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Analog monolayer SWCNTs‑based 
memristive 2D structure 
for energy‑efficient deep learning 
in spiking neural networks
Heba Abunahla 1*, Yawar Abbas 2, Anteneh Gebregiorgis 1, Waqas Waheed 3, 
Baker Mohammad 4*, Said Hamdioui 1, Anas Alazzam 3 & Moh’d Rezeq 2*

Advances in materials science and memory devices work in tandem for the evolution of Artificial 
Intelligence systems. Energy‑efficient computation is the ultimate goal of emerging memristor 
technology, in which the storage and computation can be done in the same memory crossbar. In 
this work, an analog memristor device is fabricated utilizing the unique characteristics of single‑wall 
carbon nanotubes (SWCNTs) to act as the switching medium of the device. Via the planar structure, 
the memristor device exhibits analog switching ability with high state stability. The device’s 
conductance and capacitance can be tuned simultaneously, increasing the device’s potential and 
broadening its applications’ horizons. The multi‑state storage capability and long‑term memory are 
the key factors that make the device a promising candidate for bio‑inspired computing applications. 
As a demonstrator, the fabricated memristor is deployed in spiking neural networks (SNN) to exploit 
its analog switching feature for energy‑efficient classification operation. Results reveal that the 
computation‑in‑memory implementation performs Vector Matrix Multiplication with 95% inference 
accuracy and few femtojoules per spike energy efficiency. The memristor device presented in this 
work opens new insights towards utilizing the outstanding features of SWCNTs for efficient analog 
computation in deep learning systems.

Building ultra-low-power computing systems is a key driver for the rise and innovation of artificial intelligence 
(AI), particularly deep learning (DL)1. Bio-inspired (neuromorphic) DL algorithms are mostly implemented 
using conventional Von Neumann computing systems, in which memory and computation are performed in 
separate units; this substantially degrades the system’s efficiency and overall performance. Thus, great research 
interest has been drawn towards utilizing a new class of non-volatile memory devices (namely, memristor) 
to achieve brain-inspired computing, where storage and computation can be achieved in the same memory 
 crossbar2. The main biological behaviors needed to be accommodated by the memory devices are synaptic plas-
ticity and synaptic  efficacy3. Synaptic plasticity is associated with the ability of the device to change its resistance 
state under the application of sufficient writing voltage, while synaptic efficacy is the ability to read the state of 
the memory device with the applied reading voltage. In this context, exploring new materials to manufacture 
appropriate new non-volatile memory devices and being able to accurately mimic the biological behavior of the 
brain is of great importance.

Nanomaterials have inspired researchers due to their unique nanoscale size-dependent characteristics com-
pared to their bulk  counterparts4–6. Several bio-inspired memristor devices have been reported in the literature 
using various material combinations and following different switching  mechanisms7–9. Recently, great interest 
has been directed toward utilizing the unique characteristics of carbon-related materials, such as graphene oxide 
(GO) and carbon nanotubes (CNTs) to achieve energy-efficient memristor  devices10,11. In GO-based memris-
tors, the resistance switching is mainly caused by the defective nature of GO film which limits its practical 
 application12. Moreover, tuning the conductivity of GO according to the target switching behavior can be achieved 
via the reduction methodologies available in the literature (i.e. thermal, electrical, and chemical reduction)13. This 

OPEN

1Quantum & Computer Engineering Department, Delft University of Technology, Delft, The Netherlands. 2System 
on Chip Center (SoCC), Physics Department, Khalifa University, Abu Dhabi, UAE. 3SoCC, Mechanical Engineering 
Department, Khalifa University, Abu Dhabi, UAE. 4SoCC, Electrical Engineering & Computer Science Department, 
Khalifa University, Abu Dhabi, UAE. *email: h.n.abunahla@tudelft.nl; baker.mohammad@ku.ac.ae; 
mohd.rezeq@ku.ac.ae

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-48529-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21350  | https://doi.org/10.1038/s41598-023-48529-z

www.nature.com/scientificreports/

adds to the complexity of the fabrication process and limits the selection of the electrodes and substrate materials 
according to the reduction methodology. On the other hand, CNTs can provide higher thermal  stability11 and 
their conductivity can be controlled via careful optimization of their concentration in the used solvent. Also, 
CNTs provide the ability to diminish the memory cell diameter to ~ 2  nm14. Thus, recently, researchers have been 
interested in deploying CNTs as a switching medium for non-volatile memristor devices. The work in Ref.14 
presents a memristor device fabricated by growing vertically aligned CNTs on a Ni/Ti/Si substrate. Memristors 
based on strained multi-walled CNTs (MWCNTs) have been reported in Ref.12. The switching characteristics of 
the devices are explored under atmospheric and vacuum conditions and it’s shown that the OFF/ON resistance 
ratio is increased up to 10 times under vacuum. Memristor devices based on MWCNTs and Graphene Quantum 
Dots (GQD) are provided in Ref.15. The devices exhibit ultraviolet (UV) light sensitivity due to the use of GQD 
and it’s been proved that the switching current ratio of the device can be controlled by tuning the content of 
GQDs in the dielectric layer and the UV illumination duration. Authors in Ref.16 propose embedding single-
wall CNTs (SWCNTs) in the switching medium of Ti/SiO2/Pt/Ti/ITO which improves the switching window of 
the memristor device. CNTs decorated with gold nanoislands are used as the switching film in the memristor 
device reported in Ref.11. The switching mechanism is shown to be based on trapping thermionic emission of 
the electrons in the nanoislands. All the devices reported in Refs.11,12,14–16 exhibit binary switching behavior 
which constrains the device’s applications, as multistate switching is considered a preferable characteristic for 
neuromorphic computing applications. Hence, there is a need to explore new device structures and material 
combinations toward achieving enhanced memory characteristics to accommodate the energy and accuracy 
requirements of bio-inspired DL systems.

This work advances the state of the art by developing, designing, and manufacturing an analog planar mem-
ristor device. The device is fabricated using a monolayer of single-wall CNTs (SWCNTs) deposited between two 
gold electrodes on a flexible substrate. Experimental results show multi-state storage capability and long-term 
memory characteristics of the device, which make it a potential candidate for energy-efficient computing. To 
prove this, the fabricated memristor device is utilized to perform classification in spiking neural networks based 
on its analog switching ability. Results are promising as energy-efficient Vector Matrix Multiplication (VMM) 
is achieved with 95% inference accuracy.

Materials and methods
Figure 1 provides a schematic of the fabrication steps followed to achieve the planar synaptic cells reported in 
this work. In Step 1, Au deposition is performed on a flexible Cyclic Olefin Copolymer (COC) substrate using 
DC sputtering. After that, in Step 2, a photoresist layer is spin-coated and the electrode patterns are printed 
using a photolithography system. Then, development and etching (using Au etchant) processes are followed to 
achieve the Au electrodes as described in Step 3. In Step 4, the SWCNTs solution is prepared by dissolving 1.2 
ml of SWCNTs (purity > 95%, ignited temperature > 610 degrees, dispersed in water) in 14 ml of DI water. This 
has been decided via a careful optimization process to achieve the target device characteristics. The prepared 
solution is sonicated for 2 min. Later, a lift-off-based lithography process is used to pattern the SWCNTs mon-
olayer between the planar Au electrodes. This includes spin coating of photoresist, patterns printing using a 
photolithography system, spin coating of SWCNTs, and lift off using acetone as presented in Steps 5–7. It’s worth 

Figure 1.  Schematic diagram of the fabrication steps of the device. This includes patterning the gold electrodes 
using Etching/Lithography process and patterning the SWCNTs-based active layer using Lift-off/Lithography 
process. Drawings are prepared using Mindthegraph software and PowerPoint drawing tools.
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mentioning that before SWCNTs deposition, oxygen plasma is performed to improve the adhesion between 
SWCNTs and the COC substrate.

Figure 2 shows the physical characteristics of the fabricated device using SEM micrographs, the corresponding 
color mapping of the elements in a planar device, and X-ray diffraction studies of the SWCNTs thin film used to 
extract all the device characteristics. Figure 2a depicts the planar structure of an Au-SWCNTs-Au-based device 
with a 20 µm width, and 2–10 nm thickness, of SWCNTs as a switching medium. Figures 2b and c show the color 
mapping of carbon (SWCNTs) and Au-electrode, respectively, confirming the lateral sandwiched SWCNTs film 
between the Au electrodes. The energy dispersion spectroscopy (EDS) in Fig. 2d demonstrates the presence of 
C and Au peaks in the device.

The interatomic spacing of the graphitic lattice, which is correlated with the nanotube’s diameter, is deter-
mined with the help of the X-RAY DIFFRACTION (XRD) technique, as shown in Fig. 2f. The two main XRD 
peaks at (002) and (100) in the XRD pattern of SWCNTs are observed. The (002) peak normally rises at a height 
of about 26°, whereas the (100) peak rises at a height of around 44°. These peaks reflect the hexagonal lattice 
structure of SWCNTs. The XRD pattern of SWCNTs may also show additional peaks that correlate to higher-
order diffraction in addition to the (002) and (100) peaks, but we do not observe any additional peak, indicating 
highly pure SWCNTs used to fabricate the memristor device.

Results and discussion
To explore the electrical characteristics of the device, Keithley SCS-420 Source Measure Unit (SMU) is used 
utilizing voltage sweeping and pulse modes. As shown in Fig. 3a, 45 consecutive dual sweep voltages are applied, 
with stopping voltages ranging from 4 to 22 V. Two main observations can be revealed here to reflect the potential 
characteristics of the fabricated device for energy-efficient bio-inspired computation. First, a pristine device starts 
at a low resistance state, and a higher resistance is achieved by applying a voltage sweep with a higher stopping 
voltage, which reflects fully analog switching behavior. Second, the fabricated device exhibits long-term memory 
and no overlap takes place between the different resistance states. Figure 3a-inset shows the multistate behavior 
under the application of consecutive threshold voltages. Figure 3b exhibits a unipolar switching behavior as the 
device switches from a low resistance state (LRS) to a high resistance state (HRS) with the application of 15 con-
secutive dual voltage sweeps with stopping voltages starting from − 5 V to − 25 V. It is important to notice from 
Fig. 3a and b that the device remembers its last state regardless of the sweep polarity. This is mainly associated 
with the symmetric electrodes in the device structure. The initial resistant state of the device has been obtained 
via careful optimization of the SWCNTs solution. To elaborate, the concentration of SWCNTs is increased gradu-
ally in the DI solution until a continuously connected SWCNTs monolayer is achieved as presented in Fig. 2e. 
This leads to an initial low resistance state in the fabricated memristor device. For the lower and higher SWCNTs 
concentrations, individually dispersed SWCNTs and junk of SWCNTs are observed, respectively, in SEM as 
revealed in Figure S1. The monolayer of the SWCNTs network is confirmed via the AC mode of the atomic force 
microscope. Figure S2 shows the topography image of the SWCNTs network, which is used as the switching layer 
in our device. As the diameter of the used SWCNTs is 10  nm17, the obtained height of 12.6 nm confirms that the 
switching medium used in our device is the monolayer of the SWCNTs network. To evaluate the reliability of 

Figure 2.  The Chemical and Physical characterization of the sample depicting (a) the planar structure of 
an Au-SWCNTs-Au-based device, (b) and (c) the color mapping of carbon (SWCNTs) and Au-electrodes, 
respectively, (d) the energy dispersion spectroscopy (EDS), (e) SEM image of the deposited SWCNTs film. (f) 
The interplanar spacing of the SWCNTs using XRD.
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Figure 3.  Device electrical characterization to confirm the analog switching behavior for the device resistance 
and capacitance. (a) 45 consecutive I–V sweeps from 4 to 22 V, the inset shows the multistate behavior under 
the application of consecutive threshold voltages. (b) 16 consecutive I–V sweeps from − 5 V to − 24 V. (c) and (d) 
represent the simultaneous Capacitance-Frequency and Conductance-Frequency measurements, respectively. 
Inset of (c) 11 consecutive I–V sweeps from 4 to 9 V. (e) and (f) Quantitative EDS analysis at LRS and HRS, 
respectively. (g) and (h) schematics to demonstrate the switching mechanism of the device. (h)-insets: I–V 
sweeps of the device after depositing new SWCNTs layer to retrieve the switching ability of the device, fitting 
results between the multistate switching characteristic presented by the SWCNTs-based memristor and Poole–
Frenkel model. Drawings are prepared using Mindthegraph software and PowerPoint drawing tools.
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the fabricated memristors. Devices are selected randomly and the yield is calculated based on the measurement 
results. In this work, a device is considered to be working if it is found initially in LRS and exhibits the ability to 
switch between LRS and HRS in an analog manner. The obtained yield (88%) can be improved via further opti-
mization of the fabrication  process8,18. The ability to simultaneously tune the capacitance of the memristor device 
fabricated in this work is investigated using C-V units (CVU), from Keithley SCS-420 by utilizing Frequency 
Sweep-DC Bias mode. As presented in Fig. 3c, capacitance (C)-frequency (F) curves are obtained at each new 
written resistance state (see Fig. 3c-inset)) at 2 V DC voltage bias. This voltage is less than the minimum writing 
voltage of the device to avoid disturbing the state of the device. As shown in Fig. 3, the memristor’s capacitance 
can be tuned concurrently with the resistance change of the device. This reflects memimpedance behavior which 
has great value in many emerging applications; such as tunable RF components, and computation-in-memory 
(CIM)19,20. Figure 3d presents the device’s conductance levels that are measured simultaneously with the device 
capacitance to confirm the ability to tune the mem-impedance of the fabricated memristor. The device exhibits 
two biological behaviors; synaptic plasticity and synaptic efficacy, which make it a great candidate to perform 
bio-inspired computation. 

As explained, interestingly, the device’s resistance increases with every I-V sweep, and more deep analysis 
can be provided here to have an insight into the switching mechanism that takes place in the device. Joule heat-
ing has been reported to be responsible for the switching events (from LRS to HRS) occurring in several metal 
oxides-based memristor  devices9. According to this explanation, once a certain power of heating is attained in 
the memristor, the conductive filaments are ruptured abruptly due to oxidation reactions. Moreover, the work 
reported in Ref.21 demonstrates that at a high current density in the air, CNTs interconnect breakdown occurs 
due to the etching of the CNTs outer shells caused by oxygen. To validate any possible oxidation of SWCNTs in 
the switching medium of the device, quantitative EDS analysis is conducted, as shown in Fig. 3e and f. From the 
obtained results, we conclude that there is no oxidation of the SWCNTs after multiple I-V sweeps; thus, Joule 
heating is not responsible for the memory effect of the memristor device reported in this work. Also, this can 
be evident by the obtained smooth (analog) switching. Instead, the charge trap phenomenon has been associ-
ated with high retention and long-term CNTs-based memory  devices22,23. As depicted in Fig. 3g and h, when 
the switching voltage is applied between the planar electrodes, charge trapping occurs at the junctions between 
SWCNTs, and at the interface between CNTs and  electrodes24, leading to screening the internal  field2,25 and hence 
reducing the movement (drift velocity) of charge carriers, which results in increasing device resistance. To further 
prove this, SWCNTs are re-deposited on a fully switched device (at HRS), and as presented in Fig. 3 (h)-inset, 
the device retrieves its switching ability as the new SWCNTS have no trapped charges. Based on this explana-
tion, the Poole–Frenkel model that describes charge tapping  defects26 is used to fit the I-V data of the fabricated 
memristor. As shown in Fig. 3h-inset, the multistate switching characteristic presented by the SWCNTs-based 
device exhibits strong agreement with the Poole–Frenkel model. This confirms the charge-trapping phenomena 
being associated with the switching mechanism of the fabricated device. As provided in Table 1, the memristor 
device reported in this work has the superiority to provide analog switching and memimpedance features, com-
pared to the CNTs-based memristor devices reported in the literature. The key memory characteristics of the 
device are utilized for energy-efficient and high-accuracy inference in SNN as detailed in the following section.

Device deployment in SNN
In this work, we utilize the highly analog-switching behavior and the long-term memory feature of the fabricated 
memristor device to implement (SNN). Details about the adopted spiking neuron model, SNN architecture, 
Device deployment in SNN, accuracy, and energy efficiency evaluation are detailed here.

The Leaky Integrate and Fire (LIF) neuron model presented in Ref.29 is adopted in this work as it provides a 
better trade-off between accurately mimicking biological neurons and the implementation  simplicity30,31. The LIF 
model performs spatial and temporal integration of synaptic inputs to generate a spike when the membrane volt-
age reaches a certain threshold. After spiking, the neuron goes into a refractory  period30. The LIF model can be 
expressed as shown in Eq. (1)29:

Table 1.  Comparison between the memristor device presented in this work and the CNTs-based memristor 
devices reported in the literature. *SW: Single wall. **MW: Multiwall. – means this hasn’t been explored/
reported.

Reference Switching medium SW*/MW** CNTs Planar/vertical structure Long-term memory Analog switching Mem-impedance
12 CNTs MW Vertical – NO –
14 CNTs MW Vertical – NO –
16 CNTs-SiO2 SW Vertical Yes NO –
27 CNTs – Vertical – NO –
15 CNTs: GQD MW Vertical Yes NO –
11 CNTs-Au nanoislands MW Planar – NO –
28 CNTs MW Vertical – NO –

This work CNTs SW Planar Yes Yes Yes
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where τmem is the membrane time constant of the neuron, v(t) is the neuron membrane potential, rest is the rest-
ing membrane potential, and I(t) is the total current of a neuron at time t. Figure 4a shows a LIF neuron and its 
dynamics. As depicted, the LIF neuron receives spike inputs from multiple presynaptic neurons and accumulates 
the weighted spikes to increase its membrane potential. When the membrane potential reaches the threshold 
voltage vth, the neuron generates an output spike, decaying its membrane potential to a reset voltage vreset. Then, 
the neuron enters a refractory period in which it does not accumulate any incoming spikes. Once the refractory 
period has lapsed, the neuron will be active again to receive input spikes. When an active neuron receives no 
input spike, its membrane potential will gradually decay (leak).

To demonstrate the analog-based multi-bit potential of the device, a three-layer analog SNN architecture 
is developed. Thus, the analog SNN architecture uses 8-bit weight per single device to achieve high inference 
accuracy, while improving the density and energy efficiency. First, spike trains are generated from the input pixel 
vector using Poisson encoding  schemes32. It should be noted that a pre-processing step is needed to convert the 
stimulus (two-dimensional input image) pixels into a one-dimensional (1D) vector of pixels. The 1D pixel vector 

(1)τmem
∂v(t)

∂t
= −v(t)+ vrest + I(t),

….

….

….

….

….

….

… … …

S3

G11 G12 G1n

G21 G22 G2n

G31 G32 G3n

Gm1 Gm2 Gmn

I1 I2 In

S4

S2

S1

Sm

8-bit weight memris�ve crossbar

In
pu

ts
pi

ke
s

Input digit Neural Spike train genera�on Analog SNN architecture Classifica�on output

0 5 10 15 20
0.0

1.0

2.0

3.0

4.0

5.0

6.0

)A
m(tnerruC

Voltage (V)

0 700 1400 2100 2800

2E+2

3E+2

4E+2

5E+2

6E+2

7E+2

)
mh

O(
ecnatsiseR

Time (s)

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

Reten�on

sekipstupnI

LIF neuron

Vth

Vi (t)

Vreset

Si-1 (t)

Si (t)

trefract

�me (t)

LIF
Output spike

Leaky-Integrate and fire (LIF) neuron model working principle

(a)

(b)
(d)

(c)

ValueSNN parameter
-52 mV [32]Threshold voltage constant
-65 mV [32]Res�ng poten�al
-60 mV [32]Membrane reset poten�al

5 msRefractory period
100 msMembrane �me constant
20 msSpike trace decay �me constant
10−4Postsynap�c learning rate
10−2Presynap�c learning rate
0.4Weight dependency constant

350 msSpike train dura�on
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is fed to the Poisson encoder that generates the corresponding spike train, which is equivalent to the input pixel 
intensity. The spike train is then fed to the analog SNN network built with LIF neurons. The LIF neurons in the 
analog SNN can use the multiply and accumulate the result of the analog crossbar directly, circumventing the 
need for costly Analog to analog-to-digital converters (ADCs). Thus, this analog nature of the SNN exploits the 
multi-bit storage capability of the device for energy-efficient operation.

The analog switching characteristic of the memristor device enables the user to store multibit weights in a 
single device. In this particular architecture, a memristive device stores an 8-bit weight. Therefore, the memris-
tive devices are structured in a crossbar array to build a CIM unit, where computation and storage are integrated 
within the same physical location. The 8-bit memristive crossbar shown in Fig. 4a with M wordlines (input volt-
ages) and N bitlines, in which the wordlines and bitlines are connected through a memristive bit-cell (1T1R) at 
their intersection. The crossbar can perform Vector Matrix Multiplication (VMM) operation by applying a voltage 
vector V = Vi (where i ∈ {1,M}) to the crossbar matrix of conductance values G = Gij (where i ∈ {1,M}, j ∈ {1,N}). 
At any instance, each column can perform a multiplication-and-accumulation (MAC) operation, with the output 
current vector I, in which each element of the output current is obtained as shown in Eq. (2).

All N MAC operations are performed with O(1) complexity, which is essential to implement energy-efficient 
SNN. The simulation setup used for the analog SNN implementation and evaluation is presented in Fig. 4b33. The 
SNN is implemented and trained in Python using  bindsnet34, pytorch, and NVIDIA CUDA libraries. The MNIST 
 dataset35 is used to train and evaluate the accuracy of the network. The MNIST image pixels are converted into 
spike trains using the Poisson encoding scheme, where each spike train is 350 ms in length (duration).

The training progress of the network is evaluated by gradually increasing the number of training samples every 
20 epochs. Figure 4c shows the evolution of the training accuracy as a function of training samples. As presented, 
the training accuracy reaches its peak accuracy, 95%, when trained with 44,000 samples. Afterward, the network 
stabilizes with minor over-fitting. To evaluate the inference accuracy of the architecture, the input image pixels 
are first converted into spike trains as shown in Fig. 4d. From the figure, it can be observed that the spike trains 
are dependent on the pixel intensity and they are divided into three main levels. High-intensity image pixels 
are converted into high-rate spike trains (yellow). Medium-intensity pixels, e.g., pixels around the edges of the 
digit, are converted into medium-rate spike trains (green, blue). Finally, low-intensity pixels are converted into 
low-rate spike trains (purple). The figure also shows the reconstructed image from the inference output spikes 
of the network. The inference accuracy evaluation shows that the SNN achieves 95% inference accuracy when 
provided random image from the test dataset of the MNIST dataset. To evaluate the energy consumption of the 
CIM-based analog SNN architecture, the trained 8-bit weights of the network are programmed to the memristive 
crossbar, and the spike trains are provided as input for the VMM operation on the crossbar. To determine the 
inference energy efficiency of the device crossbar-based SNN, first, we extract the average spike activity of the 
network from behavioral simulation. Then, the write and read energy of the memristor device is extracted from 
device-level characterization by voltage sweeping which gives the current across the memristor at different resist-
ance levels. The current and voltage pairs are then used to determine the write and read energy of the memristor 
analytically. Finally, the memristor writes and reads energy values along with the behavioral-level spike activity 
of the network are used to determine the energy efficiency. Results show that the proposed CIM implementation 
performs VMM in an energy-efficient manner with few femtojoules per spike. This demonstrates the potential of 
the fabricated multi-bit memristive device to realize energy-efficient SNN implementation for edge computing.

Conclusion
This paper presented a SWCNTs-based memristor device using a monolayer of SWCNTs. The key insights of 
the fabricated device are the analog switching ability along with its long-term memory which provide a great 
opportunity to achieve compact neuromorphic devices. The pivotal memory characteristics of the device were 
exploited to implement SNN and perform classification in a high accuracy and energy-efficient manner. The 
results reported in this work are considered a milestone towards utilizing environmentally and economically 
sustainable materials to build emerging memory devices for energy-efficient computation at the edge.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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