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Most analytical models for the design of piled embankments or load transfer platforms with geosynthetic
reinforcement (GR) include two calculation steps. Step 1 calculates the arching behaviour in the fill and
step 2 the load-deflection behaviour of the GR. A calculation method for step 2 based on the results of
model tests has been published by Van Eekelen et al. (2012a,b). The present paper analyses and presents
a newmodel for step 1, which is the arching step. Additional tests, which are also presented in this paper,
were conducted for this purpose.

The new model is a limit-state equilibrium model with concentric arches. It is an extension of the
models of Hewlett and Randolph (1988) and Zaeske (2001). The new model results in a better repre-
sentation of the arching measured in the experiments than the other models mentioned, especially for
relatively thin fills.

Introducing GR in a piled embankment results in a more efficient transfer of load to the piles in the
form of an arching mechanism. The load is then exerted mainly on the piles and the GR strips between
the piles, on which the load is approximately distributed as an inverse triangle. The newmodel presented
in this paper describes this behaviour and is therefore meant to describe the situation with GR. The new
model provides a physical explanation for observations of the arching mechanism, especially the load
distribution on the GR. Other observations with which this model concurs are the dependency on fill
height and friction angle. The amount of arching increases with increasing subsoil consolidation and GR
deflection. The paper describes how the new model relates to the development of arching as a result of
subsoil consolidation.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Many analytical design models for the design of piled em-
bankments include two calculation steps. The first step calculates
the arching behaviour in the fill. This step divides the total vertical
load into two parts: load part A, and the ‘residual load’ (B þ C in
Fig.1). Load part A, called ‘arching A’ in the present paper, is the part
of the load that is transferred to the piles directly.

The second calculation step describes the load-deflection
behaviour of the geosynthetic reinforcement (GR, see Fig. 1). In
this calculation step, the ‘residual load’ is applied to the GR strip
between each pair of adjacent piles and the GR strain is calculated.
An implicit result of step 2 is that the ‘residual load’ is divided into a
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load part B which passes through the GR to the piles, and a part C
resting on the subsoil, as indicated in Fig. 1.

Van Eekelen et al. (2012b) analysed and made proposals for
calculation step 2. The present paper analyses and puts forward a
new model for step 1, the arching step. Both papers compare the
results with measurements from a model test series presented in
the first part (Van Eekelen et al., 2012a) of this three-part study.
These tests are particularly suitable for the validation of calculation
steps 1 and 2 separately because A, B and C were measured sepa-
rately. For the present paper, a number of additional tests were
carried out with the same test set-up.

Several families of analytical models describing step 1 (arching)
are available in the literature. Terzaghi (1943) listed a number of
them. Current arching models comprise:

Rigid arch models, such as several Scandinavian models
(Carlsson, 1987; Rogbeck et al., 1998, modified by Van Eekelen
et al., 2003; Svanø et al., 2000) and the Enhanced Arching
model (also called the BusheJenner model or the Collin, 2004
model) and the present design method of the Public Work
ts reserved.
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Nomenclature

A load part transferred directly to the pile (‘arching A’ in
this paper) expressed as kN/pile ¼ kN/unit cell, kN/pile

A% arching A presented as a percentage of the total load, A
% is the same as the pile efficacy (“E”) as used by several
authors: A% ¼ E ¼ 1� BþC

AþBþC or

A% ¼ E ¼ A
AþBþC ¼ A

ðgHþpÞ$sx$sy, %

a width of square pile cap. Bers ¼ a, m
B load part that passes through the geosynthetic

reinforcement (GR) to the pile expressed as kN/pile
¼ kN/unit cell, kN/pile

Bers equivalent size of circular pile cap, Bers ¼ 1=2$d$
ffiffiffi
p

p
or

the width of a square pile cap, m
C load part that is carried by the soft soil between the

piles (this soft soil foundation is called ‘subsoil’ in this
paper) expressed as kN/pile ¼ kN/unit cell, kN/pile

C a constant to be calculated with boundary conditions
(Eqs. (29)e(34) and (47)e(50) in the appendix)

d diameter circular pile (cap), m
E pile efficacy, the same as A%, e (kN/kN)
F force, kN
GR geosynthetic reinforcement
h or H height of the fill above bottom layer of GR, m
Hg2D height of the largest of the 2D arches of the new

concentric arches model, see Eqs. (2) and (13) and
Figs. 10 and 12. Hxg2D refers to the height of a 2D arch
that is oriented along the x-axis (perpendicular to the
road axis), as indicated in Fig. 12. Hyg2D refers to the
height of a 2D arch that is oriented along the y-axis, m

Hg3D height of the largest 3D hemisphere of the new
concentric arches model, see Eq. (4) and Fig. 10, m

hg arch height in EBGEO, hg ¼ sd/2 for h� sd/2 or hg¼ h for
h < sd/2, m

J2% tensile stiffness of the GR at a GR strain of 2%, kN/m
k subgrade reaction, kN/m3

Kp passive or critical earth pressure coefficient, e

Lx2D part of the GR strip that is oriented along the x-axis
(perpendicular to the road axis) and on which the 2D
arches exert a force, see Fig. 23 and Eq. (12), m

Ly2D part of the GR strip that is oriented along the y-axis
(parallel to the road axis) and on which the 2D arches
exert a force, see Fig. 23 and Eq. (12), m

Lx3D width of square on which the 3D hemispheres exert a
load, see Fig. 22 and Eq. (8), m

P2D calculation parameter given by Eq. (1). Px2D refers to a
2D arch that is oriented along the x-axis, as indicated in
Fig. 12 and Eq. (14). Py2D refers to a 2D arch that is
oriented along the y-axis, kPa/mKp�1

P3D calculation parameter given by Eq. (7), kPa/m2Kp�2

p uniformly distributed surcharge on top of the fill (top
load), kN/m2

Q2D calculation parameter given by Eq. (1), kN/m3

Q3D calculation parameter given by Eq. (7), kN/m3

r radius of a 2D arch, m
R radius of a hemisphere (in this paper a hemisphere is a

3D arch), m
Rb total friction between fill/box walls and foam

cushion/box walls and piles, see Van Eekelen et al.
(2012a,b), kN/pile

sd the diagonal centre-to-centre distance between piles

sd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x þ s2y

q
, m

sx, sy pile spacing perpendicular to the road axis (x) or
parallel to the road axis (y), m

Wn net load (¼ Ws � C � Rb), kN/pile
Ws total surcharge load on a unit areaWs ¼ p$sx$sy, kN/pile
z distance along the vertical axis as indicated in, for

example, Fig. 3, m
4 internal friction angle, �

g fill unit weight, kN/m3

sr radial stress in a 2D arch, kPa
sR radial stress in a 3D hemisphere, kPa
sq tangential stress in 2D arch or 3D hemisphere, kPa
PET polyester
PP polypropylene
PVA polyvinyl alcohol
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Research Center in Japan (2000, discussed in Eskişar et al. 2012).
In this class of models, it is assumed that an arch is formed that
has a fixed shape. The shape of the arch is usually 2D or 3D
triangular. It is assumed that the entire load above the arch,
including the soil weight and the traffic load, is transferred
directly to the piles (load part A, or arching A, see Fig. 1). The
weight of the soil wedge is carried by the GR þ subsoil (B þ C).
These models do not consider the mechanical properties of the
fill, such as the friction angle, in their equations and they are
therefore not discussed further in the present paper.
In equilibrium models, an imaginary limit-state stress-arch is
assumed to appear above the GRþ soft subsoil between the stiff
elements. In the 3D situation, these stiff elements are piles; in
the 2D situation, they are beams or walls. The pressure on the
GRþ subsoil (Bþ C) is calculated by considering the equilibrium
of the arch. In most models, the arch has a certain thickness.
Two limit-state equilibrium models are frequently used in piled
embankment design today. One of them is the Hewlett and
Randolph model (1988), explained in Fig. 2, which was adopted
in the French ASIRI guideline (2012) and suggested in BS8006
(2010) as an alternative for the original empirical model in
BS8006. The other frequently used equilibriummodel is Zaeske’s
model (2001, and also described in Kempfert et al., 2004), which
is explained in Fig. 3. This model was adopted in the German
EBGEO (2010) and the Dutch CUR226 (2010, described in Van
Eekelen et al., 2010), and we refer to it here as ‘EBGEO’.
Another family of arching models is the family of frictional
models. Several authors have adopted the frictional model
proposed by Terzaghi (1943), who in turn based his model on
previous work from other authors such as Cain (1916) and
Völlmy (1937). McKelvey (1994) extended Terzaghi by assuming
that a ‘plane of equal settlement’ exists and combined this with
a tensioned membrane theory.
Russell and Pierpoint (1997) extended the Terzaghi model to
include a third dimension by assuming the presence of friction
in the vertical planes along the edges of the square pile caps.
McGuire et al. (2012) also adopted the idea of a ‘plane of equal
settlement’, which they described as the ‘critical height’. They
conducted numerous tests and collected field data to determine
and validate their equation for the critical height. This critical
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Fig. 1. Calculating the geosynthetic reinforcement (GR) strain comprises two calculation steps.
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height should be used in combination with Russell and
Pierpoint’s (1997) version of Terzaghi (1943).
Naughton (2007) determined the critical height with log spiral
shear planes. Britton and Naughton (2008) presented 3D ex-
periments validating the critical height of this model.
Although the ideas underlying the frictional models are
extremely important, these models are not generally used in
Europe for piled embankment design and they will not be dis-
cussed further. A possible reason for the infrequent use of these
models in Europe is that the results depend to a large extent on
the value of K0 (the ratio between horizontal and vertical
pressure) and the fact that it is difficult to determine an accurate
value for K0.
Other examples of models considered in the literature are the
models using mechanical elements, like the load displacement
compatibility method of Filz et al. (2012), the one-dimensional
model of Chen et al. (2008) and the plane strain models of
Deb (2010), Deb and Mohapatra (2012) and Zhang et al. (2012).
Filz et al. (2012) model the fill, the GR and the piles þ subsoil as
separate elements. The boundary condition for each of the ele-
ments is that deformation must match neighbouring elements.
This determines the load transferred to the piles directly
(arching A, see Fig. 1). Filz et al. (2012) limit arching A with 3D
Terzaghi (cross-shaped, according to Russell and Pierpoint,
1997), plus critical height.
A familiar empirical model is the modified Marston and
Anderson model (1913) that was modified by Jones et al.
(1990) and adopted in BS8006 and the Finnish design guide-
line (Liikennevirasto, 2012). Marston and Anderson (1913) car-
ried out numerous experiments to determine arching above a
pipe in soil. They found a 2D equation that was modified by
Jones et al. (1990) for the 3D piled embankments, as explained
and further modified in Van Eekelen et al. (2011). This model is
very important because of the widespread application of
BS8006.
Fig. 2. Hewlett and Randolph (1988) consider the ‘crown’ element of the diagonal arch and
figure.
The final type of model that should bementioned is the family of
hammock models, such as the ‘path of minor principal stress’
model described by Handy (1985).

Most step 1 models calculate one average pressure on the GR.
EBGEO uses, in its step 2, a triangular pressure distribution. This is
an assumption following from Fig. 9.15 of EBGEO (2010), not the
result of a calculation. Van Eekelen et al. (2012a,b) showed that the
measured pressure distribution on the GR strip between the piles
can be better approximated with an ‘inverse triangle’.

The present paper presents a new equilibrium model for step 1
that is a better match for several experimental, numerical and field
observations, particularly the measured inverse triangle in the
pressure distribution. The starting point for this study consisted of
the design models in general use in Europe. The new model is an
extension of the Hewlett and Randolph (1988) and EBGEO (2010)
models.

2. Additional laboratory tests

2.1. Measurements of steps 1 and step 2 separately

Van Eekelen et al. (2012a) presented and analysed a series of
twelve model laboratory model tests on piled embankments. Since
then, eight additional model tests have been carried out with the
same set-up. Six of them were carried out specifically to validate
variations in calculation step 1. These tests are presented here. One
of the strengths of the test set-up was that it was possible to vali-
date calculation steps 1 and 2 (Fig. 1) separately because the values
of A, B and C are measured separately.

2.2. Description tests

Fig. 4 shows the test set-up for both the first and the second
series, except for two additional total pressure cells (TPCs), which
the ‘foot’ element (just above the pile cap) of the plane strain arch as indicated in this



Fig. 3. Zaeske (2001) considers the equilibrium of the crown elements of the diagonal arches.
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were used in the second series only. The insides of the box walls
were located on the lines of symmetry. A foam cushion modelled
the soft soil around the four piles. This cushionwas a saturated and
watertight sealed foam rubber cushion. A tap allowed drainage of
the cushion during the test to model the soft-soil consolidation
process. A stiff steel frame was installed to which the GR was
attached. The steel frame could move freely in a vertical direction.
Since it fitted precisely in the container, no horizontal movement
was possible. Differential settlement along the frame bars was not
possible. It is assumed that this has a negligible influence on dif-
ferential settlement between the piles.

The embankment in most tests was granular fill (crushed
recycled construction material 1e16 mm, 4 ¼ 49� at a unit weight
fill
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Fig. 4. Test set-up for piled embankment model experiments. The stress distribution is
measured with total pressure cells (TPCs). See also Van Eekelen et al. (2012a), which
includes an extensive presentation of the test series, including measurements of
strains and deformations.
of 16.4 kN/m3). The friction angle 4 ¼ 49� of the granular fill was
measured in large diameter (ø ¼ 0.3 m) triaxial tests. The average
relative density in the triaxial tests and scale model tests was nearly
the same at 61.0% and 62.9% respectively. The top load was applied
with a water cushion that made it possible to apply stresses com-
parable with field stresses.

The area replacement ratio a2/(sx$sy) in the test series
described was 2.6%, while the area replacement ratio in Dutch
practice is between 4.5 and 12%. This was a deliberate decision
with the aim of generating enough GR tensile forces at this
smaller scale.

After the introduction of the fill, each test was carried out as
follows: (1) one drainage step foam cushion (subsoil consolidation),
(2) first top load increment, (3) one or more drainage steps (4)
second top load increment, (5) one or more drainage steps and so
on, up to the maximum top load (varying between 50 and 100 kPa)
and the subsequent drainage steps. The test concluded with the
complete removal of the subsoil support by applying vacuum to the
foam cushion.

Table 1 lists a selection of the tests in the first series, and all the
tests in the new second series presented in the present paper. The
tests from the second series are all variations on test K2, except that
each test included one variation, which is indicated in bold in
Table 1. Furthermore, additional total pressure cells were added to
measure the load distribution on the GR strips.

The GR in these additional tests consisted of two layers of woven
PVA grid, except for test K7, where the bottom layer was replaced
by a similar PVA geotextile. The two uniaxial reinforcement layers
were placed directly upon each other on one frame. The strength
direction of one geogrid was perpendicular to the other. There was
no distance between these two GR layers. The two layers are
therefore considered to be a single GR layer that is completely
biaxial.

GR stiffness depends on GR strain and the duration of loading,
as well as other factors. The stiffness values of the weak direction
of one GR layer and the stiff direction of the other layer were
aggregated, resulting in a total GR stiffness J2% ¼ 2269 kN/m in
each direction. J2% is the GR stiffness for a GR strain of 2%, and is
determined in accordance with ISO 10319. These ISO tests are
much faster than the piled embankment model tests (that took
3 days each). This means that the GR in the model tests is loaded
longer and will behave differently (less stiffly) from the
behaviour suggested by this J2%. However, GR stiffness is not
a parameter in analytical step 1: the arching calculations
considered in the present paper. Van Eekelen et al. (2012a)
confirmed that using GR has a major impact on the arching
mechanism, but GR stiffness (as long as the stiffness complies
with a good-quality design model) does not have a measurable
influence.



Table 1
Specification of the additional series 2 scaled model tests, and a selection of the series 1 tests. The series 2 tests were a variation on test K2 presented in Van Eekelen et al.
(2012a).

Sequence
of tests

Code GR J2% ¼ 2269 kN/m except tests
T2 and T3

Fill height granular
fill 4 ¼ 49.0�

except test T2

Fill unit
weight

Top load pa

m kN/m3 kPa and kN/pile

Selection of tests of series 1 (Van Eekelen et al., 2012a)
6 K2 2� PVA grid 0.420 16.59 p ¼ 0e25e50e75e100 kPa (¼ 0e7.6e15.1e22.7e30.2 kN/pile)

peR ¼ 1.2e22.0e41.1e59.8e74.9 kPa
5 T2 13 PP geotextile J2% [ 970/1810 kN/m 0.420 sand

4 ¼ 40.9�
16.55 p ¼ 0e25e50e75 kPa (¼ 0e7.6e15.1e22.7 kN/pile)

peR ¼ �1.8e18.3e37.4e50.9 kPa
7 T3 13 PP geotextile J2% [ 970/1810 kN/m 0.420 16.70 p ¼ 0e25e50e75 kPa (¼ 0e7.6e15.1e22.7 kN/pile)

peR ¼ �0.2e19.7e39.0e55.2 kPa

Series 2
13 K4 2� PVA grid 0.655 16.80 p ¼ 0e25e50e75 kPa (¼ 0e7.6e15.1e22.7 kN/pile)

peR ¼ �0.9e13.9e28.5e44.7 kPa
14 K5 2� PVA grid 0.343 17.95 p ¼ 0e25e50e75e100 kPa (¼ 0e7.6e15.1e22.7e30.2 kN/pile)

peR ¼ �2.7e14.3e31.9e49.9e67.2 kPa
15 K6 2� PVA grid 0.429 16.35 p [ 0e50e100 kPa ([ 0e15.1e30.2 kN/pile)

peR ¼ �1.3e31.7e66.1 kPa
16 K7 Bottom layer PVA geotextile,

top layer PVA grid
0.426 16.42 p ¼ 0e25e50e75e100 kPa (¼ 0e7.6e15.1e22.7e30.2 kN/pile)

peR ¼ 0.0e17.3e33.9e51.4e68.0 kPa
17 K8 2� PVA grid 0.227 17.13 p ¼ 0e25e50e75e100 kPa (¼ 0e7.6e15.1e22.7e30.2 kN/pile)

peR ¼ �0.1e18.0e35.6e57.7e73.8 kPa
18 K9 2� PVA grid 0.655 16.82 p ¼ 0e25e50e75e100 kPa (¼ 0e7.6e15.1e22.7e30.2 kN/pile)

peR ¼ �4.8e12.4e28.6e43.5e63.8 kPa

a After each top load increase, controlled drainage of the foam cushion (‘subsoil’) follows in one or more steps until the subsoil support C is nearly gone. The calculations
were carried out with surcharge load peR, where R is the measured friction between fill and box walls. The listed peR is given for the moments just before top load increase
(and therefore for minimal subsoil support C).
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2.3. Results of the additional tests

Fig. 5 compares the measurements of arching A in the new
model tests with several old model tests. The numbers between
brackets refer to the sequence of tests.

The granular fill was re-used for each test. It was observed that
largenumbersofgrainswerecrushedduring the successive tests. This
will probably have caused a reduction of the friction angle. A lower
friction angle results in less arching, as shown by the figure. Arching
was also relatively low in test T2, in which a sand fill was used.

The friction angle 4¼ 49� of the granular fill was measured with
large triaxial tests carried out between experiments 12 and 13. This
effect of reducing friction is neglected in the present paper. In the
calculations, friction angle 4 ¼ 49� was applied.

More results from the additional tests are presented in Figs. 7,
15, 17, 19 and 21 of this paper.
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3. Observations of arching in experiments, field tests and
numerical calculations

3.1. Measuring arching

This paper focuses on the description of the archingmechanism,
and therefore on calculation step 1 in Fig. 1. Arching divides the
vertical load into two parts, as shown in Fig. 1. One part is load part
A (called ‘arching A’ in this paper), which is the load that is trans-
ferred to the pile caps directly. The remaining load part is B þ C.

Direct validation of arching in a GR reinforced piled platform
with measurements is only possible when A is measured sepa-
rately, as shown in Fig. 4. This figure shows how load A was
measured in the tests, using total pressure cells (TPCs) with a
diameter equal to the pile diameter. They were located on top of the
piles and on top of the GR. In addition, two total pressure cells
measured Aþ B. Theywere located below the GR on top of the piles.
This paper gives arching A in kN/pile. In several figures, arching is
presented as a percentage of the total load, which is referred to as
“A%”. A% corresponds to efficacy (“E”) as used by several authors,
where E¼ A%¼ A/(Aþ Bþ C), with A, B and C given in kN/pile, A% in
% and E as a ratio (e).

Many researchers (such as Zaeske, 2001; Blanc et al., 2013) have
measured A þ B or measured A in a piled platform without GR
(Hewlett and Randolph, 1988; Ellis and Aslam, 2009, for example).
As far as we are aware, only the Dutch research programme has
reported measurements of A in experiments with GR (Van Eekelen
et al., 2012a,b) and three field tests with GR (Van Duijnen et al.,
2010; Van Eekelen et al., 2010; Van Eekelen and Bezuijen,
2012, 2013).
3.2. Comparison of predictions and measurements of arching A

Van Eekelen et al. (2012b)measured A in their experiment series
and showed that EBGEO generally under-predicts the measured A.
This paper presents additional tests of the same type. Van Duijnen
et al. (2010) measured A in field tests under a railway in Houten, the
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Netherlands. They showed that EBGEO considerably under-predicts
A, as also shown in Fig. 16a.

More recently, Van Eekelen and Bezuijen (2013) showed that
EBGEO only slightly under-predicts A as a result of the permanent
load in field measurements in Woerden, the Netherlands, as shown
in Fig. 16b.

It should be noted that the results of the predictions are highly
dependent on the friction angle of the fill and that this friction
angle is difficult to determine in the field. The presented EBGEO
prediction for Woerden, for example, is calculated with a best-
guess friction angle 4 ¼ 43�, resulting in A ¼ 113 kN/pile, as indi-
cated in Fig. 16b. However, this EBGEO-prediction of A falls to
96 kN/pile for 4 ¼ 37.5� and rises to 132 kN/pile for 4 ¼ 49�.

It is also not certain that this friction angle or cohesion remains
constant in all circumstances, such as heavy rain or long dry, hot
periods: the arching in Fig. 16b increased in the spring of 2011
during a dry, hot period.
3.3. Impact of fill height

Several researchers have reported that the efficiency of arching
increaseswith increasing fill height. Examples are Chen et al. (2008)
in 2D experiments with GR and Zaeske (2001) with 3D experiments
(although the latter only showed the differences in his experiments
without GR), Han and Gabr (2002) with numerical analysis with GR,
Le Hello and Villard (2009) with numerical analysis with GR (see
Fig. 18), Jenck et al. (2009) with 2D experiments without GR and
numerical analysis, Ellis and Aslam (2009) with centrifuge tests
without GR, and Deb and Mohapatra (2012) with 2D analytical cal-
culations. All these researchers showed that a higher fill results in
relatively more load being transferred to the piles, either directly or
via theGR. A higherfill therefore results in a relative reduction in the
load exerted on the GR and/or the subsoil between the piles.

The experiments presented in this paper also show that fill
height has an impact, as seen in Fig. 17. A% increases with fill height
and seems to stabilise with increasing embankment height, as
shown in Figs. 17 and 18. When A% stabilises, the absolute values of
A and Bþ C (kN/pile or kPa) will increase with increasing fill height.
This tendency towards increasing arching is followed by many
design models, such as Carlsson (1987), Guido et al. (1987), Hewlett
and Randolph (1988), Russell and Pierpoint (1997), Sintef (2002)
and Kempfert et al. (2004), which was adopted in EBGEO (2010),
as Le Hello and Villard (2009) have shown.

The critical height decreases with increasing fill height. The
critical height is the height at which the shear forces in the
embankment fill are reduced to zero (Naughton, 2007), which is the
case at the ‘plane of equal settlement’ as defined by McKelvey
(1994). Lally and Naughton (2012) carried out a series of 2D GR-
reinforced centrifuge tests. They found close agreement between
the observed critical heights and the critical height suggested by
Hewlett and Randolph’s model (1988).
3.4. Load distribution on the GR; influence of using GR

There is a considerable difference between piled embankments
with or without GR. GR, when stiff enough, leads to (1) more effi-
cient arching and therefore a higher A, (2) a concentration of load
on the GR strips (3) an inverse triangular load distribution on the
GR strips and (4) a larger fall in stress between the piles with depth
in the embankment above the GR. Each of these features will be
explained in this section.

Chen et al. (2008), Abusharar et al. (2009) and Deb and
Mohapatra (2012) showed that the efficiency of the piled embank-
ment improves greatlywhenGR is used. They found that the load on
the piles was much larger with, respectively, a 2D analytical model,
an axial-symmetric analytical model and in 2D experiments.

The localisation of the load on the GR strips has been shown by,
for example, Zaekse (2001) by measuring the pressure at three
locations on the GR square and the GR strips (Fig. 6). Note that, in
this paper, the square between four piles is referred to as the ‘GR
square’, even when no GR is in place, as indicated in Fig. 11. Fig. 6
shows that introducing GR clearly transfers the load towards the
GR strips. This results in a load distribution that is concentrated
mainly on the GR strips (and probably the piles, but Zaeske did not
measure A). As a result, it is expected that the strains in the GR
occur mainly in the GR strips between the piles. This was indeed
found in both Zaeske (2001) and Van Eekelen et al. (2012b).

The pressure on the GR strips is not equally distributed; it rises
towards the piles. In the additional tests presented in this paper, the
load distribution on the GR strip was measured with additional
total pressure cells on the GR strip (Fig. 4). These measurements
(Fig. 7) do indeed show that the load on the GR rises towards the
piles. This load distribution can be approximated by a model with
an inverse triangular load distribution. The inverse triangular
model has advantages since it is a relatively simple analytical
model. Van Eekelen et al. (2012a,b) and Van Eekelen and Bezuijen
(2013) showed that this simplified analytical model provides a
good match with measurements of deformation in laboratory ex-
periments. Furthermore, the inverse triangle (or at least the con-
centration of load close to the piles, and the minimum load in the
centre between piles) was also found in, for example, finite element
calculations on a soldier pile wall by Vermeer et al. (2001), discrete
element calculations on a heap of grains on a deflecting subsurface
(Nadukuru and Michalowski, 2012), numerical calculations by Han
et al. (2012), with a inversed triangle in their Fig. 9, and by Den
Boogert et al. (2012), settlement measurements in a field test
(Van Eekelen and Bezuijen, 2012, 2013) and the large-scale model
tests of Filz and Sloan (2013).

GR also has a major effect on ground pressure in the fill above
the GR between the piles. Zaeske (2001, pages 55 and 63) showed
that this ground pressure declines with increasing fill depth. When
GR is applied, the fall in ground pressure with depth is much larger
than without GR, as shown by the comparison of Zaeske’s mea-
surements in the situations with and without GR in Fig. 20.

Zaeske’s findings (2001) showed that there is an interaction
between the GR and the fill. Without GR, the arch is much less
efficient than with GR. The GR attracts the load to the GR strips
between the pile caps and then further to the pile caps, approxi-
mately resulting in the inverse triangular load distribution on the
GR strips. This ultimately results in larger vertical loads on the pile
caps and on the GR close to the pile caps. GR therefore makes
arching much more efficient.

The current analytical models do not give the localisation of the
load on the GR strips. Nor do they result in a concentration of load
on the GR in the area around the pile cap or, therefore, lead to an
inverse triangular load distribution. This paper describes a new
equilibrium model that is a better match for load distribution ob-
servations. The resulting model is only applicable to load transfer
platforms with GR.

3.5. Influence of subsoil consolidation or GR deflection and fill
properties

1. Consolidation or compaction of the subsoil results in an in-
crease of arching A, as shown by Van Eekelen et al. (2012a), and
in Fig. 8. Most analytical models, like EBGEO, do not calculate
with increased arching due to subsoil consolidation. An
exception is the model of Deb (2010), which agrees with this
influence of consolidation.
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2. A lower friction angle of the fill gives less arching during
consolidation. This results in load part B þ C on the GR being
some 39% larger for sand than for granular fill at the end of the
tests presented by Van Eekelen et al. (2012a) and Fig. 8b.

Most of the existing arching models assume that a slight
deflection of the geotextile is sufficient to create a ‘full arch’.
However, the measurements showed that A increases with
increasing GR deflection (due to subsoil consolidation). The influ-
ence of deformation cannot be incorporated in rigid-plastic models
such as the equilibrium models or frictional models. A new class of
models would be needed. This would, however, conflict with the
initial principle of keeping as closely as possible to existing design
models, and it is beyond the scope of this paper. A ‘work-around’ is
presented in section 4.2: the development of concentric arches.

3.6. Summation of section 3

Comparing the existing models with measurements, it can be
concluded that none of the analytical models considered (equilib-
rium, frictional, empirical) can explain the measurements. In
several cases, they under-predict the arching A measured in the
field. They do not describe the load and strain localisation on and in
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the GR strips. They do not give an explanation for the approxi-
mately inverse triangular load distribution on the GR strips. How-
ever, they do give decreasing ground pressure with depth in the fill
above the GR square, and they do give increasing efficiency in
arching with increasing fill height.

4. A new equilibrium model: the concentric arches model

4.1. Introduction

With equilibrium models, the pressure on the GR is calculated
by considering the equilibrium of the arch. The models of Hewlett
and Randolph (1988) and Zaeske (2001), which are in widespread
use, are shown in Figs. 2 and 3. These two models give quite
satisfactory results when used in a design (the predicted loading on
the GR is reasonable and on the safe side), but (1) do not explain the
concentration of load on the GR strip, (2) do not explain or derive an
inverse triangular load distribution on the GR strips and (3) do not
give increasing arching during subsoil consolidation. Furthermore,
the Hewlett and Randolph model is not meant for arching with GR,
and not particularly suitable for partial arching situations, which
are situations where the fill or embankment is thinner than the full
arch height, in other words when H < sd/2. The Zaeske model can
work with these low embankments.

This section introduces a new model, the concentric hemi-
spheres model. This model accounts for increased arching with
subsoil consolidation and finds load localisation on the GR strips.
Furthermore, it gives a physical explanation for the inverse trian-
gular load distribution and is therefore a better match for the ob-
servations in section 3.

However, in practical applications, a limit-state version of the
model will be applied. In that case, the concentric arches model
behaves in a rigid-plastic way and will no longer describe the in-
fluence of subsoil consolidation or deformation.

It should be noted that in this paper a hemisphere is a 3D arch as
indicated in Fig. 13, and an arch is a 2D arch, as indicated in Fig. 12.

4.2. Development of concentric arches

Fig. 9 introduces a 2D picture of the new model that describes
the development of arching during subsoil consolidation, accom-
panied by an increasing GR deflection.
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In Fig. 9a, a small GR deflection results in the start of arch for-
mation at the edge of the pile cap. At this location (the edge of the
pile cap), the differential settlement between GR and pile cap is at a
maximum and the load starts to be attracted to the stiffer pile cap,
resulting in an increasing pile load A. Subsequently, increasing GR
deflection closes the arch (b).

Now, the piece of GR close to the pile behaves in a relatively stiff
way because it is ‘attached’ to the pile and canmove less freely than
the GR in the middle. Another arch therefore starts to develop in-
side the first one (c). After this, more arches develop, each one
smaller than the preceding one (d). Each smaller arch exerts a
smaller force on its subsurface than the preceding larger arch. The
arches give the directions of the main principal stresses: the major
principal stress in the tangential direction and the minor principal
stress in the radial direction.

The creation of new arches is accompanied by increasing load
transfer in the direction of the piles and a reduction of the load on
the GR area between the piles. This results in a more or less inverse
triangular load distribution on the GR strip.

The process of arch development terminates in a set of
concentric hemispheres which Fig. 10 shows in 3D. The GR is
c

a

Fig. 9. Increasing GR defection results in an increasing lateral transport of load via conce
essential in this model because, without GR, there will be a more or
less even settlement of the area between the piles and the
concentric arches cannot develop, as shown with 2D experiments
by for example Hong et al. (2007) and Jenck et al. (2009).

The development of arching in a basal reinforced piled
embankment has never been observed through, for example, a
glass wall. However, the formation of subsequent new concentric
arches as a result of settlement underground has been observed in
experiments at the University of Cambridge (Casarin, 2011). In
these experiments, sand was poured onto a rubber tunnel. The
largest differential settlements started, in this case, in the centre of
the tunnel. In that case, a small arch in the fill occurred first, fol-
lowed by a succession of larger arches.

The theory that base deflection results in concentric arches has
also been stated by several authors presenting numerical analyses.
For example, Han et al. (2012) carried out 2D DEM piled embank-
ment analysis and showed (in their Fig. 11) force chains that
resemble concentric arches, with smaller forces in the smaller
arches. Vermeer et al. (2001) foundmain stress directions following
concentric arches when they studied the horizontal stress distri-
bution in the soil behind a soldier pilewall. A soldier pilewall of this
d

b

ntric arch-shaped stress paths and an inverse triangular load distribution on the GR.



Fig. 10. New proposed analytical model: the concentric arches model. The load is transferred along the concentric 3D hemispheres towards the GR strips and then via the concentric
2D arches towards the pile caps.

S.J.M. van Eekelen et al. / Geotextiles and Geomembranes 39 (2013) 78e10286
kind consists of relatively weak timber laggings (comparable with
GR) between stiff anchored steel piles (comparable with piles).

Another example is Nadukuru and Michalowski (2012), who
carried out discrete element simulations. After a wedge-shaped
heap of particles was formed, a basal deflection was prescribed.
In this way, maximum subsidence at the centre equal to 0.67% of
the heap’s height was observed. Nadukuru and Michalowski
showed their calculated force chains in the particles. The force
chains follow the shapes of concentric arches. They also
demonstrated that the load on the central part of the base was
reduced in the process of deflection at the expense of the parts
farther away from the centre. Each larger arch therefore exerts a
larger stress on the base. This stress distribution resembles the
inverse stress distribution presented in Van Eekelen et al.
(2012a,b). Sloan (2011) also concluded from his large scale tests
that it is possible that secondary arches form below the primary
arch. His idea is similar to the concentric arches model presented
in the present paper.
Fig. 11. Basic idea underlying the proposed concentric arches model: distribution of th
A ¼ ðgH þ pÞ$Sx$Sy � FGRsquare � FGRstrips going to the pile directly.
The new proposed model assumes that 3D concentric arches
(hemispheres) are formed above the square between each four piles
(Figs.10 and11b). Thesehemispheres transfer the loadoutward inall
directions along the hemispheres towards theGR strips. The process
continues with the further transfer of the load along the 2D arches
above the GR strips towards the pile caps (Figs.10 and 11c). Both the
3Dhemispheres and the 2D arches exert a load on theGR subsurface
which increases towards the outside. The part of the load not resting
on the GR is arching A, which is the load part transferred directly to
the pile caps, as explained in Fig. 11a. Fig. 11 depicts the three com-
ponents of the model e (a) the load part (arching A) that is applied
directly to the pile caps (Fig. 11a), (b) the load part that is applied on
the GR square between the pile caps diagonally between the pile
caps (Fig.11b) and (c) the load part that is applied between adjacent
pile caps on the GR strips (Fig. 11c) e plus the interaction that must
exist between the last two components. With this model, it is
possible to approximate the observed load distribution on the piles
and the entire GR area between the piles.
e load on the GR area between the piles and the determination of arching part
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The following sections present the equations for the 2D concen-
tric arches and the 3D concentric hemispheres and these 2D and 3D
equations will then be combined to form the new arching model.

4.3. 2D concentric arches

Figs. 10, 11c and 12 show 2D concentric arches. It should be
noted that this paper states the radius for 3D hemispheres as an
upper-case R, and the radius of 2D arches as a lower-case r. The
radial stress sr in the 2D arch is found by considering the radial
equilibrium of the crown element of the 2D arch and assuming that
the stress state in the arch is uniform around the semi-circle and
that the limit state occurs in the entire arch, which gives the
tangential stress sq ¼ Kp$sr. This leads, after some derivation given
in Appendix A.1, to the following tangential stress (in kPa) for a 2D
arch in the x-direction:

sq¼Px2D$rðKp�1ÞþQ2D$r

wherePx2D¼Kp$H1�Kp

xg2D
$

"
gHþp�gHxg2D

�
Kp�1

��
Kp�2

�
#

andQ2D¼Kp$
g

Kp�2

(1)

and, where Hxg2D (in m) is the height of the largest 2D arch (see
Figs. 10 and 12):

Hxg2D ¼ sx
2

for H � sx
2
�
full arching

�
Hxg2D ¼ H for H <

sx
2
�
partial arching

�
and Kp ¼ 1þ sin 4

1� sin 4

(2)

The explanation of these equations is similar to Hewlett and
Randolph’s 2D explanation (1988), except that soil weight and
top load are taken into account here. Hewlett and Randolph limit
the thickness of their arch and therefore the crown element to half
the width of a pile cap and calculate the vertical (radial) stress
immediately below the crown element. For the concentric arches
model, however, the arch is extended downwards towards the
subsoil, resulting in a set of concentric arches. These arches exert a
force on their subsurface, which comprises the GR strips, in the case
of the 2D arches, as shown in Fig. 11c. The larger the arch, the larger
the exerted force. This ‘imprint’ of load on the GR strip is shown in
Fig. 12 and resembles the inverse triangle described in section 3.
Fig. 12. 2D Concentric arches, the tangential stress in the arches result in a vertical
stress exerted on the subsurface that resembles the simplified inverse triangle.
4.4. 3D concentric hemispheres

Figs. 10, 11b and 13 show 3D concentric hemispheres. The
tangential stress (kPa) in the 3D arches is found in a similar way as
for the 2D arches, as explained in Appendix A.2:

sqðp¼0Þ¼P3D$R
2ðKp�1ÞþQ3D$R

whereP3D¼g$Kp$H
2�2Kp

g3D $

"
H�Hg3D$

�
2Kp�2
2Kp�3

�#

andQ3D¼Kp$
g

2Kp�3

(3)

and where Kp is given by Eq. (2) and Hg3D (m) by:

Hg3D ¼ sd
2

for H � sd
2
�
full arching

�
Hg3D ¼ H for H <

sd
2
�
partial arching

� (4)

With surcharge load p (kPa) the tangential stress (kPa) becomes
(analogous to Hewlett and Randolph, 1988; Zaeske, 2001):

sq ¼
�
gðH � zÞ þ p
gðH � zÞ

��
P3D$R

2ðKp�1Þ þ Q3D$R
�

(5)

where z is the vertical distance between the considered point and
the GR. So far, the explanation of the 3D equations is the same as
Hewlett and Randolph’s (1988). Hewlett and Randolph now limit
the thickness of the arch and therefore the crown element to half
the diagonal of a pile cap and calculate the vertical (radial) stress
immediately below the crown element which gives Hewlett and
Randolph’s equation (10) (1988).

In the concentric hemispheres model, however, the arch is
extended downwards towards the subsoil, resulting in a set of
concentric hemispheres. These hemispheres exert a force on their
subsurface. The larger the radius, the larger the force exerted on the
subsurface.
4.5. Concentric arches model: combination of 2D arches and 3D
hemispheres

The new calculation model is derived in Appendix A and sum-
marised in this section. Note that the equations in the appendix are
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for a situation in which the piles are placed in a grid with the same
centre-to-centre distance in both directions: sx ¼ sy, while this
section extends the equations for the situation sx s sy. The model
should be applied as follows:

1. Determine the total vertical load FGRsquare (in kN/pile) exerted
by the 3D hemispheres on their square subsurface (Fig. 11b).
This load FGRsquare is derived by integrating the tangential stress
of the 3D hemispheres over the area of this square (see
Appendix A.3 in Eq. (53)e(85)), resulting in:

FGRsquare ¼ FGRsquare1þFGRsquare2þFGRsquare3�
gHþp

� � �
¼
gH

$ FGRsq1p¼0þFGRsq2p¼0þFGRsq3p¼0 (6)

where

FGRsq1p¼0 ¼ pP3D
Kp

$

�
Lx3D
2

�2Kp

þ 2
3
pQ3D$

�
Lx3D
2

�3

FGRsq2p¼0¼1FGRsq2þ2FGRsq2þ3FGRsq2þ4FGRsq2

where

1FGRsq2 ¼ 2pP3D
2Kp

�
2Kp � 1

��Lx3D
2

�2Kp

2FGRsq2 ¼ 2pQ3D

3

� ffiffiffi
2

p 3 � 1
��Lx3D

2

�3

3FGRsq2 ¼ P3D$22�2Kp$L2Kp

x3D
Kp

$

 
� p

22�Kp
þ PN

n¼0

1
2nþ 1

 
Kp � 1

n

!!
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Kp

$

�
� p

22�Kp
þ 1þ 1

3

�
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�
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10

�
Kp � 1

��
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�
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��
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��
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�
þ 1
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�
Kp � 1

��
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��
Kp � 3

��
Kp � 4

�
þ 1

1320 ::::
�
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�
:::

�

4FGRsq2 ¼ 1
6Q3DL

3
x3D$

� ffiffiffi
2

p
ð1� pÞ þ ln

�
1þ

ffiffiffi
2

p ��
where

P3D ¼ g$Kp$H
2�2Kp

g3D $

	
H � Hg3D$

�
2Kp � 2
2Kp � 3

�

and

Q3D ¼ Kp$
g

2Kp � 3
ð7Þ

Hg3D (m) is the height of the largest hemisphere given in Eq. (4) and
Fig. 10 and Lx3D is given by:

Lx3D ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx�aÞ2þ�sy�a

�2q
forH� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx�aÞ2þ�sy�a

�2q

Lx3D ¼
ffiffiffi
2

p
$Hg3D forH< 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx�aÞ2þ�sy�a

�2q
(8)

where a (m) is the width of a square pile cap or the equivalent
width of a circular pile cap and FGRsquare given in kN/pile. FGRsquare1
and FGRsquare2 (kN/pile) are indicated in Fig. 22. Lx3D (m) is thewidth
of the square uponwhich the hemispheres exert a load, as indicated
in Fig. 22.

When the area between the four piles (sx� a)$(sy� a)> Lx3D
2 , the

area outside Lx3D but inside the GR square is assumed to be loaded
by gH þ p. This gives an extra term, FGRsq3p¼0, where

FGRsq3p¼0¼gH$
�
ðsx�aÞ$�sy�a

��L2x3D
�
for L2x3D<ðsx�aÞ$�sy�a

�
FGRsq3p¼0¼0 for L2x3D�ðsx�aÞ$�sy�a

�
(9)

The load that does not rest on the GR square is supposed to be
transferred to the ring of GR strips and pile caps. This load is
therefore applied as an equally distributed surcharge load on the
2D arches. This surcharge load on the 2D arches is in kN/pile:

Ftransferred ¼ gH$ðsx�aÞ$�sy�a
���FGRsq1p¼0þFGRsq2p¼0

þFGRsq3p¼0
�

(10)

Distributed equally on the 2D arches, this results in a surcharge load
in kPa (2 full GR strips and a pile cap per pile):

ptransferred ¼ Ftransferred
a$
�
Lx2D þ Ly2D

�þ a2
(11)

where Lx2D is the length of the part of the GR strip upon which the
2D arches exert their force, as indicated in Fig. 23:

Lx2D ¼ sx � a for H � 1
2
ðsx � aÞ

Lx2D ¼ 2$Hxg2D for H <
1
2
ðsx � aÞ

Ly2D ¼ sy � a for H � 1
2
�
sy � a

�
Ly2D ¼ 2$Hyg2D for H <

1
2
�
sy � a

�
(12)

and

Hxg2D ¼ sx
2

for H � sx
2
�
full arching

�

Hxg2D ¼ H for H <
sx
2
�
partial arching

�

Hyg2D ¼ sy
2

for H � sy
2
�
full arching

�

Hyg2D ¼ H for H <
sy
2
�
partial arching

�
(13)

2. Determine the total load FGRstrips (kN/pile) on the GR strips.
FGRstrips is derived by integrating the tangential load of the 2D
arches over the area of the GR strips (see Appendix A.3 Eq.
(86)e(91)), resulting in:

FGRstrip;p>0 ¼
�
gH þ p
gH

�
,

�
2a

Px2D
Kp

�
1
2
Lx2D

�Kp

þ 1
4
aQ2D,ðLx2DÞ2

þ FxGRstr2p¼0 þ 2a
Py2D
Kp

�
1
2
Ly2D

�Kp

þ 1
4
aQ2D,

�
Ly2D

�2 þ FyGRstr2p¼0

�
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where

Px2D ¼ Kp,H
ð1�KpÞ
xg2D ,

	
gH þ ptransferred � gHxg2D,

�
Kp � 1
Kp � 2

�


Py2D ¼ Kp,H
ð1�KpÞ
yg2D ,

	
gH þ ptransferred � gHyg2D,

�
Kp � 1
Kp � 2

�


Q2D ¼ Kp,
g

Kp � 2

FxGRstr2p¼0 ¼ gHaðsx � a� Lx2DÞ for H <
1
2
ðsx � aÞ

FxGRstr2p¼0 ¼ 0 for H � 1
2
ðsx � aÞ

FyGRstr2p¼0 ¼ gHa
�
sy � a� Ly2D

�
for H <

1
2
�
sy � a

�
FyGRstr2p¼0 ¼ 0 for H � 1

2
�
sy � a

�
(14)

and where Lx2D and Ly2D are given in Eq. (12). A practical limi-
tation is a minimum embankment height of H � 0.5sx and
H � 0.5sy so that the 2D arches always have enough height to
develop fully. Furthermore, the largest 2D arches are wide
enough to rest on the pile caps, as the width of the largest arch is
equal to sx or sy. Fig. 14 shows that this requirement is not
additional to EBGEO (2010) and CUR226 (2010) and only in-
creases the minimum height in a limited, less realistic, number of
cases for the British Standard (BS8006, 2010). However, the
equations for the case H < 0.5sx,y are stated here for calculations
in the construction phase.

3. Determine the load distribution. The part transferred to the
piles directly (arching A in kN/pile) is:

A ¼ Fpile ¼ ðgH þ pÞ$sx$sy � FGRsquare � FGRstrips (15)
as indicated in Fig. 11. The total load resting on GR þ subsoil is
therefore:

Bþ C ¼ FGRsquare þ FGRstrip (16)

Calculation step 2 derives the GR strain from this load part B þ C
(Van Eekelen et al., 2012b). Appendix B gives a calculation example
using the concentric arches model for step 1 and the inverse trian-
gular loaddistribution for step2 followingVanEekelen et al. (2012b).
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Fig. 14. Comparison of required minimum embankment heights for the new co
4.6. Line-shaped foundations

The concentric 2D arches also apply in the 2D situation where
the embankment is supported by line-shaped supporting elements,
such as diaphragm walls or beams. The equations for this case are
given in Appendix A.4.

When a 2D situationwith line-shaped foundation is compared to
its corresponding 3D situationwith square pile caps (same centre-to-
centre distance, samewidth of square pile caps and line foundation),
the resulting average pressure on the GR is lower for the 2D situation
than for the 3D situation. This is different from the model of Zaeske,
that finds a slightly higher average pressure on the GR in the 2D case.
5. Comparison with laboratory experiments, field tests and
numerical calculations

5.1. Introduction

Step 1 of the calculation model calculates the arching expressed
in arching A, and also calculates the load distribution on the
GRþ subsoil. Bothresultsof step1shouldconcurwithmeasurements,
including the observed dependency on fill height and friction angle.

The calculations for this section have been carried out with the
newly presented concentric-arches model described in section 4,
EBGEO (2010) and Hewlett and Randolph (1988), all without safety
factors.

Most of the presented experimental results are measurements
during a minimum of subsoil support, in other words just before a
top load increase in the experiments described in Section 2.
5.2. Arching A

Fig. 15 compares measured and calculated arching A of the ex-
periments described in Section 2. Calculations that agree exactly
with a measurement are located on the dotted diagonal line. The
figure shows that the measurements agree much better with the
concentric arches model than with EBGEO.

The concentric arches model has a better match than EBGEO for
the embankments with a fill height of 0.34e0.42 m (K2, K5, K6, K7,
T2 and T3, thus for H/(sd � d) ¼ 0.51e0.62). EBGEO under-predicts
these measurements muchmore than the concentric arches model.
These heights are important in design when making calculations
for the construction phase. For the thinnest fill, K8, however, where
H/(sd� d)¼ 0.33, neither model works properly, but remains on the
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‘safe side’ for the GR design: the models predict more load on the
GR than measured.

It should be noted that EBGEO predicted the measurements for
the thickest fills (K4 and K9, H/(sd � d) ¼ 0.97) very well. The
concentric arches model, however, gives a slight over-prediction in
cases with this relatively thick, but realistic, fill. However, in the
following paragraphs, it is shown that measurements in two full-
scale field tests, and numerical calculations with a full-scale
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geometry, produce a satisfying match with the results of the
concentric arches model.

Fig. 16 compares full-scale field measurements with calcula-
tions. The figure shows that EBGEO and the concentric arches
model agree better or equally well with the measurements. This is
an important result, as it is dangerous to base the conclusions only
on scaled model tests. It should be noted that it is difficult to
determine the friction angle 4 in the fill in the field, while even
though 4 has a major influence on the calculation results in each of
the calculation models, as mentioned before in section 3.2.
5.3. The influence of fill height

Figs. 17 and 18 show the influence of embankment height H.
Fig. 17 compares measurements of the model tests with pre-
dictions. The figure shows that the concentric arches model agrees
better with the measurements than the other models. The figure
shows that the measurements indicate that A% increases with
embankment height and seems to stabilise for the higher em-
bankments. This finding concurs with Le Hello and Villard’s
0%

10%

20%

30%

40%

50%

60%

70%

80%

0.0 0.5 1.0 1.5 2.0 2.5

ar
ch

in
g 

A
 (

pe
rc

en
ta

ge
 o

f 
to

ta
l l

oa
d,

 %
)

H/(sd-d) (-)

num. calc. Le Hello et al. 2009
concentric arches
Hewlett and Randolph 1988
EBGEO 2010
EBGEO 2010 minimum H
CUR 2010 minimum H

a=0.6m, sx=sy=1.5m, 
γ=19 kN/m3, p=0kPa, ϕ=29o

Fig. 18. Variation of embankment height H, comparison of analytical models with
numerical calculations of Le Hello and Villard (2009).



0.
27

5

0.
23

1

0.
19

1

0.
15

2

0.
11

2

0.
07

3

0.
03

3

0

200

400

600

800

1000

1200

1400

1600

0.275
0.224

0.178
0.132

0.086

0.040

1400-1600
1200-1400
1000-1200
800-1000
600-800
400-600
200-400
0-200

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.05 0.1 0.15 0.2 0.25

pr
es

su
re

 o
n 

G
R

 s
tr

ip
 (

kP
a)

 

distance from centre between 2 piles (m)

Test K6

measured

EBGEO 2010

concentric arches

Fig. 19. Load distribution for test K6 for p-Rb ¼ 66.1 kPa, which equals 20.0 kN/pile and minimum subsoil support: C ¼ 0.5 kN/pile, (see Table 1). Left: load distribution calculated
with concentric model in kPa. Right: cross-section through GR strip and pile. EBGEO gives an equally distributed load, which is translated in calculation step 2 into a triangular load
distribution, which is given here.

S.J.M. van Eekelen et al. / Geotextiles and Geomembranes 39 (2013) 78e102 91
numerical calculations (2009). They developed a numerical model
that combined the 3D discrete element method and the finite
element method. They also found increasing arching with fill
height, stabilising for higher embankments. Fig. 18 shows that the
concentric arches model is a reasonable match with the numerical
calculations of Le Hello and Villard.

5.4. Load distribution on GR

Fig. 19 shows the measured and calculated load distribution on
the GR strip. The figure presents the actual results from the new
model. It is suggested that the step 2 calculations suggested in Van
Eekelen et al. (2012b) should be followed for design purposes using
the simplified inverse triangular load distribution.

The result of step 1 of EBGEO is pressure on a single point of the
GR þ subsurface. It is assumed that this pressure is the same
everywhere between the pile caps, not only on the GR strip. This
load is relatively low. For comparison purposes, the EBGEO pressure
on GRþ subsurface in Fig. 19 has been concentrated on the GR strip
and expressed as the triangular load distribution as used in calcu-
lation step 2 of EBGEO.

The figure shows that the measured A agrees well with the A
calculated with the concentric arches model. It can therefore be
concluded that the total measured B þ C per pile also agrees well
with the calculated B þ C, as B þ C ¼ total load � A. The figure also
shows clearly that the concentric arches model concentrates the
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Fig. 20. Comparison of analytical calculations with measurements in Zaeske (2001, p. 63). F
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load on the GR strips. And the load on the GR strips is concentrated
near the pile cap in a way resembling the inverse triangular load
distribution. The concentric arches obviously explain the observed
concentration of load near the pile caps. The concentric model
agrees better with the observed load distribution than any of the
other available analytical models.

5.5. Ground pressure versus depth

Fig. 20 compares the measured ground pressure (Zaeske, 2001)
with the results of the concentric arches model, EBGEO, and
Hewlett and Randolph (1988). The figure shows that the concentric
arches model over-predicts the fall in ground pressure with depth,
but that it is the only model that more or less follows the measured
tendency of falling pressures with depth.

5.6. Parameter study

Fig. 21a shows that an increasing friction angle 4 gives
increasing arching. The figure shows the measured results for tests
T2 and T3. These tests are the same, except for the embankment fill,
as indicated in the figure and in Table 1. The figure shows that the
concentric arches model is a better fit for the measurements than
the others. The influence of 4 is limited in the Hewlett and Ran-
dolph model for 4 > 30�. Within this model of Hewlett and Ran-
dolph, the situation of one of two elements is normative: the crown
5 50 75 100 125
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element or the foot element as indicated in Fig. 2. For 4 < 30�, the
foot element is normative, for 4 > 30�, the crown element is
normative. For the crown element, the pressure on the subsurface
consists of two terms: the radial stress immediately below the arch,
si, and the soil weight below the arch. For 4>30�, si is so small that
the soil weight below the arch dominates. Soil weight is indepen-
dent of 4 and therefore constant.

A% in all three models considered is independent of the sur-
charge load. This is because the models first calculate the load
distribution for the situation without surcharge load (p ¼ 0 kPa)
and then multiply the result by the factor (gH þ p)/(gH). This is
shown in Fig. 21b. This figure compares the measurements and
calculations for test K5. The large dots are the measurements for
the situations with a minimum of subsoil support. The figure shows
that the measured A%, for the situation with a minimum of subsoil
support, is indeed more or less constant: the large dots, especially
with the higher surcharges, are located more or less on a horizontal
line.

Fig. 21c and d show variation in the geometric properties; the
centre-to-centre distance sx of the piles and the pile diameter d. It is
not possible to compare this with the measurements because these
features were not varied in the tests. The tendency in the figures
confirms expectations: larger pile spacing gives less arching; larger
pile cap diameter gives more arching.
6. Conclusions

In model tests, numerical studies and field measurements of
geosynthetic reinforced piled embankments, the following features
were observed:

There is a major difference between piled embankments with or
without GR. GR makes arching much more efficient: the load is
transferred to the piles much more efficiently. With GR, the load on
the GR is concentrated on the GR strips and can be described
approximately as an inverse triangular load distribution on the GR
strips. The difference between piled embankments with or without
GR requires a distinction between models describing one or the
other situation.

The observed load distribution in the piled embankments with
GR is neither described nor explained by any of the available
analytical models.

EBGEO tends to under-predict arching, although prediction ac-
curacy is acceptable in one of the field tests considered. Arching A%
increases with embankment height and seems to stabilise for the
higher embankments. Consolidation of the subsoil results in an
increase in arching (increasing arching A). This is different from
results obtained using most of the available calculation models. A
higher friction angle of the fill gives more arching, especially during
subsoil consolidation.
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A new equilibrium model was presented in this paper: the
concentric arches model. It is a variation on the Hewlett and
Randolph (1988) and EBGEO (Zaeske, 2001) equilibrium models.
The model consists of a set of concentric hemispheres and arches.
Larger hemispheres or arches exert more pressure on their
subsurface.

A set of concentric 3D hemispheres transfer their load to a
set of 2D arches between adjacent piles. These 2D arches
transfer their load further to the piles. The model results in
a load distribution on the GR that resembles the load
distribution observed in experiments, field measurements and
numerical analysis: the load is mainly concentrated on the
GR strips with an approximately inverse triangular load
distribution.

The model therefore provides a satisfactory physical explana-
tion for this observed load distribution. The concentric stress arches
were also found by several authors presenting numerical studies on
arching such as Vermeer et al. (2001), Nadukuru and Michalowski
(2012) and Han et al. (2012).

The concentric arches model explains increasing arching with
subsoil consolidation (GR deflection). The explanation is that
new arches are formed in succession as GR deflection progresses.
However, in the limit-state version of the model presented in
this paper, the model behaves in a rigid-plastic way and no
longer describes the influence of subsoil consolidation or
deformation.

The newmodel describes both full and partial arching, the latter
with a relatively thin embankment.

Agreement between measured arching A and calculations made
with the concentric arches model is good, and generally better than
the EBGEO/CUR results, especially for relatively thin embankments.
This finding is important for design calculations for the construc-
tion phase.

The concentric arches model is dependent on the embankment
height and the fill friction angle 4 in a way similar to that found in
the experiments and in the numerical calculations of Le Hello and
Villard (2009).

Ground pressure in the embankment decreases with depth and
the tendency for decreasing pressure is similar in the Zaeske
measurements (2001) and the concentric arches model. Further-
more, this model matches Zaeske’s observations better than any of
the other models considered.

Parameter variation indicates that the response of the concen-
tric arches model to variations of surcharge load and geometry is
reasonable.
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Appendix A. Derivation of the equations of the concentric
arches model

A.1. The 2D arch: radial equilibrium

Consider Fig. 12. The areas and volume of the crown element are
(neglecting terms with a product of more than one increment):
area below : dAi ¼ r$dq
top area : dAo ¼ ðr þ drÞ$dq ¼ r$dqþ dr$dq

side area : dAs ¼ dr
volume crown element : dVzr$dq$dr

(17)

For this 2D plane strain situation, these properties (areas
and volume) apply for a unit length in the third dimension.
For example dAi ¼ r$dq$1, where the ‘1’ is 1 m. The areas dAi,
dAo and dAs are therefore expressed in m2, and dV in m3. From the
vertical (radial) equilibrium of the crown element, it follows that:

�sr$dAiþðsrþdsrÞ$dA0�2$sq$dAs$sin
�
dq

2

�
þg$dV ¼ 0 (18)

The stresses sr and sq are expressed in kPa and g in kN/m3. From
substituting equations (17), and assuming that sin(dq)zdq, it fol-
lows that:

�sr$r$dqþðsrþdsrÞ$ðr$dqþdr$dqÞ�2$sq$dr$
�
dq

2

�
þg$r$dq$dr

¼ 0

(19)

dsr
dr

þ dsr
r

þ sr � sq
r

þ g ¼ 0 (20)

where sr is expressed in kPa. From ðdsr=rÞ/0, it follows that:

dsr
dr

þ ðsr � sqÞ
r

¼ �g (21)

We assume that the stress state in the arch is uniform around the
semi-circle and that the limit state occurs in the entire arch.

sq ¼ Kp$sr ¼ 1þ sin 4

1� sin 4
$sr (22)

This results in the 2D differential equation for the radial stress in 2D
arches:

dsr
dr

þ
�
1� Kp

�
r

$sr ¼ �g (23)

To solve this differential equation, it can be rewritten as

dsr
dr

þ pðrÞ$sr ¼ qðrÞ (24)

where

pðrÞ ¼
�
1� Kp

�
r

and qðrÞ ¼ �g (25)

The left-hand and right-hand sides of Eq. (23) are multiplied by an
integration factor: e

R
pðrÞdr . This standard procedure to solve this

kind of differential equation results in:

d
dr

0
B@e

Z
pðrÞdr

$sR

1
CA ¼ e

Z
pðrÞdr

q
�
r
�

(26)

We find:
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Z
pðrÞdr

Z
1� Kp

r
dr ð1�KpÞln r 1�Kp
e ¼ e ¼ e ¼ r (27)

Thus Eq. (26) becomes:

d
dr

�
r1�Kp$sr

�
¼ qðrÞ$r1�Kp ¼ �g$r1�Kp (28)

/r1�Kp$sr ¼ �g

Z
r1�Kpdr ¼ � g

2� Kp
$r2�Kp þ C (29)

where C is a constant. Thus

sr ¼ � g

2� Kp
$
r2�Kp

r1�Kp
þ C
r1�Kp

(30)

thus

sr ¼ C$rKp�1 þ g

Kp � 2
$r (31)

For the weightless case we find equation (3) of Hewlett and
Randolph’s (1988):

sr ¼ C$rKp�1 (32)

The boundary condition on the outside of the 2D arch is:

r ¼ Hg2D/sr ¼ g
�
H � Hg2D

�þ p (33)

where Hg2D is the height of the largest 2D arch and given by Eq. (2).
Substitution of this condition into Eq. (31) gives:

C$
�
Hg2D

�ðKp�1Þ þ g

Kp � 2
$Hg2D ¼ g

�
H � Hg2D

�þ p

/C ¼ Hð1�KpÞ
g2D $

"
gH þ p� gHg2D

�
Kp � 1

��
Kp � 2

�
# (34)

thus

/sr ¼
�
2
sx

�ðKp�1Þ
$

	
gHþp� sxg

2

�
Kp�1

��
Kp�2

�
$rðKp�1Þ þ g

Kp�2
$r

(35)

As the tangential stress sq ¼ Kp$sr in kPa, we find:

sq ¼ P2D$rðKp�1Þ þ Q2D$r (36)

where we have defined P2D and Q2D as:

P2D ¼ Kp$

�
2
sx

�ðKp�1Þ
$

	
gH þ p� sxg

2

�
Kp � 1

��
Kp � 2

�
 and

Q2D ¼ Kp$
g

Kp � 2
A.2. The 3D arch: radial equilibrium

Consider Fig. 13. The areas and volume of the crown element are
(neglecting terms with a product of more than one increment):
area below : dAi ¼
1
4
p$ðR$dqÞ2 ¼ 1

4
p$R2$dq2
top area : dAo ¼ 1
4
p$ðRþ dRÞ2$dq2z1

4
p$
�
R2$dq2 þ 2R$dR$dq2

�
side area : dAszp$R$dq$dR

volume crown element : dVz
1
4
p$R2$dq2$dR

(37)

From the vertical (radial) equilibrium of the crown element, it
follows that:

�sR$dAi þðsR þdsRÞ$dA0 � sq$sin
�
dq

2

�
$dAs þg$dV ¼ 0 (38)

From substituting equations (37), and assuming sin(dq) z dq, it
follows that:

�sR$
1
4
p$R2$dq2 þ ðsR þ dsRÞ$

1
4
p$
�
R2$dq2 þ 2R$dR$dq2

�

�sq$

�
dq

2

�
$p$R$dq$dRþ g$

1
4
p$R2$dq2$dR ¼ 0 (39)

From neglecting terms with a product of more than one increment,
it follows that:

dsR
dR

þ 2ðsR � sqÞ
R

þ g ¼ 0 (40)

In theweightless case, the stress state in the arch is uniform around
the semi-circle. It is assumed that the limit state occurs in the entire
arch.

sq ¼ Kp$sR ¼ 1þ sin 4

1� sin 4
$sR (41)

This results in:

dsR
dR

þ 2
�
1� Kp

�
R

$sR ¼ �g (42)

which is the differential equation for the radial stress in the 3D
hemisphere. So far, the explanation is the same as Hewlett and
Randolph’s (1988). To solve this differential equation, Eq. (23) can
be rewritten as:

d
dR

0
B@e

Z
pðRÞdR

$sR

1
CA ¼ e

Z
pðRÞdR

qðRÞ (43)

with:

p
�
R
� ¼ 2

�
1� Kp

�
R

¼ a

R
and q

�
R
� ¼ �g

and a ¼ 2
�
1� Kp

� (44)

We find:

e

Z
pðRÞdR

¼ e

Z
a

R
dR

¼ ealn R ¼ Ra (45)

Thus Eq. (43) becomes:
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d
dR

ðRa$sRÞ ¼ qðRÞ$Ra ¼ �g$Ra (46)
/Ra$sR ¼ � g

aþ 1
$Raþ1 þ C (47)

where C is a constant. Thus

sR ¼ � g

aþ 1
$Rþ C

Ra

/sR ¼ C$R2ðKp�1Þ þ g

2Kp � 3
$R

(48)

The outer radius of the hemisphere is Ro¼ sx/O2. The surcharge load
will first be neglected and taken into account afterwards, analogous
to Zaeske (2001) and Hewlett and Randolph (1988). The boundary
condition on the outside of the arch is:

R ¼ Ro ¼ Hg3D/sR ¼ g
�
H � Hg3D

�
(49)

where the arch height Hg3D is given by Eq. (4). Substitution of this
condition into Eq. (48) gives:

C$H
2ðKp�1Þ
g3D þ g

2Kp � 3
$Hg3D ¼ g

�
H � Hg3D

�

/C ¼ g$H2�2Kp

g3D $

"
H � Hg3D$

�
2Kp � 2
2Kp � 3

�# (50)

thus

/sR ¼ g$H2�2Kp

g3D $

	
H � Hg3D$

�
2Kp � 2
2Kp � 3

�

$R2Kp�2 þ g

2Kp � 3
$R

(51)

As sq ¼ Kp sr, we find:

sq ¼ P3D$R
2Kp�2 þ Q3D$R (52)

where we have defined P3D and Q3D as:
4 parts of FGRsqu

area dA1 = ½π

area dA2 = αR

Ru2= (Lx3D

ααdR
R

dR

Ru1= (Lx3D)/2

ω

FGRsquare1

Fig. 22. Integrating the tangential stress sq across the squ
P3D ¼ g$Kp$H
2�2Kp

g3D $

	
H � Hg3D$

�
2Kp � 2
2K � 3

�

and
p

Q3D ¼ Kp$
g

2Kp � 3

So far, Hewlett and Randolph used the same explanation. However,
a difference is that they limit the height of their arch to half the
width of the pile cap, while the equation of the concentric arches
model is extended downwards to the subsurface where R ¼ 0.
Hewlett and Randolph (1988) therefore use Eq. (52) for Ri < R < Ro,
and we use the equation for 0 < R < Ro, where for full arching:
Ro ¼ Hg3D ¼ 0.5sd and Ri ¼ 0.5(sd �d).
A.3. Derivation of load exerted on GR

Arching is assumed to transfer the load in two steps. The
first step is that the load is transferred in the direction of the
ring of GR strips and pile caps. This is done along the 3D
hemispheres. The second step is that the load is transferred
further in the direction of the pile caps along the 2D arches
between each two adjacent pile caps. The 2D and 3D arches
exert a total force on the subsurface. The total force exerted on
the GR (B þ C in kN/pile) may be obtained by integrating the
tangential stress sq across the area of the GR. The general
equation is:

Bþ C ¼ FGR ¼
Z

GRarea

sqdAGR (53)

The total load B þ C on the subsurface, FGR, consists of two parts
along the two arching steps described above: FGRsquare and FGRstrips:

1. 3D hemispheres transfer the load in the direction of the ring of
GR strips and pile caps. The 3D hemispheres exert a vertical
load on their GRsquare (indicated in Fig. 11). This is the first
load part, FGRsquare, of the load on the subsurface.

2. The 2D arches above the GR strips transfer the load further in
the direction of the pile caps. The 2D arches exert a vertical load
on the GR strips. This is the second load part, FGRstrips, of the
load on the subsurface.
are2

R⋅dR

⋅dR

R

a or Bers

Ru2

Ru1

FGRsquare1

FGRsquare3

are area where the 3D hemispheres exert their load.



FGRsquare2 ¼
�
1þ p

gH

�
$FGRsq2p¼0

where

FGRsq2p¼0 ¼ 4
ZRu2

Ru1

sqdAGRsq2 ¼ 4
ZRu2

Ru1

sqaR dR

¼ 4
ZRu2

Ru1

�
P3D$ðRÞ2Kp�2 þ Q3D$R

�
aR dR

/FGRsq2p¼0 ¼ 4
ZRu2

Ru1

�
P3D$ðRÞ2Kp�2 þ Q3D$R

�

�
�
p

2
� 2 arccos

�
Lx3D
2R

��
R dR (59)
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Total force on the GR square; determination of FGRsquare
Consider Fig. 22. As long as H � ððsx � aÞ=

ffiffiffi
2

p
Þ, FGRsquare consists

of the load exerted by the hemispheres only. In that case (on the
left of Fig. 22), the total force exerted on the GRsquare may be
obtained by integrating the tangential stress sq in the 3D hemi-
spheres across the GRsquare. When H < ððsx � aÞ=

ffiffiffi
2

p
Þ, the total

force exerted on the GRsquare may be obtained by integrating the
tangential stress sq across the smaller (Lx3D$Lx3D-)square, with
width Lx3D, as indicated on the right of Fig. 22. The load FGRsq3 on
the area outside this Lx3D$Lx3D-square and inside the GRsquare is
assumed to be gH þ p, which will be derived for later on. Lx3D is
defined as follows:

Lx3D ¼ sx � a for H � sx � affiffiffi
2

p

Lx3D ¼
ffiffiffi
2

p
$Hg3D for H <

sx � affiffiffi
2

p
(54)

where Hg3D in defined in Eq. (4).
For the situation in which sx s sy the integration is carried

out for an imaginary square with width Lx3D. This width is
determined as:

L3D ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx � aÞ2 þ �sy � a

�2q
forH � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx � aÞ2 þ �sy � a

�2q

L3D ¼
ffiffiffi
2

p
$Hg3D forH < 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx � aÞ2 þ �sy � a

�2q
(55)

Considering the situation that H � ð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx � aÞ2 þ ðsy � aÞ2

q
,

the square with width L3D has the same diagonal as the area be-
tween the four piles. Integrating the tangential stress across this
imaginary square gives the same or a higher force on the GR square
than numerical integration of the tangential stress over the rect-
angular between the four piles. In the remainder of this appendix,
the situation with sx ¼ sy applies.

The total force FGRsquare on the GR square is derived by dividing
the square into three sections:

- part FGRsquare1, inside the largest circle in the Lx3D$Lx3D-square
(white in Fig. 22).

- part FGRsquare2, outside the circle but inside the Lx3D$Lx3D-square
(dark grey Fig. 22).

- part FGRsquare3, outside the Lx3D$Lx3D-square but inside the GR
square (light grey in the right-hand figure in Fig. 22).

The three terms are calculated with surcharge load p ¼ 0, and
will afterwards be multiplied by the term ðgH þ pÞ=gH to find the
total load on the GR square:

FGRsquare ¼ FGRsquare1 þ FGRsquare2 þ FGRsquare3

¼
�
gH þ p
gH

�
$
�
FGRsq1p¼0 þ FGRsq2p¼0 þ FGRsq3p¼0

�
(56)

The first load part, FGRsquare1, which rests on the circular area in the
largest circle, is determined as follows:
FGRsq1p¼0 ¼ 4
ZRu1

0

sqdAGR ¼ 4
ZRu1

0

sq
1
2
pR dR

¼ 2p
ZRu1

0

�
P3D$ðRÞ2Kp�1 þ Q3D$R

2
�
dR

FGRsq1p¼0 ¼ 2p
	
P3D
2Kp

$ðRÞ2Kp þ 1
3
Q3D$R

3

Ru1 ¼ Lx3D

2
0

FGRsquare1 ¼
�
1þ p

gH

�
$

�
pP3D
Kp

$

�
Lx3D
2

�2Kp

þ 2
3
pQ3D$

�
Lx3D
2

�3�
(57)

where sq, P3D and Q3D are given in Eq. (52). The second load
part, FGRsquare2, which rests on the area within the square but
outside the circle, is dependent on angle a. This angle a is
a function of R, and can be read from Fig. 22, as the comple-

mentary angle u ¼ arccos
�
Ru1
R

�
¼ arccos

�
Lx3D
2R

�
. We therefore

find, for a:

a ¼ p

2
� 2arccos

�
Lx3D
2R

�
(58)

The force on the grey areas in Fig. 22 (outside the circle, inside the
GR square) should therefore be determined by:
This integral can be separated into four terms, which will be solved
separately:

FGRsq2p¼0 ¼ 1FGRsq2 þ 2FGRsq2 þ 3FGRsq2 þ 4FGRsq2

where
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1FGRsq2 ¼ 2pP3D

ZRu2

R2Kp�1dR
Ru1

2FGRsq2 ¼ 2pQ3D

ZRu2

Ru1

R2dR

3FGRsq2 ¼ �8P3D

ZRu2

Ru1

R2Kp�1arccos
�
Lx3D
2R

�
dR

4FGRsq2 ¼ �8Q3D

ZRu2

Ru1

R2arccos
�
Lx3D
2R

�
dR

(60)

The first two terms are solved as follows (Ru2 and Ru1 are indicated
in Fig. 22):

1FGRsq2 ¼ 2pP3D
2Kp

R2Kp

���Ru2

Ru1

¼ pP3D
Kp

�
2Kp � 1

��Lx3D
2

�2Kp

2FGRsq2 ¼ 2pQ3D

3
R3
���Ru2

Ru1

¼ 2pQ3D

3

�� ffiffiffi
2

p �3 � 1
��Lx3D

2

�3
(61)

The other two integral terms are re-written as:

�3FGRsq2
8P3D

¼
ZRu2

Ru1

R2Kp�1arccos
�
Lx3D
2R

�
dR

�4FGRsq2
8Q3D

¼
ZRu2

Ru1

R2arccos
�
Lx3D
2R

�
dR

(62)

We continue with solving the fourth term, 4FGRsq2, and substitute:

r ¼ Lx3D
2R

thus R ¼ Lx3D
2r

and dR ¼ �Lx3D
2r2

dr

/

ZRu2 ¼ Lx3Dffiffiffi
2

p

Ru1 ¼ Lx3D
2

dR ¼
Z

Lx3D
2Ru2

¼ Lx3D
2$Lx3Dffiffiffi

2
p

¼ 1
2

ffiffiffi
2

p

Lx3D
2Ru1

¼ Lx3D
2$Lx3D2

¼ 1

dr

(63)

where r is the cosine of the complementary angle u ¼ arccos
�
Lx3D
2R

�
in Fig. 22. Thus

4FGRsq2
8Q3D

¼
Z12 ffiffiffi

2
p

1

�
Lx3D
2r

�2
arccos r

�
Lx3D
2r2

�
dr

/
4FGRsq2

Q3DðLx3DÞ3
¼
Z12 ffiffiffi

2
p

1

r�4arccos rdr

(64)

We bring the power to the increment
�
3$4FGRsq2 ¼

Z12 ffiffiffi2p

arccos rd
�
r�3
�

(65)

Q3DðLx3DÞ3

1

Partial integration gives:

�
3$4FGRsq2
Q3DðLx3DÞ3

¼ r�3arccos r
���12
ffiffiffi
2

p

1
�
Z12 ffiffiffi

2
p

1

r�3dðarccos rÞ (66)

As ðd=drÞðarccos rÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p , we find:

�
3$4FGRsq2
Q3DðLx3DÞ3

¼ pffiffiffi
2

p þ
Z12 ffiffiffi2p

1

r�3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p dr (67)

We substitute:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1

p
u

/r�2 ¼ u2 þ 1

/� r�3dr ¼ u du

/

Zr ¼ 1
2
ffiffiffi
2

p

r ¼ 1

dr ¼
Z

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
1
2

ffiffiffi
2

p �2 � 1

vuut ¼ 1

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð1Þ2
� 1

s
¼ 0

du

(68)

This gives:

�
3$4FGRsq2
Q3DðLx3DÞ3

¼ pffiffiffi
2

p �
Z1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1

p
du (69)

This gives, with any integral table:

�
3$4FGRsq2
Q3DðLx3DÞ3

¼ pffiffiffi
2

p � 1
2

ffiffiffi
2

p
� 1
2
ln
�
1þ

ffiffiffi
2

p �
(70)

Thus

4FGRsq2 ¼ 1
6
Q3DðLx3DÞ3$

� ffiffiffi
2

p
ð1� pÞ þ ln

�
1þ

ffiffiffi
2

p ��
(71)

The derivation of the third term, 3FGRsq2, follows the same
procedure as for 4FGRsq2. With Eqs. (63) and (62) we find:

3FGRsq2$2
2Kp�3

P3D$ðLx3DÞ2Kp
¼
Z12 ffiffiffi2p

1

r�2Kp�1arccos r dr (72)

We bring the power to the increment:
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r�2Kp�1 ¼ 1
�2Kp

dr�2Kp
/�
2Kp$3FGRsq2$2

2Kp�3

P3D$ðLx3DÞ2Kp
¼
Z12 ffiffiffi2p

1

arccos r dr�2Kp

(73)

Partial integration:

�
Kp$3FGRsq2$2

2Kp�2

P3D$ðLx3DÞ2Kp
¼ r�2Kparccosrj

1
2

ffiffiffi
2

p

1 �
Z12 ffiffiffi2p

1

r�2KpdðarccosrÞ

(74)

thus

�
Kp$3FGRsq2$2

2Kp�2

P3D$ðLx3DÞ2Kp
¼ p

22�Kp
�
Z12 ffiffiffi2p

1

r�2Kpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p dr (75)

Finally, the substitution of:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1

p
u

/r�2 ¼ u2 þ 1/� r�3dr ¼ u du

/r�2Kp ¼
�
u2 þ 1

�Kp

/r3 ¼
�
u2 þ 1

��3
2

/dr ¼ �ur3du ¼ �u
�
u2 þ 1

��3
2du

/

Zr ¼ 1
2

ffiffiffi
2

p

r¼1

dr ¼
Zu¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð12
ffiffiffi
2

p Þ2 � 1
r

¼ 1

u¼
ffiffiffiffiffiffiffiffiffiffi
1

ð1Þ2�1
q

¼0

du

(76)

gives:

�Kp$3FGRsq2$22Kp�2

P3D$ðLx3DÞ2Kp
¼ p

22�Kp
þ
Z1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þ1

p
u

�
u2þ1

�Kp
u
�
u2þ1

��3
2du

/�Kp$3FGRsq2$22Kp�2

P3D$ðLx3DÞ2Kp
¼ p

22�Kp
þ
Z1
0

�
u2þ1

�Kp�1
du

(77)

This last term can be rewritten with a binomial series:

Z1
0

�
u2 þ 1

�Kp�1
du ¼

Z1
0

XN
n¼0

�
Kp � 1

n

�
u2ndu (78)

where
XN �
Kp � 1

n

�
u2n ¼ 1þ �Kp � 1

�
u2 þ

�
Kp � 1

��
Kp � 2

�
u4
n¼0
2!

þ
�
Kp � 1

��
Kp � 2

��
Kp � 3

�
3!

u6 þ/

(79)

From this, it follows that:

Z1
0

�
u2 þ 1

�Kp�1
du ¼ 1

2nþ 1

XN
n¼0

�
Kp � 1

n

�
u2nþ1

�����
1

0

¼
XN
n¼0

1
2nþ 1

�
Kp � 1

n

�
(80)

/� Kp$3FGRsq2$22Kp�2

P3D$ðLx3DÞ2Kp
¼ p

22�Kp
þ
Z1
0

�
u2 þ 1

�Kp�1
du

� kp$3FGRsq2$22Kp�2

P3D$ðLx3DÞ2Kp
¼ p

22�Kp
þ
XN
n¼0

1
2nþ 1

�
Kp � 1

n

�

/3FGRsq2 ¼ �P3D$22�2Kp$ðLx3DÞ2Kp

Kp
$

�
 

p

22�Kp
þ
XN
n¼0

1
2nþ 1

�
Kp � 1

n

�!

¼ �P3D$22�2Kp$ðLx3DÞ2Kp

Kp
$

�
p

22�Kp
þ 1þ 1

3
�
Kp � 1

�
þ 1
10
�
Kp � 1

��
Kp � 2

�þ 1
42
�
Kp � 1

��
Kp � 2

��
Kp � 3

�
þ 1
216

�
Kp � 1

��
Kp � 2

��
Kp � 3

��
Kp � 4

�
þ 1
1320

�
Kp � 1

��
Kp � 2

��
Kp � 3

��
Kp � 4

��
Kp � 5

�
þ 1
9360

�
Kp � 1

��
Kp � 2

��
Kp � 3

��
Kp � 4

��
Kp � 5

��
Kp � 6

�
þ//

�
(81)

The resulting total load on the GR square for the case sxssy is given
by Eq. (6) of this paper.

An alternative is to solve this numerically. This means that the
GR square is divided into a large number of small areas. The average
vertical stress on each increment is determined and multiplied by
its area. The sum gives the total force on the GR square,

with FGRsquare in kN/pile. FGRsquare1 and FGRsquare2 (kN/pile) are
indicated in Fig. 22, where Hg3D (m) is the height of the largest
hemisphere and Lx3D is the width of the square upon which the
hemispheres exert a load, as indicated in Fig. 22. When
Lx3D < (sx � a), the area outside Lx3D but inside the GR square is
assumed to be loaded by gHþ p. This gives an extra term, FGRsq3p¼0,
where

FGRsq3p¼0 ¼ gH$
�
ðsx � aÞ2 � L2x3D

�
for Lx3D < sx � a

FGRsq3p¼0 ¼ 0 for Lx3D � sx � a
(82)

Note that it is assumed that sx ¼ sy in this appendix. In section
4.5 the equations are given for sx s sy. It is supposed that the load
not resting on the GR square is transferred to the ring of GR strips
and pile caps. This load is therefore applied as an equally
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distributed surcharge load on the 2D arches. This surcharge load on
the 2D arches is, in kN/pile:

Ftransferred ¼ gH$ðsx � aÞ2 � �FGRsq1p¼0 þ FGRsq2p¼0 þ FGRsq3p¼0
�

(83)

where a is the width of a square pile cap or the equivalent width of
a circular pile cap. Distributed equally on the 2D arches, this results
in a surcharge load in kPa (2 full GR strips and a pile cap per pile):

ptransferred ¼ Ftransferred
2a$ðLx2DÞ þ a2

(84)

where

Lx2D ¼ sx � a for H � 1
2 ðsx � aÞ

Lx2D ¼ 2$Hg2D for H < 1
2 ðsx � aÞ

(85)

where Hg2D in defined in Eq. (13).

Total force on the GR strip; determination of FGRstrip
In this appendix, for reasons of clarity, it is assumed that sx ¼ sy.

The tangential stress sq (kPa) in the 2D arches above the GR strips is
now given by:

sq ¼ P2D$r
Kp�1 þ Q2D$r

(2D arch), where

P2D ¼ Kp$H
ð1�KpÞ
g2D $

	
gH þ ptransferred � gHg2D$

�
Kp � 1
Kp � 2

�


Q2D ¼ Kp$
g

Kp � 2

(86)

where ptransferred (kPa) is the load transferred from the 3D hemi-
spheres to the 2D arches and given by Eq. (84) and Hg2D (m) is
the height of the 2D arch and given by Eq. (13). When sxssy, a
distinction should be made between Px2D versus Py2D and Hxg2D
versus Hyg2D. The rest of the equation is equal to Eq. (1) in this
paper. The total force on the GR strip (without surcharge load p)
may be obtained by integrating the tangential stress sq across the
area of the GR strip as shown in Fig. 23. The total force on two GR
strips (in kN/pile) is therefore:
FGRstrip1

area dA = a⋅dr

Fig. 23. Integrating the tangential stress sq across the area
FGRstrip ¼ FGRstrip 1 þ FGRstrip 2� �

¼ gH þ p

gH
$
�
FGRstr 1 p¼0 þ FGRstr 2 p¼0

�
(87)

where

FGRstr1p¼0 ¼ 4
Zr0
0

sqdAGRstrip ¼ 4
Zr0
0

sq$a dr

¼ 4a
Z12 Lx2D
0

�
P2D$rðKp�1Þ þ Q2D$r

�
dr (88)

thus

FGRstr1p¼0 ¼ 4a
	
P2D
Kp

$rKp þ 1
2
Q2D$r

2

1

2 Lx2D

0

/FGRstr1p¼0 ¼ a$
�
4
P2D
Kp

�
1
2
Lx2D

�Kp

þ 1
2
Q2D$L

2
x2D

� (89)

and

FGRstr2p¼0 ¼ 2gHaðsx � a� Lx2DÞ for H < 1
2 ðsx � aÞ

FGRstr2p¼0 ¼ 0 for H � 1
2 ðsx � aÞ

(90)

with surcharge load p > 0:

FGRstrip;p>0 ¼
�
gH þ p
gH

�
$

�
4a

P2D
Kp

�
1
2
Lx2D

�Kp

þ 1
2
aQ2D$L

2
x2D

þ FGRstr2p¼0

�
(91)For the situation sxssy this equations changes into Eq. (14).
A.4. 2D variant: line-shaped support

The 2D equations can be worked out easily for the situation in
which the embankment is supported by line-shaped supporting
elements (such as diaphragm walls). In this case, Eq. (86) is appli-
cable, where ptransferred ¼ 0 kPa, as this is the load transferred from
the 3D hemispheres that do not exist in the 2D case.

The total load in kN/m0 on a 1-m-wide line foundation is (in
accordance with Eq. (87)):
FGRstrip2

FGRstrip1

area dA = a⋅dr

of the GR strip where the 2D arches exert their load.
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FGR line ¼ FGR line1 þ FGR line2� � � �

Force inside circle in GR

square (Fig. 22)
FGRsq1;p¼0 11.21 kN/pile (6)

Part 1 of force on area
inside Lx3D$Lx3D square,
but outside circle (Fig. 22)

1FGRsq2 0.11 kN/pile (6)

Part 2 of force on area
inside Lx3D$Lx3D square,
but outside circle (Fig. 22)

2FGRsq2 20.50 kN/pile (6)

Part 3 of force on area inside
Lx3D$Lx3D square,
but outside circle (Fig. 22)

3FGRsq2 �0.10 kN/pile (6)

Part 4 of force on area inside
Lx3D$Lx3D square, but outside
circle (Fig. 22)

4FGRsq2 �15.33 kN/pile (6)

Total force on area inside
Lx3D$Lx3D square, but outside
circle (Fig. 22)

FGRsq2;p¼0 5.19 kN/pile 1FGRsq2
þ 2FGRsq2
þ 3FGRsq2
þ 4FGRsq2
(6)

Force on area outside Lx3D$Lx3D
square, but inside GR square)

FGRsq3;p¼0 0.00 kN/pile (9)

Total force on GR square (Fig. 22) FGRsquare;p¼0 16.40 kN/pile (6)

Force transferred Ftransferred 59.85 kN/pile (10)
Resulting surcharge load on 2D arches ptransferred 21.20 kPa (11)

Total force on GR strips FGRstrips;p¼0 35.97 kN/pile (14)
¼ gH þ p
gH

$ FGR line1p¼0 þ FGR line2p¼0 (92)

where

FGR line1p¼0 ¼ 2
Zr0
0

sqdAGR line ¼ 2
Zr0
0

sq$dr

¼ 2
Z12 Lx2D
0

�
P2D$rðKp�1Þ þ Q2D$r

�
dr (93)

thus

FGR line1p¼0 ¼ 2
	
P2D
Kp

$rKp þ 1
2
Q2D$r

2

1

2 Lx2D

0

/FGR line1p¼0 ¼ 2
P2D
Kp

�
1
2
Lx2D

�Kp

þ 1
4
Q2D$L

2
x2D

(94)

and

FGR line2p¼0 ¼ gHðsx � a� Lx2DÞ for H < 1
2 ðsx � aÞ

FGR line2p¼0 ¼ 0 for H � 1
2 ðsx � aÞ

(95)

with surcharge load p > 0:

FGR line;p>0 ¼
�
gH þ p
gH

�
$

�
2
P2D
Kp

�
1
2
Lx2D

�Kp

þ 1
4
Q2D$L

2
x2D

þ FGR line2p¼0

�
(96)
total force on GR for p ¼ 0 FGR ¼ B þ C 52.37 kN/pile (16)
a

Appendix B. Calculation example: the Woerden field test of
Fig. 16b
Input parameters

Diameter circular pile cap d 0.85 m
Height embankment H 1.86 m
Lateral ctc distance piles sx 2.25 m
Longitudinal ctc distance piles sy 2.25 m
Unit weight g 18.3 kN/m3

Surcharge load p 5 kPa
Cohesion c 0 kPa
Internal friction angle 4 43 deg

Total force on pile cap with p ¼ 0 A 119.94 kN/pile (15)

a This is the value given in Fig. 16b.

Total force on GR for p ¼ 5 kPa FGR ¼ B þ C 61.60 kN/pile (16)
Total force on pile cap for p ¼ 5 kPa A 141.09 kN/pile (15)
Total pressure on pile cap for

p ¼ 5 kPa
pA 248.63 kPa pA ¼ A/Ap

Percentage of total force transferred
to the pile cap directly for

A% 69.6 % A% ¼ A/
((gH þ p)*sx2)
Calculated parameters Equation

Equivalent width pile cap a ¼ Bers 0.75 m a ¼
ffiffiffiffiffiffiffiffiffiffiffi
1
4pd

2
q

Passive earth pressure coefficient Kp 5.29 e (2)
Height 3D hemisphere Hg3D 1.59 m (4)
Width square loaded by

3D arches (Fig. 22)
Lx3D 1.50 m (8)

Length of GR strip loaded
by 2D arches (Fig. 23)

Lx2D 1.50 m (12)

Calculation parameter P2D 90.62 kPa/mKp�1 (14)
Calculation parameter Q2D 29.43 kN/m3 (14)
Calculation parameter P3D 0.11 kPa/m2Kp�2 (7)
Calculation parameter Q3D 12.77 kN/m3 (7)
Determination of the force exerted by the 3D hemispheres on
the GR square (no surcharge load yet: p ¼ 0)
Determination of the force transferred along the 3D hemi-
spheres to the 2D arches; to be applied as surcharge load on the 2D
arches.
Determination of the force exerted by the 2D arches on the GR
strips (no surcharge load yet: p ¼ 0) and no load outside the arches
on the GR strip (Eq. (14))
Determination of load distribution (no surcharge load yet: p¼ 0).
Determination of load distribution (with surcharge load:
p ¼ 5 kPa).
p ¼ 5 kPa
Step 2 with the inverse triangular load distribution according to
Van Eekelen et al. (2012b).

Additional parameters:
Subgrade reaction k 0.00 kN/m3

GR stiffnessb J 5000 kN/m

b Stress and time dependent. The GR stiffness should be determined from
isochronic curves.
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The average geometric and constitutive strains should be
equalised numerically:

dx
Px¼ 1

2 ðsx�aÞ
x¼0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dz
dx

�2
s �

� 1
2 ðsx � aÞ

1
2 ðsx � aÞ ¼ dx

Xx¼ 1
2 ðsx�aÞ

x¼0

�
TðxÞ
J

�

(97)We find:
Max GR deflection z(x ¼ 0) 0.022 m Van Eekelen et al.,
2012b, Eq. (15)

GR inclination at
edge pile cap

dz/dx at
x ¼ ½(sx � a)

�0.332 m/m Van Eekelen et al.,
2012b, Eq. (15)

Average GR strain 3average 0.582 % Van Eekelen et al.,
2012b, Eq. (18)
with correction
given in Eq. (97)
of this paper

Max GR strain at
the edge of
the pile cap

3max at
x ¼ ½(sx � a)

0.609 % Van Eekelen et al.,
2012b, Eq. (15)

Max tensile force
at the edge of
the pile cap

Tmax at
x ¼ ½(sx � a)

30.5 kN/m Van Eekelen et al.,
2012b, Eq. (15)

Appendix of Analytical model for arching in piled embankments
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