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Figure 1: Our method decreases variance and increases the perception of the early renders. We compare our method with
the current state-of-the-art (hero wavelength spectral sampling) [WND∗14] at 16 and 64 samples per pixel, respectively. The
selected area depicts a cube made of wavelength-dependent material.

Abstract
Spectral Monte-Carlo rendering can simulate advanced light phenomena (e.g., dispersion, caustics, or irides-
cence), but require significantly more samples compared to trichromatic rendering to obtain noise-free images.
Therefore, its progressive variant typically exhibits an extreme amount of chromatic noise in early renders. To
that end, we propose a two-stage progressive approach. We initially restrict the original wavelength distribution,
then slowly relax it. In the process of relaxing the range of wavelengths, all wavelengths that are outside of that
restricted range will be propagated. Thereby, we lower variance and increase the perception of these early renders
with little overhead.

1. Introduction

Ray tracing is a popular light simulation technique for ren-
dering high-quality, photo-realistic images. While traditional
forms of ray tracing simulate light in the RGB color space, it
is not an accurate representation of light, which is a continu-
ous spectrum of wavelengths. With this limitation, a number
of advanced light phenomena, such as dispersion, caustics,

or iridescence can only be properly handled with spectral
rendering.

Unlike trichromatic rendering, spectral rendering utilizes
the full range of visible wavelength to faithfully represent
light. Monte-Carlo path tracing are particularly attractive as
spectral rendering can be achieved by simply adding the
spectral domain as another dimension of the path-space in-
tegral equation [Vea98], which is straight-forward and un-
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biased. However, this infers a notable increase in required
sampling rates to obtain a noise-free result.

While recent approaches reduce chromatic noise by sam-
pling multiple wavelengths for each path [EM99, RBA09,
WND∗14,WGGH20], the number of sampled paths required
still remains drastically higher than that of tristimulus ren-
dering and is, therefore, undesirably slow. Achieving global
illumination at interactive rates with spectral rendering re-
mains a challenging problem.

A potential approach to partially solve this problem is to
transform normal path tracing into a progressive process.
Common approaches involve reduced sample rates or taking
a selected subset of image pixels. If the quality of the gener-
ated image is not satisfactory, additional samples are created
to output a better image. This process will iterate until the
image has reached the desired quality. In the case of spectral
rendering, however, the first few iterations commonly dis-
play a notable increase in variance compared to tristimulus
rendering.

In this paper, we present a reformulation of spectral ren-
dering into a perceptually progressive version. This render-
ing method focuses on the more important ranges of wave-
lengths, aiming to achieve more visually acceptable renders
after the first few iterations. As time goes on, the method
will converge to an output identical to what can be obtained
by using normal path tracing.

Section 2 will cover spectral light transport equations and
provide an overview of the state-of-the-art. We next expand
on how we approached the problem and how we formal-
ized our solution in Section 3. Section 4 goes into detail of
our implementation and evaluate it in a variety of scenar-
ios in Section 5. Section 6 reflects on the ethical aspects of
our research and discuss the reproducibility of our methods.
Lastly, Section 7 and Section 8 will discuss our results, im-
provements and conclude the research.

2. Background and Related Work

Spectral Light Transport

To obtain a physically-based render, the general path-space
light transport equation [Vea98] is evaluated by integrating
over all light paths in a scene. Extending upon this equa-
tion by having an additional integration over the spectral do-
main, the spectral radiance of a pixel, denoted by I, can be
described as:

I =
∫

Λ

∫
Ω

f (x̄,λ)dµ(x̄)dλ (1)

where Λ denotes the spectral domain and Ω is the path space
of all possible light paths x̄ = x0, ...,xn−1 of finite length n,
starting from a light source, travelling through the scene and
ending at a camera pixel. f (x̄,λ) then describes the measure-
ment contribution of path x̄ given a wavelength λ.

Figure 2: We show an example of a prism, where different
wavelengths are scattered into different directions when en-
tering the prism.

An estimation of Equation 1 can be given by Monte-Carlo
methods to obtain an unbiased yet naive result:

⟨I⟩= 1
N

N

∑
i=1

f (x̄i,λi)

p(x̄i,λi)
(2)

where N is the sampling rate and p(x̄i,λi) is the probabil-
ity density of the sample pair (x̄i,λi) which can be further
decomposed as:

p(x̄,λ) = p(λ) · p(x̄|λ) (3)

The naive approach above only takes into account 1 wave-
length per light path. This will inevitably introduce large
amount of color noise and is extremely wasteful in cases
where a path does not encounter wavelength-dependent in-
teractions. Wavelength dependency here is defined as inter-
actions with a dispersive material, whose scattering distribu-
tion function depends on the wavelength, with an example
shown in Figure 2.

Multiple Wavelength Sampling

Evans and McCool [EM99] and Radziszewski et al.
[RBA09] introduced stratified wavelength sampling, allow-
ing a sampled path to be reused for propagating mul-
tiple wavelengths at once (called a cluster). Wilkie et
al. [WND∗14], more recently, introduces hero wavelength
spectral sampling (HWSS). A single initial hero wavelength
is chosen to be responsible for path propagation, and that
path is then taken into account for multiple wavelengths. As
the same path can now be sampled from multiple valid wave-
lengths, it is important to weight them appropriately using
multiple importance sampling [Vea98], leading to the fol-
lowing estimator:

⟨I⟩= 1
N

N

∑
i=1

C

∑
j=1

f (x̄i,λ
j
i )

∑
C
k=1 p(x̄i,λ

k
i )

(4)

where C is the number of wavelengths valid per path.

While reusing sampled paths for multiple wavelengths
does not improve the performance for perfectly specular ma-
terial, it greatly speeds up the convergence rates for diffuse
and glossy surfaces.
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3. Methodology

The principles of Monte-Carlo estimation applied to Equa-
tion 2 states that, the better p(x̄,λ) matches the integrand,
the faster the image converges. However, since some wave-
lengths contribute more to the image than others, it is more
efficient to focus on sampling those areas in the early iter-
ations of progressive rendering, where a smooth and low-
variance estimate of the scene is preferable.

3.1. Restricting and Relaxing of Wavelength
distributions

HWSS gave us the means to improve convergence rates
for non-specular wavelength-dependent materials. However,
specular materials still project an extreme amount of noise,
especially in the first few iterations. Aiming to both utilize
HWSS and alleviate the initial noise in specular materials,
we propose a two-stage progressive approach: restriction
and relaxation of wavelength sampling distributions.

In the first stage, we restrict the range of wavelengths that
can be sampled, defined as prestricted(α,λ):

prestricted(α,λ) = p(λ) · restrict(α,λ) (5)

where restrict(α,λ) is the restriction function and α is its
extent. As prestricted(α,λ) will be used as a probability dis-
tribution function, there is a need for normalization:∫

Λ

prestricted(α,λ) = 1 (6)

transforming the PDF of sampling a pair (x̄,λ) to:

p(x̄,λ) = prestricted(α,λ) · p(x̄|λ) (7)

In the second stage, the restricted range gradually re-
laxes as the algorithm progresses. This expands Equation 2
to the following:

⟨I⟩= 1
N

N

∑
i=1

f (x̄i,λi)

prestricted(αi,λi) · p(x̄i|λi)
(8)

where αi increases in subsequent iterations. We define a
threshold Nthold < N that indicates when the relaxation pro-
cess is completed. As the current iteration approaches Nthold ,
the original wavelength distribution will be regained:

lim
i→Nthold

prestricted(αi,λi)

= lim
i→Nthold

p(λi) · restrict(αi,λi)

= p(λi) (9)

With the definition of the restriction and relaxation
scheme, shown in Figure 3, a wavelength sample can now
be drawn from prestricted(αi,λi). The sample will then be
evaluated and recorded for its contribution, and an updated
render will be written accordingly.
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Original wavelength distribution

Restricted distribution Restricted distribution

N_thold

Regain original distribution

Figure 3: Method overview. We initially restrict the original
wavelength distribution and then relax it gradually. As the
current iteration approaches Nthold , we regain the orginal
wavelength distribution.
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Figure 4: Choosing kernels. We show the chosen unimodal
functions used to learn their performance.

3.2. Choosing Restriction Function

Unimodal Function

Out of different unimodal functions, more commonly known
as kernels, the Gaussian and box function are chosen to be
our restriction function, shown in Figure 4. One represents
curves, performing smoothing restrictions while the other
represents uniform distributions, performing hard cut-offs.

Each distribution is then multiplied with the original SPD
to give prestricted(α,λ) in Equation 5. Through experimenta-
tion, it can be seen that the box function gave the best perfor-
mance when chosen as a restriction function, and sampling
wavelengths from this restricted distribution gives decreased
variance, as shown in Figure 5. On the other hand, the Gaus-
sian function tends to introduce more ’fireflies’ and offers no
improvement in noise reduction.

Even though variance is indeed reduced, a unimodal func-
tion is a poor choice as it tints the output image with the
typical color of the initial wavelength range that is hard to
remove in later renders. Moreover, it reduces the effective-
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Figure 5: Unimodal restriction function. Using a unimodal
function as our restriction function, we compare our method
with HWSS at 16, 64, and 128 samples per pixel, respec-
tively. The ’peak’ is placed at 580nm and starts with an ini-
tial width of 20nm.

ness of HWSS as stratification is limited to a small range of
wavelengths. Therefore, there is a need to use multimodal
functions.

Multimodal Function

We now consider a distribution with an arbitrary number
of box functions placed at different wavelength ranges. The
ideal number of ’peaks’, through experimentation, is three. It
is also important to place these ’peaks’ at wavelength ranges
that roughly corresponds to red, green, and blue. This can be
explained by the trichromatic theory of color vision, stating
that all hues can be derived from a mixture of three primary
colors [Max57, You02]. Increasing the number of peaks be-
yond this results in increased variance, as it extends the range
of wavelengths that our method can sample from.

Figure 6: Multimodal restriction function. Using a multi-
modal function as our restriction function, we compare our
method with HWSS at 16, 64, and 128 samples per pixel,
respectively. The ’peaks’ are placed at 465, 570 and 580nm
and start with an initial width of 20nm.

Figure 6 showed that increasing the number of peaks

Good peaks placementOriginal Bad peaks placement

Figure 7: Scaling PDFs. We compare examples of when
good and bad ’peaks’ are chosen, which is dependent on the
input scene.

greatly improved the transparency and color of wavelength-
dependent materials. However, this multimodal function still
suffers from the same problem as the uniform unimodal
function. It resulted in the dim appearance of wavelength-
dependent materials in initial renders. One way to allevi-
ate this is by scaling the PDFs appropriately as we limit
the range of wavelengths. However, this approach’s resulting
variance is very dependent on the placement of the ’peaks’,
as shown in Figure 7. Therefore, a different approach is nec-
essary.

3.3. Propagating Unused Wavelengths

We now propagate all the wavelengths that are outside of
the restricted range and add their contribution to a light path.
More formally, if the current number of iterations is lower
than Nthold , then we extend Equation 8 to:

⟨I⟩= 1
Nthold

Nthold

∑
i=1

[
f (x̄i,λi)

prestricted(αi,λi) · p(x̄i|λi)

+(1− restrict(αi,λi)) ·
f (x̄i)

p(x̄i)

]
. (10)

Otherwise, if the iterations exceeded Nthold (i.e.
restrict(α,λ) = 1), then ⟨I⟩ again relies on the unbi-
ased Equation 8.

By introducing a mixture of wavelength-dependent term
and wavelength-independent term in early renders, we un-
avoidably introduce bias and any spectral effects outside the
restricted range of wavelengths are lost. This is more than
acceptable, however, as this equation takes advantage of the
fact that spectral effects are difficult to observe in initially
undersampled renders. This bias will disappear as the al-
gorithm progresses, and at which point, the correct spectral
phenomena will be given.

Integration with multiple wavelength sampling

Reusing a light path for multiple wavelengths as in HWSS
[WND∗14] remains an important technique to reduce chro-
matic noise for non-specular material, especially in the
early renders. Therefore, it is essential that we combine our
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method with HWSS. To that end, we will apply our bias term
that extends Equation 4 to:

⟨I⟩= 1
Nthold

Nthold

∑
i=1

[( C

∑
j=1

f (x̄i,λ
j
i )

∑
C
k=1 prestricted(αi,λ

k
i ) · p(x̄i|λk

i )

)
+(1− restrict(αi,λi)) ·

f (x̄i)

p(x̄i)

]
.

(11)

4. Implementation

Our progressive method was implemented in PBRT-v3
[JPH16], a C++ ray-tracer. It stores spectral power distri-
butions by splitting them over 60 discrete bins from 400 -
700nm. However, PBRT-v3 does not support spectral ren-
dering. We first added a simple simulation of dispersion
in wavelength-dependent material interactions by extend-
ing specular and non-specular dielectrics BSDFs based on
Cauchy’s equation [JW01]. HWSS [WND∗14] and CMIS
[WGGH20] are then incorporated, extending the default path
tracer integrator, to implement spectral rendering. HWSS is
then transformed into a progressive renderer, where an im-
age is simply written to disk each time a sample contributes
to a pixel, and tev [Mül22] is used to continuously read
the updated image. Lastly, we restrict and relax the original
wavelength distribution depending on the current iteration of
the progressive method.

5. Evaluation

Our progressive method is evaluated in three test scenes
shown in Figure 9 and Figure 10. The first two scenes con-
tain multiple dispersive cubes that would benefit greatly
from using our progressive approach. One scene uses the
D65 standard illuminant while the other uses an LED light,
sourced from the LSPDD [RA]. Their distributions are
shown in Figure 8. Finally, the RUBIK scene consists of
multiple stacking dispersive glasses that exhibit strong spec-
tral phenomena under D65. Using HWSS for this scene is
more beneficial for the viewers. The reference images for
these scenes are rendered with sufficient samples per pixel
(N = 65K).

5.1. Method evaluation

To compare our approach against HWSS, six different it-
erations of render were chosen: 16, 32, 64, 128, 256, and
512 samples per pixel (spp). Our comparisons only go up to
512spp as a sufficiently converged render of the scene should
already be obtained at this point. Then, our method falls
back to HWSS. The default settings for HWSS were used (4
wavelengths per path) as in the original paper [WND∗14].
Same-iteration instead of time-based comparison was per-
formed as the process of relaxing and propagating unused
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Figure 8: Emission spectra. We show used spectra obtained
from the LSPDD [RA]. Note the differences between the D65
illuminant and the LED emitter.

wavelengths produces negligible overhead to the total ren-
dering time. We report errors using the perceptually-based
structural similarity metric (SSIM) [WBSS04], but also the
commonly-used mean-squared error (MSE) in Figure 9 and
Figure 10.

Comparison with previous approaches

We first make the comparisons in 2 scenes with varying
emitter spectral distribution (LED and D65), as shown in
Figure 9. Even though emitter sampling is near-optimal in
these scenes, its initial renders of wavelength-dependent ma-
terials remain extremely noisy, and we expect our method
to perform better. As demonstrated, our method results in
higher SSIM and lower or similar error rates in all cases.
Specifically, an improvement in the uniform emitter (D65)
scene can be seen with a 10% overall increase in SSIM for
16spp while MSE stays relatively the same. Our method also
offered the same improvement for the LED scene, with a 9%
SSIM increase. The benefits of our method gradually disap-
pear as we relax the range of wavelengths to 512spp, where
our method returns similar result to that of HWSS.

Early dispersive effects

We next go through a scene where many dispersive hollow
cubes are stacked on top of one another, shown in Figure 10.
This resulted in strong dispersive effects, which can be ob-
served clearly in the early renders. While our method still
offers an improvement for the scene, it drives away any of
the desired spectral effects, making the initial renders’ inac-
curacies visible. Moreover, even though the dispersive effect
will be clearer as the algorithm progresses, it is not notice-
able. Therefore, in such a scene where spectral phenomena
are clearly displayed, it would be more appropriate to use
default HWSS.
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Figure 9: Evaluation results. We show the FALLING_CUBE scene and compare our method with HWSS at different iterations:
16, 32, 64, 128, 256, and 512 samples per pixel. The scenes contain a single emitter whose SPD varied. Refer to Figure 8 for
the corresponding distribution. Our method greatly outperforms HWSS in SSIM, a perceptual model.
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Figure 10: Evaluation results. We show the RUBIK scene and compare our method with HWSS at different iterations: 16, 32,
64, 128, 256, and 512 samples per pixel. The scene is under D65 illuminant. Refer to Figure 8 for the corresponding distribution.
While our method still outperforms HWSS, dispersion effects’ color shown in our method is inaccurate.

6. Responsible Research

Reproducibility in computer graphics is important as it al-
lows for verifying and improving existing techniques. We
ensure our method can be reproduced by including our im-
plementation details in Section 4, which is implemented us-
ing the open-source PBRT-v3 renderer [JPH16].

7. Discussion

We have shown that our method increases the perception of
early renders, while producing lower or similar error rates
when compared to HWSS. In scenes that contain specular
wavelength-dependent materials, our method greatly outper-
forms HWSS while producing little overhead in the process
of restricting and relaxing wavelength distributions.

In the future, investigations can be spent on how we relax
the range of wavelengths. Given the human visual system,
it could be more beneficial to relax in a quadratic fashion
rather than linear. In addition, an area that is worth looking
into is adding support for participating media to measure the
effectiveness of our method with different spectral phenom-
ena.

8. Conclusions

We introduced a progressive approach for spectral light
transport. Our method focuses on alleviating variance in
early renders by initially restricting and gradually relaxing
the wavelength distribution. In the process of relaxing, we
showed that introducing bias can reduce variance and sig-
nificantly improve the perception of the output images. We
also demonstrated that the bias will go away as we obtain
an unbiased final render with accurate spectral phenomena.
Moreover, our method introduces little overhead compared
to the previous methods.
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