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A B S T R A C T

We introduce a framework for the control of discrete-time switched stochastic systems with
uncertain distributions. In particular, we consider stochastic dynamics with additive noise whose
distribution lies in an ambiguity set of distributions that are 𝜀−close, in the Wasserstein distance
sense, to a nominal one. We propose algorithms for the efficient synthesis of distributionally
robust control strategies that maximize the satisfaction probability of reach-avoid specifications
with either a given or an arbitrary (not specified) time horizon, i.e., unbounded-time reacha-
bility. The framework consists of two main steps: finite abstraction and control synthesis. First,
we construct a finite abstraction of the switched stochastic system as a robust Markov decision
process (robust MDP) that encompasses both the stochasticity of the system and the uncertainty
in the noise distribution. Then, we synthesize a strategy that is robust to the distributional
uncertainty on the resulting robust MDP. We employ techniques from optimal transport and
stochastic programming to reduce the strategy synthesis problem to a set of linear programs, and
propose a tailored and efficient algorithm to solve them. The resulting strategies are correctly
refined into switching strategies for the original stochastic system. We illustrate the efficacy of
our framework on various case studies comprising both linear and non-linear switched stochastic
systems.

. Introduction

Switched stochastic systems are a ubiquitous class of control systems due to their capability to capture digitally controlled
hysical systems affected by noise. In this class, a controller can switch among a finite set of modes to achieve the desired
ehavior [1]. Systems that can be represented with such models are found in various real-world applications, including robotics [2]
nd cyber–physical systems [3]. These systems are often safety-critical, requiring formal guarantees of correctness, and their noise
haracteristics are uncertain, with statistical properties only available through the use of statistical estimation techniques and possibly
ubject to distributional shifts [4]. However, formal control synthesis and verification methods for switched stochastic systems
ypically assume exact and known noise characteristics. We aim to address this fundamental gap in the literature and focus on
he following question: how to derive formal guarantees for stochastic systems with uncertain noise characteristics?

In this work, we introduce a formal framework for synthesis of distributionally robust control strategies for discrete-time switched
tochastic systems with uncertain noise distribution under reach-avoid specifications. More precisely, we consider switched stochastic
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Nonlinear Analysis: Hybrid Systems 55 (2025) 101554 
systems with general dynamics (possibly non-linear) with additive noise in each mode, and while the exact probability distribution
of noise is unknown, we assume it belongs to a prescribed Wasserstein ambiguity set, i.e., the set of possible distributions defined as
a ball of radius 𝜀 > 0 around a nominal distribution under the Wasserstein distance [5,6]. For instance, such a set can be estimated
using data-driven techniques, e.g., see [5]. The probabilistic reach-avoid specification can include an arbitrary or predefined time
horizon to reach a target set. Such specifications aim to establish a lower bound on the probability of reaching a goal region
while avoiding undesired configurations, and are the basis of logical properties such as syntactically-cosafe Linear Temporal Logic
(sc-LTL) [7], LTL over finite traces (LTLf) [8], and Probabilistic Computation Tree Logic (PCTL) [9].

The framework consists of two main steps: (i) construction of a finite abstraction of the stochastic system in the form of an
ncertain Markov decision process (MDP) [10,11], also known as robust MDP, and (ii) optimal robust strategy synthesis on the

robust MDP. For the abstract construction, we first discretize the state space, and then use the nominal noise distribution (center of
the ambiguity set) to compute bounds on the transition probabilities between the discrete regions. This results in a nominal Interval
MDP (IMDP) [12,13] that contains the discretization error but not the distributional uncertainty. We then lift the ambiguity set
from the noise space to the space of transition probabilities of the IMDP, and embed it as uncertainty, resulting in a robust MDP.
Hence, the obtained robust MDP accounts for the distributional ambiguity in the original system as well as the discretization error.

Next, we synthesize an optimal strategy on the robust MDP that is robust with respect to the uncertain transition probabilities of
his model. To that end, we first introduce a value iteration method to maximize the robust (worst-case) probability of satisfying the

reach-avoid specification on the robust MDP. We prove that, for the unbounded-time specifications, the value iteration converges to
he maximum worst-case probability of satisfaction. We then leverage recent results from distributionally robust optimization [4] to
educe value iteration to the solution of a set of linear programs, improving efficiency. Further, for unbounded-time properties, we

show that stationary strategies are sufficient to obtain the optimal worst-case probability, based on which we introduce an algorithm
or the extraction of such an optimal and robust strategy. We also formally prove the correctness of our framework for the original

switched stochastic system. Finally, we illustrate the framework on four case studies including both linear and non-linear systems
and for various ambiguity sets.

In short, the contributions of this work is fivefold:

• a framework for formal reasoning for distributionally-uncertain switched stochastic systems,
• an abstraction procedure to construct a finite robust MDP for nonlinear switched stochastic systems with additive uncertain

noise,
• a robust strategy synthesis algorithm for robust MDPs with unbounded-time reachability specifications,
• an efficient robust optimization method via a dual formulation of linear programs, and
• a set of illustrative case studies and benchmarks for empirical evaluation of the framework.

1.1. Previous work

A preliminary version of this work appeared in [14], which the current manuscript extends in several aspects. First, in this
paper, we present a new algorithmic approach to perform value iteration, which substantially improves the one in [14] in terms
f computational efficiency: an improvement of two orders of magnitude is observed empirically. Furthermore, work [14] only

considers finite-time reachability properties, whereas in this paper, we extend our results to unbounded-time reachability properties
and prove convergence of value iteration and optimality of stationary strategies in this setting. We also introduce a method of
xtracting such a strategy, which is often ignored in the literature. Finally, we extend the experimental evaluations with a system
ubject to distributional shifts and an example of a system under a complex specification given as a temporal logic formula. With
he exception of Sections 6.1.2, 6.3 and the corresponding(Appendices B and C), all the theorems and definitions remain the same

as in [14]. Section 6.2 has been revised to account for the case of disturbances with a bounded support. The new case studies are
presented in Sections 7.3 and 7.4. We also benchmark the new algorithm in Section 6.3 against the one in [14] to illustrate its
computational superiority.

1.2. Related work

Formal verification and synthesis algorithms have been studied for switched stochastic systems either employing stochastic
barrier functions [15] or abstractions in the form of finite Markov models [16–20]. Within the latter, many works (e.g., [3,13,21–23])
have employed interval Markov decision processes (IMDPs) as abstract model of choice, a class of Markov decision processes in which
the transition probabilities belong to intervals [12,24] and that admits efficient control synthesis algorithms [3,13]. In the literature
it is a common assumption that both the dynamics and noise distribution of the system are assumed to be exactly known. This
in practice is an unrealistic assumption and often violated in the presence of, e.g., unmodeled dynamics, distributional shifts, or
data-driven components.

More recently, researchers have proposed the use of machine learning algorithms, including neural networks and Gaussian
processes, to synthesize formal control strategies when the dynamics are (partially) unknown or too complex to be modeled [25–27].
Yet, these works focus on the unknown dynamics and do not address the case of inexact knowledge of the probability distribution of
stochastic variables in the dynamics. Another line of research tackles the opposite setting, in which the dynamics are known exactly
ut the probabilistic behavior of the system must be inferred from samples of the random terms [28,29]. Our setting is related to

the latter in the sense that we consider ambiguity regarding the distribution of the random terms. However, our approach is general
2 
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Nonlinear Analysis: Hybrid Systems 55 (2025) 101554 
with respect to the source of ambiguity, which encompasses the data-driven setting and those of distributionally robust control and
obustness against distributional shifts.

Ambiguity sets are typically employed in distributionally robust optimization (DRO) to describe sets of probability distributions
with respect to which one aims to make robust (optimal) decisions [30]. A typical way of defining an ambiguity set is as a set of
probability distributions that are close to some nominal one. Depending on the employed measure of closeness, ambiguity sets can be
constructed based on: moment constraints [31,32], statistical divergences [33], or optimal transport discrepancies [6,34,35] like the
Wasserstein distance. Wasserstein ambiguity sets, as considered in this paper, constitute a particularly convenient description for am-
biguous distributions in data-driven problems. The Wasserstein metric penalizes horizontal dislocations between distributions [36],
providing a way to describe ambiguity sets that have finite-sample guarantees of containing the true distribution [37]. Furthermore,

asserstein ambiguity sets enable the formulation of tractable DRO problems [5]. In [38] dynamic aspects of distributional
ncertainty under optimal transport ambiguity are studied. In particular, [38] studies the evolution of Wasserstein ambiguity sets

for systems with unknown state disturbance distribution. Also, [39] developed a risk-aware robot control scheme avoiding dynamic
obstacles whose location is dictated by an ambiguous probability distribution.

A class of Markov processes that is closely related to robust MDPs are distributionally robust Markov decision processes (DR-
DPs) [40–42]. These are MDPs with transition probabilities dependent on uncertain parameters that lie in some ambiguity set.

DR-MDPs and robust MDPs are substantially different as the latter do not consider any additional probabilistic structure over the
ambiguous distributions to signify which uncertainty model is more likely to occur. Planning algorithms for complex specifications
nd diverse classes of robust Markov models have been already considered in the literature [10,13,19,43]. However, none of

them addresses the main contribution of this work, which is how to combine these algorithms with optimal transport techniques
o formally abstract and synthesize strategies for continuous-space dynamical systems with uncertain distribution of the noise.
oreover, the robust MDPs over which we synthesize strategies in this paper generalize the ones considered in [19,43]. These

works assume that the transition probabilities of their robust MDPs vanish at the exact same states for all transition matrices.
Here, we alleviate this restriction, which provides us substantial modeling flexibility as we can handle for instance data-driven
ambiguity sets whose reference distribution, obtained from samples, is bounded even when the data-generating distribution may
not be. This leads to the final key contribution of our paper, which is the rigorous synthesis of optimal strategies for infinite horizon
reachability specifications for a broader class of robust MDPs. In addition, unlike [19,43], our approach does not require identifying
and eliminating end components as a pre-processing step, which suffers from exponential complexity for general robust MDPs [44].

2. Basic notation

The set of non-negative integers is denoted by N0 ∶= N ∪ {0}. Given a set 𝐴, |𝐴| denotes its cardinality. Given 𝓁, 𝑚 ∈ N0 with
≤ 𝑚, we employ [𝓁 ∶ 𝑚] for the set {𝓁,𝓁 + 1,… , 𝑚}. We also use this notation when 𝑚 = ∞ to denote the set {𝓁,𝓁 + 1,…}.

or a separable metric space 𝑋, (𝑋) denotes its Borel 𝜎-algebra and (𝑋) the set of probability distributions on (𝑋 ,(𝑋)). When
is discrete and 𝛾 ∈ (𝑋), 𝛾(𝑥) ∶= 𝛾({𝑥}) is the probability of the event described by the singleton {𝑥}. Let 𝑐 ∶ 𝑋 × 𝑋 → R≥0

e a continuous cost function defined over the product space 𝑋 × 𝑋. The optimal transport discrepancy between two probability
istributions 𝑝, 𝑝′ ∈ (𝑋) is defined as

𝑐 (𝑝, 𝑝′) ∶= inf
𝜋∈𝛱(𝑝,𝑝′)∫𝑋×𝑋

𝑐(𝑥, 𝑦)𝑑 𝜋(𝑥, 𝑦), (2.1)

where 𝛱(𝑝, 𝑝′) is the set of all transport plans between 𝑝 and 𝑝′, a.k.a. couplings, i.e., probability distributions 𝜋 ∈ (𝑋 ×𝑋) with
arginals 𝑝 and 𝑝′, respectively. Since cost 𝑐 is non-negative, 𝑐 provides a discrepancy measure between distributions in (𝑋). By

ontinuity of 𝑐, there always exists a transport plan 𝜋 for which the infimum in (2.1) is attained [45, Theorem 1.3].
Assume that 𝑋 is equipped with a metric 𝑑. Given 𝑠 ≥ 1, we denote by 𝑠(𝑋) the set of probability distributions on 𝑋 with finite

th moment, i.e.,

𝑠(𝑋) =
{

𝑝 ∈ (𝑋) ∶ ∫𝑋
𝑑(𝑥, 𝑦)𝑠𝑑 𝑝(𝑥) < ∞ for some 𝑦 ∈ 𝑋

}

.

The discrepancy 𝑠 ∶= (𝑑𝑠 )
1
𝑠 is then also a metric in the space 𝑠(𝑋) coined as the 𝑠-Wasserstein distance [45]. Additionally, we

use bold symbols, e.g., v, to denote random variables and non-bold symbols to denote the respective realizations, i.e., v.

3. Problem formulation

Consider a discrete-time switched stochastic system given by:

x𝑘+1 = 𝑓𝑢𝑘 (x𝑘) + v𝑘, (3.1)

where 𝑘 ∈ N, x𝑘 takes values in R𝑛, 𝑢𝑘 ∈ 𝑈 , and 𝑈 = {1,… , 𝑚} is a finite set of modes or actions. For every 𝑢 ∈ 𝑈 , 𝑓𝑢 ∶ R𝑛 → R𝑛

is a possibly non-linear continuous function. The noise term v𝑘 is an independent random variable that takes values in R𝑛 with a
distribution 𝑝true

𝑣 that is identically distributed at each time step. We assume the exact noise distribution is unknown, but it is 𝜀-close
to a given (nominal) distribution as detailed below.

Assumption 3.1. The distribution 𝑝true
𝑣 is 𝜀-close (in the 𝑠-Wasserstein sense) to a known distribution 𝑝𝑣 ∈ 𝑠(R𝑛), which we call

nominal, i.e., 𝑝true
𝑣 ∈ 𝑣 ∶= {𝑝 ∈ 𝑠(R𝑛) ∶ 𝑠(𝑝, ̂𝑝𝑣) ≤ 𝜀}, where 𝑠 is determined by the metric 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖, where ‖ ⋅ ‖ is the

Euclidean norm.
3 
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Intuitively, x𝑘 is a stochastic process driven by the additive noise v𝑘, whose distribution is uncertain but close to a nominal
known distribution in the 𝑠-Wasserstein metric. Consequently, System (3.1) represents a large class of controlled stochastic systems

ith additive and uncertain noise. Such systems arise, for instance, in data-driven settings, where measure concentration results [37]
can be employed to build a Wasserstein ambiguity set from data of v𝑘 with high confidence [5], or in settings in which one wants
o synthesize strategies able to cope with distributional shifts of the noise.

Let 𝜔𝑥 = 𝑥0
𝑢0
←←←←←←←←←←→ 𝑥1

𝑢1
←←←←←←←←←←→ … be a path (trajectory realization) of System (3.1) and denote by 𝜔𝑥(𝑘) = 𝑥𝑘 the visited state at time 𝑘

in the sequence 𝜔𝑥. Further, we denote by 𝜔𝑘
𝑥 the prefix of finite length 𝑘 + 1 of 𝜔𝑥, and by last (𝜔𝑘

𝑥) the last state of the finite path
𝜔𝑘
𝑥, i.e., 𝑥𝑘. We also denote by 𝛺∞

𝑥 the set of paths of infinite length and by 𝛺f in
𝑥 the set of all paths with finite length, i.e, the set

of prefixes 𝜔𝑘
𝑥 = 𝑥0

𝑢0
←←←←←←←←←←→ 𝑥1

𝑢1
←←←←←←←←←←→ …

𝑢𝑘−1
←←←←←←←←←←←←←←←←←←→ 𝑥𝑘 for all 𝑘 ∈ N. Given a finite path, a switching strategy selects an action, corresponding to

a mode of System (3.1).

Definition 3.2 (Switching Strategy). A switching strategy 𝜎𝑥 ∶ 𝛺f in
𝑥 → 𝑈 is a function that maps each finite path 𝜔𝑘

𝑥 ∈ 𝛺f in
𝑥 to an action

𝑢 ∈ 𝑈 . We say that a strategy is memoryless (Markovian) if it only depends on last (𝜔𝑘
𝑥) and 𝑘. Furthermore, if a memoryless strategy

does not depend on 𝑘, we call it stationary.
For any 𝑝𝑣 ∈ 𝑣, 𝑢 ∈ 𝑈 , 𝑋 ∈ (R𝑛), and 𝑥 ∈ R𝑛, let

𝑇 𝑢
𝑝𝑣
(𝑋 ∣ 𝑥) = ∫ 1𝑋 (𝑓𝑢(𝑥) + 𝑣̄)𝑝𝑣(𝑣̄)𝑑 ̄𝑣 (3.2)

be the stochastic transition kernel induced by system (3.1) with noise fixed to 𝑝𝑣 in mode 𝑢 ∈ 𝑈 , where 1𝑋 is the indicator function
with 1𝑋 (𝑥) = 1 if 𝑥 ∈ 𝑋, and 1𝑋 (𝑥) = 0 otherwise. From the definition of 𝑇 𝑢

𝑝𝑣
(𝑋 ∣ 𝑥) it follows that, given a strategy 𝜎𝑥, a noise

distribution 𝑝𝑣, and an initial condition 𝑥0, System (3.1) defines a stochastic process on the canonical space (R𝑛)N with the Borel
sigma-algebra ((R𝑛)N) [46]. In particular, by the Ionescu-Tulcea theorem, the kernel 𝑇 𝑢

𝑝𝑣
generates a unique probability distribution

𝑃 𝑥0 ,𝜎𝑥
𝑝𝑣 over the paths of system (3.1) originating from 𝑥0, such that for each 𝑘 ∈ N

𝑃 𝑥0 ,𝜎𝑥
𝑝𝑣 [𝜔𝑥(0) ∈ 𝑋] = 1𝑋 (𝑥0),

𝑃 𝑥0 ,𝜎𝑥
𝑝𝑣 [𝜔𝑥(𝑘) ∈ 𝑋 ∣ 𝜔𝑘−1

𝑥 ] = 𝑇 𝜎𝑥(𝜔𝑘−1
𝑥 )

𝑝𝑣 (𝑋 ∣ 𝜔𝑥(𝑘 − 1)).

In this paper we consider both finite-time and infinite-time probabilistic reach-avoid specifications for System (3.1).

Definition 3.3 (Reach-avoid probability). For a time horizon 𝐾 ∈ N0 ∪ {∞}, a bounded safe set 𝑋, a target region 𝑋tgt ⊂ 𝑋 and an
nitial state 𝑥0 ∈ 𝑋, the reach-avoid probability 𝑃r each(𝑋 , 𝑋tgt, 𝐾 ∣ 𝑥0, 𝜎𝑥, 𝑝𝑣) is defined as:

𝑃r each(𝑋 , 𝑋tgt, 𝐾 ∣ 𝑥0, 𝜎𝑥, 𝑝𝑣) ∶=
𝑃 𝑥0 ,𝜎𝑥
𝑝𝑣

[

∃𝑘 ∈ [0 ∶ 𝐾] ∣ 𝜔x(𝑘) ∈ 𝑋tgt ∧ ∀ 𝑘′ < 𝑘, 𝜔x(𝑘′) ∈ 𝑋
]

. (3.3)

We can now precisely formulate our problem, which is to synthesize control strategies that are robust to all distributions in the
set 𝑣.

Problem 3.4 (Switching Strategy Synthesis). Consider the switched stochastic system (3.1), its corresponding ambiguity set 𝑣, a
bounded safe set 𝑋, and a target region 𝑋tgt ⊂ 𝑋. Given an initial state 𝑥0 ∈ 𝑋, a probability threshold 𝑝th ∈ [0, 1], and a horizon
𝐾 ∈ N0 ∪ {∞}, synthesize a switching strategy 𝜎𝑥 such that, for all 𝑝𝑣 ∈ 𝑣,

𝑃r each(𝑋 , 𝑋t gt , 𝐾 ∣ 𝑥0, 𝜎𝑥, 𝑝𝑣) ≥ 𝑝t h. (3.4)

Remark 3.5. Note that, while our focus on reach-avoid specifications in Problem 3.4, the proposed framework can be easily used
for more complex logical specifications, such as scLTL, LTLf, and PCTL specification, which reduce to reachability problems. We
illustrate this in an example in Section 7.4, where we synthesize a strategy for an LTLf specification.

3.1. Overview of the approach

To approach Problem 3.4, we construct a finite-state abstraction of System (3.1) in terms of a robust MDP as detailed in Section 5.
In Section 6, we show how to synthesize an optimal strategy on the resulting abstraction. In particular, we prove that, while in the
case of finite-time reachability specifications the optimal strategy is Markovian, the optimal strategy for an unbounded-time (infinite
horizon) reachability property is stationary. We prove that in both cases an optimal strategy can be synthesized by solving a finite
set of linear programs, thus guaranteeing efficiency. We then refine the resulting strategy into a switching strategy for System (3.1)
and show how the robust MDP abstraction provides upper and lower bounds on the probability that System (3.1) satisfies the
specification under the refined strategy.
4 
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4. Preliminaries

4.1. Robust Markov decision processes

Robust MDPs are a generalization of Markov decision processes in which the transition probability distributions between states
re constrained to belong to an ambiguity set [10,47].

Definition 4.1 (Robust MDP). A robust Markov decision process (robust MDP) is a tuple  = (𝑄, 𝐴, 𝛤 ), where

• 𝑄 is a finite set of states,
• 𝐴 is a finite set of actions, and 𝐴(𝑞) denotes the set of available actions at state 𝑞 ∈ 𝑄,
• 𝛤 = {𝛤𝑞 ,𝑎}𝑞∈𝑄,𝑎∈𝐴 is the set of possible transition probability distributions of , where 𝛤𝑞 ,𝑎 ⊆ (𝑄) is the set of transition

probability distributions for state–action pair (𝑞 , 𝑎) ∈ 𝑄 × 𝐴(𝑞).1

A path of a robust MDP is a sequence of states 𝜔 = 𝑞0
𝑎0
←←←←←←←←←←→ 𝑞1

𝑎1
←←←←←←←←←←→ 𝑞2

𝑎2
←←←←←←←←←←→ … such that 𝑎𝑘 ∈ 𝐴(𝑞𝑘) and there exists 𝛾 ∈ 𝛤𝑞𝑘 ,𝑎𝑘 with

𝛾(𝑞𝑘+1) > 0 for all 𝑘 ∈ N. We denote the 𝑖th state of a path 𝜔 by 𝜔(𝑖), a finite path of length 𝑘+ 1 by 𝜔𝑘 and the last state of a finite
path 𝜔f in by last (𝜔f in). The set of all paths of finite and infinite length are denoted by 𝛺f in and 𝛺, respectively.

Definition 4.2 (IMDP). An interval MDP (IMDP) [3,21], also known as bounded-parameter MDP (BMDP) [12,24], is a class of robust
MDP  = (𝑄, 𝐴, 𝛤 ) where 𝛤 has the form

𝛤𝑞 ,𝑎 = {𝛾 ∈ () ∶ 𝑃 (𝑞 , 𝑎, 𝑞′) ≤ 𝛾(𝑞′) ≤ 𝑃 (𝑞 , 𝑎, 𝑞′) for all 𝑞′ ∈ 𝑄}, (4.1)

for every 𝑞 ∈ 𝑄, 𝑎 ∈ 𝐴(𝑞). The bounds 𝑃 , 𝑃 are called transition probability bounds, for which it must hold that, for every state
𝑞 ∈ 𝑄 and action 𝑎 ∈ 𝐴(𝑞), 0 ≤ 𝑃 (𝑞 , 𝑎, 𝑞′) ≤ 𝑃 (𝑞 , 𝑎, 𝑞′) ≤ 1 and ∑

𝑞′∈𝑄 𝑃 (𝑞 , 𝑎, 𝑞′) ≤ 1 ≤
∑

𝑞′∈𝑄 𝑃 (𝑞 , 𝑎, 𝑞′).
The actions of robust MDPs and IMDPs are chosen according to a strategy 𝜎 which is defined below.

Definition 4.3 (Strategy). A strategy 𝜎 of a robust MDP model  is a function 𝜎 ∶ 𝛺f in → 𝐴 that maps a finite path 𝜔𝑘, with 𝑘 ∈ N,
of  onto an action in 𝐴(last (𝜔f in)). If a strategy depends only on last (𝜔f in) and 𝑘, it is called a memoryless (Markovian) strategy,
and if it only depends on last (𝜔f in), it is called stationary. The set of all strategies is denoted by 𝛴, and the set of all stationary
strategies by 𝛴𝑠.

Given an arbitrary strategy 𝜎, we are restricted to the set of robust Markov chains defined by the set of transition probability
distributions induced by 𝜎. To reduce this to a Markov chain, we define the adversary [12] (called ‘‘nature’’ in [10]), to be the
function that assigns a transition probability distribution to each state–action pair.

Definition 4.4 (Adversary). For a robust MDP , a (Markovian) adversary is a function 𝜉 ∶ 𝑄 ×𝐴 ×N0 → (𝑄) that, for each state
𝑞 ∈ 𝑄, action 𝑎 ∈ 𝐴(𝑞) and time instant 𝑘 ∈ N0, assigns an admissible distribution 𝛾𝑞 ,𝑎 ∈ 𝛤𝑞 ,𝑎. The set of all Markovian adversaries
is denoted by 𝛯𝑀 .

For an initial condition 𝑞0 ∈ 𝑄, under a strategy and a valid adversary 𝜉 ∈ 𝛯𝑀 , the robust MDP collapses to a Markov chain
ith a unique probability measure defined over its paths. With a small abuse of notation, we denote this measure by 𝑃 𝑞0 ,𝜎

𝜉 .

5. Robust MDP abstraction

To approach Problem 3.4, we start by abstracting System (3.1) into the IMDP ̂ = (𝑄, 𝐴, 𝛤 ) with the noise distribution fixed to the
nominal one, 𝑝𝑣. In this way, we embed the error caused by the state discretization into ̂. After that, we expand the set of transition
probabilities 𝛤 of ̂ to also capture the distributional ambiguity into the abstraction, obtaining the robust MDP  = (𝑄, 𝐴, 𝛤 ). Note
that the sets of states 𝑄 and actions 𝐴 are the same in ̂ and . Below, we describe how we obtain 𝑄 and 𝐴, and in Section 5.2
we consider the set of transition probability distributions 𝛤 .

5.1. States and actions

The state space 𝑄 of  is constructed as follows: consider a set of non-overlapping regions 𝑄saf e = {𝑞1, 𝑞2,… , 𝑞
|𝑄saf e|} partitioning

the set 𝑋 so that either 𝑞 ∩𝑋t gt = ∅ or 𝑞 ∩ (𝑋 ⧵𝑋t gt ) = ∅ for all 𝑞 ∈ 𝑄saf e. We denote by 𝑄t gt the subset of 𝑄saf e for which 𝑞 ∩𝑋t gt = 𝑞
and assume that it is a partition of 𝑄t gt . The states of the abstraction comprise of 𝑄saf e and the unsafe region 𝑞𝑢 ∶= R𝑛 ⧵𝑋, hence,
𝑄 ∶= 𝑄saf e ∪ {𝑞𝑢}. We index 𝑄 by  = {1,… , 𝑁}, where 𝑁 ∶= |𝑄| and denote the actions of the abstraction as 𝐴 ∶= 𝑈 .

1 Note that the sets of transition probability distributions of the robust MDP are independent for each state and action. This is known as rectangular property
f the set of transition probability distributions [10,47]. Furthermore, unlike [19,43], this is the only assumption we impose regarding the structure of the robust
DP.
5 
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5.2. Transition probability distributions

5.2.1. Accounting for the discretization error
To capture the state discretization error in the abstraction, we first consider an IMDP abstraction of System (3.1) for a fixed

distribution, namely, the nominal probability distribution 𝑝𝑣. Since this IMDP is constructed for the nominal distribution 𝑝𝑣, we
call it ‘‘nominal’’ IMDP and use the notation ̂ = (𝑄, 𝐴, 𝛤 ). We note that building an IMDP abstraction of a stochastic system with
disturbances of a known distribution is widely studied in the literature [3,13,25,48], and we report the full procedure here below
for completeness. Construction of the state 𝑄 and action 𝐴 spaces of ̂ are described in Section 5.1. We now describe the set 𝛤 of

.̂ According to Definition 4.2, the set 𝛤 is defined by the transition probability bounds 𝑃 and 𝑃 of ̂. To formally account for the
discretization error, the bounds must satisfy for all 𝑞 ∈ 𝑄saf e, 𝑞′ ∈ 𝑄 and 𝑎 ∈ 𝐴 = 𝑈 :

𝑃 (𝑞 , 𝑎, 𝑞′) ≤ min
𝑥∈𝑞

𝑇 𝑎
𝑝𝑣
(𝑞′ ∣ 𝑥) and 𝑃 (𝑞 , 𝑎, 𝑞′) ≥ max

𝑥∈𝑞
𝑇 𝑎
𝑝𝑣
(𝑞′ ∣ 𝑥). (5.1)

Since we are interested in the paths of system (3.1) that do not exit set 𝑋, we make state 𝑞𝑢 absorbing, i.e.,

𝑃 (𝑞𝑢, 𝑎, 𝑞𝑢) = 𝑃 (𝑞𝑢, 𝑎, 𝑞𝑢) = 1 (5.2)

for all 𝑎 ∈ 𝐴. In this way, we include the ‘‘avoid’’ part of the specification into the definition of the abstraction: the paths that reach
𝑞𝑢, will remain there forever and, therefore, will never reach the target set 𝑄t gt . Consequently, for each 𝑞 ∈ 𝑄 and 𝑎 ∈ 𝐴, we obtain

𝛤𝑞 ,𝑎 = {𝛾 ∈ (𝑄) ∶ 𝑃 (𝑞 , 𝑎, 𝑞′) ≤ 𝛾(𝑞′) ≤ 𝑃 (𝑞 , 𝑎, 𝑞′) for all 𝑞′ ∈ 𝑄}. (5.3)

5.2.2. Accounting for the distributional uncertainty
Now, we expand the sets {𝛤𝑞 ,𝑎}𝑞∈𝑄,𝑎∈𝐴 of transition probabilities of ̂ to also embed the distributional uncertainty into the

bstraction. With this objective, we first define the cost

𝑐(𝑞 , 𝑞′) ∶= inf {‖𝑥 − 𝑦‖𝑠 ∶ 𝑥 ∈ 𝑞 , 𝑦 ∈ 𝑞′}, (5.4)

between any two states 𝑞 , 𝑞′ ∈ 𝑄, where ‖ ⋅ ‖ and 𝑠 are the same as for 𝑠 in Assumption 3.1. The cost 𝑐(𝑞 , 𝑞′) 1𝑠 is the minimum
distance, in the sense of norm ‖ ⋅‖, between any pair of points in the regions 𝑞 and 𝑞′, respectively. Using this cost and the exponent
𝑠 in 𝑠, we define the optimal transport discrepancy 𝑐 between distributions over 𝑄 as in (2.1).2 Given a probability distribution
∈ (𝑄) and 𝜖 ≥ 0, we denote by  𝜖

𝑐 (𝛾) the set of all distributions to which mass can be transported from 𝛾 incurring a 𝑐-transport
ost lower than 𝜖. Using the previous elements, we are finally able to define 𝛤 .

Definition 5.1. The discrete uncertainty set 𝛤 is defined for every state 𝑞 ∈ 𝑄saf e and action 𝑎 ∈ 𝐴 as

𝛤𝑞 ,𝑎 ∶=
⋃

𝛾∈𝛤𝑞 ,𝑎
 𝜖
𝑐 (𝛾), (5.5)

with 𝜖 = 𝜀𝑠. For state 𝑞𝑢 and action 𝑎 ∈ 𝐴, let 𝛤𝑞 ,𝑎 ∶= 𝛤𝑞 ,𝑎 (preserving the absorbing property of the unsafe state).

Each 𝛤𝑞 ,𝑎 is the set of probability distributions over 𝑄 that are 𝜖-close to 𝛤𝑞 ,𝑎, in the sense of the optimal transport discrepancy
𝑐 . Note that the way in which we have defined 𝛤 makes it possible that there exist two probability distributions 𝛾 , 𝛾 ′ ∈ 𝛤𝑞 ,𝑎, for
some 𝑞 ∈ 𝑄, 𝑎 ∈ 𝐴, which have different support. Therefore, the robust MDPs we consider belong to a more general class than the
ones in [19,43].

Once we have obtained the sets of transition probabilities 𝛤 , along with the state 𝑄 and action 𝐴 spaces, our robust MDP
abstraction  is fully defined. The following proposition ensures that the abstraction captures all possible transition probabilities
of System (3.1) to regions in the partition.

Proposition 5.2 (Consistency of the Robust MDP Abstraction). Consider the robust MDP abstraction  = (𝑄, 𝐴, 𝛤 ) of System (3.1). Let
𝑞 ∈ 𝑄saf e, 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑞, and 𝑝𝑣 ∈ 𝑣, and define 𝛾𝑥,𝑎 ∈ (𝑄) as

𝛾𝑥,𝑎(𝑞′) ∶= 𝑇 𝑎
𝑝𝑣
(𝑞′|𝑥)

for all 𝑞′ ∈ 𝑄. Then 𝛾𝑥,𝑎 ∈ 𝛤𝑞 ,𝑎.
The proof of Proposition 5.2 is given in Appendix A. The intuition behind Proposition 5.2 is that set 𝛤𝑞 ,𝑎 contains the transition

probabilities 𝛾𝑥,𝑎 obtained by starting from any 𝑥 ∈ 𝑞, with 𝑞 ∈ 𝑄saf e under 𝑎 ∈ 𝐴 and for every 𝑝𝑣 ∈ 𝑣.

2 Notice that, since 𝑐 is also not a metric, the resulting optimal transport discrepancy  is not a distance.
𝑐
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Remark 5.3 (Model Choice for the Abstraction). An alternative way to include the distributional ambiguity into the abstraction is to
use an IMDP abstraction  = (𝑄, 𝐴, 𝛤 IMDP), which has the same state 𝑄 and action 𝐴 spaces as , and in which 𝛤 IMDP is defined
by transition probability bounds that satisfy

𝑃 IMDP(𝑞 , 𝑎, 𝑞′) ≤ min
𝑝𝑣∈𝑣

min
𝑥∈𝑞

𝑇 𝑎
𝑝𝑣
(𝑞′ ∣ 𝑥),

𝑃
IMDP

(𝑞 , 𝑎, 𝑞′) ≥ max
𝑝𝑣∈𝑣

max
𝑥∈𝑞

𝑇 𝑎
𝑝𝑣
(𝑞′ ∣ 𝑥)

(5.6)

for all 𝑞 ∈ 𝑄saf e, 𝑞′ ∈ 𝑄 𝑎 ∈ 𝐴, and for which 𝑞𝑢 is again absorbing. Therefore, for fixed 𝑞 ∈ 𝑄 and 𝑎 ∈ 𝐴, set 𝛤 IMDP
𝑞 ,𝑎 of  is defined

as

𝛤 IMDP
𝑞 ,𝑎 = {𝛾 ∈ () ∶ 𝑃 IMDP(𝑞 , 𝑎, 𝑞′) ≤ 𝛾(𝑞′) ≤ 𝑃

IMDP
(𝑞 , 𝑎, 𝑞′) for all 𝑞′ ∈ 𝑄}. (5.7)

This choice of the abstraction model allows to use efficient synthesis algorithms for IMDPs [12,24] to solve Problem 3.4. By
the definition of the transition probability bounds of  in (5.6), 𝛤 IMDP satisfies Proposition 5.2, effectively capturing all possible
ransition probabilities of System (3.1). However, IMDP  describes the uncertainty in a very loose way, i.e., set 𝛤 IMDP of  can
e excessively large for many ambiguity sets 𝑣. Intuitively, this is caused by 𝛤 IMDP

𝑞 ,𝑎 being only defined through decoupled interval
onstraints for every successor state 𝑞′ ∈ 𝑄, This is likely to result in more conservative solutions to the reach-avoid problem as we
how in Section 7.

6. Robust strategy synthesis

Our goal is to synthesize a switching strategy 𝜎∗x for System (3.1) that maximizes (3.4). To capture the distributional uncertainty
and the effect of quantization, we consider the proposed robust MDP abstraction . We synthesize the robustly maximizing strategy
𝜎∗ for the abstraction , which we then refine on the original system retaining formal guarantees of correctness. In Sections 6.1,
6.2, and 6.3, we show how an optimal strategy 𝜎∗ for the abstraction  can be efficiently computed via linear programming. Then,
in Section 6.4, we prove the correctness of our strategy synthesis approach.

6.1. Robust dynamic programming

Recall that, in our robust MDP abstraction  = (𝑄, 𝐴, 𝛤 ), the uncertainties of  are characterized by an adversary 𝜉, which
at each time step and given a path of  and an action, selects a feasible distribution from 𝛤 (see Definition 4.4). Therefore, to be
obust against all uncertainties, as common in the literature [10,11], we aim to synthesize a strategy 𝜎∗ such that, given a horizon
𝐾 ∈ N0 ∪ {∞},

𝜎∗ ∈ ar g max
𝜎∈𝛴

inf
𝜉∈𝛯𝑀

𝑃r each(𝑄saf e, 𝑄t gt , 𝐾 ∣ 𝑞 , 𝜎 , 𝜉), (6.1)

for all 𝑞 ∈ 𝑄, where 𝑃r each(𝑄saf e, 𝑄t gt , 𝐾 ∣ 𝑞 , 𝜎 , 𝜉) is defined as in (3.3) for System (3.1). We call 𝜎∗ the optimal robust or simply optimal
strategy.

We denote by 𝑝𝐾 and 𝑝𝐾 , respectively, the worst and best-case probabilities of the paths of  satisfying the reach-avoid
pecification under optimal strategy 𝜎∗, i.e.,

𝑝𝐾 (𝑞) ∶= inf
𝜉∈𝛯𝑀

𝑃r each(𝑄saf e, 𝑄t gt , 𝐾 ∣ 𝑞 , 𝜎∗, 𝜉), (6.2a)

𝑝𝐾 (𝑞) ∶= sup
𝜉∈𝛯𝑀

𝑃r each(𝑄saf e, 𝑄t gt , 𝐾 ∣ 𝑞 , 𝜎∗, 𝜉) (6.2b)

for all 𝑞 ∈ 𝑄. In the following subsections, we show how to compute the previous quantities via robust dynamic programming. We
istinguish the cases of finite (𝐾 < ∞) and infinite (𝐾 = ∞) horizon, since they require different treatment.

6.1.1. Finite horizon
The following proposition shows that the bounds in (6.2a) and (6.2b) and the optimal strategy in (6.1) can be obtained via

ynamic programming.

Proposition 6.1. Let 𝑝𝐾 be as defined in (6.2a) and 𝑘 ∈ [0 ∶ 𝐾 − 1]. Then, it holds that

𝑝𝑘+1(𝑞) =
{

1 if 𝑞 ∈ 𝑄t gt
max𝑎∈𝐴 min𝛾∈𝛤𝑞 ,𝑎

∑

𝑞′∈𝑄 𝛾(𝑞′)𝑝𝑘(𝑞′) otherwise,
(6.3)

with initial condition 𝑝0(𝑞) = 1 for all 𝑞 ∈ 𝑄t gt and 0 otherwise. Furthermore, for each path 𝜔𝑘 with 𝑘 ∈ [0 ∶ 𝐾 − 1], it holds that

𝜎∗(𝜔𝑘) ∈ ar g max
𝑎∈𝐴

{

min
𝛾∈𝛤last (𝜔𝑘 ),𝑎

∑

𝑞′∈𝑄
𝛾(𝑞′)𝑝𝐾−𝑘−1(𝑞′)

}

. (6.4)

Proof. The proof follows directly by applying [49, Theorem 1] to the setting of reachability. □
7 
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A consequence of Proposition 6.1 is that, in the finite horizon (𝐾 < ∞) case, there exists an optimal policy that is Markovian
(note that the resulting strategy is time-dependent in general). Furthermore, once an optimal strategy 𝜎∗ is fixed, the upper bound
𝑝𝐾 of 𝑃r each in (6.2b) can be readily computed via the robust dynamic programming iterations

𝑝𝑘+1(𝑞) =
{

1 if 𝑞 ∈ 𝑄t gt
max𝛾∈𝛤𝑞 ,𝜎∗

∑

𝑞′∈𝑄 𝛾(𝑞′)𝑝𝑘(𝑞′) otherwise,
(6.5)

for all 𝑘 ∈ [0 ∶ 𝐾 − 1], which is analogous to that in (6.3) and has initial condition 𝑝0(𝑞) = 1 for all 𝑞 ∈ 𝑄t gt and 𝑝0(𝑞) = 0 otherwise.
In Section 6.2 we show that the robust dynamic iterations in (6.3) and (6.5) boil down to solving a finite number of linear

programs, but first, in the next subsection, we consider the infinite horizon case.

6.1.2. Infinite horizon
In the case of an infinite time horizon (𝐾 = ∞), we seek to bound the probability of the paths of  that with arbitrary lengths

each 𝑄t gt while remaining in 𝑄saf e. To also synthesize an optimal strategy, we first show that the robust dynamic programming
terations in (6.3) converge to a fixed point. Then, using this result, we show that for the infinite horizon case, there exists an
ptimal stationary strategy, and we propose an approach to obtain it. All the proofs of the theorems in this section can be found
n Appendix B.

We first show that the lower bound 𝑝∞ on the infinite-horizon reachability probability obtained by (6.2a) for 𝐾 = ∞ is a
ixed-point of the robust dynamic programming operator in (6.3).

Theorem 6.2. Let {𝑝𝑘}𝑘∈N0
be the infinite sequence defined recursively by (6.3) with initial condition 𝑝0(𝑞) = 1 for all 𝑞 ∈ 𝑄t gt and 0

otherwise. Then {𝑝𝑘} converges to 𝑝∞, which is the least fixed-point of (6.3) on R|𝑄|

≥0 .

Theorem 6.2 guarantees that, to obtain the optimal reachability probabilities, we can simply run the robust dynamic program-
ming iteration in (6.3) until convergence. We next address the problem of finding an optimal strategy. In particular, we are interested
in determining a stationary optimal strategy that has the convenient feature of using the same decision rule at every time step. The
following result establishes that stationary optimal strategies indeed exist.

Proposition 6.3. The infinite horizon reachability problem (6.1) admits a stationary strategy 𝜎′ ∈ 𝛴𝑠.
Since the mere existence of an optimal strategy is not sufficient for synthesis purposes, we seek conditions under which a

tationary strategy that we will later explicitly construct is also optimal. The following result provides such optimality conditions,
hich generalize the corresponding requirements in the case of standard MDPs (see [50, Theorem 7.1.7]).

Proposition 6.4. Consider the set 𝑄r each ∶= {𝑞 ∈ 𝑄 ∶ 𝑝∞(𝑞) > 0} of states that have positive probability of reaching 𝑄t gt for some strategy,
nd let 𝜎∗ ∈ 𝛴𝑠 be a stationary strategy that, for each state 𝑞 ∈ 𝑄, satisfies

𝜎∗(𝑞) ∈ 𝐴∗(𝑞) ∶= ar g max
𝑎∈𝐴

{

min
𝛾∈𝛤𝑞 ,𝑎

∑

𝑞′∈𝑄
𝛾(𝑞′)𝑝∞(𝑞′)

}

(6.6a)

lim
𝑘→∞

𝑃 𝑞 ,𝜎∗
𝜉 [𝜔(𝑘) ∈ 𝑄r each] = 0 for all 𝜉 ∈ 𝛯𝑀 . (6.6b)

Then 𝜎∗ is optimal, i.e., it satisfies (6.1). Furthermore, condition (6.6a) is also necessary for every 𝜎 ∈ 𝛴𝑠 to be optimal.
The first condition of Proposition 6.4 imposes the requirement that 𝜎∗ can only pick actions that attain the maximum in the

ynamic programming recursion in (6.3). The second requirement of the proposition is that under strategy 𝜎∗, all paths should
eventually exit 𝑄r each and remain outside that set forever, for every choice of the adversary and all initial conditions. A strategy
that satisfies both these conditions is called proper optimal. We stress that, as we prove in Theorem 6.6, a proper optimal strategy
always exists.

Remark 6.5. Restricting ourselves to stationary strategies comes at the price of enforcing 𝜎∗ to be proper optimal. In particular,
he second condition required by a strategy 𝜎∗ to be optimal guarantees that, under 𝜎∗, all states need to eventually exit 𝑄r each and
emain outside forever. This additional condition is needed because there may be multiple strategies maximizing (6.6a) and some

of them may introduce loops (cycles) with probability 1 in the graph of the resulting Markov chain. As a consequence, states that
have nonzero probability of reaching 𝑄t gt for an optimal strategy may never achieve this under a strategy that only satisfies (6.6a).

We next extract an optimal proper stationary strategy by generalizing the approach employed in the proof of [51, Theorem
10.102] for MDPs. To this end, we recursively define the sets

𝑄𝑚 ∶= 𝑄𝑚−1 ∪
{

𝑞 ∈ 𝑄 ⧵𝑄𝑚−1 ∶ ∃ 𝑎 ∈ 𝐴∗(𝑞) s.t. min
𝛾∈𝛤𝑞 ,𝑎

∑

𝑞′∈𝑄𝑚−1

𝛾(𝑞′) > 0
}

, (6.7)

for each 𝑚 ∈ {0, 1,… , 𝑚max}, where 𝑄0 ∶= 𝑄t gt and

𝑚max ∶= min{𝑚 ∈ N0 ∶ 𝑄𝑚 = 𝑄𝑚−1}.
8 
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Each 𝑄𝑚 is the set of backward reachable states from 𝑄t gt in 𝑚 steps by taking actions in 𝐴∗. Here reachability is interpreted in
he worst-case sense where the underlying graph of the robust MDP depends on the worst-case choice of the adversary. Since 𝑄 is
inite, the maximum number of backward steps to reach a state in 𝑄 from 𝑄t gt is bounded. Thus, 𝑚max is always well-defined. The
ollowing result delineates how we can use the sets 𝑄𝑚 to extract a proper and optimal stationary strategy.

Theorem 6.6. Let 𝐴∗(𝑞) be as given in (6.6a). Define a strategy 𝜎∗ ∈ 𝛴𝑠 with

𝜎∗(𝑞) ∈
⎧

⎪

⎨

⎪

⎩

𝑎 ∈ 𝐴∗(𝑞) ∶ min
𝛾∈𝛤𝑞 ,𝑎

∑

𝑞′∈𝑄𝑚−1

𝛾(𝑞′) > 0

⎫

⎪

⎬

⎪

⎭

for all 𝑞 ∈ 𝑄𝑚 ⧵𝑄𝑚−1 and 𝑚 ∈ {1,… , 𝑚max}, and with arbitrary actions when 𝑞 ∈ 𝑄t gt ∪ (𝑄 ⧵𝑄r each). Then 𝜎∗ is proper and optimal.

Theorem 6.6 shows how to obtain an optimal stationary strategy via a backward reachability analysis. Note that, although this
lgorithm has to be employed once 𝑝∞ has been obtained via robust dynamic programming, it converges within |𝑄r each| − |𝑄t gt |

iterations. Consequently, it is generally much faster than performing robust dynamic programming.
Having computed 𝜎∗, we obtain the upper bound 𝑝∞ in the reachability probability by iterating on (6.5) until we achieve

convergence, to 𝑝∞, starting from 𝑝0(𝑞) = 1 for all 𝑞 ∈ 𝑄t gt and 0 otherwise. The proof is analogous to that of Theorem 6.2,
and is omitted for simplicity.

6.2. Computation of robust dynamic programming via linear programming

We now show how for each state 𝑞 ∈ 𝑄 and time 𝑘 ∈ [0 ∶ 𝐾 − 1], dynamic programming in (6.3) reduces to solving |𝐴|
linear programs. In particular, Theorem 6.7 below guarantees that the inner problem in recursion (6.3) can be solved via linear
programming. In what follows we explicitly consider 𝑝𝑘, the upper bound 𝑝𝑘 follows similarly. Before formally stating our result,
we need to introduce some notations. Let 𝑊 ⊆ R𝑛 be a set containing the support of 𝑝true

𝑣 , and for each 𝑞 ∈ 𝑄 and 𝑎 ∈ 𝐴 denote


𝑞 ,𝑎

∶={𝑖 ∈  ∶ 𝑃 (𝑞 , 𝑎, 𝑞𝑖) > 0}, (6.8a)


𝑞 ,𝑎
𝑊 ∶={𝑖 ∈  ∶ (𝑓𝑎(𝑞) +𝑊 ) ∩ 𝑞𝑖 ≠ ∅}, (6.8b)

where 𝑃 (𝑞 , 𝑎, 𝑞𝑖) is the upper transition probability bound of the nominal IMDP as defined in (5.1) and (5.2). 
𝑞 ,𝑎

and 
𝑞 ,𝑎
𝑊 represent

espectively the set of indices of the discrete states that are reachable from 𝑞 under action 𝑎 for the nominal noise distribution, and
or every distribution supported on 𝑊 . Note that as the nominal distribution is also supported on 𝑊 , it holds that 

𝑞 ,𝑎
⊆ 

𝑞 ,𝑎
𝑊 , and

f 𝑊 = R𝑛, then 
𝑞 ,𝑎
𝑊 =  . Intuitively, in Theorem 6.7, from each starting region 𝑞, we only consider transitions to states indexed

y 
𝑞 ,𝑎
𝑊 as those are the only states reachable by some distribution with support in 𝑊 .

Theorem 6.7 (Robust Dynamic Programming as a Linear Program). Consider the robust dynamic programming (6.3) for the robust MDP
= (𝑄, 𝐴, 𝛤 ) and assume that the support of 𝑃 t r ue

𝑣 is contained in the set 𝑊 ⊆ R𝑛. Then, for every 𝑘 ∈ [0 ∶ 𝐾 − 1], 𝑞 ∈ 𝑄, and 𝑎 ∈ 𝐴,
he inner minimization problem in (6.3) is equivalent to the following linear program:

min
𝛾𝑖 ,𝛾̂𝑗 ,𝜋𝑖𝑗

∑

𝑖∈
𝑞 ,𝑎
𝑊

𝛾𝑖𝑝
𝑘(𝑞𝑖), (6.9)

s.t. 𝑃 (𝑞 , 𝑎, 𝑞𝑗 ) ≤ 𝛾̂𝑗 ≤ 𝑃 (𝑞 , 𝑎, 𝑞𝑗 ) 𝑗 ∈ 
𝑞 ,𝑎

(6.10a)
∑

𝑗∈
𝑞 ,𝑎

𝛾̂𝑗 = 1 (6.10b)

𝜋𝑖𝑗 ≥ 0, 𝑖 ∈ 
𝑞 ,𝑎
𝑊 , 𝑗 ∈ 

𝑞 ,𝑎
(6.10c)

∑

𝑖∈
𝑞 ,𝑎
𝑊

𝜋𝑖𝑗 = 𝛾̂𝑗 , 𝑗 ∈ 
𝑞 ,𝑎

(6.10d)

∑

𝑗∈
𝑞 ,𝑎

𝜋𝑖𝑗 = 𝛾𝑖, 𝑖 ∈ 
𝑞 ,𝑎
𝑊 (6.10e)

∑

𝑖∈
𝑞 ,𝑎
𝑊 ,𝑗∈

𝑞 ,𝑎
𝜋𝑖𝑗𝑐(𝑞𝑖, 𝑞𝑗 ) ≤ 𝜀𝑠, (6.10f)

where 𝑃 , 𝑃 , and 𝑐 are defined in (5.1), (5.2), and (5.4), respectively, and 𝑠 is given in Assumption 3.1.

Proof. We show that, for a fixed state 𝑞 ∈ 𝑄 and action 𝑎 ∈ 𝐴, the set of transition probabilities 𝛤𝑞 ,𝑎 defined in (5.5) is the polytope
described by the linear Eqs. (6.10). First, assume that 𝑊 ≡ R𝑛 and consider the expressions in (6.10) for 

𝑞 ,𝑎
𝑊 = 

𝑞 ,𝑎
=  .

et 𝛾 ≡ (𝛾 ,… , 𝛾 ) ∈ 𝛤 . From the definition of 𝛤 in (5.5), there exist 𝛾̂ ≡ (𝛾̂ ,… , ̂𝛾 ) ∈ 𝛤 and an optimal transport plan
1 𝑁 𝑞 ,𝑎 𝑞 ,𝑎 1 𝑁 𝑞 ,𝑎
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𝜋 ≡ (𝜋𝑖𝑗 )𝑖,𝑗=1,…,𝑁 that transports mass from 𝛾̂ to 𝛾 with a cost 𝑐 (𝛾 , ̂𝛾) smaller than 𝜀𝑠. Consider now the set 𝛤𝑞 ,𝑎 as defined in (5.3)
with the transition probability bounds 𝑃 and 𝑃 given by (5.1) and (5.2). Then 𝛾̂ satisfies the constraints (6.10a) and (6.10b). Since
the optimal transport cost 𝑐 (𝛾 , ̂𝛾) is attained by the transport plan 𝜋, it follows from (2.1) with 𝑋 ≡ 𝑄 and 𝑐 as in (5.4) that

𝑐 (𝛾 , ̂𝛾) =
∑

𝑖,𝑗∈
𝜋𝑖𝑗𝑐(𝑞𝑖, 𝑞𝑗 ).

Thus, since 𝑐 (𝛾 , ̂𝛾) is less than 𝜀𝑠, we deduce that 𝛾, 𝛾̂, and 𝜋 satisfy the linear constraints (6.10c)–(6.10f). Conversely, one can check
along the same lines that for any 𝛾 ≡ (𝛾1,… , 𝛾𝑁 ), 𝛾̂ ≡ (𝛾̂1,… , ̂𝛾𝑁 ), and 𝜋 ≡ (𝜋𝑖𝑗 )𝑖,𝑗=1,…,𝑁 satisfying (6.10), it also holds that 𝛾 ∈ 𝛤𝑞 ,𝑎.

In the general case where the support of 𝑝t r ue𝑣 belongs to some known set 𝑊 ⊆ R𝑛, we can embed this constraint into the
ambiguity sets of transition probabilities and their projections on the abstraction. In particular, we can describe the set of transition
probabilities 𝛤𝑞 ,𝑎 via transport plans that couple the regions reachable through the nominal distribution with the regions reachable
by some distribution in the ambiguity set. From (6.8a) and (6.8b), these regions are indexed respectively by 

𝑞 ,𝑎
and 

𝑞 ,𝑎
𝑊 . We can

therefore just substitute the set  by the previous ones, since 𝛾̂, 𝛾, and 𝜋 are zero for indices outside 
𝑞 ,𝑎

, 
𝑞 ,𝑎
𝑊 , and 

𝑞 ,𝑎
𝑊 ×

𝑞 ,𝑎
,

respectively. The proof is now complete. □

Intuitively, for each state 𝑞 ∈ 𝑄 and action 𝑎 ∈ 𝐴, the Constraints (6.10a)–(6.10f) capture the union of the 𝑐-transport cost
ambiguity balls in (𝑄) that have radius 𝜀𝑠 and centers all possible distributions of the nominal IMDP. Specifically, Constraints
(6.10a) and (6.10b) represent the distributions 𝛾̂ of the nominal IMDP, i.e., the set 𝛤𝑞 ,𝑎. Constraints (6.10c)–(6.10e) describe a
transport plan 𝜋, i.e., a nonnegative measure on 𝑄 × 𝑄 (cf. (6.10c)), which has as its marginals the distribution 𝛾̂ of the nominal
IMDP (cf. (6.10d)), and the target distribution 𝛾 (cf. (6.10e)), respectively. Finally, Constraint (6.10f) implies that transport cost to
reach the target distribution 𝛾 is bounded by 𝜀𝑠, namely, that 𝛾 belongs to the 𝑐-transport cost ambiguity ball of radius 𝜀𝑠.

Remark 6.8. Theorem 6.7 guarantees that, similarly to IMDPs without distributional uncertainty [12,13], optimal policies can be
computed by solving a set of linear programs. In particular, for every 𝑘 ∈ [0 ∶ 𝐾 − 1] and 𝑞 ∈ 𝑄, we can solve the linear program
in Theorem 6.7 for each 𝑎 ∈ 𝐴 and take the action that maximizes the resulting value function. As a result, the computational
omplexity of synthesizing a strategy is polynomial in |𝑄| and |𝐴|. However, in the IMDP case the resulting linear program has

substantially fewer variables and constraints compared to the problem in Theorem 6.7 (order of 𝑁 for IMDPs, against order of
2 for Theorem 6.7). Nevertheless, as we detail in Section 6.3, we can reformulate the LP in Theorem 6.7 to obtain a problem of

substantially lower complexity, which can be solved more efficiently.

6.3. Dual reformulation of the robust dynamic programming algorithm

In this section, we make use of linear programming duality to obtain a computationally efficient solution to the linear program
6.9)–(6.10). The approach consists of formulating the dual of program (6.9)–(6.10), as common in the literature of robust

MDPs [11,49,52], and then introducing a tailored algorithm that takes into account its structure to solve it efficiently. The following
theorem provides the dual reformulation of the linear program (6.9)–(6.10).

Theorem 6.9. Consider the optimization problem

max
𝜇≥0,𝜆

𝐺(𝜆, 𝜇), (6.11)

with

𝐺(𝜆, 𝜇) ∶=
∑

𝑗∈
𝑞 ,𝑎

min{𝑃 (𝑞 , 𝑎, 𝑞𝑗 )(ℎ𝑗 (𝜇) − 𝜆), 𝑃 (𝑞 , 𝑎, 𝑞𝑗 )(ℎ𝑗 (𝜇) − 𝜆)} − 𝜇 𝜖 + 𝜆 (6.12a)

ℎ𝑗 (𝜇) ∶= min
𝑖∈

𝑞 ,𝑎
𝑊

{𝑝𝑘(𝑞𝑖) + 𝜇 𝑐(𝑞𝑖, 𝑞𝑗 )}. (6.12b)

Then, the function 𝐺 is concave, and the optimal value of problem (6.11)–(6.12) is the same as that of problem (6.9)–(6.10). Furthermore,
for every 𝜇 ≥ 0, the maximization of 𝐺 with respect to 𝜆 can be carried out by only evaluating it as 𝜆 ranges over the finite set {ℎ𝑗 (𝜇)}𝑗∈ 𝑞 ,𝑎 ,
i.e.,

max
𝜆

𝐺(𝜆, 𝜇) = max
𝑗∈

𝑞 ,𝑎{𝐺(ℎ𝑗 (𝜇), 𝜇)}.

The proof of Theorem 6.9 is given in Appendix C. Theorem 6.9 allows one to formulate Problem (6.9)–(6.10) as a concave
maximization problem in two scalar variables, 𝜆 and 𝜇. Furthermore, as Problem (6.11) is derived using duality, if we solve it
with an iterative algorithm, then the algorithm can be stopped at any time to obtain a valid lower bound; thus, guaranteeing
correctness. Note that 𝐺(𝜆, 𝜇) is bivariate, and therefore its minimization does not fall within the class of dual optimization problems
in [52], which also considers Wasserstein ambiguity sets. Nevertheless, our problem essentially reduces to the maximization of the
nivariate concave function 𝑔(𝜇) ∶= max𝜆 𝐺(𝜆, 𝜇), whose values can be found by simply performing a finite search over the set

{𝐺(ℎ𝑗 (𝜇), 𝜇)}𝑗∈ 𝑞 ,𝑎 by the last part of Theorem 6.9. Therefore, the maximum can be found efficiently by using standard tools from
calar convex optimization.
10 
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6.4. Correctness

In this section, we prove the correctness of our abstraction for System (3.1). We begin by refining the strategy 𝜎∗ to System
3.1). Let 𝐽 ∶ R𝑛 → 𝑄 map the continuous state 𝑥 ∈ R𝑛 to the corresponding discrete state 𝑞 ∈ 𝑄 of , i.e., for any 𝑥 ∈ R𝑛,

𝐽 (𝑥) = 𝑞 ⟺ 𝑥 ∈ 𝑞 . (6.13)

Given a finite path 𝜔𝑘
x = x0

u0
←←←←←←←←←←←→ x1

u1
←←←←←←←←←←←→ …

u𝑘−1
←←←←←←←←←←←←←←←←←←←→ x𝑘 of System (3.1), we define by

𝐽 (𝜔𝑘
x) = 𝐽 (x0)

u0
←←←←←←←←←←←→ 𝐽 (x1)

u1
←←←←←←←←←←←→ …

u𝑘−1
←←←←←←←←←←←←←←←←←←←→ 𝐽 (x𝑘)

the corresponding finite path of the MDP abstraction. Consequently, a strategy 𝜎∗ for  is refined to a switched strategy 𝜎∗𝑥 for
ystem (3.1) such that

𝜎∗𝑥(𝜔
𝑘
x) ∶= 𝜎∗(𝐽 (𝜔𝑘

x)). (6.14)

The following theorem, which is a direct consequence of Theorem 6.7 and Theorem 2 in [23], ensures that the guarantees obtained
for the robust MDP abstraction also hold for System (3.1).

Theorem 6.10 (Correctness). Let  be a robust MDP abstraction of System (3.1), 𝜎∗ ∈ 𝛴 be an optimal strategy for , and 𝜎∗x be the
orresponding switching strategy. Then, for every 𝑞 ∈ 𝑄, 𝑥 ∈ 𝑞, and 𝑝𝑣 ∈ 𝑣, it holds that

𝑝𝐾 (𝑞) ≥ 𝑃r each(𝑋 , 𝑋t gt , 𝐾 ∣ 𝑥, 𝜎∗x, 𝑝𝑣) ≥ 𝑝𝐾 (𝑞),

where 𝑝𝐾 and 𝑝𝐾 are defined in (6.2a) and (6.2b).

Theorem 6.10 guarantees that in order to solve Problem 3.4 we can synthesize an optimal strategy 𝜎∗ for a robust MDP abstraction
f System (3.1) and then simply check if 𝑝𝐾 (𝐽 (𝑥)) is greater than the given threshold 𝑝𝑡ℎ.

7. Experimental results

In this section, we evaluate our framework on several benchmarks. In Sections 7.1, 7.2 and 7.4, we consider systems with
data-driven ambiguity sets built from 𝑀 i.i.d. samples v1,… ,v𝑀 of the noise distribution 𝑝t r ue𝑣 . Using these samples, we construct
an ambiguity ball, whose center is the empirical distribution

𝑝𝑣 = 1
𝑀

𝑀
∑

𝑖=1
𝛿v𝑖 , (7.1)

of the data in [5], where 𝛿v𝑖 denotes the Dirac distribution that assigns unit mass to v𝑖. As a metric we consider the 2-Wasserstein
istance, which is often used in the literature [39]. The radius 𝜀 of the ambiguity set is a tuning parameter to hedge against the

uncertainty coming from the imperfect knowledge of 𝑝t r ue𝑣 . Then, in Section 7.3, we depart from the data-driven setting and consider
the case where the nominal distribution is Gaussian and 𝜀 quantifies the degree of robustness against distributional shifts.

To synthesize the respective strategies, we run the dynamic programming algorithm for required time horizon 𝐾 ∈ N∪ {∞} and
se the following ‘‘average error’’ to quantify the performance

𝑒avg ∶=
1
𝑁

∑

𝑞∈𝑄
(𝑝𝐾 (𝑞) − 𝑝𝐾 (𝑞)), (7.2)

where 𝑝𝐾 (𝑞) and 𝑝𝐾 (𝑞) are the upper and lower bounds of probability of satisfaction, respectively, as defined in (6.3) and (6.5). A
ummary of the numerical results for all the case studies are shown in Table 1. The main highlight in Table 1 is the superiority of
ur dual algorithm of Section 6.3 for strategy synthesis when compared to using the standard linear programming routine Linprog

(two orders of magnitude speed-up).
For all the case studies, the theoretical bounds on the reachability probabilities are validated empirically via 1000 Monte Carlo

simulations starting from 1000 random initial conditions. To demonstrate that the theoretical bounds obtained with our approach
are sound even in extreme cases, in Section 7.3 (Experiment #12), we consider remarkably large noise and show that the Monte
Carlo probability values are still within the theoretical bounds.

All results are obtained by running a Matlab implementation of our framework on a single thread of an Intel Core i7 3.6 GHz
PU with 32 GB of RAM

7.1. Linear system

We consider a discrete-time version of the unicycle model in [53], which is obtained using a first order Euler discretization with
a time step 𝛥𝑡 = 1. We fix the velocity of the vehicle to the constant value 1 and consider its orientation angle 𝑢 as the control input
eading to the following switched system:

𝑥𝑘+1 = 𝑥𝑘 + 𝛥𝑡
([

cos (𝑢𝑘)
sin (𝑢𝑘)

]

+ v𝑘
)

, (7.3)
11 
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Table 1
Summary of the results obtained for all case studies. The label ‘‘robust MDP" denotes our proposed approach, while the label ‘‘IMDP" refers to the alternative
approach pointed out in Remark 5.3.

# Abstraction Spec. |𝑄| 𝜀 𝑒avg DP Alg. Abst. Synth.
class time time

1 Robust MDP Reach-avoid 1601 5 × 10−3 0.05 Linprog 6 s 10.1 h
2 Robust MDP (𝐾 = 40) 1601 5 × 10−3 0.05 Dual 6 s 76 s
3 Robust MDP Reach-avoid 1601 10−2 0.18 Linprog 6 s 10.4 h
4 Robust MDP (𝐾 = 40) 1601 10−2 0.18 Dual 6 s 94 s
5 Robust MDP Reach-avoid 1601 1.5 × 10−2 0.33 Linprog 6 s 11.4 h
6 Robust MDP (𝐾 = 40) 1601 1.5 × 10−2 0.33 Dual 6 s 93 s
7 IMDP Reach-avoid 1601 5 × 10−3 0.83 Linprog 6 s 1.2 h
8 IMDP (𝐾 = 40) 1601 5 × 10−3 0.83 Alg. in [12] 6 s 3.9 s
9 Robust MDP Reach-avoid 1601 5 × 10−2 0.25 Linprog 12 s 2.43 h
10 Robust MDP (𝐾 = 15) 1601 5 × 10−2 0.25 Dual 12 s 22 s
11 Robust MDP Reach-avoid 3601 1.3 × 10−2 0.13 Dual 35 s 19.5 min
12 Robust MDP (𝐾 = ∞) 3601 1.3 × 10−3 0.47 Dual 64 s 42 min

13 Robust MDP LTL𝑓 3601 5 × 10−3 0.01 Dual 6 s 2.78 min

Fig. 1. Results of Experiments #1 − #6 in Table 1. In 1(a), 1(b), and 1(c), lower bound in the probability of reachability corresponding to Experiments #1 (and
#2), #3 (and #4) and #5 (and #6), respectively. The plotted trajectories correspond to Monte Carlo simulations of System (7.3) taking samples from a distribution
𝑣̃ ∈ 𝑣. In 1(d), upper bound in the probability of reachability corresponding to Experiments #1 − #6. In 1(e), optimal strategy of Experiments #1 (and #2). (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where the state of the system is the vehicle position 𝑥𝑘 ∈ R2 and its control input 𝑢𝑘 takes values in 𝑈 = {0, 2𝜋8 ,… , 7 2𝜋
8 }.

The considered safe, unsafe (obstacle), and target sets are shown in Fig. 1(e). We partition the [0, 1]2 rectangle into a grid
of 𝑁 = 1600 regions. The ambiguity set is centered at an empirical distribution of 𝑀 = 10 samples, which are drawn from a
Gaussian mixture with two components, centered at [−0.01, 0] and [0.01, 0], respectively, and with the same covariance matrix
diag(2.5 × 10−5, 2.5 × 10−5). As a result, the centers of both components are separated by a distance close to the size of the state
discretization.

We obtained results for multiple values of the radius 𝜀, shown in Table 1 (Experiments #1 − #6), and compare the performance
of our dual approach to solve the inner problems in (6.3) to the one obtained by using Linprog. We observe that the average error
𝑒avg increases as the ambiguity set grows. This means that, as expected, bigger ambiguity leads to more conservative bounds.

The bounds on the reachability probability for Experiments #1 − #6 are shown in Fig. 1, together with the vector field of the
system in close loop with the optimal strategy. Since the obtained upper bound in the reachability probability is the same across
Experiments #1 − #6 and the optimal strategy is practically the same, we only show these results in the case of Experiment #1
(equivalently #2).
12 
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Fig. 2. Results of experiments #1 and #7 in Table 1. Lower bound in the probability of reachability. The trajectories in both figures correspond to Monte Carlo
simulations taking samples from a distribution 𝑝𝑣 ∈ 𝑣. The ones that satisfy the specification are presented in blue, while the ones that do not are presented
in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

To compare our approach with the one that relies on IMDP abstractions described in Remark 5.3, we present the results obtained
with the latter as Experiments #7 and #8 in Table 1. Observe that the average error between the bounds in reachability corresponding
to Experiments #7 and #8 is way higher than the one corresponding to Experiments #1 and #2 despite the fact that 𝜀 is the same.
This result highlights how our proposed approach, despite requiring a larger amount of time to perform strategy synthesis, is able to
provide non-trivial satisfaction guarantees, unlike the approach from Remark 5.3. Furthermore, our approach is able to synthesize
a strategy that satisfies the reachability task, in contrast to the approach based on the IMDP abstraction. We compare the obtained
lower bounds on the reachability probability for experiments #1 (equivalently #2) and #7 (equivalently #8) in Fig. 2.

Note that Experiments #7 and #8 only differ in the algorithm used for strategy synthesis: whereas in Experiment #7 Linprog was
used, a dedicated algorithm was employed in #8. The purpose of showing both results is to compare the computational improvement
that stems from employing a dedicated synthesis algorithm for robust MDPs with this same benefit in the case of IMDPs.

7.2. Nonlinear system with 4 modes

For the second case study we consider the nonlinear system from [25,26] with dynamics:

𝑥𝑘+1 = 𝑥𝑘 + 𝑓𝑢𝑘 (𝑥𝑘) + v𝑘. (7.4)

Denoting by 𝑥(𝑖) the 𝑖th component of the state, the map 𝑓𝑢𝑘 is given by

𝑓𝑢(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[0.5 + 0.2 sin(𝑥(2)), 0.4 cos(𝑥(1))]𝑇 if 𝑢 = 1
[−0.5 + 0.2 sin(𝑥(2)), 0.4 cos(𝑥(1))]𝑇 if 𝑢 = 2
[0.4 cos(𝑥(2)), 0.5 + 0.2 sin(𝑥(1))]𝑇 if 𝑢 = 3
[0.4 cos(𝑥(2)),−0.5 + 0.2 sin(𝑥(1))]𝑇 if 𝑢 = 4.

(7.5)

The system has state 𝑥𝑘 ∈ R2 and its control input 𝑢𝑘 switches between the discrete values 1, 2, 3, and 4. The safe set is shown in
Fig. 3(c). We discretize the rectangle [−2, 2]2 into a uniform grid, which results in abstraction with 𝑁 = 1601 states. The ambiguity set
is centered at an empirical distribution of 𝑀 = 20 samples, which are again drawn from a Gaussian mixture with two components,
centered at [−0.05, 0] and [0.05, 0], respectively, with covariance matrix diag(4 × 10−4, 4 × 10−4). The centers of both components are
separated by a distance close to the size of the state discretization. The obtained results are shown in Fig. 3 and in Table 1 in the
row corresponding to Experiments #9 and #10. As it can be observed, our approach is able to synthesize a robust control strategy
that yields high satisfaction probabilities in a big portion of the state space, despite the size of the obstacles and the system being
nonlinear.

7.3. Switched linear systems with 5 modes

The third case study is a system that switches between 5 linear modes. Its dynamics are of the form

𝑥𝑘+1 = 𝐴𝑢𝑥𝑘 + v𝑘, (7.6)

where 𝑈 = {1,… , 5} and

𝐴1 =
(

0.79 0.035
0 0.825

)

, 𝐴2 =
(

0.79 0.175
0 0.825

)

, 𝐴3 =
(

0.79 0
0.175 0.825

)

,

𝐴4 =
(

1 0.2
)

, 𝐴5 =
(

1 −0.2
)

.

−0.2 1 0.2 1
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Fig. 3. Results of experiment #9 (and #10). The trajectories in Fig. 3(a) correspond to Monte Carlo simulations taking samples from a distribution 𝑝𝑣 ∈ 𝑣. The
ones that satisfy the specification are presented in blue, while the ones that do not are presented in red. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. Results of Experiment #11. The trajectories in Fig. 4(a) correspond to Monte Carlo simulations taking samples from a Gaussian distribution 𝑝𝑣 ∈ 𝑣 at the
boundary of the ambiguity set. The ones that satisfy the specification are presented in blue, while the ones that do not are presented in red. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

The state space is defined in the same way as in the previous case studies, with the safe set as shown in Fig. 4(c). The rectangle
[−2, 2]2 is discretized via a uniform grid, resulting in 𝑁 = 3601 states. Unlike in the previous examples, the motivation for this case
study is no longer a data-driven setting, but one of robustness against distributional shifts: the nominal distribution 𝑝𝑣 is known
to be a Gaussian of zero mean and covariance diag(9 × 10−4, 9 × 10−4), but we want to be robust against possible changes in this
distribution. To this end, we pick an ambiguity set defined by 𝜀 = 0.0127, with 𝑠 = 2 and 𝑑 being the 2-norm. This set contains,
but is not limited to, Gaussian distributions with a covariance 1.7 times bigger than the nominal one, or off-diagonal terms bigger
than 1∕2 times the diagonal entries. Note that, while we truncate the 𝑝𝑣 to 4 standard deviations, the ambiguity set contains also
unbounded distributions.

In this case, we obtained the abstraction by making use of the approach in [25]. The results correspond to Experiment #11 in
Table 1.

The lower and upper bounds on the reachability probabilities are shown in Figs. 4(a) and 4(b). Additionally, the vector field of
the system in closed loop with the optimal strategy is shown in Fig. 4(c).

The empirical results obtained via Monte Carlo simulations are always found within the bounds in the probability of reachability.
Furthermore, the synthesized strategies achieve an average (across 1000 random initial conditions) empirical reachability probability
of ≈ 1.

To show that the bounds in the probability of reachability are sound even when the empirical probability of reachability is
smaller than 1, we increase the variance of the noise. The new nominal noise distribution has covariance diag(0.04, 0.04) truncated
at 3 standard deviations and 𝜀 = 1.3 × 10−3. The results correspond to Experiment #12 in Table 1. In this case, the average empirical
probability of reachability was 0.802, a non-trivial result, and the empirical reachability probabilities for each initial condition were
always found within the theoretical bounds. Note that the synthesis time corresponding to this case study is the longest among the
cases in which our dual approach was used. The cause is that the variance of the nominal noise distribution is large. Therefore its
support, corresponding to 3 standard deviations, is way bigger than in all the other experiments, which increases the computational
complexity of the synthesis process. The average error 𝑒avg is also noticeable bigger, due to the higher-variance noise. We plot the
bounds in the probability of reachability together with the vector field of the closed-loop system in Fig. 5.

In both Experiments #11 and #12, the optimal stationary strategy was found via the approach proposed in Theorem 6.6, which
took only a few seconds.
14 
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Fig. 5. Results of Experiment #12. The trajectories in Fig. 5(b) correspond to Monte Carlo simulations taking samples from a Gaussian distribution 𝑝𝑣 ∈ 𝑣 at the
boundary of the ambiguity set. The ones that satisfy the specification are presented in blue, while the ones that do not are presented in red. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Bounds in the probability of reachability for Experiment #13. The trajectories in blue correspond to Monte Carlo simulations taking samples from a
distribution 𝑝𝑣 ∈ 𝑣. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

7.4. Complex specifications

In this section we showcase how our approach to solve unbounded reachability problems allows us to synthesize strategies
that yield high probability of satisfying more complex specifications. Specifically, we consider the same setting as in case study
Experiment #2, together with the following LTL𝑓 specification, borrowed from [54]: the system must reach a charge station while
remaining safe and, if the system goes through a region with water, then it should first dry in a carpet before charging. The results
are shown as Experiment #13 in Table 1. When compared with Experiment #2, the synthesis time is significantly higher. This happens
due to the fact that the specification is more complex than just reachability. As a consequence, strategy synthesis requires solving
a reachability problem on a bigger robust MDP, obtained by combining the abstraction with the automaton that represents the
specification (for more details see [19]). The optimal stationary strategy was extracted via the approach proposed in Theorem 6.6
which, again, took only a few seconds.

Additionally, the bounds in the satisfaction probabilities are shown in Figs. 6 and the vector field of the system in closed loop
with the optimal strategy is plotted in 7. Note that the strategy is composed by two stationary strategies, as can be observed in
Fig. 7. The system follows the strategy ‘‘go to charge’’ when it is dry, and ‘‘go to carpet’’ when it is wet.

8. Conclusion

In this paper we presented a framework for the formal control of switched stochastic systems with additive, random disturbances
whose probability distribution belongs to a Wasserstein ambiguity set. To this end, we derived a robust MDP abstraction of the
original system and proposed an algorithm, termed robust dynamic programming, to synthesize robust strategies that maximize
the probability of satisfying a (finite or unbounded time horizon) reach-avoid specification. The obtained results demonstrate the
effectiveness of our approach in systems with both linear and nonlinear dynamics, and even under complex LTL𝑓 specifications.
Our results also show the superiority of our abstraction approach with respect to leveraging directly IMDP abstractions, and the
computational advantage of our synthesis algorithm with respect to using off-the-shelf linear programming solvers.
15 
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Fig. 7. Optimal strategy for the case of Experiment #13.
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Appendix A. Proof of Proposition 5.2

To prove the proposition we will use two technical lemmas that link couplings and optimal transport discrepancies in the
continuous and abstract space.

Lemma A.1 (Induced Coupling on the Discrete Space). Consider the coupling 𝜋 ∈ (R𝑛×R𝑛) with marginals 𝑝 and 𝑝′, a finite (measurable)
partition 𝑄 of R𝑛, and the induced distributions 𝛾 , 𝛾 ′ ∈ (𝑄) with 𝛾(𝑞) ∶= 𝑝(𝑞) and 𝛾 ′(𝑞) ∶= 𝑝(𝑞) for all 𝑞 ∈ 𝑄. Then 𝜈 ∈ (𝑄×𝑄), defined
by

𝜈(𝑞 , 𝑞′) ∶= ∫𝑞×𝑞′
𝑑 𝜋(𝑥, 𝑦) (A.1)

is a coupling between 𝛾 and 𝛾.

Proof. The proof follows directly from the fact that
∑

𝑞′∈𝑄
𝜈(𝑞 , 𝑞′) =

∑

𝑞′∈𝑄
∫𝑞×𝑞′

𝑑 𝜋(𝑥, 𝑦) = ∫𝑞×R𝑛
𝑑 𝜋(𝑥, 𝑦) = 𝛾(𝑞),

and analogously for the other marginal. □

Next, given two distributions on the continuous space R𝑛 we establish bounds on the optimal transport discrepancy 𝑐 of their
induced distributions on 𝑄, based on their 𝑠-Wasserstein distance in the continuous space.

Lemma A.2 (Induced optimal transport discrepancy). Let 𝑝, 𝑝′ ∈ 𝑠(R𝑛) and consider the induced distributions 𝛾 , 𝛾 ′ ∈ (𝑄) with
𝛾(𝑞) ∶= 𝑝(𝑞) and 𝛾 ′(𝑞) ∶= 𝑝(𝑞) for all 𝑞 ∈ 𝑄. Then for any 𝑠 ≥ 1 and 𝜀 ≥ 0 it holds that

𝑠(𝑝, 𝑝′) ≤ 𝜀 ⇒ 𝑐 (𝛾 , 𝛾 ′) ≤ 𝜀𝑠,

where 𝑐 is given in (5.4).
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Proof. Consider the map 𝐽 in (6.13) and note that due to (5.4),

‖𝑥 − 𝑦‖𝑠 ≥ 𝑐(𝐽 (𝑥), 𝐽 (𝑦)) (A.2)

for all 𝑥, 𝑦 ∈ R𝑛. Let 𝜋 be an optimal coupling for the 𝑠-Wasserstein distance 𝑠(𝑝, 𝑝′) and 𝜈 be the induced coupling on 𝑄 given by
A.1). Then we get from (2.1), (6.13), and (A.2) that

𝑠(𝑝, 𝑝′)𝑠 = ∫R𝑛×R𝑛
‖𝑥 − 𝑦‖𝑠𝑑 𝜋(𝑥, 𝑦) ≥ ∫R𝑛×R𝑛

𝑐(𝐽 (𝑥), 𝐽 (𝑦))𝑑 𝜋(𝑥, 𝑦)

=
∑

𝑞 ,𝑞′∈𝑄
𝑐(𝑞 , 𝑞′)∫𝑞×𝑞′

𝑑 𝜋(𝑥, 𝑦) =
∑

𝑞 ,𝑞′∈𝑄
𝑐(𝑞 , 𝑞′)𝜈(𝑞 , 𝑞′) ≥ 𝑐 (𝛾 , 𝛾 ′),

which implies the result. The last inequality follows from (2.1) and Lemma A.1, which asserts that 𝜈 is a coupling between 𝛾 and
𝛾 ′. The proof is complete. □

The intuition behind Lemma A.2 is the following: if the 𝑠-Wasserstein distance between two distributions in R𝑛 is at most 𝜀, then
the optimal transport discrepancy (based on 𝑐) between their induced distributions on 𝑄 is not more than 𝜀𝑠.

Proof of Proposition 5.2. Let 𝑞, 𝑎, 𝑥, and 𝑝𝑣 as given in the statement and define

𝛾̂𝑥,𝑎(𝑞′) ∶= 𝑇 𝑎
𝑝𝑣
(𝑞′ ∣ 𝑥)

for all 𝑞′ ∈ 𝑄. Then it follows from (5.1) and (5.3) that

𝛾̂𝑥,𝑎 ∈ 𝛤𝑞 ,𝑎. (A.3)

Next, we get from (3.2) and Assumption 3.1 that 𝑇 𝑎
𝑝𝑣
(⋅ ∣ 𝑥) and 𝑇 𝑎

𝑝𝑣
(⋅ ∣ 𝑥) are distributions in 𝑠(R𝑛) and that

𝑠

(

𝑇 𝑎
𝑝𝑣
(⋅ ∣ 𝑥), 𝑇 𝑎

𝑝𝑣
(⋅ ∣ 𝑥)

)

≤ 𝜀.

Since the induced distributions of 𝑇 𝑎
𝑝𝑣
(⋅ ∣ 𝑥) and 𝑇 𝑎

𝑝𝑣
(⋅ ∣ 𝑥) on 𝑄 are 𝛾𝑥,𝑎 and 𝛾̂𝑥,𝑎, respectively, it follows from Lemma A.2 that

𝑐 (𝛾𝑥,𝑎, ̂𝛾𝑥,𝑎) ≤ 𝜀𝑠 ≡ 𝜖, namely, 𝛾𝑥,𝑎 ∈  𝜖
𝑐 (𝛾̂𝑥,𝑎). Thus, we deduce from (5.5) and (A.3) that 𝛾𝑥,𝑎 ∈ 𝛤𝑞 ,𝑎 and conclude the proof. □

Appendix B. Proofs of Section 6.1.2

We first introduce certain mappings and preliminary results that will used for the proofs of this section. Consider the discounted
robust MDP with rewards ̃ ∶= (𝑄, 𝐴, 𝛤 , 𝑟, 𝛽) as an extension of , where

𝑟(𝑞) ∶=
{

1 if 𝑞 ∈ 𝑄t gt
0 otherwise

is the reward function, 𝛽 ∈ (0, 1] is the discount factor and 𝛤 is given by

𝛤𝑞 ,𝑎 ∶=
{

{𝛿𝑞𝑢} if 𝑞 ∈ 𝑄t gt
𝛤𝑞 ,𝑎 otherwise

for all 𝑞 ∈ 𝑄, 𝑎 ∈ 𝐴. With a small abuse of notation we let 𝛴 and 𝛯𝑀 denote, respectively, the sets of strategies and Markovian
adversaries of ̃. We define the value function of a strategy 𝜎 ∈ 𝛴 and adversary 𝜉 ∈ 𝛯𝑀 as the expected total reward [50]

𝑉𝜎 ,𝜉 ,𝛽 (𝑞) ∶= E𝑃 𝑞 ,𝜎
𝜉

[

∞
∑

𝑘=0
𝛽𝑘𝑟(𝜔(𝑘))

]

of ̃. Note that 𝑉𝜎 ,𝜉 ,1(𝑞) = 𝑃r each(𝑄saf e, 𝑄t gt ,∞ ∣ 𝑞 , 𝜎 , 𝜉), which is the desired reachability probability of  under 𝜎 and 𝜉. By (6.1)
and (6.2a), this implies

sup
𝜎∈𝛴

inf
𝜉∈𝛯𝑀

𝑉𝜎 ,𝜉 ,1(𝑞) = 𝑝∞(𝑞) (B.1)

for all 𝑞 ∈ 𝑄. We next establish that 𝑉𝜎 ,𝜉 ,𝛽 is continuous at 𝛽 = 1, which generalizes the corresponding well-known result for
MDPs [50, Lemma 7.18].

Lemma B.1. Given a strategy 𝜎 ∈ 𝛴 and an adversary 𝜉 ∈ 𝛯𝑀 of ̃, the value function 𝛽 ↦ 𝑉𝜎 ,𝜉 ,𝛽 is continuous on (0, 1].

Proof. For each 𝑞 ∈ 𝑄, 𝑉𝜎 ,𝜉 ,𝛽 (𝑞) is the infinite sum of the functions

𝑔𝑘(𝛽) ∶= 𝛽𝑘E𝑃 𝑞 ,𝜎
𝜉

[𝑟(𝜔(𝑘))], 𝑘 ∈ N0,

which are uniformly bounded on 𝛽 ∈ (0, 1] by 𝜆𝑘 ∶= E𝑃 𝑞 ,𝜎
𝜉

[𝑟(𝜔(𝑘))], 𝑘 ∈ N0, respectively. Since ∑∞
𝑘=0 𝜆𝑘 = 𝑉𝜎 ,𝜉 ,1(𝑞), which is finite, as

it is the probability of reaching 𝑄t gt from 𝑞, ∑∞
𝑘=0 𝑔𝑘 converges uniformly to 𝑉𝜎 ,𝜉 ,𝛽 (𝑞) by the Weierstrass M-test. Thus, since each 𝑔𝑘

is continuous with respect to 𝛽 on (0, 1], the same holds also for 𝑉𝜎 ,𝜉 ,𝛽 . □
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We identify the space of value functions 𝑉 ∶ 𝑄 → R≥0 with  ∶= R|𝑄|

≥0 and write 𝑉 ≥ (≤, >, <)𝑉 ′ for 𝑉 , 𝑉 ′ ∈  to indicate that
the respective inequality holds component-wise. The limits of sequences {𝑉 𝑘} in  are also interpreted component-wise. Let 𝛯𝑠 be
the set of stationary adversaries of ̃. Namely, for every 𝑞 ∈ 𝑄 and 𝑎 ∈ 𝐴, an adversary 𝜉 ∈ 𝛯𝑠 chooses a distribution 𝛾𝜉𝑞 ,𝑎 ∈ 𝛤𝑞 ,𝑎.
Given 𝜎 ∈ 𝛴𝑠, 𝜉 ∈ 𝛯𝑠, and 𝛽 ∈ (0, 1], we define the Bellman operator 𝑇𝜎 ,𝜉 ,𝛽 ∶  ⟶  of the auxiliary MDP ̃ by

𝑇𝜎 ,𝜉 ,𝛽 [𝑉 ](𝑞) ∶= 𝑟(𝑞) + 𝛽
∑

𝑞′∈𝑄
𝛾𝜉𝑞 ,𝜎(𝑞)(𝑞′)𝑉 (𝑞′)

for any 𝑉 ∈  , 𝑞 ∈ 𝑄. We also define, given 𝜎 ∈ 𝛴𝑠, 𝑇𝜎 ,𝛽 ∶  ⟶  with

𝑇𝜎 ,𝛽 [𝑉 ](𝑞) ∶= 𝑟(𝑞) + min
𝛾∈𝛤𝑞 ,𝜎(𝑞)

𝛽
∑

𝑞′∈𝑄
𝛾(𝑞′)𝑉 (𝑞′)

for any 𝑉 ∈  , 𝑞 ∈ 𝑄. Finally, we define 𝑇𝛽 ∶  ⟶  with

𝑇𝛽 [𝑉 ](𝑞) ∶= 𝑟(𝑞) + max
𝑎∈𝐴

min
𝛾∈𝛤𝑞 ,𝑎

𝛽
∑

𝑞′∈𝑄
𝛾(𝑞′)𝑉 (𝑞′)

for any 𝑉 ∈  , 𝑞 ∈ 𝑄.
When 𝛽 = 1, we simply write 𝑇 ∶= 𝑇1, 𝑇𝜎 ∶= 𝑇𝜎 ,1 and 𝑇𝜎 ,𝜉 ∶= 𝑇𝜎 ,𝜉 ,1, respectively. Note that the sequence obtained by iterating on

𝑇 with initial condition 0 is equivalent to performing robust dynamic programming as in Theorem 6.2. We can now proceed with
the proofs of the results from Section 6.1.2.

Proof of Theorem 6.2. Consider the sequence of value functions {𝑉 𝑘}𝑘∈N0
, defined recursively by 𝑉 𝑘+1 = 𝑇 [𝑉 𝑘] and 𝑉 0 = 0.

First, we prove that this sequence converges to a fixed point of 𝑇 in  . It is rather straightforward to show that the operator 𝑇
s monotone, namely, that 𝑇 [𝑉 ] ≥ 𝑇 [𝑉 ′] holds for all 𝑉 , 𝑉 ′ ∈  with 𝑉 ≥ 𝑉 ′, which implies that 𝑉 𝑘+1 ≥ 𝑉 𝑘 for all 𝑘 ∈ N0. One can

also readily check that {𝑉 𝑘}𝑘∈N0
is bounded. Therefore, since 𝑄 is finite, the sequence converges uniformly to 𝑉 ∞ ∈  . In addition,

by following the exact same arguments as in [11, Proof of Theorem 3.2a], which establishes that discounted Bellman operators of
obust MDPs are contractions, we deduce that 𝑇 has Lipschitz modulus one and is therefore continuous. Thus, it follows that

𝑉 ∞ ∶= lim
𝑘→∞

𝑉 𝑘+1 = lim
𝑘→∞

𝑇 [𝑉 𝑘] = 𝑇 [ lim
𝑘→∞

𝑉 𝑘] = 𝑇 [𝑉 ∞],

namely, 𝑉 ∞ is a fixed point of 𝑇 . In order to show minimality of 𝑉 ∞, let 𝑉 ∗ ∈  be an arbitrary fixed point of 𝑇 . By monotonicity
of 𝑇 we get that 𝑇 [0] ≤ 𝑇 [𝑉 ∗], and thus 𝑉 1 ≤ 𝑉 ∗. By induction, we obtain that 𝑉 𝑘 ≤ 𝑉 ∗ for all 𝑘 ∈ N0, so 𝑉 ∞ ≤ 𝑉 ∗. Since 𝑉 ∗ was
chosen arbitrarily, 𝑉 ∞ must be the least fixed point of 𝑇 in  .

Next, we follow the same strategy as in the proof of [55, Theorem 3] to show that 𝑉 ∞ = 𝑝∞. To this end, note that 𝑇𝛽 [𝑉 ] ≤ 𝑇 [𝑉 ]
or each 𝑉 ∈  and 𝛽 ∈ (0, 1). Denoting by 𝑇 𝑘

𝛽 the 𝑘-fold composition of 𝑇𝛽 with itself, we obtain by induction that 𝑇 𝑘
𝛽 [0] ≤ 𝑇 𝑘[0]

for all 𝑘 ∈ N0. Thus

lim
𝑘→∞

𝑇 𝑘
𝛽 [0] ≤ lim

𝑘→∞
𝑇 𝑘[0] = 𝑉 ∞. (B.2)

From the theory of robust MDPs [11, Theorem 3.2a], the operator 𝑇𝛽 is a contraction mapping on  for all 𝛽 ∈ (0, 1). This implies
that 𝑇 𝛽 has a unique fixed point 𝑉 ∞

𝛽 , which by [11, Theorems 3.1 and 3.2b] satisfies

𝑉 ∞
𝛽 (𝑞) = sup

𝜎∈𝛴
inf

𝜉∈𝛯𝑀
𝑉𝜎 ,𝜉 ,𝛽 (𝑞) (B.3)

for all 𝑞 ∈ 𝑄, and {𝑇 𝑘
𝛽 [0]}𝑘∈N0

necessarily converges to it. Thus, we deduce from (B.2) that sup𝜎∈𝛴 inf 𝜉∈𝛯𝑀
𝑉𝜎 ,𝜉 ,𝛽 (𝑞) ≤ 𝑉 ∞(𝑞) for all

𝑞 ∈ 𝑄 and 𝛽 ∈ (0, 1). From this fact and Lemma B.1 we get

lim
𝛽→1

sup
𝜎∈𝛴

inf
𝜉∈𝛯𝑀

𝑉𝜎 ,𝜉 ,𝛽 (𝑞) = sup
𝜎∈𝛴

inf
𝜉∈𝛯𝑀

lim
𝛽→1

𝑉𝜎 ,𝜉 ,𝛽 (𝑞) = sup
𝜎∈𝛴

inf
𝜉∈𝛯𝑀

𝑉𝜎 ,𝜉 (𝑞) ≤ 𝑉 ∞(𝑞)

for all 𝑞 ∈ 𝑄. Hence, from the last inequality and (B.1) we obtain 𝑝∞ ≤ 𝑉 ∞.
To also prove that 𝑝∞ ≥ 𝑉 ∞, note that 𝑉𝜎 ,𝜉 ,𝛽 ≤ 𝑉𝜎 ,𝜉 for all 𝜎 ∈ 𝛴, 𝜉 ∈ 𝛯𝑀 , and 𝛽 ∈ (0, 1). Thus, we get again from (B.1) that

sup𝜎∈𝛴 inf 𝜉∈𝛯𝑀
𝑉𝜎 ,𝜉 ,𝛽 (𝑞) ≤ 𝑝∞(𝑞) for all 𝑞 ∈ 𝑄 and 𝛽 ∈ (0, 1). Combining this with (B.3) and the fact that each 𝑇𝛽 is also monotone,

which implies that the sequence {𝑇 𝑘
𝛽 [0]}𝑘∈N0

is upper bounded by its fixed point 𝑉 ∞
𝛽 , we get that 𝑇 𝑘

𝛽 [0](𝑞) ≤ 𝑝∞(𝑞) for all 𝑞 ∈ 𝑄,
∈ N0, and 𝛽 ∈ (0, 1). Thus, by continuity of each 𝑇 𝑘

𝛽 with respect to 𝛽 ∈ (0, 1], which follows directly from continuity of 𝑇𝛽 , we get

𝑉 𝑘 = 𝑇 𝑘[0] = lim
𝛽→1

𝑇 𝑘
𝛽 [0] ≤ 𝑝∞

for all 𝑘 ∈ N0, and taking the limit as 𝑘 → ∞ we obtain 𝑉 ∞ ≤ 𝑝∞. Therefore, 𝑉 ∞ = 𝑝∞, which concludes the proof. □

Proof of Proposition 6.3. Consider first the discounted case with discount factor 𝛽 ∈ (0, 1) and denote, for all 𝑞 ∈ 𝑄, 𝜎 ∈ 𝛴,
𝑉𝜎 ,𝛽 (𝑞) ∶= inf 𝜉∈𝛯𝑀

𝑉𝜎 ,𝜉 ,𝛽 (𝑞) and 𝑉𝛽 (𝑞) ∶= sup𝜎′∈𝛴 𝑉𝜎′ ,𝛽 (𝑞). By [11, Theorem 3.1], which establishes that Markovian strategies are
sufficient for optimality and [10, Theorem 4], for every discount factor 𝛽 ∈ (0, 1), there exists a stationary strategy 𝜎′ ∈ 𝛴𝑠 that is
optimal, i.e., 𝑉𝜎′ ,𝛽 = 𝑉𝛽 . Let {𝛽𝑚}𝑚∈N0

be a non-decreasing sequence that converges to 1. As in the proof of [50, Theorem 7.1.9],
since 𝛴𝑠 is finite, there exist a strategy 𝜎′ ∈ 𝛴𝑠 and a subsequence {𝛽𝑚𝑖

}𝑖∈N0
such that
𝑉𝜎′ ,𝛽𝑚𝑖 = 𝑉𝛽𝑚𝑖 , ∀𝑖 ∈ N0.
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Since both 𝛽 ↦ 𝑉𝜎′ ,𝛽 and 𝛽 ↦ 𝑉𝛽 are continuous with respect to 𝛽 ∈ (0, 1] by Lemma B.1, it follows that for every 𝜎 ∈ 𝛴 and 𝑞 ∈ 𝑄,

𝑉𝜎 (𝑞) = lim
𝛽→1

𝑉𝜎 ,𝛽 (𝑞) = lim
𝑖→∞

𝑉𝜎 ,𝛽𝑚𝑖 (𝑞)
≤ lim

𝑖→∞
max
𝜎∈𝛴

𝑉𝜎 ,𝛽𝑚𝑖 (𝑞) = lim
𝑖→∞

𝑉𝜎′ ,𝛽𝑚𝑖 (𝑞) = 𝑉𝜎′ (𝑞).

Thus, 𝜎′ ∈ 𝛴𝑠 is our desired optimal strategy for the undiscounted case, i.e., 𝑉𝜎′ = 𝑝∞. □

Proof of Proposition 6.4. First, we show that any 𝜎′ ∈ 𝛴𝑠 that is optimal satisfies the condition (6.6a). Denote 𝑉𝜎′ (𝑞) ∶=
nf 𝜉∈𝛯𝑀

𝑉𝜎′ ,𝜉 (𝑞) for all 𝑞 ∈ 𝑄. From optimality of 𝜎′ we get that 𝑉𝜎′ = 𝑝∞. Additionally, since 𝑝∞ and 𝑉𝜎′ are respective fixed
points of 𝑇 and 𝑇𝜎′ , it follows that

𝑝∞ = 𝑇𝜎′ [𝑝∞] ≤ max
𝜎∈𝛴𝑠

𝑇𝜎 [𝑝∞] = 𝑇 [𝑝∞] = 𝑝∞,

where the max should be interpreted in a component-wise fashion. This implies that

𝜎′(𝑞) ∈ ar g max
𝑎∈𝐴

min
𝛾∈𝛤𝑞 ,𝑎

∑

𝑞′∈𝑄
𝛾(𝑞′)𝑝∞(𝑞′)

for all 𝑞 ∈ 𝑄. Therefore, we conclude that (6.6a) is a necessary condition for optimality of stationary strategies.
Next, we prove that conditions (6.6a) and (6.6b) are sufficient for optimality of stationary strategies. Let ̃𝜎∗ ,𝜉 be the time-

arying Markov chain obtained by fixing the strategy and adversary of ̃ to 𝜎∗ and some 𝜉 ∈ 𝛯𝑀 , respectively. Denote also by
𝑀𝑘

𝜉 ∈ R|𝑄|×|𝑄| the transition matrix of ̃𝜎∗ ,𝜉 at time step 𝑘 so that the 𝑖th row of 𝑀𝑘
𝜉 is a probability distribution from 𝛤𝑞𝑖 ,𝜎∗(𝑞𝑖).

Note that by the definition of the Bellman operators 𝑇 and 𝑇𝜎 ,𝜉 at the beginning of this section, and the fact that 𝑝∞ is a fixed point
f 𝑇 we have

𝑇 [𝑝∞] = max
𝜎∈𝛴𝑠

min
𝜉∈𝛯𝑠

𝑇𝜎 ,𝜉 [𝑝∞]

where the max and min are interpreted in a component-wise fashion. Thus, since 𝜎∗ satisfies condition (6.6a),

𝑝∞ = 𝑇 [𝑝∞] = max
𝜎∈𝛴𝑠

min
𝜉∈𝛯𝑠

𝑇𝜎 ,𝜉 [𝑝∞] = min
𝜉∈𝛯𝑠

𝑇𝜎∗ ,𝜉 [𝑝∞] ≤ 𝑟 +𝑀1
𝜉 𝑝

∞.

By applying inductively the same argument, we get

𝑝∞ ≤ 𝑟 +
(𝐾−1
∑

𝑘=1
𝑀𝑘

𝜉

)

𝑟 +
( 𝐾
∏

𝑘=1
𝑀𝑘

𝜉

)

𝑝∞ ∀𝐾 ∈ N, 𝜉 ∈ 𝛯𝑀 .

Since the 𝑖th entry in the last term of this bound equals
∑

𝑞′∈𝑄
𝑃 𝑞𝑖 ,𝜎∗

𝜉 [𝜔(𝐾) ∈ 𝑞′]𝑝∞(𝑞′) =
∑

𝑞′∈𝑄r each
𝑃 𝑞𝑖 ,𝜎∗

𝜉 [𝜔(𝐾) ∈ 𝑞′]𝑝∞(𝑞′),

the last term converges to 0 as 𝐾 → ∞ by the definition of 𝑄r each and condition (6.6b). Furthermore, the sum of the first
two terms converges to 𝑉𝜎∗ ,𝜉 . As a result, 𝑝∞(𝑞) ≤ inf 𝜉∈𝛯𝑀

𝑉𝜎∗ ,𝜉 (𝑞) for all 𝑞 ∈ 𝑄. On the other hand, we have from (B.1) that
𝑝∞(𝑞) ≥ inf 𝜉∈𝛯𝑀

𝑉𝜎∗ ,𝜉 (𝑞) and we conclude that 𝑝∞(𝑞) = inf 𝜉∈𝛯𝑀
𝑉𝜎∗ ,𝜉 (𝑞), namely, that 𝜎∗ is optimal. □

Proof of Theorem 6.6. We begin by proving that 𝜎∗ is well-defined. This is the case if 𝜎∗ is defined for all states, which is
equivalent to having 𝑄𝑚max = 𝑄r each. Let 𝜎′ ∈ 𝛴𝑠 be a stationary optimal strategy, namely, that 𝑉𝜎′ = 𝑝∞ holds. Therefore, the
sequence {𝑉 𝑘}𝑘∈N0

obtained via robust dynamic programming as in (6.3) with fixed strategy 𝜎′ converges monotonically to 𝑝∞.
Now we start an induction argument by assuming that for 𝑘 ∈ N0, 𝑉 𝑘(𝑞) > 0 implies 𝑞 ∈ 𝑄𝑘, for 𝑞 ∈ 𝑄, which holds for 𝑘 = 0. If the
previous condition holds at iteration 𝑘, then for all 𝑞 ∈ 𝑄 ⧵𝑄𝑘 we obtain that

𝑉 𝑘+1(𝑞) = min
𝛾∈𝛤𝑞 ,𝜎′(𝑞)

∑

𝑞′∈𝑄
𝛾(𝑞′)𝑉 𝑘(𝑞′) = min

𝛾∈𝛤𝑞 ,𝜎′(𝑞)
∑

𝑞′∈𝑄𝑘

𝛾(𝑞′)𝑉 𝑘(𝑞′)

≤ max
𝑎∈𝐴∗(𝑞)

min
𝛾∈𝛤𝑞 ,𝑎

∑

𝑞′∈𝑄𝑘

𝛾(𝑞′)𝑉 𝑘(𝑞′) ≤ max
𝑎∈𝐴∗(𝑞)

min
𝛾∈𝛤𝑞 ,𝑎

∑

𝑞′∈𝑄𝑘

𝛾(𝑞′),

where the first inequality follows from the last statement of Proposition 6.4. This result, together with monotonicity of {𝑉 𝑘}𝑘∈N0
,

uarantees that at iteration 𝑘 + 1, 𝑉 𝑘+1(𝑞) > 0 implies 𝑞 ∈ 𝑄𝑘+1 for all 𝑞 ∈ 𝑄. Thus the induction argument holds and we get that
im𝑘→∞ 𝑄𝑘 = 𝑄𝑚max = 𝑄r each.

Next, to prove optimality of 𝜎∗, it suffices to show that 𝜎∗ satisfies the two conditions of Proposition 6.4. Condition (6.6a) is
satisfied directly by the construction of 𝜎∗. In the following, we show that 𝜎∗ also satisfies condition (6.6b). The proof follows closely
that of [51, Theorem 10.25]. Let ̃𝜎∗ ,𝜉 denote the time-varying Markov Chain corresponding to our strategy 𝜎∗ and an arbitrary
adversary 𝜉 ∈ 𝛯𝑀 . To show that the paths starting at any initial condition eventually exit 𝑄r each and remain outside forever with
probability one, we equivalently show that its complement, namely, that 𝑄r each is visited infinitely often, has probability zero. Note
that by definition of 𝜎∗ via backward reachability, all states 𝑞 ∈ 𝑄r each have nonzero probability of eventually reaching 𝑄t gt and
thereafter 𝑞 under 𝜎∗ and 𝜉. This implies that, for each 𝑞 ∈ 𝑄 , there exists a path fragment that reaches 𝑞 and which has positive
𝑢 r each 𝑢
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probability since it is a finite fragment. Let 𝑝 > 0 be a uniform lower bound on this probability across all states 𝑞 ∈ 𝑄r each. Then,
the probability of the event ‘‘𝑄r each is visited at least 𝑘 times, but the corresponding path fragment that reaches 𝑞𝑢 is never taken’’
is upper bounded by (1 − 𝑝)𝑘. Taking the limit as 𝑘 → ∞, we obtain that the probability that 𝑄r each is visited infinitely often is upper
bounded by lim𝑘→∞(1 − 𝑝)𝑘 = 0, meaning that all paths eventually reach 𝑄 ⧵ 𝑄r each and remain there forever with probability one.
Since the choice of the adversary was arbitrary, we conclude that condition (6.6b) is also fulfilled, which completes the proof. □

Appendix C. Proof of Theorem 6.9

To facilitate the readability of the proof, we use the shorthand notation 𝑝𝑖 ≡ 𝑝𝑘(𝑞𝑖), 𝑃 𝑗 ≡ 𝑃 (𝑞 , 𝑎, 𝑞𝑗 ), 𝑃 𝑗 ≡ 𝑃 (𝑞 , 𝑎, 𝑞𝑗 ),  ≡ 
𝑞 ,𝑎

nd 𝑊 ≡ 
𝑞 ,𝑎
𝑊 .

Proof of Theorem 6.9. Concavity of 𝐺 follows by standard arguments from convex analysis [56]. In particular, the functions ℎ𝑗
are concave as the pointwise minimum of affine functions and min{𝑃 𝑗 (𝜆 + ℎ𝑗 (𝜇)), 𝑃 𝑗 (𝜆 + ℎ𝑗 (𝜇))} is in turn concave as the minimum
of concave functions. Thus, 𝐺 is also concave as the sum of concave functions.

To obtain (6.11), we first eliminate 𝛾 and 𝛾̂ from (6.9)–(6.10) and get the equivalent problem
min
𝜋𝑖𝑗

∑

𝑖∈𝑊 ,𝑗∈

𝜋𝑖𝑗𝑝𝑖

s.t.
∑

𝑖∈𝑊

𝜋𝑖𝑗 ≥ 𝑃 𝑗 ∀𝑗 ∈ 

∑

𝑖∈𝑊

−𝜋𝑖𝑗 ≥ −𝑃 𝑗 ∀𝑗 ∈ 

∑

𝑖∈𝑊 ,𝑗∈

−𝑐(𝑞𝑖, 𝑞𝑗 )𝜋𝑖𝑗 ≥ −𝜖

∑

𝑖∈𝑊 ,𝑗∈

𝜋𝑖𝑗 = 1

𝜋𝑖𝑗 ≥ 0 ∀𝑖 ∈ 𝑊 , 𝑗 ∈ 

By denoting 𝛼 ∶= (𝛼1,… , 𝛼𝑁 ), 𝛽 ∶= (𝛽1,… , 𝛽𝑁 ), 𝜇, and 𝜆 the corresponding dual variables of all but the last set of constraints, we
obtain as in [57, Page 142] the dual linear problem

max
𝛼 ,𝛽 ,𝜇≥0,𝜆

∑

𝑗∈

(

𝛼𝑗𝑃 𝑗 − 𝛽𝑗𝑃 𝑗
)

− 𝜇 𝜖 + 𝜆

s.t. 𝛼𝑗 − 𝛽𝑗 − 𝜇 𝑐(𝑞𝑖, 𝑞𝑗 ) + 𝜆 ≤ 𝑝𝑖 ∀𝑖 ∈ 𝑊 , 𝑗 ∈  .

Since the feasible set of the primal problem is nonempty and compact, strong duality holds (cf. [57, Theorem 4.4]). The constraints
f the dual problem are equivalently written

−𝛼𝑗 + 𝛽𝑗 + min
𝑖∈𝑊

{𝑝𝑖 + 𝜇 𝑐(𝑞𝑖, 𝑞𝑗 )} − 𝜆 ≥ 0 ∀𝑗 ∈ 

and since 𝛽𝑗 ≥ 0, they can be cast in the form

𝛽𝑗 ≥ max{0, 𝛼𝑗 − min
𝑖∈𝑊

{𝑝𝑖 + 𝜇 𝑐(𝑞𝑖, 𝑞𝑗 )} + 𝜆} ∀𝑗 ∈  .

Taking into account that the objective function of the dual problem is decreasing in each 𝛽𝑗 , its optimal value is the same as that
f the problem

max
𝛼 ,𝜇≥0,𝜆

∑

𝑗∈

(

𝛼𝑗𝑃 𝑗 − max{0, 𝛼𝑗 − min
𝑖∈𝑊

{𝑝𝑖 + 𝜇 𝑐(𝑞𝑖, 𝑞𝑗 )} + 𝜆}𝑃 𝑗
)

− 𝜇 𝜖 + 𝜆

= max
𝛼 ,𝜇≥0,𝜆

∑

𝑗∈

(

𝛼𝑗𝑃 𝑗 + min{0,−𝛼𝑗 + ℎ𝑗 (𝜇) − 𝜆}𝑃 𝑗
)

− 𝜇 𝜖 + 𝜆

= max
𝛼 ,𝜇≥0,𝜆

∑

𝑗∈

min{𝛼𝑗𝑃 𝑗 , 𝛼𝑗 (𝑃 𝑗 − 𝑃 𝑗 ) + 𝑃 𝑗 (ℎ𝑗 (𝜇) − 𝜆)} − 𝜇 𝜖 + 𝜆, (C.1)

where we used (6.12a) in the first equality. Next, since each 𝑃 𝑗 > 0, the corresponding function

𝛼𝑗 ↦ 𝜑𝑗 (𝛼𝑗 ) ∶= min{𝛼𝑗𝑃 𝑗 , 𝛼𝑗 (𝑃 𝑗 − 𝑃 𝑗 ) + 𝑃 𝑗 (ℎ𝑗 (𝜇) − 𝜆)}

consists of two affine branches that intersect at ℎ𝑗 (𝜇) − 𝜆. In particular, over the left segment 𝛼𝑗 ↦ 𝛼𝑗𝑃 𝑗 where 𝛼𝑗 ≤ ℎ𝑗 (𝜇) − 𝜆, the
slope is non-negative, and it is non-positive over the right segment 𝛼𝑗 ↦ 𝛼𝑗 (𝑃 𝑗 − 𝑃 𝑗 ) + 𝑃 𝑗 (ℎ𝑗 (𝜇) − 𝜆) where 𝛼𝑗 ≥ ℎ𝑗 (𝜇) − 𝜆. Thus, the

aximum of the function 𝜑𝑗 is attained at ℎ𝑗 (𝜇) − 𝜆 when ℎ𝑗 (𝜇) − 𝜆 ≥ 0 and equals (ℎ𝑗 (𝜇) − 𝜆)𝑃 𝑗 , and at 0 when ℎ𝑗 (𝜇) − 𝜆 < 0 where
t is equal to (ℎ (𝜇) − 𝜆)𝑃 . Namely, we have
𝑗 𝑗
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max
𝛼𝑗≥0

𝜑𝑗 (𝛼𝑗 ) =
{

(ℎ𝑗 (𝜇) − 𝜆)𝑃 𝑗 if ℎ𝑗 (𝜇) − 𝜆 ≥ 0
(ℎ𝑗 (𝜇) − 𝜆)𝑃 𝑗 if ℎ𝑗 (𝜇) − 𝜆 < 0

= min{(ℎ𝑗 (𝜇) − 𝜆)𝑃 𝑗 , (ℎ𝑗 (𝜇) − 𝜆)𝑃 𝑗},

which by virtue of (C.1) implies the dual reformulation (6.11).
To prove the last assertion of the theorem, fix an arbitrary value of 𝜇 ≥ 0 and consider the function 𝜆 ↦ 𝐺𝜇(𝜆) ≡ 𝐺(𝜆, 𝜇) with 𝐺

as given in (6.11). Notice that each min term in the expression of 𝐺𝜇 is a piecewise affine function of 𝜆 with two segments and a
breakpoint at ℎ𝑗 (𝜇) (assuming without loss of generality that 𝑃 𝑗 ≠ 𝑃 𝑗). Since 𝐺𝜇 is the sum of piecewise affine functions, it is also
piecewise affine and its breakpoints are included in the breakpoints of its components, i.e., in the set {ℎ𝑗 (𝜇)}𝑗∈ . Taking further into
account that 𝐺𝜇 is upper bounded by the optimal value of problem (6.11)–(6.12), which is finite by strong duality, its maximum is
necessarily attained at some of its breakpoints. This concludes the proof. □

Data availability

No data was used for the research described in the article.
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