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Abstract

Two-phase condensing flows are very common in many technical applications, such as rotating
machinery operating with steam and nuclear reactors. The occurrence of condensation can
lead to a degradation of a component’s performance. Thus, the physical understanding and
accurate numerical modeling of the condensation process can be of great help in the design
process.
The present work is focused on the numerical modeling of non-equilibrium condensing steam
flows in 1-D nozzles. The fluid dynamic equations for an inviscid and adiabatic flow (Euler
equations) are solved using a quasi 1-D finite volume code, which accounts for the nozzle area
variation. The model for homogeneous nucleation and the droplet growth rate, presented by
Dykas [26] in high-speed supersonic nozzle flow and also applicable to the wet stages of a steam
turbine, is implemented in the present work. The model is based on the Eulerian-Eulerian
method, i.e., the governing equations for both vapor and the liquid phase are based on an
Eulerian frame of reference. The present work assumes an averaged pressure for both phases,
with no slip condition between them. Hence, a single pressure and velocity characterizes the
flow. The explicit first order accurate forward Euler scheme is used to advance the solution in
time, until a steady state solution is reached. The convective fluxes are discretized using the
Approximate Riemann Solver AUSM+ of Liou [4]. The classical nucleation theory proposed
by Bakhtar and Young [5] provides the theoretical background for the modeling of condensing
steam flow along with the growth of liquid phase.
The real gas behavior of the steam is taken into account using a cubic equation of state of
iPRSV type (Peng-Robinson cubic equation of state with the Stryjek-Vera modification), as
implemented in "FluidProp" [7] [8]. To model the non-equilibrium thermodynamics associated
with the condensing flows a mixture model is used, i.e., the individual phases (vapor and
liquid) are assumed to be a flowing mixture. This implies that properties such as enthalpy,
entropy, internal energy and speed of sound are described in terms of a weighted average using
the wetness fraction. The fluid dynamic system of equations is extended with two additional
scalar equations with source terms to incorporate the condensation phenomenon in the flow
field.
In order to assess the accuracy of the condensation model implemented, experimental data
of various 1-D supersonic nozzle is compared to the numerical results. It is found that the
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surface tension of the spherical liquid droplet has a significant effect on the accuracy of the
results given by the nucleation model. It is concluded that the implemented numerical model
is able to capture the condensation shock and compute the droplet size well within reasonable
accuracy.
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Nomenclature

Greek letters

α constant in AUSM+

β constant in AUSM+

δ delta
λv thermal conductivity of vapor(W/m K)
µv dynamic viscosity of vapor(Pa.s)
ρ density of mixture(Kg/m3)
ρv density of vapor(Kg/m3)
ρl density of liquid(Kg/m3)
σ surface tension(N/m)
Ψ variables vector AUSM+
τ characteristic time(s)
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x Nomenclature

Latin letters

sos speed of sound of mixture(m/s)
E specific total internal energy of mixture(J/Kg K)
e specific internal energy of mixture(J/Kg K)
Fn euler flux vector
F(c) convective wave
F flux function
h enthalpy of mixture(J/Kg)
M Mach number
M variable of AUSM+

Γ source term
P averaged static pressure(Pa)
Ps saturation pressure(Pa)
P variable of AUSM+

R specific gas constant(J/Kg K)
S supersaturation ratio
T temperature (K)
Ts saturation temperature(K)
t time (s)
Q conserved variables vector
J nucleation rate per unit volume(m−3s−1)
K Boltzmann’s constant(= 1.3807×10−23J/K)
m mass of a molecule of water (= 2.99046 ×10−26Kg)
Kn Knudsen number
r radius of droplet(m)
r∗ Kelvin-Helmholtz critical radius of droplet(m)
qc condensation coefficient
C non-isothermal correction factor
y wetness fraction
g g-mer(number of molecules in a cluster)
˜̄l mean free path
∆G change in gibb’s free energy(J/Kg)
s entropy(J/Kg K)
u velocity(m/s)
γ specific heat ratio
Nu Nusselt number
Cp specific heat at constant temperature(J/Kg K)
dr
dt growth rate of droplets(m/s)
N number of droplets per unit volume (m−3)
∆T subcooling(K)
Cg molecular rate of condensation on a g-mer
Eg molecular rate of evaporation on a g-mer
fg concentration g-mers in supersaturated vapor
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Subscript

i− 1 left control volume
i+ 1/2 face
i+ 1 right control volume
v vapor phase
l liquid phase

Acronyms

ARS Approximate Riemann solver
AUSM Advection upstream splitting method
CFD Computational fluid dynamics
CFL Courant Friedrichs Lewy
EoS Equation of State
MEoS Multiparameter equation of state
iPRSV improved Peng-Robinson-Stryjek-Vera
LPT Low Pressure Turbine
1-D One Dimensional
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Chapter 1

Introduction

This chapter gives a brief introduction on the motivation and objectives of the present work.
Discussion is done on the relevance of this study, with respect to its applications. A brief out-
line of the phenomenology of the process of condensation and an outline of the work concludes
the chapter.

1.1 Purpose and Motivation

Comprehensive understanding of condensing flow in various technological and environmental
process is of utmost importance and also a major concern for many design engineers. Con-
densation is the process when water vapor changes from a gaseous to a liquid state. With
reference to the environmental application for example weather prediction requires numerical
solution of condensing flow and is discussed in detail by Thomas [42], Kristjansson [43] and
Sundqvist [44]. Cloud formation, foggy mirrors and foggy windshield are other forms of con-
densation that find place in our daily life. In technical applications condensing flow have their
presence in industries like nuclear [45] [46], turbomachinery [1] [27], pharmaceutical (produc-
tion of sprays), and in chemical engineering during gas drying and flue gas cleaning. Accurate
description of the flow involving condensation is challenging for designers and scientists due to
the high complexity of the process and lack of advanced experimental techniques to measure
every detail involved.

Spontaneous condensation that is initiated by homogeneous nucleation process is a com-
mon phenomenon in various applications. The homogeneous nucleation involves formation
of metastable clusters (nuclei) of liquid due to fluctuations resulting from chance molecular
collisions [37]. For example, condensation resulting from high humidity can cause inadequate
ventilation in house. In steam turbines, condensing flow lead to corrosion and erosion of
blades, wetness loss that results in loss of performance efficiency and change in flow pattern
[1]. The success of all these applications relies on predicting and controlling the condensation
process. Therefore it is important to understand the physical mechanism of the condensation
process [37].

Master of Science Thesis Anshuman Pandey



2 Introduction

As discussed, homogeneous nucleation plays a role in various industrial applications. However,
in the present study the motivation behind studying spontaneous condensation resulting from
homogeneous nucleation is the fact that, formation of condensate in steam turbines leads to
complex flow field leading to reduced performance efficiency. Figure 1.1 shows the wetness
fraction contours obtained by Guha & Young [47] in a turbine blade, due to non-equilibrium
condensation. Majority of the world’s electricity demand is fulfilled from the steam propelled
turbines. Hence, increase in the efficiency of the steam turbines will result in increase of
the revenue generated, due to its long life term. In a Carnot cycle, an increase in efficiency
can be attained by increasing the change in enthalpy across the steam turbine. However,
this increased enthalpy change results in the expansion of the steam in the wet region (two
phase region). The wet steam results in complex flow characteristics in the last stages of the
Low Pressure Turbines (LPT). The wetness in steam is reduced, to a certain degree, through
the reheating cycles, which increases the temperature of the steam entering the LPT. The
use of reheating cycles requires huge investment costs. This fact has attracted interests
of scientists and engineers in understanding the fundamental processes that leads to losses
in steam turbines during the condensation process (wet steam), to help the steam turbine
manufacturers with an improved design.

From this point of view, the present work is focused on understanding the homogeneous
nucleation process that triggers condensation process. To understand this phenomenon it is
chosen to study the expansion process of steam in supersonic nozzles from the dry superheated
conditions to the wet steam conditions. The accurate modeling of condensing flows in nozzles
depends on the quality of nucleation and droplet growth theories [37]. Therefore, objective
of the present study is to gain physical insight on modeling of the nucleation and the growth
theories. In order to accomplish this goal, the approach of this work has been to exploit
the knowledge of classical nucleation theory laid down by Young & Bakhtar [5], along with
droplet growth theories developed by Gyarmathy [14] [17] and Hertz Knudsen [16] [15].

Also the motivation behind this study is to extend the in-house CFD code, developed by Dr.
Ir. Rene Pecnik at Stanford University under the Predictive Science Academic Alliance Pro-
gram, funded by the Department of Energy, to the two phase flows. To fulfill this objective we
implement and asses an in-house CFD code that is able to predict the spontaneous condensa-
tion accurately. The present work will primarily focus on the non-equilibrium condensation,
whereby homogeneous nucleation is playing the major role. The following tasks, relating to
modeling of condensing steam flow in rapidly expanding supersonic nozzle, have been dealt
in this work:

• Theoretical understanding of non-equilibrium condensation process through compre-
hensive literature study.

• Accurate modeling of condensation process with the help of classical nucleation theory,
i.e., homogeneous nucleation and droplet growth theory.

• Assessing the implemented code for its accuracy in predicting phenomena associated
with condensation like, the droplet diameter, wetness fraction, nucleation rate and pres-
sure distribution.

• Assessing the effect of surface tension of the spherical liquid droplets on the accuracy
of the model.
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1.2 Thesis Overview 3

Figure 1.1: Wetness contour in Low Pressure Turbines resulting from Non-Equilibrium Conden-
sation [47].

• Selection of a robust droplet growth rate equation that is applicable for different Knud-
sen flow regimes.

• Implementation of a suitable Equation Of State (EoS) that is able to predict accurately
thermodynamic states of vapor and liquid phase in metastable region.

• Selection of a suitable type of Approximate Riemann Solver (ARS) to calculate convec-
tive fluxes.

1.2 Thesis Overview

To achieve the objectives mentioned earlier, we will be focusing on providing a theoretical
database for the modeling of condensing steam flow. Subsequently this model is implemented
in an in-house CFD code and is assessed for its accuracy through comparison with experi-
mental results.

Chapter 2 gives an extensive literature study on the phenomenon of spontaneous condensation.
In this section the spotlight is on the theoretical as well as experimental work that has been
carried out in the past in the field of nucleation and droplet growth theory. A comprehensive
study of the classical nucleation theory and the droplet growth theory forms theme of this
chapter.
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4 Introduction

Chapter 3 will detail the numerical methods and thermodynamic model used in the present
research. The numerical techniques implemented to model complex thermodynamics of non-
equilibrium condensation process is explained in detail. The numerical discretization scheme,
which is important part of any CFD code is the center of focus of this section along with the
thermodynamic EoS used.

Chapter 4 presents the results obtained by using the implemented model. Followed by discus-
sion about the results obtained and how accurate they are with respect to the experimental
studies.

Chapter 5 presents the conclusions and recommendations of the dissertation to further develop
the present work.
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Chapter 2

Physical Modeling

This chapter focuses on the thermodynamic and physical modeling of homogeneous nucleation
and the droplet growth, which play a primary role in the condensation process. The goal of this
chapter is to provide the reader with a comprehensive overview of the life history of droplets,
i.e., the way droplets are born, grow in number and size. Moreover, special attention will be
given to essential features and critical aspects of the physical modeling of the condensation
process. It will be introduced here, the effect of surface tension of small spherical droplets on
the performance of the nucleation models, especially when the cooling rate is high.

2.1 Overview of Condensation Theory

A comprehensive amount of literature is available for the modeling of non-equilibrium con-
densing flow. In the present work, focus is mainly on understanding the physics governing
the phenomenon of spontaneous condensation and identifying the specific problems, to model
it numerically. For this matter, a major part of the literature study was focused on under-
standing the nucleation theory and various growth models developed in the past.

The first observation of two shock-like disturbances in the supersonic airflow wind tunnels took
scientists to surprise. Prandtl [9] was the first scientist to present the visuals of these shock
like disturbances. It was Wieselberger who suggested the possibility of the presence of water
vapor in the airflow that lead to shock like disturbances. Finally Hermann [10], after thorough
and taxonomic investigations came to the conclusion that these shock like disturbances were
indeed caused by the formation of water vapor in the air flow. Modeling of condensing flow
was performed by Gyarmathy and Mesyer [12] and Hill [13], but it was Oswatitsch [11] in
1942 who suggested that the non-equilibrium condensation must be classified in two different
processes, namely homogeneous nucleation and droplet growth. Oswatitsch [11] with Head
[48], and Lukasiewicz and Royle [49] contributed to a detailed understanding of these processes
through their experiments. They established empirical correlations between relative humidity,
nozzle geometry and condensation onset [37].
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6 Physical Modeling

Initially, the modeling of condensing flow was based on one-dimensional Laval nozzles, for
which experimental data were more easily available. This was further followed by more
sophisticated and advanced experiments by Barschdorff [18] on 1-D nozzle. Skillings et al.
[19] were able to measure the droplet sizes in pure steam nozzles. Also, the experiments of
Moore et al. [20] represents a valuable data set for the numerical codes validation. Hill [13]
analyzed the data on condensation in supersonic nozzle and compared it with the predictions
made by the nucleation and the droplet growth theory. Hill was the first to introduce an
appropriate droplet growth theory for accurate theoretical predictions.

2.2 Condensation Modeling

In this section, thermodynamic aspects are introduced, which are imperative for the conden-
sation process in supersonic nozzle flow. This is followed by detailed discussion about the
classical nucleation theory and the droplet growth theory, which are characteristic part of a
condensation process.

2.2.1 Thermodynamic aspects

The simple definition of the condensation phenomena as, "the process of water vapor changing
from a gaseous to a liquid state", is a prejudice of the complex physics involved during the
phase transition [3]. The phase transition in condensation is associated with formation of
the new surface between the vapor and the liquid phase. To form this new surface, an en-
ergy barrier has to be crossed. The transition to liquid state is preceded by nucleation. The
phenomenon of nucleation is defined as the formation of small clusters of liquid phase within
the vapor. The process of nucleation is thus crucial for the understanding of the dynamics
of phase transition. Nucleation can occur in two different ways, homogeneous and heteroge-
neous. The homogeneous and heterogeneous nucleation can be distinguished from each other
by the way two are initiated. The homogeneous nucleation produces its own stable clusters
(nuclei) of liquid droplets, overcoming minimum energy barrier (Gibb’s free energy), in the
supersaturated vapor. Whereas heterogeneous nucleation requires foreign particles, that act
as condensation nuclei, to activate the condensation process [3]. It is important to note that
the minimum energy barrier associated with the heterogeneous nucleation is much lower than
that of the homogeneous nucleation. This implies that for equal nucleation rate a much higher
level of supersaturation 1 in the vapor phase is required for homogeneous nucleation than for
heterogeneous nucleation. As a consequence, heterogeneous nucleation is usually encountered
in nature around us like in the formation of atmospheric clouds. Whereas homogeneous nu-
cleation is seen in engineering applications, for example in the high-speed nozzle flow or in
the steam turbines. The condensation of steam is initiated in principle as soon as the thermo-
dynamic state of the fluid crosses the saturation line in the Mollier diagram. However, this is
not the case in practical applications, for example, homogeneous condensation in a transonic
or supersonic nozzle flows. When the fluid expands through a supersonic nozzle, due to the
rapid cooling, the vapor phase departs from the equilibrium phase distributions. The vapor
phase will not condense immediately and attains a high degree of supersaturation, which is an
indication that the vapor phase has attained a metastable equilibrium state [37]. Thus, the

1For definition of Supersaturation please refer to 2.2.2
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2.2 Condensation Modeling 7

process of condensation occurs under non-equilibrium conditions. The assumption of equi-
librium state will lead to serious inaccuracies in predicting the flow behavior. The reversion
back into the equilibrium state happens via the formation and growth of liquid droplets. The
time period of the metastable state will depend on the degree of supersaturation the fluid has
attained. During this time period of the metastable state, steam will expand in the nozzle
as dry supersaturated vapor. As stated earlier, for the homogeneous nucleation to occur, the
fluid needs to attain a high degree of supersaturation (e.g. typically for steam flows 30-40 ◦C
supercooling 2 is required). No disturbance in the flow is observed during the homogeneous
nucleation process. The metastable clusters formed as a result of the homogeneous nucle-
ation, when exceed some critical size, results in the growth of the liquid droplets. As shown
in figure 2.1, between the points 4 and 4′ the vapor is in metastable equilibrium state and
is thus referred to as metastable region. The loci of the limiting points 2′ and 4′, where
(∂p/∂v)T = 0, are called liquid and vapor spinodals, respectively. Since the states along the
path 2′-3-4′ are not in equilibrium condition, the equations of state are not valid to describe
them [64].

During the droplet growth process, a significant amount of latent heat is released in the flow.
This heat release results in compressive effects that lead to the appearance of a shock thus
interrupting the nucleation process, and ultimately leading to the formation of a stable liquid
phase. The growth of these droplets occur in a deterministic way as a result of steady influx
of vapor molecules that is captured from the supersaturated vapor phase. This will then
cause a decrease of the vapor pressure, and a corresponding decrease of the supersaturation.
Release of the latent heat causes both the droplet and the vapor temperatures to rise [3],
and hence has a strong impact on the flow pattern. If the amount of latent heat released
at a certain location in the nozzle exceeds the critical amount, the flow becomes thermally

2For definition of supercooling please refer to 2.4.

Figure 2.1: p-v(Pressure-Volume) diagram for a pure substance illustrating metastable equilib-
rium [64].
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8 Physical Modeling

choked and a steady shock appears in the nucleation zone. If this released heat is below the
critical amount then a local increase in the pressure, temperature, Mach number and density
appears. The former type of flow is referred to as supercritical flow, whereas the latter is
termed as sub-critical flow.

Regarding the droplets, it is important to understand that the droplets size has a wide
variation in scale and they typically start at the nanometer size (10−9m), and eventually
grow to micrometers (10−6m). The numerical models used for describing the process of
condensation for this wide range of droplet spectrum, the motion of the droplets, as well
as the droplet-droplet interactions (e.g. coalescence), need to be assessed carefully for their
accuracy [3].

The relaxation gas dynamics forms the framework for the understanding of non-equilibrium
condensation. Thus, the relaxation times of the internal rate processes is a key parameter in
the understanding of non-equilibrium condensing flows and this will be discussed in sections
to follow.

2.2.2 Supersaturation

Supersaturation is the inability of a fluid to condense when the saturated condition is reached
in an expansion. The theory of supersaturation explains the phenomenon involved in the flow
of the saturated or wet steam in a supersonic nozzle. It is observed that steam will not begin
to condense when the saturated condition is reached, while undergoing very fast expansion
through a supersonic nozzle from the dry conditions. The steam continues to expand in
the nozzle as dry vapor, thus becoming supersaturated. Such a theory explains the excess
flow encountered in the expansion of a saturated steam through nozzles [1]. Supersaturation
is formulated in terms of the supersaturation ratio S and is defined as the ratio of vapor
pressure P to the saturation pressure corresponding to the local vapor temperature Ps (Tv).
This parameter is a measure of the degree of supersaturation, the vapor has achieved and is
defined by the equation (2.1)

S =
[

P

Ps(Tv)

]
. (2.1)

Supersaturation is also a measure of the departure of the fluid from thermodynamic equi-
librium. Henderson [54] observed that the amount of steam discharged in the Laval nozzles,
from the dry region into the wet region in the Mollier chart for non-equilibrium conditions
was approximately 5% greater than the value that would be expected from equilibrium calcu-
lations. The Wilson line is defined by the limiting supersaturation, i.e., at the termination of
the supersaturated state of the vapor. It is important to know the location of the Wilson line,
which is an indication of the condition at which condensation actually begins. The Wilson
line, named after the scientist G. T. R. Wilson, on the Mollier chart marks the limit of super-
saturation. Wilson was able to measure the pressure at which condensation actually begins
by expanding the air saturated with moisture in a glass chamber. From this he deduced the
supersaturation ratio. It was found by Johni Yellott [28], that in a simple Laval nozzle con-
densation did not occur until the steam had reached the condition approximately represented
by the 3.5 % moisture line on the Mollier chart. The theory introduced by Yellott [28] is
useful to understand supersaturation. The vapor pressure of a liquid at a given temperature
is greater over a curved surface than over a plane surface. In figure 2.2 (a), it can be seen
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2.2 Condensation Modeling 9

Figure 2.2: Vapor pressure above plane and curved surface [28].

that a molecule x resting on a flat liquid surface is attracted by all the molecules of the liquid
within the radius of p, the distance over which the molecular attraction acts. Whereas, in
figure 2.2 (b), a molecule y resting on a curved surface is attracted by fewer molecules than
x. Thus at the same given temperature, molecule y is tied less securely to the surface than
molecule x. This implies that a greater pressure in the atmosphere surrounding molecule y
will be required to force y to remain on the surface, than that at x. In other words, the vapor
pressure in case (b) is greater than that in (a). Thus a water droplet, if sufficiently small, will
evaporate if placed in an atmosphere of saturated steam. However, if the vapor is supersat-
urated or at a pressure greater than that corresponding to its temperature, equilibrium can
exist between the vapor and the droplet when the pressure of the vapor is equal to the vapor
pressure of the droplet [28]. The pressure of the supercooled vapor is always higher than the
saturation pressure corresponding to its own temperature. Thus the supersaturation ratio S
of a supercooled vapor is will always be greater than 1.

The mechanism of the droplets formation will now be discussed in detail. In the present
study, it is assumed that the droplets are spherical in shape. As said earlier, in order to
promote the formation of droplets and their further growth, the required surface has to be
formed by molecular clusters (small embryo of a liquid droplet) and therefore supply of a
surface free energy and decrease of bulk free energy of transition from the vapor to liquid is
necessary. The change in Gibb’s free energy ∆G, during the formation of a single spherical
droplet from the supersaturated vapor held at constant pressure P and temperature Tv, is
given by equation (2.2)

∆G = 4πr2σ − 4
3πr

3ρlRTv lnS. (2.2)

The free energy change could be described in following five steps:

Step-1: Formation of the first "n" molecules from the superheated steam. There is no change
in free energy during this process

∆G1 = 0. (2.3)

Step-2: Isothermal expansion of steam from pressure P to saturation pressure Ps(Tv)

∆G2 = 4
3πr

3ρl

Ps∫
P

1
ρv
dp = −4

3πr
3ρlRTv

[
P

Ps(Tv)

]
, (2.4)

where, P
Ps(Tv)) = S.

Step-3: Condensation of the "n" molecules of vapor at saturation pressure Ps(Tv) and constant
temperature Tv into bulk liquid, and creation of a flat surface. On account of equilibrium
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10 Physical Modeling

between the two phases and since their chemical potential is equal, the free energy remains
unchanged

∆G3 = 0. (2.5)

Step-4: Formation of droplets of radius "r" and surface of area, 4πr2, the free energy change
of droplet increases to

∆G4 = 4πr2σ, (2.6)

where, σ is the surface tension of the spherical liquid droplets.

Step-5: The droplets thus formed are isothermally compressed from the saturation pressure
Ps(Tv) to the vapor pressure P. The liquid phase volume and the radius of the droplets will
not change due to the assumption of incompressibile fluid. Thus, the free energy change is

∆G5 = 4
3πr

3(P − Ps). (2.7)

This last contribution, ∆G5 is neglected as it is very small in magnitude compared to other
contributions in change of Gibb’s [5].

Summing all the partial changes of the free energy leads to equation (2.2). The first term
in the equation (2.2) represents the increase in free energy due to the formation of liquid
bulk surface, while the second term represents the increase in free energy due to formation
of the interphase between vapor and liquid. From equation (2.2) it can be seen that for a
supersaturated vapor, S >1, the first term will be always positive while the second term is
negative. However, for the small droplets of radius r first term dominates. From figure 2.3,
plotted for various supersaturation ratios, it can be seen that for a given supersaturation ratio,
∆G increases with radius r of the droplet and reaches a maximum value ∆G∗. The radius
of droplet corresponding to this maximum value ∆G∗ is termed as the Kelvin-Helmholtz or
critical radius, r∗. A droplet with r≥ r∗ can reduce the free energy of the system by capturing

Figure 2.3: ∆G versus r for various supersaturation ratio [1].
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2.2 Condensation Modeling 11

molecules, and has a tendency to grow. While a droplet with r<r∗ evaporates. Equation (2.2)
reveals that the free energy change is dependent on droplet radius "r". An expression for the
critical radius r∗ is obtained by differentiating equation (2.2) with respect to r and equating
it to zero, which gives the equation (2.8)

r∗ = 2σ
ρlRTv ln(S) . (2.8)

This critical cluster of molecules with radius r∗ is always in metastable equilibrium with the
vapor surrounding it. It is clear that by increasing the supersaturation ratio S, the activation
barrier ∆G∗ and the size of critical clusters r∗ decreases, which is also evident from figure
2.3. In other words, increasing the supersaturation ratio S will increase the probability that
molecular clusters can overcome the free energy barrier ∆G∗ and nucleation can be triggered.
At this moment, homogeneous nucleation will start and phase transition can finally take place.

2.2.3 Classical Nucleation Theory

The expression for the nucleation rate J that forms the backbone for numerical modeling of
the non-equilibrium condensing flow will be discussed in this section. Historically the theories
of homogeneous nucleation have developed on two lines, one being the thermodynamic-kinetic
approach while the other is based on statistical mechanics and is being formed to eradicate the
uncertainties that surround the classical theory. The theoretical developments to understand
nucleation and droplet growth have been supported by experimental activities, primarily in
Laval nozzles. However, in the past the only data that scientist were able to measure was
the centerline pressure distribution in Laval nozzles. This information was then used to
infer the limiting supersaturation in high-speed nucleating flows. Information regarding the
pressure distributions in Laval nozzle can be used to compare with the results obtained by
numerical solution of the conservation equations describing droplet nucleation and growth
combined with the gas dynamic conservation equations [5]. However, only the information
about the pressure distribution is not sufficient to understand the uncertainties associated with
nucleation theory. Better experimental techniques and optical techniques were developed for
measuring the droplet size (Deych et al.[29], Stein [30], Gyarmathy and Lesch [31] and Walters
[32]). Wyslouzil et al. [33] further developed the techniques to measure the size and structure
of the extremely small droplets (size of nano scale order) by the use of small-angle neutron
scattering. This development made it possible to fetch more accurate information about small
clusters of molecules formed by the process of homogeneous nucleation. This can be used to
validate nucleation theories and hence made it possible to validate numerical solutions of
condensing flows more accurately. As addressed by J. Young and F. Bakhtar [5] that classical
nucleation theory explains qualitatively the process of nucleation in a steam nozzle quite well.
However it lacks quantitative accuracy and hence more work in this direction is required.

From the knowledge of elementary thermodynamics and kinetic theories an expression for the
nucleation rate can be formulated. This expression is a function of the thermodynamic state
of the vapor. As stated earlier, in a supersaturated vapor the process of cluster formation
occurs if the clusters exceed the critical size and encounter a favorable ∆G gradient. It is to
be noted that the steady state assumption is no longer applicable because the rate at which
the clusters grow and decay is not balanced. A droplet of radius r comprising of g molecules
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12 Physical Modeling

is called a g-mer. The net rate per unit volume Ig at which g-mers grow to (g+1)-mers is
termed as the nucleation current and is expressed by equation (2.9)

Ig = Cgfg − Eg+1fg+1, (2.9)

where Cg is the rate at which a cluster acquires a molecule (the condensation rate), Eg+1 is the
rate at which cluster loses a molecule (the evaporation rate) and fg denotes the concentration
of g-mers.

The time rate of change of the concentration of g-mers is then given by expression (2.10)

∂fg
∂t

= − [(Cgfg − Eg+1fg+1)− ((Cg−1fg−1 − Egfg)] = − (Ig − Ig−1) ∼= −
∂Ig
∂g

, (2.10)

Cg can be obtained from the kinetic theory expression for the rate at which vapor molecules
impact the droplet surface. Assuming that clusters can be modeled as spherical droplets down
to the smallest sizes [5].

Cg = qcAg
2
3
ρvν̄v
4m , (2.11)

where ν̄v is the mean speed of vapor molecules and qc is the condensation coefficient, the
fraction of molecules incident on the surface that are absorbed into the droplet.

The solution of equation (2.10) is obtained such that we eliminate the Eg+1 term. To do this
we will first solve equation (2.9) and will eliminate Eg+1 term from it, thereby we get

Ig
Cgng

= fg
ng
− fg+1
ng+1

∼= −
∂

∂g

(
fg
ng

)
. (2.12)

Where ng, is the number per unit volume of g-mers and is expressed as

ng ∼= n1exp

(−∆G
KTv

)
, (2.13)

and n1, is the number per unit volume of monomers. It should be acknowledged here that ng
does not represent real distribution of g-mers and is just a mathematical trick to eliminate
Eg+1.

Eliminating Ig from equations (2.10) and (2.12), the time rate of change of the cluster con-
centration is given by following expression in differential form

∂fg
∂t

= −∂Ig
∂g

= ∂

∂g

[
Cgng

∂

∂g

(
fg
ng

)]
. (2.14)

Equation (2.14) is the transport equation describing isothermal nucleation, i.e., there is no
temperature difference between the droplets and vapor. The solution of equation (2.14) for
isothermal nucleation is carried out in two distinct ways: steady state or in transient state.
Kashchiev [50] investigated the solution of equation (2.14) in transient state in terms of a
characteristic time τ . If a given supersaturation is imposed on a vapor initially in a saturated
condition, then Ig reaches 99 % of its steady state value within a characteristic time of 10−7

to 10−6 s [50]. Calculations show this time scale to be very short in comparison with the
overall time for active nucleation in nozzles [5]. Thus, transient state is usually neglected in
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2.2 Condensation Modeling 13

condensing flow calculations and it is assumed that steady state nucleation rate is attained
instantaneously. For the steady state solution, equation (2.12) can be integrated as

JCL

∞∫
g=1

dg

Cgng
=

∞∫
g=1

−d
(
fg
ng

)
, (2.15)

where JCL is the classical steady-state value of I. Evaluating the integral on the right-hand
side

JCL =


∞∫

g=1

dg

Cgng


−1

. (2.16)

The integral in equation (2.16) is solved analytically. Complete solution of this integral is
provided in Appendix-A giving final expression for nucleation rate as

JCL = qcS
ρ2
v

ρl

( 2σ
πm3

) 1
2
exp

(
−4πr∗2σ

3kTv

)
. (2.17)

It is observed that the nucleation rate J is negligibly small, even at low or moderate super-
saturation ratios S, but it rises perilously with an increase in ∆T = Tsat - Tv, as shown in
figure 2.4. The above expression for nucleation rate is taken from the classical theory. There
has been some key developments in this theory that is incorporated in present work. These
developments are stated below:

• Courtney’s correction: Courtney [34] had proposed the first correction to the classical
nucleation theory. He observed that the effect of the partial pressure of the clusters for
g-mers>1 had been omitted from the classical theory. Courtney’s correction reduces
the expression for the classical nucleation rate (2.17) JCL by a factor S (supersaturation
ratio). The classical form for ∆G is inconsistent with the law of mass action whereas
the one revised by Courtney is.

• Condensation coefficient: The condensation coefficient qc appears in the nucleation rate
equation. Most authors like Mozurkewitch [52] calculated the value of this coefficient
in a range close to unity. Mills [51] performed experimental investigation to determine
the inter-facial heat transfer resistance, in order to calculate condensation coefficient of
water. Mills through his experiment found that the inter-facial heat transfer resistance
was not significant and the values of the condensation coefficient varies in the range
of 0.45 to unity. Moreover Millikan [53] proved with a classic oil drop experiment
that about 90 % of incident molecules suffered diffusion, indicating that almost all of
the incident molecules were absorbed. It should be noted here that the value of the
condensation coefficient as unity is obtained by experiments on large surfaces. On the
other hand for small clusters the condensation coefficient is less than unity. However,
the non-isothermal correction of nucleation theory makes the nucleation rate almost
insensitive to condensation coefficient value in a range of 0.1 to 1.0 [5].

• Non-Isothermal Effects: The classical theory is based on isothermal assumption, i.e.,
the vapor and droplet temperature are equal. During condensation, however, latent
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Figure 2.4: Variation of the classical nucleation rate per unit mass of vapor with supercooling
at various pressures [5].

heat of vapor molecules in the nuclei is released. This heat has to be conducted to the
surrounding vapor and is realized by gas kinetic collisions and not by macroscopic heat
conduction. The reason is that the size of the critical nuclei is smaller than the mean
free path length and the process occurs in the gas dynamic region. Due to this fact there
is a temperature difference between the nucleus (liquid embryo) and the surrounding
vapor, which is dependent on the amount of molecules condense or evaporate, and thus
changing the thermal balance. The thermal non-equilibrium between the phases also
affects the nucleation rate J [1]. Thus, Kantrowitz [35] formulated a simple correction
to the isothermal classical theory of nucleation.

Applying the presented corrections to the classical form of the nucleation rate, a modified nu-
cleation rate is formed. In the present model, in order to account for the relevant phenomena
associated with process of homogeneous condensation, all three corrections mentioned above
are applied to give a modified expression for nucleation rate as

JCL = C
ρ2
v

ρl

√
2σ
πm3 exp

(
−4πr∗2σ

3kTv

)
, (2.18)
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2.2 Condensation Modeling 15

where C is a non-isothermal correction factor that is given by the following relation

C =
{

1 + 2γ − 1
γ + 1

hv − hl
RTv

(
hv − hl
RTv

− 1
2

)}−1
. (2.19)

We have derived the present equation (2.18) of nucleation rate in steady state conditions. It
was described earlier that the characteristic time required for nucleation rate to reach the
steady state is around τ = 10−7 to 10−6 s. In a typical nozzle flow, the cooling rate ranges
from 0.2-0.8 K/µ s with a temperature variation of less than 1 K in one microsecond. Thus,
the temperature change during the nucleation process is insignificant. Moreover the flow field,
in a nozzle, varies in time with a characteristic time period of typically τ∗ = 10−3s [37]. It
can be observed that τ∗ is three to four orders of magnitude higher than τ . Therefore, the
steady state nucleation rate derived by equation (2.18) is a good approximation and can be
applied to both steady and unsteady flows in nozzles.

2.2.4 Droplet Growth Theory

The small clusters of critical size of liquid may grow in the supercooled vapor as the vapor
molecules condense further on the their surface. Flux of mass (vapor molecules) towards the
droplet and net flux of energy (release of latent heat) to the vapor are characteristic behavior
of the droplet growth process [37]. This latent heat transfer causes the vapor temperature
to rise instantaneously. Consequently, the vapor pressure P rises during the initial growth
process, also known as condensation shock. Thus, the growth rate of a droplet is a function
of the heat transfer rate between the droplet and the vapor, and strongly depends on rate at
which heat is conducted away from the droplets [1]. These mechanisms of heat transfer and
mass flux to a great extent depends on the Knudsen number (Kn). The Knudsen number
is defined as the ratio of mean free path of the vapor molecules to the droplet size, i.e., the
droplet diameter and is expressed as

Kn = l̃

2r , (2.20)

where l̃ is the mean free path of the vapor molecules given by expression

l̃ = 3µv
P

√
πRTv

8 , (2.21)

where µv is the dynamic viscosity of the vapor.

The Knudsen number plays a primary role in the heat transfer coefficient due to the existence
of wide range of droplet radius formed during the process of condensation. For very small
Knudsen number (Kn�1), the continuum hypothesis is applicable and the transfer process
is governed by diffusion. Whereas, for large Knudsen number (Kn�1) kinetic gas theory is
applicable (rarefied gas effects) and the process is governed by the kinetic process of impinge-
ment of the vapor molecules to the droplets [37]. Despite the large amount of literature on
growth models with different levels of complexity to account for different regimes of Knudsen
number, a universally applicable growth model has not been formulated. Different growth
models proposed by various authors can be broadly classified into rarefied gas effects for tran-
sitional or diffusion controlled growths. In this respect, the Langmuir model is an interesting
theory that takes into account both continuum and rarefied gas effects. As shown in figure
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2.5, the region around the droplet is divided into two zones, i.e., the outer region and the
inner region. In the outer region the continuum mechanics equations are applied, whereas
in the inner region, termed as Knudsen layer, the transfer processes are governed by kinetic
gas theory. For the flow inside nozzles, the Knudsen number varies in a wide range, from
the continuum to the free-molecule regime. Hence Langmuir model finds the best fit in these
applications. Figure 2.5 shows, Knudsen layer at a radius r + βlg, which separates the con-
tinuum regime from the free molecular regime, where β is a constant of the order unity [1].
To formulate the rate at which the droplets grow, it is important to account for the coupling
between mass and energy. Thus an energy balance around a spherical droplet or radius r is
done and the following expression is obtained

m
dhp
dt

= − (hv − hl) Ṁ − Q̇. (2.22)

In equation (2.22), the term on left hand side is called sensible heating usually is small, owing
to very small size of the droplets of liquid, and therefore can be neglected. The first term
on the right hand side of equation (2.22) is the latent heat energy to be removed from the
droplet. The second term is the convective heat transfer rate Q̇. Ṁ is the mass transfer rate
given by

dmp

dt
= −Ṁ, (2.23)

here mp is the mass of a single spherical droplet expressed as

mp = 4
3πr

3ρl. (2.24)

Substituting (2.23) and (2.24) in (2.22) we get

(hv − hl)
dmp

dt
= 4πr2Kv (Tl − Tv) , (2.25)

Figure 2.5: Langmuir model and Temperature distribution around a droplet [1].
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where dmp

dt is the mass condensation rate over the surface of the droplet, (hv −hl) is the local
latent heat per unit mass and (hv − hl)dmp

dt is the rate of latent heat to be removed from the
droplet. A part of the latent heat is convected to the vapor, while the remaining part is used
to raise the droplet temperature. In the above expression, Tl represents the temperature of
the liquid and is assumed to be equal to the saturation temperature Ts at the corresponding
vapor pressure. Simplifying equation (2.25) by substituting the value for mp, the droplet
growth can be expressed as

dr

dt
= Kv (Ts − Tv)

(hv − hl) ρl
. (2.26)

For the small droplets that are generated due to homogeneous nucleation, the heat transfer
coefficient Kv must be modified to account for Knudsen (Kn) number effects. A heat transfer
coefficient which includes this dependence, and that is appropriate for steam, was developed
by Gyarmathy [12], and is expressed as

Kv = Nuλv
2r = λv

r (1 + cKn) . (2.27)

The value of the constant c in the equation (2.27) was proposed by White and Young [21]
to improve the agreement with experimental results at low pressures. Using Gyarmathy’s
approximation, equations (2.26) and (2.27) can be combined along with the definition of the
Nusselt number to give the following expression for growth rate

dr

dt
= 1
ρl

λv
(1 + 3.18Kn)

(Ts − Tv)
(hv − hl)

r − r∗
r2 . (2.28)

Detailed derivation of the above growth rate is given by Keramat Fakhari [1]. Equation
(2.28) is termed Gyarmathy’s droplet growth equation, which takes into account the diffusion
of vapor molecules through the surrounding vapor. Another expression for droplet growth
rate for the free molecular energy transfer rate between the droplet surface and the interface
is given by Hill [13]

(hv − hl) ρl
dr

dt
= Q̇ = P√

2πrTv
γ + 1

2γ Cp (Ts − Tv) . (2.29)

Rearranging the terms in equation (2.29) we get to

dr

dt
= P

(hv − hl) ρl
√

2πrTv
γ + 1

2γ Cp (Ts − Tv) . (2.30)

2.3 Surface Tension

Young [36] indicated the importance of testing the accuracy of nucleation and the droplet
growth theory individually. To accomplish this goal, it is important to have the data for the
pressure measurement and droplet size. This implies that the validation of any condensation
model in calculating the non-equilibrium condensing flow is strongly dependent on the accu-
racy of the nucleation theory and the droplet growth theory. However the accuracy of the
practical computation of the nucleation rate depends on the properties of the droplets with
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small radius. The most important property, which has very strong effect on the nucleation
rate is the surface tension [6][37]. It can be seen from the equation (2.18) that surface tension
of the droplet appears in the exponential term and small inaccuracy in this value can result
in a dramatic change of nucleation rate. The uncertainty associated with the calculation of
surface tension of sub-cooled spherical water droplet seriously hampers the validation process
of any condensation model.

It has been claimed by many scientist that the surface tension of a highly curved surface liquid
may differ significantly from the surface tension of a bulk liquid with flat surface [38][39].
Tolman [39] used the results of Gibbs thermodynamic theory of capillarity to assess the effect
of droplet size on surface tension. Tolman came to the conclusion that surface tension can be
expected to decrease with decrease in droplet size. But this decrease in the surface tension
is observed only in very small droplets (diameter of nanometer size). In other words, the
Tolamn‘s theory states that there is no sensible effect of curvature of the droplets on surface
tension in the macroscopic domain. The dependency of the surface tension on the droplet size
and its extrapolation to the sub-cooled region has been a topic of debate. Since the critical
droplet of nucleation theory represents a cluster of molecules of radius of the order of 10Ȧ,
and is definitely outside the domain of applicability of macroscopic thermodynamic concepts
[40]. Hence there is a need for the development of the nucleation theory whose dynamics can
be extrapolated from macroscopic concepts into the microscopic domain without subjection
to any ambiguities.

In the present work we have computed the surface tension σ as a function of temperature
only. In order to calculate the surface tension, the vapor temperature Tv will be used instead
of the liquid saturation temperature Ts(P) owing to the fact that the freshly formed liquid
droplets are in equilibrium with the vapor around it. In the nucleation theory proposed in
the earlier section it can be observed that the expression for nucleation rate J (2.18) contains
other terms apart from surface tension, that are defined for corresponding thermodynamic
equilibrium state. The equation formulated by Vargaftik et al. [41] is used to account for the
temperature dependence of σ, and is expressed as

σ = B

[
Tc − Tv
Tc

]µ [
1 + b

(
Tc − Tv
Tc

)]
, (2.31)

where B = 235.8× 10−3 N/m, b= -0.625 and µ=1.256 are empirical constants.

Equation (2.31) is an interpolating equation that is able to calculate the surface tension of
water droplets within a temperature range of 0.01 to 374◦C well within estimated uncertain-
ties. This interpolating equation has been recommended by the International Association
for the Properties of Steam (IAPS) and predicts the surface tension of water droplets quite
accurately.

It was observed by Lai et al. [6] that only a small change in the surface tension resulted in
a substantial change in the pressure distribution, nucleation rate, mean droplet radius and
droplet size distribution. As a matter of fact, higher surface tension ratio (ratio of surface
tension for spherical droplet to that for the flat surface) tends to give a smaller nucleation
rate and a broader nucleation zone, which delays the onset of condensation process along
with increase in the mean droplet radius. The results are relatively sensitive to the change in
surface tension ratio.
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Figure 2.6: Axial Pressure distribution in a convergent divergent nozzle with spontaneous con-
densation [27].

2.4 Condensation in Nozzles: A Summary

To summarize the present chapter an example on the process of condensation in a typical
Laval nozzle, i.e., a convergent-divergent nozzle, is presented. Figure 2.5 shows expansion in
a typical convergent-divergent nozzle starting from the superheated dry conditions into the
wet conditions. From figure 2.5, at the point (1) steam enters the nozzle in the form of the
dry superheated vapor. The steam is expanded to sonic conditions due to diverging geometry
of the nozzle. From point (1) till the point (2) steam is in the dry superheated conditions
and has not crossed the saturation line. It is only at the point (3), that the saturation line is
crossed. The crossing of saturation line happens before or after the throat depending on the
geometry of nozzle and expansion rate. The liquid droplet embryos (molecular clusters) begin
to form and collapse in the vapor in this region. However, the rate of nucleation associated
with these early embryos is very low, and hence the steam continues to expand as a dry vapor
in a metastable sate. The nucleation rate increases instantaneously and reaches its maximum
at the point (4). This peak in nucleation happens as the limiting supersaturation is reached,
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indicated by the Wilson line in the figure. It is at this point that the onset of nucleation
happens and thus this area is termed as nucleating zone and is terminated by the Wilson
point, which is the point of maximum supercooling or supersaturation. Here supercooling
is often used by engineers because of its more obvious physical significance. Supercooling is
defined as the difference between the saturation temperature Ts(P) at the vapor pressure P
and the vapor temperature Tv. It is often represented by symbol ∆T.

∆T = TS(P )− Tv. (2.32)

After the point (4), nucleation ceases effectively and the number of droplets in the flow remains
constant. It is only between the points (4) and (5) that these nuclei grows rapidly, helping
the system to reach the thermodynamic equilibrium. Further expansion of the flow between
the points (5) and (6) takes place close to the equilibrium conditions. While reaching to the
stable thermodynamic equilibrium via a change of the phase, a release of latent heat to the
vapor phase from the liquid phase happens. This release of heat causes a kink in the pressure
between the points (4) and (5) indicating the process of condensation has occurred in the
expanding flow. The process of this expansion can also be represented in an enthalpy-entropy
(h-s) diagram as shown in figure 2.7.

Figure 2.7: State path for expanding steam with spontaneous condensation in Enthalpy-Entropy
(h-s) diagram [27].
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Chapter 3

Numerical Modeling

This chapter presents the numerical schemes used to model the condensation phenomenon and
implemented in an in-house quasi 1-D Euler solver. A detailed description of the equations
governing the two-phase flow is presented. This is followed by the discussion of appropriate
numerical methods for discretization of the governing equations for gas dynamics along with
the Approximate Riemann Solver (ARS) required for discretizing the convective fluxes. It is
also the objective of this chapter to incorporate the description of the equation of state used
to model the real gas behavior of the steam.

3.1 Overview of the Numerical Studies

From fluid mechanics point of view, there are two universal descriptions of motion namely,
the Lagrangian approach and the Eulerian approach. Many of the authors in the past have
used a coupled Eulerian-Lagrangian approach to model the condensing flows accurately. In
Eulerian-Lagrangian models the numerical modeling of liquid phase i.e. clusters of droplets,
is done using Lagrangian approach and the trajectories of the individual particles is tracked.
On the other hand equations for mass, momentum and energy were solved based on the
Eulerian approach. The time-accurate calculations were used to investigate the self-induced
oscillations in homogeneous condensing flows. In the Eulerian assumption the clusters of
droplets is considered to be dense and therefore is regarded as continuum. In the Eulerian-
Eulerian models commonly referred as two-fluid models, both phases are considered as a
continuum. The selection of an appropriate model is governed by the nature of flow and the
required level of accuracy. In the Eulerian model the fluid path from one cell to the next
is not accounted for and hence the behavior of the fluid from the cell it has emerged is not
necessary to be known. This property of the Eulerian model allows to develop equations in a
time marching form and extension to three dimension is more straightforward. However, the
solution can change rapidly in a short distance and hence complex numerical schemes need
to be employed [69].
Young and White [21] were the first to perform 2-D simulations for a condensing steam
flow. They were able to show the periodic quenching effect of the nucleation rate on droplet

Master of Science Thesis Anshuman Pandey



22 Numerical Modeling

size distribution. The Eulerian-Eulerian model has been used by several investigators, among
which Jan Halama [22] , Stastny and Sejna [23], Gerber and Kermani [24], Marcus, F. Bakhtar
and K. Zidi [25] and Wlodzimierz and Dykas [26] are the most notables ones. Jan Halama
performed 2-D simulations in the supersonic Barschdroff nozzle for an inviscid case using
complete Eulerian approach. Another important investigation was done recently by Gerber
and Kermani [24] using Eulerian multiphase equations for both vapor and the liquid phase.
In this work, concept of classical nucleation theory and droplet interfacial area density for
modeling the non-equilibrium condensation in transonic steam flow is utilized. The implicit
time integration solution strategy was applied with no constraints on the time-step.

3.2 Assumptions of the Model

As discussed earlier, while expanding through a nozzle, steam achieves a supercooled state
and then, depending on the degree of supercooling or supersaturation of the vapor, nucleation
sets in. Depending on the thermodynamic conditions, the droplets formed from nucleation
may grow or evaporate. Since steam (vapor) is a compressible fluid, the governing equations
for compressible gas dynamics apply. The numerical algorithm of such compressible flows
should take into account the real gas phenomena (using real gas equation of state), owing
to the fact that condensing steam deviates from ideal gas behavior. Here, while solving the
governing equations for compressible flows it is also important to include the equations for
phase transition in condensing flows. The flow governing equations are formulated for the
vapor-liquid mixture, i.e., the steam is assumed to be a homogeneous mixture of vapor and
mono-dispersed spherical droplets of liquid. This way of formulating a model in terms of
the flowing mixture is termed as a single fluid model. Here, some assumptions are made to
simplify the model and focus only on the phenomena of nucleation and droplet growth that
we are interested in. For simplicity it was assumed that both the phases are governed by the
same average pressure P. Furthermore, it is assumed that the volume occupied by the liquid
phase is negligible. This gives the following simplified relation between mixture and the vapor
density using the wetness fraction

ρ = ρv
1− y , (3.1)

where ρ is the density of the mixture, ρv is the density of the vapor and y is the wetness
fraction. The first step is solving the Euler equations governing the condensing flow. It is
assumed that the slip velocity between the droplets and vapor is negligible. This lead to the
fact that the flow is characterized by a single velocity u for both phases (no-slip condition).
This assumption further simplifies the model giving to a single momentum equation. In low-
pressure steam, the distance between the liquid droplets is sufficiently large to neglect the
interaction between the droplets without loss in accuracy.

3.3 Governing Equations

The Laval nozzles considered in the present work have supersonic flow regime i.e. Mach
number>1. It is known for steam to behave as compressible flow owing to the fact that they
have a Mach number>0.3. Hence it is mandatory to account for compressibility effects in
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the governing flow equations for mass, momentum and energy. In this section attention is
paid to the governing equations of the compressible flow implemented in the present in-house
CFD code. The code is based on time dependent quasi 1-D Euler equations formulated for the
vapor-liquid mixture that are coupled with the two additional equations for the nucleation and
growth of the liquid droplets. As stated earlier the present model is based on the assumption
of mechanical equilibrium condition (i.e., no slip between the vapor phase and the liquid
droplets) is satisfied everywhere in the flow field. The assumptions stated in section 3.2 when
implemented in the governing equations results in a set of three transport equations for mass,
momentum and energy along with two transport equation for liquid phase.

Euler Equations for Mass, Momentum and Energy

∂ρ

∂t
+ ∂ρu

∂x
= − ρu

A(x)
dA

dx
, (3.2)

∂ρu

∂t
+ ∂(ρu2 + P )

∂x
= − ρu2

A(x)
dA

dx
, (3.3)

∂ρE

∂t
+ ∂((ρE + P ))u

∂x
= −(ρuE + Pu)

A(x)
dA

dx
, (3.4)

where P is the mixture pressure, ρ mixture density, u the mixture velocity, E the mixture
total specific internal energy.

The change of phase from vapor to liquid do not appear explicitly in the equations (3.2−3.4),
but is included in the mixture thermodynamic properties.

It was decided to use in present work the mono-dispersed model. This implies that droplets
are assumed to have the same mean radius and thus the size distribution is neglected [55].
Two equations are additionally used, mass conservation of liquid phase y and conservation of
droplet number N, to model the non-equilibrium condensation.

Conservation equation for Liquid Phase

∂ρy

∂t
+ ∂ρuy

∂x
= Γ1 + Γ2, (3.5)

∂ρN

∂t
+ ∂ρuN

∂x
= J, (3.6)

In equation (3.6), J is the nucleation rate given by the classical nucleation theory and is
expressed by equation (2.18). In equation (3.5), Γ1 and Γ2 are the interfacial exchange terms
defined as

Γ1 = 4
3πρlr

∗3J, (3.7)

Γ2 = 4πρlr2dr

dt
, (3.8)

where, drdt is the growth rate that is defined by equation (2.28) or (2.30).
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Here Γ1 is the source term of the critical droplets created due to the nucleation process and
Γ2 is the mass condensation rate of all the droplets per unit volume of the two-phase mixture
[kg/(m3s)] for homogeneous condensation.

Equation (3.5) represents the expression for mass conservation for the liquid droplets y
whereas equation (3.6) represents the expression for the conservation of the number of droplets
N. It can be seen that there is no source term due to condensation in the Euler equations
(3.2−3.4), which is attributed to the fact that the gas and liquid phase are summed to give
a two-phase homogeneous single pressure model [37].

The following properties are averaged using the mass fraction y, to link the liquid phase
properties to that of the vapor phase properties

Em = (1− y)Ev + yEl, (3.9)

hm = (1− y)hv + yhl. (3.10)

sosm = (1− y)sosv + ysosl. (3.11)

3.4 Thermodynamic Model

In order to model the non-equilibrium thermodynamics associated with condensation phe-
nomena, it is essential to take into account the real gas behavior of the steam. In this section
attention is given to the choice of the equation of state that can compute the thermodynamic
properties in the subcooled region accurately. It is known that the superheated and subcooled
steam deviates from the perfect gas behavior, so the calorically perfect ideal gas model does
not apply. As seen from the previous section, condensation model, i.e., the nucleation rate
and droplet growth is very sensitive to the thermodynamic properties like temperature (su-
percooling) or pressure (supersaturation). The ideal gas model cannot accurately calculate
thermodynamic properties from the values obtained from the solution of the fluid dynamic
equations. It is worth noting that it is impossible to describe the state of the mixture using a
simple thermodynamic relation such as an equation of state. It was indicated by Callen [30]
that the thermodynamic properties in a mixture are defined and have physical meaning only
when the condition of local equilibrium is satisfied everywhere in the flow field.

A distinction between the real gases and the ideal gases can be made on account of the
intermolecular forces. In the real gases, the intermolecular forces are important while for the
ideal gases these forces are negligible. Figure 3.1 shows different thermodynamic conditions
which defines the behavior of the gases in pressure-temperature diagram.

It is important to understand the relaxation gas dynamics associated with non-equilibrium
condensation process. Relaxation processes can be collectively defined as the way in which
gas phase chemical reactions and the excitation of internal modes of molecular energy storage
occurs [57]. At the onset of homogeneous nucleation, the system changes to a two-phase
system of vapor and liquid. In this scenario, the thermodynamic equilibrium is not attained
until the droplet growth process is active, hence there will be exchange of mass, momentum
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and energy between the two phases. In order to have a physical understanding of the complex
flow field, it is important to understand the role of the relaxation time associated with each
process in bringing the system back to equilibrium. The guidelines for three relaxation times
suggested by Guha and Young [56] are adopted, i.e., thermal equilibrium of the droplets,
interface slip velocity and the thermal equilibrium of the complete system. It is suggested
that the droplets, formed on the onset of the homogeneous nucleation process, try to reach the
thermodynamic equilibrium, i.e., its equilibrium temperature in the shortest time. Hence the
relaxation time associated with thermal equilibrium of the droplets is the smallest. On this
theory, the droplet temperature can be approximated to be equal to that of the saturation
temperature Ts(P) without loss in accuracy of the model. The assumption of no-slip condition
is based on the second relaxation time associated with momentum transfer process, which is
quick when the droplet size is very small (r«10−6 m). Under this assumption it can be stated
that the interface of the momentum transfer reaches the equilibrium value fast, hence there
is no velocity difference between the liquid and the vapor phase. Lastly the third relaxation
time is associated with process of the vapor temperature reaching its equilibrium value that
eventually brings the whole system of mixture flow to equilibrium condition. This process is
relatively slower and hence is considered as frozen in time. It can now be deduced that the
mechanism of the liquid and vapor phase is uncoupled. As the variations driven by flow field
is much faster than thermal variation due to condensation and hence gas phase flows like a
single phase vapor [37].

Figure 3.1: Different gas region on a P-T Diagram [1].
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3.4.1 Non-Equilibrium Equation of State: Wet Steam

A comprehensive literature is available on the various types of equations of state for com-
puting thermodynamic properties of steam. However, the most accurate and recommended
equation of state for steam for industrial applications is the "IAPWS Industrial Formulation
1997" (IAPWS-IF97). The International Association for the Properties of Water and Steam
(IAPWS) Industrial Formulation 1997 consists of a set of equations for different regions. The
basic equation for each region is based on fundamental expression for specific Gibbs free en-
ergy. However, in the in-house CFD code in order to estimate the thermophysical properties
and their partial derivatives, a common interface to several thermodynamic models (Fluid-
Prop) has been used [59] [60]. The thermodynamic library computes the fluid thermodynamic
and transport properties. It was chosen to use cubic form of Equation of State (EoS), derived
from Peng Robinson equation. It estimates the thermodynamic state in the metastable region
accurately and hence leads to accurate prediction of the condensation model. The cubic EoS
makes the solution of the flow equations faster as compared to the Multi-parameter Equation
of State (MEoS) due to its simple form. Complete details of the used cubic EoS is given
by Colonna [61]. Here a brief explanation is introduced for the sake of completeness. The
PRSV (Peng-Robinson-Stryjek-Vera) EoS is similar to the cubic form proposed by Peng and
Robinson [58]

P = RT

v − b
− a

v2 + 2bv − b2 , (3.12)

where

a =
(

0.457235R2T 2
c

Pc

)
α, (3.13)

b =
(0.077796RTc

Pc

)
, (3.14)

and
α =

[
1 + κ

(
1−

√
Tr
)]2

. (3.15)

The modification introduced by Stryjek and Vera [62], makes κ temperature-dependent

κ = κ0 + κ1
(
1 +

√
Tr
)

(0.7− Tr), (3.16)

with,
κ = 0.378893 + 1.4897153ω − 0.17131848ω2 + 0.0196554ω3. (3.17)

The improved PRSV EoS, iPRSV is obtained by modifying the equation for the calculation
of κ value, such that it is continuous with the temperature, but by keeping the same pa-
rameters κ0 and κ1 in the functional form, with same values. The κ- function in the iPRSV
thermodynamic model is therefore

κ = κ0 + κ1

{√
[A−D (Tr +B)]2 + E +A−D (Tr +B)

}√
Tr + C. (3.18)
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The thermodynamic properties of the vapor phase are calculated based on the iPRSV equation
of state. The iPRSV formulation can be used for calculating thermodynamic properties of
the droplets at low pressures.

3.5 Numerical Methods

The Euler equations are hyperbolic partial differential equations. The hyperbolic systems
of partial differential equations (Euler equations) can be used to model a wide variety of
phenomena that involve wave motion. A general form of the equation of motion, is given by
equation (3.19) for arbitrary EoS and is restricted to the quasi 1-Dimensional Euler equations

∂Q

∂t
+ ∂F

∂x
= 0, (3.19)

here Q and F constitutes the vector of the conservative variables and the flux vector respec-
tively, given as

Q =

 ρ
m
E

 , (3.20)

F =

 m
m2

ρ

(E + P ) mρ

 , (3.21)

where m=ρu, is the momentum per unit volume, u is the mixture velocity, and E is the
mixture specific total internal energy per unit volume and can be expressed as

E = hm −
P

ρm
+ 1

2u · u. (3.22)

In this section only a brief overview of the numerical scheme is presented, however for detailed
numerical schemes book by Randall J. Leveque [63] can be referred. In the present work finite
volume method is used, which is derived from the integral form of the conservation laws as
given by equation (3.23). The finite volume method mimics the conservation laws by conserv-
ing the quantities like mass, momentum and energy irrespective of the size of computational
domain. This method is based on segmenting the spatial domain under consideration into a
number of intervals, termed as finite volumes or grid cells. An approximation to the integral
of the conserved quantity q is done over each of these control volumes. This is followed by
updating these values through approximations of the flux through the endpoints of the inter-
val. The primary problem is to determine good numerical flux functions that approximate
the correct fluxes reasonably well, based on the approximate cell averages.

d

dt

∫
Ci

q (x, t) dx = f
(
q
(
xi− 1

2
, t
))
− f

(
q
(
xi+ 1

2
, t
))
, (3.23)

and ith grid cell is represented by

Ci =
(
xi− 1

2
, xi+ 1

2

)
, (3.24)
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where ∆x = xi+ 1
2
− xi− 1

2
is the length of the cell. We can use the expression given by

equation (3.23) to develop an explicit time-marching algorithm. If we are given a quantity at
time tn, then we can approximate the quantity at the next time level tn+1 after a step length
of ∆t = tn+1 − tn. Integrating equation (3.23) from time tn+1 to tn will yield∫

Ci

q (x, tn+1) dx−
∫
Ci

q (x, tn) dx =
∫ tn+1

tn
f
(
q
(
xi− 1

2
, t
))
dt

−
∫ tn+1

tn
f
(
q
(
xi+ 1

2
, t
))
dt.

(3.25)

Rearranging equation (3.25) and dividing by ∆x gives

1
∆x

∫
Ci

q (x, tn+1) dx = 1
∆x

∫
Ci

q (x, tn) dx−

1
∆x

[∫ tn+1

tn
f
(
q
(
xi− 1

2
, t
))
dt−

∫ tn+1

tn
f
(
q
(
xi+ 1

2
, t
))
dt

]
.

(3.26)

The above equation imparts the fact how the cell average of quantity q should be updated in
one time step. Let us say the value Q, is the approximate average value over the ith interval
at time tn, then we have

Qni ≈
1

∆x

∫ x
i+ 1

2

x
i− 1

2

q (x, tn) dx ≡ 1
∆x

∫
Ci

q (x, tn) dx. (3.27)

Substituting equation (3.27) in equation (3.26) we have

Qn+1
i = Qni −

∆t
∆x

(
Fn
i+ 1

2
− Fn

i− 1
2

)
, (3.28)

where Fn
i± 1

2
is an approximation of the average flux along x = xi± 1

2
and is given by

Fn
i− 1

2
≈ 1

∆t

∫ tn+1

tn
f
(
q
(
xi− 1

2
, t
))
dt. (3.29)

It is well understood that in a hyperbolic problem information propagates with finite speed,
so it is reasonable to first suppose that we can obtain Fn

i− 1
2
based only on the values Qni−1

and Qni , the cell averages on either side of this interface. Giving the flux a new formulation

Fn
i− 1

2
= F

(
Qni−1, Q

n
i

)
, (3.30)

where F is a numerical flux function. Thus, equation (3.28) becomes

Qn+1
i = Qni −

∆t
∆x

(
F
(
Qni , Q

n
i+1
)
−F

(
Qni−1, Q

n
i

))
. (3.31)

Equation (3.31) is the final expression for the calculation of the conserved quantity Q (ρ, ρu, ρE)
at next time level and it strongly depends on the specific method chosen to calculate F , the
numerical flux at the interface.
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Figure 3.2: Illustration of a finite volume method for updating the cell average Qn
i by fluxes at

the cell edges. Shown in x-t space [63].

There are generally two families of techniques for discretizing the time derivatives: explicit
and implicit methods. In an explicit method, the unknown variables at a given time step are
obtained from the information of variables from previous time steps only. Implicit methods,
on the other hand, simultaneously advances every grid point, and are therefore more complex
than their explicit counterparts. Implicit techniques involve more computation per time step,
because of the large matrix inversions involved. A Forward-Euler method is implemented
in the code with Courant-Friedrichs-Lewy (CFL) numbers below 1 were used. The CFL
condition must be satisfied, while solving certain partial differential equations, by any finite
volume or finite difference method if we expect it to be stable and converge. The time
step must be less than a certain time in many explicit time-marching simulations, otherwise
the simulation will produce incorrect results [63]. This implies that the information must
propagate at the correct physical speeds. The CFL number is expressed by equation (3.32)
in one dimensional form

C = u4 t

4x
, (3.32)

where u is the magnitude of velocity, 4t is the time step and 4x is the length of the interval.
The applied method in the present work is an explicit method meaning that the value Qn+1

will depend on the value of Qn.

3.5.1 Convective Fluxes

The convective fluxes are calculated at the cell interfaces by solving the Riemann problem
between two neighboring cells. It was Godunov [65] who proposed the solution for the local
Riemann problem and it is based on the exact solution of the one-dimensional Riemann
problem. In the one-dimensional case, Godunov scheme fulfills the positivity of density and
pressure for the Euler system. However it has several drawbacks like it is only first order
and is computationally expensive for solving exact Riemann Problem. These problems gave
way for the development of Approximate Riemann Solvers (ARS). The most commonly used
schemes are Roe’s linearization [66] and the Advection Upstream Splitting Method (AUSM)
by Liou [4]. A major drawback associated with Roe‘s linearisation is the failure in fulfilment
of the entropy condition and has to be enforced.

AUSM+ scheme, which is implemented in present code, is discussed briefly. AUSM+ formu-
lated by Liou has some interesting features such as:
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• Exact resolution of 1D contact and shock discontinuity,

• positivity-preserving of scalar quantity such as density,

• simplicity of the algorithm,

• free of oscillations at the slowly moving shock,

• easy extension to treat other hyperbolic systems.

The AUSM+ scheme is an improved version of AUSM scheme. In the AUSM scheme by Liou
[70], the Euler fluxes are split into convective and acoustic waves and are considered as two
distinct processes:

Fn(Q(x, t)) = Fn + P = M

 ρ
m
ρht

+ P

 0
n
0

 , (3.33)

where ht is the total enthalpy.

Here the convective flux F(n) is expressed in terms of convective speed M and passive scalar
quantities. The pressure flux P contains only the pressure term.

Thus the numerical flux Fn
(i+ 1

2 ) at the interface is defined as the sum of the numerical con-
vective flux Fn

(i+ 1
2 ) and the numerical pressure flux Pi+ 1

2
at the interface i+ 1

2 :

Fn
(i+ 1

2 ) = F(c)
(i+ 1

2 ) + Pi+ 1
2

= Mi+ 1
2
ci+ 1

2
Ψi+ 1

2
+ pi+ 1

2

 0
n
0

 , (3.34)

where Ψ = (ρ,m, ρht)T , and is defined in the interface as:

Ψi+ 1
2

=
{

Ψi, if Mi+ 1
2
≥ 0,

Ψi+1, otherwise.
(3.35)

In the new AUSM+ scheme a common speed of sound ci+ 1
2

= c(Qi+1,Qi) is defined at the
cell interface resulting in unification of the Mach number and velocity. This unification allows
in exact capturing of a shock wave. Finally, the flux expression given by the AUSM+ method
can be written as:

F(c)
(i+ 1

2 ) = 1
2ci+ 1

2

[
mi+ 1

2
(Ψi + Ψi+1)− |mi+ 1

2
|(Ψi −Ψi+1)

]
+ pi+ 1

2

 0
n
0

 . (3.36)

where the interface quantities are defined as: mi+ 1
2

= M+
i + M−i+1 and pi+ 1

2
= P+

i pi +
P−i+1 pi+1. The unknown variables are estimated as:

M±(M) =
{ 1

2 (M± |M|) , if |M| ≥ 1,
±1

4 (M± 1)2
(
2 + 4β (M∓ |M|)2

)
, otherwise.

(3.37)
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and

P±(M) =
{ 1

2 (1± |M|/M) , if |M| ≥ 1,
1
4 (M± 1)2

(
2∓M∓ 4αM (M∓ |M|)2

)
, otherwise.

(3.38)

with α = 3
16 and β = 1

8 as the original paper [4].

Liou’s scheme automatically enforces the entropy condition and positively preserves scalar
quantities (like for example density) [4].

3.6 Implementation Strategy for Condensation Model

In this section the methodology used to implement the condensation model in the existing
CFD code is discussed.

A time marching scheme is being implemented in the code whereby the conservative flow field
of the next time step will be updated using information of the conservative flow field from
previous time level. The thermodynamic library is used to update the thermodynamic states
after every time step. The density and the internal energy are chosen as the independent
thermodynamic variables since they are updated at the end of each time step in the Eulerian
solver. The pressure P of the mixture is then calculated using the relation for the total energy
of the mixture E given by

E − hv(1− y)− hly + P

ρ
− 1

2u
2 = 0 (3.39)

The applied EoS for the vapor and the liquid is non-linear which results in a non-linear
relation for pressure. Thus, the equation (3.39) is solved by means of the Newton iteration
scheme. As discussed earlier, the density of vapor is calculated using equation (3.1). Now
knowing the pressure and density of the vapor other variables such as the speed of sound
c, isentropic coefficient γ, enthalpy h, entropy s, saturation temperature Ts and saturation
pressure Ps, etc. can be calculated using thermodynamic library. Similarly the liquid phase
variables are calculated using pressure P of the mixture and saturation temperature Ts as
independent variables. Followed by this, the source terms resulting from condensation are
calculated, i.e., the nucleation and growth of the droplets. The conditions used for the onset
of the nucleation and the droplet growth are depicted in figure 3.3.

The first case in the figure 3.3 implies if the supersaturated vapor has droplets of radius less
than or equal to the critical radius, there is only nucleation and no growth of the droplets.

Tv < Tsandr ≤ rc dr
dt = 0: only Nucleation

Tv < Tsandr > rc Nucleation alonwith Droplet Growth

Figure 3.3: Conditions for the onset of Nucleation and the Droplet Growth.
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Whereas the second case implies that if both the conditions of supersaturated vapor and the
radius of the droplets exceeding the critical radius are satisfied, then there is nucleation of
droplets and further growth of the already nucleated droplets. The process of nucleation and
the droplet growth contributes to the source term on the right hand side of the conservation
equations (3.5 and 3.6) for liquid phase.

The figure 3.4 shows a flow diagram that outlines the methodology implemented in the present
code. It can be seen from the flow diagram that the numerical domain, the boundary condi-
tions and the thermodynamic library are specified as input to the CFD code. Then the flow
field is initialized using the boundary conditions and assigning the values to the conservative
variables in each control volume. The initial conditions are then known using these conser-
vative variables. The next step is to calculate the time step using the CFL condition. To
calculate the convective fluxes the AUSM+ scheme [4] is used as discussed earlier. It is now
possible to calculate the flux balance knowing the flux differences and other source terms like
the derivative of area of nozzle and the source terms of condensation model. Now the solu-
tion is advanced in time by updating the conservative variables from the information of the
variables at the previous time level. From these updated conserved variables, the new thermo-
dynamic state of the system consequently the source terms are calculated. The methodology
will be repeated according to the predefined maximum iterations until a converged solution
is reached.
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Input data: Simulation Grid,
Boundary Conditions and
Thermodynamic Library.

Initialisation of the flow field.

Calclation of the time step ac-
cording to the CFL condition.

Calculation of the Convective fluxes.

Calculation of the flux balance.

Updating the conservative varaibales=old vari-
ables + Spatial change of Flux differences.

Calculation of mixture pressure and
other thermodynamics variables.

Calcaultion of the scource terms for the
liquid phase conservation equations.

Application of the Boundary Conditions.

Solution
Con-
verged?

Feedback

Post Processing and Visualisation

Yes

No

Figure 3.4: Flow diagram of the implemented Euler equations solver in steady mode.
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Chapter 4

Results and Discussion

The objective of this chapter is to validate the implemented condensation model described in
the chapter 2. In order to assess the accuracy, experimental data of various 1-D supersonic
nozzle is compared to the results obtained by present model.

4.1 Overview of the Validation Process

The condensation model is validated in the present work by a number of quasi 1-D flow in
supersonic nozzles of different geometries. The reason behind selecting nozzle test cases is the
fact that they form a benchmark for testing the condensation models. The convective behavior
of supersonic steam flow found in low-pressure steam turbines with condensation, is essentially
incorporated in the solution of the quasi 1-D Euler equations [1]. Thus, the solutions find their
practical applications in the steam turbines. The accuracy of any condensation model relies
on the quality of the underlying nucleation and the droplet growth theory. These theories
can be tested for their accuracy if the experimental data for the pressure distribution and
the droplets size are available. In order to validate the condensation model, the pressure
distribution of the flow and the droplet radius needs to compared with experimental data.
In order to validate the droplet radius, the droplet growth theory needs to be tested for its
accuracy and reliability in predicting the size of the droplets. Followed by this the nucleation
theory is tested for its accuracy, given the uncertainties in this theory. As discussed earlier,
the surface tension of the spherical droplets play a vital role in determining the accuracy of
the nucleation theory.

There is a comprehensive amount of literature and well documented experimental data avail-
able on spontaneous condensation in the transonic and supersonic nozzles. In the light of the
approach outlined above, these data are collected and used for validation of the implemented
condensation model. In the sections to follow the results and analysis of simulations carried
out in various 1-D supersonic nozzles will be presented.
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4.2 Supersonic Condensing Nozzle Tests

4.2.1 Barschdorff’s Nozzle

The Barschdorff’s experiment [67] on a supersonic nozzle is the first test case selected for
validation. The nozzle used by Barschdorff in his experiment is an arc Laval nozzle, with
the radius of the wall curvature of 584 mm and the critical throat height of 60 mm. The
geometry of the nozzle is shown in figure 4.1. Two test cases were considered with two
different boundary conditions that correspond to those in the Barschdorff‘s experiment. The
first case implements the boundary conditions, i.e, the total pressure at the inlet of P0=78,390
Pa and the total temperature at the inlet of T0= 380.55 K, while the second case is with the
same total pressure but with lower total temperature at the inlet of T0= 373.17 K. The outlet
from the nozzle is supersonic for both the test cases so Neumann conditions are applied.

Figures (4.2-4.4) depict the results of the first test case simulation, i.e., the main flow pa-
rameters which are important in the steam flow with spontaneous condensation. Figure 4.2a
shows the static pressure distribution along the nozzle axis and is compared with experimental
result. It can be observed that at the nozzle position of approximately x=0.05 the pressure
jump called the condensation shock starts and is well captured by the present numerical
model. The pressure jump in the flow is a result of the heat released by the condensation
process, which tends to slow down the flow. The drop in velocity of the flow can be observed
from the decrease in Mach number as shown in figure 4.2b. The heat released is sub-critical
heat, which implies that flow remains supersonic in spite of the condensation shock. This
phenomena results in a higher static pressure at the exit of the nozzle as compared to the
dry steam flow. The steam at the inlet of the nozzle is dry and superheated, which can be
deduced from the fact that supersaturation ratio S is well below 1 as seen in figure 4.2c. As
the steam expands through the nozzle, the supersaturation ratio S increases and attains the
value of unity. At this point the saturation line of the vapor phase is crossed. As expected
the nucleation is not triggered as soon as the saturation line is crossed, but is delayed until
the supersaturation ratio becomes high enough to reduce the critical radius r∗. The reduc-
tion in critical radius r∗ results in the formation of the discernible amount of droplets and

Figure 4.1: Barschdorff Nozzle [68].
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hence nucleation is triggered. This nucleation of the droplets is seen in the form of nucleation
rate J shown in figure 4.3a. It can be seen from figure 4.2c, S continues to rise until the
spontaneous condensation occurs. The heat released as a result of the condensation process
tends to decrease the supersaturation and hence the nucleation rate. This can be observed in
figure 4.2c and 4.3a. The release of latent heat of condensation prevents further subcooling
of the steam and hence subcooling level drops as seen in figure 4.4a. However the wetness of
the steam continues to increase as shown in figure 4.3d, owing to the fact that the flow has
entered the condensation region as the droplet growth rises [69]. The growth of the droplets
occurs as a result of the condensation on the droplets formed during the nucleation process,
increasing the size of the droplets and hence increasing the liquid mass fraction. However,
the number of droplets remains the same and there are no new droplets formed after the
spontaneous condensation has occurred. Thus, it can be said that the nucleation supplies the
droplet number and the droplet growth supplies the liquid mass fraction. The dependence
of the nucleation rate on the supersaturation can be observed from the fact that both have
their peaks at the same location in the nozzle. From figure 4.2d, it can be observed that the
temperature of the vapor rises at approximately x=0.05, as a result of nucleation, and hence
the vapor temperature at the exit of the nozzle is higher as compared to the isentropic flow.
From the results shown it can be observed that the subcooling precedes the nucleation. Also
the wetness fraction of the flow is significant only after the peak of nucleation is reached and
the vapor temperature reaches its equilibrium value. The figure 4.4b shows that the process
is indeed an irreversible process and hence there is change in entropy.
Figures (4.5-4.7) depict the results of the second test case simulation. It can be observed from
these figures that the presented model predicts similar condensation phenomena as described
earlier for the first test case. In the second test case with a lower total inlet temperature, due
to lower expansion rate, the condensation shock appears more upstream as compared to the
first test case.
The condensation model, i.e., the nucleation rate and droplet growth rate, implemented in the
present work is compared with the one implemented by Dykas [26]. Dykas had used a single
fluid model to simulate the flow in Barschdorff’s nozzle with the same two test cases presented
here in this work. It can be deduced from figure 4.3 that the implemented nucleation and
growth theories are in close agreement with that implemented by Dykas. It is to be pointed
out here that in the model presented by Dykas, the EoS recommended by IAPWS was used,
while we have used the IPRSV cubic EoS discussed earlier. This justifies the deviation of
thermodynamic states like the temperature of vapor (fig 4.2d) predicted by the equation of
state in the present model from that of Dykas model. Also the droplet radius predicted by
Dykas model for the first test case was almost 40 % lower than that observed by Barschdorff
during experiments (droplet radius predicted by Barschdorff r=6.67E-08m). While the model
in the present work predicts the droplet radius very close to that of Barschdorff’s experimental
value. The droplet radius computed by present model is in reasonable agreement with the
experimental results considering the uncertainty in the measurement of droplet size at this
scale.
It can be deduced from the results of the simulations for the two test cases of Barschdorff’s
nozzle that the boundary conditions imposed play a key role in the location of the condensation
shock in the nozzle. It can be observed from the two test cases of the Barschdorff’s nozzle
that condensation onset is delayed by increasing the inflow stagnation temperature. The more
upstream the location of spontaneous condensation point in the nozzle is, the larger is the
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sudden pressure rise at the nozzle centerline. This can be observed from the second test case
of the Barschdorff’s nozzle experiment. Otherwise this sudden pressure rise is smaller as in
the first test case of the Barschdorff’s nozzle experiment. Also it can be observed from the
two test cases that more the downstream condensation onset is, larger is the subcooling level

(a) (b)

(c) (d)

Figure 4.2: Barschdorff’s Nozzle first test case: (a) Pressure, (b) Mach number, (c) Supersatu-
ration ratio and (d) Vapor temperature distribution along the nozzle axis.
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(a) (b)

(c) (d)

Figure 4.3: Barschdorff’s Nozzle first test case: (a) Nucleation rate, (b) Number of Droplets,
(c) Droplet radius, (d) Wetness fraction distribution along the nozzle axis.

and larger is the number of droplets formed.
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(a) (b)

Figure 4.4: Barschdorff’s Nozzle first test case: (a) Subcooling level, (b)Entropy distribution
along the nozzle axis.

4.2.2 Moore’s Nozzle

For this test case experimental data from Moore et al. [20] was used. The geometry of the
converging-diverging nozzle is shown in the figure 4.8 and it is the one used by Moore in his
experiment. The boundary conditions at the inlet of the nozzle were taken to be same as
that of Moore et al. experiment, i.e., total pressure at the inlet of P0= 25 KPa and the total
temperature at the inlet of T0= 356.6 K. The outlet from the nozzle is supersonic, therefore
Neumann conditions are applied. Figures (4.9-4.10) depict the results of the computations
performed by the implemented condensation model and is compared with condensation model
implemented by Yang and Shen [73]. It can be observed from these figures that the imple-
mented model is able to compute the expected traits of the spontaneous condensation process
in a supersonic nozzle. As discussed earlier owing to the lower total temperature and pressure
at the inlet of the nozzle the location of the onset of condensation is shifted further upstream
of the nozzle as compared to the Barschdorff’s nozzle. Again it can be observed from the
figure 4.9a that the present model is able to capture the static pressure distribution along the
nozzle axis with reasonable accuracy when compared with experimental results. Also the heat
released due to condensation is sub-critical. This implies that the flow remains supersonic in
spite of the appearance of the condensation as shown in the figure 4.9b.

4.2.3 Discussion

The results presented in the previous section show that the condensation model implemented
is able to predict the location of condensation shock and hence the pressure rise within
reasonable accuracy. Also the droplet radius computed by the presented model is in close
agreement with the experimental value given the uncertainty of the measurement of droplet
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(a) (b)

(c) (d)

Figure 4.5: Barschdorff’s Nozzle second test case: (a) Pressure, (b) Mach number, (c) Super-
saturation ratio and (d) Vapor temperature distribution along the nozzle axis.

size at this scale. However, it is discussed here how the assumptions made in the model
influence the results obtained.

The single fluid model implemented in the present work assumes no slip velocity between the
two phases. In contrast to this the two fluid model predicts the slip velocity between the two
phases and hence shows the correct behavior of the applied drag forces [26]. It is essential
to take into account drag forces in the momentum equation for a correct prediction of the
velocity field. Also as observed by Dykas [26], the two fluid model is able to predict the
droplet radius quite accurately as compared to single fluid model.
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(a) (b)

(c) (d)

Figure 4.6: Barschdorff’s Nozzle second test case: (a) Nucleation rate, (b) Number of Droplets,
(c) Droplet radius, (d) Wetness fraction distribution along the nozzle axis.

In the presented model the droplet temperature was assumed to be equal to the saturation
temperature Ts(P ). However, it is possible to determine the temperature of the droplets by
the capillarity effect using the expression (4.1) given by Gyarmathy [12] and since the droplets
formed during condensation are very small in size their temperatures can be assumed to be
uniform inside the droplet

Tdroplet = Ts(P )− [Ts(P )− Tv]
r∗

r
, (4.1)

where Tdroplet is the temperature of the droplet. The above expression relates the temperature
of the droplet to its size. It is proposed to include the temperature of the droplet in the growth
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(a) (b)

Figure 4.7: Barschdorff’s Nozzle second test case: (a) Subcooling level, (b) Entropy distribution
along the nozzle axis.

Figure 4.8: Geometry of the supersonic nozzle used by Moore et al. [73].

rate equation in the future and analyze its effects in predicting the droplet size.

As discussed earlier the interaction between the liquid droplets has been neglected in the
present work. However, the droplet size distribution may vary as droplets may collide with
each other and stick together. This mechanism can be tested using an agglomeration rate
expression and typical mean droplet radius. Moses and Stein [71] observed very small agglom-
eration rates during their experimental work on supersonic nozzles. This feature allows to
study the growth of the droplets in the supersonic nozzles without dealing with complicated
stochastic agglomeration phenomena.
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(a) (b)

(c) (d)

Figure 4.9: Moore’s Nozzle test case: (a) Pressure, (b) Mach number, (c) Supersaturation ratio
and (d) Vapor temperature distribution along the nozzle axis.

White [72] investigated the viscous effects on condensation process. In the present work an
inviscid flow is assumed in the supersonic nozzle to study condensation. However, White’s
studies suggest that boundary layer effects are likely to influence the condensation process in
two major ways. First, the fluid particles passing through the boundary layer travel slowly
than in free stream. This effect results in lower expansion rates and hence smaller departures
from equilibrium. Second, the viscous heat and the conduction of heat from hotter zones
may prematurely truncate the nucleation in boundary layer flow. As a result of these two
effects the number of droplets nucleated is reduced, ultimately leading to larger droplet size
on establishment of the equilibrium conditions. Thus, the average droplet radii and size
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(a) (b)

(c) (d)

Figure 4.10: Moore’s Nozzle test case: (a) Nucleation rate, (b) Subcooling Level, (c) Droplet
radius, (d) Wetness fraction distribution along the nozzle axis.

distribution predicted by the viscous flow are expected to differ considerably from those
predicted by the inviscid flow. Hence, it is proposed to extend the present work to viscous
flows and analyze the viscous effects on the condensing flows.
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Chapter 5

Conclusions and Recommendations

A completely Eulerian model to solve the wet steam flow in supersonic nozzles has been
implemented in the present work. In addition to the fluid dynamic equations, two additional
equations were implemented into the Euler equations to predict the nucleation and growth
of the droplets. Also the numerical techniques involved to solve the Eulerian flow governing
equations were discussed. The theoretical background of the homogeneous condensing flow
was described. It was observed that the actual transition of phase occurs only after a certain
level of homogeneous nucleation has been triggered and droplet growth has stabilized, which
ultimately leads to formation of the stable liquid droplets. The latent heat release, which is a
characteristic behavior of any condensation process, leads to a complex interaction between
the flow field and the condensation processes resulting in a change of the flow pattern. It
was also discussed how the accuracy of a condensation model depends on its constitutive
elements, i.e., the nucleation and the droplet growth theory. It was seen that knowing the
experimental pressure profiles and droplet size data, it is possible to check the accuracy of
the theoretical condensation model. The nucleation theory implemented in the present work
is based on the assumption of capillarity and is based on the classical nucleation theory. This
implies that the macroscopic thermodynamic equilibrium parameters are used to describe a
non-equilibrium microscopic process [37].

The accuracy of the condensation model implemented in the CFD code was tested on 1-D
Laval nozzles. The results obtained from the simulations showed the expected traits of wet
steam flow. The numerical techniques has proved to be robust in solving the flow governing
equations in different 1-D nozzles. Finally the comparison with experimental data verified
that the implemented model is physically accurate. It was observed from the results that
the droplet radius predicted by the implemented model lacks quantitative accuracy when
compared with experimental data. This is attributed to the fact that the growth rate equation
(2.28) devised by Gyarmathy implemented in the presented work adopts a correction factor,
which is too high for the Knudsen number range experienced in the nozzles tested. This
leads to an inaccurate prediction of the growth of the droplets. Also, it is very important
to accurately evaluate the rate of heat released as it determines the actual axial position at
which nucleation is quenched along with droplet number and size of droplets [37]. It is also
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seen that the present model is able to predict the location and intensity of condensation shock
well.

The present work is a simple and effective step for the development of a condensation model.
In order to utilize the present model for engineering applications, the inclusion of viscous and
non-adiabatic terms is important. It will be an interesting study to compare the results of
the present model with those of the two-fluid model. Also, a check on the dependence of
the present model on the type of equation of state should form a part of future studies. For
instance the evaluation of the model based on equation of state recommended by IAPWS is
suggested. As discussed earlier the value of surface tension of very small droplets influences
the results in a major way. It is recommended to assess the effect of surface tension values
that include size variation, on the present model.
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Appendix A

Evaluation of the Steady State
Nucleation Rate

The analytic solution of the equation (2.16) is evaluated by substituting the value of ng from
equation (2.13) to give

JCL =

 ∞∫
g=1

1
Cgn1exp

(
−∆G
KTv

)dg

−1

. (A.1)

Cg is proportional to g
2
3 and varies slowly with g (g-mer) as compared to the rapidly changing

exponential term in the denominator of equation (A.1). For this reason Cg is approximated
as Cg∗ . Now the ∆G is expanded using Taylor series expansion about g∗ as

∆G = ∆G∗ + (g − g∗)
(
∂∆G
∂g

)
∗

+ (g − g∗)2

2

(
∂2∆G
∂g2

)
∗

+ ...... (A.2)

Truncating after the second-order term and noting that
(
∂∆G
∂g

)
∗

= 0, equation (A.1) becomes

JCL = Cg∗n1Zexp

(−∆G∗
KTv

)
, (A.3)

where Z is called Zeldovich factor, given by

1
Z

=
∞∫

g=1

exp

[
−
(
∂2∆G
∂g2

)
∗

(g − g∗)2

2KTv

]
dg ∼=

−
(
∂2∆G
∂g2

)
∗

2πKTv

−
1
2

(A.4)

Evaluating
(
∂2∆G
∂g2

)
∗
from equation (A.5)

∆G
KTv

= Aσ

KTv
g

2
3 − glnS, (A.5)
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where K is Boltzmann’s constant and A = 36π
(
m
ρl

) 2
3 .

Substituting the value of
(
∂2∆G
∂g2

)
∗
into equation (A.3) gives the final expression (2.17) in the

main text.
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