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a b s t r a c t

Many distributed algorithms for multi-agent coordination employ the simple averaging dynamics, re-
ferred to as the Laplacian flow. Besides the standard consensus protocols, examples include, but are
not limited to, algorithms for aggregation and containment control, target surrounding, distributed
optimization and models of opinion formation in social groups. In spite of their similarities, each of these
algorithms has been studied using separatemathematical techniques. In this paper, we show that stability
and convergence of many coordination algorithms involving the Laplacian flow dynamics follow from
the general consensus dichotomy property of a special differential inequality. The consensus dichotomy
implies that any solution to the differential inequality is either unbounded or converges to a consensus
equilibrium. In this paper, we establish the dichotomy criteria for differential inequalities and illustrate
their applications to multi-agent coordination and opinion dynamics modeling.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed algorithms for multi-agent coordination have vari-
ous applications to science and engineering, including control of
robotic formations, scheduling of sensor networks, optimization
and filtering, modeling biological and social systems. The relevant
results are discussed in the works (Bullo, 2016; Mesbahi & Egerst-
edt, 2010; Proskurnikov & Cao, 2016a; Proskurnikov & Tempo,
2017; Ren & Beard, 2008; Ren & Cao, 2011; Savkin, Cheng, Li, Javed,
Matveev, & Nguyen, 2015) and references therein. A ‘‘benchmark’’
problem in multi-agent control is to establish consensus (that
is, agreement on some quantity of interest) among the agents
interacting over a general graph. A simple consensus algorithm,
originated from some opinion formation models (Proskurnikov
& Tempo, 2017), is called the Laplacian flow (Bullo, 2016). Being
a counterpart (Ferrari-Trecate, Buffa, & Gati, 2006) of the well-
knownheat equation,which is used in physics to describe diffusion
processes, this algorithm employs the Laplacian matrix L(t) of the

✩ Thematerial in this paper was partially presented at the 15th annual European
Control Conference, June 29–July 1, 2016, Aalborg, Denmark. This paper was rec-
ommended for publication in revised form by Associate Editor Shreyas Sundaram
under the direction of Editor Christos G. Cassandras.

E-mail addresses: anton.p.1982@ieee.org (A.V. Proskurnikov), m.cao@rug.nl
(M. Cao).

interaction graph

ẋ(t) = −L(t)x(t). (1)

The state vector’s ith component xi(t) stands for somevalue, owned
by agent i and representing some quantity of interest (e.g. tem-
perature or altitude). The Laplacian flow dynamics (1) describe the
agents’ interactions in order to agree on this quantity,whichmeans
that all xi(t) converge to a common value. Numerous extensions of
the protocol (1) have been studied in the literature (Cao, Yu, Ren,
& Chen, 2013; Ren & Beard, 2008; Ren & Cao, 2011).

The effect of the interaction graph on establishing consensus
has been studied up to a certain exhaustiveness by using the
results on convergence of products of stochastic matrices (Cao,
Morse, &Anderson, 2008; Ren&Beard, 2008) and special Lyapunov
functions (Lin, Francis, &Maggiore, 2007;Moreau, 2004;Münz, Pa-
pachristodoulou, & Allgöwer, 2011). Consensus is established un-
der rathermild assumption of ‘‘repeated’’ (‘‘uniform’’) connectivity
of the graph; this condition can be further relaxed for some special
types of graphs (Hendrickx & Tsitsiklis, 2013). The algorithms (1)
have inspired numerous protocols for synchronization of general
dynamical systems (Cao et al., 2013; Ren & Cao, 2011).

In spite of the progress in the analysis of consensus algorithms,
the relevant mathematical techniques are not directly applicable
to other distributed coordination algorithms, employing the idea of

http://dx.doi.org/10.1016/j.automatica.2017.07.065
0005-1098/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2017.07.065
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2017.07.065&domain=pdf
mailto:anton.p.1982@ieee.org
mailto:m.cao@rug.nl
http://dx.doi.org/10.1016/j.automatica.2017.07.065


A.V. Proskurnikov, M. Cao / Automatica 85 (2017) 202–210 203

the Laplacian flows. The algorithms for containment and aggrega-
tion control (Ren & Cao, 2011; Shi & Hong, 2009), target surround-
ing (Lou&Hong, 2015) and convex optimization (Shi, Johansson, &
Hong, 2013), aswell as somemodels of opinion dynamics (Altafini,
2013) are similar in spirit to consensus protocols; however, each
of the mentioned algorithms has been examined by using separate
mathematical techniques. It appears, however, that thementioned
algorithms can be analyzed in a unified way, since they reduce to
the following differential inequalities, associated to the Laplacian
flow dynamics (1)

ẋ(t) ≤ −L(t)x(t). (2)

The one-sided inequalities (2) may seem very ‘‘loose’’ restric-
tions on the solutions x(t). Nevertheless, under natural connectiv-
ity assumptions any solution, which is semi-bounded from below,
converges to a consensus equilibrium. In particular, the solutions
of the differential inequality split into two groups: unbounded
solutions and converging ones. For ordinary differential equations
the corresponding property is often referred to as the equation’s
dichotomy (Yakubovich, 1988). In this paper, we establish the
dichotomy properties of the differential inequalities (2) and
demonstrate their applications to the problems of multi-agent
coordination, distributed optimization algorithms and some mod-
els of opinion formation. Some results have been reported in the
conference paper (Proskurnikov & Cao, 2016b).

The paper is organized as follows. Section 2 introduces some
preliminary concepts and notation. Section 3 introduces the Lapla-
cian differential inequalities and presents their dichotomy condi-
tions. Section 4 illustrates applications of the main results, whose
proofs are given in Section 5. Section 6 concludes the paper.

2. Preliminaries and notation

We use 1N to denote the column vector of ones 1N
∆
=

(1, 1, . . . , 1)⊤ ∈ RN . For two vectors x, y ∈ RN we write x ≤ y
(or y ≥ x) if xi ≤ yi ∀i. Given a vector x ∈ RN , |x| ∆

=
√
x⊤x denotes

its Euclidean norm. Given a complex number z ∈ C, z∗ denotes its
complex conjugate.

Given a closed convex set Ω ⊂ Rd, the projection operator
PΩ : ξ ∈ Rd

↦→ PΩ (ξ ) ∈ Ω is defined. Denoting ξ p ∆
= ξ−PΩ (ξ ), the

distance from ξ to Ω is given by dΩ (ξ ) ∆
= |ξ p

| = minω∈Ω |ξ − ω|.
For an arbitrary ω ∈ Ω , one has |ξ − PΩ (ξ ) − α(ω − ξ )| ≥ |ξ p

|

for any α ∈ [0; 1], entailing that (ω − PΩ (ξ ))⊤ξ p
≤ 0, that is,

∡(ω − PΩ (ξ ), ξ − PΩ (ξ )) ≥ π/2 (Fig. 1). Therefore

(ω − ξ )⊤ξ p
≤ −|ξ p

|
2

∀ξ ∈ Rd, ω ∈ Ω (3)

(ξ2 − ξ1)⊤ξ
p
1 = (ξ p

2 )
⊤ξ

p
1 + (PΩ (ξ2) − ξ1)⊤ξ

p
1

(3)
≤

≤ (ξ p
2 )

⊤ξ
p
1 − |ξ

p
1 |

2
∀ξ1, ξ2 ∈ Rd,

(4)

(ξ2 − ξ1)⊤(ξ
p
2 − ξ

p
1 )

(4)
≥ |ξ

p
2 − ξ

p
1 |

2
∀ξ1, ξ2 ∈ Rd. (5)

The inequality (5) implies that the mapping ξ ↦→ ξ p is non-
expansive |ξ2 − ξ1| ≥ |ξ

p
2 − ξ

p
1 |. Furthermore, as shown in Shi

and Hong (2009, Lemma 2), the function ξ ↦→ dΩ (ξ )2 = |ξ p
|
2 is

C1-smooth with the gradient

∇
(
dΩ (ξ )2

)
= 2ξ p

= 2 (ξ − PΩ (ξ )) . (6)

We assume that the reader is familiar with the standard concepts
of graph theory, related to directed graphs, such as walks, strong
connectivity and strongly connected components, see e.g. (Bullo,
2016;Harary, Norman, & Cartwright, 1965). Henceforth each graph
is directed and weighted, being thus a triple G = (V , E, A), where
V stands for the set of nodes, E ⊂ V × V is a set of arcs and
A = (aij)i,j∈V is an adjacency matrix: aij > 0 if (j, i) ∈ E and aij = 0

Fig. 1. The projection onto a closed convex set.

otherwise. By default, the adjacencymatrix is assumed to be binary
(aij ∈ {0, 1}), such a graph is denoted simply by G = (V , E). Any
non-negative square matrix A ∈ RN×N can be associated to the
graph G[A]

∆
= (VN , E[A], A), where VN

∆
= {1, . . . ,N} and E[A]

∆
=

{(j, i) : aij > 0}. The Laplacian matrix of this graph is defined as
follows

L[A] = (lij)Ni,j=1, lij
∆
=

⎧⎨⎩
−aij, i ̸= j∑
j̸=i

aij, i = j. (7)

A graph is quasi-strongly connected (QSC) if a ‘‘root’’ node exist, from
which all other nodes are reachable via walks, or, equivalently, the
graph has a directed spanning tree (Ren & Beard, 2008). Given an
adjacency matrix A = (aij) and δ > 0, define its ‘‘truncation’’ Aδ

=

(aδ
ij) as follows: aδ

ij = aij if aij ≥ δ and otherwise aδ
ij = 0. The graph

G[A] is strongly (quasi-strongly) δ-connected if its subgraph G[Aδ
],

obtained by removing ‘‘light-weight’’ arcs, is strongly (respectively,
quasi-strongly) connected.

3. Dichotomies of differential inequalities

The proofs of all theorems from this section can be found in
Section 5. Henceforth we assume that a time-varying graph G(t) =

(VN , E(t), A(t)) without self-loops (aii(t) = 0∀i) is given, which
corresponds to the Laplacian L(t). We are interested in the solu-
tions of the differential inequality (2). The function x : [0; ∞) →

RN is said to be a solution to the inequality (2) if it is absolutely
continuous and satisfies (2) for almost any t ≥ 0.

Throughout this section we also adopt the following assump-
tion, which usually holds in practice and simplifies the further
analysis; in some of the subsequent results it can be relaxed.

Assumption 1. The functions aij(t) are bounded.

Under Assumption 1, for any x(0) the solution to Eq. (1) exists
that satisfies (2) and is bounded. The inequality (2) has also many
unbounded solutions, e.g. the function x(t) ∆

= x(0) − tc1N satis-
fies (2) for large c > 0 since L(t) is bounded and L(t)1N = 0. At the
same time, any solution to (2) is upper-semibounded.

Lemma2. For any solution x(t) of (2), the functionM(t) ∆
= maxjxj(t)

is non-increasing, so M(t) ≤ M(0).

Whereas the class of unbounded solutions of (2) is very broad,
under some assumptions on the graph all its bounded solutions
have simple asymptotic properties, analogous to the solutions
of (1), namely, each bounded solution converges to a consensus
equilibrium point c1N . In other words, any solution to the inequal-
ity (2) is either convergent or unbounded. In this paper, we disclose
conditions, ensuring such a dichotomic behavior.
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Definition 3. The differential inequality (2) is called dichotomic, if
any of its bounded solutions x(t) has a limit x0 ∆

= limt→∞x(t); it is
called consensus dichotomic, if all limits x0 are consensus equilibria
x0 = c01N , c0 ∈ R.

Remark 4. If x(t) −−−→
t→∞

c1N and x(t) is an absolutely continuous
function, then for any τ > 0 the function D(t) = −L(t)x(t) − ẋ(t)
satisfies the following condition∫ t+τ

t
D(s)ds = x(t) − x(t + τ )

−

∫ τ

0
L(t + s)x(t + s)ds −−−→

t→∞
0. (8)

The latter statement follows from Assumption 1 and the Dom-
inated Convergence Theorem since L(t + s)x(t + s) −−−→

t→∞
0∀s ∈

[−τ , 0] and supt≥0|L(t)x(t)| < ∞.
If the inequality (2) is consensus dichotomic, then the proto-

col (1) establishes consensus x(t) −−−→
t→∞

c1N , c = c(x(0)). The
converse is however not valid: consensus in the system (1) does
not imply even dichotomy of the inequality (2), as demonstrated
by the following example.

Example 5. Consider the differential inequalities

ẋ1 ≤ x2 − x1, ẋ2 ≤ 0. (9)

Obviously, a pair of functions x1(t) = sin t and x2(t) ≡ C ≥

2 is a bounded yet non-convergent solution to the system (9),
whereas the corresponding Laplacian flow (1) converges to con-
sensus x1(t) −−−→

t→∞
0, x2(t) ≡ 0.

It is well known that the protocol (1) with a static graph G(t) ≡

G establishes consensus if and only if G is quasi-strongly connected,
or, equivalently, its Laplacian L(t) ≡ L has a simple eigenvalue at
0 (Agaev & Chebotarev, 2005; Ren & Beard, 2008). The necessary
and sufficient dichotomy condition for the inequality (2) is as fol-
lows.

Theorem 6. For a static graph G(t) ≡ G, the inequality (2) is consen-
sus dichotomic if and only if G is strongly connected. Otherwise, (2)
is dichotomic if and only if the strongly connected components of G
are isolated, that is, no pair of nodes from different components are
connected.

In the time-varying graph case, the strong connectivity condi-
tion has to be replaced by its ‘‘uniform’’ version. The union of the
graphs G(t) over a set ∆ ⊂ [0; ∞) is⋃

t∈∆
G(t) ∆

= G
[∫

∆

A(s) ds
]

.

Definition 7. A time-varying graph G(t) is uniformly strongly
connected (USC) if there exist two numbers T > 0 and δ > 0,
such that each union of the graphs

⋃
s∈[t;t+T ]

G(s) (where t ≥ 0) is
strongly δ-connected.

The ‘‘limit case’’ of the USC condition as T , δ → ∞ is referred
to as the infinite strong connectivity (ISC).

Definition 8. A time-varying graph G(t) is infinitely strongly con-
nected (ISC) if the infinite union of the graphs

⋃
s≥0G(s) is strongly

∞-connected. More formally, the graph G = (VN , E∞) is strongly
connected, where E∞

∆
= {(i, j) :

∫
∞

0 aji(t)dt = ∞}.

The next theorem extends the consensus dichotomy criterion
from Theorem 6 to the case of time-varying graph.

Theorem9. For consensus dichotomy of the inequality (2) the graph’s
G(t) uniform strong connectivity is sufficient and its infinite strong
connectivity is necessary.

In the case of static graph, necessary and sufficient conditions
boil down to the strong connectivity of the graph. In general, a
gap between necessary and sufficient conditions for the consensus
dichotomy remains. A similar gap exists between necessary and
sufficient conditions for consensus in the network (1). The as-
sumption of uniform quasi-strong connectivity,1 usually adopted
to provide consensus (Moreau, 2004), is in fact not necessary,
unless one requires additionally the uniform or exponential con-
vergence (Lin et al., 2007; Shi & Johansson, 2013a); the most
general necessary condition for consensus is infinite quasi-strong
connectivity (Matveev, Novinitsyn, & Proskurnikov, 2013).

At the same time, for some special case of cut-balanced interac-
tion graphs the integral connectivity becomes not only necessary
but in fact also sufficient condition for the consensus dichotomy.
We start with a definition.

Definition 10. The graph G(t) is called cut-balanced if a constant
K ≥ 1 exists such that for any subset of nodes S ⊂ {1, . . . ,N} and
any t ≥ 0 the inequalities hold

K−1
∑
j∈S

∑
k̸∈S

akj(t) ≤

∑
j∈S

∑
k̸∈S

ajk(t) ≤ K
∑
j∈S

∑
k̸∈S

akj(t).

The class of cut-balanced graphs includes weight-balanced
graphs (

∑
jaij =

∑
jaji ∀i), undirected graphs (aij(t) = aji(t))

and bidirectional or ‘‘type-symmetric’’ (Hendrickx & Tsitsiklis,
2013; Matveev et al., 2013) graphs, whose weights satisfy the
condition K−1aji(t) ≤ aij(t) ≤ Kaji(t) for any i, j and t ≥ 0. Some
other examples can be found in Hendrickx and Tsitsiklis (2013),
Shi and Johansson (2013b). Under the assumption of cut balance,
consensus dichotomy in (2) appears to be equivalent to consensus
in the network (1) (Hendrickx & Tsitsiklis, 2013; Matveev et al.,
2013).

Theorem 11. Let Assumption 1 hold and G(t) be cut-balanced. Then
the inequality (2) is dichotomic; furthermore, the functions aij(xj−xi),
ẋi andD(t) = −L(t)x(t)− ẋ(t) belong to L1[0, ∞]. The inequality (2)
is consensus dichotomic if and only if the graph is ISC.

Note that the criteria of dichotomy and consensus dichotomy
from Theorems 6, 9 and 11 do not allow to estimate the conver-
gence rate for a solution of (2). This problem is open and seems
to be quite non-trivial. However, for some special solutions the
convergence rate can be found. In the examples we use one result
of this type.

Theorem 12. Let the graph G(t) be uniformly quasi-strongly con-
nected and have a ‘‘leader’’ node s, such that asj(t) ≡ 0∀j. Then
any solution of (2) such that xi(t) ≥ xs(0)∀i∀t ≥ 0 exponentially
converges to xs(0)1N .

The ‘‘leader’’ agent affects the remaining agents, being indepen-
dent of them. Since ẋs(t) ≤ 0 due to (2) and xs(t) ≥ xs(0), in fact one
has xs(t) ≡ xs(0), so the leader’s state is invariant. The exponential
convergence rate can be found explicitly, as can be seen from the
proof. Notice that the uniform quasi-strong connectivity does not
imply neither uniform, nor even integral strong connectivity, so the
assumptions of Theorem 12 do not imply the consensus dichotomy
of (2): only some bounded solutions converge to consensus.

1 The definitions of uniform and infinite quasi-strong connectivity (UQSC/IQSC)
may be obtained from Definitions 7 and 8, replacing the word ‘‘strongly’’ by ‘‘quasi-
strongly’’.
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Finally, it should be noticed that the theory, developed in this
section, is applicable to the inequalities

ẋ(t) ≥ −L(t)x(t), t ≥ 0 (10)

without significant changes: if x(t) is a solution to the inequal-
ity (10), then (−x(t)) obeys the inequality (2), and vice versa.
Lemma 2 implies that any solution of (10) is bounded from below.
The definitions of dichotomy and consensus dichotomy in (10) are
the same as for (2).

Remark 13. Many results on consensus in linear networks (1) can
be extended, without significant changes, to nonlinear consensus
algorithms (Lin et al., 2007; Matveev et al., 2013; Moreau, 2005;
Münz et al., 2011), which in turnmay be associated with nonlinear
counterparts of the inequality (2). Theorems 6, 9, 11 and 12 can be
extended to the nonlinear case, however, we confine ourselves to
the linear inequalities (2) due to the page limit.

4. Examples and applications

In this section, the results from Section 3 are used to derive
some recent results on multi-agent coordination in a unified way,
and also extend them by discarding some technical assumptions
(e.g. the dwell-time positivity).

4.1. Target aggregation and containment control

Consider a team of N mobile agents, obeying the single integra-
tor model ξ̇i(t) = ui(t) ∈ Rd, i ∈ VN , where ξi(t) stands for the
position of agent i and ui(t) is its velocity, being also the control
input. The agents’ cooperative goal, sometimes called the target
aggregation (Shi & Hong, 2009), is to gather within some fixed
target set Ω ⊆ Rd, which is assumed to be convex and closed.

Were the set Ω known by all of the agents, to gather in it
would be a trivial problem. However, the knowledge about Ω , in
general, is available only to a few informed agents (whose set may
evolve over time), whereas the remaining agents can obtain the
information about the desired set only via communication over
some graph (generally, time-varying). We examine a distributed
protocol, similar to that proposed in Shi and Hong (2009).

ξ̇i(t) =

N∑
j=1

aij(t)(ξj(t) − ξi(t)) + ai0(t)[ωi(t) − ξi(t)]. (11)

Here i ∈ VN , the matrix A(t) = aij(t) describes the (weighted)
interaction graph and the gains ai0(t) ≥ 0 are responsible for the
attraction to the target set Ω . Agent i is informed2 at time t ≥ 0 if
ai0(t) > 0, in this case ωi(t) ∈ Ω; otherwise the choice of ωi(t) can
be arbitrary.

Let PΩ be the operator of projection onto Ω; as in Section 2,
we denote ξ p ∆

= ξ − PΩ (ξ ). Let xi(t)
∆
=

1
2 |ξ

p
i (t)|

2. Notice that
ξ
p
j (t)

⊤ξ
p
i (t) ≤ xi(t) + xj(t) and hence ξ

p
j (t)

⊤ξ
p
i (t) − |ξ

p
i (t)|

2
≤

xj(t) − xi(t). Using (6), one has

ẋi(t)
(6)
= ξ̇i(t)⊤ξ

p
i (t)

(11)
=

N∑
j=1

aij(t)(ξj(t) − ξi(t))⊤ξ
p
i (t)

− ai0(t)(ωi(t) − ξi(t))⊤ξ
p
i (t)

(3), (4)
≤

≤

N∑
j=1

aij(t)(ξ
p
j (t) − ξ

p
i (t))

⊤ξ
p
i (t) − ai0(t)|ξ

p
i (t)|

2

≤

N∑
j=1

aij(t)(xj(t) − xi(t)) − 2ai0(t)xi(t)

(12)

2 Our terminology differs from Shi and Hong (2009), where the set of informed
agents if static, but the target is accessible to them only at some time instants. We
call the agent informed at time t ≥ 0 if it is aware of some element ωi(t) ∈ Ω .

for almost all t ≥ 0. Since ai0xi(t) ≥ 0, x(t) = (x1(t), . . . , xN (t))⊤ ≥

0 is a solution to (2).
In order to formulate the convergence criterion, it is convenient

to consider the target setΩ as a ‘‘virtual agent’’ (Shi &Hong, 2009),
indexed by 0, and introduce the extendedmatrix Â(t) = (aij(t))Ni,j=0,
where a0j ≡ 0∀j and other aij are the weights from (11).

Theorem 14. Suppose that Assumption 1 holds for the extended
matrix Â(t) and one of the conditions is valid

(1) the ‘‘extended’’ graph Ĝ(t) = G[Â(t)] is uniformly quasi-
strongly connected;

(2) the graph G(t) = G[A(t)] is cut-balanced and ISC, and also∑N
i=1

∫
∞

0 ai0(t)dt = ∞.

Then the agents converge to Ω in the sense that xi(t) −−−→
t→∞

0; in
case (1) the convergence is exponential.

Proof. The second part of Theorem 14 is immediate from (12)
and Theorem 11.3 As has been mentioned, ai0xi(t) ≥ 0, and
therefore (12) implies the differential inequality (2). Thus the
functions xi(t) converge to a consensus value xi(t) −−−→

t→∞
x∗ and

ẋi, aij(xj − xi) and D(t) = −ẋ(t) − L(t)x(t) are L1-summable. Since
Di(t) ≥ 2ai0(t)xi(t) ≥ 0, the functions ai0xi also L1-summable. If
x∗ > 0, then ai0 is L1-summable for any i, which contradicts to the
assumption

∑N
i=1

∫
∞

0 ai0(t)dt = ∞. Hence x∗ = 0, which proves
the second statement.

Introducing the additional function x0(t) ≡ 0, (12) implies that
the extended vector x̂ = (x0, . . . , xN )⊤ satisfies the inequality
˙̂x(t) ≤ −L[Â(t)]x̂(t). The first part of Theorem 14 now follows from
Theorem 12 (applied to Â and s = 0), recalling that xi(t) ≥ x0(t) ≡

0 for any i. □

Theorem 14 extends the results from Theorems 15 and 17
from Shi and Hong (2009). Unlike Shi and Hong (2009), the
matrix Â(t) need not be piecewise-constant with positive dwell
time between its consecutive switchings, and the weights aij(t) do
not need to be uniformly strictly positive. In case (1) our result also
ensures exponential convergence, which is not directly implied by
the results of Shi and Hong (2009). At the same time, the paper Shi
and Hong (2009) deals with a more general protocol, where the
terms (ωi(t) − ξi(t)) in (11) are replaced by the nonlinearities
fi(ξi, t), satisfying the condition

(ξ p)⊤fi(ξ, t) ≤ −~i(|ξ p
|) ∀ξ ∈ Rd,

where ~i(·) is a K-function. The second part of Theorem 14 (corre-
sponding to Theorem17 in Shi andHong (2009)) retains its validity
for this general case, as can be seen from its proof. The extension
of the first part of Theorem 14 (but for the exponential stability,
which in general fails) to the algorithm from Shi andHong (2009) is
beyond the scope of this paper, since it requires a nonlinear version
of Theorem 12 (see Remark 13).

A special case of the target aggregation problem is the contain-
ment control problemwith static leaders (Ren & Cao, 2011), where
the desired set Ω = conv{ξN+1, . . . , ξN+q} is a convex polytope,
spanned by the fixed vectors ξN+1, . . . , ξN+q. These vectors are
considered as the positions of q ≥ 1 static agents, called leaders.
Only a few ‘‘informed’’ agents are aware of the position of one
or several leaders. In order to gather the agents in the set Ω , the
consensus-like protocol has been proposed (Ren & Cao, 2011)

ξ̇i(t) =

N+q∑
j=1

aij(t)(ξj(t) − ξi(t)). (13)

3 Note that Theorem 11 is applied to the original graph G(t), while the extended
graph Ĝ(t) is not cut-balanced.
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Introducing the gains ai0(t) and vectors ωi(t) as follows

ai0(t) =

N+q∑
j=N+1

aij(t), ωi(t) =

⎧⎪⎨⎪⎩
N+q∑

j=N+1

aij(t)
ai0(t)

ξj ∈ Ω

0, otherwise,

the protocol (13) becomes a special case of the more general
aggregation algorithm (11). The first part of Theorem 14 extends
the result of Theorem 5.3 in Ren and Cao (2011), relaxing the
connectivity assumptions.

In general, target aggregation and containment control algo-
rithms do not lead to consensus of agents; however, asymptotic
consensus can be established if the informed agents are able to
compute the projection of their position onto Ω and one may take
ωi(t) = PΩ (ξi(t)).

Lemma 15. Under the assumptions of Theorem 14, the protocol (11)
with ωi(t, ξi) = PΩ (ξi(t)) provides

lim
t→∞

|ξi(t) − ξj(t)| = 0 ∀i, j. (14)

Proof. The condition (1) in Theorem 14 entails that ξ
p
i (t) = ξi −

PΩ (ξi(t)) → 0 andhence fi(t) = ai0(t)(ωi(t)−ξi(t)) → 0 as t → ∞.
Rewriting (11) as the ‘‘disturbed’’ consensus dynamics (1)

ξ̇i(t) =

N∑
j=1

aij(t)(ξj(t) − ξi(t)) + fi(t) ∀i, (15)

the statement follows from the robust consensus criterion (Shi
& Johansson, 2013a, Proposition 4.8). If the condition (2) in The-
orem 14 holds, then the functions fi(t) are L1-summable, and
consensus (14) follows from Shi and Johansson (2013a, Proposi-
tion 5.3). □

Containment control and target aggregation control with time-
varying target sets (Ren & Cao, 2011) are beyond the scope of
this paper; these problems require the extensions of Theorems 11
and 12 to ‘‘disturbed’’ differential inequalities, associated to proto-
cols (15).

4.2. Optimal consensus and distributed optimization

The result of Lemma 15 has been extended in Shi et al. (2013)
to the case where agents cannot find any element of the target
set Ω , representable as an intersection of several convex closed
sets Ω =

⋂N
i=1Ωi ̸= ∅. Agent i is aware of the set Ωi and is

able to calculate the projection of its state onto this set; the other
sets {Ωj}j̸=i are unavailable to it. The common goal of the agents
is to reach consensus at some point from Ω . In Shi et al. (2013)
this goal was called optimal consensus since the problem of convex
set intersection is dual to the distributed convex optimization
problem (Shi et al., 2013, Section 1).

In order to establish this optimal consensus, the following pro-
tocol has been proposed in Shi et al. (2013)

ξ̇i(t) =

N∑
j=1

aij(t)(ξj(t) − ξi(t)) + PΩi (ξi(t)) − ξi(t). (16)

Although the protocol (16) is similar to (11), the conditions for its
convergence appear to be more restrictive. The following theorem
extends Lemma 4.3 and Theorems 3.1 and 3.2 in Shi et al. (2013).

Theorem 16. Let Ωi be closed convex sets and Ω = ∩
N
i=1Ωi ̸=

∅. Suppose that Assumption 1 holds and one of the following two
conditions is valid

(1) the graph G[A(·)] is USC;
(2) the graph G[A(·)] is cut-balanced and ISC.

Then the protocol (16) provides equidistant deployment of the
agents with respect to the set Ω , that is, the limit limt→∞|ξi(t) −

PΩ (ξi(t))| = d∗ ≥ 0 exists and is independent of i. If Ω is
bounded, then the agents converge to Ω (that is, d∗ = 0) and reach
consensus (14).

Proof. We denote ξ
p
i (t) = ξi(t) − PΩ (ξi(t)), xi(t)

∆
=

1
2 |ξ

p
i (t)|

2

and yi(t)
∆
= dΩi (ξi(t)) = |PΩi (ξi(t)) − ξi(t)|2. Applying (3) to

Ω = Ωi, ω = PΩ (ξi) ∈ Ω ⊆ Ωi and ξ = ξi, one shows that
(ξ p

i )
⊤(PΩi (ξi)− ξi) ≤ −yi ≤ 0. Similar to the proof of (12), it can be

shown that

ẋi(t) ≤

N∑
j=1

aij(t)(xj(t) − xi(t)) − yi(t) ∀i. (17)

Theorems 9 and 11 imply the first statement: xi(t) converge to a
common value x∗ as t → ∞. To prove the second statement, it
suffices to show that yi(t) → 0 as t → ∞ for any i; in this case, con-
sensus (14) follows from the results of Shi and Johansson (2013a)
(see the proof of Lemma 15). Since 0 ≤ yi(t) ≤ |ξ

p
i (t)|

2
−−−→
t→∞

2x∗,
consensus is established if x∗ = 0. Otherwise, one may notice that
xi ≥ 0 are bounded functions due to Lemma 2 and thus ξi, ξ̇i, ẏi
are also bounded. Using Remark 4, the convergence yi(t) −−−→

t→∞
0

is proved by standard Barbalat-type arguments, since 0 ≤ yi(t) ≤

Di(t) due to (17). □

Comparing Theorem 16with the results of Shi et al. (2013), one
notices that two restrictions are discarded: the positive dwell-time
between switchings of the matrix A(t) and the uniform positivity
of its non-zero entries.

4.3. Target set surrounding and the Altafini model

Another extension of the target aggregation problem has been
addressed in Lou and Hong (2015). This problem deals with the
planar (d = 2) motion of N mobile agents, whose positions are
represented by complex numbers ξi ∈ C. A closed convex set
Ω ⊆ C is given. The agents’ motion is described by the following
equations

ξ̇i(t) =

N∑
j=1

aij(t)(wij(t)ξ
p
j (t) − ξ

p
i (t)) ∀i. (18)

Here, as in the previous subsections, ξ p
i

∆
= ξi − PΩ (ξi) and A(t) =

(aij(t)) stands for the weighted adjacency matrix. Besides this, the
protocol (18) employs complex-valued matrix W (t) = (wij(t)),
whose entries belong to the unit circle |wij(t)| = 1. The following
lemma is proved similarly to the first statement in Theorem 16.

Lemma17. If Assumption 1 holds and one of the conditions (1) or (2)
from Theorem 16 is valid, then the protocol (18) renders the agents
equidistant from Ω: there exists a limit d∗ = limt→∞|ξ

p
i (t)| ≥ 0,

independent of i.

Proof. Similar to the proofs of Theorems 14 and 16, introduce the
functions xi(t)

∆
=

1
2 |ξ

p
i (t)|

2 and note that

Re ξ
p
i (t)

∗ wij(t)ξ
p
j (t) ≤

⏐⏐ξ p
i (t)

∗wij(t)ξ
p
j (t)

⏐⏐
= |ξ

p
i (t)| |ξ

p
j (t)| ≤ xi(t) + xj(t).

(19)

Using (6) and retracing arguments from (12), one has

ẋi(t)
(6)
= ⟨ξ

p
i (t), ξ̇i(t)⟩ = Re ξ

p
i (t)

∗ξ̇i(t)
(18)
=

=

∑
j

aij(t)
(
Re ξ

p
i (t)

∗wij(t)ξ
p
j (t) − |ξ

p
i (t)|

2
) (19)

≤

≤

∑
j

aij(t)(xj(t) − xi(t))

(20)
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(here ⟨z1, z2⟩ = Re z1 Re z2 + Im z1 Im z2 = Re z∗

1z2 is the inner
product in C ∼= R2). Therefore, x(t) = (x1(t), . . . , xN (t))⊤ ≥ 0
is a solution to (2). The statement of lemma now follows from
Theorems 9 and 11. □

4.3.1. Target surrounding
In the remainder of this section,we consider two special cases of

the dynamics (18). The first special case is the surrounding problem
from Lou and Hong (2015), dealing with the case of static W (t) ≡

W . It is said that the agents surround the target set Ω if wijξ
p
j (t) −

ξ
p
i (t) −−−→

t→∞
0. If d∗ > 0, this means that the complex argument

of wij determines the angle between the vectors ξ
p
j (t) and ξ

p
i (t)

for large t ≥ 0. As discussed in Lou and Hong (2015), the target
surrounding with d∗ > 0 is usually possible only for consistent
matrices W , which means that wij = p∗

i pj, where p1, . . . , pN are
complex numbers with |pi| = 1. Lemma 17 enables to extend
statement (i) in Lou and Hong (2015, Theorem 2) as follows.

Theorem18. Suppose that the graph G[A(·)] is USC and Assumption 1
holds. Let W (t) ≡ W be consistent, i.e. wij = p∗

i pj. Then the proto-
col (18) provides the target set surrounding piξ

p
i (t)−pjξ

p
j (t) −−−→

t→∞
0.

Proof. Introducing the function D(t) = −ẋ(t) − L(t)x(t), (20)
entails that

Di(t) =

N∑
j=1

aij(t)
[
xi(t) + xj(t) − Re ξ

p
j (t)

∗wijξ
p
i (t)

]
=

1
2

N∑
j=1

aij(t)
⏐⏐pjξ p

j (t) − piξ
p
i (t)

⏐⏐2. (21)

Recalling that ξ̇i(t) are bounded functions, and hence ξi(t), ξ
p
i (t) are

Lipschitz and applying (8) to τ = T , where T is the period from
Definition 7, it is now easy to prove that pjξ

p
j (t)−piξ

p
i (t) −−−→

t→∞
0 in

away similar to the proof of Theorem5 in Proskurnikov (2013). □

Remark 19. Although the explicit computation of d∗ is non-trivial,
sufficient conditions for its positivity have been offered in Lou and
Hong (2015).

Unlike the result from Lou and Hong (2015), Theorem 18 is ap-
plicable to the weighted interaction graph, discarding the restric-
tion of the dwell-time existence. In the case where Ω = {0} is a
singleton, the target surrounding implies that the agents converge
to a circular formation (Lou & Hong, 2015), or reach ‘‘complex
consensus’’ (Dong &Qui, 2015). As shown in Proskurnikov and Cao
(2016b), in this special case Theorem 18 retains its validity, relax-
ing the USC condition to the uniform quasi-strong connectivity.

4.3.2. The Altafini model of opinion formation
The central problem in opinion formation modeling is to elab-

orate models of opinion evolution in social networks that are
able to explain both consensus of opinions and their persistent
disagreement. The recent models, proposed in the literature, ex-
plain this disagreement by presence of ‘‘prejudiced’’ or ‘‘informed’’
agents (Friedkin, 2015; Xia & Cao, 2011), influenced by some
constant external factors, and homophily effects, such as bounded
confidence (Blondel, Hendrickx, & Tsitsiklis, 2009; Hegselmann
& Krause, 2002) and biased assimilation (Dandekar, Goel, &
Lee, 2013). Another type of opinion dynamics has been proposed
in Altafini (2012, 2013). This model describes the mechanism
of bi-modal polarization, or ‘‘bipartite consensus’’ in a signed or
coopetition (Hu & Zheng, 2014) network with mixed positive and
negative ties.

The Altafini model is a special case of the dynamics (18), where
Ω = {0}, ξi(t) = ξ

p
i (t) ∈ R and wij(t) ∈ {1, −1}. Denoting

bij = aijwij, the Altafini model is as follows

ξ̇i(t) =

N∑
j=1

[
bij(t)ξj(t) − |bij(t)|ξi(t)

]
∀i. (22)

The coupling term (bij(t)ξj(t) − |bij(t)|ξi(t)) (infinitesimally) drives
ξi to ξj when bij > 0 and to −ξj if bij < 0.

Lemma 17 implies the following important corollary, combin-
ing the results of Theorems 2 and 3 in Proskurnikov, Matveev, and
Cao (2016) and discarding the restrictive digon-symmetry assump-
tion bijbji ≥ 0, adopted in Altafini (2013) and Proskurnikov et al.
(2016).

Corollary 20. If the matrix A(t) = (|bij(t)|) satisfies the assumptions
of Lemma 17, the protocol (22) establishes modulus consensus: the
limit x∗

∆
= limt→∞|ξi(t)| ≥ 0 exists and is independent of i.

As shown in Proskurnikov et al. (2016), modulus consensus im-
plies either asymptotic stability (for any initial condition the solu-
tion converges to 0) or polarization: the community is divided into
two ‘‘hostile camps’’, reaching consensus at the opposite opinions
x∗ and −x∗ (here x∗ is non-zero for almost all initial conditions).
In the case where B(t) ≡ B is constant and the graph G[A] ≡

G is strongly connected, polarization (‘‘‘bipartite consensus’’) is
equivalent to the structural balance of the network (Altafini, 2013);
the extensions of the latter result tomore general static and special
switching graphs can be found in Liu, Chen, Basar, and Belabbas
(2018), Meng, Du, and Jia (2016a), Proskurnikov and Cao (2014),
Proskurnikov, Matveev, and Cao (2014), Proskurnikov et al. (2016).
Whether protocol provides polarization for a general matrix B(t)
seems to be a non-trivial open problem. Numerous extensions of
the Altafini model (22) have been proposed recently, see e.g. (Liu
et al., 2018; Meng, Shi, Johansson, Cao, & Hong, 2016b; Valcher &
Misra, 2014; Xia, Cao, & Johansson, 2016).

5. Proofs of the main results

Henceforth Assumption 1 is supposed to be valid. The proofs of
the main results employ the useful construction of ordering, used
in analysis of usual consensus algorithms (Hendrickx & Tsitsiklis,
2013; Matveev et al., 2013; Proskurnikov et al., 2016). Given N
functions x1(t), . . . , xN (t), let [k1(t), . . . , kN (t)] be the ordering per-
mutation, sorting the set {x1(t), . . . , xN (t)} in the ascending order.
Precisely, the inequalities hold

y1(t) ≤ y2(t) ≤ . . . ≤ yN (t), yi
∆
= xki(t)(t). (23)

Here the time t may be continuous (t ∈ [0; ∞)) or discrete
(t = 0, 1, . . .). Obviously, the indices ki(t) may be defined non-
uniquely. If xi(t) are absolutely continuous on [0; ∞), then one
always can choose ki(t) to be measurable; moreover, yi(t) are
absolutely continuous and

ẏi(t) = ẋki(t)(t) ∀i (24)

for almost all t ≥ 0. This is implied by Proposition 2 in Hendrickx
and Tsitsiklis (2011) where the constructive procedure of choosing
ki(t) is described.

We will use the following well-known fact.

Lemma 21 ( Ren & Beard, 2008, Sect. 1.2.2). The Cauchy transition
matrixΦ(t, t0) of the system (1) is stochastic for any t ≥ t0 (its entries
thus belong to [0; 1]).
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The Cauchy formula, applied to the equation

ẋ(t) = −L(t)x(t) + f (t), t ≥ t0, (25)

yields in x(t) = Φ(t, t0)x(t0) +
∫ t
t0

Φ(t, s)f (s)ds, leading to the
following corollaries.

Corollary 22. For any solution of (25), one has m(t) ∆
= minixi(t) ≥

m(t0) −
∫ t

t0

∑
i|fi(s)|ds.

Corollary 23. If f (t) ≤ 0, then for any solution of (25) one has
x(t) ≤ Φ(t, t0)x(t0).

5.1. Proof of Lemma 2

The proof is immediate from (24). Since M(t) = yN (t), one has
Ṁ(t) = ẋkN (t)(t) ≤

∑N
j=1akN (t)(xj(t) − M(t)) ≤ 0 and thus M(t) is a

non-increasing function.

5.2. Proof of Theorem 9, sufficiency part

The proof follows the line of the proof of Theorem 2 in
Proskurnikov et al. (2016). We first prove the following extension
of Lemma 2.

Lemma 24. For any T ≥ 0, δ > 0 a number θ = θ (δ, T , A(·)) ∈

(0; 1) exists such that the following two statements are valid for any
solution of (2)

(1) if maxixi(t0) = M and xj(t0) ≤ M − ρ for some j, t0 ≥ 0 and
ρ ≥ 0, then xj(t0 + T ) ≤ M − θρ;

(2) if, additionally,
∫ t0+T
t0

akj(t)dt ≥ δ for some k then xk(t0 + T ) ≤

M − θρ.

Proof. Let ∆
∆
= [t0; t0 + T ], si(t)

∆
=

∑N
m=1aim(t) and Si(t) =∫ t

t0
si(τ ) dτ . Due to the boundedness of A(t), Si(t) ≤ C ∀i∀t ∈ ∆,

where C = C(T ) is independent of t0. Since xi(t) ≤ M ∀i∀t ∈ ∆

due to Lemma 2, we have
d
dt

(M − xj(t)) = −ẋj(t)
(2)
≥ −sj(t)(M − xj(t)) ∀t ∈ ∆.

Denoting θ1
∆
= e−C , the latter inequality implies that

M − xj(t) ≥ e−Sj(t)(M − xj(t0)) ≥ θ1ρ ∀t ∈ ∆.

By noticing that xj(t)−xk(t) = (M−xk(t))−(M−xj(t)) and denoting
θ2

∆
= δθ2

1 one obtains that

d
dt

(M − xk(t))
(2)
≥ −sk(t)(M − xk(t)) + akj(t)θ1ρ ∀t ∈ ∆

and therefore M − xk(t) ≥ θ1ρ
∫ t
t0
e−Sk(t−τ )akj(τ )dτ ≥ θ2ρ. Thus

statements 1 and 2 hold for θ
∆
= min(θ1, θ2). □

Corollary 25. Let the graphG(t) beUSCwith the period T > 0 and the
threshold δ > 0 and θ = θ (δ, T , A(·)) be the constant fromLemma24.
Then the ordering (23) of any solution to (2) satisfies the inequalities

ym+1(t + T ) ≤ θym(t) + (1 − θ )yN (t) (26)

where m = 1, . . . ,N − 1 and t ≥ 0.

Proof. Introducing the set of indices Sm(t0) = {k1(t), . . . , km(t)},
one has xi(t0) ≤ ym(t0)∀i ∈ Sm(t0). Applying Lemma 24 to t0 = t ,
M = yN (t) and ρ = M − ym(t0), one shows that

xi(t + T ) ≤ θym(t) + (1 − θ )yN (t) (27)

for any i ∈ Sm(t). By Definition 7, there exist nodes j ∈ Sm(t0) and
k ̸∈ Sm(t0) such that

∫ t0+T
t0

akj(s)ds ≥ δ. Lemma 24 implies that (27)
holds also for i = k and thusm+1 different indices i ∈ Sm(t0)∪{k}
satisfy (27). This entails (26) by definition of the ordering (23). □

We are now ready to prove the sufficiency part of Theorem 9.
Let the graphG(t) be USC. Given a bounded solution to (2), consider
its ordering (23). Lemma 2 implies that yN (t) = M(t) is non-
increasing and thus has a finite limit M∗

∆
= limt→∞yN (t) > −∞.

Using (26) form = N−1, one shows that limt→∞
yN−1(t) ≥ M∗ and

hence yN−1(t) −−−→
t→∞

M∗. The inequality (26) form = N −2 implies
now that yN−2(t) −−−→

t→∞
M∗, and so on, y1(t) −−−→

t→∞
M∗. Therefore,

x(t) → M∗1N . □

5.3. Proof of Theorem 9, necessity part

We are going to show that the consensus dichotomy of (2)
implies (under Assumption 1) that the graph G[A(·)] is ISC, that is,
the graph G∞ = (VN , E∞), introduced in Definition 8, is strongly
connected. Suppose, on the contrary, that it has multiple strongly
connected components. As follows from the results of Harary et al.
(1965, Chapter 3), at least one of this components is ‘‘closed’’ and
has no incoming arcs; let S ⊂ VN denote the set of its nodes. By
assumption, nodes from Sc are not connected to the nodes from S
in G∞, and hence

∑
i∈S,j̸∈S

∫
∞

t0
aij(τ )dτ < 1/2 for sufficiently large

t0 > 0. We are going to construct a bounded solution x(t) to (2),
which does not converge to a consensus point. Define the matrix
Ā(t) = (āij(t)) as follows

āij(t) =

{
0, t > t0 & i ∈ Sc & j ∈ S
aij(t), otherwise,

and let x(t), t ≥ 0 be the solution to the Cauchy problem

ẋ(t) = −L[Ā(t)]x̄(t), xi(t0) =

{
1, i ∈ S
0, i ∈ Sc .

Obviously, x(t) is a solution to (1) for t ∈ [0; t0]. When t > t0,
one has x̄i(t) ≡ 0 for i ∈ Sc and x̄i(t) ∈ [0; 1] when i ∈ S. Hence
obeys (2) when t > t0. Indeed, ẋi(t) = 0 ≤

∑
jaij(t)(xj(t) − xi(t))

when i ∈ Sc and ẋi(t) =
∑

jaij(t)(xj(t) − xi(t)) for i ∈ S. To prove
that x(t) does not converge to a consensus equilibrium,we are now
going to show that xi(t) ≥ 1/2 when i ∈ S and t > t0.

Consider the matrix Ã(t) = (aij(t))i,j∈S and let L̃(t) = L[Ã(t)] be
the corresponding Laplacian matrix. The truncated vector x̃(t) =

(x̄i(t))i∈S satisfies the equation
˙̃x(t) = −L̃(t)x̃(t) − f̃ (t),

where f̃i(t) =
∑

j∈Sc aij(t)(xj(t) − xi(t)) for any i ∈ S, and hence∫
∞

t0

∑
i|fi(t)|dt < 1/2. Applying Corollary 22, one shows that

mini∈Sxi(t) ≥ 1/2∀t > t0. The contradiction proves that G∞ is
strongly connected. □

5.4. Proof of Theorem 6

The statements about consensus dichotomy follow from the
more general Theorem 9. Assume that the graph G has s > 1
strongly connected components G1, . . . ,Gs. We are going to prove
that the inequality (2) is dichotomic if and only if these compo-
nents are isolated. The sufficiency is immediate from the consensus
dichotomy criterion: if Gi are isolated, the inequality (2) decom-
poses into k independent inequalities, and each of them is consen-
sus dichotomic. Hence any bounded solution of (2) converges to a
finite limit.

To prove the necessity, suppose that the inequality (2) is di-
chotomic. We are going to show that if aij > 0, i.e. j is connected to
i by an arc, then a walk from i to j exists (and hence i and j belong
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to the same component). Suppose the contrary and consider the
set S of all nodes, connected to j by walks (including j itself); by
assumption i ̸∈ S. We now consider an extension of Example 5. For
M > 1 being so large that (M − 1)aij ≥ 2

∑
k̸∈Saik + 1, we define

the function x(t) ∈ RN as follows:

xk(t) =

{sin t, k = i
M, k ∈ S
−1, k ̸∈ S ∪ {i}.

We are going to show that x(t) is a solution to (2). When k ∈

S, akm(xm(t) − xk(t)) ≡ 0 for any m (indeed, if m ̸∈ S then
akm = 0, and otherwise xm(t) = xk(t) = M). Hence 0 =

ẋk(t) =
∑N

m=1akm(xm(t) − xk(t))∀k ∈ S. Obviously, ẋk(t) = 0 ≤∑N
m=1akm(xm(t)− xk(t)) for any k ̸ S ∪{i}. Finally,

∑
m∈Saim(xm(t)−

xi(t)) ≥ (M − 1)aij ≥ −
∑

m̸∈Saim(xm(t) − xi(t)) + 1 and thus
ẋi(t) ≤ 1 ≤

∑N
m=1aim(xm(t) − xi(t)). Hence the assumption i ̸∈ S

implies the existence of a non-converging bounded solution to (2),
which is a contradiction. □

5.5. Proof of Theorem 11

For technical reasons, it is easier to prove the dichotomy and
consensus dichotomy of the reversed inequality (10). Introducing
the ordering (23) of x(t), (24) implies that

ẏ(t) ≥ −L[B(t)]y(t), bij(t) = aki(t)kj(t)(t).

Retracing the proof of Theorem1 inHendrickx and Tsitsiklis (2013)
one can show that (1) any bounded solution x(t) converges to a
finite limit (as the vector y(t) converges); (2) the functions ẋi and
aij(xj − xi) are L1-summable for any i, j; (3) this implies consensus
whenever the graph is ISC. The necessity of ISC condition for the
consensus dichotomy follows from Theorem 9. □

5.6. Proof of Theorem 12

Thanks to the well-known result from Moreau (2004,
Theorem 1), any solution of (1) reaches consensus with the
‘‘leader’’ s, that is, x(t) → xs(0)1N , where the convergence is
exponential and the convergence rate can be explicitly found.
Introducing the Cauchy transitionmatrix of (1)Φ(t, s), this implies
that limt→∞Φ(t; 0) is a matrix, whose sth column equals 1N and
the other columns are zero. Consider a solution of (2), such that
xi(s) ≥ xs(0)∀i, i.e. x(t) ≥ xs(0)1N . Applying Corollary 23 to
f (t) ∆

= ẋ(t) + L(t)x(t) ≤ 0, we have

xs(0)1N ≤ x(t) ≤ Φ(t; 0)x(0) −−−→
t→∞

xs(0)1N . □

6. Conclusions

In this paper, we examine linear differential inequalities (2),
arising in various problems of multi-agent coordination. An im-
portant property of such inequalities, established in this paper, is
their consensus dichotomy: under mild connectivity assumptions
any bounded solution converges to a consensus equilibrium point.
The dichotomy criteria allow to analyze stability ofmany protocols
for target aggregation, containment control, target surrounding
and distributed optimization in a unified way. The results of this
paper can be extended to discrete-time, or recurrent inequali-
ties x(t + 1) ≤ A(t)x(t), where A(t) are row-stochastic matri-
ces (Proskurnikov & Cao, 2017). Their extensions to the delayed
inequalities and inequalities of second and higher orders are sub-
ject of ongoing research.
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