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Abstract

Magnetic resonance electrical properties tomography is a type of quan-
titative magnetic resonance imaging that aims to reconstruct the con-
ductivity and permittivity of biological tissue. These electrical prop-
erties of the tissue can be used to compute the specific absorption
rate, to differentiate tumours from healthy tissue and for hyperther-
mia treatment planning. Several methods to reconstruct these elec-
trical properties exist with different degrees of success. Combining
analytical reconstruction methods with deep learning methods is left
relatively unexplored in the field of magnetic resonance electrical prop-
erties tomography. Hence, this work explores such hybrid methods
in which deep learning is embedded in an analytical reconstruction
method. A recurrent inference machine is integrated into the itera-
tive reconstruction scheme called Contrast Source Inversion, in an at-
tempt to decrease its high computational load. Additionally, a U-net
is trained to correct reconstructed conductivity maps using discrepan-
cies in measured- and reconstructed phase data, which is based on the
relation between conductivity and phase in the Helmholtz equation.
The recurrent inference machine embedded version of contrast source
inversion failed to achieve a desirable reconstruction quality with its
current implementation. However, the large amount of potential im-
provements to its implementation motivates further research into its
application before discarding it. The conductivity correction U-net is
able to correct conductivity errors as small as 0.13 S/m when used
iteratively or 0.05 S/m when used a single time when noiseless data
is used. Further research in its capabilities of handling noisy data is
required to assess practical usage.
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Abstract

Magnetic resonance electrical properties tomography is a type of quantitative magnetic
resonance imaging that aims to reconstruct the conductivity and permittivity of bi-
ological tissue. These electrical properties of the tissue can be used to compute the
specific absorption rate, to differentiate tumours from healthy tissue and for hyperther-
mia treatment planning. Several methods to reconstruct these electrical properties exist
with different degrees of success. Combining analytical reconstruction methods with
deep learning methods is left relatively unexplored in the field of magnetic resonance
electrical properties tomography. Hence, this work explores such hybrid methods in
which deep learning is embedded in an analytical reconstruction method. A recurrent
inference machine is integrated into the iterative reconstruction scheme called Contrast
Source Inversion, in an attempt to decrease its high computational load. Addition-
ally, a U-net is trained to correct reconstructed conductivity maps using discrepancies
in measured- and reconstructed phase data, which is based on the relation between
conductivity and phase in the Helmholtz equation. The recurrent inference machine
embedded version of contrast source inversion failed to achieve a desirable reconstruc-
tion quality with its current implementation. However, the large amount of potential
improvements to its implementation motivates further research into its application be-
fore discarding it. The conductivity correction U-net is able to correct conductivity
errors as small as 0.13 S/m when used iteratively or 0.05 S/m when used a single time
when noiseless data is used. Further research in its capabilities of handling noisy data
is required to assess practical usage.

v



vi



Acknowledgments

I would like to thank Rob and Stefano for their guidance and assistance throughout my
thesis project. Their insightful suggestions have helped me push forward when results
were far from desirable and when I got stuck in debugging my code. I would also like
to thank my friends and family for their continued support, for giving me an outlet
when things did not look great and for celebrating with me when things looked up. I
am thankful for the opportunity to work on this project with the resources provided
by both the TU Delft and the UMC Utrecht. Furthermore, working on this thesis has
given me more insight into my strong and weak points. It has been a journey that has
taught me much.

Jory Edelman B.Sc.
Delft, The Netherlands
5 December 2023

vii



viii



Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Direct EPT Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Forward EPT Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Deep Learning EPT Methods . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Direct Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Learning-Assisted Objective Function Deep Learning . . . . . . 7
1.3.3 Physics Assisted Deep Learning . . . . . . . . . . . . . . . . . . 8

1.4 Project Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Mathematical Background 11
2.1 Field Representation and Transceive Phase Assumption . . . . . . . . . 11
2.2 Simplified Helmholtz Electrical Properties Tomogaphy . . . . . . . . . 13
2.3 Incident Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Contrast Source Inversion . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Programming Methodology 21
3.1 Implementation Language . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Structure and Code Design . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 DL-CSI Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Constants Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Operators Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4 Integrators Class . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.5 Cost Functional Class . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.6 χ Updater Class . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.7 Incident Fields Class . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.8 CSI Updater Class . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Unit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Integration Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.3 System Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Deep Learning for Contrast Source Inversion 27
4.1 Neural Network Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . 27
4.1.2 Constrained Generative Adversarial Network . . . . . . . . . . . 29
4.1.3 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . 29

4.2 Deep Learning Strategies for Contrast Source Inversion . . . . . . . . . 31

ix



4.3 Neural Network Embedded CSI Topologies . . . . . . . . . . . . . . . . 32

4.3.1 Cascaded CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.2 Coarse and Refiner CNNs . . . . . . . . . . . . . . . . . . . . . 33

4.3.3 cGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.4 Convolutional Recurrent Neural Network . . . . . . . . . . . . . 35

4.3.5 RIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Implementation of Deep Learning Enhanced Contrast Source Inver-
sion 37

5.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.2 Incident Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Neural Network Implementation . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Neural Network Inputs . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2 3D Convolution Layer . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.3 Convolution to GRU . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.4 GRU Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.5 GRU to Convolution . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.6 Final convolution layer . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.7 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Training Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Tests & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.1 Per Voxel Implementation Assessment . . . . . . . . . . . . . . 43

5.4.2 Test 1: Simultaneous Iteration Training . . . . . . . . . . . . . . 44

5.4.3 Test 2: Per Iteration Training . . . . . . . . . . . . . . . . . . . 49

5.4.4 Test 3: SIT With Additive Update Manner . . . . . . . . . . . . 53

5.4.5 Test 4: PIT with Additive Update Manner . . . . . . . . . . . . 55

5.4.6 Test 5: Network Depth Expansion . . . . . . . . . . . . . . . . . 57

6 Phase Error Based Conductivity Enhancement 67

6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Neural Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1 Neural Network Implementation Details . . . . . . . . . . . . . 70

6.3 Training Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3.1 Test 1: K-Fold Validation . . . . . . . . . . . . . . . . . . . . . 72

6.3.2 Test 2: Hybrid Loss Function . . . . . . . . . . . . . . . . . . . 72

6.3.3 Test 3: Convolution Kernel Tuning . . . . . . . . . . . . . . . . 73

6.3.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4.1 Results Test 1: K-Fold Validation . . . . . . . . . . . . . . . . . 75

6.4.2 Results Test 2: Hybrid Loss Function . . . . . . . . . . . . . . . 79

6.4.3 Results Test 3: Convolution Kernel Tuning . . . . . . . . . . . . 81

x



7 Discussion And Conclusion 87
7.1 DLE-CSI Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 PEBCC Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3 Project And Programming Methodology . . . . . . . . . . . . . . . . . 92
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xi



xii



List of Figures

1.1 A generalised schematic overview of direct-, forward- and deep learning
EPT methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 A diagram displaying the steps taken within the CSI algorithm. . . . . 20

3.1 A representation of the class structure of the DL-CSI program. . . . . . 22

4.1 Visualisation of a 2D convolution with a kernel of size 3 . . . . . . . . . 28

4.2 Visualisation of a max pooling on the left, where the highest value is
propagated to the result and an average pooling on the right, where the
average value is propagated to the result. . . . . . . . . . . . . . . . . . 29

4.3 A CSI topology using a cascade of convolutional neural networks; one

for each iteration. χ[n] represents the nth iteration’s contrast and g
[n]
χ its

corresponding gradient. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 A CSI topology using a coarse CNN once, followed by the iterative use

of a refiner CNN. χ[n] represents the nth iteration’s contrast and g
[n]
χ its

corresponding gradient. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 A CSI topology using a cGAN’s generator to improve the contrast’s
estimate every iteration, until the discriminator deems it sufficient. χ[n]

represents the nth iteration’s contrast and g
[n]
χ its corresponding gradient. 34

4.6 A CSI topology using a convolutional recurrent neural network itera-

tively. χ[n] represents the nth iteration’s contrast, g
[n]
χ its corresponding

gradient and h[n] the corresponding memory state. . . . . . . . . . . . . 35

5.1 Visualisation of the preliminary steps required to train DLE-CSI starting
with a dataset and a set of simulated incident fields. Cubes represent
3D data and dashed arrows represent inputs/outputs from data grouped
with the corresponding dash-style. . . . . . . . . . . . . . . . . . . . . . 38

5.2 Pipeline of the deep learning part of DLE-CSI. Red blocks indicate neu-
ral network layers, blue blocks indicate data manipulation operators and
white blocks depict data. Bars of data represent vectors and cubes rep-
resent 3D data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Average Training- and test losses of simultaneous iteration training using
the 2D quadrant-based implementation. Max iterations is set to 10 and
the training was performed for 5 epochs. . . . . . . . . . . . . . . . . . 45

5.4 Average Cost Functional values at every iteration and epoch of simulta-
neous iteration training using the 2D Quadrant-based implementation.
Max iterations is set to 10 and the training was performed for 5 epochs. 47

xiii



5.5 An example of electrical properties reconstructed by DLE-CSI using the
2D quadrant-based implementation and trained for 5 epochs using the
simultaneous iteration approach with a maximum of 10 iterations. The
reconstruction is performed on a simulated model of the human head, of
which a transversal slice is shown. The leftmost images show the ground
truth EP values to be reconstructed, the middle column images show the
reconstructed EPs and the rightmost images show the difference between
the reconstruction and the ground truth. . . . . . . . . . . . . . . . . . 48

5.6 Average Training- and test losses of simultaneous iteration training using
the Local Patches implementation. Max iterations is set to 10 and the
training was performed for 5 epochs. . . . . . . . . . . . . . . . . . . . 49

5.7 Average Cost Functional values at every iteration and epoch of simulta-
neous iteration training using the Local Patches implementation. Max
iterations is set to 10 and the training was performed for 5 epochs. . . . 50

5.8 An example of electrical properties reconstructed by DLE-CSI using the
Local Patches implementation and trained for 5 epochs using the si-
multaneous iteration approach with a maximum of 10 iterations. The
reconstruction is performed on a simulated model of the human head, of
which a transversal slice is shown. The leftmost images show the ground
truth EP values to be reconstructed, the middle column images show the
reconstructed EPs and the rightmost images show the difference between
the reconstruction and the ground truth. . . . . . . . . . . . . . . . . . 51

5.9 Average Training- and test losses of iteration per epoch training using
the 2D quadrant-based implementation. Max iterations progresses to 5
and the training was performed for 5 epochs. . . . . . . . . . . . . . . . 52

5.10 Average Cost Functional values at every iteration and epoch of iteration
per epoch training using the 2D quadrant-based implementation. Max
iterations progresses to 5 and the training was performed for 5 epochs. 53

5.11 An example of electrical properties reconstructed by DLE-CSI using the
2D quadrant-based implementation and trained for 5 epochs using the
iteration per epoch approach with a progressive maximum of 5 iterations.
The reconstruction is performed on a simulated model of the human
head, of which a transversal slice is shown. The leftmost images show
the ground truth EP values to be reconstructed, the middle column
images show the reconstructed EPs and the rightmost images show the
difference between the reconstruction and the ground truth. . . . . . . 54

5.12 Average Training- and test losses of iteration per epoch training using
the local patches implementation. Max iterations progresses to 5 and
the training was performed for 5 epochs. . . . . . . . . . . . . . . . . . 55

5.13 Average Cost Functional values at every iteration and epoch of itera-
tion per epoch training using the local patches implementation. Max
iterations progresses to 5 and the training was performed for 5 epochs. 56

xiv



5.14 An example of electrical properties reconstructed by DLE-CSI using the
local patches implementation and trained for 5 epochs using the iteration
per epoch approach with a progressive maximum of 5 iterations. The
reconstruction is performed on a simulated model of the human head, of
which a transversal slice is shown. The leftmost images show the ground
truth EP values to be reconstructed, the middle column images show the
reconstructed EPs and the rightmost images show the difference between
the reconstruction and the ground truth. . . . . . . . . . . . . . . . . . 57

5.15 Average Training- and test losses of simultaneous iteration training using
the Local Patches implementation and the additive update manner. Max
iterations is set to 10 and the training was performed for 9 epochs. . . . 58

5.16 Average Cost Functional values at every iteration and epoch of simul-
taneous iteration training using the Local Patches implementation and
the additive update manner. Max iterations is set to 10 and the training
was performed for 9 epochs. . . . . . . . . . . . . . . . . . . . . . . . . 59

5.17 An example of electrical properties reconstructed by DLE-CSI using the
local patches-based implementation and additive update manner. The
NN was trained for 9 epochs using the simultaneous iteration approach
with a maximum of 10 iterations. The reconstruction is performed on
a simulated model of the human head, of which a transversal slice is
shown. The leftmost images show the ground truth EP values to be
reconstructed, the middle column images show the reconstructed EPs
and the rightmost images show the difference between the reconstruction
and the ground truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.18 Average Training- and test losses of per iteration training using the Local
Patches implementation and the additive update manner. Max iterations
is set to 10 and the training was performed for 10 epochs. . . . . . . . . 61

5.19 Average Cost Functional values at every iteration and epoch of per iter-
ation training using the Local Patches implementation and the additive
update manner. Max iterations is set to 10 and the training was per-
formed for 10 epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.20 An example of electrical properties reconstructed by DLE-CSI using the
local patches-based implementation and additive update manner. The
NN was trained for 10 epochs using the per iteration training approach
with a maximum of 10 iterations. The reconstruction is performed on
a simulated model of the human head, of which a transversal slice is
shown. The leftmost images show the ground truth EP values to be
reconstructed, the middle column images show the reconstructed EPs
and the rightmost images show the difference between the reconstruction
and the ground truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.21 Average Training- and test losses of simultaneous iteration training us-
ing the Local Patches implementation, the additive update manner and
doubled network depth. Max iterations is set to 10 and the training was
performed for 10 epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xv



5.22 Average Cost Functional values at every iteration and epoch of simul-
taneous iteration training using the Local Patches implementation, the
additive update manner and doubled network depth. Max iterations is
set to 10 and the training was performed for 10 epochs. . . . . . . . . . 63

5.23 An example of electrical properties reconstructed by DLE-CSI using the
local patches-based implementation, additive update manner and dou-
bled network depth. The NN was trained for 10 epochs using the simulta-
neous iteration training approach with a maximum of 10 iterations. The
reconstruction is performed on a simulated model of the human head, of
which a transversal slice is shown. The leftmost images show the ground
truth EP values to be reconstructed, the middle column images show the
reconstructed EPs and the rightmost images show the difference between
the reconstruction and the ground truth. . . . . . . . . . . . . . . . . . 64

5.24 Average Training- and test losses of per iteration training using the Local
Patches implementation, the additive update manner and doubled net-
work depth. Max iterations is set to 10 and the training was performed
for 10 epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.25 Average Cost Functional values at every iteration and epoch of per it-
eration training using the Local Patches implementation, the additive
update manner and doubled network depth. Max iterations is set to 10
and the training was performed for 10 epochs. . . . . . . . . . . . . . . 65

5.26 An example of electrical properties reconstructed by DLE-CSI using the
local patches-based implementation, additive update manner and dou-
bled network depth. The NN was trained for 10 epochs using the per
iteration training approach with a maximum of 10 iterations. The re-
construction is performed on a simulated model of the human head, of
which a transversal slice is shown. The leftmost images show the ground
truth EP values to be reconstructed, the middle column images show the
reconstructed EPs and the rightmost images show the difference between
the reconstruction and the ground truth. . . . . . . . . . . . . . . . . . 66

6.1 Diagram displaying the acquisition of a phase error map in relation to
the error of a reconstructed conductivity map. . . . . . . . . . . . . . . 67

6.2 Schematic overview of phase error based conductivity correction . . . . 68

6.3 Schematic overview of using phase error based conductivity enhancement
in an iterative manner. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4 U-net design featuring 3 encoder and decoder blocks. . . . . . . . . . . 70

6.5 Schematic overview of phase error based conductivity enhancement in
training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.6 Updated conductivity map with a convolution kernel size of 11, after
training for 11 epochs at a learning rate of 2..5e-4. An example of the
boundary effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.7 Average test- and out of distribution losses per epoch, for 4 folds of k-fold
validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xvi



6.8 Evaluation results of training the first fold at the third epoch using an
MSE loss. From the top left to the bottom right: the ground truth
conductivity, the input conductivity, the updated conductivity output
from the network, the relative error: the update error relative to the
input error (Equation 6.6), the input error: the difference between the
input and the ground truth, the update error: the difference between the
updated conductivity and the ground truth. . . . . . . . . . . . . . . . 77

6.9 Violin plots displaying the relative error of the network under test 1 . . 78
6.10 Average training and test losses per epoch, using the loss function

L=0.5MSE+0.5MAE and a learning rate of 2.5e-3 . . . . . . . . . . . . 79
6.11 Evaluation results of training the PEBCC with the loss function

L=0.5MSE+0.5MAE and a learning rate of 2.5e-3 at epoch 20. From
the top left to the bottom right: the ground truth conductivity, the in-
put conductivity, the updated conductivity output from the network, the
relative error: the absolute update error relative to the absolute input er-
ror (Equation 6.6), the absolute input error: the difference between the
input and the ground truth, the absolute update error: the difference
between the updated conductivity and the ground truth. . . . . . . . . 80

6.12 Violin plots displaying the relative error of the network under test 2 . . 81
6.13 Average training losses at different convolution kernel sizes under Test 3 82
6.14 Average test losses at different convolution kernel sizes under Test 3 . . 82
6.15 Average out of distribution losses at different convolution kernel sizes

under Test 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.16 Violin plots of the relative error of the network under Test 3 and a

convolution kernel size of 3 . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.17 Violin plots of the relative error of the network under Test 3 and a

convolution kernel size of 5 . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.18 Violin plots of the relative error of the network under Test 3 and a

convolution kernel size of 7 . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.19 Violin plots of the relative error of the network under Test 3 and a

convolution kernel size of 9 . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.20 Violin plots of the relative error of the network under Test 3 and a

convolution kernel size of 11 . . . . . . . . . . . . . . . . . . . . . . . . 86

xvii



xviii



List of Tables

6.1 Convolution kernel size assessment of relative error violin plots . . . . . 86

xix



xx



Introduction 1
Examining the internal state of a patient’s body for diagnoses, treatment planning or
research has become common practice in modern medicine. Medical imaging modalities
allow professionals in the medical field to assess visual presentations of the insides of
their patients. An assortment of different medical imaging modalities exist, such as
Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission
Tomography (PET) and X-ray. Each modality has its advantages and disadvantages
and provides us with different types of information.

MRI features a broad spectrum of imaging modalities, from imaging soft tissue with
T1- or T2-weighted MRI[1] to measuring brain activity with functional MRI (fMRI)
[2]. An MRI scanner leverages magnetic fields to influence the magnetic orientation of
protons in the subject. These are typically hydrogen protons as they have an abundant
presence in the human body. These protons resemble a spinning top with a magnetic
north- and south pole, gyrating along an axis. In regular circumstances these axes are
aligned randomly, therefore yielding a net magnetic moment of approximately zero.
Applying a strong static magnetic field to the subject aligns the axis of the protons.
The static magnetic field of an MRI scanner is typically 1.5T, 3T or 7T and is referred
to as the B0 field. Aligned with the magnetic field, the protons gyrate around their
axis at a frequency dependent on the strength of the magnetic field and the element
used. This frequency is called the Larmor frequency. A radio frequency (RF) magnetic
field, called the B1 field, provides a pulse of energy to the protons, which flips their
alignment. The B1 field is applied at a frequency equal to the Larmor frequency as the
resonance ensures the most efficient energy transfer. Additional coils apply gradients to
the magnetic field, this causes only select locations to resonate. As the protons restore
their alignment to the B0 field, they emit a RF signal which is measured. Hence, using
the gradient coils to apply resonance to a single spot specifies where the measured
signal comes from. Methodically alternating the resonance location allows the imaging
of the region of interest of the subject.

The electrical properties (EPs) of the imaged subject create distortions in the mea-
sured RF signal [3]. Typically, these RF signal distortions are measured using mapping
techniques [4] to compensate for these RF signal distortions. Alternatively, the dis-
tortions in the RF signal can be used to reconstruct the EPs of the subject’s tissue.
The MRI modality that is concerned with reconstructing these EPs from MRI mea-
surements is referred to as MR-based Electrical Properties Tomography (MR-EPT or
EPT).

The EPs refer to the conductivity (σ) and permittivity (ϵ) of tissue. Conductivity
is a measure of how well a material conducts an electric current, while permittivity
is a measure of how much a dielectric medium affects and is affected by an electric
field. The EPs of tissue depend on the frequency of the electromagnetic (EM) waves,
the ionic concentrations and the permeability of cellular membranes [5]. Subjecting
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biological tissue to the EM waves of an MRI scanner at MRI frequencies (64-300 MHz)
causes this dependency to mostly be dominated by ionic concentrations [5].

The EPs can be used in a multitude of clinical applications. EPs are essential when
trying to determine the Specific Absorption Rate of tissue [6]. The SAR is a measure
of how much power is transferred to a mass of tissue by a RF field. Heating of tissue,
induced by RF fields, can be limited by leveraging knowledge of that tissue’s SAR.
Such heating is a major safety concern in high- and ultrahigh-field MRI [7]. The EPs
can be used as a biomarker for tumours [8, 9], since the EPs of tumours tend to be very
different from their surrounding benign tissue [10, 11]. Additionally, knowledge of the
EPs can be leveraged for hyperthermia treatment planning of tumours [12, 13].

Reconstruction methods for MR-EPT can be subdivided into 3 categories. Firstly,
direct methods, which compute the EPs directly from the measured RF field. Sec-
ondly, forward methods, which iteratively improve on an initial guess of the EPs based
on discrepancies between the measured field and the field computed from the initial-
or updated EPs. Lastly, deep learning methods, which leverage deep learning to recon-
struct the EPs. These methodologies are illustrated in Figure 1.1 and will be explained
further in the following sections.

Figure 1.1: A generalised schematic overview of direct-, forward- and deep learning EPT
methods.
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1.1 Direct EPT Methods

A wide range of different MR-EPT methods have been developed. Yet few have reached
the stage of being tested in clinical studies. A method that has reached this point [14],
sometimes referred to as Simplified Helmholtz EPT (SH-EPT), is characterised by its
simplicity, a low computational time and short acquisition times [14]. SH-EPT’s sim-
plicity makes it easy to implement, while its low computational time prevents excessive
waiting for results. Since both cost and patient comfort are highly correlated to the du-
ration of an MRI scan [15], having a short acquisition time increases cost-effectiveness
and reduces discomfort. The short acquisition time of SH-EPT originates from only
requiring either the phase or magnitude of the measured RF field depending on whether
the conductivity or permittivity is to be reconstructed. Since SH-EPT assumes that
changes in the phase are primarily caused by the conductivity, while it assumes that
changes in the magnitude are primarily caused by the permittivity. Hence the recon-
structed conductivity does not take the magnitude into account and the reconstructed
permittivity does not take the phase into account. The validity of this assumption is
observed to be reliant on the ratio between the conductivity and permittivity multi-
plied by the angular frequency [16]. The ratio between conductivity and permittivity
is tissue-dependent, meaning that the extent to which the assumption will hold differs
per type of tissue imaged. The frequency dependency means that the validity of the
assumption is reliant on the MRI’s field strength of its B0 field, due to its direct re-
lation to the Larmor frequency. The extent to which the assumption holds influences
the accuracy of the EP’s reconstruction. For example, overestimation of conductivity
reconstruction has been observed when using 7T MRI scanners when compared to 1.5T
MRI-scanner results [17].

Note that SH-EPT’s acquisition time is short if only one of the two EPs is recon-
structed. When both EPs are reconstructed, the acquisition time becomes similar to a
method called Helmholtz EPT (H-EPT). Helmholtz EPT [18] is the method on which
SH-EPT is based. It predates SH-EPT in the sense that its solution is based on the
complete RF field. Hence not neglecting the magnitude and phase component when
reconstructing conductivity and permittivity, respectively. Compared to SH-EPT, H-
EPT has less stringent validity conditions at the expense of requiring more information.
Meaning longer acquisition times for acquiring both magnitude and phase information,
while not introducing additional inaccuracies because of SH-EPT’s additional assump-
tion.

Both SH-EPT and H-EPT assume that the EPs being imaged are locally homoge-
neous. The simplicity of these methods is largely attributed to this assumption [14].
However, the use of this assumption gives rise to significant errors at the boundaries of
different tissue types. Since different tissue types typically have different EPs, thereby
violating the local homogeneity assumption. Figure 2 in the work of Mandija et al.
[19] displays a great example of the significance of boundary errors in H-EPT. Bound-
ary errors are especially prevalent when imaging complex tissue structures such as the
human brain, where grey matter, white matter and Cerebral Spinal Fluids (CSF) in-
tertwine. To mitigate the boundary errors to an extent, the different tissue types could
be segmented.
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Alternatively, Local Maxwell Tomography (LMT) [20] uses an array of coils to mea-
sure the RF field through which a system of equations is constructed. If a sufficiently
large amount of RF field maps have been acquired (e.g. 16), then the locally homo-
geneous assumption is not required [21]. Due to the need to acquire a higher amount
of RF field maps with the coil array, LMT’s acquisition time is significantly higher
compared to H-EPT and SH-EPT. As aforementioned, longer acquisition times lead to
increased cost and patient discomfort. Furthermore, such an array of coils is typically
not readily available in clinical settings [14].

Similar to LMT, Modified Dual-Excitation EPT (MDE-EPT) avoids the locally
homogeneous assumption by acquiring multiple RF field maps with a coil array. MDE-
EPT requires a minimum of 5 RF field maps [22], which is typically less than what LMT
requires. Hence, comparatively shortening acquisition time. MDE-EPT assumes that
there are no variations in the longitudinal component of the RF magnetic field. Within
the MRI setting, the longitudinal direction is defined as the direction in which the
static magnetic field B0 travels in. Errors in the reconstruction have been observed to
increase the further away one moves from the central slice in the longitudinal direction,
as a consequence of this assumption [22]. Hence, when compared to LMT, MDE-
EPT features shorter acquisition times at the cost of increased errors outside of central
regions in the longitudinal direction.

The aforementioned methods all make use of spatial differential operations to re-
construct the EPs directly from RF field data. Hence, as a group, they will be referred
to as direct methods. The usage of spatial derivatives makes these direct methods
rather sensitive to noise and other spatial fluctuations [19]. As noise can feature rapid
changes, its gradients tend to be large and differentiation will therefore amplify the
noise. This is further aggrandised by the finite differential kernels used to approximate
the differential operation. Using large differential kernels decreases the sensitivity to
noise but also exacerbates any boundary errors. Since a larger kernel size takes into
account more spatial information and therefore has an increased likelihood of encoun-
tering a tissue boundary. Instead of adjusting kernel sizes, multiple different filtering
or denoising methods can be used to mitigate some of the noise’s impact, at the cost
of additional computation.

1.2 Forward EPT Methods

Opposed to the direct methods which directly compute EPs from measured RF data,
another set of methods starts with an initial guess of EPs. This initial guess is typically
an average value typical to the tissue type inherent to the imaged location. From
this initial guess, the corresponding magnetic (and often electric) fields are computed.
These computed fields are compared with measured RF field data. Depending on the
discrepancy of the measured and computed fields, the EPs are updated. This process
repeats iteratively until the measured and computed fields are in agreement within a
specified tolerance range. These methods implement a forward model, from EPs to EM
fields and are therefore referred to as forward methods.

Inversely to the direct methods, forward methods leverage integral operations rather
than differential ones. Using integration is inherently more noise robust than using
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differentiation [14]. Integrating or summing a sufficiently large amount of noise cancels
each other out when the noise is zero mean. For zero mean noise, one expects a similar
amount of positive- and negative magnitudes, adding those up nets zero. Note that this
reasoning assumes that the noise has equal probabilities of being positive or negative
for a similar magnitude. Integrating noise with a nonzero mean still smooths the noise
but introduces a bias towards the noise’s mean in the reconstruction.

A limiting factor to the forward methods originates from assuming that the RF EM
fields in the MRI scanner when no object/subject is present, are known. These EM
fields are referred to as the incident fields. However, these incident fields cannot be
measured directly [14]. Instead, the incident fields are simulated based on the known
RF coil geometry or referenced from a scan with an object with known EPs. These
solutions still introduce inaccuracies to the reconstructions, as the presence of an object
or subject loads the coils changing the incident fields [23]. Furthermore, when working
with simulated incident fields, slight deviations in simulated and actual coil location or
geometry have been observed to lead to reconstruction inaccuracies [24].

The Variational Born Iterative Method EPT (VBIM-EPT) [25, 26] is a forward
method which expresses the difference between the measured magnetic RF field and
the from EPs derived counterpart, as a residual. The magnetic RF field residual is a
function of the difference in the guessed EPs and the actual EPs; the EPs residual.
The initial guess of the EPs is updated by adding the residual of the EPs. Based
on these updated EPs, the updated RF EM fields are computed. This process is
repeated iteratively until the magnetic RF field residual is smaller than a user-defined
threshold. The computation of the residual EPs from the residual magnetic RF field
is an inverse problem which has to be numerically solved. Solving such an inverse
problem is computationally heavy, which is especially prohibitive considering that this
computation is performed in every iteration. Hence, the computational load of VBIM-
EPT is significantly high.

Global Maxwell Tomography (GMT) [27, 28, 29] poses the forward problem as an
optimisation problem. A cost function is defined based on the discrepancy between the
measured RF magnetic field and the RF magnetic field computed from the (guessed)
EPs. By taking the gradient of the cost function with respect to the EPs, an update for
the EPs is formulated. The computed field resulting from the updated EPs, is then used
to update the cost function. Repeating this process until the cost function falls within
a specified tolerance range effectively minimises the cost function, with the EPs acting
as the optimisation variable. GMT reformulates the relation between the EPs and the
computed field used in VBIM-EPT into a forward problem and thereby eliminates the
computationally heavy inverse problem. The computational load of GMT is still very
high relative to direct methods [28] due to the high amount of iterations necessary for
optimising the EPs.

Similar to GMT, Contrast Source Inversion EPT (CSI-EPT) [30, 23] reformulates
the inversion problem, circumventing the computationally heavy inverse problem. CSI
considers the distortions that the EPs apply to the RF field to have originated from
a source. This source is introduced as a function of the EPs and the total electric
field. Whereas the electric field and magnetic RF field are approximated as a function
of this source. CSI also poses the forward problem as an optimisation problem and
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solves it iteratively. Its cost function contains two parts; each part assigns a cost to a
discrepancy in the approximation of the electric field and magnetic RF field respectively.
This cost function is minimised by optimising both the source and the EPs. Updating
both variables is done by fixing the value of one while computing the update of the
other. The source is updated first and the EPs second. CSI, like the other forward
methods, also suffers from a high computational load caused by the high amount of
iterations required for convergence.

1.3 Deep Learning EPT Methods

Like in many scientific fields, the potential of using Deep Learning (DL) to solve ill-
posed problems is also being explored in the field of MR-EPT. Deep Learning is a
subset of machine learning, the field of algorithms that learn from experience[31]. Deep
Learning then refers to machine learning algorithms with multiple layers with each
their own transformation. Together, these layers form a network referred to as a Neural
Network (NN). These neural networks are trained from end-to-end, the layers jointly
learn parameters from an input-output pair. The output of the input-output pair
refers to the ’true’ output that the NN should ideally compute from the corresponding
input. Hence, the output of the input-output pair is referred to as the ground truth.
When training, the NN computes an output based on the provided input, which is then
compared to the ground truth. This comparison is performed mathematically by a
function referred to as a loss function or objective function. Such an objective function
is a mathematical definition of what constitutes an improvement in the learning process
of the NN; objective functions are typically minimised.

Deep learning methods for EPT are usually trained with simulated data, as in-vivo
data usually lacks ground truth data. Reconstructing EPs from data bearing little
resemblance to the training data is bound to feature artefacts. This may occur when
in-vivo data [32] is presented as an input when the model was trained with noiseless,
simulated data. Alternatively, evaluating a model with inputs that feature tumours,
while tumours were excluded from training could lead to unexpected behaviour [33].
More generally, such unexpected behaviour can occur whenever a NN is presented with
unseen data; data that has not been included in training. Hence, in the field of deep
learning we want neural networks to learn the general patterns that allow us to make
accurate predictions on new unseen data [31].

To categorise the way DL is applied to EPT methodology, the definitions of direct
deep learning, learning-assisted objective function deep learning and physics-assisted
deep learning introduced by Chen et al. [34] will be applied to DL EPT methods.
These categories are specifically introduced for inverse scattering problems (ISP). ISPs
are a subfield of wavefield problems in which a domain of interest is illuminated with
wavefields in an attempt to learn the characteristics of a penetrable object within the
domain. The receivers in an ISP are outside of the domain of interest and their received
wavefield is considered known. The wavefield produced by the source is similarly known,
leaving the media of the object and its surroundings as the unknown quantity. MRI-
EPT is also considered an ISP, with the subject the penetrable object and the source
and receivers embodied by the coils of the MRI scanner.
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1.3.1 Direct Deep Learning

The direct deep learning category contains methods in which a desired output is to
be directly learned from the measurements by a NN. For MR-EPT this constitutes a
NN learning how to reconstruct the EPs from the measured RF magnetic field. This
category disregards any knowledge of the wave physics that governs the interaction
between the wavefields and the subject. These physics have to be implicitly learned by
the NN, which essentially wastes computational power on known information. Although
learning these implicitly based on data, has the potential to better deal with deviations
caused by any noise, biases or assumption-based artefacts that might have otherwise
occurred. On the flip side, training the NN on data with a bias that is not inherently
present in measured data from other sources, might instead degrade the quality of
reconstructions. Methods within this category require relatively little knowledge of the
user on the ISP [34]. Direct deep learning methods have the added benefit of having
less stringent requirements of input data such as not having to assume knowledge of
the incident fields.

Mandija et al. [35] proposed a direct deep learning EPT method in which the EPs
are directly learned from the measured magnetic RF field using clinically available
settings. They reported more noise-robust results than traditional MR-EPT methods.
Additionally, it was observed that most predictive features for the reconstruction of
conductivity originate from the phase maps, which is congruent with the phase-based
conductivity reconstruction of SH-EPT.

Similarly, Gavazzi et al. [36] applied direct deep learning to reconstruct EPs in the
pelvic area. The network was trained in two configurations, one with a RF magnetic
field as input and one with only the corresponding phase as input. They reported
comparable results for both configurations, once again providing support for SH-EPT’s
assumption of variations in phase being predominantly conductivity-related. When
tested in vivo, the median values of the DL method were comparable to those of H-
EPT used in comparison, only the precision of the DL method was higher [36].

1.3.2 Learning-Assisted Objective Function Deep Learning

Learning-assisted objective function deep learning retains the framework of solving an
ISP by optimising the objective function iteratively. The difference lies in replacing
a part of the framework with deep learning. In the field of EPT, this would refer to
using a forward method with a NN replacing a part of the process. An example of
such a method would be to have a NN generate an initial guess for the iterative solver.
Initial guesses provided to iterative solvers are typically homogeneous guesses or guesses
based on known tissue geometries or segmentations. Assuming that a NN provides an
improved initial guess, the number of iterations taken by the solver will be reduced, in
turn reducing the high computational load that is typical to forward methods.

Leijsen et al.[33] proposed a learning-assisted objective function deep learning
method for EPT. They generate an initial guess with a NN, which is used by CSI-
EPT to reconstruct the EPs. They report an improvement in quality and accuracy
over standard CSI-EPT. Additionally, the data consistency that CSI-EPT provides,
relaxes the need for exhaustive data sets to train the NN.
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An alternate example of learning-assisted objective function deep learning is shown
in a microwave imaging reconstruction method proposed by Guo et al.[37]. Here the
average descent direction of the gradient descent is learned by a NN. Hence, a different
part of the framework is assisted by a NN compared to the previous example.

1.3.3 Physics Assisted Deep Learning

In physics-assisted deep learning, domain knowledge is included in the deep learning.
This is either done by incorporating it into the architecture of the NN or by including
it in the input. When included in the NN architecture, this could entail using sparse
connections in the NN when solving sparse problems. Including domain knowledge in
the input of the NN refers to having the input of the NN being transformed from the
measurement domain to the output domain. Meaning that for EPT the input to the
network is in the form of an EP estimate instead of the measured RF magnetic field.

An example of physics-assisted deep learning is shown by Khoshdel et al. [38]. They
proposed a method in which CSI is applied to ultrasound measurements to provide a
rough reconstruction of the permittivity in breast imaging. This reconstruction is then
fed to a NN which attempts to reconstruct the true permittivity. Hence CSI is used
to impart domain knowledge into the NN’s input. They report improvement in the
performance of tumour segmentation and a reduction in reconstruction errors when
compared to using CSI only.

1.4 Project Goal

As aforementioned, deep learning methods for MR-EPT are mostly restricted to the
direct deep learning category. Even though the direct deep learning methods are the
most straightforward, they waste computational power on learning the already known
wave physics underlying the problem. Unlike in other medical imaging fields, physics-
assisted deep learning for MR-EPT has not yet been attempted. In other medical image
construction modalities physics assisted deep learning has mostly been implemented by
embedding a NN in an iterative reconstruction scheme [39, 40, 41, 42]. These method-
ologies yielded improved generalisation to unseen data in training, while also decreasing
the computational time. Similarly, MR-EPT forward methods could potentially bene-
fit from similar improvements when combined with DL. In particular, CSI has already
been combined with DL in such a manner in the field of ultrasound [38].

Direct EPT methods could potentially be used in a physics-assisted deep learning
scheme as well. The direct method would be used to provide an initial reconstruction
of EPs, which are then to be used as input to a NN. The NN could then potentially
resolve issues typical to direct methods such as boundary errors.

This project aims to explore two different avenues of physics-assisted deep learning
for MR-EPT in which both a direct- and a forward method are combined with deep
learning to offset their disadvantages.

The forward method 3D-CSI will be combined with deep learning, with the goal of
speeding up the computational time significantly. Additionally, potential methods of
circumventing the requirement for known incident fields will be investigated.
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A deep learning method will be designed to improve reconstructed estimates of
conductivity, based on the working principles of SH-EPT.

1.5 Outline

In Chapter 2 mathematical background information is provided on two important as-
sumptions in MR-EPT and a mathematical description is given of SH-EPT and CSI-
EPT. The aim of Chapter 2 is to provide the reader with sufficient background knowl-
edge to understand the subsequent chapters.

In Chapter 3 programming methodologies and implementations are reported. The
chapter discusses the porting of 3D-CSI-EPT to Python, structure and code design
choices and the debugging process.

In Chapter 4 potential methods of combining DL with CSI are discussed. The chap-
ter first introduces relevant neural network types, afterwards deep learning strategies
for CSI are discussed and lastly, potential topologies for combining DL with CSI are
proposed.

In Chapter 5 the implementation and results of the hybrid DL-CSI method are re-
ported. Covering the neural network design implementation, training strategies, results
and neural network variations.

In Chapter 6 a hybrid method for improvement of conductivity reconstructions
based on phase measurements is proposed. The method combines DL with the working
principles of the direct MR-EPT method SH-EPT. Chapter 6 covers the methodology,
neural network design, training strategies and results of the proposed hybrid method.

In Chapter 7 the results of both hybrid methods are discussed. Covering potential
improvements and future work.

Chapter 7.4 concludes this work.

9



10



Mathematical Background 2
This chapter provides the reader with explanations, mathematical notations and deriva-
tions of assumptions and EPT methods directly relevant to the project. First, a
mathematical representation of the electromagnetic fields for MRI is provided and the
transceive phase assumption (TPA) is introduced. This is followed by the derivation
of SH-EPT from Maxwell’s equations, including how the local homogeneity assump-
tion influences the solution mathematically and how the magnitude- and phase dom-
inance assumptions segregate SH-EPT from H-EPT. The following section introduces
the mathematical representation of the incident fields and discusses a method to sim-
ulate them. The chapter is concluded by an abbreviated derivation of CSI for EPT.

2.1 Field Representation and Transceive Phase Assumption

The following field representations follow the methodologies and notations of [14]. The
earlier introduced RF magnetic field is expressed as

B1 = |B1|ejϕ, (2.1)

with j denoting the imaginary unit, the | · | operator denoting the amplitude and ϕ
denoting the field’s phase. The RF magnetic field is typically described by its phasor,
which we introduce as

B1(x, t) = Re[B̃1(x, jω)e
jωt] (2.2)

[14]. Here x denotes the position vector, t time and ω the angular frequency. The Re[·]
operator takes the real part of a complex number. The time convention ejwt is used.

In this work the field quantities are considered to be in phasor notation and for con-
venience the tilde will be dropped. Meaning that B1 from here on represents B̃1(x, jω).

Note that the RF magnetic field is expressed by a bold letter, indicating that it is
a vector quantity, which can be broken down into its x, y and z components as:

B1 = B1;xix +B1;yiy +B1;ziz. (2.3)

Where B1;x, B1;y and B1;z denote the scalar x-, y- and z field components, respectively.
The ix, iy and iz denote the unit vectors in the x-, y- and z-direction, respectively.

The static magnetic B0 field in the MRI scanner is considered to be aligned with
the z-axis. Whereas we consider the RF magnetic B1 to solely consist of x- and y-
components. Hence, the B1;z component in Equation 2.3 can be eliminated as it equates
to 0. The B1 field can be further split into two circularly polarised field components

B1 = B+
1 +B−

1 , (2.4)
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with

B+
1 = B+

1 (ix − jiy) (2.5)

and

B−
1 =

[
B−

1

]∗
(ix + jiy). (2.6)

These scalar field components are referred to as the transmit- (B+
1 ) and receive (B−

1 )
RF magnetic fields. The transmit and receive field components are defined as

B+
1 =

B1;x + jB1;y

2
(2.7)

and

B−
1 = (

B1;x − jB1;y

2
)∗. (2.8)

Here ∗ denotes the complex conjugate. Alternatively, we introduce the transmit and
receive unit vectors as

i+ =
1

2
(ix + jiy) (2.9)

and

i− =
1

2
(ix − jiy)

∗, (2.10)

respectively. Using these vectors, the transmit and receive field relate to B1 following

B+
1 = i+ ·B1 (2.11)

and

B−;∗
1 = i− ·B1. (2.12)

In the time domain, these field components trace a circle and are hence referred
to as circularly polarised. The transmit and receive fields travel along this circle in
opposite directions. The direction in which the circularly polarised fields travel, is
determined by the direction which the static B0 field travels in. Following the most
frequently used convention, the B0 field’s direction is defined as the positive z-direction.
This results in the transmit field and receive field being defined as right- and left-hand
circularly polarised, respectively. The transmit field rotates in the same direction as
protons gyrating along the B0 field’s alignment. Hence, the transmit field can efficiently
transfer energy to flip the protons’ orientation.

The quantities measured with the MRI scanner are limited to the magnitude of the
transmit field (|B+

1 |) and the combined phase of the transmit and receive fields (ϕ±),
referred to as the transceive phase. The transceive phase is a superposition of the
trasmit and receive phases

ϕ± = ϕ+ + ϕ−. (2.13)

Typically, the MR-EPT methods require both transmit magnitude and transmit phase
in order to use the complex transmit field (B+

1 = |B+
1 |ejϕ

+
) as input. Most often the gap

in knowledge between the transceive and transmit phase, is bridged by the transceive

12



phase assumption (TPA). The TPA assumes that the transmit- and receive phase are
equal in contribution, therefore deriving the transmit phase as

ϕ+ =
ϕ±

2
. (2.14)

The TPA is, however, only valid for low field strength and symmetrical objects [43],
introducing errors otherwise. Circumventing the use of the TPA can be achieved by
using multi-element arrays to acquire relative phases. However, these arrays are not
widely available and prolong acquisition time significantly [14].

2.2 Simplified Helmholtz Electrical Properties Tomogaphy

Simplified Helmholtz EPT (SH-EPT) is a direct approach with a very low amount of
complexity. It has a low computation time and is easily implementable [14]. SH-EPT
relates conductivity and permittivity to the measured phase and magnitude of the B+

1

field respectively. This reduces the need for obtaining both phase and magnitude if
only a single EP is required instead of both.

As a direct approach, SH-EPT reconstructs the EPs directly from the measured B+
1

data. To understand how the EPs interact with the B+
1 field, its relation is derived

from Maxwell’s equations for time-harmonic fields following the methodology presented
in [14]. Maxwell’s equations for time-harmonic fields are introduced as

−∇×H+ ηE = −Jext, (2.15)

∇× E+ ζH = 0. (2.16)

Here, H denotes the magnetic field strength. The admittance and impedance of the
medium are denoted by η = σ+ jωϵ and ζ = jωµ, respectively. Of which, µ represents
the permeability. The spatial variations of the permeability of biological tissue tend to
be small [23], therefore µ is assumed constant and equal to the permeability of vacuum,
µ = µ0. Due to the B+

1 that the MRI scanner measures, we are more interested in
the magnetic flux density B than the magnetic field strength H. Therefore, the H
is substituted by B using the constitutive relation B = µ0H. For convenience, the
magnetic flux density will be referred to as the magnetic field. The external current
density distribution Jext in MR-EPT, is located on the RF-coil of the MRI scanner,
which is used to generate EM fields. The coil is located outside the imaging domain,
allowing us to equate Jext to 0. The Maxwell equations in the imaging domain for
biological tissue then equate to

−∇×B+ µ0ηE = 0, (2.17)

∇× E+ jωB = 0. (2.18)

Since the quantity measured by an MRI scanner consists of a magnetic field com-
ponent, the electric field component is eliminated from the system of equations. To
achieve this, the following two curl identities are leveraged

∇×∇× F = ∇∇ · F−∇2F, (2.19)
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∇× (vF) = ∇v × F+ v∇× F, (2.20)

where F and v represent a vector field and scalar function, respectively. The curl of
the first Maxwell Equation 2.17 is taken to make use of these identities.

−∇×∇×B+ µ0∇× (ηE) = 0. (2.21)

According to the curl identities, the additive parts of Equation 2.21 can now be rewrit-
ten as

∇×∇×B = ∇∇ ·B−∇2B (2.22)

and
∇× (ηE) = ∇η × E+ η∇× E. (2.23)

Now to eliminate the electric field from Equation 2.23, Equations 2.17 and 2.18 are
rewritten as

E =
1

µ0η
(∇×B) (2.24)

and
∇× E = −jωB (2.25)

respectively, and substituted in Equation 2.23.

∇η × E+ η∇× E =
∇η

µ0η
× (∇×B)− jωηB (2.26)

is now obtained, which can be combined with Equation 2.22 to rewrite Equation 2.23

−∇∇ ·B+∇2B+
∇η

η
× (∇×B)− ηζB = 0. (2.27)

For the second Maxwell Equation 2.18 a divergence operation is applied to eliminate
the electric field. As the divergence of a curl ∇ · (∇× E) equals 0,

∇ · (∇× E+ jωB) = ∇ ·B = 0 (2.28)

remains. This means that in this system of equations, the divergence of the magnetic
field is zero. The leftmost term in Equation 2.27 therefore equals 0 and can be removed.
Introducing the complex wave number k = (−ηζ)

1
2 = (ω2µ0ϵ−jωµ0σ)

1
2 and substituting

it into Equation 2.27

∇2B+
∇η

η
× (∇×B) + k2B = 0, (2.29)

results into the generalised Helmholtz equation. Since the complex wave number is a
function of the EPs, a relation between the magnetic field and EPs has been established.
Dotting the generalised Helmholtz equation with the transmit unit vector i+ yields the
generalised Helmholtz equation for the B+

1 field component

∇2B+
1 + i+ ·

[
∇η

η
× (∇×B)

]
+ k2B+

1 = 0. (2.30)
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Most direct EPT methods solve this generalised Helmholtz equation or a variation
thereof. Hence, the differential relation in Equation 2.30 represents the cause of the di-
rect methods their sensitivity to noise, as explained in Section 1.1. Here the differential
relation is embodied by the Laplacian operator (∇2) acting on the B+

1 field. Equation
2.30 contains additional differential operators, these are however typically eliminated
from the equation by assuming the medium to be locally homogeneous.

Under the local homogeneity assumption, meaning η being constant, the generalised
Helmholtz equation can be reduced to

∇2B+
1 + k2B+

1 = 0. (2.31)

Rewriting Equation 2.31
∇2B+

1

B+
1

= −k2 (2.32)

and using the wave number’s definition, yields

σ =
1

ωµ0

Im

(
∇2B+

1

B+
1

)
(2.33)

and

ϵ =
−1

ω2µ0

Re

(
∇2B+

1

B+
1

)
. (2.34)

This solution to the generalised Helmholtz equation for locally homogeneous media
defines H-EPT. To further simplify this methodology into SH-EPT, the polar decom-
position of the B+

1 field is substituted in Equation 2.31 and the real and imaginary
parts are split

σ =
1

ωµ0

(2
∇|B+

1 | · ∇ϕ+

|B+
1 |

+∇2ϕ+) and ϵ =
−1

ω2µ0

(
∇2|B+

1 |
|B+

1 |
− |∇ϕ+|2). (2.35)

It is then assumed that the term with the curvature of the transmit phase is domi-
nant when reconstructing the conductivity

∇2ϕ+ ≫ 2
∇|B+

1 | · ∇ϕ+

|B+
1 |

(2.36)

and that the term with the curvature of the magnitude divided by the magnitude is
dominant when reconstructing the permittivity

∇2|B+
1 |

|B+
1 |

≫ |∇ϕ+|2. (2.37)

Yielding SH-EPT, a reconstruction method where the conductivity and permittivity
are reconstructed based on only the phase and magnitude, respectively:

σ =
1

ωµ0

∇2ϕ+, (2.38)

ϵ =
−1

ω2µ0

∇2|B+
1 |

|B+
1 |

. (2.39)
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2.3 Incident Fields

The EM fields present in the imaging domain of the MRI scanner can be described as a
superposition of incident- and scatter fields. The incident fields introduced in Section
1.2 represent the EM fields when no object is present in the imaging domain. Inversely,
scatter fields represent the EM fields that arise from the presence of an object in the
imaging domain. Applying said superposition to the electric field and the transmit
magnetic field

B+
1 = B+;inc

1 +B+;sc
1 , (2.40)

E = Einc + Esc. (2.41)

Here, the superscript ’inc’ refers to the incident field component, with the RF coils
as its source. The superscript ’sc’ refers to the scattering field component, with the
scatter object as its source. E denotes the electric field. The scatter field components
relate to how the EPs interact with the EM fields. Forward MR-EPT methods consider
only the scatter field components as the measurable field of interest. Considering that
(under the TPA) only the B+

1 field is truly measurable, these methods assume the
incident fields to be known quantities. This allows one to directly acquire the B+;sc

1

field through superposition. In practice, however, it is difficult to acquire these incident
fields as they are not directly measurable. Oftentimes the incident fields are simulated
using the known geometry of the RF coils that act as their source. Simulated incident
fields are unfortunately not an ideal solution. Since placing a scatter object in the MRI
scanner loads its RF coils, influencing the incident fields it produces.

2.4 Contrast Source Inversion

Contrast Source Inversion is a forward method and optimisation scheme that iteratively
improves the estimated electrical properties. As an inverse method, it starts with an
initial guess of the EPs and compares the corresponding magnetic transmit scatter field
with the measured counterpart. If minimised, this difference in estimated and measured
fields, logically, yields a corresponding optimised estimate of EPs.

The following derivation is based on Leijsen et al.’s 3D CSI-EPT [23].
In CSI the incident fields are assumed to be known, using the magnetic transmit

scatter field as input.
Combining the superposition of the B+

1 field and the criterion of minimising the
difference between estimated and measured fields, gives rise to a residual:

ρ = B+;sc
1 − B̂+;sc

1 , (2.42)

where B̂+;sc
1 represents the estimated counterpart, which is further expressed as:

B̂+;sc
1 = Gdata{w}. (2.43)

The field perturbations caused by the EPs, represented by the scatter fields, can be
considered to have originated from a source. This source is referred to as the contrast
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source and is denoted byw. Gdata{·} is the data operator that approximates the relation
between a source and its B+

1 field component. The data operator is defined as

Gdata{w}(x) = ω

c20
∇̃ ·

∫
x′∈Dobj

G(x− x′)w(x′) dV. (2.44)

Here, c0 represents the electromagnetic wave speed in vacuum and Dobj is the object
domain.

∇̃ = −1

2
(ix + jiy)∂z + iz∂

+, (2.45)

with

∂+ =
1

2
(∂x + j∂y) (2.46)

and ∂x, ∂y, ∂z are the spatial derivatives with respect to the Cartesian x, y and z
directions. Likewise, ix, iy and iz denote the Cartesian unit vectors. G represents the
3-dimensional Green’s function defined as

G(x) =
exp(−jkb|x|)

4π|x|
, x ̸= 0. (2.47)

The residual can now be re-expressed as

ρ = B+;sc
1 − Gdata{w}. (2.48)

Hence, optimizing the contrast source minimises this residual. The aim, however, is to
optimise for a set of EPs.

The contrast source relates to the EPs as follows:

w = χE, (2.49)

where χ is the contrast function, which combines the EPs in a single variable.

χ =
σ + jωϵ

jωϵ0
− 1, (2.50)

with σ the conductivity, ϵ the permittivity, ϵ0 the permittivity of free space, ω the
angular frequency and j the imaginary number.

As shown in Equation 2.49, the electric field is required to relate the EPs to the
residual. Since the incident electric field is assumed to be known, we require the electric
scatter field component to acquire E by superposition. The integral representation of
the electric scatter field is defined as

Esc = Gobj{w}, (2.51)

with Gobj{·} the object operator, which approximates the relation between a source and
its electric field component. The object operator is introduced as

Gobj{w}(x) = (k2
b +∇∇·)

∫
x′∈Dobj

G(x− x′)w(x′) dV, (2.52)
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with kb =
ω
c0

the wave number in vacuum.
Substituting Equation 2.51 into Equation 2.49 by means of superposition yields

w = χEinc + χGobj{w}. (2.53)

This shows the contrast source to be a function of itself. Instead of computing the
contrast source directly, a gradient descent scheme is introduced in order to incremen-
tally update its value to optimise the underlying EPs. Equation 2.53 is rewritten as an
additional residual to punish diverging contrast source values

r = χEinc −w + χGobj{w}. (2.54)

Combining both residuals and adding normalisation factors leads to the cost functional
for the CSI algorithm:

F (w, χ) =
∥r∥2obj

∥χEinc∥2obj
+

∥ρ∥2obj
∥B+;sc

1 ∥2obj
, (2.55)

where ∥ · ∥obj denotes the L2 norm on the domain of the scatter object.
Updating the contrast source using the gradient descent scheme at an iteration [i]

is performed using the following update formula

w[i] = w[i−1] + α[i]v[i]. (2.56)

The superscript [i] denotes the current iteration’s value, while [i − 1] expresses the
use of the previous iteration’s result. Here, α represents the step length and v the
update direction. Polak-Ribière update directions are typically used. The gradient of
the cost function with respect to the contrast source is required to compute the update
directions. Computing the gradient requires the contrast function, which for iteration
[i] is still unknown. Hence, the previous iteration’s result of the contrast function is
used χ[i−1].

Using the updated contrast source, the total electric field can now be computed

E[i] = Einc + Gobjw
[i]. (2.57)

The contrast function representing the EPs can now be directly computed as

χ[i] =
w[i] · E[i];∗

|E[i]|2
, (2.58)

which solves the least squares problem

||χE−w||2. (2.59)

Alternatively, the contrast function can be updated using a gradient descent scheme
similar to the contrast source

χ[i] = χ[i−1] + β[i]u[i]. (2.60)
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Here β denotes the step length and u represents the Polak-Ribière update direction as
a function of the gradient of the cost function with respect to the contrast function.
The latter method of updating the contrast source with gradient descent is assumed to
be used in this work.

By iteratively updating the initial guessed EPs using the aforementioned method,
CSI minimises the cost function leading to optimised EP values. The iterative process
is terminated when a user-specified tolerance for the cost function has been achieved
or if a maximum number of iterations have passed.

The specifics and further details on 3D-CSI can be found in [23]. A summary of the
major steps in CSI is shown in the diagram below.
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Figure 2.1: A diagram displaying the steps taken within the CSI algorithm.
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Programming Methodology 3
3.1 Implementation Language

The starting point of the project is the 3D-CSI-EPT algorithm implemented in MAT-
LAB by Leijsen based on the paper [23]. Instead of continuing in MATLAB, the code
has been ported to Python. Using Python allows for easier usage of external GPU
servers for neural network training, as no proprietary licenses are required. Python
also features a wider range of deep learning tools to choose from. Python features
more, or more straightforward, customisation options when it comes to neural net-
works, supporting seamless integration of (customised) neural networks with the CSI
algorithm. The major disadvantage of porting to Python lies in the major time con-
sumption required.

The PyTorch library has been chosen as a framework for DL. This choice was made
due to its customization options and because of familiarity with the library.

3.2 Structure and Code Design

Besides porting the functionality of the CSI code and combining it with a Neural
Network, the code is also refactored using several software design principles from [44].

The initial CSI code has been altered into an object-oriented design, splitting its
main components into different classes. The structure of these classes is depicted below
in Figure 3.1. Unlike regular design principles in object-oriented design, the code has
been split into a relatively small amount of classes. This has several reasons to it.

Firstly, to retain a relatively high amount of similarity to the original code. This
allows for more direct comparisons and ease in implementation and debugging.

Secondly, CSI has a very linear and sequential flow to it. Meaning that most parts
are used in a single way, in a specific order and with a single goal in mind.

Lastly, a large amount of data is shared by multiple different methods and ma-
nipulated in different places. Overly fragmenting these methods yields highly coupled
objects, conflicting with one of the main design principles of object-oriented design.
Namely, loosely coupled objects, as opposed to highly coupled ones. Loose coupling
promotes the ease of changing or extending a module without influencing the opera-
tions of others. This could be counteracted by building elaborate interfaces between
the different objects but this would yield limited returns considering the unnecessary
amounts of time and effort invested.

The advantages of still using object-oriented design to a certain extent, lie in the
interchanging of modules and the sharing of particular methods and operators. Having
these different objects communicate through unchanging interfaces, allows for switching
out regular CSI methods for DL methods, without having to alter other parts of the
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code. Having specific structures for shared data, operators and methods, ensures that
only the intended modules have access to them. This potentially allows for efficient
construction and destruction of said structures, yielding optimised memory usage. Ad-
ditionally, using classes that inherit from PyTorch’s base class: nn.module, eases the
process of constructing a model with NNs that can be moved to a GPU’s memory for
efficient parallel computation.

Figure 3.1: A representation of the class structure of the DL-CSI program.

3.2.1 DL-CSI Class

The largest displayed block represents the DL-CSI class. It functions as a manager,
constructing the other classes that make up the building blocks of CSI and managing
the data flow between them. The class interfaces different CSI functions and variables
while allowing CSI functions to be replaced by a NN, essentially embedding a NN into
the CSI algorithm. To facilitate the training process in DL for the entire module, re-
gardless of the NN(s) embedded in the CSI algorithm, this class inherits from PyTorch’s
’nn.module’ class. Its main methods, therefore, coincide with those of such a module.
Namely, the init () and forward() methods. The init () method, initialises the
class and its corresponding submodules. The forward() method defines the linear for-
ward operation of the class, applied to the model’s input. In this case, this method
contains the entirety of the (DL-)CSI algorithm. Though, not explicitly linear due to
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CSI’s iterations managed by a for-loop, unfolded it can be considered as such.
As much data as possible is hidden from this class by its submodules to decrease

data dependencies. This allows for easier modification of each individual submodule
while minimising its impact on this class. Additionally, this should make it easier to
isolate errors.

3.2.2 Constants Class

The Constants class can be considered as a container for shared constant data. As
shown in Figure 3.1, the Constants class is used directly by 6 out of the 8 classes
and therefore, has major merit by being a shared container compared to each object
containing its own instance of data. The constants within the class represent the
physical constants used in CSI, such as the permittivity in vacuum.

3.2.3 Operators Class

The Operators class has a very similar goal to the Constants class. It is shared by many
of the other classes. It contains the variety of operators used by the CSI algorithm, the
majority being numerical representations of discretized operations. An example of such
a discretized operator would be the discrete implementation of the partial derivatives
in Equation 2.45. Ideally, it would consist of methods that apply these operations,
barring any process outside of the module to alter the underlying operators. However,
such an implementation would be too time-consuming for such a benefit within the
scope of this project. Therefore, it currently functions as a simple container for these
operators instead.

3.2.4 Integrators Class

The Integrators class is another shared resource type, class. It houses the integration
methods used in CSI. These are the major components in implementing the Gdata{·} and
Gobj{·} operators introduced in Chapter 2.4 as Equations 2.44 and 2.52, respectively.
This class is less heavily shared among the other modules, yet essential for those who
do use it.

3.2.5 Cost Functional Class

This class computes and updates the residuals and cost functions of CSI. Hence, it has
the sole purpose of assessing the current progress of the running CSI. Its methods are
limited to initialization and update functions. The residual computations implement
Equations 2.48 and 2.54. The cost functional implementation of Equation 2.55 is split
into the left- and right-hand additive terms and are referred to as FE and FB.

3.2.6 χ Updater Class

The χ Updater class is responsible for computing and updating the new estimate of
χ. It has been split from the other parts of CSI with the aim of interchangeability
of its implementation while maintaining a constant interface. This allows seamless
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switching between regular CSI, conjugate gradient descent methods, and neural network
implementations. This module is the essence of this project and, therefore subject to
many changes. Splitting it from other parts of the code, with a constant interface, is
essential to limit perpetual changes to other parts of the code.

3.2.7 Incident Fields Class

The Incident Fields class is separated from the main CSI module for similar reasons to
the χ Updater class. As mentioned earlier, potentially circumventing the assumption
of known incident fields through indirect DL was an avenue to potentially be explored
in this project. This means that this part of the code was likely to change and should
be able to interchange regular and DL methods. Ultimately, the use of DL to improve
incident fields was dropped to limit the scope of the project.

3.2.8 CSI Updater Class

The CSI Updater class contains all other elements of CSI not yet implemented in the
other classes. This means failing to adhere to the principle of classes having a single
responsibility. Though as expressed above, maintaining a higher resemblance to the
original 3D-CSI code has been favoured for comparability and ease of translation.

3.3 Debugging

Translation and refactoring of the code requires efficient and exhaustive testing to
ensure identical (or improved) behaviour compared to the original code. This section
describes three methods that were used to rid the code of bugs.

3.3.1 Unit Test

A unit test refers to testing the smallest testable element of code. This is the lowest
level of testing to ensure a function/class/method behaves as intended. Unit tests
were for example used to validate if the operators in the Operators class, were created
correctly. Unit testing helped isolate hard-to-detect problems, such as a small output
difference in computing the step length determined to update χ, caused by a capital
letter instead of a lowercase one.

Unit testing, however, has its own fallacies. The small, inherent deviations in float-
ing point variables make it more difficult to check for equality when the typically used
data consists of small numbers. The main drawback lies in designing the unit test. The
test should be exhaustive, meaning that it should cover all possible avenues of using the
piece of code. Accounting for all options can be difficult and time-consuming. Failing
to properly design a unit test, caused a bug to slip through in the translation process of
the CSI algorithm. When testing the use of PyTorch’s dot function for computing the
dot product of two vectors in the same way as MATLAB’s version, only real numbers
were used. While for real numbered vectors the operations acted equally, for complex
numbers they did not.
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Not all functions in this project could be unit-tested in isolation. This issue arises
due to dependencies in the code, such as a function from the CSI Updater class, making
use of a function from the Integrators class, which in turn uses an operator from the
Operators class.

3.3.2 Integration Tests

Integration testing concerns the interaction between different modules and interfaces.
Unlike writing unit tests, writing integration tests is done without considering how the
modules have been implemented. It is meant to test the interaction between interfaces
rather than the functionality of specific methods within a module. In the case of this
project, integration testing mostly revolves around the dependency between classes. An
example of this would be testing the computation of a residual in the Cost Functional
class, which depends on the usage of the functions of the Integrators class.

The CSI algorithm has quite a sequential structure in terms of operation. This
makes integration testing more challenging to achieve without having to resort to exe-
cuting prior parts of the sequence up until the current interface that has to be tested.
Especially, as not having a thorough enough understanding of how the data in between
steps typically looks like, limits the extent of artificial inputs representing real data.

To circumvent these issues, an interface between the to-be-tested modules and the
original MATLAB CSI implementation was set up. In this manner, replacing equivalent
MATLAB functionalities with the module undergoing testing essentially integrates the
new module in the old code. This allows the detection of discrepancies between old
and new. The interface between MATLAB and Python was implemented using the
MATLAB engine, a feature that allows the user to run and interact with an instance
of MATLAB within the Python environment.

Integration testing with the MATLAB interface has been performed sequentially on
the CSI pipeline. This means that the MATLAB functions were replaced one at a time
by the Python counterpart until the result deviated. A deviation was detected when
passing the updated gradient of the contrast source to the next function. The data
structure was incorrectly interpreted by the next function, giving rise to an error.

3.3.3 System Test

The system test tests the program as a whole. It functions much like a complete version
of the integration test, testing the interactions between all modules. In this case,
a system test was performed to validate whether the translated CSI implementation
functioned in the same manner as the original MATLAB implementation. A simulated
magnetic transmit field, which corresponds to the model of a human head, was used
as an input for both the Python and MATLAB codes. The validity was checked by
comparing the cost functional’s value every 100 iterations. As long as the values were
within a tolerance range of each other (0.1%) the test was considered to have been
passed.

The system test resulted in the detection of an issue with the generation of the
simulated incident fields. A unit test did not detect this issue due to the function
working as designed. However, a design flaw was found when the simulated incident
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fields were used in the system test and Python’s CSI failed to converge as in the
MATLAB implementation. The system test was passed after the correction of the
design flaw.
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Deep Learning for Contrast
Source Inversion 4
This chapter covers strategies for embedding DL into the CSI methodology. Initially,
background information is provided on different neural network types which are typ-
ically prevalent in the field of (medical) image reconstruction. Afterwards, strategies
for embedding DL in CSI are presented. The chapter is concluded by the introduction
of DL-embedded CSI topologies.

4.1 Neural Network Types

The amount of different neural network types has grown in the last years. Therefore,
this section aims to introduce three different NN types prevalent in (medical) image
reconstruction. Most of the information provided comes from the book Dive into Deep
Learning[31].

4.1.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a NN that features convolution operations
to interact with the input data. More specifically, convolution layers in the CNN make
use of a convolution operation on the input data; to combine information on multiple
data points to construct its output. The (discrete) convolution operation functions as
follows:

(x ∗ y)[n] =
∞∑

m=−∞

x[m]y[n−m] (4.1)

Here x can be treated as an input signal and y as a kernel. While the kernel shifts over
the input, the product at every shift [m] is summed to produce the output. In image
processing a kernel refers to the small matrix used in convolutions; different kernel
values produce different effects such as blurring with a Gaussian kernel. In the case of
convolution layers in DL, the kernel’s values are weights to be learned by the network.
A visualisation example of a 2D convolution is provided in Figure 4.1.

The convolution operation can be extended to higher dimensions, such as in our
case of 3D data. This allows a convolution layer to operate on image data without the
need to flatten them into vectors. This allows the input to retain its spatial relations.

Convolution layers feature multiple options to tweak the convolution operation to
the user’s needs; padding being the most relevant. Padding refers to appending values
to the borders of the input data and is used to provide the convolution kernel values
around the border of the input data. Padding the input with an equal amount as half
the kernel size minus one ensures the centre voxel of the kernel starts on the original
border voxels. This ensures that the size of our image domain remains constant.
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Figure 4.1: Visualisation of a 2D convolution with a kernel of size 3

A convolution layer tends to act locally on its input by using relatively small kernel
sizes. This prevents the number of computations from becoming infeasible for large
input sizes. Additionally, this reduces the amount of memory required to store the
layer’s weights. The disadvantage of using small kernels is the loss of information on
global relations within the data. This loss, however, is reduced by using the second
characteristic layer of a CNN, the pooling layer.

The pooling layer condenses data locally by either averaging or finding the maximum
value of a local patch of data. This essentially pools the information in small areas into
singular values, resulting in a sort of down-sampled version of the data. Combining this
layer with a new convolution layer afterwards gives the convolution access to slightly
more global relations in the data. Cascading the combination of convolutional- and
pooling layers can be compared to going from learning higher frequency to learning
lower frequency information. A pooling example is visualised in Figure 4.2.

More recent CNN topologies also feature skip/residual connections, which break
with the normally sequential pipeline of a CNN. A skip connection retains an interme-
diate output and concatenates it later on with a more recent output, skipping forward.
This allows the CNN to combine information from before and after pooling layers.
Meaning that more local and more global information can be combined. The first CNN
with residual connections is called ResNet and was introduced by He et al. [45]. Such
a CNN with residual connections will be used in Chapter 6.
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Figure 4.2: Visualisation of a max pooling on the left, where the highest value is propagated
to the result and an average pooling on the right, where the average value is propagated to
the result.

4.1.2 Constrained Generative Adversarial Network

A Generative Adversarial Network (GAN) can be split up in two parts. A genera-
tor network and a discriminator network; the adversaries. The generator’s task is to
forge an output that is indistinguishable to the discriminator from real data. The dis-
criminator’s task is to distinguish between real data from the fake data generated by
the generator. The feedback from the discriminator lets the generator learn when its
output is good enough to fool the discriminator or if it needs to be adjusted. The
discriminator is fed either fake or real data to learn to distinguish between the two. So
in essence, these two adversaries compete with each other, pushing the network to a
higher performance. The generator of a GAN is fed random noise as a starting point.

A constrained GAN (CGAN) on the other hand, starts with structured input data
(a low-resolution version of the intended output of sorts) to push the output further
into a certain direction. If properly tuned, a cGAN can for example be used to increase
the sizes of data sets. Since a perfectly functioning cGAN would be able to generate
new data that is indistinguishable from the data in the real data set.

A typical issue with GANs is when one of the two adversaries starts to greatly
outperform the other. Leaving no more room for the other to grow.

A potential cGAN-embedded CSI topology will be introduced in Subsection 4.3.3.

4.1.3 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are typically used to deal with sequences of data.
They feature hidden states that retain information from previous inputs. This allows
previous inputs to influence the outputs of the current part of the sequence. The
following paragraphs will introduce three different kinds of RNN elements; the fully
connected element, the Long Short Term Memory and the Gated Recurrent unit. The
final paragraph introduces a Recurrent Inference Machine, which is a specific type of
RNN relevant to this work.
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The simplest form of a RNN features a fully connected layer, which also takes a
hidden state as input. It then produces an output that is also used as the hidden state
for the next part of the sequence (or the next iteration). This implementation has
the disadvantage of producing exploding or vanishing gradients while backpropagating.
A fully connected layer refers to a layer with an arbitrary amount of weights, where
all input values are multiplied with every weight to produce an output. This RNN
implementation uses the least amount of memory out of the three options but also
features the lowest amount of complexity.

Long Short Term Memory (LSTM) is an implementation that features multiple
gates, an input node and an internal state in its layer. The output of the LSTM is
shaped by a combination of the input-, hidden- and the internal state. The extent to
which the output is comprised of the input-, hidden- or the internal state is managed
by the output gate. The internal state is shaped by the previous internal state, the
input state and the hidden state. The forget gate determines how much of the previous
internal state should be forgotten, while the input gate determines how much of the
input- and hidden state should be saved into the internal state. The LSTM learns what
information it should store for the future and when to reset its memory using the dif-
ferent gates. In this manner, it prevents the vanishing and exploding gradient problem.
The disadvantage of this implementation comes in the form of higher computational
load and higher memory usage due to the additional gates.

The Gated Recurrent Units (GRU) tries to achieve similar results to the LSTM while
using less computational power. Therefore, it uses fewer gates while still influencing
how much of the past information should be used and how much should be stored for
the future.

A GRU does not use an internal state to retain past information. Instead, the
hidden state is used as the source of past information. It features a reset gate that
determines a candidate hidden state based on the previous hidden state and the input.
This is followed by an update gate that determines how much of the previous hidden
state and the candidate hidden state is to be used to produce the new hidden state.
The GRU has a reduced computational load and memory usage compared to the LSTM
and higher adaptability to the use of past information than the fully connected RNN.
Hence, the GRU is chosen as most suitable for the potential RNN-based topologies in
Section 4.3.

Recurrent Inference Machines are a form of RNNs that are used to solve inverse
inference problems iteratively. They are typically considered as an alternative to max-
imum a posteriori (MAP) based solutions. Like in MAP-based solutions, the inference
problem is mathematically described using a (negative) log-likelihood function and a
prior. A likelihood function expresses how likely a certain outcome is based on a given
observation, such as an input. The prior provides information on the distribution of the
observed variable and is typically unknown for inverse inference problems. A RIM takes
as input the estimated variable to be improved and the gradient of the log-likelihood
function with respect to the estimated variable. A RIM iteratively improves the esti-
mation of the variable using recurrent layers. The same network architecture is used
for each iteration but memory states are passed on internally. RIM is a framework
that does not require explicit models of a prior(/regularisation) or inference procedure
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instead their gradient is implicitly learned by the NN.

4.2 Deep Learning Strategies for Contrast Source Inversion

Before diving into the choice of what kind of neural network to embed into CSI, first
an understanding of what variables can be trained on needs to be established. As we
aim to use physics-assisted deep learning, domain knowledge is preferably leveraged in
the input of the NN. This means that instead of directly using the measured transmit
magnetic field as input to the NN to compute EPs, a different variable derived from
the measured field using CSI’s regular operations is used as input. The variable has to
fulfil two conditions; a ground truth of the variable needs to be available for training
and the variable needs to be closely related to the EPs.

The dataset available for training is generated from the model of a human head.
The different samples vary in geometry and EP values. Electromagnetic fields have
been simulated from these EP head models, providing us with a paired set of EPs
and their corresponding EM fields. More specifically, the magnitude of the magnetic
transmit field and the transceive phase are combined as input for the CSI algorithm.
The dataset provides three potential variables to train our NN on.

Firstly, a ground truth contrast function can be directly computed from the ground
truth EPs using Equation 2.50. The direct relation between the EPs and the contrast
function makes training on the contrast function instead of directly on the EPs slightly
more efficient by requiring one less step while backpropagating. Backpropagating refers
to the process of adjusting the weights of the NN depending on the loss computed.
The contrast function is normally updated using either Equation 2.58 or Equation
2.60. Replacing these update equations with a NN could potentially converge its values
faster, by relying on its learning ability and the non-linearity of the NN. As the regular
update equations either solve a least squares problem or leverage a gradient descent
scheme, replacing these computations with a NN does not lead to the NN having to
relearn known physics.

Secondly, the contrast source can be used as a training variable. With both the
electric field and EPs being available in the dataset, a ground truth for the contrast
source can be computed using Equation 2.49. The contrast source is only removed
from the EPs by a single additional step compared to the contrast function. Similar to
the contrast function, replacing the regular update Equation 2.56 with a NN does not
discard a known physics relation and can potentially speed up convergence.

Thirdly, the electric field can be used as a training variable. The electric field’s
update Equation 2.57 does relate to the EPs through the contrast source. However,
the update relation is a simple physics-based computation. A reason for using the
electric field as (an additional) training variable could be its importance in determining
the SAR, which is one of the main applications of using EPT. However, using a NN
over the physics-based computation is unlikely to yield improvement to CSI as a whole.
Additionally, using the electric field would not classify as a physics-assisted DL method
as it essentially relearns known physics.

Multiple training variables could potentially be used as well. This might improve
the convergence rate but it could potentially decrease data consistency as more of
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CSI is replaced by neural networks. Using multiple training variables in the case of
a hybrid CSI approach would require the use of more neural networks. More neural
networks lead to higher memory usage and their implementation and tuning become
more time-consuming.

Ultimately, only the contrast function is selected as a training variable. It requires
slightly less data than using the contrast source and is marginally more directly related
to the EPs. Using the electric field as a training variable is discarded due to its non-
physics-assisted nature. No additional training variable is chosen to limit the scope of
the project to a manageable degree. Hence the network will only be trained with the
contrast function as the training variable.

In addition to the contrast function, gradient information of the contrast function
will be leveraged by the NN when computing an update. By using both the contrast
function and its gradient as input, the network attempts to implicitly learn gradient
descent steps. This way the NN attempts to learn the step length and direction in a
data-driven manner, rather than analytically.

4.3 Neural Network Embedded CSI Topologies

This section outlines possible topologies for combining the CSI algorithm with different
types of NNs. These hybrid approaches are inspired by literature and use the contrast
function and its gradient as inputs for the NN. First CNN CNN-based topologies are
presented, followed by a cGAN topology. Subsequently, RNN-based topologies are
proposed.

4.3.1 Cascaded CNNs

The first design is based on the principle of algorithm unrolling. Algorithm unrolling
is the principle of replacing/embodying each iteration of an iterative algorithm with
one or a small amount of NN layers. Algorithm unrolling has been gaining ground
in the fields of signal- and image processing [46]. Typically, each iteration is unrolled
as a single network layer and training the complete network end-to-end. This would,
however, enforce a direct deep learning method rather than a physics-assisted one. So
instead of replacing iterations entirely by NN layers, this potential topology replaces
only the contrast functions’ update step with a small NN. Algorithm unrolling is typi-
cally implemented using CNNs when used to solve image processing problems. CNNs
are generally good at image processing tasks due to making use of local spatial relations.
Hence the proposed network will make use of small CNNs. A schematic representation
of the proposed topology is shown in Figure 4.3.

Changing from a single complex CNN for unrolling the iterations into a multitude
of smaller ones, resembles cascaded CNNs. Cascaded CNNs have been proposed before
as a way to reduce a single, large and complex CNN into a multitude of smaller, less
complex CNNs[47]. However by combining it with algorithm unrolling it is not entirely
similar to this situation; the advantage of smaller, less complex CNNs compared to
other single network topologies, should still hold.
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In terms of network architecture, possible candidates are a patch-based approach as
in [36] or an up- and down-sampling approach like in a U-net [48]. These approaches
both leverage information at progressively differing levels of spatial locality or resolu-
tion.

An expected disadvantage of this design is its unknown quantity of CNNs that is
necessary for convergence. This would be determined experimentally. Possibly requir-
ing the training of a lot of networks, making it a time-consuming task. Hence, this
topology is deemed unfavourable.

Figure 4.3: A CSI topology using a cascade of convolutional neural networks; one for each

iteration. χ[n] represents the nth iteration’s contrast and g
[n]
χ its corresponding gradient.

4.3.2 Coarse and Refiner CNNs

The second design is rather similar to the first; the cascaded unrolling of CSI is retained
but the CNNs are reduced in number and split up into two categories. The first category
will be dubbed a Coarse CNN. The first (few) CNNs are expected to change the estimate
to the greatest extent, making coarse changes as it were. The later CNNs are expected
to make finer adjustments to the estimate, hence they will be called Refiner CNNs. As
the changes these Refiner CNNs apply to the estimate, are expected to be smaller and
probably quite similar, they might be used in multiple iterations. This design concept
is illustrated in Figure 4.4, with a single coarse NN and a single refiner NN used.
However, an arbitrary number of coarse and refiner NNs can be used in succession.
The NN does not differ much from the cascaded CNN approach implementation-wise
and can be easily adjusted from one to the other. The ease of adjustment allows for
potential joint investigation and comparisons.

Reducing the Cascade of CNNs to a few Coarse and a few (or possibly even a single)
Refiner CNNs limits the amount of NNs in the topology and the time it would take to
manage them. Eliminating the uncertainty in CNN amount of the Cascade approach.

Its downside is the possibility of the Refiner CNN(s) not increasing the convergence
when used iteratively. Likening it to gradient descent, the update steps of the refiner
might learn to continuously apply its steps in a similar direction. Hence, if the update
overshoots the lowest point of convergence, the refiner CNN might be unable to adjust
its step direction and continue diverging instead.

This approach could be considered a more elaborate case of improving an initial
guess with DL as in [49], but in this case, the iterative improvement is done with NNs
as well.
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Figure 4.4: A CSI topology using a coarse CNN once, followed by the iterative use of a refiner

CNN. χ[n] represents the nth iteration’s contrast and g
[n]
χ its corresponding gradient.

4.3.3 cGAN

This topology, as shown in Figure4.5, uses a conditional generative adversarial network
(cGAN) in a less conventional way. When learning, the generator will produce a new
estimate based on its previous estimate as well as the corresponding gradient. Its
estimates should improve based on the discriminator’s feedback. The discriminator
learns from differentiation estimates and ground truths.

When evaluating, the generator will iteratively produce new estimates until the
discriminator deems it accurate.

This method might suffer from difficulties in tuning. The discriminator should be
rather strict, as it determines if the proposed estimate is adequate or not. However, if
the discriminator does not learn to recognise some estimates with significant changes
such as tumours, it would seriously impair the approach.

The generator could also learn to alter the estimates in a way that does not converge
to the ground truth but rather to something that consistently passes the discriminator’s
check.

These difficulties in tuning and the uncertainties in convergence lead to this topology
being an unfavourable solution.

Figure 4.5: A CSI topology using a cGAN’s generator to improve the contrast’s estimate
every iteration, until the discriminator deems it sufficient. χ[n] represents the nth iteration’s

contrast and g
[n]
χ its corresponding gradient.
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4.3.4 Convolutional Recurrent Neural Network

In the field of accelerated dynamic MRI reconstruction, Qin et al. [40] introduced a
novel network design to replace typical unrolling approaches. The network is referred
to as a convolutional recurrent neural network (CRNN). A CRNN is a variant of the
RNN that uses convolutions as operators instead of elementwise multiplications. This
combination can be applied to all the different kinds of memory cells of an RNN, like
an LSTM or GRU.

Using convolutional operators in the memory cells allows for local spatial relations
to be taken into account, even across iterations. Using a convolution approach rather
than a fully connected kind of approach to using the memory cells, alleviates much of
its burden on the memory for large 3D image data.

For the topology, a single CRNN would be used iteratively, as shown in Figure 4.6.
Opting to use a single network is likely to require less tuning than using multiple

NNs. However, the network itself is expected to be very large and quite complex
considering it will have a large amount of memory states. Implementation-wise this
approach is expected to be relatively more time-consuming due to the convolution-
based RNN layers requiring manual construction. This topology is expected to be
a very feasible option logistics-wise. Because the small amount of weights used by
convolution operators limits excessive memory usage, allowing the use of more complex
network implementations.

Figure 4.6: A CSI topology using a convolutional recurrent neural network iteratively. χ[n]

represents the nth iteration’s contrast, g
[n]
χ its corresponding gradient and h[n] the correspond-

ing memory state.

4.3.5 RIM

The recurrent inference machine (RIM) topology acts rather similarly to the CRNN,
replacing only the CRNN block with an RIM block in Figure 4.6. Instead of com-
bining RNN layers with convolutions, it alternates CNN and RNN layers instead. As
aforementioned a RIM takes in both the contrast function and the gradient of the
log-likelihood function as input. Rather than explicitly deriving the gradient of the
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log-likelihood function, we leverage the contrast function’s gradient used in CSI’s gra-
dient descent scheme. This substitution of gradients should be warranted due to the
similarities between the (negative) log-likelihood and CSI’s cost functional. The log-
likelihood function is a measure of how likely the measured transmit magnetic field
is caused by the estimated contrast function. Similarly CSI’s cost functional assigns
a cost to the extent that the magnetic transmit field computed from the estimated
contrast function corresponds to the measured magnetic transmit field. Both functions
punish deviations from the intended result and intend to be minimised. Hence, using
the gradient derived from the cost functional should achieve a similar effect when used
for an RIM.

RIMs have also been successfully used in other MRI reconstructions before [39].
The major advantage of this topology is its inherent use of gradients. However, the

implementation of this concept might be applicable to some of the other topologies
as well. Like the CRNN, the RIM uses spatial information as well as memory states.
Though they are less intertwined. In terms of memory usage, the RIM requires sub-
stantially more than a CRNN. The implementation of an RIM is significantly easier,
as no custom layers need to be designed. It also requires less deep of a network to
take into account data covering the entire imaging domain. Hence, the RIM topology
is deemed most advantageous and is used in an attempt to improve CSI.
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Implementation of Deep
Learning Enhanced Contrast
Source Inversion 5
This chapter covers the implementation of the hybrid deep learning CSI method, with
the RIM topology chosen in chapter 4. The hybrid, physics-assisted deep learning
method for CSI is dubbed Deep Learning Enhanced Contrast Source Inversion (DLE-
CSI). DLE-CSI aims to achieve a speed-up over CSI while achieving a similar level
of reconstruction quality, offsetting the forward method’s issue of long computational
times.

The start of the chapter covers the prerequisites necessary to work with DLE-CSI.
Afterwards, a description of the RIM topology implementation chosen from Chapter
4 is given. Which is followed by an elaboration on the training strategies used. The
chapter is concluded with the tests performed and their corresponding results.

5.1 Prerequisites

In order to use and train DLE-CSI some preliminary steps are required. These steps
are visualised in Figure 5.1 and will be elaborated on in the following subsections.

5.1.1 Dataset

As aforementioned in Chapter 4, the provided dataset consists of simulated electro-
magnetic fields of human head models. The field maps used from the dataset are the
magnitude of the transmit magnetic field, the transceive phase and the EPs. The
dataset contains 180 sets of 3D field maps with voxels that have an edge length of 2
mm. Each map is of the dimensions 128, 128, 80 in the x, y, z directions respectively.

The contrast function is computed from the EPs using Equation 2.50, which is to be
used as Ground Truth (GT) for training the network. The transmit phase is computed
from the transceive phase using the TPA, as per Equation 2.14 and combined with the
magnitude of the transmit magnetic field to produce the complex transmit magnetic
field B+

1 .

5.1.2 Incident Fields

In order to derive the transmit magnetic scatter field B+;sc
1 and to initialise the electric

field E, the incident fields are required. As described in section 2.3, these fields are not
actually known. Hence, they have been simulated using the MRI scanner’s RF birdcage
coil’s known geometry.

The incident fields have been simulated following Stijnman’s methodology [50]. The
legs of a birdcage coil are treated as infinitely long line sources. These line sources are
implemented as a line along the z-axis with a single voxel of thickness in the x,y-plane.
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Figure 5.1: Visualisation of the preliminary steps required to train DLE-CSI starting with a
dataset and a set of simulated incident fields. Cubes represent 3D data and dashed arrows
represent inputs/outputs from data grouped with the corresponding dash-style.

The simulated legs are distributed equidistantly in a circular fashion, resembling the
cross-section in the middle of a birdcage coil. The amplitude of all the line sources is
set to unity, whereas the phase is shifted by 2π

16
according to operation in quadrature

mode. In order to take into account the presence of RF shields in MRI machines, mirror
sources are leveraged. Mirror sources have their amplitude reversed in polarity and are
placed at such a distance from the line sources that at the location of the RF shield
the field contributions should equate to 0. This distance is defined in [50] as:

d =
r2shield
rcoil

(5.1)

from the centre. Where r are the radii of the shield and coil at the equivalent subscript.
To compute the incident fields from this collection of simulated leg sources and

mirror sources, functions inherent to the CSI algorithm are leveraged. These are the
GE(s) and GB(s) functions. In CSI, these functions produce the electric and magnetic
field produced by a source s. These functions implement the data- and object operator
described by equations 2.44 and 2.51, in which case they are applied to the contrast
source w to produce the scatter field components. For the incident fields, w is replaced
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by the coil representation of line sources.
The amplitude of the simulated current sources is set to unity due to the actual

amplitude of the current being unknown, which leads to errors in the resulting incident
fields. The magnitude of the current is a multiplicative factor and can be considered
to scale the incident field. Hence, the simulated incident fields can be scaled to cor-
rect the errors originating from setting the current’s amplitude to unity. Therefore,
the simulated fields are scaled depending on the B+

1 field used as input to DLE-CSI,
depicted in Figure 5.1 as the Incident Field Scaling block. For scaling, first, an average
value of the B+

1 field outside the object domain is computed. Secondly, the average
of the simulated B+;inc

1 outside the object domain is computed. Limiting the average
value computation to be outside of the object domain should ensure minimal inclusion
of scatter field values caused by the object. From these averages, a scaling factor is
computed by division of the average B+

1 field value by the average of the B+;inc
1 field

value. Subsequently, the simulated incidents are scaled with this scaling factor to yield
the incident fields used as input for DLE-CSI. Though likely not accurate, this scaling
method should at least produce an estimate with the magnitude of the incident fields
at a similar scale of the actual fields.

5.2 Neural Network Implementation

As was explained in Chapter 4, the neural network is to replace CSI’s update step of
the contrast χ. More specifically, the update Equation 2.60 is replaced by an update
from the NN. Two different approaches to updating the contrast function with a NN
have been implemented. The first approach, the replacement update manner, updates
the estimated contrast by replacing it entirely with the output of the NN:

χ[i+1] = NN(χ[i], gχ). (5.2)

Where NN(χ[i], gχ) is the neural network’s output as a function of the current contrast
estimate and its respective gradient. The second approach, the additive update manner,
updates the estimated contrast by adding the output of the NN to the current estimate:

χ[i+1] = χ[i] +NN(χ[i], gχ). (5.3)

The explanation of the implementation of the NN will be given alongside the pipeline
shown in Figure 5.2.

The design is limited to 3 layers, the minimum complexity that constitutes a RIM.
This should limit the expected, large memory usage.

The neural network layers consist of two 3D-convolution layers surrounding a GRU.
These NN layers are shown in red in Figure 5.2. Before any of the layers can be applied,
the data needs to be manipulated. The data is indicated by the white blocks and the
manipulation functions are indicated by the blue blocks.

5.2.1 Neural Network Inputs

This subsection discusses the manipulation of the inputs of the NN, which covers ev-
erything up to the Conv3D block in Figure 5.2. The input of the neural network is
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Figure 5.2: Pipeline of the deep learning part of DLE-CSI. Red blocks indicate neural network
layers, blue blocks indicate data manipulation operators and white blocks depict data. Bars
of data represent vectors and cubes represent 3D data.

comprised of the current estimate of the contrast function χ and its gradient gχ. At
this stage, both the estimated contrast function χ and its gradient gχ are separate,
complex, flattened vectors. Hence, represented as two thin bars of data. These vec-
tors are first concatenated, and then split into their real and imaginary parts. This
results in 4 vectors, equally split into real and imaginary data. Lastly, the 4 vectors
are reshaped into a stack of 4 blocks of 3D data, represented by cubes. This stack
can be considered as a 3D image with 4 channels. The complex data is split into real
and imaginary components due to complex numbers not being fully supported by some
network modules and/or activation functions.
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5.2.2 3D Convolution Layer

The 3D convolution layers are shown in Figure 5.2 as the red Conv3D blocks. Both
convolution layers have a kernel size of 3, as to take into account only very local
information. Using small kernel sizes has the advantage of limiting the amount of
weights and therefore the amount of memory used. Small kernel sizes are expected
to still yield sufficient results due to working in the domain of the contrast function.
The contrast function is dependent on the EPs, which are largely dependent on tissue
type and ionic concentrations. Both these dependencies are typically local, supporting
the use of small kernel sizes. The data is zero-padded before applying the convolution;
to retain its original size. The first convolution layer combines the split estimate and
gradient information to output two channels. The hyperbolic tangent function is used
for introducing non-linearity into the network.

5.2.3 Convolution to GRU

The difference in formatting between convolution layers and GRU layers requires some
data manipulation. Convolution layers are designed to make use of spatial data, hence
being applied on multi-dimensional arrays. GRUs typically operate on sequences of
data, which are expressed as vectors. Therefore, the 2 channels of 3D data need to be
vectorised (flattened). These steps are visualised in Figure 5.2 between the first red
Conv3D block and the red GRU block.

5.2.4 GRU Layer

The GRU layer is indicated in Figure 5.2 by a red GRU block. Besides the input
channels fed from earlier parts of the network, the GRU also uses internally updated
memory states. These memory states are also referred to as hidden states and are
shown as the vectors memory 1 and memory 2 in the figure. Three different GRU layer
implementations have been tested.

The first implementation features a GRU with the input size and hidden size chosen
to be equivalent to the number of voxels of the imaging domain. This ensures that each
voxel is updated individually based on prior results in prior iterations and the newly
provided input. The two channels are presented to the GRU as a batch instead of
providing both with individual weights in order to limit memory usage. Each channel
does have its own corresponding memory state to ensure custom results per channel.
Henceforth this implementation will be referred to as the per voxel implementation.

The second implementation is meant to further limit the GRU layer’s memory bur-
den. The 3-dimensional data before vectorisation is presented as a batch of 2D data
instead. Additionally, the 2D data is split into quadrants. These quadrants are mirrored
as to resemble the first quadrant as much as possible. This way, the small degree of
symmetry of a human head can be leveraged to reduce the amount of weights necessary.
Each quadrant per 2D plane from the batch is provided with its own memory state to
ensure that distinctly different results for each quadrant can be possible. The amount
of weights within a GRU primarily consists of 6 sets of size [input size × hidden size].
The change to 2D data reduces these sizes by a factor of 80 and the splitting into quad-
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rants by another factor of 4. Hence, leading to a memory reduction of approximately
(80 ∗ 4)2 = 102400 times. Henceforth this implementation will be referred to as the
quadrant-based implementation.

The third implementation reduces the GRU layer’s memory burden in a different
manner. Instead of using a single GRU with large sets of weights, many smaller GRUs
are used. The third implementation also reduces the 3D data to a batch of 2D data
instead. Assuming identical input- and hidden size, the amount of weights is dominated
by the quadratic relation [input size × hidden size]. Dividing the inputs over f GRUs
changes this relation to f × ( input size

f
× hidden size

f
). Note that such a division can not be

performed endlessly due to additional linear relations between memory and input size,
which increases in significance as the quadratic relation decreases in size. The downside
of this approach is the loss of global information taken into account during the GRUs’
operation. This is caused by each GRU not being able to access voxel information
outside the provided input. Henceforth this implementation will be referred to as the
local patches implementation.

5.2.5 GRU to Convolution

The data manipulation done between the convolution layer and GRU has to be reversed
in order to provide an adequate output to the next convolution layer. For the per
voxel implementation this entails reshaping the vectors back into two channels of 3D
image data, as visualised in Figure 5.2. For the quadrant-based implementation, this
entails reshaping the vector back into a stack of 2D data, the quadrants getting reverse-
mirrored and joined up into entire 2D planes. The stack of 2D data is then treated as
3D data again for the convolution layer input. For the local patches implementation,
this entails rejoining the GRU outputs and reshaping them into two channels of 3D
image data. In all cases, it leads to two channels of 3D-shaped data which the 3D
convolution layers can operate on.

5.2.6 Final convolution layer

In the case that the network is used in the replacement update manner instead of the
additive update manner, the final convolution layer is no longer followed by a hyperbolic
tangent function. The hyperbolic tangent function would limit the possible values of
the updated contrast χ̂ to −1 and 1, while the true contrast may lie outside this range.

5.2.7 Output

The output of the last convolution layer needs to be processed so it conforms with
the inputs of the CSI algorithm. The real and imaginary channels rejoin into a single
complex-valued channel which is then vectorised (flattened). It is then passed on to
the rest of the CSI algorithm as the new estimate χ̂.
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5.3 Training Strategies

For training the network, the dataset is split into 140 training sets and 40 sets for
evaluation.

The number of iterations run by DLE-CSI is limited to 10 and the amount of epochs
is set to 3. These amounts should limit training time to a manageable amount, while
expected to be enough to assess training progress.

Initially, the network is trained and evaluated on noiseless data. This enables us to
assess the network’s feasibility before extending its assessment to more realistic inputs.

The contrast is masked throughout the use of DLE-CSI. Meaning that the contrast
outside the object domain or where the head is not present is ignored. This ensures
that no weight is given to learning reconstructed EPs outside of the geometry of the
head.

An ADAM optimizer and a mean square error (MSE) loss, are used for training the
network, with a learning rate of 1e− 3. The MSE loss is defined as follows:

MSE(x, x̂) =
1

N

n∑
i=0

(xi − x̂i)
2. (5.4)

Here x and x̂ denote the true and the network’s output respectively. The subscript i
denotes the individual voxel, whereas N represents the total amount of voxels.

The MSE loss is applied to the algorithm’s final estimate of the contrast, χ, and
its ground truth value. The ground truth of χ is constructed using the ground truth
values of the conductivity and permittivity present in the data sets.

5.4 Tests & Results

The first two tests are performed using the replacement update manner. The subse-
quent tests use the additive update manner instead. Note that the permittivity results
displayed in any of the figures represent the relative permittivity and are therefore
without unit.

5.4.1 Per Voxel Implementation Assessment

The Per Voxel implementation was observed to be infeasible for the size of input data
used within the project. The amount of memory usage of a GRU layer with input-
and memory states per voxel was severely underestimated. A GRU has multiple sets of
weights and biases. Considering that the memory state size and input size are equal, the
GRU features 6 sets of weights of the shape [inputsize, inputsize]. The image domain
is of the shape [128, 128, 80]. Meaning, that the imaging domain features roughly
128∗128∗80 ≈ 1.3∗106 voxels. Using the Per Voxel implementation would mean using
more than 6 ∗ 1.3 ∗ 106 ∗ 1.3 ∗ 106 weights. Accounting for more than 10 TB of data.
This makes this approach infeasible.
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5.4.2 Test 1: Simultaneous Iteration Training

The simultaneous iteration training (SIT) uses a fixed amount of iterations per re-
construction for the entire duration of the training process. An arbitrary amount of
iterations is performed every batch before the loss is calculated and the weights are
updated by backpropagation. Hence, the network tries to learn optimal weights for
every iteration simultaneously. Algorithm 1 provides an abbreviated pseudo-algorithm
of the simultaneous iteration training.

Algorithm 1 A pseudo algorithmic description of Simultaneous Iteration Training

for e in Epochs do
for Batch in Training Set do

for i in Max Iterations do
Compute gχ according to CSI
Update χ using the NN
Update F according to CSI
if F ≤ tolerance then Break
end if

end for
Compute MSE Loss
Update NN weights by backpropagation

end for
end for

The fixed amount of iterations has been set to 10. 10 iterations are expected to
be sufficient to assess whether the network adjusts its behaviour to different iteration
steps while being small enough to prevent excessive training times.

5.4.2.1 Results Test 1 using 2D Quadrant Based Implementation

The average MSE losses for training and testing the 2D Quadrant-based implementation
under simultaneous iteration training for 5 epochs and 10 iterations are shown in Figure
5.3. The average MSE loss values are displayed on the y-axis and the epoch numbers
are displayed on the x-axis. The blue line demarcates the average training losses and
the orange line demarcates the average test losses.

The most notable result shown in Figure 5.3 pertains to the average test losses being
lower than the average training losses at every epoch. This means that the trained
network is able to reconstruct the unseen test data to a higher degree than the training
data. Within a single epoch, this could be explained by the network performing to a
similar degree on both training and test data; likely due to high similarity between the
datasets. If the performance on training and test data at the end of training is similar,
then a higher average training loss is to be expected, as the poorer performance at the
beginning of the training phase skews the average loss upwards. However, one would
then expect the training loss at the next epoch to be at least equal to or lower than
the average test loss of the previous epoch. Instead, Figure 5.3 displays the average
training loss reaching similar values to the initial average test loss after 5 epochs.
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The second thing of note is the high MSE loss values. The average values of the
contrast maps are typically single digit. Average MSE loss values around 3000 indicate
that on average the root mean square error (RMSE) or standard deviation equates to
55 (

√
3025 = 55). Showcasing that reconstructed values are highly dispersed around

the true mean value.
Lastly, both training and test losses decrease relatively linearly over the duration

of the 5 epochs. Since the losses do not yet converge, the network’s performance can
likely be improved by training for a larger number of epochs.

Epoch

M
S
E

L
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s

Figure 5.3: Average Training- and test losses of simultaneous iteration training using the 2D
quadrant-based implementation. Max iterations is set to 10 and the training was performed
for 5 epochs.

The leftmost plots in Figure 5.4 display CSI’s cost functional (Equation 2.55) for
Test 1 using the 2D Quadrant-based implementation. Whereas the MSE loss measures
the performance of reconstructing the EPs through χ, the cost functional F measures
the performance of updating both χ and w at every iteration. Hence, the cost functional
provides insight into DLE-CSI’s progression between iterations. The cost functional
values are displayed on the y-axis and the epoch numbers are displayed on the x-axis.
The different colours represent the iterations.

The upper row and bottom row of Figure 5.4 concern the training and testing,
respectively. The dark blue line indicating Iteration 0, shows a strong decline over
the 5 epochs; converging towards a value of 0.5 for both training and testing. A cost
functional value of approximately 0.5 is also observed as the initial cost functional value
of regular 3D-CSI. Hence, the first iteration’s reconstruction performance after 5 epochs
can be considered similar to the homogeneous guess used in both DLE-CSI and CSI.

Iteration 1 indicated by the orange line, shows a slight increase in value for both
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training and testing over the duration of 5 epochs. Indicating a decrease in reconstruc-
tion performance at Iteration 1 at increased training durations. Though at all epochs
Iteration 1’s cost functional value remains smaller than Iteration 0’s value, maintaining
an improvement between iterations.

The succeeding iterations, Iteration 2 up until Iteration 9, progressively decrease in
cost functional values for both training and testing over the duration of 5 epochs. Each
iteration also improves in value compared to its preceding iteration. Hence, DLE-CSI
improves upon its reconstruction performance at every iteration. However, the values
remain close to 0.5; yielding a similar performance as the homogeneous initial guess.
Additionally, the cost functional values of the testing phase slightly outperform those
from the training phase, which is in line with the behaviour of the MSE losses.

The cost functional F can be subdivided into sub-cost functionals FB and FE. FB
and FE represent the right- and left additive terms of Equation 2.55, respectively. FB is
a function of the contrast source FB(w), whereas FE is a function of both the contrast
function and contrast source FE(χ,w). In Figure 5.4 the middle column shows FB and
the rightmost column shows FE, effectively deconstructing F . Top and bottom still
represents training and testing, respectively. The y-axis shows the (sub-)functional
values and the x-axis shows the epoch numbers.

Figure 5.4 shows how after the first epoch, the cost functional F is dominated
by the contrast source dependent FB. Hence, the contrast source’s updates through
gradient descent seem unable to converge as quickly as the NN computed updates of
the contrast function. This is considered unexpected behaviour because the contrast
source’s gradient descent updates are computed based on the updated contrast function.
It was therefore expected that the faster converged contrast function would propagate
to a better gradient descent of the contrast source.

Iteration 0 in the middle column of Figure 5.4, displays a constant FB value of ap-
proximately 0.46 for both the training and testing phase at every epoch. Most notable
in the plots of FB, is Iteration 0’s lower value than the values of the succeeding itera-
tions. Both of these behaviours originate from the contrast source’s first update being
based on the initial guess of the contrast function. As the initial guess is unaffected by
the NN, FB’s first value is independent of training the NN. The higher values of FB in
successive iterations display the CSI part’s reaction to the NN output updates of the
contrast function.

After the initial spike in the value of FB at Iteration 1, the first decrease in value is
observed at different iterations depending on the epoch number. The higher the epoch
number the later this first decrease is observed. Despite this observed behaviour, the
values of each iteration do decrease in every successive epoch, with the exception of
Iteration 0. Hence, extended training does yield a general improvement in reconstruc-
tion.

The values of FE displayed in the rightmost column of Figure 5.4, show behaviours
opposite to those of FB’s values. In training, Iteration 0 starts with a relatively high
value of more than 0.6, decreasing considerably to values below 0.1 as the epoch number
increases. Testing displays similar behaviour but with lower values overall. Hence,
training the NN effectively improves Iteration 0’s updates.

The successive iterations increase in FE values as the number of epochs increases,
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worsening as the training progresses. The lowest average FE values are observed in the
first epoch. The adverse effect of training to iterations succeeding Iteration 0, might be
related to the NN having to learn optimal weights for every iteration simultaneously.
Alternatively, it could be DLE-CSI working as intended. The gradients used to update
both the contrast source and contrast function, are gradients of the cost functional with
respect to the contrast source or contrast function. Meaning, that if FB dominates
F, the gradient reflects this and pushes the contrast source and contrast function to
decrease FB. These FB prioritised updates could lead to an increase in FE as long as
F decreases. Hence, only if worsening results of FE persist when it dominates F, does
it confirm to pose a problem.

For all epochs, the FE value initially decreases but starts to increase in later itera-
tions. The point at which the first increase is observed occurs later as the amount of
epochs used in training increases.

EpochEpoch Epoch

EpochEpoch Epoch

Figure 5.4: Average Cost Functional values at every iteration and epoch of simultaneous
iteration training using the 2D Quadrant-based implementation. Max iterations is set to 10
and the training was performed for 5 epochs.

To further analyse possible causes for the high MSE losses and cost functional values,
an inspection of reconstructed EP slices was performed. Figure 5.5 shows an example of
such a reconstructed set of EPs in the middle column. The left- and rightmost columns
show the ground truth and reconstruction error, respectively. The 2D example shows
the transverse plane of the brain at the median slice.

The reconstructed EP images show a homogeneous EP value. The only difference
between the reconstruction and the homogeneous initial guess is their amplitudes. This
shows that this DLE-CSI implementation is currently unable to apply a different struc-
ture to the homogeneous map. Hence in training, the network tries to learn weights
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that find an optimal amplitude for the homogeneous map rather than applying struc-
tural changes. The MSE losses and cost functional values remain high due to the large
error caused by the lack of reconstructing the head’s internal structure.
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Figure 5.5: An example of electrical properties reconstructed by DLE-CSI using the 2D
quadrant-based implementation and trained for 5 epochs using the simultaneous iteration
approach with a maximum of 10 iterations. The reconstruction is performed on a simulated
model of the human head, of which a transversal slice is shown. The leftmost images show the
ground truth EP values to be reconstructed, the middle column images show the reconstructed
EPs and the rightmost images show the difference between the reconstruction and the ground
truth.

5.4.2.2 Results Test 1 using Local Patches Implementation

The average MSE losses for training and testing the 2D Quadrant-based implementation
under simultaneous iteration training for 5 epochs and 10 iterations are shown in Figure
5.6. The average MSE loss values are shown on the y-axis and the number of epochs
is shown on the x-axis. The blue line and orange line represent the average training
losses and the average test losses, respectively.

The Local Patches implementation shows the same behaviour as the 2D Quadrant-
Based implementation. The Local Patches implementation only has slightly higher
values by a value of approximately 25.

Under Simultaneous Iteration Training and using the Local Patches implementation,
Figure 5.7 displays the resulting average cost functional and sub-cost functionals F,
FB, and FE from left to right, respectively. The top row and bottom row differentiate
between training and testing. The (sub-)cost functional values are shown on the y-axis

48



Epoch

M
S
E

L
o
ss

Figure 5.6: Average Training- and test losses of simultaneous iteration training using the
Local Patches implementation. Max iterations is set to 10 and the training was performed
for 5 epochs.

and the number of epochs is shown on the x-axis. The different colours demarcate the
iteration number.

The Local Patches implementation results are nearly identical to those of the 2D
Quadrant-based implementation. The only noticeable difference is observed in the
starting value of the average cost functional of Iteration 0 which is slightly higher.

Figure 5.8 shows from left to right, an example set of the ground truth, reconstruc-
tion and reconstruction error of EPs under the simultaneous iteration training and local
patches implementation. The 2D example shows the transverse plane of the brain at
the median slice. The local patches implementation displays the same homogeneous re-
construction results as the 2D quadrant-based implementation. Only the reconstructed
permittivity amplitude is slightly lower in value.

5.4.3 Test 2: Per Iteration Training

The Per Iteration Training (PIT) initially sets the max amount of iterations to 1 and
increases it every subsequent epoch. This way the network does not require to learn
optimal weights for every iteration all at once. The goal of this training approach is to
improve upon the results of the Simultaneous Iteration Training. Simultaneous Itera-
tion Training resulted in cost functional values at certain iterations not improving when
trained. The first iteration(s) have shown to improve most significantly before. Having
these iterations trained first, reducing their cost functional values, should bring them
closer to the initial cost functional values of the latter iterations. Closer cost functional
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Figure 5.7: Average Cost Functional values at every iteration and epoch of simultaneous
iteration training using the Local Patches implementation. Max iterations is set to 10 and
the training was performed for 5 epochs.

values would mean more similar amounts of impact on the final reconstruction result.
Hence, improving these latter iterations at that point is likely to be valued higher than
when training them simultaneously with the first iterations which at that point can
improve to a higher extent.

A pseudoalgorithmic description Per Iteration Training is shown in Algorithm 2.

Algorithm 2 A pseudo algorithmic description of Per Iteration Training

for e in Epochs do
for Batch in Training Set do

for i in e+ 1 do
Compute gχ according to CSI
Update χ using the NN
Update F according to CSI
if F ≤ tolerance then Break
end if

end for
Compute MSE Loss
Update NN weights by backpropagation

end for
end for

The amount of epochs has been set to 5, resulting in a maximum amount of iterations
of 5.
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Figure 5.8: An example of electrical properties reconstructed by DLE-CSI using the Local
Patches implementation and trained for 5 epochs using the simultaneous iteration approach
with a maximum of 10 iterations. The reconstruction is performed on a simulated model of
the human head, of which a transversal slice is shown. The leftmost images show the ground
truth EP values to be reconstructed, the middle column images show the reconstructed EPs
and the rightmost images show the difference between the reconstruction and the ground
truth.

5.4.3.1 Results Test 2 using 2D Quadrant Based Implementation

The average MSE losses for training and testing the 2D Quadrant-based implementation
under iteration per epoch training for 5 epochs and 1 up until 5 iterations are shown
in Figure 5.9. The average MSE loss values are shown on the y-axis and the number of
epochs is shown on the x-axis. The average training losses are shown in blue and the
average test losses are shown in orange.

The behaviour of the average losses remains very linear and compared to the average
losses in Figure 5.3, the amplitude of the losses is slightly higher. Hence in terms of
losses, the iteration per epoch approach performs worse than the simultaneous iteration
training for the 2D Quadrant-based implementation.

The average cost functional values and sub-cost functional values are shown in
Figure 5.10 for both training and testing in the case of iteration per epoch training using
the 2D quadrant-based implementation. The top row shows the (sub-)cost functionals
during training and the bottom row during testing. The y-axis displays the (sub-)cost
functional values and the x-axis the number of epochs. The different colours indicate
the iteration numbers.

Iteration 0 in the leftmost plots displaying F, starts and ends at a higher value
than in the results of simultaneous iteration training. Similarly, the subsequent it-
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Figure 5.9: Average Training- and test losses of iteration per epoch training using the 2D
quadrant-based implementation. Max iterations progresses to 5 and the training was per-
formed for 5 epochs.

erations also perform comparatively worse than their simultaneous iteration training
counterpart.

The sub-cost functionals FB and FE, display the same behaviour as in the simul-
taneous iteration training with 2D quadrant-based implementation but with slightly
higher values.

Figure 5.11 shows from left to right: the ground truth, reconstruction and recon-
struction error of the EPs of a 2D example of the transverse plane of the brain at the
median slice. The reconstructed EPs in the middle column of Figure 5.11 show the
same homogeneous results as the simultaneous iteration training, with a deviation in
permittivity values of about 1.5. Hence, no meaningful improvement has been observed.

5.4.3.2 Results Test 2 using Local Patches Implementation

The results shown in Figures 5.12 5.13 and 5.14 follow the same principles as the 2D
quadrant-based implementation. The average losses, cost functionals and reconstruc-
tions have a highly similar shape with a slightly worse amplitude.

The iteration per epoch training has a slightly worse performance than the simul-
taneous iteration training overall. Its only advantage is shorter training times due
to the lower amount of iterations used in earlier epochs. The consistent absence of
DLE-CSI’s ability to reconstruct the brain’s complex structure and move away from
a homogeneous guess, deems these implementations to be severely inadequate. There-
fore, a conclusion on the comparison of these two training approaches should not be
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Figure 5.10: Average Cost Functional values at every iteration and epoch of iteration per
epoch training using the 2D quadrant-based implementation. Max iterations progresses to 5
and the training was performed for 5 epochs.

limited to their effects on inadequate implementations.

5.4.4 Test 3: SIT With Additive Update Manner

Test 3 entails simultaneous iteration training with a switch between the update ap-
proach used in the integration of the NN into CSI. For Test 3, the additive update
manner is used instead of the replacement update manner. Only the local patches-
based implementation has been tested with the additive update manner due to time
constraints and the higher potential for network expansion with the reduced size of
this approach. The training duration was set to 10 epochs. Unfortunately, the training
under Test 3 has been cut off early so the 10th epoch is missing from the results.

5.4.4.1 Results Test 3

Figure 5.15 shows the average training- and average test losses under Test 3. The
average MSE loss values are shown on the y-axis and the number of epochs is shown
on the x-axis. The blue line represents the average training losses and the orange line
represents the average test losses. The losses no longer display the very linear behaviour,
decreasing more sharply at the start instead. The amplitude of the losses is lower by
a value of approximately 1000 compared to any implementation of the replacement
update manner. The losses remain significant, considering a standard deviation of√
1225 = 35, while average contrast values remain single digit. The test losses remain

lower than the training losses.
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Figure 5.11: An example of electrical properties reconstructed by DLE-CSI using the 2D
quadrant-based implementation and trained for 5 epochs using the iteration per epoch ap-
proach with a progressive maximum of 5 iterations. The reconstruction is performed on a
simulated model of the human head, of which a transversal slice is shown. The leftmost images
show the ground truth EP values to be reconstructed, the middle column images show the
reconstructed EPs and the rightmost images show the difference between the reconstruction
and the ground truth.

Figure 5.16 shows the average (sub-)cost functional values at every iteration and
epoch under Test 3. The top and bottom rows differentiate between training and
testing respectively. From left to right the (sub-)cost functionals F , FB and FE are
shown, with the number of epochs on the x-axis and the colour indicating the iteration
number. Unlike the previous tests’ F values, these F values decrease far below the
0.5 point. Indicating that the additive update manner allows improvement beyond the
homogeneous initial guess. The extent to which the F values decline decreases every
iteration. Such behaviour is similar to the regular CSI algorithm. The FB values follow
the pattern of F values, declining at a reduced rate as iterations progress. The FE
values on the other hand, initially increase and only decrease from iteration 4 onwards.
This initial increase is likely caused by the update’s priority of reducing the relatively
higher FB values. Since the gradients used in the update computations reflect these
imbalances.

The (sub-)cost functional values improve at a much smaller degree per epoch in
comparison to each iteration step.

Figure 5.17 shows an example of an EP reconstruction using DLE-CSI, test 3. The
top images show the conductivity and the bottom images the permittivity. From left to
right the images represent the ground truth, reconstruction and reconstruction error.
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Figure 5.12: Average Training- and test losses of iteration per epoch training using the local
patches implementation. Max iterations progresses to 5 and the training was performed for
5 epochs.

The 2D example shows the transverse plane of the median slice of a brain. The EP
reconstruction images showcase how under Test 3 the geometry is changed beyond the
uniformity of the results under previous tests. The results, however, still show major
differences in terms of tissue geometry and amplitude values.

5.4.5 Test 4: PIT with Additive Update Manner

In Test 4 per iteration training is performed with the additive update manner instead
of the replacement update manner. The training duration was set to 10 epochs and
each epoch has the corresponding amount of iterations as the epoch number.

5.4.5.1 Results Test 4

Figure 5.18 shows the average training- (in blue) and average test losses (in orange)
under Test 4. The x- and y-axis display the number of epochs and the average MSE
loss values, respectively. Compared to the results under Test 3, the initial losses are
higher. However, at the 9th epoch the losses are slightly lower for the training phase
and approximately equivalent for the testing phase. The higher losses at lower epoch
amounts are likely attributed to the smaller amount of iterations used at these epochs.
A higher amount of iterations is likely to improve the reconstruction and hence, reduces
the losses. The higher rate of improvement in losses at the final epochs indicates that
PIT might outperform SIT at higher training volumes. However, extended training or
other metrics are required to truly validate this hypothesis.
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Figure 5.13: Average Cost Functional values at every iteration and epoch of iteration per
epoch training using the local patches implementation. Max iterations progresses to 5 and
the training was performed for 5 epochs.

Figure 5.19 shows from left to right the average cost functional F , average sub-
cost functional FB and average sub-cost functional FE. With the top row showing
these (sub-)cost functionals in the training phase and the bottom row during the testing
phase. The number of epochs is shown on the x-axis and the (sub-)cost functional values
are shown on the y-axis, with the different colours indicating the iteration number.
Compared to Test 3, these cost functional results under Test 4, show no significant
difference. Still, the improvement in values is dominated by iterations rather than the
improvements per epoch. This indicates that an increased iteration amount is likely
to contribute more to an improved reconstruction compared to an increased epoch
amount.

Figure 5.17 shows an example of an EP reconstruction using DLE-CSI, test 4. The
top images show the conductivity and the bottom images the permittivity. From left to
right the images represent the ground truth, reconstruction and reconstruction error.
This 2D example shows the transverse plane of the median slice of a brain. Compared
to Test 3’s results, an increased amount of patches is observed in the reconstructed
conductivity. Whereas, in the permittivity, a decreased amount of patches is observed.
Hence, the amount of tissue structure reconstructed within the conductivity map has
increased, while within the permittivity it has decreased.

The small improvements in both Test 3 and Test 4 in terms of reconstructing tis-
sue structure, indicate the additive update manner’s superiority over the replacement
update manner.
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Figure 5.14: An example of electrical properties reconstructed by DLE-CSI using the local
patches implementation and trained for 5 epochs using the iteration per epoch approach with
a progressive maximum of 5 iterations. The reconstruction is performed on a simulated model
of the human head, of which a transversal slice is shown. The leftmost images show the ground
truth EP values to be reconstructed, the middle column images show the reconstructed EPs
and the rightmost images show the difference between the reconstruction and the ground
truth.

5.4.6 Test 5: Network Depth Expansion

In Test 5 the neural network depth has been expanded to investigate whether this has
any positive impact on the EP reconstruction. Essentially the previous network design
is doubled, consisting of the following layers:

• 3D Convolution Layer

• Local Patches GRU Layer

• 3D Convolution Layer

• 3D convolution Layer

• Local Patches GRU Layer

• 3D convolution Layer.

The data manipulation in between layers is duplicated with the exception of the output
manipulations after the second convolution layer, which has naturally been delayed until
after the final convolution layer. Additionally, the data in between the second and third
convolution layers is kept as is.
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Figure 5.15: Average Training- and test losses of simultaneous iteration training using the
Local Patches implementation and the additive update manner. Max iterations is set to 10
and the training was performed for 9 epochs.

5.4.6.1 Results Test 5: Simultaneous Iteration Training

Figure 5.21 shows the average training- and average test losses resulting from Test 5
with SIT. The average training losses are shown in blue, the average test losses are
shown in orange and the average loss values are displayed on the y-axis. The x-axis
displays the number of epochs. Compared to the results of Test 3, the average training
losses of Test 5 have decreased by almost 20 at epoch 8. The average test losses have
decreased by about 5 at epoch 8. Hence, the losses have improved by increasing the
network’s depth but not by a significant margin.

Figure 5.22 shows, from left to right, the average (sub-)cost functionals F , FB and
FE for training and testing under Test 5. The y-axis displays the (sub-)cost functional
values and the x-axis the number of epochs. The different colours indicate the iteration
number. The cost functionals still predominantly change per iteration rather than per
epoch. Interestingly, the cost functionals increases as the training progresses. Hence,
a decline in performance is observed according to the cost functionals. Therefore,
conflicting results have been observed between the MSE losses and the cost functionals.

Figure 5.23 shows an example of a DLE-CSI reconstruction under Test 5 with simul-
taneous iteration training along with the corresponding ground truth- and error maps.
The 2D example shows the transverse plane of the middle slice of a brain. The top
row displays the conductivity maps. The reconstructed conductivity has background
values corresponding to the ground truth’s grey matter tissue. A structure resembling
a blurred or low-frequency version of the white matter tissue is taking shape around the
middle parts of the brain. The CSF is entirely missing in terms of structure and am-
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Figure 5.16: Average Cost Functional values at every iteration and epoch of simultaneous
iteration training using the Local Patches implementation and the additive update manner.
Max iterations is set to 10 and the training was performed for 9 epochs.

plitude. Compared to Figure 5.17 under Test 3, the amount of white matter structure
has significantly increased.

The bottom row displays the permittivity maps. The reconstructed permittivity
is almost entirely uniform and has a value resembling the white matter. The only
structure to be observed is the outline of tissue outside of the brain. Compared to
Figure 5.17 the very small amount of the non-background patches has disappeared.

5.4.6.2 Results Test 5: Per Iteration Training

Figure 5.24 shows the average training- and average test losses resulting from Test
5 with PIT. The training and testing losses are displayed as blue and orange lines,
respectively. The average MSE loss values are shown on the y-axis and the epoch
numbers are shown on the x-axis. At epoch 0 the average training- and average test
losses have a value of approximately 1355 and 1290, respectively. In this respect, Test
5 with PIT and Test 4 show near identical loss values at the first epoch. At the final
epoch, however, the average training- and average test losses are lower by approximately
20 and 5; displaying a marginal improvement. Compared to Test 5 with SIT, the PIT
losses are initially higher but end up at approximately the same losses.

Figure 5.25 shows the average (sub-)cost functionals F , FB and FE for training
and testing under Test 5 with PIT. Training and testing is shown on the top and
bottom, respectively. The (sub-)cost functional values are displayed on the y-axis and
the number of epochs is displayed on the x-axis. The different colours refer to the
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Figure 5.17: An example of electrical properties reconstructed by DLE-CSI using the local
patches-based implementation and additive update manner. The NN was trained for 9 epochs
using the simultaneous iteration approach with a maximum of 10 iterations. The reconstruc-
tion is performed on a simulated model of the human head, of which a transversal slice is
shown. The leftmost images show the ground truth EP values to be reconstructed, the mid-
dle column images show the reconstructed EPs and the rightmost images show the difference
between the reconstruction and the ground truth.

different iterations, as shown in the legend. The cost functionals still predominantly
change per iteration rather than per epoch. Unlike Test 5 with SIT, the cost functionals
of Test 5 with PIT decrease as the training progresses. Hence, indicating improving
results as training progresses in agreement with the average losses.

Figure 5.26 shows a reconstruction example resulting from Test 5 with PIT. The
top and bottom rows display the conductivity and permittivity respectively. From left
to right, the ground truth, reconstruction and reconstruction error are shown. The 2D
example shows the transverse plane of the middle slice of a brain. The difference in
Test 5’s reconstruction with PIT versus with SIT, lies in the tissue structures being
subtly different. However, neither can be considered better or worse than the other.
Conductivity-wise both show a crude white matter structure which lacks the finer
structures. Whereas permittivity-wise, both barely show more than a homogeneous
value.
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Figure 5.18: Average Training- and test losses of per iteration training using the Local Patches
implementation and the additive update manner. Max iterations is set to 10 and the training
was performed for 10 epochs.
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Figure 5.19: Average Cost Functional values at every iteration and epoch of per iteration
training using the Local Patches implementation and the additive update manner. Max
iterations is set to 10 and the training was performed for 10 epochs.
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Figure 5.20: An example of electrical properties reconstructed by DLE-CSI using the local
patches-based implementation and additive update manner. The NN was trained for 10
epochs using the per iteration training approach with a maximum of 10 iterations. The
reconstruction is performed on a simulated model of the human head, of which a transversal
slice is shown. The leftmost images show the ground truth EP values to be reconstructed,
the middle column images show the reconstructed EPs and the rightmost images show the
difference between the reconstruction and the ground truth.
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Figure 5.21: Average Training- and test losses of simultaneous iteration training using the
Local Patches implementation, the additive update manner and doubled network depth. Max
iterations is set to 10 and the training was performed for 10 epochs.
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Figure 5.22: Average Cost Functional values at every iteration and epoch of simultaneous
iteration training using the Local Patches implementation, the additive update manner and
doubled network depth. Max iterations is set to 10 and the training was performed for 10
epochs.
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Figure 5.23: An example of electrical properties reconstructed by DLE-CSI using the local
patches-based implementation, additive update manner and doubled network depth. The NN
was trained for 10 epochs using the simultaneous iteration training approach with a maximum
of 10 iterations. The reconstruction is performed on a simulated model of the human head, of
which a transversal slice is shown. The leftmost images show the ground truth EP values to
be reconstructed, the middle column images show the reconstructed EPs and the rightmost
images show the difference between the reconstruction and the ground truth.
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Figure 5.24: Average Training- and test losses of per iteration training using the Local Patches
implementation, the additive update manner and doubled network depth. Max iterations is
set to 10 and the training was performed for 10 epochs.
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Figure 5.25: Average Cost Functional values at every iteration and epoch of per iteration
training using the Local Patches implementation, the additive update manner and doubled
network depth. Max iterations is set to 10 and the training was performed for 10 epochs.
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Figure 5.26: An example of electrical properties reconstructed by DLE-CSI using the local
patches-based implementation, additive update manner and doubled network depth. The
NN was trained for 10 epochs using the per iteration training approach with a maximum of
10 iterations. The reconstruction is performed on a simulated model of the human head, of
which a transversal slice is shown. The leftmost images show the ground truth EP values to
be reconstructed, the middle column images show the reconstructed EPs and the rightmost
images show the difference between the reconstruction and the ground truth.
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Phase Error Based
Conductivity Enhancement 6
Suppose an arbitrary MR-EPT method is used to reconstruct a conductivity map from
MR measurements. Depending on the reconstruction method used, different types of
errors can occur in the reconstructed conductivity map. These errors can arise from
assumptions used in the reconstruction methodology, such as boundary errors when
assuming the tissue to have locally homogeneous conductivity values. Alternatively, if
for example a DL reconstruction method was used, errors might be introduced due to
reconstructing from unseen data (data that has not been used in training the NN).

Such errors in a reconstructed conductivity map, also alter the conductivity’s rela-
tion to the transceive phase. Meaning, that errors in the conductivity reconstruction
propagate to the corresponding transceive phase. This relation between the conduc-
tivity and the transceive phase is showcased in SH-EPT’s methodology, Equation 2.38.
Note that SH-EPT relies on assumptions to achieve this direct relation between the con-
ductivity and the transceive phase. Hence, the extent of the errors being propagated
to the transceive phase relies on the extent of the validity of SH-EPT’s assumptions.

If the altered phase map can be reconstructed from the reconstructed erroneous
conductivity map, it can be compared to the measured transceive phase to compute
a phase error map. Assuming that the relation between the conductivity and the
transceive phase holds to a large extent, the phase error map is likely to provide infor-
mation on the difference between the reconstructed- and true conductivity.

Figure 6.1 visualises the process of determining such a phase error map. ϕ represents
the measured transceive phase map, σ̂ and ϕ̂ represent the erroneous reconstructed
conductivity map and the corresponding erroneous transceive phase map, respectively.
∆ϕ and ∆σ denote the phase- and conductivity error maps.

Figure 6.1: Diagram displaying the acquisition of a phase error map in relation to the error
of a reconstructed conductivity map.

67



This chapter describes a method that leverages this phase error map in an attempt
to correct reconstruction errors, dubbed phase error based conductivity correction (PE-
BCC). A DL methodology is proposed in an attempt to implicitly learn the conductivity
error’s relation to the phase error. A schematic overview of the neural network’s in-
and outputs are given by Figure 6.2.

Figure 6.2: Schematic overview of phase error based conductivity correction

A DL method is deliberately chosen over the direct use of SH-EPT to potentially
acquire a conductivity error map from a phase error map. The direct use of SH-
EPT would subject the error maps to SH-EPT’s issues such as boundary problems
and high noise sensitivity, which might only further degrade the resulting conductivity
map instead of achieving improvement. Additionally, the availability of a dataset with
simulated human heads with the same anatomies but differing conductivity- and phase
maps, allows for precise training and testing of a neural network. As two different sets of
conductivity and corresponding phase with the same anatomy {S1(σ1, ϕ1), S2(σ2, ϕ2)}
can be assigned as inputs σ̂i = σ1, ∆ϕ = ϕ1 − ϕ2 and output σ̂o,= σ2 in order to train
the network into correcting σ1 into σ2.

6.1 Methodology

PEBCC starts with a given conductivity map, which can either have been reconstructed
using an MR-EPT method or have been artificially created based on literature values.
As we aim to improve the conductivity map, we consider it to be an erroneous estimation
of the true map. Hence, denoting it as σ̂, with the hat signifying an estimation.

A phase map is to be obtained from the estimated conductivity map using some
kind of mapping function ϕ(σ). Computing the phase map can be achieved by following
the approach of Borsic et al. [51], rewriting Equation 2.38 as

∇2ϕ = µ0ωσ (6.1)

This equation can be treated as a linear matrix equation by expressing the derivatives
as finite differential kernels. The phase map can then be computed using a forward
solver. The disadvantage of using this method is its reliance on SH-EPT’s assumptions
potentially introducing new errors into the phase map. Alternatively, a neural network
could be trained to compute the phase map from the corresponding conductivity map.
However, similarly to the approach of Borsic et al., new errors can be introduced into
the phase map by the neural network depending on its performance.

By comparing the obtained phase map with a measured phase ϕm acquired with
MRI, a phase error map is established ∆ϕ. The estimated conductivity and the phase
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error are used as input for a neural network, which computes an updated conductivity
estimate. A new phase map can be computed from the updated conductivity, resulting
in an updated phase error. Hence, PEBCC can be iteratively used to improve recon-
structed conductivity maps, or as a complete MR-EPT method by for example using a
homogeneous initial guess for the conductivity. Figure 6.3 illustrates PEBCC’s process,
with the subscripts i and i + 1 denoting the current and next iteration. Additionally,
the phase error can be used as an uncertainty measure of the reconstructed conductivity
map, as a perfect reconstruction should yield a phase error of 0.

Figure 6.3: Schematic overview of using phase error based conductivity enhancement in an
iterative manner.

6.2 Neural Network Design

The neural network chosen to compute the conductivity updates is a U-net. A U-net is a
convolutional neural network, that is typically used for image-related tasks. U-nets have
been shown to perform well on pixel-wise regression problems such as pansharpening in
the field of remote sensing [48]. Considering that updating our conductivity estimates
per pixel (or voxel) is similarly a pixel-wise regression problem, makes a U-net a suitable
choice.

The U-net derives its name from the way the network and its data flow are typically
depicted. The U-net can be split into two paths, connected at the bottom, giving it
the U shape. The path on the left consists of encoder blocks and the data travels
downwards. The path on the right consists of decoding blocks and the data travels
upwards.

As one travels down the encoding blocks, the spatial resolution of the data is reduced,
whereas the feature space is increased. The encoding block consists of one or more
convolution layers and a pooling layer. The (first) convolution layer increases the
amount of feature channels. The pooling layer reduces the spatial resolution.

As one travels up the decoding blocks, the spatial resolution is increased, while the
feature space is decreased. A decoding block consists of an up-convolution layer and one
or more convolution layers. The up-convolution layer increases the spatial resolution.
The (first) convolution layer decreases the amount of feature channels.
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The U-net features skip connections between the encoding and decoding blocks.
These skip connections and the varying spatial resolution levels allow the network to
learn and incorporate features at differing spatial resolutions. This can be considered as
incorporating information from different frequency components within the image data.

The bridge or lower path of the U-shape typically functions like an encoding block
without using a pooling layer.

6.2.1 Neural Network Implementation Details

The network implemented features 3 encoding and decoding blocks. Each convolution
layer, within these blocks and those within the bridge, is followed by a ReLU activation
function to introduce non-linearity into the network. A diagram of the implemented
network is shown in Figure 6.4 below.

Figure 6.4: U-net design featuring 3 encoder and decoder blocks.

The input data consists of two channels of 256 by 256 pixels, in the figure shown
as 256 x 256 x 2. The first channel contains the estimated conductivity map and the
second channel contains the corresponding phase error map. Limiting the input data
to 2D prevents the network’s memory usage from becoming a bottleneck.
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In the first encoding block, the amount of feature channels is increased from 2 to 32
by the first convolution layer of the network. Afterwards, each encoding block decreases
the x,y-dimensions by 2 and increases the amount of feature channels by 2. Inversely,
the decoding blocks increase the x,y-dimensions by 2 and decrease the feature channels
by 2. The final layer produces the output of a single channel, a conductivity map.

Though chosen arbitrarily, using 3 blocks and 32 initial feature channels seemed
small enough to not become a burden in terms of memory size and sufficiently large to
yield sufficient results.

The convolution kernel sizes are chosen to be 3-by-3 pixels. The size is relatively
small compared to the initial image size of 256-by-256 but the receptive field is expected
to be sufficient due to the decreasing resolution travelling down the U-net.

6.3 Training Strategies

The database used provides 3D conductivity and phase maps of human heads. The
dataset is split into 6 healthy subjects and 18 subjects with a brain tumour. Each
healthy subject has 3 different geometry configurations and each geometry configuration
has 4 variations in conductivity values.

The subjects with tumours only feature 2 different conductivity variations of the
tumour tissue; the conductivity of healthy tissue does not vary.

The network is trained with 5 healthy test subjects while leaving out 1 healthy
subject for testing. Hence, a training set size of 5 ∗ 4 ∗ 3 = 60 and a test set of size
1 ∗ 4 ∗ 3 = 12.

The tumour-bearing subjects are used in testing under the name of Out Of Distri-
bution (OOD). As the tumours are structures that remain unseen by the network while
training, they can be considered to be outside of the distribution of data. Tumours
could possibly be detected by potential faulty reconstructions caused by tumours being
OOD. Alternatively, tumours being reconstructed correctly would also enable tumour
detection. However, tumour detection was not investigated due to time constraints.

When training, the dataset is split into batches containing two sets of conductivity
maps with their corresponding phase maps S1 = {σ1, ϕ1}, S2 = {σ2, ϕ2}. Set 1 (S1)
is used as input variables and set 2 (S2) as ground truth variables. Therefore, σ1

represents the reconstructed conductivity map and σ2 the ground truth conductivity
map σGT . The ground truth conductivity map is compared to the output of the network
using a loss function. Similarly, ϕ1 represents the phase map normally acquired with
a forward solver from the reconstructed conductivity and ϕ2 represents the true or
measured phase map, normally obtained with MRI. The phase error map computed
from ϕ1 and ϕ2, and σ1 are combined as input for the neural network. Based on the
loss, the weights of the network are adjusted using back-propagation. This training
process is visualised in Figure 6.5.

The MR-EPT methods to be used for reconstructing the conductivity estimations
used as input are assumed to correctly reconstruct the conductivity’s geometry. This
assumption lets us limit the sets used in a batch to only the conductivity variations
of the dataset. Meaning that a batch contains no variation in geometry or subject
between the used sets. Not having to learn adjustments in geometry should reduce the
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Figure 6.5: Schematic overview of phase error based conductivity enhancement in training

network’s requirements as the operations should be less complex.
Of the 4 variations in conductivity for the healthy subject, the 4th one is always

used as the ground truth set (S2). This means that per geometry variation, per healthy
subject, there are 3 batches of data. Training with 5 healthy subjects, with their 3
geometry variations results in 5 ∗ 3 ∗ 3 = 45 batches.

The conductivity and phase maps of each set consist of 3D data of size
{256, 256, 160} in the {x, y, z} dimensions. Each voxel edge has a length of 1 mm
in each dimension. To keep the neural network of a manageable size, it was imple-
mented to process 2D data. Therefore, the input data is split into 160 x,y-plane slices.
Resulting in each of the 45 batches containing 160 inputs of size {256, 256}.

6.3.1 Test 1: K-Fold Validation

For Test 1 K-fold validation is used to assess the training capabilities of the network.
The healthy subject used for testing is switched every fold to implement the k-fold
validation. The k-fold validation has been limited to 4 folds to prevent excessive training
times. Implementation-wise, using 4 folds means alternating 4 of the healthy subjects
for testing, while two healthy subjects are exclusively used for training.

A Mean Squared Error loss is chosen as a loss function for training the network.
The MSE loss is defined in Equation 5.4:

The MSE loss was chosen due to its strong suppression of outliers, caused by the
squaring of the estimation error. The network’s capability to be used iteratively in-
centivises the improvement to be focused on a per pixel level rather than achieving a
greater mean improvement. Since improving pixel values on average, does not necessar-
ily ensure convergence for every pixel. Greatly punishing outliers prevents divergence
of individual pixels. Hence the use of an MSE loss function.

6.3.2 Test 2: Hybrid Loss Function

In Test 2 K-fold validation was dropped in favour of a leave-one-out approach, where
just like in K-fold validation 5 healthy subjects are used for testing and 1 healthy
subject is used for testing. However, instead of repeating the process with a different
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subject used for testing, the process is executed only once. This has the advantage of
saving time while testing variations in training the network. However, the network is
less thoroughly validated on the generalisation of input data.

The loss function has been adjusted by including the Mean Absolute Error (MAE)

MAE(x, x̂) =
1

N

n∑
i=0

|x− x̂|. (6.2)

The new loss function is expressed as a combination of the MSE and MAE

Loss(x, x̂) = αMSE(x, x̂) + (1− α)MAE(x, x̂), (6.3)

with α a parameter for balancing the loss functions. The MAE penalises outliers less
hard compared to the MSE. Shifting from the MSE to the MAEmoves the learning focus
of the network away from only improving the large conductivity differences as much as
possible. Large conductivity differences cause comparatively higher losses due to the
squared factor. Ideally, all conductivity differences should yield improvement regardless
of how much, as iterative usage would then minimise the loss over time. However,
trying to improve marginally small errors is unrealistic and unnecessary. Hence, the
larger errors should be punished most severely while slightly punishing small errors as
well. Therefore, the MSE and MAE are combined with a balancing factor, in order to
find a balanced output. The balancing factor α is initially set to 0.5.

The learning rate and epoch amount have been tuned for the aforementioned net-
work parameters. Both are achieved by training with a large amount epochs; 100
epochs were eventually used. The learning rate was deemed too high if the losses
showed oscillations and didn’t converge. The learning rate was deemed too low if the
losses decreased too slowly, such as taking 100 epochs. If the initial learning rate was
deemed too high, the learning rate was halved till it was assessed as too low. From
then on it was adjusted to halfway points between its nearest known points that are
considered too high or low. Until a satisfactory learning rate was found. The number
of epochs was determined by assessing when the network started to overfit, indicated
by the point where test losses started increasing. The amount of epochs just before
overfitting should provide optimal results.

6.3.3 Test 3: Convolution Kernel Tuning

Test 3 expands upon the changes in Test 2 by additionally tuning the convolution
kernel size. The convolution kernel size is a tunable parameter that was investigated
in an attempt to further increase the performance of the network. The initial kernel
size was set to 3, meaning that the kernel has side lengths of 3 voxels in both the
x and y directions. If SH-EPT’s relation between phase and conductivity is reliable,
then the network ought to learn operations resembling second-order special derivatives.
However, if the kernel size is too small, the learned operator might rather resemble
a linear approximation. This can likened to heavily undersampling a signal. Hence,
larger kernel sizes might be beneficial in learning the appropriate operator. However, a
U-net might not suffer from this issue due to operating on different spatial resolutions
facilitated by the pooling layers.
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The effect of kernel sizes on the losses has been investigated by training the net-
work for 11 epochs at the same learning rate of 2.5e − 4, for kernel sizes of length
{3, 5, 7, 9, 11}. In order to counteract boundary effects prevalent at larger kernel sizes,
a segmentation of the input data has been performed beforehand. For every tissue type,
a mask was created and the input data was split into a batch of every tissue type. This
way all conductivity values outside the specific tissue type are set to zero. Effectively
eliminating the influence of any other tissue types. At the end of the network, the
segments are rejoined as the final output.

Segmentation is easy to implement due to the data set being simulated and providing
these segmentations of the bat. In practice, these segmentations could be derived from
different MRI modalities, such as T2-weighted imaging.

Figure 6.6: Updated conductivity map with a convolution kernel size of 11, after training for
11 epochs at a learning rate of 2..5e-4. An example of the boundary effect.

Figure 6.6 shows an example of the boundary effect, displaying the necessity of
segmentation. The reconstruction has been produced with a kernel size of 11 without
segmentation. The tissue surrounding boundaries are blurred. This is what we refer to
as boundary errors. Boundary errors are caused by the larger kernels taking too much
information into account from tissue types differing from the tissue type at the centre
voxel. At boundaries, this smooths its surroundings.

6.3.4 Performance Metrics

To evaluate the performance of the network, two metrics are introduced. Considering
the previously introduced sets of conductivity and phase {σ̂i, ϕi, σGT , ϕGT} as well as
the networks corresponding output σ̂o, we define the error in updating the conductivity
as the difference between the ground truth and the network’s output:

∆σo = σ̂o − σGT . (6.4)

This error is henceforth referred to as the update error.
The to be corrected error between the input and the ground truth is expressed as:

∆σi = σ̂i − σGT , (6.5)

74



which is henceforth referred to as the input error.
The first metric, the relative error, is introduced as this update error in relation to

the difference in conductivity between the input and the ground truth:

e =
∆σo

∆σi

=
σ̂o − σGT

σ̂i − σGT

. (6.6)

We define the second metric, the Sensitivity, as the smallest difference in conduc-
tivity that the network is able to improve. Meaning, a relative error lower than one,
e ≤ 1.

In order to validate the feasibility of the phase error-based conductivity enhance-
ment, the training and testing settings are limited to ideal conditions. This entails that
no noise is present and the geometry of both input and output conductivity maps are
considered equal. When using input data of a human head, equal geometry then refers
to the location and shape of different tissues being identical. Only the conductivity
values per tissue, are changing.

6.4 Results

6.4.1 Results Test 1: K-Fold Validation

The average test- and OOD losses resulting from Test 1 are plotted in Figure 6.7, with
the number of epochs displayed on the x-axis and the losses displayed on the y-axis.
The solid lines represent the test losses, whereas the dashed lines represent the OOD
losses. The training strategy consists of k-fold cross-validation for 4 folds and 3 epochs.
The initial learning rate was set to 1e−3 and only the MSE loss was used. Each colour
represents the same fold for both the test losses and the OOD losses. Figure 6.7 shows
two things of note. Firstly, the first fold performs significantly better compared to the
other folds. Secondly, the OOD losses are lower than their respective test losses. The
lower OOD losses are caused by the lack of difference in conductivity values outside
of the tumour region between the two sets used for testing. Meaning that outside the
tumour the network does not need to make any adjustments. Though the network
is unlikely to keep the updated conductivity exactly the same, the error between the
ground truth and update is expected to be very small. This skews the loss of evaluating
the OOD data to the lower end. Therefore, comparing test and OOD losses has little
meaning. Only including tumour regions in the loss would not result in a suitable
comparison either. If conductivity updates outside the tumour region are neglected,
trained networks that only perform well on tumour regions could outperform networks
that achieve a better update for the entirety of the head.

Figure 6.8 shows an example of the network’s results for the first fold at the third
epoch at the middle slice of the brain. The top row shows from left to right: the ground
truth conductivity σGT , the input conductivity σ̂i and the updated output conductivity
σ̂o. The bottom middle image shows the input error, which the network intends to
resolve. It gives us insight into the amount of change required to perfectly update the
conductivity. The bottom right image shows the update error. Its values should ideally
reach as close to zero as possible. The bottom left image shows the relative error, which
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Figure 6.7: Average test- and out of distribution losses per epoch, for 4 folds of k-fold vali-
dation.

is the input error of the bottom middle image relative to the update error of the bottom
right image (Equation 6.6). Ideally, all values should be lower than 1 and higher than
0. Note that the values of the relative error are capped at 1, as we are mostly interested
in when values no longer improve and not to which extent.

As shown in the bottom right figure, the grey matter and white matter show a very
similar level of discrepancy with the ground truth. The bottom middle figure, however,
shows that the grey matter requires minimal change. The update of the grey matter
shows decline, while the white matter has improved slightly. The CSF in the centre of
the brain shows an improvement, as the CSF’s amplitude in the figure on the right is
about 0.1 smaller than in the figure in the middle. These findings are confirmed by the
relative error on the bottom left, which shows relative errors below 1 for the CSF and
white matter while the grey matter is valued at or above 1. Additionally, the relative
error shows a lower value and therefore a larger improvement in the CSF than in the
white matter.

The results in Figure 6.9 show quantitative results of the relative error for test
1. These results have been gathered from two healthy subjects, which have not been
used during the training of the network. Two healthy subjects equate to 24 different
conductivity input errors to be corrected.

Violin plots were chosen in order to visualise the large number of updated data
points per input error value in an understandable representation. A violin is a visual
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Figure 6.8: Evaluation results of training the first fold at the third epoch using an MSE loss.
From the top left to the bottom right: the ground truth conductivity, the input conductivity,
the updated conductivity output from the network, the relative error: the update error relative
to the input error (Equation 6.6), the input error: the difference between the input and the
ground truth, the update error: the difference between the updated conductivity and the
ground truth.

representation of a distribution of data, which tends to be shaped like the musical in-
strument. A violin consists of an upper-, lower- and middle horizontal line demarcating
the maximum value-, minimal value- and mean value of the data, respectively. The
distribution of the data between the range of the minimum and maximum values is
represented by a light blue outer shape. The wider the outer shape, the more data
points are centred at that value.

The relative error results associated with an input error have been grouped as a
violin. Hence, each input error value has its own distribution of the relative error.

The scope of Figure 6.9 has been restricted to values between −1 and 1 for the
relative error shown on the y-axis. The 24 different input errors are shown on the x-axis
in ascending order. Any relative error outside of the −1 to 1 range signifies deterioration
in results, as the magnitude of the output error has exceeded the magnitude of the input
error.

Due to the limited scope of the y-axis, no violins are displayed at most of the input
error values below 0.02. Each x-axis label without a corresponding violin is located out
of scope. For these missing data points the network worsens the reconstruction. These
out-of-scope occurrences are almost entirely restricted to negative input error values.
Only at the input error of −0.08 does a negative input error result in a relative error
distribution entirely within scope. Hence, the network performs poorly when correcting
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Figure 6.9: Violin plots displaying the relative error of the network under test 1

negative input errors.

From an input error value of 0.05 and above all violins are within scope. From a
value of 0.08 and above all the mean relative error values are above 0. For all above
0.08, with the exception of 0.09, the bulk of the distribution is all positive in value.
Only the input error values of 0.23 and 0.28 always result in positive relative error
values within scope.

Negative relative errors above −1 can be considered an improvement in absolute
terms since the difference between the reconstruction and the result has lessened. A
negative relative error resulting from a positive input error means the output error is
negative. As shown in Figure 6.9, the current network is unable to properly correct
negative input errors. Hence, negative relative errors for positive input errors inhibits
the successive use of the network for iterative improvement of the conductivity.

For a single conductivity correction, the input error sensitivity for test 1 equates to
0.05. For iterative use, the input error sensitivity equates to 0.08 when considering the
mean and 0.23 in all cases.

The network seems to have prioritised diminishing the large differences in amplitude
within the CSF. This, however, seems to degrade the performance of the network
when it needs to resolve smaller changes in conductivity. This resembles strong outlier
suppression, which is characteristic of using the MSE loss.
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6.4.2 Results Test 2: Hybrid Loss Function

The network is intended to be used in an iterative manner to correct conductivity
estimations. Therefore, the network should improve as wide a range of conductivity
differences as possible. This allows us to converge the conductivity estimate close to
its true value. Hence, the loss function adjustment introduced in test 2 6.3.2.

Figure 6.10: Average training and test losses per epoch, using the loss function
L=0.5MSE+0.5MAE and a learning rate of 2.5e-3

Figure 6.10 shows the average losses for training and testing PEBCC at a learning
rate of 2.5e−3 for 101 epochs using the combined loss function with a balancing factor
of α = 0.5. The learning rate used has been approximated using the aforementioned
methodology presented in Section 6.3.2. The average losses are displayed on the y-
axis and the number of epochs on the x-axis. The blue line demarcates the average
training losses and the orange line demarcates the respective test losses. The figure
shows average losses that stabilise at around 20 epochs. Hence, 20 epochs should be an
efficient amount at this learning rate. Note that the network does not seem overfitted
after 100 epochs. As the test losses stay relatively constant after 20 epochs instead of
increasing. The average losses are comparatively lower than those of Figure 6.7.

Figure 6.11 shows the conductivity reconstruction results after training PEBCC
with the updated loss function at epoch 20. The figure shows from left to right, top to
bottom, the ground truth-, input-, updated output conductivity maps and the relative
error, the input error and the update error. The relative error presents the most direct
measure of whether changing the loss function, tuning the learning rate and epoch
amount improved the network. The relative error in the bottom left corner shows a
highly similar improvement in the white matter (0.7) and CSF (0.8) areas of the brain.
The grey matter, however, remains outside PEBCC’s sensitivity.
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Figure 6.11: Evaluation results of training the PEBCC with the loss function
L=0.5MSE+0.5MAE and a learning rate of 2.5e-3 at epoch 20. From the top left to the
bottom right: the ground truth conductivity, the input conductivity, the updated conduc-
tivity output from the network, the relative error: the absolute update error relative to the
absolute input error (Equation 6.6), the absolute input error: the difference between the in-
put and the ground truth, the absolute update error: the difference between the updated
conductivity and the ground truth.

Figure 6.12 displays the quantitative results of the relative error under test 2, with
the relative error values displayed on the y-axis and the corresponding input error on
the x-axis. The first notable difference between the results under test 1 (Figure 6.9) and
test 2 (Figure 6.12) is the increased amount of violins present under test 2. Under test 2
more negative valued input errors are corrected within scope. However, all relative error
violins with negative valued input error only lie partially in scope, with the exception
of the input error −0.08. The mean relative error at an input error of −0.05 lies within
the scope and therefore, on average yields improvement. The relative error violins with
input errors −0.04 and −0.03 have the majority of their distribution outside of scope;
generally causing a deterioration in results instead.

In general, the range of all violins has decreased compared to test 1’s results, indi-
cating a smaller spread in relative error distributions. Smaller ranges in relative errors
are caused by smaller variations in corresponding output conductivities. Less variation
in output conductivity translates to more predictable behaviour of the network, which
is desirable. This overall improvement is likely attributed to the increase in training
duration. Since longer training has shown an improvement in the average test losses in
Figure 6.10.

The relative error violins of the higher input error values such as 0.13, 0.23 and 0.28,
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Figure 6.12: Violin plots displaying the relative error of the network under test 2

have a slightly higher mean than under test 1. In the middle ranges of 0.07 till 0.12 the
mean has improved instead. The combination of these two results indicates that the
adjusted loss function has the desired effect of providing a more overall improvement
to the conductivity maps. Since more of the improvement has been shifted away from
large input errors to smaller ones.

For a single conductivity correction, the input error sensitivity for test 2 equates
to 0.05. For iterative use, the input error sensitivity equates to 0.07 when considering
the mean and 0.13 in all cases. Hence, in iterative use, the adjustments of test 2 have
yielded an improved sensitivity compared to test 1.

6.4.3 Results Test 3: Convolution Kernel Tuning

Figures 6.13, 6.14 and 6.15 show the average losses for the training, testing and out
of distribution under Test 3, respectively, with the average loss values on the y-axis
and the number of epochs on the x-axis. The training losses indicate that under the
current settings, a convolution kernel size of 9, represented by the red line, performs
the poorest out of the 5 tested sizes. The lowest losses are achieved with a convolution
kernel size of 7, the green line, and the remaining options of 3 (blue line), 5 (orange
line) and 11 (purple line) show a very similar result in average training losses.

The average test losses shown in Figure 6.14 are difficult to assess due to their wildly
oscillating results.

Similarly, the average out of distribution losses shown in Figure 6.15 also show
highly oscillatory results.
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Figure 6.13: Average training losses at different convolution kernel sizes under Test 3

Figure 6.14: Average test losses at different convolution kernel sizes under Test 3
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Figure 6.15: Average out of distribution losses at different convolution kernel sizes under Test
3

Hence, it is difficult to assess the performance of the different convolution kernel
sizes by average losses alone and the learning rate needs to be adjusted to acquire
insightful results.

Figures 6.16, 6.17, 6.18, 6.19 and 6.20 show the violin plots of the relative error
of the network at convolution kernel sizes of 3, 5, 7, 9 and 11, respectively. For the
assessment of their respective sensitivity, a violin has been included if the mean and
the visible distribution are within 0 and 1. This means that at an assessed input error,
the respective relative error is allowed to have outliers outside of the range between 0
and 1. Additional assessment criteria include the amount violins visible, including both
partially and entirely visible violins. Lastly, the amount of violins completely within
the scope of the figure has been reported. Table 6.1 reports these 3 criteria at every
convolution kernel size between 3 and 11. A convolution kernel size of 3 yields the best
sensitivity under the conditions of Test 3. Table 6.1 shows an increasing sensitivity
value at higher kernel sizes, with size 7 being an outlier with a high jump in sensitivity
to 0.28. Larger kernel sizes tend to feature a higher amount of visible violins but
comparatively fewer of the visible violins are entirely within scope.
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Figure 6.16: Violin plots of the relative error of the network under Test 3 and a convolution
kernel size of 3

Figure 6.17: Violin plots of the relative error of the network under Test 3 and a convolution
kernel size of 5
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Figure 6.18: Violin plots of the relative error of the network under Test 3 and a convolution
kernel size of 7

Figure 6.19: Violin plots of the relative error of the network under Test 3 and a convolution
kernel size of 9
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Figure 6.20: Violin plots of the relative error of the network under Test 3 and a convolution
kernel size of 11

Kernel Size Sensitivity Visible Violins Violins Within Scope

3 0.08 15 11
5 0.12 12 9
7 0.28 21 7
9 0.23 18 8
11 0.23 19 9

Table 6.1: Convolution kernel size assessment of relative error violin plots

86



Discussion And Conclusion 7
7.1 DLE-CSI Discussion

The discussion on DLE-CSI will be centred on the topic of image reconstruction quality
rather than the intended goal of achieving a speedup over CSI. Discussing a speedup
is deemed irrelevant if the reconstruction quality is still far from equivalent to CSI
reconstructions.

The results from Section 5.4 which use the replacement update manner, have shown
that using the replacement update manner results in a homogeneous reconstruction
regardless of network implementation or training strategy. Hence, the replacement up-
date manner is deemed an unsuitable implementation of DLE-CSI and specifically for
use in consort with a RIM. Therefore, neural network implementations and training
strategies will only be assessed under the use of the additive update manner. This
means that the differences between the quadrant-based GRU implementation and the
local patches-based GRU implementation cannot be properly assessed on reconstruction
quality differences. Nonetheless, the local patches-based implementation was preferred
due to its lack of reliance on any symmetry and its larger reduction in memory us-
age. The local patches implementation allows for a more controllable way of reducing
memory usage by managing the amount of GRUs used. Hence, for extensions to the
network, the local patches approach can more easily manage the additional memory
usage.

The results from Test 3 and Test 4 showcase the differences between simultaneous
iteration training and per iteration training. PIT performs slightly better in terms
of average losses but these differences are minor in comparison to the range of loss
values both training methods yield. The larger improvements of the PIT losses at the
latter epochs do seem more promising when using a higher amount of iterations and
epochs, for which validation is recommended. In terms of cost functional values, both
training methodologies perform similarly, whereas in the reconstruction example, PIT
shows a slightly larger amount of reconstructed tissue structure. Overall, PIT has a
slight advantage over SIT as a training methodology. This is further accentuated in
the results of Test 5, where the cost functional under SIT increases over the training
duration, while for PIT it decreases. Besides the reconstruction quality advantages of
PIT, PIT has a computational advantage in requiring a reduced amount of time to train
in the earlier epochs due to using fewer iterations. In comparison, SIT’s main advantage
lies in the flexibility of not having the number of iterations coupled to the number of
epochs used for training. An ideal training methodology would be to compute losses
and backpropagate every iteration of DLE-CSI. This would train the network on each
iteration independently of any previous iterations. This would also enable training for
a much larger amount of iterations, as saved gradient information is limited to the
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current iteration. Hence, the memory usage would not accumulate according to the
amount of iterations, as is currently the case. This methodology’s disadvantage is its
difficulty in implementation, having to decouple every DLE-CSI iteration.

Test 5 showcased the changes to the results when the network’s depth and com-
plexity doubles. The results showed improvement in all aspects with the exception
of the cost functional when using SIT. Specifically when assessing the reconstruction
example, a lot of information can be gained. Firstly, the white matter tissue structure
starts to take shape in the conductivity reconstruction. It is still only a general outline
of the area in which the white matter is present but a significant improvement has
been achieved. The reconstructed white matter tissue can be considered a blurred or
low frequency version of the ground truth. The finer details are missing and this could
indicate the need to accommodate higher frequency components of the image into the
network. The first recommended change would be to increase the amount of channels.
Increasing the number of channels typically allows a neural network to learn a higher
amount of different features. In addition, larger kernel sizes or increased network depth
should be tested. These changes and especially the increase in the amount of channels,
would drastically increase the amount of memory required. The increase in memory
usage mostly arises from requiring larger or more GRUs to pass the additional informa-
tion through. This issue could be (partially) mitigated by treating the additional data
as a separate sequence and reusing the same GRU with the same weights on different
data. Alternatively, skip connections could be used on an arbitrary amount of channels
to bypass GRUs. These channels with skip connections would then only learn changes
that are independent of specific iteration steps.

Secondly, the example EP reconstructions show that the network performs better at
reconstructing conductivity than permittivity. The permittivity reconstructions rarely
showcase significantly more than a homogeneous result. The conductivity is represented
by the real part of the contrast and the permittivity is represented by the imaginary
part of the contrast. Hence, keeping separate channels for real and imaginary data that
do not interact, might improve the neural network’s ability to improve both EPs to a
similar extent. Alternatively, it could be investigated whether the real and imaginary
parts can be decoupled completely by using two different neural networks specialised
in reconstructing each EP.

Thirdly, the example conductivity reconstruction shows that the NN has a preference
for reconstructing the white matter structures over the CSF structures. This is likely
caused by the reconstruction achieving a smaller MSE loss when focusing on white
matter, which is more abundant than CSF. The MSE should counteract this to a
certain extent as it punishes outliers severely due to its squared relation to the absolute
error. This indicates that the network is likely struggling to act on multiple features
with finer details.

The cost functional values of Test 5 with SIT show that the cost functional values
can increase while the average MSE losses decrease. This is reasonable as the MSE
represents the variance of the error, which can be decreased while the mean error
increases. However, the cost functional is used in the DLE-CSI algorithm as the metric
to determine if the reconstruction is of sufficient quality. Hence, replacing the MSE
loss with a different loss function that ensures a decrease in the cost functional is
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recommended. The cost functional cannot be used as a loss function in supervised
learning due to the lack of ground truth incident fields required for a ground truth cost
functional. The cost functional could be leveraged as a loss function for unsupervised
learning, allowing DLE-CSI to directly learn from in-vivo data. However, this does
sustain the reliance on simulated incident fields.

The cost functional values of Test 3, 4 and 5 are predominantly decreasing per
iteration step and to a much lesser degree per epoch. Hence, using a larger amount
of iterations should be investigated. More specifically, if we test the network with
an arbitrarily large amount of iterations (e.g. 1000 iterations), whether training the
network with 10 or 25 iterations achieves very different results. This teaches us whether
training with larger iteration amounts is conducive to validating with a significantly
higher iteration amount. If there is a limit to the usefulness of training with an increased
iteration amount, then this would limit the increases in training time compared to
training with a massive amount of iterations. Such knowledge is especially important
since memory-wise the maximum number of iterations during training is about 40.

For all tests, the average test losses were lower than the average training losses. This
could happen if the data in the training- and testing set are so similar that similar losses
are achieved. The average training losses will then be higher due to the losses at the
start of an epoch being higher than at the end. As the testing phase commences at the
end of the epoch, it will have losses similar to the final losses of the training phase but
without the higher losses at the start of the training phase. This is, however, unlikely to
be the only cause since PEBCC uses the 1mm version of the same dataset and does not
show this behaviour at all. Hence, the data should not be similar to such a degree that
this behaviour is warranted. Considering the poor losses and reconstruction results, it
is more likely that the DLE-CSI is not equipped to solve the presented problem in its
current capacity. Meaning that the results are poor enough that the difference between
a reconstructed set from training data and test data shows little difference in quality.
Combined with the aforementioned reason of lower losses for testing with equivalent
data should explain this behaviour.

A further point of investigation is concerned with typical use cases of RIMs. The
assumption of CSI’s gradient of the contrast function being an adequate replacement of
the negative log-likelihood function’s gradient should be researched. This assumption
should be tested to verify its validity, which can be easily achieved by formulating a
negative log-likelihood function and switching out the gradients.

The MSE of the reconstruction can be likened to the variance of an estimator,
indicating the spread of reconstructed values from the ground truth values. Similarly,
the root of the MSE (RMSE) can be interpreted as the standard deviation of the
reconstructed values from the ground truth values. The observed RMSE of Test 3
at epoch 9 approximates to

√
1225 = 35, a very large standard deviation value for

ground truth values with single digits. The losses do not decrease much for the other
tests, showing that in its current state DLE-CSI’s performance is deemed far from
sufficient. This is further accentuated by the reconstruction examples showing a severe
lack of details in tissue structures and even the complete absence of reconstructed CSF.
DLE-CSI still has potential with all the improvements suggested above. Most of these
suggestions come at the cost of increased memory usage, which is a common theme
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when working with deep learning for 3D-MRI data. It is therefore quite important
for the development of a technique such as DLE-CSI to optimise memory usage. It
is recommended to continue researching the feasibility of DLE-CSI due to the many
avenues of improvement available. If a RIM is concluded to not be fit for this type of
problem, a different topology from Chapter 4 can be investigated. Such as a CRNN,
which functions much like an RIM but uses convolution operations within the GRU,
limiting the amount of weights required.

If for the current conditions, a functioning version of DLE-CSI can be achieved, the
next step would be to validate DLE-CSI’s performance on noisy data. In practice, data
will never be noiseless and the ability of a MR-EPT method to deal with noise is of
paramount importance.

If an adequate DLE-CSI can be achieved with the aforementioned improvements, the
simulated incident fields will still limit its performance. Placing objects or patients in
the MRI scanner loads the coils leading to inaccuracies when using simulated incident
fields based on a free space. With a functioning DLE-CSI method, an attempt at
indirectly improving the incident field simulations could be made with deep learning.
However, no labels of ’true’ incident fields are available for training the network directly
in a supervised manner. Instead, the effect that a DL-produced incident field has on the
output EPs of DLE-CSI could potentially be used to implicitly learn them. This could
be considered indirect supervised learning. Somewhat similar concepts can be seen in
other fields [52, 53, 54]. Instead of directly using simulated incident fields B+;inc

1;sim, E
inc
sim

as input to DLE-CSI, they will be used as input to a NN together with the measured
B+

1 field to produce an updated version of the incident fields B+;inc
1;up , Einc

up . The NN aims
to implicitly approximate the coil loading effects on the incident fields based on the
measured B+

1 field.
The feasibility of such a method is limited by three things. Firstly, the entirety

of DLE-CSI needs to be incorporated as a NN to allow backpropagation to the point
where the incident fields are simulated. Moving such a model to a GPU for accelerated
computations might not be feasible due to increased memory usage. Secondly, the
body outside the imaging domain influences the incident field. Hence, updating the
simulated incident fields based on the image domain limited measurement of the B+

1

field will limit its effectiveness. Thirdly, additional NN layers increase memory usage
even further. Nonetheless, investigating improvements in incident field usage could be
worthwhile.

7.2 PEBCC Discussion

The results of PEBCC shown in Chapter 6 displayed its capability to improve conduc-
tivity reconstructions to a certain extent for noiseless cases. For the best performing
case of Test 2, a sensitivity of 0.05 when used a single time, 0.07 on average for iterative
use and 0.13 at all times for iterative use, was observed. These results were observed
for a kernel size of 3, and the use of a combined loss function consisting of both a MSE
and MAE loss, with both carrying equal weight. However, these results require more
extensive validation. The K-fold validation in Test 1, described in Subsection 6.3.1, re-
sulted in a single fold outperforming the other 3 significantly. This displays that a leave
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one out approach might not properly represent the overall performance of the network.
A K-fold validation of the optimally configured network is therefore recommended.

The results of Test 2 showed how adjusting the loss function from a pure MSE
loss to a fifty-fifty of a MSE loss and MAE loss, improved the sensitivity but slightly
degraded results for larger input errors. Further tuning of the balance between these
different types of loss functions should be performed. A better sensitivity might still
be achieved while keeping the relative error for larger input errors below 1.

A better sensitivity could be achieved with the same network settings if the network
is trained to handle negative input errors. All relative error results have shown that
within the current capabilities of the network, any negative input error is highly unlikely
to yield an improved reconstructed conductivity value. Using the same dataset in a
larger amount of combinations can already significantly increase the diversity in training
data, including more negatively valued input errors. This means that within the same
geometry, every set of conductivity- and phase maps are used as the ground truth in
an alternating fashion, instead of only the 4th set.

The training and testing assume that the geometry of the tissue is equivalent be-
tween input and ground truth. If in practice the input conductivity map was not
reconstructed with the correct tissue geometry, errors might arise from the use of PE-
BCC. An example of altered tissue geometry in reconstructions could be the boundary
errors occurring when using SH-EPT for reconstruction. Hence, PEBCC’s response
to altered tissue geometry should be investigated. Additionally, the effects of train-
ing PEBCC with different tissue geometry combinations of inputs and ground truths
should be researched, as this would lead to wider applicability of PEBCC. If PEBCC
can resolve tissue geometry differences relatively well, it could potentially be used to
correct issues like boundary errors.

The effectiveness of iterative use of PEBCC is reliant on the mapping of the out-
put conductivity to a corresponding phase map. Any newly introduced deficiencies
could degrade the performance and worsen the sensitivity. Additionally, outputs from
PEBCC outside of the sensitivity range should be ignored in order to use PEBCC iter-
atively. This requires sensitivity information based on the phase error rather than the
input conductivity error, as the input conductivity error is not available in practice.
After an iteration of PEBCC, the newly computed phase error for the next iteration
should be compared with the previous phase error. Wherever the phase error has in-
creased, the conductivity output should be replaced with its former value. Afterwards,
the phase maps should be recomputed accordingly. Hence, a phase error sensitivity
should be determined.

To further assess the capabilities of PEBCC, it should be tested on noisy data. The
sensitivity should be determined for a wide range of noise levels in order to truly assess
its usability. Similarly, any recommended improvements and adjustments should be
assessed on noisy data rather than noiseless data. The kernel size of 3 turned out to
be optimal in the noiseless case. With noise, this might differ, as a larger kernel could
be able to average out noise better than a small kernel size due to accessing a larger
sample size of the noise. Smaller kernel sizes do have the advantage of lower memory
usage and no need for segmentation.

It is recommended to investigate the amount of encoder- and decoder blocks in the
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design of the U-net. If any additional blocks improve the sensitivity, it might be worth
the increase in memory usage. Alternatively, if using fewer blocks barely degrades
performance, it could result in a smaller more practical neural network.

It is difficult to properly assess PEBCC’s performance on tumour reconstructions
with the current results. In order to assess the average losses in comparison to usage on
healthy tissue, data with EP differences in both healthy and tumour tissue should be
used. Furthermore, it should be assessed whether the relative error of tumour tissues
within the sensitivity range acts as an outlier. If so, such an outlier could potentially
be used as a way of tumour detection.

7.3 Project And Programming Methodology

For similar future projects, where the program’s operation is rather linear, it is recom-
mended to take more of a functional programming approach over an object-oriented
approach. Hiding variables and operators behind interfaces generally made it harder
to track where changes occurred. This increased the difficulty of debugging and track-
ing the data flow. Object-orientated programming is more suited when a program has
more variable ways in which it is run, compared to DLE-CSI in which the same order
of actions is performed every time. Functional programming refers to using mainly
functions and expressions which do not internally change data or states. Meaning that
any changes are returned as a new variable by the function and no input variables are
altered within. Hence, functional programming is more insightful to the user as the
data flow can be easily tracked from the main function.

The long training times of DLE-CSI of more than a week, motivated efficient use of
training time by preparing for the next training before the last one has been completed.
However, a more thorough assessment of current results should have been performed
first in order to not lose time on training a faulty network, which could have been
predicted in advance.

7.4 Conclusion

We explored two methods of combining deep learning with direct- and inverse opti-
mization EPT methods. The inverse optimization method, three-dimensional contrast
source inversion, is combined with a neural network with the aim of reducing the com-
putational load while maintaining reconstruction quality. The direct method, simplified
Helmholtz EPT, is used as a basis for a neural network that improves reconstructions
of conductivity by using measured phase data.

The results on deep learning enhanced contrast source inversion reported in this
work, show a significantly lower reconstruction quality than the 3D-CSI it is based on.
In its current capacity, DLE-CSI is unable to properly reconstruct the complex tissue
structures of the human brain. The current version of DLE-CSI has many potential av-
enues of improvement which are recommended to be explored. These recommendations
include an increase in feature channels, training the neural network independently per
iteration, adjusting the loss function, increasing the iteration amount and increasing
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the depth of the neural network. If all avenues of using a RIM are deemed inadequate,
other neural network topologies such as cascaded CNNs can still be investigated as
potential DLE-CSI implementations. Only if an equivalent reconstruction quality to
3D-CSI’s reconstructions can be achieved, can DLE-CSI’s potential improvements in
computational time be assessed. Furthermore, assessment of the noise robustness of
DLE-CSI is an important next step in the validation process.

The implementation of phase error based conductance correction has shown to cor-
rect conductivity maps with a conductivity input error sensitivity of 0.05 for single
time use and 0.13 for iterative usage. These results can potentially be improved further
by tuning the various network parameters and by having the network learn to handle
negative conductivity input errors. For practical use, an assessment of the phase error
sensitivity should be provided, as outside of training the conductivity input error is
unknown. Additionally, the influence of different mapping functions on the sensitivity
should be researched and included in the performance of PEBCC. Ultimately, PEBCC
needs to be assessed on noisy data to research its feasibility in practice.
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