation 50", width , height)

243 plot_layout(bestlayout , "Final Optimized Layout", width , height)

68

