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Abstract. The Iterative Nonlinear Contrast Source (INCS) method is a full-wave method for the
accurate computation of wide-angle, pulsed, nonlinear ultrasound �elds appearing in, e.g., medical
echoscopy. The method is based on the Westervelt equation and considers the occurring nonlinear
term as a distributed contrast source that operates in a linear background medium. This formulation
leads to an integral equation, which is solved in an iterative way. The original INCS method uses
a Neumann scheme to successively approximate the nonlinear wave �eld in homogeneous, loss-
less, nonlinear media. To cope with attenuative and/or inhomogeneous nonlinear media, additional
contrast sources may be introduced. Since these deteriorate the convergence rate of the Neumann
scheme, more advanced iterative solution schemes like Bi-CGSTAB are required. To overcome the
dif�culty that such schemes only apply to linear integral equations, the nonlinear contrast source is
linearized, at the cost of a signi�cant systematic error in the fourth and higher harmonics. In this
paper, a strategy is proposed in which the relevant iterative solution scheme is restarted with an up-
dated version of the linearized contrast source. Results demonstrate the effectiveness of this strategy
in eliminating the systematic error. In addition, it is shown that the same approach also improves
the convergence rate in case of nonlinear propagation in media with attenuation.
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PACS: Ultrasound, nonlinear acoustics, integral equation, iterative solution scheme, linearization

INTRODUCTION

The accurate simulation of nonlinear acoustic wave �elds is important for the develop-
ment and assessment of medical ultrasound modalities that involve higher harmonics,
such as harmonic imaging and HIFU. Various methods have been developed to perform
these simulations, all having their speci�c properties [1]. One of these is the Iterative
Nonlinear Contrast Source (INCS) method [2]. This full-wave method has particularly
been developed for the accurate computation of the higher harmonics in pulsed diag-
nostic ultrasound beams that are steered over large angles. Originally, an iterative Neu-
mann scheme was employed to �nd increasingly accurate approximations of the nonlin-
ear wave �eld in homogeneous, lossless media. Recently, a linearized version of INCS
[3] was introduced to allow for more advanced iterative solution schemes such as Bi-
CGSTAB [4]. This approach yields an improved convergence rate, which is necessary
when dealing with attenuative and/or inhomogeneous nonlinear media. However, this
comes at the cost of a systematic error due to the linearization. In this paper we present
an iteration strategy that leads to a reduction of this systematic error. The strategy will
also be used to improve the convergence rate in case of nonlinear media with attenuation.
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THE ORIGINAL INCS METHOD

The original INCS method [2] is based on the lossless version of the Westervelt equation
[5] for a homogeneous, nonlinear medium

∇2p(x, t)− 1
c20

∂ p(x, t)
∂ t2

=−Spr(x, t)− β
ρ0c40

∂ p2(x, t)
∂ t2

, (1)

where p is the acoustic pressure, ρ0 the mass density, c0 the acoustic wave speed, β
the coef�cient of nonlinearity, and Spr the primary source representing the transducer.
Considering weakly to moderately nonlinear situations, we give the nonlinear term
in Eq. (1) the role of a nonlinear contrast source Snl[p] that adds a relatively small
correction p̃ to the linear �eld p(0). The latter is the �eld that would exist in the absence
of nonlinearity. The �elds p(0) and p̃ are given by

p(0) =G∗x,t Spr, p̃=G∗x,t Snl[p]. (2)

Here, G is the Green’s function (spatiotemporal impulse response) of a linear ’back-
ground’ medium with parameters c0 and ρ0, and ∗x,t denotes a four-dimensional convo-
lution over space and time. Since p= p(0) + p̃, we �nd that

p= p(0) +G∗x,t Snl[p], (3)

which is an integral equation. In the current case of a homogeneous and lossless nonlin-
ear medium, the total pressure may be found by using the iterative Neumann scheme

p( j) = p(0) +G∗x,t Snl[p( j−1)], j = 1,2,3, . . . . (4)

The most involving task in the numerical evaluation of the scheme is the spatiotemporal
convolution, which is ef�ciently performed with the FFT-based Filtered Convolution
method [6].

THE LINEARIZED INCS METHOD

To deal with media that show spatially dependent attenuation, wave speed, or density
of mass, the INCS method can easily be extended with additional contrast sources.
For example, in media with inhomogeneous losses the nonlinear acoustic wave �eld
is governed by [7]

∇2p− 1
c20

∂ 2p
∂ t2

=−Spr−Snl[p]−Satt[p], (5)

where the contrast source Satt[p] can accommodate spatially dependent attenuation of
any type, as well as the associated dispersion. These additional contrast sources may be
stronger than the nonlinear contrast source Snl[p] and may deteriorate the convergence
rate of the Neumann scheme. The direct application of more advanced iterative solution
schemes like Bi-CGSTAB is prohibited in the nonlinear context of the INCS method
because these can only deal with linear integral equations. To overcome this dif�culty,
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FIGURE 1. The relative error in the fundamental (F0) and the second till the �fth harmonic (2H-5H)
of a plane wave propagating in water. Left: relative errors for a restart after iteration j = 7. Right: relative
errors for a restart after iteration j = 3. Relative errors have been determined with respect to the result of
the Burgers equation.

it has recently been proposed to linearize the nonlinear contrast source by using the
approximation p2 ≈ (p(0))2 +2p(0) p̃, i.e. by assuming that the square of the correction
p̃ may be neglected [3]. This idea may even be applied to the original INCS method by
replacing Snl[p] in Eq. (3) by

Snew
nl [p] =

β
ρ0c40

∂
∂ t2

[−(p(0))2 +2p(0) p]. (6)

The linearization approach has been tested in combination with the Bi-CGSTAB scheme
[4], both in cases without and with attenuation. In both cases the convergence rate im-
proves over the non-linearized INCS method with a Neumann scheme, but linearization
turns out to introduce signi�cant systematic errors in the fourth and higher harmonics.

ADVANCED ITERATION STRATEGIES FOR THE LINEARIZED
INCS METHOD

In this paper it is investigated whether the systematic error due to linearization can be
reduced by a ’restart’ strategy:

• Perform the �rst J iterations with the linearization p2 ≈ (p(0))2 +2p(0) p̃.
• Perform subsequent iterations with the linearization p2 ≈ (p(J))2 +2p(J) p̃.

The performance of this restart strategy is demonstrated for a plane source (1 MHz sine
with three-cycle Gaussian envelope, maximum surface pressure P0 = 1 MPa) in water
(ρ0 = 998 kg/m3, c0 = 1482 m/s, β = 3.52). The Bi-CGSTAB scheme is employed.
Figure 1 shows the relative error in the fundamental and the second till the �fth harmonic
of the generated plane wave, at a distance z= 100 mm from the source. The errors in the
left part apply to a restart of the iterative scheme after iteration j= 7. For j= 4 to 7, the
errors do not change, indicating that the initial iterative scheme has reached convergence
at j = 4. At this stage, the remaining errors are the systematic errors introduced by
the linearization around p(0). After restart, the scheme reaches convergence again at
j= 11, at which time it turns out that the systematic errors in the higher harmonics have
effectively been eliminated by the linearization around p(7). Of course, the same �nal
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FIGURE 2. The relative error in the fundamental (F0) and the second till the �fth harmonic (2H-5H)
of a plane wave propagating in a medium with frequency power law attenuation. Left: relative errors for a
restart after iteration j= 7. Right: relative errors for a restart after iteration j= 3. Relative errors have been
determined with respect to the result of the fully converged (15 iterations) non-linearized INCS method.

result may be obtained by stopping the initial scheme earlier, i.e. when the errors have
almost settled. This fact is demonstrated in the right part of Fig. 1, in which a restart
after j = 3 leads to convergence at j = 7, without observable systematic errors.

Further it is investigated whether the restart strategy may help to remedy the following
effect: the convergence of the nonlinear INCS method for an attenuative, nonlinear
medium is worse than for a lossless medium with the same nonlinearity, or for a linear
medium with the same attenuation. Since we want to use the Bi-CGSTAB scheme, the
restart strategy will again be combined with the linearization approach, as described
above. To test the performance, a con�guration with the same parameters as before is
applied, but the medium now has a power frequency power law attenuation coef�cient
α = 0.016| f/ f0|1.21 Np/cm, where f0 = 1 MHz. Figure 2 shows the relative error in the
fundamental and the second till the �fth harmonic of a the propagating plane wave, at
a distance z = 100 mm from the source. The same observations can be made as for the
previous case. Upon comparing the right hand part of Fig. 2 with the right hand part
of Fig. 1, the restarted scheme reaches convergence at the same number of iterations
as the case without attenuation. When after restart convergence has been reached, the
systematic errors caused by the linearization have virtually disappeared as well.

To conclude, the restart strategy is an ef�cient way to extend the applicability of the
linearized INCS method to cases involving higher harmonics.
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