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Abstract—Comic illustrations and transcriptions form an attrac-
tive dataset for several problems, including computer vision
tasks, such as recognizing character’s faces, generating new
comics, or natural language processing tasks like automated
comic translation or detecting emotion in the dialogues. However,
despite a large number of comic strips published online, very
few datasets of annotated comic illustrations are available. This
forms a bottleneck for further advancements in the field. The
source of the data scarcity is the manual labor required for
annotation — one has to download the comic strips, separate each
strip into panels (individual illustrations), and transcribe the text.
Automating the process is needed, but it poses several challenges.
Panel detection in comic strips is non-trivial, due to varying
layouts and styles of comics. Automated transcription is also
challenging, as the out-of-the-box optical character recognition
(OCR) models struggle with diverse fonts, hand-writing styles,
and backgrounds. We design an automatic comic text-image
dataset construction pipeline, termed DCP, consisting of three
components: (i) web scraping, (ii) panel extraction, and (iii)
text extraction. A multi-threaded comic scraper is created to
download all the comics. A panel extraction algorithm based
on panel frame detection is developed to divide the comic
strips into individual illustrations. Lastly, to effectively extract
the text using OCR, we propose additional pre-processing and
post-processing steps, namely, up-scaling and binarizing images,
clustering-based text ordering, and dictionary-based autocorrect.
We extensively evaluate the prototype of DCP on three comic
series: PHD Comics, Dilbert, and Garfield. Web scraping is used
to downloading over 25000 comic strips at an average pace of
149ms per image. Panel extraction results on 1118 panels show
success rates of 100%, 97%, and 71% for Dilbert, PHD Comics
and Garfield respectively, outperforming the baseline in terms
of accuracy and speed. The text extraction algorithm, tested on
1100 comics, achieves a 7x error reduction compared to the out-
of-the-box OCR.

I. INTRODUCTION

Comic series like Garfield [1], PHD Comics [2], or Dilbert [3],
contain thousands of comic strips, forming an attractive dataset
for several experiments. For example, current face detection
and recognition systems consistently perform well on human
faces [4]. The same models, if appropriately trained, could
prove equally successful when applied to comic characters’
faces. The introduction of Generative Adversarial Networks
(GANs) [5] sparked rapid advancements in the field of image
synthesis, including generating images based on a descrip-
tive piece of text [6, 7]. Such GAN models can be used
to research synthesizing comic illustrations based on their
transcriptions. Natural language processing tasks, such as

Fig. 1: Input (left) and output (right) of the dataset creation process.
Comic from ”Piled Higher and Deeper” by Jorge Cham

humor detection [8], and automated translation could also be
applied to comic dialogues. However, to be able to perform
those innovative experiments, a large, high-quality dataset is
required.

Data collection and preparation is a significant bottleneck in
machine learning [9]. Obtaining enough high-quality training
samples is necessary for the success of machine learning
systems [10]. However, manual preparation can be tedious
for large datasets that require complex pre-processing. That
is precisely the case for the comics data — to construct a
text-image comic dataset, a multi-phase preparation procedure
is required. The comics strips need to be downloaded from the
web, then each comic strip should be separated into individual
illustrations (panels), and the text transcription has to be
extracted (see Fig. 1). Performing that preparation procedure
manually for tens of thousands of comic strips is unfeasible,
therefore automating it would be valuable.

The purpose of this paper is to design, implement, and evaluate
an automatic comic text-image dataset construction pipeline,
termed DCP, consisting of three components: (i) web scraping,
(ii) panel extraction, and (iii) text transcription, see Fig. 2. To
achieve that, current state-of-the-art web-scraping, image seg-
mentation, and optical character recognition (OCR) techniques
are evaluated, adapted, and combined. More specifically, the
goal is to answer the following research questions:

1) How to efficiently scrape the image data from comic
websites?

2) How to create a panel extraction algorithm that can deal
with varying comic layouts?

3) How accurately can the state-of-the-art OCR tools ex-
tract the text from comic strips?

4) What pre-processing and post-processing techniques can
be applied to the images to improve the performance of
the OCR models?
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Fig. 2: An overview of the automated dataset creation pipeline.

To automatically perform the dataset creation without sacri-
ficing data quality, one needs to overcome several challenges.
Comic panel extraction is a difficult task, as the layouts
and drawing styles of comics vary significantly. Evaluation
of the existing segmentation methods, for example using the
intersection-over-union score, is needed to find one that per-
forms consistently on comic illustrations. Transcribing comics
using OCR is also challenging, as the current OCR models
struggle with varying hand-writing styles and backgrounds
[11]. This research attempts to improve the OCR accuracy
by pre-processing the input using image binarization with
adaptive thresholding [12] and up-scaling. Another difficulty
is the correct ordering of the words output by the OCR.
By default, the output is ordered in a line-by-line manner,
but for comics also the panel-by-panel, and bubble-by-bubble
orderings have to be considered. Text extraction is performed
at the panel level and optionally concatenated to obtain full
comic transcription. Hierarchical clustering [13] is applied to
group all bounding boxes belonging to the same speech bubble
and determine the right ordering.

Section II covers the related work and presents the cur-
rent state-of-the-art in the domain. Section III describes the
methodology behind this paper’s contributions: it introduces
the design of the pipeline, describes in detail the created panel
extraction algorithm, and presents the solutions developed to
improve the performance of the OCR. Section IV gives insight
into conducted experiments and their results, aiming to give a
detailed evaluation of each of the steps of the DCP. Section
V discusses the results and gives ideas for future work on the
topic, and Section VI reflects on the ethical implications and
reproducibility of the findings.

II. RELATED WORK

We structured the related work in the following categories:
work regarding automated dataset creation, web scraping tech-
niques, proposed panel extraction methods, and text recogni-
tion in comic strips.

Existing literature shows success in automated dataset build-
ing, including web-scraped image datasets, such as Face-
Scrub [14]. However, automated pre-processing of comic
strip images remains an unexplored territory. Furthermore,
no publications on automated dataset creation involve image
segmentation and text extraction steps in the pipeline. This
paper aims to explore this gap.

Web scraping has become common and achievable — with the
support of modern programming languages and libraries, it is

possible to retrieve and process the contents of an arbitrary
static website, such as the comic strip websites [15].

Panel extraction has been studied widely, mostly in the context
of applying it to mobile comic viewing apps [16]. Some
solutions use convolutional neural networks (CNN) to train
an object detection model that can find panel positions in a
comic [17]. However, this approach would most likely require
additional training to perform well on unseen comic series,
therefore it is not easily applicable to this papers’ problem.
Other methods utilize image processing techniques, such as
mathematical morphology and region growing for finding the
background and extracting the panels [18, 19, 20]. Those
solutions are better suited for our use case and they form a
basis for the developed panel extraction algorithm.

Current text recognition solutions have a very high accuracy at
identifying and extracting text but still have some limitations,
including dealing with colored backgrounds, small fonts, and
handwritten text [11]. Unfortunately, those are all present in
comics — comic strips are characterized by high variability of
fonts and styles, often along with complex backgrounds, noise,
and low resolution. To overcome those difficulties, researchers
propose domain-specific training of OCR models [21] and out-
put post-processing, such as text validation and correction [22].
The reading order of a comic is not straightforward either:
comics are read panel after panel, bubble after bubble, unlike
most documents, where top-to-bottom, left-to-right ordering
is sufficient. Overall, comics form a challenge for OCR, and
current engines cannot deal with it out of the box.

III. DCP: DATASET CONSTRUCTION PIPELINE

This section describes in detail the techniques used to build
the automated dataset construction pipeline. First, the system
design and its components are presented. Then, for each step
of the DCP pipeline, the proposed method is explained and
motivated.

A. System design

The system is designed as a pipeline consisting of three
components: (i) web scraping, (ii) panel extraction, and (iii)
text extraction, see overview in Figure 2.

The input for the system is a list of URLs to raw comic images.
The URLs are passed to the first stage of the pipeline: the
web scraper. The scraper downloads all the comics and stores
them locally. Then, the full comic strips need to be segmented
into individual illustrations: the images are fed to the panel



Fig. 3: A visualization of the steps of the panel extraction procedure, for simplicity, presented on a single panel example. The same steps
apply to a strip with multiple panels. From the left: a): the original image in grayscale, b): binarized image c): all the contours identified in
the image, d): the outermost contours, e): the outermost contours filled with white color, f): noise removal using morphological opening g):
proposed panel bounding box. (Comic strips from ”Piled Higher and Deeper” by Jorge Cham www.phdcomics.com [2])

extraction stage, where each full comic is divided into panels,
and the panels are saved to disk. Finally, to perform automated
text transcription, the illustrations are fed into the OCR stage.
First, pre-processing is applied to the images, to make the
text easier to detect, then the illustrations are sent to the
OCR engine, and lastly, the OCR output is post-processed
to reduce the error. The output of the system consists of the
individual panels, along with their transcriptions, or optionally,
the original, full comics with their transcriptions obtained via
concatenating the individual panels’ transcriptions.

B. Downloading the comics

Downloading the comic images can be achieved using the
following scraping procedure:

1) For each comic website, list the URLs of all the comic
images.

2) For each URL, send an HTTP GET request.
3) For each response, extract the image and save it to disk.

Performing these operations on a single thread does not scale
well, as, for each URL, the process would have to wait for
the server’s response, before it can send the next request.
Therefore, multi-threading is utilized to improve efficiency —
several threads send requests and deal with the responses in
parallel achieving significant speedup.

There exists extensive library support for web scraping for
most popular programming languages. For instance, the pro-
cess can be implemented easily using Python’s requests and
BeautifulSoup libraries. The solution for this task can be re-
used for an arbitrary comic website — the only additional
work when introducing a new comic source is getting the list
of all the image URLs.

C. Panel extraction

The panel extraction process leverages the presence of
frames around comic panels to perform the segmentation. An
overview of the process is presented in Fig. 3.

In the first two steps, the image is converted to grayscale and
binarized using adaptive Gaussian thresholding, as visualized
Fig. 3a-b. Adaptive thresholding establishes the threshold
value separately for each pixel based on its neighborhood,
resulting in less noise than global thresholding and preserving
the contours and features in the image. Usually, this results in
an image that is easier to analyze [23], see Fig. 4.

Fig. 4: Original img. vs. global threshold vs. adaptive threshold [23]

After binarization, contours are identified in the image. Only
the outermost, top-level contours are interesting for this task,
as those form the candidates for the panel bounding boxes (see
Fig. 3c-d).

After identifying the outermost contours, they are filled in with
white color, but the resulting image still has some noise, see for
example the ”WWW.PHDCOMICS.COM” text on the bottom
of Fig. 3e. A morphological opening operation is applied to
remove the noise. It is a combination of erosion and dilation
operations, allowing for the removal of the small elements of
the image while preserving the shape and size of the larger
ones.

The resulting image, as presented in Fig. 3f has no more
noise. Contours present in that image, determine the position
of the final bounding box, see Fig. 3g. Once the algorithm
identifies the positions of all the panel frames, the original
image is divided into separate illustrations, by extracting the
areas surrounded by the bounding boxes and saving them as
new images.



(a) All b-boxes (b) Identified clusters

Fig. 5: Example of bounding-box clustering. Illustration
taken from https://dilbert.com.

(a) Initial illustration (b) Before denoising (c) Final image

Fig. 6: Example of text removal from an illustration. Illustration taken from
https://dilbert.com.

D. Text extraction

After the comic is segmented into individual illustrations,
the text extraction has to be performed on each illustration.
That can be achieved using optical character recognition — a
conversion of image representation containing text into plain
text strings.

1) Engines: There is a wide selection of OCR software on
the market, therefore it is not feasible to test all of it, but two
most popular engines are selected:

• Tesseract [24] - the leading open-source OCR engine.
• Google’s Vision API OCR [25] - the state-of-the-art

commercial OCR API.

2) Pre-processing: Pre-processing techniques, such as up-
scaling and binarization, can be applied to images to improve
the performance of OCR [26].

a) Upscaling: Character height is considered a key factor for
OCR output quality, and for optimal performance, it should
be between 20-40 pixels. Unfortunately, the character heights
in the comic datasets are often much smaller — an up-scaling
step is needed. To know the re-scaling factor, one has to find
the character height in the original image. For this purpose,
an initial OCR pass is performed on the unprocessed image,
and the character height is defined as the median of the
heights of the bounding boxes returned by the engine. Then,
images are re-scaled using cubic interpolation by a factor of
desired letter height
initial letter height , where a common value for the desired

letter height is 30 pixels.

b) Binarization: : The images are then binarized using adap-
tive thresholding [12], and fed into the final OCR pass, poten-
tially resulting in better accuracy than before pre-processing.

3) Post-processing:

a) Clustering: The OCR output consists of detected words
along with their bounding boxes, see Fig. 5a. The boxes are
initially ordered top-to-bottom, left-to-right, as in a standard
printed text page. However, this does not work for comics,
as it does for example, for Fig. 5a, this would result in the
following output:

”climate change is caused by that’s gravity. right!”

The source of this issue is the lack of information about the
comic bubbles composition, which is crucial for determining
the correct order of words in comic dialogues. Comics are
read bubble by bubble, rather than simply line by line. To
correct the output, the bounding boxes need to be grouped into
clusters corresponding to bubbles, as presented in Fig. 5b. We
calculate the bubbles’ centers and use them to sort bubbles
by their centers’ x and y positions. We can then read the text
individually for each bubble, and concatenate the results to
obtain the corrected transcription:

Bubble 1: ”climate change is caused by gravity”
Bubble 2: ”that’s right!”
Concatenated: ”climate change is caused by grav-
ity. that’s right!”

The bubble grouping can be performed using agglomerative
hierarchical clustering [13, 27]. Initially, each bounding box
starts alone, in a singleton cluster. Then clusters are merged
until all the pairwise distances between clusters are higher
than a certain threshold. To determine the distance between
two clusters, a single linkage approach is used - the distance
between clusters is the minimal distance between a pair
consisting of elements of those two clusters (one from each).
The distance between two bounding boxes is defined as the
sum of minimum spacings between their edges in x and y
directions, see Fig 7. Additionally, if there is overlap in an
axis, the spacing in that axis is set to 0. The distance threshold
for clusters can be determined based on the calculated letter
height — spacing between two lines of text within one bubble
would rarely be larger than the height of one letter.

Fig. 7: x and y spacings between two bounding boxes.

b) Autocorrect: Single character mistakes are very common
in the OCR output — often the majority of the characters
are detected correctly, but some letters are classified as a
different character than they actually are. In that cases, it can



TABLE I: Web scraping and panel extraction evaluation.

(a) Web scraping - average time to scrape one panel (in seconds), and
speed-up factor achieved by the use of parallelization. Time estimates
based on scraping 1000 Dilbert, 1000 PHD Comics and 1000 Garfield
images from the web.

Result or Dataset Dilbert PHD Comics Garfield Average
1 thread 1.46 2.72 0.43 1.54
10 threads 0.22 0.18 0.046 0.149
speed-up 6.6 15.1 9.3 10.33

(b) Comparison of panel extraction performance between our method (DCP) and
Kumiko [20]: single panel and full strip success rates, intersection-over-union scores,
and time efficiency. Tested on 300 comic strips with total of 1118 panels.

Dilbert PHD Comics GarfieldMetric or dataset Kumiko DCP Kumiko DCP Kumiko DCP
Panel succ. rate 97% 100% 92% 99% 91% 91%
Strip succ. rate 95% 100% 78% 96% 73% 72%
Average IoU 0.99 0.99 0.96 0.98 0.97 0.95
Time per comic 680ms 2.3ms 400ms 1.1ms 890ms 1.2ms

be beneficial to make use of spelling correction algorithms.
TextBlob [28] library provides an autocorrect implementation
based on Peter Norvig’s [29] correction algorithm. That imple-
mentation is used to correct the OCR output, aiming to reduce
the error.

4) Text removal from image: Removing text from comic
illustrations is an important feature for several use cases. For
example, with the help of automated translation tools, one can
remove the original text, and print new, translated text on the
image. Moreover, the text is a prominent feature of the image,
that will cause severe noise problems when trying to train
models for illustration generation - removing it simplifies the
data and allows the models to focus on the primary elements
of the illustration, such as characters or objects.

The text removal method proposed in this paper is based on the
bounding boxes found by the OCR model. For each bounding
box, a binary mask is established based on binary thresholding,
1s correspond to dark spots (letters), and 0s correspond to
the background. Then, the background color is calculated by
taking the average color value of non-text pixels. The letter
pixels are then colored with the background color, as presented
in Fig. 6b. To give a smoother look to the image, denoising,
and blurring are applied, see 6c.

IV. EXPERIMENTS AND RESULTS

A. Datasets

The evaluation is performed by attempting to automatically
construct illustration-transcription datasets for PHD Comics,
Garfield and Dilbert — three popular comic series. All of them
have been consistently updated with new comics for decades,
providing thousands of comic strips to work with.

B. Comic scraping

Web scraper is evaluated by downloading comic strips from
dilbert.com and phdcomics.com and pt.jikos.cz/garfield. Over
14000 Garfield, 12000 Dilbert and 2100 PHD Comics strips
are downloaded. Multi-threaded scraping is significantly faster
than single-threaded, with 10 speed-up factor for Garfield, 6.5
for PHD Comics, and 15.1 for Dilbert, see Table Ia. To give
a better idea of the scale, scraping all 12000 Dilbert comics
would take approximately 9 hours with a single thread, but
only 35 minutes with 10 threads.

Fig. 8: Example IoU scores for bounding box evaluation. Taken from
Wikipedia [30].

C. Panel extraction

When evaluating panel extraction, one needs to compare de-
tected segments’ locations with the manually marked, ground
truth locations. Intersection over Union (IoU), also known as
the Jaccard index, is a commonly used metric for measuring
region overlap for all kinds of segmentation or detection tasks.
The IoU is defined as the size of the intersection divided by
the size of the union of two sets [30], see Equation 1.

J(A,B) =
|A ∩B|
|A ∪B|

(1)

In the case of panel extraction, IoU is the area of the overlap
between the detected bounding box and the ground-truth one,
divided by the area of the union of those two bounding boxes.
The IoU score will approach 1 if the bounding boxes are the
same and 0 if there is no overlap between them, see Fig. 8.
In this experiment, a panel is marked as correctly detected if
the IoU for the detected and ground truth bounding boxes is
at least 0.9. The comic strip is marked as correctly segmented
if all panels are correctly detected.

Testing the panel extraction is done using comic strips from
three different sources: Dilbert, PHD Comics and Garfield1.
The test dataset consisted of 300 comics, containing 1118
panels. The results of the evaluation are presented in Table Ib.

Overall, the proposed panel extraction algorithm achieves
almost perfect results on Dilbert and PHD comics comics —
leveraging the presence of the frames enables outperforming
Kumiko. The performance on Garfield is noticeably worse, as
no frames are present for some of the panels, making it harder
to find the panel boundaries — see Fig. 9b for an example.

1Panel extraction for Garfield is performed using global threshold binariza-
tion rather than adaptive binarization, as it performed better when no frames
are present.



Fig. 9: Examples of panel extraction results — the detected panels are represented by the green areas. (Comic strips from Garfield [1])

(a) Correct segmentation example: all three panels are detected correctly.

(b) Incorrect segmentation example: the middle panel is not detected correctly, as there is no clear border around it.

When it comes to efficiency, our algorithm is significantly
faster than Kumiko, making it more suited for processing large
datasets. It also has a significant advantage over deep-learning-
based panel detection techniques - no dataset-specific training
is needed, the method can be directly applied to any other
comic.

D. Text extraction

Evaluation of text extraction is performed by comparing
ground-truth, manual transcriptions of comic strips with the
output of automated transcription using OCR. The evaluation
is conducted on Garfield, Dilbert and PHD Comics datasets,
containing 500, 500, and 100 annotated comic strips respec-
tively. The Garfield and Dilbert transcriptions are available
online in Alfred Arnold’s transcription archive [31], and the
PHD Comics annotations are obtained via manual transcrip-
tions.

The Levenshtein distance, also known as the edit distance, is
used as a primary metric for text extraction evaluation. Given
two strings, the Levenshtein distance is defined as the minimal
number of single-character edits (insertions, deletions, substi-
tutions) needed to change one of the strings into the other:

Ldist(st, sd) = Cins(st, sd)+Cdel(st, sd)+Csub(st, sd) (2)

Where st is the ground-truth string, and sd is the detected
string. The distance can be normalized by dividing by the
length of the ground truth string:

Ldist norm(st, sd) = min(1,
Ldist

| st |
) (3)

Given the comics text is almost always capitalized, the eval-
uation of the transcriptions is performed in a case-insensitive
manner — the strings are converted to lowercase before
comparison. Therefore, no distinctions are made between
lowercase and uppercase letters; for example, ”CAT” and
”cat” are treated as the same string with distance 0.

To evaluate the impact of this paper’s contribution to comic
dialogue transcription, a baseline scenario is established: feed-
ing the entire comic strip into the OCR engines, without pre-
processing and dividing it into panels, denoted as Exp. #1 in
Table IIa. As presented in Table IIb, results achieved using
the baseline approach are extremely inaccurate, making them
completely unusable. Two primary reasons for the failure are:

1) The OCR picks up a lot of text from outside the actual
illustrations. That text is not part of the dialogues, it
mostly contains other information such as publication
dates, comic artist’s name, or website URLs.

2) As there is no information about panel division in this
experiment, the OCR engines struggle with determining
the correct order of the output — e.g. some text from
the second panel can appear before some parts of text
from the first panel.

The first major improvement to this scenario is experiment #2
from Table IIa, where instead of scanning the whole image
at once, the OCR is performed separately on each panel, and
the results are then concatenated. We can observe a significant
decrease in error rates. All the later experiments are conducted
on separate panels, rather than on the full comic strip.

In the next two experiments — #3 and #4 from Table IIa — the
impact of pre-processing techniques is evaluated. As presented
in Table IIb - #3, adding an up-scaling step has a minor, but
positive impact on the performance — especially in the case
of PHD Comics, where the initial image resolution is low for
some of the older strips. Experiment #4 results indicate that
adding a binarization step has a slightly negative impact on the
outcome, contrary to general OCR pre-processing recommen-
dations from the literature. Based on these evaluation results,
in the later experiments the binarization step is skipped, and
only the up-scaling step is applied.

Experiment #5 aims to evaluate the impact of adding a



TABLE II: Text extraction evaluation - experiment on 500 Dilbert, 500 Garfield and 100 PHD Comics with ground-truth strings obtained
via manual transcription.

(a) Experiment setup: six experiments are conducted to evaluate text extraction.
Experiments test OCR on full and segmented strips, using the proposed pre-
processing and post-processing techniques.

Pre-processing Post-processingExp. no. Segmentation re-sizing binarization clustering autocorrect
Exp. #1 7 7 7 7 7
Exp. #2 4 7 7 7 7
Exp. #3 4 4 7 7 7
Exp. #4 4 4 4 7 7
Exp. #5 4 4 7 4 7
Exp. #6 4 4 7 4 4

(b) Experiment results: normalized Levehnstein distance between
detected and ground-truth transcriptions. Comparison of Vision API
and Tesseract OCR on Dilbert, Garfeld, and PHD Comics datasets.

Dilbert PHD Comics GarfieldExp. no. Tess. V. API Tess. V. API Tess. V. API
Exp. #1 0.68 0.61 0.731 0.538 0.650 0.381
Exp. #2 0.233 0.044 0.786 0.109 0.532 0.163
Exp. #3 0.222 0.044 0.698 0.104 0.501 0.159
Exp. #4 0.242 0.048 0.727 0.112 0.534 0.150
Exp. #5 0.188 0.032 0.699 0.075 0.468 0.120
Exp. #6 0.276 0.097 0.694 0.0781 0.485 0.121

bounding box clustering step on the OCR performance. Table
IIb shows a significant positive impact on the accuracy —
clustering reduces the error rates by up to 30%. This shows,
that a significant fraction of the errors is caused by the wrong
ordering of the output words due to a lack of information about
the comic speech bubbles. Clustering fixes that issue for most
data points.

Finally, experiment #6, from Table IIa evaluates the impact of
auto-correcting the OCR output on the extraction error. Intu-
itively, one could expect some improvement from dictionary-
based correction, but the results in Table IIb show an opposite
effect. One explanation for this could be that comics contain
a lot of names, onomatopoeias, and exclamations — such as
”Dilbert”, ”Woo” or ”Pow” — which are not present in the
dictionary and get mistakenly corrected into other words.

Overall, the final performance of the OCR is satisfactory,
but not perfect. Vision API performs better than Tesseract
in all cases. Tesseract completely fails with PHD Comics
and Garfield, in a big part of the comics it does not detect
text at all. Panel separation and clustering have a significant,
positive impact on the performance, but the other elements of
the proposed method do not bring improvement. Best error
rates of 0.03 on Dilbert, 0.07 on PHD Comics, and 0.12 on
Garfield give a solid base for automatic transcription, but in
the current state most likely the transcription would still have
to be corrected by a human.

V. DISCUSSION, CONCLUSIONS AND FUTURE WORK

The purpose of this paper was to design, implement, and eval-
uate an automated dataset construction pipeline for building
an illustration-transcription comics dataset. To do so, web-
scraping was applied to automatically download the comic
strips, image processing techniques were utilized to divide
the comics into individual illustrations, and OCR was used
to automatically generate transcriptions.

The web scraping technique proved successful in the experi-
ments. We were able to download thousands of Garfield, Dil-
bert and PHD Comics strips, and thanks to the multithreaded
implementation, we achieved an average rate of between 5 and
20 comics per second.

The proposed panel extraction method achieved success rates
for Dilbert and PHD Comics, achieving 100% and 97% suc-
cess rates respectively, outperforming the baseline algorithm in
terms of both accuracy and efficiency. Unfortunately, it failed
to detect a significant fraction of Garfield panels, achieving
only a 71% success rate. The source of the errors was the lack
of clear panel boundaries in some of the strips. The proposed
algorithm used contour detection and thresholding to detect
the panel boundary, therefore it dealt flawlessly with panels
that had frames, but struggled when no frame was present.

The automatic text transcription was the most challenging
stage of the process, as the existing OCR solutions performed
poorly in their out-of-the-box state. Moreover, the proposed
OCR pre-processing methods, such as binarization and up-
scaling, brought no significant improvement to the perfor-
mance. However, performing OCR on individual illustrations
and correcting the order of the output by grouping the text
bounding boxes into speech bubbles reduced the error rates
by a factor of 7. It was thought that performing dictionary au-
tocorrect on the OCR output would bring further improvement,
but the effect was the opposite, possibly due to the presence
of non-dictionary words, like onomatopeias and exclamations
in the comic dialogues. Overall, the final OCR output is fairly
close to the true transcriptions, with normalized Levenshtein
distances of 0.03, 0.07, and 0.12 for Dilbert, PHD Comics,
and Garfield respectively.

In general, the proposed pipeline can successfully construct a
dataset of comic illustrations and transcriptions for most data
points, but the output still contains an observable amount of
errors. Part of the errors can be attributed to the mistakes in
segmenting the comic strips where no clear panel frames are
present. It could be beneficial to conduct further research to
develop a solution that can deal with such cases. The majority
of the errors occur at the text extraction stage - there might be
a need to construct a human-in-the-loop software, including a
tool for manual correction of the output transcriptions. Another
possibility for improvement is to experiment with dataset-
specific training of the OCR models on a small, manually
annotated dataset. Finally, some text-region detection algo-
rithms, such as the EAST text detector [32], could be used
to detect candidate text areas and feed those into the OCR
pipeline instead of the whole comic strips, potentially resulting



in better OCR accuracy.

VI. RESPONSIBLE RESEARCH

The following three paragraphs reflect on the ethical and legal
implications of this research project, and the reproducibility
of results achieved in the experiments.

A. Copyright issues

The data used for experiments was obtained via web scraping,
which is a topic of debates concerning legal issues such as
copyright and privacy violations [33]. There is no risk of
privacy violations in the case of this research project — all of
the data points are publicly available artworks, created to be
shared with a wide audience. However, the copyright violation
is a real threat: the comic strips from PHD Comics and Dilbert
are the intellectual property of their creators, and cannot be
freely distributed by a third party. Therefore, to avoid any
concerns regarding copyright violation, the datasets used for
experiments will not be published. Some of the PHD Comics
strips are still used in the paper to illustrate the methods
and experiments, but this kind of usage is explicitly listed
as permitted on PHD Comics website [34].

B. Potential software misuse

Another possible ramification of this project is the potential
misuse of the published software. For instance, the proposed
scraping mechanism could be used to mass-download copy-
righted comics, which could then be republished illegally
on a third-party website. Moreover, the text removal method
implemented in the project could be used to clear the existing
dialogues from a comic and add new ones, creating an alter-
native story. This usually goes against the comic publisher’s
regulations, as it involves producing derivative work from
copyrighted content. In general, software misuse cannot be
fully prevented, but explicit warning regarding this topic is
included in the software documentation.

C. Reproducibility

Reproducibility of results is a crucial aspect of research, but,
unfortunately, it is often overlooked by scientists [35], also in
the computer science field [36]. To ensure the reproducibility
of the results achieved in this research, the source code will
be published as open-source software on github.com 2, along
with a usage guide. This way, the experiments mentioned in
the paper can be easily repeated by interested parties and
compared with new research. Moreover, the code can also
be forked and modified to be used in a different context or
improved by new ideas.

2Project repository: https://github.com/mstyczen/comic-dcp
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