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Abstract

In order to enhance the reliability of power systems, a continuous monitoring of the network to detect
and clear disturbances is crucial. Fast detection and isolation of disturbances can prevent equipment
damage, downtime and other adverse effects associated with their occurrence. The focus of this project
is on the detection and classification of two non-linear, complex and severe disturbances: ferroresonance
and arcing faults. These disturbances are detected and classified by continuous signal processing of the
three-phase voltage and current signals. The models of these disturbances are simulated in EMTP and
the three-phase voltage and current are extracted. The extracted data are pre-processed using the discrete
wavelet transform (DWT) to extract fault signatures and features used in classifying the disturbances.
A decision tree classifier is trained with the extracted features and it is able to detect and classify a
disturbance as either ferroresonance or arcing faults using an adaptive time based on the disturbance
class. The computational burden in the detection and classification process is reduced by using the
superimposed component of the voltage and current to detect transient inceptions prior to classification.
Adaptive dead time is adopted to classify the sustained period of the ferroresonance signals and to detect
the extinction time of the secondary arc. The results show that the proposed methodology can detect the
different ferroresonance modes and arcing faults with 99.8 % accuracy within 100 ms and classify the
sustained modes afterwards.
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1 Introduction

The power system is one of the oldest and the most complicated man-made system on earth. Due to the
demand for greener and more sustainable ways of generating electricity, the system is currently
undergoing a lot of changes. The dependence on electricity for virtually all our day to day activities
necessitate continuous development in power system to ensure continuity of supply, a reliable and
resilient network. Power systems protection is a branch of electrical power engineering in charge of
protecting the power systems against faults by isolating the faulty part from the rest of the network to
prevent down times and blackouts. The protection devices misoperation can have catastrophic impacts
on power system infrastructures and personnel, in some cases may result in a cascade event ending in a
large blackout. As more renewable energy sources are integrated into the power system, the dynamics
of the system is changing, and the traditional protection devices and schemes need to be faster, more
resilient and adaptive in order to ensure continuous supply of electricity and reliability of the network
grid.

The impact of a disturbance on power systems network is dependent on the event nature, the voltage
level at which it occurs and the impact on the connected network downstream. Although the power
system is protected by primary and back up relays, some disturbances are not easily identified.
Integration of distributed energy sources into the power network is growing and expected to grow in the
future, the power network must be able to handle all kind of disturbances to ensure continuity of service
to the users. A resilient monitoring system is therefore needed to complement the action of protection
relays and to securely protect the network from disturbances. In this project, severe disturbances like
ferroresonance and arcing faults are investigated and classify within few cycles from their occurrence.
This is necessary because the traditional protection devices are unable to detect short circuits caused by
arc fault early enough to prevent electric fire [1].

Ferroresonance is a non-linear and a complex disturbance caused by the interaction between the non-
linear inductance in the network and the capacitance. The transformers in the network are more
vulnerable to this disturbance due to the high non-linear magnetizing inductance of the transformer core.
The occurrence of this disturbance is unpredictable due to its non-linear and random behavior, it jumps
from one state to other [2]. Another interesting aspect of ferroresonance is that a physical capacitance is
not necessary for its occurrence, it could be a stray capacitance in the network [3]. It is usually initiated
by changes in the network due to switching actions, however, the same network parameter can give
different steady-state modes of ferroresonance due to its non-linear nature. The disturbance is associated
with high sustained overvoltage and overcurrent in some cases due to saturation of the transformer core.
Consequently, the whole network downstream of the transformer will be affected and this can cause a
huge revenue loss to consumer and electricity system operators. Increase penetration of power electronic
controlled renewable energy sources could increase the capacitive elements in the network and makes
the network more vulnerable to ferroresonance.

Other interesting disturbance in power systems is an arc fault. A lot of research has been conducted in
understanding this phenomenon. Although an electric arc is necessary for switching operation in a power
system, an undesired arc sustained with enough voltage and current, can cause destruction of equipment,
insulation breakdown and fire in some cases. In this thesis, a method that can detect ferroresonance and
an arcing fault is proposed. The methodology can classify different modes of ferroresonant oscillations
and arcing faults. This method is based on fast wavelet transform and pattern recognition algorithm.



1.1 Motivation for the research

In power system, there are protection relays to detect and trip in case of classical faults, however cases
with highly irregular electrical signals like ferroresonance can go undetected if the system survives the
disturbance. Sustained disturbance without detection could cause overcurrent and overvoltage that can
damage electrical equipment. In some of the ferroresonance cases reported in the literature, the high
sustained overvoltage leads to damage of the transformer. Once the ferroresonance is in sustained mode,
there is a continuous overvoltage and overcurrent with a high distortion until the connected equipment
is damaged when the source is not isolated on time. Ferroresonance can be prevented by providing
adequate damping in the network and switching off the voltage source. Therefore, on-time detection of
this disturbance can prevent equipment damage and stress due to sustained overvoltage and overcurrent.

Majority of the faults on transmission network are single-phase to ground faults [4] and usually
associated with arcing. Understanding of the dynamic arc interaction with the power systems can help
in improving the detection method of this disturbance. Investigation of arcing faults, especially the
secondary arc characterized with low current can helps in coordination of a single-phase auto-recloser
(SPAR). Real-time monitoring of these disturbances can help in maintenance activities. If the
occurrence of disturbance is undetected, it will be difficult to provide a mitigating action or preventive
measures. Even though the awareness about disturbances occurrence can help the operators to perform
corrective actions, knowing the non-failure modes disturbances give an insight on how to manage the
event and preventive maintenance planning. Therefore, this demands classification of these
disturbances.

Most of the disturbance detection schemes in literature either focus on the classification of classical
faults, power quality classification, ferroresonance or arcing, none focuses on the classification of these
two transients with the same algorithm. Protection relays in the network can isolate classical faults but
no relays have been developed to detect and clear ferroresonance disturbance based on author’s
knowledge. These factors motivated this thesis work to achieve the objectives discussed in the next
section.

1.2 Research Objectives

The main objective of this project is to develop and algorithm that takes the three-phase voltage and
current at the bus node to detect non-linear disturbances like ferroresonance and arcing within 5 cycles
from their occurrence. Another objective of this research is to investigate different modes of
ferroresonance, primary and secondary arcing faults. Understanding of these disturbances is necessary
to develop a robust detection schemes and classify the modes correctly. The developed algorithm will
be assessed for real-time implementation. This research will contribute to the development of a resilient
monitoring system for power system disturbances. These objectives are achieved by:

e Modeling of different ferroresonance modes in ATPDraw (Alternative Transient Program), an
Electromagnetic Transient Program (EMTP).

e Modeling of primary and secondary arcing faults in ATPDraw and analysis of different arc
models.

e Extraction of different data combination of ferroresonance and arcing model in EMTP.

e Analysis of voltage and current waveform with discrete wavelet transform to extract features
for classification.

2 1. Introduction



o Develop a classification algorithm using supervised learning scheme: decision tree, support
vector machine and k-nearest neighbour.
e Offline development of the algorithm for real-time classification.

1.3 Methodology

The first phase of this project is modeling of ferroresonance and arcing faults in ATPDraw to extract
data (electrical variables). The next phase, detection and classification, is achieved by applying wavelet
transform and machine learning to the extracted data. This phase is divided into three sections: Pre-
processing or signal analysis stage, detection stage and classification stage. The offline training of the
classification algorithm is done in MATLAB. The online scenario is simulated with a for-loop in
MATLARB to observe the performance of the algorithm. Figure 1.1 shows the step-by-step approach of
the methodology.

Disturbance
Detection

Modeling &
Simulation

Classification Signal analysis

Feature
extraction

Machine Learning FFT, DWT

MATLAB

-

Figure 1.1: Flow chart of the proposed methodology

Three phase models of ferroresonance and arc fault are developed in ATPDraw and the parameters of
the network are changed to generate different scenarios. Then, the three-phase voltages and currents are
extracted from the different simulated cases. In order to ensure the algorithm can be implemented in
real-time application, the system is assumed to be a causal system with only the present and saved past
values known. One cycle of the previous data samples is saved and analyzed at a time to reduce memory
space. The signal analysis stage is achieved with both Fast Fourier transform (FFT) and Discrete
Wavelet Transform (DWT). The FFT is used for initial classification of the different modes of
ferroresonance and spectral component analysis of arcing fault signals. This helps in determining the
section (steady-state, transient and sustained period) of the data samples to analyze for different
ferroresonance modes.

The superimposed component, change in current and voltages, are used as the fault signatures to
determine the inception of transient before classification of the disturbances. In order to reduce the
computational burden and save memory, the classifier is activated when a disturbance is detected. An
algorithm for wavelet decomposition is developed in MATLAB to obtain the coefficients used in
extracting features for the classification algorithm. In addition, the high time resolution of the DWT is
used for time localization of the disturbances. An algorithm is developed for feature extractions and
database generation. The extracted features from manipulation of the DWT are labeled and then used as
an input to train the classification algorithm. The trained classifier then processes new data and classify
the disturbances into their corresponding classes. The classification process is further optimized to
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reduce redundant data (repeated classification) by using an adaptive dead time during the real-time
simulation with a for-loop in MATLAB.

1.4 Outline of Thesis

The background of this thesis work, the objectives, the motivation and the contributions are discussed
in Chapter 1. For correct detection and classification, detailed models of the disturbances are needed
due to non-availability of real measurements. The modeling and simulation of ferroresonance is
discussed in Chapter 2. While the detailed modeling and literature review of arcing faults are explained
in Chapter 3. The spectral analysis of the signal is essential in order to obtain disturbance signatures for
the classification algorithm. Pre-processing of the extracted data from the simulation file is also needed
for separation of steady-state and transient state. The signal processing techniques used in this thesis are
explained in detail in Chapter 4. In addition, the feature extraction and selection are also explored and
discussed in Chapter 4. Once the disturbance has been successfully detected, the classification algorithm
is activated. The detection and classification technique used in this thesis are explained in Chapter 5.
The optimization approach to reduce computational burden are also discussed. Chapter 6 presents the
conclusions, recommendations and future work.

1.5 Contribution of the thesis

The main contribution of the thesis work is the development of an advance algorithm to detect and
classify power system disturbances using the three-phase voltage and current from the network within
5 cycles. A single algorithm that detects the occurrence of ferroresonance and arcing faults using the
system voltage and current and classify the fault using machine learning is developed. The algorithm is
also assessed for real-time implementation. A detailed model of a primary and a secondary arc and
different arc models are also explored in this thesis. In future, more disturbances are expected to be
analyzed by this algorithm. A template for generating new datasets in order to increase the type of
disturbances the algorithm can detect is also developed in this thesis.

4 1. Introduction



2 Ferroresonance - Modeling and
Simulation

Ferroresonance, as the name suggests, is a resonance condition between the capacitive element in the
network and a non-linear inductance of a ferromagnetic equipment like a transformer and a reactor. This
non-linear oscillating phenomenon is due to the interaction between the non-linear inductance and the
capacitance element in the network. Unlike the linear resonance which is with a deterministic frequency
of oscillation, ferroresonance is a complex, a non-linear and an unpredictable resonant condition. The
frequencies of oscillation are not deterministic and depend on the initial operating conditions. This
disturbance is likely to occur when a non-linear inductor is fed with a capacitive element in series. The
major difference between a linear resonance and a ferroresonance state is the non-linear attribute of the
inductor, the inductance is not constant during the resonant condition. As such, different ferroresonance
modes can occur with a different capacitance value and a source frequency. The behavior has several
possible solutions and can occur in transmission and distribution networks irrespective of the voltage
level. The capacitance needed for ferroresonance occurrence could be the grading capacitance of the
breaker, the stray capacitance to the ground, the compensation capacitance (capacitor banks), the
capacitance of the transmission lines and cables etc. The different forms of capacitance mentioned above
are readily available in power system as well as non-linear inductance like transformer core. Therefore,
a proper study should be done considering different network configurations during the planning phase
of a power system expansion/development to ensure the system is ferroresonant free. The traditional
power systems is not fully protected against ferroresonance and this disturbance may affect the operation
of the relays. Moreover, the surge arrestor might not be able to withstand the high overvoltage for a long
time when the disturbance occurs [5].

Ferroresonance does not happen out of the blue, it is usually triggered by changes in network topology
like switching, power system faults occurrence or clearance of faults. This disturbance is usually
associated with high overvoltage and overcurrent that can cause equipment damage and undue stress on
the insulation. High harmonic contents, especially the odd harmonics, are usually produced and injected
into the network when a fundamental ferroresonance occurs. If the source of the ferroresonance is not
switched off, this sustained overcurrent due to transformer saturation can cause overheating of the
transformer and could subsequently cause explosion of the transformer. Therefore, ferroresonance could
be a threat to security of supply of electricity.

In this chapter, a three-phase model of a ferroresonant circuit used for simulating different modes are
discussed. The impact of parameter changes on the modes of the ferroresonance are also explained.
Different network configurations that could cause ferroresonance are highlighted, and the mitigating
factors to prevent its occurrence are discussed.

Depending on the network topology, resonance could be parallel or series. A series resonance is excited
by a voltage source while a parallel resonance is excited by a current source. Even though the power
systems is entirely supplied by voltage source, the source could act like a current source when a voltage
source is placed behind a high resistance. A typical series linear resonant and ferroresonant circuits are
shown in Figure 2.1 and Figure 2.2 respectively. For a linear resonant circuit, the resonance occurs when
the system is tuned to the natural resonant frequency of the circuit. By applying Kirchhoff law,
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Figure 2.1: Series resonant circuit

Figure 2.2: Ferroresonant circuit

during the steady-state condition, equation (2.1) is valid.
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During the resonance condition, the capacitive and inductive reactance are equal assuming zero damping

in the circuit. The resonant frequency can thus be computed as:
1

Jr= 2 mVLC

The circuit is more capacitive when the source frequency f; is less than the system frequency while the
inductive reactance, X; dominates when f; > f5 , resonant frequency is less than the system frequency.
The magnitude of the voltage across the L and C reach their peak at resonant, with their values greater
than the source voltage. In contrast, ferroresonance does not occur at a fixed frequency. The non-linear
inductor can have different values during transformer saturation period. This implies that different
capacitance values can potentially cause ferroresonance at a given frequency [6]. Replacing the linear
inductance in Figure 2.1 with a non-linear inductance gives a ferroresonant equivalent circuit. Similar
analysis can be applied to this case in order to determine the operating point of the circuit. During the
steady-state operation at the power frequency, the equation of the circuit in Figure 2.2 ignoring the losses
is given as:

V;=I-(a)sL—

(2.2)

Vo=I1-X,(—-1"

ol = I-X,(D)—1-X, (2.3)

where: X, is the circuit reactance at power frequency, X, (I) is the current dependent variable reactance
of the ferromagnetic material.

The non-linear reactance X, (I) of the saturable magnetic core is a function of the current and depends
on the number of turns and the dimension of the core [3]. The flux linkage versus current waveform is
shown in Figure 2.3 while the graphical solution to equation (2.3) is shown in Figure 2.4.

6 2. Ferroresonance - Modeling and Simulation
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Three possible states: state 1, 2, and 3 can be identified in Figure 2.4. Point 1 in the graph represents the
linear region of operation of the magnetic core. This represents a steady-state operation of the circuit in
which the relationship between the voltage and the current is linear. The voltage across the non-linear
inductor, V; is the sum of the supply voltage and the capacitive voltage, V; + V, as seen in Figure 2.4.
The circuit is inductive in this case. A slight increase or decrease in the current leads to high change in
inductive voltage due to its steepness and also a small change in capacitive voltage. In order to find the
equilibrium point, the current will return to its original value.

The second possible solution is the point marked 2 on the graph. This point is the unstable point of
operation. A small change in the current leads to a high capacitive voltage but slight increase in inductive
voltage. The steepness in capacitive voltage is not balanced by the inductive voltage, so the current will
keep increasing or decreasing away from the point depending on the direction of the initial change.
The third solution is the point marked 3 on the graph. This is the non-linear point of operation of the
circuit. The capacitive voltage is the sum of inductive voltage and the source voltage. This state is the
ferroresonant state and it’s also stable. Equilibrium is maintained in a similar way to point 1.

2.1 Literature Review on Ferroresonance

Different studies have been carried out in understanding ferroresonance phenomenon in power systems
since the word was coined in 1920 by P Boucherot [7]. The different circuit configurations that are
vulnerable to ferroresonance occurrence are discussed in [8] including experimental and real life cases.
In order to correctly detect this disturbance and the different modes of the sustained period, an accurate
modeling of the circuit parameters especially the transformer is paramount. Detailed modeling of the
elements of a ferroresonant circuit is discussed in [6]. The transformer, the transmission lines and other
circuit parameters are very important in initiation of ferroresonance. Analysis of ferroresonance using
bifurcation diagram and Poincare plot are discussed in [6], these graphical representation give additional
criteria for classifying ferroresonance modes in conjunction with the periodicity of the signal.
Ferroresonance can occur at any voltage level provided the basic elements needed in a ferroresonant
circuit are present. More explanation on the analytical approach of ferroresonance can be found in [3]
while the detailed explanation of the phenomenon is discussed in [9]. A detailed explanation of
ferroresonance occurrence is provided in [9, 10]. A case study of ferroresonance occurrence on the low
voltage side of a transformer in a 22 kV PV system distribution network is discussed in [11]. Similar to
the medium voltage (MV) and high voltage (HV) cases, the occurrence depends on the network
parameters and sudden changes in the network like switching events. Ferroresonance affected the step-
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up transformer used for the grid connection of the 500 kW rooftop PV network during a single phase
switching. However, ferroresonance does not occur when all the three phases were switched together.
Increasing the PV installed capacity, the capacitance of the transmission line, the distribution
transformer (ferromagnetic) and single-phase switching can cause ferroresonance on the LV side of the
transformer.

One of the major reasons why this disturbance is studied is to detect its occurrence on time and provide
mitigating solutions to reduce its impact on the network. The mitigating solutions to this disturbance
has also been discussed in literature. Suppression of ferroresonance with a shunt reactor is investigated
in [12]. Increasing the damping or introduction of damping also helps in limiting the vulnerability of
power systems to ferroresonance as discussed in [10]. Some of the mitigating factors are case specific
depending on the network arrangement susceptible to ferroresonance.

Similarly, research has been done on the detection of ferroresonance in power systems and classification
from other switching transients like capacitor switching, transformer switching and load switching.
Geev Mokryaniet al. in [13] used Stockwell transform, S-transform, for feature extraction and support
vector machine (SVM) for distinguishing this disturbance from other transients. The authors in [14, 15,
16] used discrete wavelet transform for signal decomposition and feature extraction. However, the
author in [17] used Multi-Layer Perceptron (MLP) for classification, Learning Vector Quantizer(LVQ)
neural network was used in [14] while decision tree was used in [15]. The application of wavelet
transformation for detection of ferroresonance is discussed in [2, 16]. The approach discussed in [16] is
not robust enough to classify ferroresonance modes. Moreover, wavelet decomposition presents a high
value at the inception of all transients and not unique to only ferroresonance occurrence.

Most of the methods discussed above focused on distinction of ferroresonance from other transients’
conditions, however, the classification of the different modes of ferroresonance is explored and
implemented in this thesis work. The detailed explanation on the approach is explained in Chapter 5.

2.2 Impact of Ferroresonance Occurrence on Power System

Ferroresonance, like other disturbances has negative impacts associated with its occurrence on power
systems. The most common impacts discussed in literatures are highlighted below:

e Overvoltage and overcurrent.

e Overheating of the transformer core due to saturation and high current.

e Equipment failure due to high stress.

¢ Insulation and dielectric breakdown due to a high sustained overvoltage and overcurrent.

e Highly distorted waveform with large harmonic and subharmonic contents affect power quality.

o Loss of supply due to equipment breakdown. This can also affect the reliability of the network
as well as the security of supply.

e Low humming noise due to occurrence of ferroresonance. The operators noted a loud noise
when a fundamental ferroresonance of 2 p.u. occurred due to switching of a line in 400 kV
substation as reported in [18].

e Explosion of a transformer due to sustained fundamental ferroresonance has also been reported
in [19]. This was caused by energization of a potential transformer at the de-energized bus bar
through the grading capacitance of the circuit breaker of a live bus bar. The sustained high
current on the primary side of the transformer resulted to this failure.

8 2. Ferroresonance - Modeling and Simulation



Even though surge arrestors can surge the overvoltage in power system, long sustained overcurrent and
overvoltage of ferroresonance disturbance can destroy the arrestor due to overloading. Over rating the
surge arrestor could prevent its damage but this also increases the chances of damaging other
components in the network due to ferroresonance overvoltage. This also reduce the protection level of
the system to lightning overvoltage. These negative impacts necessitate fast detection of ferroresonance
and isolation of the disturbance before causing damages to the electrical equipment. Knowledge of the
modes of ferroresonance could also help in planning and maintenance activities to reduce its likelihood
of occurrence and/or prevent future occurrence.

One practical example of ferroresonance caused by the interaction of a shunt capacitor bank with the
non-linear inductance of an unloaded or lightly loaded transformer is depicted in Figure 2.5. This case
shows a possible occurrence of ferroresonance when one or two phases of the three packs of single-
phase transformer are disconnected or switched. The neutral path in the figure provides the connection
between the circuit capacitance and the inductance. The zero-sequence path from the capacitor bank and
the source are coupled together and this provides path from the closed phase C (potential external energy
source in this case) to the open phase A and B through the transformer core to the capacitor bank.
Therefore, a complete loop is formed.
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Figure 2.5 Possible ferroresonance connection with shunt capacitors

In the second part of Figure 2.5, the neutral connection is on the transformer side. The path is dependent
on the arrangement of the network elements and construction of the transformer core. The influence of
neutral connection and transformer core construction are not be investigated in this thesis.



2.3 Types of ferroresonance

Similar to the linear resonant circuit, ferroresonance could also be parallel or series one depending on
network configuration. However, the series resonant condition is more common in the transmission
network while the parallel is common in the distribution network with ungrounded or resonant neutral
connection [3]. Only the series ferroresonance is considered and analyzed in this thesis. Ferroresonance
can be divided into two stages: the transient period that last for few cycles and the sustained period that
continues until the feeding source is switched off [2]. The waveform of the transient period is affected
by the circuit parameters while the sustained period is similar for the same modes of ferroresonance.
Figure 2.6 shows a ferroresonance waveform and different sections: steady-state period, transient period
and sustained period. The sustained period of the ferroresonance is what is classified into different
modes and these modes are discussed in the subsequent section.
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Figure 2.6 Ferroresonance partition

2.4 Different Modes of Ferroresonance

Ferroresonance classification into different modes is based on the sustained period of the disturbance.
It can be classified using the sustained current and voltage waveform; most especially by using the
spectral components of the voltage waveform in the sustained period. The periodicity of the waveform
and the frequency composition are used for the classification. Figure 2.7 shows the different modes of
ferroresonance based on the periodicity and the frequency spectrum. The classification method in
CIGRE report on resonance and ferroresonance in power networks [3] is adopted in this thesis.
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Figure 2.7 Classification of ferroresonance modes

The mode of ferroresonance is dependent on the point of operation or intersection of the other circuit
properties (voltage and current of other circuit parameters) with the saturation curve of the transformer.
The first level categorizations are the periodic and the non-periodic ferroresonance as shown in Figure
2.7. In a periodic ferroresonance mode, the waveform repeats in a definite pattern and the frequency of
oscillation could be a multiple or a sub multiple of the fundamental frequency. The non-periodic modes
are the quasi-periodic and the chaotic modes of oscillation. Quasi-periodic ferroresonance oscillation is
not periodic, it has a minimum of two frequencies which are the fundamental frequencies and lower
subharmonic frequencies. It continuously shifts between periodic modes without settling to anyone.
Chaotic ferroresonance has an unpredictable waveform and a continuous frequency spectrum. It is
sometimes studied with chaos theory. Overvoltage and overcurrent are the major problems associated
with the fundamental ferroresonance while the subharmonic mode has voltage usually less than the
system voltage. However, the subharmonic components could affect the operation of electronic devices.
The amplitude of the current in this mode is also less than in the fundamental mode. The spectral
components of the different modes are discussed below.

2.4.1 Fundamental Ferroresonance

The dominant frequency is the fundamental frequency of the grid and it is usually accompanied by other
harmonics that are odd multiple of the fundamental frequency, 3rd, 5th etc. The voltage magnitude is
usually higher than the rated voltage of the system and could cause a high stress on the equipment if not
isolated on time. Figure 2.8 shows a typical fundamental ferroresonance voltage waveform obtained
from simulation while Figure 2.9 shows a generic frequency spectrum.
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2.4.2 Chaotic Ferroresonance

The chaotic ferroresonance has a broad band frequency spectrum with an unpredictable behavior. It has
sharp peaks at system frequency and a continuous frequency spectrum. The time domain signal is not
periodic and has no definite shape or pattern. According to [3], it is not a common ferroresonance mode
in power system and no practical case has been reported so far in extra high voltage (EHV) substation.
It is only predicted in literature and Figure 2.10 shows the voltage waveform. As explained above, the
frequency spectrum is broad with peaks at fundamental and subharmonic frequencies. The frequency
spectrum is shown in Figure 2.11.

x 10 V - Chaotic Ferroresonance

x10°
T

Voltage(V)
S
— —

L 1 L . L 1
05 0.55 0.6 065 07 0.75 0.8 0.85 09 0.95 1
Timefs)

4 N w A o N ® ©

0 100 200 300 400 500 600 700 8OO 900 1000

Figure 2.10 Chaotic ferroresonance voltage

waveform Figure 2.11 Chaotic ferroresonance

frequency

2.4.3 Subharmonic Ferroresonance
The subharmonic ferroresonance mode is also periodic but has a longer period of oscillation than the
grid. It has harmonics which are usually odd sub-multiple of fundamental frequency % fo is the
fundamental frequency, 50 Hz in this case and n is an integer that determines the period of the
subharmonic ferroresonance. For instance, if the dominant frequency is % the subharmonic mode is

period-n. The spectrum is also discontinuous. Figure 2.12 shows a typical subharmonic ferroresonance
voltage waveform while Figure 2.13 shows a generic frequency spectrum.
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2.4.4 Quasi-periodic

The quasi periodic fundamental ferroresonance is not totally chaotic and neither is it periodic. It has a
combination of the fundamental and the subharmonic frequencies in its frequency spectrum. There is at
least one lower subharmonic mode in combination with the fundamental frequency. It has a
discontinuous frequency spectrum. Figure 2.14 shows a typical subharmonic ferroresonance voltage
waveform while Figure 2.15 shows a typical frequency composition.
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Figure 2.14 Quasi-periodic ferroresonance
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Ferroresonance does not need an external source to occur. The charge stored in the capacitor in a
ferroresonant circuit could sustain the oscillation for some periods depending on the period of oscillation
of the disturbance. The voltage magnitude of the oscillation is damped out after every polarity change
due to a high circuit loss when the transformer is saturated. Introduction of an external energy source
represented by v, (t) in Figure 2.2 changes the narration about the oscillation decaying. If the effect of
the voltage source and stored capacitive energy exceed the circuit I2R loss, then the oscillation is
sustained indefinitely. The presence of an external voltage source could also affect ferroresonance
oscillation frequency. Some examples of the network configurations prone to ferroresonance are:
e Uneven phase operation in a network with shunt compensations.
e Single phase switching in a multi circuit right of way with a shunt compensation.
e Combination of the grading capacitor of a breaker and Voltage Transformer (VT). The grading
capacitors of circuit breakers are used for even distribution of voltage after breaking. The
grading capacitor supply the energy needed to maintain the sustained ferroresonance.

2.5 EMTP Model of Ferroresonance

The EMTP model used in this thesis is the model of a case reported in Ireland during commissioning
test of a line bay in a new 400 kV substation. This ferroresonance case was caused by the energization
of the voltage transformers through the grading capacitor of the circuit breaker [18]. A 'live test' was
conducted by energizing the voltage transformers through the bus bar as shown in Figure 2.16 with the
line disconnector opened. The circuit breaker was then opened to de-energize the line VT's and this
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switching sequence results in ferroresonance oscillation.

model is shown in Figure 2.17.

The equivalent ferroresonant circuit of the
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voltage
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Figure 2.16 400 kV Substation Circuit
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“ ®
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Figure 2.17 400 kV Line Bay Equivalent Circuit

The grading capacitance of the breaker is in series with the 400 kV source. The stray capacitance in the
circuit is the disconnected line bay capacitance to the ground. While the magnetizing inductance and the
losses of the voltage transformer in Figure 2.16 are represented by R and L respectively in Figure 2.17.
The voltage transformer is represented with three single phase VTs with the secondary winding
connected in "Wye' configuration, and the tertiary winding in an open delta closed with 0.5 Q resistor.
The graphical representation of this model in ATPDraw is shown in Figure 2.18. According to [10], for
a ferroresonance to occur the following elements are needed based on field experience and research:
Nonlinear inductance.

Capacitance.

Low losses.

an external source of energy.

The default parameter used in the ATP Model are shown in Table 2-1

Table 2-1 Default circuit element values for fundamental and translational chaotic
ferroresonance EMTP model

Source voltage, V; 324 kV
Grading capacitor 600 pF
Stray capacitor 270 pF
Magnetizing losses 50 MQ
Switching time of the breaker 0.2078 s
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In order to generate difference scenarios, the circuit parameters that influence ferroresonance are
changed. Increasing or decreasing each of these parameters has different impacts on the onset of the
sustained period, the duration of the transient period and the sustenance or damping of the oscillation.

Fmd0oky 3m400kV

A
FE]

Figure 2.18 EMTP Model: Ferroresonance Circuit

The model in Figure 2.18 is used for investigating the fundamental, the subharmonic and the transitional
chaotic (very close to chaotic ferroresonance in pattern and frequency spectrum) ferroresonance modes.
Another model presented in Figure 2.19 is used for generating quasi-periodic ferroresonance signals.
This case is simpler compared to the 400 kV line switching in Figure 2.18.

Figure 2.19 EMTP Model 2: Quasi-periodic ferroresonance

The voltage and the current waveforms of the different ferroresonance modes obtained by changing the
circuit parameters in Table 2-1 are shown below. Fundamental ferroresonance voltage (V) and current
() are shown in Figure 2.20 and Figure 2.21 respectively.
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Figure 2.20 Fundamental ferroresonance voltage waveform
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Figure 2.21 Fundamental ferroresonance current waveform

Subharmonic mode V,l waveforms are depicted in Figure 2.22 and Figure 2.23 while the quasi-periodic

V and | generated from Figure 2.19 are shown in Figure 2.24 and Figure 2.25 respectively.
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Figure 2.22 Subharmonic ferroresonance voltage waveform
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Figure 2.23 Subharmonic ferroresonance current waveform
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The waveform in Figure 2.26 is termed chaotic because the signal has no specific pattern and the
sustained period amplitude is not uniform compared to the other cases. For instance, quasi-periodic
mode, which is also not periodic, shares the property of both subharmonic and fundamental
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Figure 2.24 Quasi-periodic ferroresonance voltage waveform
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Figure 2.25 Quasi-periodic ferroresonance current waveform

ferroresonance. However, the translational chaotic signal has a broad frequency spectrum and even

though the current seems periodic, the period per each cycle differs.
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Figure 2.26 Chaotic ferroresonance voltage waveform
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Figure 2.27 Chaotic ferroresonance current waveform

2.5.1 Impact of capacitance

The lower the value of the capacitance, the lesser the likelihood of ferroresonance occurrence. Figure
2.28 shows the graphical solution of the effect of increase and decrease of capacitance values on the
onset of ferroresonance. The value of the capacitance is equivalent to the size and the thickness of the
dashed blue lines, the higher the capacitance, the higher the gap between the dashes.
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Figure 2.28 Impact of reducing & increasing capacitance

It can be observed from the plot that a very high and a very low capacitance values will not result in
ferroresonance. The critical value of capacitance for ferroresonance occurrence is the value of C for the
line V¢, inFigure 2.28 . This is a ferroresonant state, at this point, the initial normal operating state and
unstable state in Figure 2.4 disappear. A slight increase or decrease around this value result in
ferroresonance. If the capacitance is high enough like in V5 case, the ferroresonant and unstable state
disappear, and the circuit operates in a normal state. The grading capacitance of the breaker is also
changed in the EMTP model to observes the impact on ferroresonance. The voltage waveform for
different grading capacitors from the default value of 600 pF to 120 pF, 300 pF and 1200 pF are shown
in Figure 2.29. The value of the grading capacitor affects the magnitude of the sustained ferroresonance;
higher capacitance gives higher voltage magnitude as seen in Figure 2.29. Reducing the capacitance
value in the network mitigates ferroresonance inception. The results from the EMTP model also
corroborate the scenarios depicted in Figure 2.28. The capacitance voltage line intersects the
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magnetizing curve V; in the linear region when the capacitance value is low. The sustained mode of
ferroresonance is avoided when the grading capacitance is reduced to 180 pF and 60 pF from 600 pF.
Other circuit parameters: the source voltage, the shunt capacitance and the switching time are kept
constant including the magnetizing loss of the transformer. As can be observed from Figure 2.29, at
very high capacitance value of 1200 pF, the ferroresonant waveform shows more quasi-periodic
oscillation compared to other cases. Similar results are observed for 1300 pF and 1400 pF.
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Figure 2.29 Ferroresonant voltage for different capacitance values

2.5.2 Impact of resistance

The introduction of more damping to the system can increase the losses and prevent the occurrence of
ferroresonance. As discussed above, one of the conditions needed for ferroresonance occurrence is low
losses. The case study of 400 kV line switch that resulted in ferroresonance also behaved differently
when a 0.5 Q resistor was connected to open delta of the transformer based on the VT's manufacturer
recommendation. More information about this can be found in [18]. Ferroresonant state is sustained
when the circuit loss is exceeded by the supply from the external source (if present), otherwise the
oscillation will be damped down to a steady-state operation or the onset of ferroresonance prevented.
Figure 2.30 explained this concept when damping is introduced into the ferroresonant circuit in Figure
2.2. The solution to the circuit with R is:

V,=R-T1+jX,(D-1—jX;-1 (2.4)
VZ = RD? + X (D - 1Xc)* = RD? + (UL(D) - 1X)? (2.5)
V& — (RD?* = (U, (D) — IX()? (2.6)

/Vsz — (RD? = UL (D) — IXc|? (2.7)

The solution to equation (2.7) is plotted in Figure 2.30 with two values of circuit losses, R; and R, in
which R; > R,. Analogous to the previous cases, point 1 is the normal linear state, point 2 is the
unstable state while point 3 is the ferroresonant state. It can be observed from the graph that a higher
value of R prevented the circuit from going into ferroresonant state.
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Figure 2.30 Impact of damping on ferroresonance occurrence

The quantitative solution above over simplified the complex ferroresonant phenomenon and it is not
valid for operation in the saturated region of the inductance (ferroresonant state) due to high harmonic
contents. The analysis considers only the power frequency and the steady-state operation; however, it
gives a good indication of the phenomenon [3].

2.5.3 Impact of voltage source

Increasing the magnitude of the source voltage increases the duration and the peak of the transient
period. Figure 2.31 depicts the effect of the source voltage on ferroresonance occurrence. The thin dash
line through the origin in Figure 2.31 represents the case with no external source. The V; line intersect
the inductance voltage curve at the point prone to ferroresonance marked with red dots. It can be inferred
that ferroresonance can occur even in the absence of an external energy source. Increasing the source
voltages moves the line V; + V. away from the normal and unstable state, and the only possible solution
is the ferroresonant state marked point 3. This indicates that ferroresonant state is self-sustained and
higher voltage magnitude increases the vulnerability because the intersection is on the saturated region
of the curve. The value of the source voltage in the EMTP model in Figure 2.18 is varied from 324 kV
up to 140 % increase with 10 % increase in each step. The voltage waveform changes with the voltage
rating, starting with a quasi-periodic mode before settling finally to a fundamental mode. Only the case
in which I; = 340.2 kV that does not result in ferroresonance in this voltage range.
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2.6 Mitigation of ferroresonance

The likelihood of ferroresonance occurrence can be prevented by avoiding switching techniques that
could aid formation of a ferroresonant circuit: a series combination of capacitance with a non-linear
inductance with low losses and/or low loading.

Reducing the length of the de-energized transmission line connected to the transformer can helps in
mitigating the risk of ferroresonance. The critical length of MV cable Ljtica in meter is discussed in
[3].

Another important mitigating solution is to increase the damping by introducing more losses (load
resistance) to the susceptible transformer. Even-though, this pose a huge energy loss due to /2R during
normal operating state, it ensures that there is no sufficient energy from the external source to sustain
the circuit in ferroresonant mode. Other mitigating factors are explained in [3].

2.7 Conclusion

This chapter summarizes the main characteristics of ferroresonance, the possible causes and the network
topologies that are susceptible to ferroresonance. The mitigating factors to reduce the risk of this
disturbance are also discussed. The best line of defense against ferroresonance is to understand the
phenomenon and do a proper predictive study during the design phase to avoid its occurrence. However,
this is not always the case, and this necessitate the detection and elimination of this severe disturbance.
Ferromagnetic materials are needed for this non-linear disturbance to happen. In addition to the non-
linear inductance of saturable magnetic core, capacitance, external energy source and low losses are
needed for the inception and sustaining the oscillation. It can be concluded that ferroresonance can occur
at any voltage level provided the circuit elements needed for its initiation are present. However,
increasing the voltage increases the risk of ferroresonance while increasing the circuit losses reduces the
risk. The different modes of ferroresonance, which are dependent on initial circuit parameters prior to
ferroresonance inception, are discussed and the classification is based on periodicity and frequency
spectrum of the waveform. The four common modes of ferroresonance are investigated are:
fundamental, subharmonic, quasi-periodic and chaotic modes. The mode a ferroresonant oscillation
settles to is influenced by system parameters and initial conditions.
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3 Arcing - Modeling and Simulation

An electric arc is a continuous discharge, a non-linear electrical phenomenon that occurs regularly in
power systems. When a switching action occurs in a power system, the current is not interrupted
immediately but flows through an arc until a current zero is reached. When the current is suppressed
before a current zero, it can cause abnormal overvoltage due to the exchange of energy between the
capacitive elements and inductive elements in the network. Although an electric arc is necessary in the
operation of switching devices, but an undesired electric arc can have a detrimental effect on power
system transmission and distribution networks and on electronic loads. The temperature associated with
an electric arc is very high; it can melt the insulation and cause undue stress to the electrical equipment.
This chapter discusses the literature review of different arc models and the results obtained from the
implementation of some of these models. In order to develop a good detection scheme for arcing faults,
it is paramount to have a good understanding of an electric arc behavior. One of the cost-effective ways
of achieving this is by simulating different arc behaviors in an electrical network and studying the
patterns. In electrical power systems, faults on the transmission lines have reverberating effects on the
distribution network and connected nodes. Although the transmission network has n-1 contingency in
most cases, it is important to improve the fault detection and clearing time in order to improve the
reliability of the network. Majority of the faults that occur on the transmission lines are single phase to
ground arcing faults [4], therefore, a single phase to ground fault is investigated in this chapter. Fast
detection and classification of this fault can help in minimizing downtime and improve the security of
supply.

There are other reasons why understanding and studying an arc behavior is important in power systems,
for instance, in a low voltage network, a lot of cases of electric fire has been reported to be caused by
electric arc. In addition, nearly 80 % to 90 % of the fault on transmission lines are single phase to ground
faults that involve arcing. Majority of these faults are transient in nature and need coordination of an
auto-recloser to reconnect the network after fault elimination for continuous operation. Closing of an
auto-recloser on a fault could cause a high overvoltage and overcurrent that can be detrimental to the
operation of the network. An uncontrolled electric arc is destructive because the arc continuously draws
current from a fixed voltage supply [20]. Different black box arc models are investigated as well as an
elongated arc in the air, primary and secondary arc behaviors. High impedance arc fault is also explained
in this chapter. For the detection of a secondary arc extinction time, a detailed model in ATPDraw and
its analysis is presented in this chapter. The behavior of an electric arc is affected by environmental
conditions, however, only the thermal property of the arc is modelled. The environmental and dielectric
conditions are not considered. The thermal model gives a good approximation to the behavior of an
electric arc and it is suited for investigation of the phenomenon.

3.1 Contribution of Arc Detection to Power System Protection

When a fault occurs in a power system, it could be transient or permanent and both are usually associated
with an arc. Understanding the arc behavior and proper detection can thus help in detecting these kinds
of faults. For instance, a high impedance fault could go undetected due to a low current which makes it
difficult for classical protection devices to operate. These types of faults could also create a low
resistance to ground and cause a high current earthing fault [21]. Most system operators use a single-
phase auto-recloser (SPAR) to detect and isolate temporary faults on the network to prevent downtime
and improve reliability of the network. The switching device clears the fault by opening the faulty
phase(s). An auto-recloser works by opening when a fault is detected in the network and the opening
time usually marks the beginning of the secondary arc. After a certain preset time (or adaptive in some



cases), the auto-recloser re-energizes the line(s) by re-closing. Understanding and detecting the
secondary arc fault signatures can help in improving the operation of SPAR and preventing it from
closing on secondary arc. The secondary arc harmonic signatures was used in [22] for the
implementation of an adaptive auto-recloser.

The influence of an electric arc on the operation of distance protection relays cannot be overemphasized.
The distance protection relays make use of resistance calculation to localize faults and trip the circuit.
The value of an arc resistance when a fault occurs can impair the accuracy of operation of the relay.
Warrington formulated an empirical formula for calculating the non-linear arc resistance using the root
mean square (RMS) current of the fault as shown in equation (3.1). An improved model was developed
in [23] and a new formula was formulated (equation (3.2)) in order to improve the accuracy of the
calculated arc resistance.

28710
AT Taa (3.1)
where R, is the arc resistance in Q, I is the RMS arc current in A and L is the length of the arc in m.
g V2Bl (32)
T I

where E, is the arc voltage gradient in VV/cm, L is the length of the arc in cm.

An electric arc model is also important to analyze the interruption capability of circuit breakers.
However, the physical arc model that involves fluid dynamic is used for designing circuit breakers while
the thermal model is sufficient for analyzing arc faults as reported in [1, 22, 24]. This is because different
circuit breakers use different medium in quenching electric arcs formed between their contacts

3.2 Primary and Secondary Arc

An arc fault is a common phenomenon in a single phase or other types of faults especially occurring on
transmission lines [4]. Switching arc of a disconnector or a breaker usually accompanies the faults in
the network. This type of arc fault is usually associated with a high fault current and the period from the
arc fault inception till the instant when the circuit breaker isolates the faulty phase is referred to as
primary arc. The time constant of the arc and the arc length are assumed to be constant during the
primary arc. In some cases, the arc is elongated for a longer period in the air as discussed in [25]. The
elongation of the arc in the air could be caused by the circuit parameters but mostly influenced by the
atmospheric conditions. The primary arc is followed by a secondary arc that is initiated after isolation
of the fault on the transmission lines. A secondary arc is formed by the coupling between the healthy
phase(s) and the faulty phase due to the mutual capacitance and inductance between the phases. It is
sustained by the energy trapped in the inductive and capacitive elements in the network that is released
after the fault isolation. The primary arc generally shows a deterministic behavior unlike the secondary
arc that behaves randomly. The randomness is influenced by the external factors around the arc channel
like the wind speed, the surrounding air, the thermal buoyancy and the electrodynamics forces [26, 27,
28].

The coupling causes a low current to flow and a higher voltage magnitude compared to the primary arc
phenomenon. In contrast to the primary arc, the secondary arc length is not constant, and it depends on
the external conditions and also on some of the arc parameters. There are many arc models in literature
that characterize the relationship between the arc length and the secondary arc parameters.
Understanding the secondary arc behavior is necessary to coordinate auto-recloser from operating on
permanent faults. This could lead to oscillation and could affect the system stability [27]. If a robust arc
detection scheme is implemented, the delay time before closing SPAR can be dynamic and adaptive.
This further necessitates the detection of an arcing fault. An electric arc is also a source of harmonics
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injection into the network, and as there are many electronic devices that are sensitive to harmonics in
the network, a more robust way to detect is important.

3.3 Low Current Arc

A high impedance arc and a series arc are types of electric arcing faults characterized by low current.
The series arc is initiated when a fault path exists between the load and the source. It could be caused
by an accumulated dust particle and loose connections in the network. Due to the network configuration
during the arc occurrence as shown in Figure 3.1, a series arc only occurs on a single phase. This arc
has been extensively studied in low voltage system and the different detection schemes are discussed in
[29, 30, 31]. The arc waveforms especially the current waveform is dependent on the type of connected
loads.
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Figure 3.1 Series Arc topology

Low current electrical arcs are also detrimental to the switch gears and other equipment in power
systems when they are not detected on time before they developed into short circuits. They have a low
current magnitude, similar to the load current. This causes difficulties for conventional protection
devices to detect them and to clear the fault respectively.

A high impedance arcing fault is also another low current arc usually investigated in the distribution and
the transmission networks. The fault is caused when a tree branch or animals or other high resistance
objects make contact between the phase conductor and the ground on the transmission lines. Many
detection strategies are discussed in [21, 32]. The non-linearity of the arc resistance and low current
causes difficulties to easily locate and detect these arcing faults. A high impedance fault (HIF) could be
caused by a fallen conductor touching the ground or indirect connection to ground through trees or other
objects. Although HIFs do not cause severe damage to the network immediately, live conductor poses
a risk to people and properties in contact. Trees are the major cause of this fault especially for long
transmission lines in forests. A staged test with tree branches, leaves and sand are conducted in [33] for
the detection of HIF. The experimental results were compared to ATP simulations. It was observed that
the tree leaves could cause a fire due to simultaneous arcing points. The moisture content of the objects
also affects the magnitude of the measured current; moisture content increases the magnitude of the
current compared to dry objects like dry sand.

A common observation in low current arcing faults is the shoulder (a short interval during current build
up phase [33]) and the dependence of the observed waveform on the objects in case of HIF and on the
connected load in case of a series arc. The distortions are source of harmonics into the network and a
continuous injection could affect the operation of electronic loads in the network.

3.4 Black box arc model

Arc models used for simulating different arc scenarios explained above are divided into three categories:
black-box models, physical models and parametric models [34]. The black box model is a simple

24 3. Arcing - Modeling and Simulation



mathematical equation that describes the relationship between the arc conductance and the network

parameters. Three black box models are analyzed and discussed in this section.

The classical arc models are based on the theory of energy conservation, considering the arc as an energy

burning phenomenon exchanging heat with the environment. According to the power balance principle,

the power inflow must be the same as the power outflow. Thus, the arc equation can be formulated as:
dQ

dr = Pin — Pout (3:3)

where Q is the energy stored in the arc channel measured in J, P, is the thermal energy inflow and
P,,,; is the thermal energy outflow. The thermal energy of an electric arc due to the thermal dissipation
is given by:

u
pmzu-i:u-Ezu-u-gzgu2 (3.4)
The basic classical arc model equation is:
1d 1 u?
__9=_< g _1> (3.5)
gdt  T\Poue(9)

where g is dynamic arc conductance, t is the time constant and u is the voltage. The thermal energy
outflow P,,,; is model dependent and it is determined for different arc models discussed below.

Cassie and Mayr arc models are widely implemented black box arc models for the simulation of low
and high current arc in circuit breakers and overhead line faults [4]. The arc model is based on the
principle of energy balance coupled with some simplifying assumptions about the arc occurrence. Cassie
arc model is suited for studying the arc conductance behavior during a high current interval while Mayr
model is suited for the arc behavior around a current zero [25, 27, 28]. In some cases, these two arc
models are combined for better results as done in [24]. Consequently, the equivalent arc resistance is

series connected and calculated as in equation (3.6):
1 1 1

—_ — - —
g 9Im Yc
where g,, and g, are arc conductance from Mayr and Cassie arc equation respectively.

(3.6)

Mayr assumed that the arc energy loss is a heat transport thermal flow. The power loss or cooling power
of the arc is equally assumed to be constant. The temperature of the arc column varies exponentially, as
the conductance of the arc depends on the temperature of the arc. Furthermore, the cross-section of the
arc column is assumed to be constant. The arc conductance is uniform within the arc column and also
depends on the stored energy Q. The relationship between g and Q is:
g =ke¥ (3.7)

k and Q, are constant parameters. Substituting equation (3.7) in the general arc equation, the formula
shown below is obtained.

dQ 1dg
= gt (3.8)
1dg 1 Do [gu?
2= (gu?- )=_< -1 3.9
gdr Q7" TP T\ 1, (39)
ldg 1 (ui 1) (3.10)
gdt T\p, '
where t (%) is the time constant and p,, is the constant arc cooling power.

Cassie on the other hand assumed that the current is relatively a high current, and the cooling power is
due to convection. The arc voltage and the temperature are assumed to be constant, but a varying arc
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column cross-sectional area is assumed. The arc resistance is adjusted in the variable arc column to
obtain the arc current. The cooling power in this case is:

Do = g U (3.11)

where u,, is the reference voltage drop. The general Cassie equation is thus formulated as:

ldg 1(u? ) (3.12)
gdt t\uZ '
Another popular black box arc model is the Hochrainer equation formulated as:
dg 1
2 (G- 3.13
dt 1 -9 (3.13)

This arc model is derived using the control theory.
One of the main challenges with the black box arc model is selecting the values of the parameters.
According to the authors in [23], the general dynamic arc equation is formulated as:

dg _ .
i f(g,i,u,m) (3.14)

where g is the time varying arc resistance and  is the set of unknown model parameters that must be
selected from test data. The model parameters used in the simulation discussed in the subsequent section
are obtained from the empirical data published in [35]. The authors in [26, 35] used the Hochrainer
model to investigate secondary arc.

3.5 Arc Models

In order to detect an arcing fault and classify it, this thesis focuses on two major arc phenomena. The
first one is the elongated arc in the air. Although the length of the arc is assumed to be constant during
the high fault current primary arc, the length could be affected in some cases as discussed in [25]. The
detection of this arc fault is included in the final classification algorithm proposed in this thesis. The
other arc model considered is the primary and secondary arc model initiated by a single phase to ground
fault on a 230 kV transmission line.

3.5.1 Long Arc in the air model

A modified version of the elongated arc in the air in [25] is implemented for the detection of long arc in
the air. Figure 3.2 shows the ATPDraw model and the validated arc parameters presented in [25] are
used.

Figure 3.2 EMTP Model - Elongated Arc Fault in the Air
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The electric parameters of the arc are simulated in EMTP and a type 91 TACS (Transient Analysis of
Control Systems) resistor is used to model the dynamic behavior of the arc resistance. A three-phase
model is used in analyzing the arc behavior when a single phase to ground fault occurs on phase A. In
order to validate the arc model in [25], the authors compared the current and the voltage waveforms
obtained from the simulation to experimental results. A correlation of 0.93344 was obtained from the
comparison. This proves that the arc model is close to real arc phenomenon, thus the waveforms from
the model give adequate properties that can be used for arc fault detection.

Figure 3.3 shows the arc voltage (left) and the arc current (right) obtained from the modified arc model
in Figure 3.2. The arc voltage is very distorted and close to a rectangular waveform. However, the arc
current is not affected except the slight displacement (DC component) at fault inception. The arc voltage
has a high harmonic contents and part of it propagated to the line voltage and caused some distortion as
shown in the waveform on the left in Figure 3.4. The closer the observation point is to the source of
harmonic injection, the higher the distortion level observed. The fault location, the fault current
magnitude and the network topology determine the impact of the distortion on the signals. At the fault
inception, the length of the arc is determined by the static length of the breaker, the switching device or
the distance between the arc columns. As can be seen in Figure 3.5, the arc length affects the magnitude
of the arc voltage. The arc voltage increases as the arc length increases and the relationship between
them is determined by the arc voltage gradient E, measured in V/cm. The impact of the arc elongation
is not obvious in the current as seen in Figure 3.3. The arc model is quasi-dynamic and more information
about the model derivation can be found in [4, 25]. The arc voltage is formulated as shown in equation
(3.16).
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Figure 3.3 Arc voltage and arc current (left to right)
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Figure 3.4 Line voltage and current: Elongated air arc

The arc resistance increases as the length increases and this implies that the time varying conductance
of the arc, g, should decreases with time. Figure 3.5 shows the time varying arc conductance over time.
An electric arc is with a resistive nature, the arc voltage and the arc current are in phase as shown in
Figure 3.5.
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Figure 3.5 Elongate air arc conductance, voltage and current waveform

As stated in [27] and confirmed by the simulations, the value of the THD (Total Harmonic Distortion)
measured in the system voltage is influenced by the interaction between the network impedance and the
electric arc phenomenon during the fault. The pollutant is the square wave of the arc voltage with
dominant odd harmonics. According to [25], the total harmonic distortion (THD) of the simulated line
voltage was approximately 5 % when the 3" to the 11 harmonic orders were considered. A THD
between the ranges of 3.05 % to 5.23 % of the line voltage is obtained in this project. However, the THD
value up to 3.62 % is observed for the arc current compared to 2.05 % in [25]. The arc parameters and
the circuit parameters are changed to generate different scenarios, these values are used for detection
and classification later. The ratings of the connected loads and the fault resistance are also changed. The
higher the fault resistance, the lower the fault current and the arc current.

3.5.2 Modeling of primary and secondary arc

The arc model used for the primary and the secondary arc investigation is based on the theory of energy
balance in the arc column, the Hochrainer arc model is implemented. This describes the arc in the open
air by a differential equation that determines the instantaneous arc conductance. Kizilcay and Pniok
work from 1991 described the two periods of arcing. The secondary arc has some elongation properties
with the arc reaching 10 times its original length due to the magnetic forces and the environmental
conditions [36]. The mathematical model of the arc is described by equation (3.18).
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dg 1
E;_;(G—g) (3.18)

where 7 is the time constant of the arc, g and G are the instantaneous and the static arc conductance
respectively. Because the arc is assumed to be burning freely in the air, there is a slight deviation from
the black box model, the arc voltage is assumed not to be constant [36]. It is assumed to be dependent
on the arc length and the instantaneous short circuit current flowing through the arc, the arc current. It
is defined as:

use = (Up + ToliareDlare (3.19)
The stationary arc conductance G is dependent on the arc current and the voltage. With the assumption
that arc is resistive in nature, it is defined as:

G = M (3.20)
Ust

where ug; is the stationary arc voltage; u, is the characteristic arc voltage per unit length; r, is the
characteristic arc resistance per unit length; i, is the instantaneous arc current; l,,. is the time
dependent arc length.

ligrel
= - (3.21)
(o + oligreDlare

The time constant of the arc, t is dependent on the arc length and their relationship is formulated as:
a

l
r=1, ( clm) (3.22)
o

T, IS the initial time constant; [, is the initial arc length; l,,.. is the time dependent arc length; « is a
negative constant between -0.1 to -0.6 [4]. This arc model developed by Kizilcay was verified
experimentally and it is implemented in this section. The result obtained by varying the circuit
parameters are discussed.

The arc phenomenon is a nonlinear dynamic process. It is modelled in ATP-EMTP using the MODELS
language and the dynamic arc resistance is represented with a TACS device. The interaction between
the electrical network, the physical network and the arc model is shown in Figure 3.6. A type 91 TACS
resistor and a type 93 switch are used as the link between the network and the arc model. The simulation
is modified based on the previous calculated arc resistance. The input arc current, Ir is used in

calculating the value of the constant arc conductance, G, and the differential equation is solved for the

value of varying arc conductance g. The inverse of this G = R) is updated as the new value of the
TACS arc resistance and used in the next step-of-time calculation. The arc voltage is obtained by
multiplying the arc resistance and the arc current. That way, the interaction between the network and
the arc continues until the arc is finally extinguished. In most cases when an electric arc occurs in the
network, it generates heat due to the high temperature. Therefore, a good approximation is to model the

arc interaction with the physical network by using a resistor.
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Figure 3.6 Arc interaction with power system network

The conductance of the arc is modeled as a differential equation in ATP as in equation (3.23) and the
equivalent Laplace form is given in equation (3.25).

dg larc
—_— = — 3.23
gt+T " (3.23)
i
gl +s1) ="==G6() (3.24)
Ust
1
t) = G(t 3.25
g(t) T+t ®) (3.25)

During a primary arc, the arc length and time constant are assumed to be relatively constant. The primary
arc is model with equations:

dg 1 larc

—=—G-g) G= .

dt To (uo + rollarcl)lo
In contrast to the primary arc, the secondary arc has a dynamic behavior with varying arc length and
time constant. The arc length and the time constant during the secondary arc are modelled

mathematically in ATP as follows:

(3.26)

dg 1 iarc
dt T g (uo + rol’-arcl)larc ( )
lore = t+1)- 1, (3.28)
T=T, = V(lgre = o) (3.29)

v, is the rate of change of the time constant. The two time constant equations, equation (3.22) and
equation (3.29) are implemented and compared. Equation (3.22) is used to calculate the secondary arc
time constant in [4] while equation (3.29) was used in [37]. The arc length rises due to environmental
conditions and the arc conductance g is almost reduced to zero at arc extinction. This results to a high

arc resistance because 7, = g . The thermal extinction condition for the arc is set by the limits defined

in equation (3.30). The secondary arc is extinguished when the rate of change of the arc resistance
exceeds the limit, provided that the conductance is less than the specified value of g,,;, in equation
(3.30). A minimum condition of 50 uS is used in this model. The dielectric and other external
conditions are not taken into consideration in this case.

max (E)
Imin _ .25 40, AL _ gy <O (3.30)
arc cm lore s.cm
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The time constant decreases as the arc length increases according to equation (3.22) and (3.29). The
secondary arc duration is affected by the wind speed. The higher the wind speed, the higher the
elongation of the arc length and the fast air movement aids the arc extinction. Therefore, the value of
time varying arc length [, (t) influences the arc duration and extinction. In order to ensure the stability
of the network, to avoid loss of synchronism and prevent arc restrike, the minimum dead time from the
time circuit breaker trips [38, 39] is given by:

kv
= 10. — 3.31
T =105+ 345 cycles (3.31)

where T is the minimum de-ionization time in cycles and kV is the line-to-line RMS voltage in kV.
The final ATP-EMTP model for primary and secondary arc is shown in Figure 3.7. The arcing results
from a single phase to ground fault on phase A, at 50 % length of the transmission line. The frequency
dependent model of the transmission lines is used in the model. Figure 3.8 and Figure 3.9 respectively
show the voltage and the current waveform using the arc parameters: u, = 12 V/cm, 1, = 120 cm,
ro, = 2.20x1073 Q/cm, 1, = 0.001s, gin = 5x107°S, vy = 45cm/s, vy =2.8510""s/cm. A
zoomed version of the secondary arc current is presented in the second part of Figure 3.9.

At the beginning when the single phase to ground fault occurs, the breaker marked sa is closed in order
to connect the physical model to the arc model. The line voltage decreases, and the current increases as
shown in Figure 3.8 and Figure 3.9 respectively. The high conductance value of the arc during this
period implies a low resistance and therefore a high current. Figure 3.10 depicts the arc conductance,
the length of the arc and the time constant T corresponding to the arc parameters given above. The
switching from a primary to a secondary arc is coordinated by switches SW, srec and sa in Figure 3.7.
Switch SW opens at the time t,,., = 0.2559 s, followed by switch srec on the sending end of the line
to isolate the fault completely. Then the secondary arc phenomenon, modeled by differential and
algebraic equations, is initiated. During this period, switch SW is opened while switch sa is closed. As
can be observed from Figure 3.8, the voltage increases gradually to the recovery voltage. Although the
terminal voltage is higher during the secondary arc period, the secondary arc current is low due to the
low conductance (Figure 3.10) and the coupling between the phases. When the secondary arc extinction
conditions modeled by equation (3.30) is met, then the switch sa is opened and this marks the end of the
secondary arc. The breaker + Recloser box in Figure 3.7 represents the breaker that isolates the fault to
mark the end of primary arc, and the recloser represents the SPAR that reconnects the network after
secondary arc is extinguished.
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Figure 3.7 EMTP Model: Primary & Secondary Arc

3.5.2.1 Impact of parameter change on the primary and secondary arc

The effect of the circuit elements and the arc model parameters are investigated in this section. The
change of the fault resistance Ry influences the magnitude of the primary arc current (fault current) and
the voltage, as well as the duration of the secondary arc. As expected, the higher the fault resistance, the
lower the fault current. The time of extinction of secondary arc is obvious in the zoomed secondary arc
current in Figure 3.9 and the arc length in Figure 3.10. Subsequently, the arc length variation is used to
illustrate the effect of the other parameters on the duration of the secondary arc. The decrease of the
source voltage 1 or the increase of the static arc voltage per length u, also reduces the duration of the
arc. The impact of the source voltage and voltage gradient u,, are plotted in Figure 3.11. The arc length
and the time constant have inverse relationship. When the initial time constant, t, decreases, the arc
length increases as depicted in Figure 3.10. The current versus voltage curve of the secondary arc shown
in Figure 3.12 also indicates the non-linearity of the arc.
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32 3. Arcing - Modeling and Simulation



2000

__ 1000 —
g
£ 0
3 1000 -
-2000 -1
3000 1 | 1 1
0 03 0.4 0.5 0.6 0.7
Time(s)
g 20 T
E 10 2
3
o 0
e
§~10 —
s
220 -
S
3
o -30 1 L 1 1 | 1 1 1 x|
03 0.35 04 0.45 05 0.55 0.6 0.65 0.7
Time(s)
Figure 3.9 primary and secondary arc current
2 T T T T T T 2500 T T T T T U
primary arc y arc
sk 1 2000 - 1
s — 1500 | E
L 4t . B g increasing
= ~ 1000 length 1
aek 1 34 / -
0 L " I L L \ 0 T n s L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6
Time(s) Time(s)
x10% x10%
T T T T T T T T 10 T T 3
@ 1} 1
o
e 8 decreasing time constant
Sos 4 .
g Al
o
@
(7]
ol s h " n 4 L L s s s L
0.3 0.35 04 0.45 0.5 0.55 0.6 0.65 0.7 0 0.1 0.2 0.3 04 0.5 0.6 0.7
Time(s) Time(s)

Figure 3.10 Arc conductance, length and time constant

2500 T T T T T T T 3000 T T T T T T T
—— 0.8V,
s ——u, =9V/cm
2500 uy =12V/cm
= ——u,_ =14vicm
2000 [
E 1500 €
L L
£ £
= 1500 -
o [} 3 1
S o increasing arc length
< 1000 increasing arc length <
1000
500 1
’ . 500 .
increasing increasing
secondary—> secondary —>
arc duration arc duration
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 04 0.5 0.6 0.7
Time(s) Time(s)

Figure 3.11 Impact of the source voltage and voltage gradient variation on the arc

length and secondary arc duration

33



x10%

voltage (V)
o

current (A)

Figure 3.12 Current vs voltage curve of a secondary arc

3.6 Conclusion

The different arc behaviors are discussed in this chapter. The rate of change of the arc length affects the
duration of the secondary arc. The longer the length of the arc, the shorter the secondary arc duration.
Therefore, the arc extinction conditions should be carefully chosen to model the situation close to real
life cases. The extinction of the secondary arc is influenced by external factors like the wind speed and
the ionization of the air. When the wind speed is higher, then the arc length elongates faster, and the
extinction time becomes shorter. It is also observed that decreasing the rate of change of the arc length,
v, in equation (3.29) increases the duration of the secondary arc. The observations with the primary and
the secondary arc simulations are summarized below.
e A reduced rate of the arc length results in an increased arc duration.
e Anincreased arc length leads to a lower arc time constant.
e Specifying the arc extinction criteria is very challenging due to the random behaviour of the
arc and the arc extinction spread in literature.
e Lowering the rate of change of the arc length results in a higher magnitude of the secondary
arc voltage. Reducing the initial arc length has the same effect.
¢ Reducing the source voltage also reduces the duration of the secondary arc, this is because
capacitive coupling at the fault location reduces.

The arc model considers only the thermal property of the arc, the dielectric property and subsequent
restrikes are not modelled.
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4 Signal Analysis and Feature Extraction
using Wavelet Transform

In most applications, the frequency domain analysis can give more insight about a phenomenon not
apparent in the time domain signals. The application of signal processing has been used in many aspects
of electrical power including protection relay applications, power quality analysis and harmonic
analysis. The time domain waveforms obtained from the simulation of the disturbances in ATP are
discussed in previous chapters. In this chapter, the discrete and fast wavelet transform are discussed as
well as their applications in the feature extraction process. The feature extractions for the classification
algorithm and the feature selection are also discussed. The frequency spectral and Poincare map are two
of the commonly used methods for categorizing ferroresonance into different modes. The frequency
spectral analysis is adopted in this thesis. Therefore, Fast Fourier transform (FFT), which gives a good
frequency resolution of the signals is used for pre-classification of the ferroresonance disturbances.

4.1 Fast Fourier Transform

In order to develop an accurate classification algorithm, the initial classification of the training dataset
must be done correctly. As discussed in Chapter 2, in addition to the periodicity of the waveform, the
frequency spectrum of ferroresonance signals gives more insight into the mode of the disturbance. FFT
function in MATLAB is used to determine the frequency component of the voltage and the current
signals. Although the time resolution of the Fourier transform is poor, the frequency resolution is good
enough for this analysis. The FFT function in MATLAB uses the Discrete Fourier Transform (DFT) for
the transformation of a continuous time domain signal to the frequency domain. The choice of the
sampling frequency and the number of samples per window affect the discretization of a continuous
signal when using FFT. The number of samples per window and the sampling frequency must be an
integer multiple of the fundamental frequency of the signal under analysis. i.e. When f, is the
fundamental frequency of the signal, f; is the sampling frequency, N is the number of samples per time
frame/window/period and let m be an integer greater than 1. Then;
fs
N=m 7 (4.1)

The condition in equation (4.1) should be satisfied to prevent leakage at the frequency bin of the
analyzed signal. Leakage is the approximation of the actual frequency spectrum of a signal by FFT when
the condition in equation (4.1) is not satisfied [40]. In addition, the loss of signal information should be
considered when choosing the sampling frequency. According to Nyquist theorem, the sampling
frequency should be a minimum of 2f,,, , where f,, is the maximum frequency component in the signal
of interest. Moreover, the computational burden increases with higher sampling frequency. Considering
these factors, a sampling frequency of 10 kHz is adopted in this thesis. Furthermore, the performance of
the FFT algorithm in MATLAB is improved by using a signal length that is a power of 2 or can be
factorized into a product of small prime numbers. Otherwise the signal is padded with zeros to satisfy
this condition. The longer the signal length, the higher the accuracy of the transformation from time
domain to frequency domain [40]. To accommodate the two criteria, a signal length of 0.2 s with sample
length of 2000 is selected for the spectral analysis. A different time frame is used in generating the
training datasets.



4.2 Spectral Analysis of Ferroresonance with FFT

Ferroresonance pre-classification is done using the spectral property of the sustained period of the
disturbance. The disturbance has three regions: the steady-state, the transient and the sustained period.
The subharmonic ferroresonance is called subharmonic because of the subharmonic frequency in the
sustained period. The spectral composition of each mode of ferroresonance in this project are discussed
below, however, only the sustained period is analyzed.

4.2.1 Spectral composition of fundamental ferroresonance

The sustained period of the fundamental ferroresonance obtained from the simulation is shown in Figure
4.1. The sustained period wave shape is uniform and a duration of 0.2 s is chosen for this analysis. One
of the major detrimental impact of the fundamental ferroresonance is the sustained overvoltage and
overcurrent. The sustained voltage amplitude is approximately 690 kV which is roughly double the
steady-state voltage of 324 kV. The sustained voltage can cause thermal and/or mechanical stress on the
transformer when it is greater than its rated power-frequency short-duration withstand voltage.
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Figure 4.1 Spectral components of fundamental ferroresonance voltage and current

As seen in Figure 4.1, there is a high current spike due to the saturation of the magnetic component of
the circuit. The current peak of 59.15 mA during ferroresonance is quite high compared to 5.5 mA
during the steady-state. The overcurrent may cause overheating in the transformer and cause fire in some
cases. Therefore, ferroresonance is a very severe disturbance that needs to be properly monitored to take
control actions in order to prevent damages. The harmonic components of the fundamental
ferroresonance voltage and current waveforms are shown in Figure 4.1. These are obtained by taking
into account the leakage constraint with FFT in MATLAB and a proper selection of the sample points.
The spectrum is dominated by the fundamental frequency component and odd harmonics. Subsequent
waveforms with the same spectral components are classified as fundamental ferroresonance in this
thesis. It can be observed that the 3" harmonic component of the current is slightly higher than expected,
the 3 harmonic of current is approximately 64.9 % of the fundamental while the 5" is 25.4 %.

4.2.2 Spectral composition of subharmonic ferroresonance

The subharmonic mode of ferroresonance is dominated by sub-multiple(s) of the fundamental
frequency. The period of the signal is an integer multiple, nT, of the source period. Using the period-x

classification approach in [12], the subharmonic mode with a dominant frequency% is a subharmonic
of period-n. Where f, is the source fundamental frequency. The frequency spectra of the voltage and
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the current signals are shown in Figure 4.2. It is a period 3 subharmonic ferroresonance because the
spectrum has a fundamental frequency of 16.67 Hz (%)
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Figure 4.2 Spectral components of subharmonic ferroresonance voltage and current

4.2.3 Spectral composition of quasi-periodic ferroresonance

The quasi-periodic (QP) mode is not periodic but occurs almost regularly without an exact periodicity.
The frequency spectrum of the voltage and the current are shown in Figure 4.3. There are at least two
dominant frequencies in the spectrum, the fundamental (50 Hz) and one subharmonic (35 Hz). The main
difference between the quasi-periodic and the chaotic ferroresonance is in the frequency spectrum. The
frequency spectrum of the quasi-periodic ferroresonance is discontinuous while the chaotic mode has a
continuous spectrum. The relationship between the two dominant frequencies in quasi-periodicis: af; +
bf, where a and b are integer and a/b is an irrational real number [12]
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Figure 4.3 Spectral components of quasi-periodic ferroresonance voltage and current

All ferroresonance signals with spectral components similar to the one depicted in Figure 4.3 are
classified as QP ferroresonance. There frequency components marked in Figure 4.3 are combinations of
two dominant frequencies: f; =50 Hz and f, =35 Hz related as af; + bf,. By assuming a=2 and b=1,
the equivalent frequencies are: 65 Hz, 135 Hz. Other marked frequencies can be calculated in a similar
manner.

4.2.4 Spectral composition of translational-chaotic ferroresonance

In the case of chaotic ferroresonance, the signal occurs randomly without a specific pattern. The signal
has a transient behavior for the total duration of time without uniformity. The voltage and the current
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spectral constituents are shown in Figure 4.5. Although there are some spikes at the fundamental
frequency and the subharmonic frequencies, the phenomenon is still chaotic because of the broadband
spectrum as shown in Figure 4.4 and Figure 4.5 There is a frequency spread between 0 to 50 Hz in the
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4.3 Spectral Analysis of Arcing Signals with FFT

4.3.1 Spectral composition of elongated arc in the air

A modified version of the arc model presented in [25] is used in this thesis. The THD of the current and
the voltage are compared to the original model. Figure 4.6 shows the FFT of the line voltage and the
line current during the elongated arc fault in the air. The line voltage has a THD of 4.5074 % considering
the 3" to the 11" harmonic orders while the current has a THD of 2.66 %.
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Figure 4.6 Spectral components of elongate air arc signal - voltage and current

4.3.2 Spectral composition of arcing signals: primary and secondary

The FFT of the primary arc current and voltage are presented in Figure 4.7 while Figure 4.8 shows the
FFT of the secondary arc voltage and current. It can be observed from Figure 4.7 that the distortion is
minimal during the primary arc compared to the secondary arc signals in Figure 4.8.

4
spll . . , . . . 3000
2000 |
1000
B <
T z
£ Eoof
s 3
1000
-2000
; i i : , i i i Silis i i ’ i i i i
012 014 016 048 02 022 024 026 0. 014 016 018 02 022 024 026
Time (s) Time (s)
4
3pdl— 2500
&8 2000 [
= 2F —_
2 <
= = 1500
° °
ERELS E}
= =
g & 1000
= 1F =
05 500
0 —_ 0 :
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz) Frequency (Hz)

Figure 4.7 Spectral components of the primary arc signal - voltage and current

Since the secondary arc signal is caused by the capacitive and the inductive coupling between the healthy
and the faulty phases, a higher harmonic content is preset in the current.
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Figure 4.8 Spectral components of the secondary arc signals - voltage and current

4.4 Discrete Wavelet Transform

The Wavelet Transform (WT) has been used in many applications to transform time dependent signals
into the wavelet domain. It has become popular in power systems due to its additional features over its
commonly used counterpart, Short Time Fourier Transform (STFT). WT uses different scales to
deconstruct a signal, which are equivalent to a low, a medium and a high frequency. This transform
divides a given signal into different scales in which each scale components has a given frequency range
[41]. It enables the visualization of the abrupt changes that are not obvious in the real time-series data.
According to the authors in [42], the DWT is better for a non-stationary signal. WT gives better
resolution in time domain because they are limited. Fourier transform on the other hand, assumes
variation of the data up to infinity in order to transform the data from the time domain to the frequency
domain. This data stretch to infinity makes the time localization very poor, moreover the assumption is
not good for signals with sharp peaks and discontinuity. This makes DWT attractive for signals with
fast peak and discontinuity because it can approximate data in finite domain. Individual wavelets are
localized in space whereas individual sines and cosines are not. Frequency and space localization make
the wavelet transform sparse in the wavelet domain. WT scales and dilates the mother wavelet using
different resolutions at different levels to approximate a time series signal, in order to extract important
features. The Continuous Wavelet Transform (CWT) of a signal x(t) using a mother wavelet ¥ (t) is
defined as:

1 (® t—»b
WT(a,b =—f x(t *(—)dt 4.2
@b =—=| xOv (= (4.2)
where % is a normalization vector, ¥ *(.) is the complex conjugate of the mother wavelet ¥(.), b is

the translation factor while a is the scale or the dilation factor. DWT is obtained by discretizing the
CWT and reducing the redundant data generated from the CWT. The mother wavelet is dilated discretely
by the scale parameter and translated by the translation parameter ay , nb,a¥ respectively. u and n are
integers; a, and b, are fixed values in which a, > 1 and b, >0. The DWT is defined mathematically
as:
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1 k —nb,a¥%
W(u k) = \/72 x[n] ¥ <T> dt (4.3)

A special case and the most popular implemented version of the DWT is the dyadic DWT in which a
dyadic scale where a, = 2 and b, = 1 is used for discretizing the CWT. It is very useful when the time
and the frequency localization are important in the analysis of a signal. Unlike the Fourier transform and
the STFT, the resolution at different scales can be adapted for better time or frequency resolution. The
STFT provides a uniform time resolution at all frequency. Additional advantage of using the DWT is
the Multi-Resolution Analysis (MRA) of the fast wavelet transform that allows a high time resolution
at a lower scale (high frequency) and a low time resolution at a higher scale (low frequency). Figure
4.9 shows the comparison between the frequency (scale) and the time resolution for the two transforms.
The boxes represent the relationship between the frequency (scale) and the time. The STFT provides a
time localization as seen in the figure, however, it is not adequate for signals with frequency changes
[43, 44]. The area and dimension of the boxes at different frequency levels are the same for STFT while
the area is constant in DWT but with different dimensions at different scales. Box 1 in the figure has a
shorter width (high time resolution) and a longer height (low frequency resolution) at a high frequency
(lower scale). The time resolution and the frequency resolution can be varied depending on the
application and the feature of interest.
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Figure 4.9 Frequency versus time plot for STFT & DWT

4.4.1 Literature Review on Wavelet Transform

Although WT was first introduced by a geophysicist J. Morlet for analyzing Seismic data [45], it has
been widely used in power systems for the detection and classification of different power system
disturbances. The application of the WT in detecting power quality disturbances are discussed in [46,
47]. The square of the wavelet coefficients were used by the authors in order to detect, localize and
classify the different power quality disturbances. Another important criterion is the data compression
feature of the DWT. The down sampling of the signal by 2 after filtering through the high and low pass
filters enables the removal of redundant data. Consequently, the data size is reduced. This approach was
used in [48] to reduce the data size for the power quality analysis. Not only is this transform used for
detection, but also for power measurement as discussed in [49, 50]. The authors in [50] used the
coefficients of voltage and current signals for RMS measurements and to estimate power/energy while
Croes et all uses the WT to estimate the instantaneous active and the reactive power [49].

A transient signal especially in power systems is usually a non-stationary signal, the frequency of which
changes with the time. The ability of the WT to use different mother wavelets (with different shapes)
enables it to be a good fit for analyzing this signal [44]. Since the time localization is also important in
some transient analysis, a lot of researches have used this WT feature in investigating transients in power

41



system [51, 52, 53]. Another application of the WT in power systems is in the investigation of high
impedance arcing fault as discussed in [21, 33, 54, 55, 56, 57]. The DWT has also been used in
investigating ferroresonance in power systems. The DWT was used in [15, 58, 17, 14, 16] to classifying
ferroresonance signals from the other transients like capacitor switching, transformer switching and load
switching. However, the focus of this research is on detecting ferroresonance and classifying it into
different modes. Thus, an algorithm that uses DWT and pattern recognition approach to detect and
classify different modes of ferroresonance and arcing faults is presented in this thesis.

4.4.2 Multi-resolution analysis: Fast wavelet transform

The Multi-Resolution Analysis (MRA) in DWT is more attractive for many applications. The DWT
uses filters of different cutoff frequencies to analyze the signal at different scales [42]. The resolution is
controlled by passing the signal through a series of high pass and low pass filters to analyze the signal.
The high frequency coefficients are obtained by passing the original signal x[n] through a half band high
pass filter g[n] and the low frequency is analyzed with a low pass filters h[n]. The scale is changed by
up-sampling (increasing the signal samples by factor n) or down-sampling (reducing the signal size by
factor n) [59]. The filtering of the signals through the low pass and high pass filters is equivalent to
convolution of the signals. The down sampling of the signal by 2 after each filtering stage is represented

by:
DIK| = »"x[n]. g[2k — n] (4.4)

n

AlKl = )" x[n]. h(2k — n] (4.5)
n

Where D[K] and A[K] are the outputs of the high and the low pass filters after down sampling by 2. g[n]
and h[n] are mirror filters of each other and they are called quadrature mirror filter pair in signal
processing [60]. They are related by:

gm) = (D' h@ —n) (4.6)
The wavelet function generates the detail coefficient associated with the high frequency while the
scaling function generates the approximation coefficients related to the low frequency. The detail
coefficients are appropriate for determining the fast variations in the signal while the approximation
coefficients give better approximation of the signal with sparse coefficients and a compressed data. The
MRA techniques in WT was introduced by Meyer and Mallat [60]. Figure 4.10 shows the decomposition
level and change of frequency at different scales. It can be observed that the frequency is decreasing by
order of 2V at each scale. The maximum level of decomposition, m, of a signal of length N is determined
by:

m = log, N 4.7

The coefficients of the low pass (h) and the high pass filter (g) are defined depending on the mother
wavelet and the number of vanishing moments. For the first level decomposition, the signal of length N
is convulsed with h[n] to obtain the first level approximation coefficients of length N + 2r — 1 and with
g[n] to obtain the first level detail coefficients of length N + 2r — 1; where 2r is the length of each
filter. The obtained samples H and G (from h and g respectively) are then down-sampled by 2 to obtain

A and D respectively with a length of % -7 each. For the second level decomposition, the same

approach is used, however, the original signal is replaced with the first level approximation
coefficient A1 to obtain A2 and D2 .
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Figure 4.10 Discrete Wavelet transform decomposition

4.4.3 Choosing the mother wavelet

There are different mother wavelets and the choice of mother wavelet depends on the application. A
mother wavelet must have a unity mean and a zero area. In choosing a mother wavelet, the regularity,
the orthogonality (to preserve energy) and the number of vanishing moments must be considered. The
similarity of the mother wavelet to the signal of interest is also important. Regularity of the mother
wavelet affects the detection of an abrupt changes in the signal. Whereas a wavelet must have at least
n + 1 vanishing moment in order to support a signal with n continuous derivatives. According to authors
in [44], ashorter filter length is more suitable for transient analysis while a longer length is better for a
low frequency analysis.

The common wavelet families for power system analysis especially for fast decaying signals are
Daubechies and Symlets [33]. Different mother wavelets with varying vanishing moments are used to
decompose the ferroresonance signals and arcing fault signals. Some of the results are depicted in the
figures below. After careful consideration, Db4 is selected as the mother wavelet for this analysis. Db4
and Db6 give similar results, however, the number of coefficients is reduced by 4 when Db4 is used
compared to Db6. A mother wavelet with a vanishing moment n, for instance, dbn, has a filter
coefficient of length 2n. Figure 4.11 and Figure 4.12 show a four-level decomposition of ferroresonance
voltage signal using Daubechies (db4, db6), Symlets (sym4), Fejer-Korovkin filters (fk4) and Coiflets
(coif2) mother wavelets.

43



x10° db4 x10% fkd x10° symé4

d1
3
o 8
d1
b o
d1
3 3
8 o 8 &

-1000 E
0 0.2 04 0.6 08 1 0 02 04 06 08 1 0 02 04 06 08 1
5
5000 1 5000
o o m o~
-5000 El -5000
0 0.2 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
x10* %10° x10*

d3

A o 0N
d3

[ ) ~
d3

L)

da
N S
da
H o @
da
TR

|
|
|

Figure 4.11 Four levels DWT decomposition of ferroresonance signal using mother
wavelet 'db4', 'fk4' and Sym4

Figure 4.13 shows the decomposition of the primary and the secondary arc signal with different mother
wavelets.
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Figure 4.13 Four levels DWT decomposition of Arcing signal using mother wavelet

'db4’, 'fk4' and Sym4

Three levels decomposition of the elongated air arc discussed in Chapter 2 is depicted in Figure 4.14
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Figure 4.14 Three levels decomposition of elongated air arc voltage and current signal
using db4

4.5 Feature extraction and selection

Feature extraction is an important phase in any classification algorithm, the extracted features are used
as an input to the classifier. The best set of features are the ones that are closer to each other for the same
disturbance class but far from other disturbances. The features space between different disturbances
must be well separated in order to design a classifier with good performance [61]. Therefore, in order
to extract features from the time domain signal of the voltage and current, a combination of DWT and
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other statistical properties of the data are used. The DWT coefficients at different levels are manipulated
in order to obtain features for the classification and the detection. The modifications considered are the
energy of the coefficients, the sum of the absolute values of the coefficients and the peak of the absolute
values of the coefficients. The modified signals show distinctive property that can be used to distinguish
the different classes of the disturbances and some of them are discussed below. As it can be observed in
Figure 4.12, Figure 4.13 and Figure 4.14, the coefficients are almost zero during steady-state operation
but present spikes at the inception of the disturbance. The number of peak selected are varied from one
to five to observe the impact on the classification algorithm. In order to reduce the feature space, a peak
is selected from the detail and approximation coefficients of the three-phase voltage and the three-phase
current signals. These make a total of twelve features per level (1x2 x 2 x 3).

From the Parseval’s theorem, if the scaling and the wavelet function used for the DWT form an
orthonormal basis, then the energy can be partitioned at different levels concentrated in the coefficients
[2]. The mathematical expression is given by:

kn kn
B0 = ) DO + ) |40 48)
k=1 k=1

where E, (k) is the total energy of the signal, Z',ﬁ’;l |D,(k)|? is the energy of the detail coefficients and

Z’,ﬁ’;l |A,(k)|? is the energy of the approximation coefficients. The detail and approximation
coefficients’ energy over one cycle of a signal with length n are given by:

k
BV = ) IDMI? “9)
h=k7<W+1
BV () = Ay (W) (4.10)

E,;V is the energy of the detail coefficient of the voltage signal, h is used for the sliding window and W
is the length of the signal over one cycle (;S) Similarly, the detail and approximation coefficients energy

o
of the current signals, i,,ip, i, are calculated using equation (4.9) and equation (4.10) respectively.
These give a total of twelve (3 x 2 x 2) energy signals. Figure 4.15 shows the energy waveform for

ferroresonance voltage signal.
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Figure 4.15 Energy of detail and approximation coefficients of ferroresonance voltage
signal

Figure 4.15 shows the energy waveform for the primary and the secondary arc and elongated air arc
voltage signals.

o x10° x10*
= 2F
>
S of 1
-2 -
0 0.05 0.1 0.15 0.2 0.25 0.3
i x10°
>
P M
w
v ; n " n i
0.05 0.1 0.15 0.2 0.25 0.3
x10°
Zs 10 E
w
0 i ’ 2 : ;
0.05 0.1 0.15 0.2 0.25 0.3
x107
> 51 1
3
w
) T : )
0.05 0.1 0.15 0.2 0.25 0.3
i x10"
>n
2 5f \ E
w
. . 0 . . . . .
01 02 03 04 05 06 07 08 09 1 0.05 0.1 0.15 0.2 0.25 0.3
time(s) time(s)

Figure 4.16 Energy of detail and approximation coefficients for: Primary and secondary
arc; elongated air arc voltage signals

As it can be observed from the waveforms, the energy is constant during the steady-state period and the
values fluctuate during the disturbance interval. The wave shape reflects the changes in the signal, it
either increases or decreases depending on the type of the disturbance. The sum of the absolute values
of the detail coefficients at different scales are also computed over a sliding window of 1 cycle. Figure
4.17 shows the waveform for the fundamental ferroresonance and the primary and secondary arc voltage
signals.
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Figure 4.17 Sum of absolute values of detail coefficients over a sliding window of one
cycle.

Another transform which is traditionally used for feature extraction is the Clarke transform. It transforms
the signal with abc coordinates into a0 coordinates. The mathematical expressions used for the

processing of the voltage and the current signal by applying Clarke transform are given in equation
(4.11) and (4.12).

Ugpo ® = Tapo * Uabc ® (4.11)
1
Ua(l) Ua(2) Ua(n)
o= 20 BBl o=|ud w@ e
1

1 U we(2) --- ue(n)

J2 2 N2
where n is the length of signal uap,c(t). The RMS value of ugg, (t) over one cycle is computed and
depicted in Figure 4.18. It can be observed that the value changes at the instant of the fault inception
and the waveform is unique for each disturbance type. This modified signal provides information which
is also used as additional input to the classifier. In order to avoid a high computational load, only the
zero-sequence component is used since it provides enough information to distinguish each disturbance.
Subsequently, the sum of the three-phase voltage and the three-phase current are used to obtain these
components (I,, V,).
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Figure 4.18 RMS value of Clarke transform coefficients over a sliding window of one
power cycle: ferroresonance and arcing

From Figure 4.18, it can be observed that the zero-sequence component is zero before the disturbance
inception while the a8 components are non-zero and constant. For the ferroresonance signal, the zero-
sequence waveform presents a constant value between 0.6 s and 1s when the ferroresonance is in the
fundamental mode. Similarly, for the arcing fault signal, it can be observed that the value of V, ramps
up at the inception of the primary arc and remains constant until the start of the secondary arc. Even
though the values of Vg, during the secondary arc are close to the values after the arc extinction, there
are fluctuations during the secondary arc compared to constant values after the arc extinction. This
feature can be used in combination with the other features to detect the arc extinction time.

For each of the features discussed above, 6 (2x3) values are extracted; three features from the three-
phase voltage V,;,. signals and three features from the three-phase current I,;,. signals. Considering both
the detail and the approximation coefficients for the peak, the energy and the sum of the coefficients
extractions, there are in total 6 (2x2x3) signals per extraction. Therefore, a total of 36 (3x2x2x3)
features are obtained from processing (manipulation) of the DWT coefficients per decomposition level.
The features are extracted from one level in order to reduce the dimension of the feature space (feature
vector). The second and the third DWT decomposition levels with frequency range of 0-2500 Hz at
10 kHz sampling frequency are considered. Similarly, a total of 6 (3x2) features can be extracted from
the Clarke transform; V¢ , Iopo. These 42 features are represented in the column of the feature vector.
The reduction of the dimensionality of the feature vector can improve the performance of the classifier,
hence, the features are further reduced. As mentioned earlier, the zero-sequence component provides
adequate information that can be used to classify the disturbances and it is also easier to determine (I, =
Iq + 1, + 1.). Hence, Vop, 5 Can be discarded. Similarly, only the sum of the detail coefficients of
voltage signals are considered. The current signals detail coefficients are discarded, and the
approximation coefficients for both the three-phase current and voltage signals are discarded as well.
The remaining 33 features are further processed and used in the classification algorithm. The features
selection process in MATLAB classification learner app, in statistics and machine learning tool box, is
explored during the training phase. Different classifiers are trained with different combinations of
features in order to obtain the optimum solution for this problem.
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4.6 Conclusion

The advantages of using DWT over FFT in signal processing are discussed in this chapter. The DWT is
adopted due to better time localization and its ability to represent non-stationary signal well. The
regularity, the number of vanishing moments, similarity of the mother wavelet to the signal of interest
are considered while choosing the mother wavelet. The multiresolution analysis of the fast wavelet
transforms gives a better time resolution at high frequency, this property is used for the time localization
of the disturbances. The features extraction is important for classification algorithms, as they give local
information that can be used to detect and classify the disturbances. It can be concluded that the
modification of the coefficients gives sufficient information that can be used in extracting hidden
features from the time domain signals. Therefore, DWT is an efficient tool for feature extractions for
the proposed algorithm.
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5 Detection and classification algorithms

The detection techniques adopted in this thesis are discussed in this chapter. The superimposed
components of voltage and current signals (Al, AV) are used as fault signatures to detect the inception
of the disturbances. The DWT coefficients are used for the time localization of the disturbances and
features’ generation for the classification algorithm. Different optimization techniques which are
adopted to reduce the computational burden and memory are also discussed. The absolute sum of the
detail DWT coefficients, the peak of the absolute values of the DWT coefficients and some other
statistical properties of the signals are used in generating features for the classification algorithm. The
proposed algorithm can detect and classify different modes of ferroresonance and arcing signals by using
the modified wavelet coefficients and zero-sequence voltage and current. The first stage comprises the
detection of the fault signatures whilst the second stage deals with the application of the classification
algorithm.

5.1 Proposed Detection Approach

Continuous overvoltage and saturation of a ferromagnetic equipment during ferroresonance requires a
short time detection window in order to prevent equipment damages. Moreover, the system should be
restored as fast as possible after secondary arc extinction to reduce the reclosing time. Therefore, a
window of one cycle is used to analyze the time series signal of both disturbances. However, in order to
distinguish between the different modes of ferroresonance, a shorter time window might be too small to
confirm the chaotic and the quasi-periodic modes that oscillate between different modes. Therefore, a
classification interval greater than one window is specified. A fast detection scheme using the
superimposed component of the current and voltage is presented in this thesis. During steady-state
conditions, the signal over a time interval of one period T should be equivalent to that provided one
cycle earlier when there is no external influence or changes in the network. When a transient condition
occurs, at least one of the voltage or current signals present a value greater than the steady-state value.
Figure 5.1 shows the superimposed calculation of seven cycles of an arcing fault signal; three cycles
before the arc inception and four cycles from the arc inception. As can be observed from Figure 5.1, the
superimposed component presents a high value at transient inception. The marked disturbance inception
time indicates the beginning of the primary arc. The superimposed value of the three-phase currents and
the three-phase voltages are calculated using equation (5.1) and (5.2) respectively.

Algpe(k) = Ugpc (k) = Igpc(k —T))| (5.1)

AVipe(k) = [Vape (k) = Vape(k —T) | (5.2)

where T represents the number of samples per cycle. Similarly, the superimposed components of
ferroresonance signals are also determined. A threshold is then set for the current signal and another
threshold is set for the voltage signal. Since the current magnitude of all the disturbances have a wide
gap, a combination of superimposed currents and voltages are used for the detection of the disturbances.
Different models are used for the disturbances’ simulation and at different voltage levels, therefore,
AV are normalized with the corresponding base voltage to obtain values within the same range. The
equivalent superimposed voltage component is computed as:

|Vabc( k) - Vabc(k - T)l

AVabc (k ) = Vb
ase

(5.3)



Consequently, any value above the threshold is categorized as a faulty state. The superimposed
technique adopted in the detection of the disturbances is also used in protection relays to detect faults as
discussed in [62]. The flow chart in Figure 5.2 shows the detection scheme.
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Figure 5.1 Superimposed component: arcing voltage and current signals

In Figure 5.2, k represents the number of samples per window. The calculated values of Al,AV are
compared to the thresholds for a duration of % samples, implemented with countl in Figure 5.2.
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Figure 5.2 Disturbance detection scheme

When the superimposed components still present values above the threshold at the end of this period,;
the disturbance occurrence is confirmed and the second step is initiated.

The disturbances are classified in the second stage, step 2. Because the disturbances occur occasionally
in power systems, this easy detection scheme is expected to reduce the computational burden and save
memory. Therefore, the DWT and other features are extracted when the Go to step 2 signal in Figure

5.2 is activated.

5.2 Classification of disturbances

The phase after the detection is the classification of the disturbances into their corresponding classes.
Figure 5.3 shows the step-by-step approach adopted in this study. The features considered in the study
are discussed in detail in Chapter 4. These features are used in the first phase of the classification

algorithm to generate the datasets.

Generate the Divide the dataset into

training and testing
datasets

A 4

dataset

A 4

Train the classification
model

Figure 5.3 Flow chart of classification algorithm development
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5.2.1 Datasets for classification

Datasets are generated from set of samples (patterns) from the disturbances of interest in order to design
and evaluate the pattern recognition algorithm. The objective of the algorithm is to classify the
disturbances, and therefore the data samples representing the disturbance duration are used to train the
classifier. The steady-state signals and post disturbance signals are removed from the simulation results;
only the extracted disturbance data samples are used to generate the datasets. The signals are pre-
processed with the FFT, especially the ferroresonance signals, as discussed in Chapter 4 in order to
assign class label to each disturbance data. The data labels are generated using the name of each
disturbance. The extracted disturbance signal lengths are in the range of 0.35 sto 2 s. In order to reduce
the length of the time series and obtain compact forms of the signals without losing their properties, the
signals are partitioned into a shorter length of one cycle (200 samples at f; = 10 kHz) with an overlap
of 5 ms (50 samples at f; = 10 kHz). These set of sequences provide information at different interval
of the original signal that are used as training dataset to classify the different disturbances. The data is
normalized in order to prevent the occurrence of numerical errors in the design and implementation
stage of the algorithm. Three normalization techniques are implemented in the algorithm. These are:
1. Normalization with the mean and the standard deviation

Lo x()-X :
xnew(l) = T (5 4)
2. Normalization with the base voltage and current (p.u method)
L_ov@e i)
Vpew (1) = Vo 5 lnew(@) = i (5.5)
base base

3. Normalization with the minimum and the maximum value

_X~ Ximin (5.6)
Xnew Xy

The user can select the normalization of interest during the feature generation stage. It should be noted
that the same normalization scheme used in the training phase should be adopted in the testing phase.
The columns of the datasets represent the features while the rows represent the observations. Figure 5.4
depicts the steps in the dataset generation algorithm. The sampling frequency, the overlap percentage
and the level of decomposition of the DWT are the required inputs. The window size is also specified
as an input to the algorithm. In order to avoid signal overlap between different disturbances, the feature
generation’s start and end points for each extracted disturbance data j are conditioned to be an integer.
In Figure 5.4, j represents the index of each simulation. For instance, assuming there are 20 simulations
of the fundamental ferroresonance disturbance in ATPDraw, then j=1,2,...,n and therefore, n = 20 and
j=2 for the second extracted disturbance. Each simulation (j) extracted disturbance data must be
conditioned to be an integer taking the window size and the overlap into consideration.
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Figure 5.4 Step-by-step approach to generate dataset for all disturbances.

The classes of disturbances considered in this project are: three-phase fundamental ferroresonance,
three-phase chaotic ferroresonance, AB fundamental ferroresonance, BC fundamental ferroresonance,
single phase elongated air arc, secondary arc, no ferroresonance. Figure 5.4 represents the dataset
generation for one class. A data of specified length k is acquired at every point and features are
generated. It should be noted that only a x % data overlap exists between consecutive windows. This
runs continuously until the end of the last data sample (j = n) in the corresponding class. The process
depicted in Figure 5.4 is repeated for all the classes to obtain the total dataset of N rows (observations)
and M columns (features). The total dataset used in training the classifier has 32 columns, the first 31

No.

yes

Save the final
datasets

\
end
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columns represent the features while the last column represents the class label. Since the datasets are
generated sequentially, the rows of matrix are arranged randomly. Then, the dataset is divided into 2
parts: a training dataset (75 %) and a testing dataset (25 %). The training set is used for training the
algorithm while the testing dataset is used to test the performance of the trained algorithm. It is better to
test the algorithm with the dataset different from the training set to accurately evaluate the classifier
performance. This will prevent the memorization of the input in order to classify the data.

5.2.2 Classification algorithm design

There are many types of classifier used for pattern recognition. The common ones are support vector
machine (SVM), decision tree (DT), k-nearest neighbor (kNN), naive bayes classifier, ensemble bagged
trees etc. There is no single rule for selecting a classifier for an application. Some of the important
factors to consider are the datasets, the objective of the classification, the type of applications, the speed
and accuracy, the memory consumption and so on. Since the disturbances and the corresponding types
(class) are known, supervised learning is adopted for this study. In this work, different classifiers are
trained with the generated training dataset using the classification leaner app in MATLAB to determine
the best fit. Three out of these SVM, k-NN and DT are selected and evaluated for the proposed
algorithm. New datasets are predicted by feeding the data, in the same format as training dataset, into
the classifier. It is assumed that only one disturbance class occurs at a time. One of the objectives of this
work is to determine whether this algorithm is well suited for real-time applications. In order to ensure
this, the speed of prediction of new data samples and memory consumption are crucial. Another factor
to consider is the size of the features, reducing the dimensionality of the features will reduce the
computational burden and time. After careful observations and several training processes, 7 out of the
initial 31 features are found to be sufficient to classify the signals. After considering all options and
conditions described above, the decision tree is selected as the final classifier for the project. It is the
preferred classifier for this problem due to its speed and training time, simplicity, accuracy and ease of
understanding. It gives similar accuracy compares to the k-NN and SVM classifier, but the fast
prediction speed makes it a more convenient choice for real-time applications evaluation.

5.2.3 Decision tree and performance metrics of classification algorithm

The decision tree can be combined with fuzzy logic approach to make it more robust and immune to
noise [15]. The decision tree split criteria used in MATLAB classification learner app are the Gini’s
diversity index, the twoing rule and the maximum deviance reduction split criteria. The tree starts with
a root, then the nodes which are interconnected by the branches. The last nodes of the tree are called
leaves, and these represent the final class of the disturbances. At the first node, the classifier analyses
all the available features and compare them with the trained model to split the node. The number of tree
branches also affect the complexity of the tree. Here, it is set to a maximum of 20 to reduce the
complexity of the tree. Another concern about using the decision tree is overfitting of data due to sharp
requirements used at every node. This can be overcome by using different decision trees bagged together
as ensemble trees. However, ordinary decision tree gives a good result for this problem. The confusion
matrix that shows the true positive rate of each disturbances is depicted in Figure 5.5. The overall
accuracy of the model is 99.8%.

The k-fold cross validation is used to validate the accuracy of the classifier while training. In the k-fold
cross validation approach adopted in this model, the data is partitioned into k-folds and the accuracy is
estimated on each fold; therefore, the overall accuracy of the model is the average of all fold’s
accuracies. This method helps in fine tuning the performance of the classifier to avoid overfitting. The
performance is evaluated by the overall accuracy, specificity and sensitivity. Sensitivity, also called the
true positive rate, is a metric that measures the number of actual disturbances that are correctly classified
as disturbances.
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True Positive (5.7)

Sensitivity = — -
Y True positive + False negative

While specificity, true negative, measures the percentage of actual negatives that are classified as
negatives. The specificity of the classifier is given as:

True Negative (5.8)

Specificity =
pecificity True negative + False positive

Model 1.2

3 phase Quasi-period...

3 phase chaotic ferro 1%

3phase fundamental f... 1%

AB fundamental ferro

True class

BC fundamental ferro

No Ferro

Second Arcing

single phase air arc

Predicted class

Figure 5.5 Confusion matrix of trained decision tree for all disturbance classes

The important metrics to evaluate the performance of the classifier is dependent on the objective of the
classification algorithm. False tripping or no detection of disturbances can create issues in the network.
The major objective of this project is monitoring, the capability can be improved in future for control
activities in the network. Consequently, the overall accuracy, sensitivity and specificity, evaluation
results are used for measuring the performance of the classifier. Since the focus of the proposed
algorithm is on ferroresonance and arcing faults, other types of disturbances in the network are not
considered.

5.3 Final detection and classification approach

This study is aimed at developing a detection scheme that detect the disturbances using the voltage and
current signals. The detection and classification are built in MATLAB, and the data used are extracted
from EMTP simulations. One classifier is trained for both disturbances. Superimposed components are
used to detect the disturbance inception period in order to save computational space. The system is
evaluated with new sets of data, not included in the design and testing of the classifier, in order to
evaluate the system performance in the simulated the real-time scenario with MATLAB for-loop. This
is to ensure the disturbance detection are accurate when the signal has steady-state and post fault signals.
A classifier must be able to map an unlabeled time series data to a set of defined classes in order to
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classify new data. For a real-time application, the computation workload, speed and memory are some
of the concerns. In the implementation of the proposed algorithm, the algorithm is optimized to reduce
redundant data and avoid unnecessary computation. The final algorithm implementation is divided into
5 steps, the first step is the detection of the disturbance as described above. Other steps are explained
below.

5.3.1 Step 2: Classification of the disturbance

After the disturbance is detected in step 1, the classification is performed for a specified window of three
cycles. The two major steps at this stage are the feature generation and new sample prediction. During
this period, a sliding window is used to collect the signal data used as the input to the classifier. This
step is optimized by reducing the evaluation rate to 4 times per defined window, a signal length of one
cycle k is acquired four times per window. This is implemented by using the decision block marked 2
in Figure 5.6. This approach is adopted, instead of a sliding window of one data point increment, to
reduce the computational burden. Consequently, 4 predictions are obtained per window and the final
output is the common predicted class from the four predictions. This is to ensure correct classification
and reduce the false positive rate with the assumption that one disturbance occurs at a time. The
classTime in Figure 5.6 indicates the number of windows over which the classification is continuously
done. Itis set to three cycles, as such three different results are obtained from this step. This shows the
first indication of the disturbance type. The expected result from the secondary and primary arcing
detection is to determine the arc extinction time, as such, the classification window of three cycles is
too small to evaluate this. Moreover, continuous computation over the duration of the signal will provide
redundant data and consume memory. This leads to the next step where an adaptive time is proposed as
a solution to this problem.

( Start the classification process )

Y

classTime =classTime - 1

Iy
>
(=]

@ Is mod(n, k/4) =0 no ' »Ts classTime=0
yes yes
v
- . no -
Acquire the previous 1 Reset classTime
cycle sample points Proceed to step 3

Vabe(n) = VIn-k+1 ] Classifier: Trained
labe(n) = I[n-k+1 n] Decision Tree

!

Generate features >

Are the last 4
Predicted_classes
the same?

Predict the
disturbance class

yes

Output = predicted class

Figure 5.6 Flowchart of the classification
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5.3.2 Step 3: Dead time after initial classification

At this stage, a dead time of ten cycles is introduced in which no computation is done. The algorithm
does not search for a new disturbance, and this stage is achieved with the use of a counter. It is assumed
that the ferroresonance transient will last for ten cycles (based on simulated data), after which the
sustained ferroresonance can be classified correctly. For a ferroresonance signal, the waveform could
alternate between different modes. The classification in this thesis is based on the sustained period; the
author does not consider that transient signals as input to the classification algorithm. During the first
few cycles, some of the modes are classified as QP or chaotic ferroresonance. This is because the signals
have some non-periodic intervals before settling to the sustained modes. Considering the arcing fault
signal, the minimum de-ionization interval is given in equation (3.31). This shows that the arcing signal
last for more than ten cycles, therefore a dead time of ten cycles is acceptable. At the end of the pre-set
time, step one is initiated again. This is to reconfirm the presence of the disturbance after the dead period.
When the disturbance is still present, classification is done again for a shorter window. This process is
shown in Figure 5.7 where deadTime indicates the period of no computation.

Start step 3: dead time
deadTime=10k

—— N0

y

deadTime=deadTime-1 Is dead Time=0

yes

e Activate step 1
e Deactivate step 3
¢ Reset the deadTime

Figure 5.7 Flowchart showing Step 3: the duration of no computation

5.3.3 Step 4: Adaptive dead time for ferroresonance signal

After the first dead time in step 3, an adaptive dead period is set for the arcing and the ferroresonance
detection. After the general dead time of ten cycles for all disturbances, a dead time of five cycles is
proposed for ferroresonance. The five cycles dead time reduces the redundant data generation. This is
because the sustained period especially for fundamental ferroresonance does not change unless there is
a change in the system configuration like introducing external losses or switching off the source. This
step is activated only after the first dead time elapsed and if the last predicted signal is ferroresonance.
Otherwise step 5 is activated. The flow chart in Figure 5.8 shows the proposed dead time implementation
while Figure 5.9 depicts the signal progression at each step during ferroresonance detection and
classification.
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Skip step 4

yes

e Activate step 1
e Deactivate step 4
¢ Reset deadTimeFerro

Figure 5.8 Adaptive dead time for ferroresonance classification

After the point marked h; Figure 5.9, the dead time of five cycles is continuously applied for n times
(user specific) after which the algorithm is terminated. The process can also be terminated at h,
depending on what the user wants; the algorithm is flexible.

Steady- Ferroresonant period
state

Detection

Step2

Step 3

Step 4 —

Stop
classification or
hy h, i end of

ferroresonance

Figure 5.9 Adaptive ferroresonant classification and detection to reduce computational
burden

5.3.4 Step 5: Adaptive dead time and classification window for arcing faults

A dead time of two cycles is proposed for the arcing fault signal to ensure fast detection of arc extinction.
This is implemented in a similar way as done in step 4. The flow chart for the dead time implementation
is shown in Figure 5.10. The signal progression during the detection and classification of the arcing fault
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is shown in Figure 5.11 where L, is the initial classification window, L is the first dead time and Ls is
the duration of adaptive arcing dead time.

Start: step 5

y

Classification output
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Avre the previous predicted
disturbances arcing fault?
And step 3 completed?

yes deadTimeArc = deadTimeArc - 1 —

no

no
¢ Is dead TimeArc=0
Skip step 5
yes
v

e Activate step 1
o Deactivate step 5
o Reset deadTimeArc

Figure 5.10 Adaptive dead time for arcing fault classification
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Detection
—L,—
Step2 |
L3
Step 3 —Ls—
5
Step 5
. hy hs h, End of

secondary arc
Figure 5.11 Adaptive arc detection and classification scheme
Assuming k is the number of samples per window size, the detection and the classification algorithm is

summarized as follows:
1. Compute |AI| and |AV] at current time step h

2. Compare the values of |AI| and |AV] to the pre-set thresholds in order to detect the occurrence
of a disturbance. When this presents a value above the threshold up to h + % sample points, the
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classification algorithm is activated. The algorithm stops the search for a new disturbance
inception during this period.

3. The classification is done for a period of 3k sample points. New features are extracted four times
for each window; they are presented as input to the classifier in order to obtain a unique
predicted disturbance per window size. This results in three different outputs during the
classification interval.

4. A dead time of ten cycles is proposed after the first classification interval in which no
computation is done. At the end of this period, the existence of disturbance is checked again by
comparing |AI| and |AV| to the threshold. When the disturbance is detected, the steps described
in number 3 are repeated. Otherwise the other steps in the algorithm are aborted. If step 3 is

repeated after the dead time, the classified disturbance group (arcing fault or ferroresonance)
determines the next step. The classification is done for a period of 2k after this stage.

5. If the disturbance from the step described in number 4 is ferroresonance, a dead time of 5k is
applied. This is followed by step 1 and then step 2 repeatedly for n times, the presence of the
disturbance is checked at the end of each steps. The number of times n is flexible and can be
changed depending on the system and user. The classification process is terminated afterwards.
The algorithm is designed for monitoring purpose, the disturbance can be terminated earlier in
the loop depending on what the user wants.

6. However, if the disturbance from the step described in number 4 is an arcing fault, a dead time
of 2k is applied. Before the start of each dead time, the sum of the superimposed component of
the zero-sequence current is compared to a threshold. This is followed by step 1 and then step 2
repeatedly until no disturbance is detected in step 1.

5.4 Testing the algorithm and system evaluation

The classification error is analyzed using the formula
P = i P(w) — 5.9
= ' Wi N; (5.9)
L

where m; is the number of misclassified vectors and N; is the total number of vectors from class w;.
The confusion matrix in Figure 5.5 extracted from MATLAB after training the classifier presents a value
of P = 0 for all classes except the three-phase fundamental ferroresonance and the three-phase chaotic
ferroresonance. This shows that the classifier is accurate enough to classify the disturbances. Additional
evaluation is done with separate signals to verify the result obtained from the training process and to
validate the adaptive timing. The results are presented below.

Figure 5.12 presents the result obtained when the fundamental ferroresonance signal is tested with
proposed algorithm. Each step is activated when the value is 1 otherwise, it is not active. As can be
observed from Figure 5.12, the adaptive dead time for ferroresonance is initiated after the general dead
time of length 10k samples period. The obtained signal is similar to the signal progression presented in
Figure 5.9. The arcing dead time presents a value of zero for this test because the detected disturbance
is ferroresonance.
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Figure 5.12 Algorithm evaluation with fundamental ferroresonance signal

As stated earlier, the first few cycles of fundamental ferroresonance are classified as quasi-periodic
ferroresonance as shown in Figure 5.13
fault i=s 3 phase Quasi-periodic ferro at 0.240

fault i=s 3 phase Quasi-periodic ferro at 0.2&60

fault is 3phase fundamental ferro at 0.500
fault is 3phase fundamental ferro at 0.520
fault i=s 3phase fundamental ferro at 0.640
fault i=s 3phase fundamental ferro at 0.660
fault is 3phase fundamental ferro at 0.785
fault is 3phase fundamental ferro at 0.805
fault i=s 3phase fundamental ferro at 0.525
fau}t iz 3Jphase fundamental ferro at 0.945

Figure 5.13 Classification result: Fundamental ferroresonance

Figure 5.14 and Figure 5.15 present the evaluation of the algorithm with an arcing fault signal.
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Figure 5.14 Algorithm evaluation with arcing fault signal

The actual arc extinction time is 0.7410 s while the proposed algorithm extinction time is 0.775 s.
This is equivalent to 34 ms which can be further improved by reducing the dead time. This can be
reduced by checking for disturbance (step 1) beginning of every cycle.

fault i=s secondary arc on phasef at 0.145
fault is secondary arc on phasefl at 0.1&65
fault is secondary arc on phasef at 0.400
fault is secondary arc on phasef at 0.420
fault i=s secondary arc on phaself at 0.450
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fault i=s secondary arc on phasel at 0.&675
fault is secondary arc on phaselfl at 0.655
fault is secondary arc on phasef at 0.755
fault i=s secondary arc on phasef at 0.775

'\.'\.l

Figure 5.15 Classification result: Fundamental ferroresonance

5.5 Conclusion

The proposed algorithm, which uses a DT with an accuracy of 99.8 %, is able to detect and classify
ferroresonance and arcing faults with good results and performance. The fast prediction speed and low
memory requirement makes the trained DT a convenient choice for real-time applications. The adaptive
dead time adopted in the algorithm helps in reducing the computational burden and redundant data. The
algorithms developed for features extraction, dataset generation and classification can be expanded with
new data. The algorithm is flexible and easy to use. It should be noted that the same conditions used for
generating the features for training the DT must be used in the testing phase to avoid classification error.
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6 Conclusions and Recommendations

The main objective of this research is to develop an algorithm that can detect ferroresonance and arcing
faults. The proposed algorithm is based on the application of the DWT and pattern recognition in
detecting and classifying the disturbances. It is crucial to understand these phenomena in order to detect
them, therefore, EMTP models of the disturbances are used for comprehensive study of their major
attributes and for data extraction. The parameters of an existing three phase ferroresonance model in
ATPDraw are changed to generate different modes of ferroresonant oscillations. The simulation results
show the impact of source voltage, capacitance and resistance on ferroresonance modes and are
discussed in detail. The four common modes of ferroresonance discussed are fundamental, subharmonic,
chaotic and quasi-periodic ferroresonance. The frequency spectrum of the voltage and current signals
are used to categorize the signals into different ferroresonant modes. The best defense against this
disturbance occurrence is to avoid system configurations that support the formation of a ferroresonant
circuit.

A model of the primary and secondary arc when a single phase to ground fault occurs on phase A is
modelled in ATP-EMTP. The interaction between the arc phenomenon and the power network has been
studied in ATPDraw by using TACS devices and black-box thermal arc equations programmed in
MODELS language. The results obtained from the arc model are verified by comparing with the
experimental results published in literature. Therefore, the model captures the characteristics of a
primary and secondary arc phenomenon.

Features are extracted from the DWT coefficients of the three-phase voltage and current signals and
their zero-sequence components. The time localization property of DWT is utilized in the algorithm to
indicate the disturbance inception time and progression over its duration. This is not possible with FFT.
This successful time localization can give more insight on the average duration of arcing faults and can
be utilized in further improvement of the adaptive timing of the SPAR. In order to optimize the algorithm
and further reduces the computational burden, the absolute value of the superimposed component of
voltage and current are compared to a pre-set threshold to detect the disturbance inception. As such, the
DWT, feature extractions and classification are initiated when the disturbance is detected. This makes
the proposed algorithm appropriate for real-time application where the computation burden is crucial.

These features are further processed to reduce the dimensionality through series of training and testing
of the classifier in MATLAB. The reduced feature space reduces the execution time of the code and
thus reduces the computational burden during the detection and the classification of the disturbances.
The database generated is divided into 2 sets, 75 % for training and 25 % for testing and evaluation of
the trained classifier. After series of training and tuning of several classifiers, the decision tree with an
accuracy of 99.8 % is selected as the proposed classifier. Its fast prediction speed, simplicity, overall
accuracy and small memory requirement makes it a convenient choice for a real-time application.

A step-wise implementation and adaptive dead-time has been proposed to reduce redundant data and
save computational space. An adaptive time of two cycles has been proposed for arcing faults while five
cycles is proposed ferroresonance. Aside from the classifier evaluation with 25 % test dataset, the full
algorithm has been tested with more than 20 cases of disturbances having a combination of steady-state
and post fault data. For all cases, the algorithm detected the transient inception in less than a cycle, and
subsequently classified them correctly. This further verified the performance of the classifier. The



method shows a high accuracy in detecting the disturbances with the trained classifier. A reduced
computational speed is observed when the adaptive time is longer. The method is flexible and can easily
accommaodate more phenomenon without memory increase. The conclusions highlighted below can be
drawn from this research work:

6.1

The algorithm is able to detect and classify the disturbances within 100 ms.

The adaptive time is successfully applied to ferroresonance and arcing signal.

The extinction time of secondary arc is detected with maximum of three cycles delay.
The computational memory is reduced by increasing the dead time interval.

The classification accuracy of 99.8 % is observed during system evaluation in MATLAB.

Recommendations and Future work

The following points are suggested as follow up works for this project:

The detection and classification algorithm should be expanded to include other faults like high
impedance faults.

The proposed algorithm should be validated with real measurements.

Frequency spectrum of the ferroresonant signals are used for the classification of ferroresonant
modes in this thesis. The other available options like bifurcation diagram, Poincare method
should be explored for distinguishing subharmonic, quasi-periodic and chaotic ferroresonance.
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