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Abstract
This thesis explores the improvement of computational efficiency in simulating two-dimensional con-
veyor belt systems by applying model order reduction (MOR) techniques. Conveyor belts, crucial for
material handling in various industries, are traditionally modeled using finite element methods (FEM),
which can be computationally demanding, particularly for long-term simulations with a high number of
grid elements. To address this, MOR techniques aim to reduce high-dimensional models into lower-
dimensional models.

The study investigates three MOR approaches—modal decomposition, Proper Orthogonal Decom-
position (POD), and Dynamic Mode Decomposition (DMD)—to apply on existing software built by
VORtech that simulates two-dimensional conveyor belt systems. When considering MOR to reduce
the two-dimensional system, challenges arise related to nonlinearities, differential algebraic equations
(DAEs), and complex modeling steps. Among the methods tested, DMD proved to be the most ef-
fective, offering significant reductions in computational time while maintaining accuracy. POD also
demonstrated accuracy but had less impact on speed due to the time-consuming complex modeling
steps in the simulation software. These complex modeling steps are not investigated in detail in this
thesis and therefore not reducible with the intrusive POD. Because of the non-intrusive nature of DMD,
this method was able to incorporate these extra processes in the reduced order model.

The study concludes with recommendations for future research, emphasizing the need for opti-
mization of the code segments that handle the complex modeling steps. In addition, conventional
modeling approaches as alternatives to the complex interpolation step could be explored, to enhance
the applicability of MOR. Furthermore, DMD with control or parametric DMD could be explored to ob-
tain a reduced order model by interpreting misalignments of rollers as controls or parameters. Finally,
a method is proposed to make modal decomposition useful for models, where the solutions depend
highly on the external forces. Although this method is not applied to the model considered in this thesis,
it would be interesting to explore this modified modal decomposition method on other models that are
significantly influenced by the external forces.
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Nomenclature
The next list describes several symbols that will be used within the body of the document after chapter 2.
Most of the symbols are related to the two-dimensional conveyor belt model. Some physical constants
will be used in both models considered in this research.

General

̈𝑥 Second order derivative of 𝑥 with respect to time

̇𝑥 First order derivative of 𝑥 with respect to time

𝑥, 𝑧 Coordinate system in the 2D belt space

𝑥3𝐷, 𝑦3𝐷, 𝑧3𝐷 Coordinate system in the 3D space

Physics values and constants

𝜖𝑥 Normal strain in 𝑥 direction

𝜖𝑧 Normal strain in 𝑧 direction

𝛾𝑥𝑧 Shear strain over 𝑥, 𝑧 plane

𝜈 Poisson’s ratio of the belt

Ω The domain of the belt

𝜌 Density of the belt

𝜎𝑥 Normal stress in 𝑥 direction

𝜎𝑧 Normal stress in 𝑧 direction

𝜏𝑥𝑧 Shear stress over 𝑥, 𝑧 plane

𝐴 Cross-sectional area of the belt

𝐸 Young’s modulus of the belt

𝑟 Roller radius

𝑡𝑏 Thickness of the belt

Variables for roller 𝑗

𝛼𝑟𝑗
Rotation in all directions

d𝑟𝑗
Translation in all directions

𝜔𝑟𝑗
Rotational speed in longitudinal (moving) direction of the belt

𝐹𝑟𝑗,𝑥 Force in 𝑥3𝐷 direction (similar for 𝑦3𝐷 and 𝑧3𝐷 direction)

𝑚𝑟𝑗
Mass

𝑇𝑟𝑗,𝑥 Torque in 𝑥3𝐷 direction (similar for 𝑦3𝐷 and 𝑧3𝐷 direction)

𝜒𝑟𝑗
Vector containing the translations and rotations
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Discretization

ℓ𝑖 Length of element 𝑖
r𝑥,𝑖 Radius of roller at node 𝑖 in the 𝑦3𝐷, 𝑧3𝐷-plane

u Displacement of all grid points with alternating direction

Ω𝑖 The domain of belt segment 𝑖
𝜕Ω𝑖,𝑙 Left boundary of belt segment 𝑖
𝜕Ω𝑖,𝑟 Right boundary of belt segment 𝑖
𝑚𝑖 Element mass at node 𝑖
𝑛 Total number of unknowns on the grid points

𝑛𝜂 Number of grid points in 𝑧 direction
𝑛𝜉 Number of grid points in 𝑥 direction

𝑛𝑓𝑖
Number of elements in 𝑥 direction on free-belt segment 𝑖

𝑛𝑟𝑖
Number of elements in 𝑥 direction on roller 𝑖

𝑢𝑖 Displacement in 𝑥 direction of grid point 𝑖
𝑣𝑖 Displacement in 𝑧 direction of grid point 𝑖
𝑤𝑖 Width of element 𝑖
𝑥𝑖 The 𝑥 coordinate of grid point 𝑖
𝑧𝑖 The 𝑧 coordinate of grid point 𝑖
Dynamical model

ū𝑓𝑖
Displacement of all grid points on free-belt part 𝑖 (including contactlines)

𝐾̄𝑓𝑖
Stiffness matrix in free-belt segment 𝑖 including the boundary terms

u𝑓𝑖
Displacement of all grid points on free-belt part 𝑖 (excluding contactlines)

u𝑟𝑖
Displacement of all grid points on roller 𝑖 (including contactlines)

x Vector of unknowns that contains: all nodal displacements and roller translations and
rotations

𝐹 Forcing vector

𝐹𝑓𝑖
Forcing vector in free-belt segment 𝑖

𝐹𝑥,𝑘 Force on node 𝑘 in 𝑥3𝐷-direction (similar for 𝑦3𝐷 and 𝑧3𝐷 direction)

𝐾 Stiffness matrix

𝐾𝑓𝑖
Stiffness matrix in free-belt segment 𝑖

𝑀 Mass matrix

𝑀𝑓𝑖
Mass matrix in free-belt segment 𝑖

𝑁 Total number of unknowns

Reduced order models

𝑏 Bandwidth of the stiffness matrix
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𝑚 Number of snapshots

𝑁 Dimension of the full order model

𝑁𝑎 Number of unknowns for the algebraic equations

𝑟 Dimension of the reduced order model
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1
Introduction

Conveyor belt systems play a crucial role in the automated movement of materials in various sectors,
ranging from manufacturing to logistics [2]. A conveyor belt system is defined as a configuration con-
sisting of rollers that support a single belt. Forces acting on the rollers induce movement, causing the
belt to transport materials. Modeling conveyor belt systems is a useful way of predicting movement,
forces and stresses on the conveyor belt, without having to construct the physical conveyor belt sys-
tem. The predicted movement and forces can be used to define constraints for misalignments of rollers
before the construction of the physical conveyor belt system. Furthermore, by accurately simulating the
conveyor belts through a mathematical model, we can for example minimize downtime [3] or reduce
the energy consumption [4].

To determine the dynamic behaviour of a conveyor belt system, finite element methods (FEM) are
state-of-the-art [5]. When using FEM to describe the physical behaviour, a model becomes high-
dimensional, particularly when using a fine grid discretization to obtain accurate predictions. There-
fore, the numerical simulation of the system can be computationally expensive. This is the reason why
model order reduction (MOR) methods can be of high usefulness to models that use finite elements.

MOR is a set of techniques that represents the characteristics of a high dimensional problem in a
lower dimensional space. The model that describes the dynamics in this lower dimensional space is
the reduced order model (ROM). MOR techniques are broadly classified as intrusive or non-intrusive.
Intrusive techniques are based on specific knowledge of the governing equations of the dynamical sys-
tem. Alternatively, the dynamical system can be treated as a black-box and simulation or measurement
data may be used to construct reduced order models, obtained via non-intrusive MOR techniques. The
choice for which MOR technique to use, depends on specific characteristics of the system. Some com-
mon characteristics that are often considered when analyzing a system include the (non-)linearity of
the system, the dynamics (properties of the system matrices), the dimension of the system and the
dimension of the intended reduced system.

1.1. Related work on conveyor belt systems
The first models on conveyor belt systems focused on the dynamic behaviour in the longitudinal direc-
tion, which is the direction of movement of the belt [5]. Because of this, the conveyor belt could be
modeled as a one-dimensional string. These models were either analytical models or models where
the belt was divided into two elements. With the development of computers, finite element models were
assembled where the belt is modeled as a finite number of elements with different masses, spring co-
efficients and exerted external forces. The interesting cases are mostly the starting and stopping of the
movement of the belt (referred to as the transient stages), because here most of the problems occur
[6]. The one-dimensional finite element belt model proved effective in analyzing stresses along the
longitudinal direction during the starting and stopping phases of the simulation [3]. With this model, an
optimal starting phase of a conveyor belt could be described. However, considering the varied loads
and resonance within conveyor belt systems, it became imperative to also incorporate modeling in the
vertical (or transverse) direction.

Nowadays, FEMmodels have been developed that simulate conveyor belt movement in longitudinal
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2 1. Introduction

and transverse (vertical) direction. The belt is still modeled here as a one-dimensional string. The aim of
these simulations can be, for example, to minimize the energy consumption [4] or to prevent excessive
belt tensions and resonance of transverse vibration [7].

MOR has been already applied on the dynamics of conveyor belt systems. For example for con-
veyor belt systems with long belt paths, the number of finite elements is high and therefore it becomes
interesting to use MOR. W. Chen et al. [8] have used MOR for a Model Predictive Controller on the
linear model of a belt with a length of one kilometer. The balanced truncation method was implemented
because the controllability and observability were important characteristics to preserve after reduction.
This method was successful in reducing the model order significantly with high accuracy. C. Yang et
al. [9] reduced the order of the model simply by using fewer finite elements. This approach was valid
because the speed and acceleration could be represented by fewer elements while still maintaining
consistency with the original model. G. Suweken, et al [10] have used the modal truncation method on
a conveyor belt model that describes the vertical vibrations of a conveyor belt. This modal truncation
method did not seem to be able to obtain approximations of the full order model that are valid on long
times scales, however.

There are not yet a lot of models that incorporate lateral displacement in conveyor belt systems,
next to the longitudinal and transverse displacement. In models that incorporate lateral displacement,
the belt cannot be modeled as a one-dimensional string. Instead, it has to be modeled as a two-
dimensional plane in a three-dimensional space. G.F.M. Braat’s study [11] focused on the contact
mechanics of rolling cylinders in conveyor belt systems with two-dimensional belts. Additionally, various
control steering systems have been developed for two-dimensional conveyor belt systems [12], [13].
However, these control systems rely on registering the belt’s position rather than on a dynamic model
capable of predicting movements of the conveyor belt system. Next to this, MOR techniques are only
applied on one-dimensional conveyor belt systems. For a two-dimensional belt, the number of finite
elements is generally higher than for a one-dimensional belt, because two dimensions have to be
discretized instead of one. This makes it even more relevant to explore MOR techniques for models
with a two-dimensional belt.

1.2. Contribution and approach
The objective of this research is to speed up existing software built by VORtech that simulates two-
dimensional conveyor belt systems by using MOR. This simulation software is developed to refine the
design process of a conveyor belt setup by predicting the dynamic behaviour of systemswith misaligned
rollers. To this end, the conveyor belt system is represented using the finite element method over a
two-dimensional belt, capturing dynamics in both the longitudinal and lateral directions [14]. This leads
to a large number of degrees of freedom in the finite element model. Moreover, the model explained
is designed to simulate the conveyor belt movement to see what happens over a long period, not only
during the starting and stopping phase. These two factors contribute to a significant computational load
when simulating a single conveyor belt system. Furthermore, since the simulation program is used to
investigate the misalignment limitations of rollers, multiple simulations are necessary to cover the full
design process of one conveyor belt setup. Consequently, the computational demands are further
increased, and the design process for conveyor belt systems with the use of this model is very time-
consuming. Therefore, the implementation of MOR techniques is required to accelerate the design
process for such conveyor belt systems.

In order to choose the right model order reduction method, it is crucial to understand the charac-
teristics of the system. The equations governing conveyor belt simulations are known as differential
algebraic equations (DAEs). These equations combine both differential and algebraic equations into
a single system of equations. Unlike simulating partial differential equations (PDEs) or ordinary differ-
ential equations (ODEs), simulating DAEs is not as straightforward. Moreover, applying MOR to DAEs
requires special treatment of the algebraic equations, which can introduce technical difficulties [15].

Additionally, the system of DAEs contains weak nonlinearities, which can complicate the application
of MOR techniques since MOR for nonlinear systems is often more challenging. The POD-Galerkin
method, however, is able to handle nonlinear models [16] and DMD can be altered slightly to be appli-
cable to non-linear systems [17].

Lastly, an interpolation step is applied in each time step during the simulation to correct for move-
ments of the grid points. This step provides additional challenges. Model order reduction has been
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applied on other models that deal with a moving reference frame [18]. However, the interpolation step
is a non-conventional way of modeling and MOR cannot be directly applied on this interpolation step.

To get an understanding of these characteristics and explore how they can be addressed in MOR for
the two-dimensional belt model, a simplified one-dimensional belt model is developed. While there are
some differences between the one- and two- dimensional model, this one-dimensional model is used
to test three different MOR techniques. First, modal decomposition is applied on this one-dimensional
model. This method is fully based on the governing equations and is therefore intrusive. Secondly,
the Proper Orthogonal Decomposition (POD) is implemented. This method uses simulation data to
generate a reduced basis and projects the governing equations on this basis. Because the governing
equations are used, this is also an intrusive method. But, because the method also uses simulation
data, it is classified as data-driven as well. Finally, a non-intrusive technique, Dynamic Mode Decom-
position (DMD), is considered. In this method, simulation data is analysed to compute a set of modes
that identify features of the data. These methods are first tested on the one-dimensional model to for-
mulate a conjecture for the applicability on the two-dimensional model. Based on these conjectures,
model order reduction will be applied on the two-dimensional model.

1.2.1. Research questions
In this thesis, three MOR techniques for a conveyor belt system will be explored to answer the research
question:

To what extent can model order reduction techniques accelerate the existing simulations for a two-
dimensional conveyor belt system to enable faster detection of issues arising from manufacturing im-
perfections?

To answer this question, we have to address the following subquestions.

1. Is it possible to enhance the performance of the existing simulation program for the full order
DAEs without yet employing MOR techniques?

2. What is the nature of the nonlinearities in the full order model?

3. What are suitable MOR techniques for accelerating the simulations?

• In case the systems non-linearities are weak, can we use linear MOR techniques to reduce
the two-dimensional conveyor belt systems?

4. How can we handle the interpolation step when applying MOR?

1.3. Outline
This study is structured in the following way. First, we provide background information about the spe-
cific conveyor belt systems that are considered in the existing simulation program in chapter 2. The
existing simulation program can be used for numerous cases. Therefore the cases of interest are also
narrowed down in this chapter. After this, we derive the governing equations for an equivalent one-
dimensional conveyor belt setup in chapter 3. In chapter 4, we extend this to the two-dimensional setup
that is used in the existing simulation software, but we keep the derivation limited and explain the main
difference with the one-dimensional setup. In chapter 5 we discuss the different MOR techniques that
will be applied on this system of equations. In chapter 6, we discuss details on the implementation of
the methods on the one-dimensional case and show the error results and the speedup. In addition,
limitations of methods are discovered and will be explained. In chapter 7, MOR techniques are applied
on the two-dimensional model. Results are shown and finally, the methods are compared. In chapter 8,
we provide the conclusion of this study and give recommendations for future research.





2
Background on conveyor belt systems

In this chapter the conveyor belt systems of interest are specified. We establish the precision tolerance
and explain design choices and terminology in section 2.1. Finally, assumptions used to develop the
conveyor belt model are mentioned in section 2.2.

In industrial machinery, multiple conveyor belt systems play crucial roles, as for example is visible
in Figure 2.1. These systems primarily serve for transporting materials. The focus for this research is
on the conveyor belt system where precision is of most importance. High precision conveyor belts are
used in the semiconductor industry, robotics, printing industry and more. Precision alignment of specific
belt segments is important, as misalignment can lead to deformed materials or malfunctioning of the
machine. These high precision conveyor belts generally have a short belt path. Detailed knowledge
of belt displacement is necessary at numerous points, asking for a fine grid discretization used in the
finite element method. In the applications for which the simulation program of interest is designed, the
accuracy tolerance in both longitudinal and lateral direction is 20 µm.

Figure 2.1: The inside of one commercial inkjet printer. Taken from [19].

Digital replicas of conveyor belt systems in the simulation program are shown in Figure 2.2. This
simulation software is tailored specifically for systems where belt dimensions typically are in the order
of meters, contrasting with existing simulation programs designed for belts spanning thousands of
meters [8]. Furthermore, while conventional research on conveyor belt systems primarily addresses
longitudinal displacement [4], [8], [10], this simulation program incorporates both longitudinal and lateral
displacement.

5



6 2. Background on conveyor belt systems

2.1. Design choices and terminology
A conveyor belt system consists of an arrangement of multiple rollers and a singular belt encircling them.
Within this setup, one roller serves as the drive roller, controlling the rotational velocity for moving the
belt around the assembly. The remaining rollers are passive, synchronized with the movement of the
belt. These rollers are referred to as idle rollers. A system can include both internal and external rollers,
as visually represented in Figure 2.2. A roller positioned within the belt’s path is defined as an internal
roller, whereas one positioned outside the belt’s path is referred to as an external roller.

(a) A system with four internal rollers.
(b) A system with three internal rollers and one external roller located

at x=600mm, y=0mm.

Figure 2.2: Two examples of the model of a conveyor-belt system. The values on the axes are given in mm.

To establish a conveyor belt system, the following details are required:

1. Number of rollers and their characteristics: Initially, it is necessary to determine the quantity of
rollers. For conveyor belts that are considered in this research, the roller count typically ranges
from two to six. Parameters such as radius, width, and position for each roller must be specified,
along with whether the roller is internal or external. Subsequently, the rollers are positioned
according to the orientation depicted in Figure 2.2.

2. Belt path: Each roller is assigned a number starting from 1. Once these numbers are assigned,
the belt path is established, starting at roller 1. The trajectory of the belt follows the roller num-
bering, aligning with the internal or external description of each roller.

3. Belt characteristics: The belt’s width, length, and thickness are determined. The belt width should
either match or be smaller than the minimum width of the rollers, because we do not consider
cases where a part of the belt cannot be fully attached to the rollers. Next to that, the belt length
typically equals the path length, although it is feasible to set a belt length shorter than the path,
resulting in initial stress on the belt at the start of the simulation. Additionally, parameters such as
Young’s modulus (𝐸), Poisson’s ratio (𝜈), density (𝜌), and thermal expansivity of the belt material
are specified.

For describing the physics of the belt, we make a distinction between free-belt segments and roller
segments. The free-belt segments denote the parts that have no direct contact with the rollers, i.e.
the part of the belt that is between two adjacent rollers. Free-belt segments exclude the boundaries,
referred to as contactlines, where the belt transitions onto or off a roller. The part of the belt that is in
direct contact with the rollers is called a roller segment. The roller segments include the associated
contactlines.

In reality, a conveyor belt system is never aligned as intended. In the model, this is expressed by
tilting or translating the roller by a small amount compared to the supposed setup of the conveyor belt
system. The rollers can be rotated around three axes and can be translated over three axes. The axes
can be defined as the user wishes, with the constraint that they have to be orthogonal. Without loss of
generality, we will define these axes to be in accordance with the standard three unit vectors parallel
to the coordinate axes for the rest of this research. When one roller is in standard position, without any
tilt or translation, the three axes are oriented as shown in Figure 2.3. These axes are oriented in the
same way as in Figure 2.2. Using these three axes, a local coordinate system is created per roller.
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The origin of the coordinate system is the center of the roller. For each of the three directions, the roller
rotates around the specific axis that goes through the center of the roller. By combining translations
and rotations, the roller can reach all positions and orientations in the 3D space.

𝑧

𝑥
𝑦

Figure 2.3: Axes of rotation and translation of one roller.

A translation of a roller is defined by setting an initial translation together with a translational veloc-
ity. The initial translation gives the roller a different position than the intended position (defined during
the setup of the belt system). During a dynamic simulation, the translation is altered with the transla-
tional velocity. If the translational velocity is zero, the roller has a static translation. A static translation
is the only translation of interest in our case: when a translational velocity is set, the roller will eventu-
ally move from the intended position substantially. Because this research is intended to simulate long
dynamical simulations with small misalignments, this is not a case of interest.

A rotation is defined by setting an initial rotation together with a rotational velocity. The initial
rotation gives the roller a small tilted orientation. During a dynamic simulation, the rotation is altered
with the rotational velocity. If the rotational velocity is zero, the roller has a static rotation. Around the 𝑧
direction, it is common to set a rotational velocity: this makes the belt move around the rollers. In the
𝑥 and 𝑦 direction, however, only a small tilt from the original upright position is possible. So the 𝑥 and
𝑦 rotations have to be bounded. Therefore it is unlikely that a rotational velocity has to be set for these
directions. For the rest of this research, we will assume there is no rotational velocity in the 𝑥 and 𝑦
direction. The static rotations are the most relevant in this analysis, as they define a misalignment in
the setup of the conveyor belt system, so this assumption does not limit this research.

2.2. Assumptions
To model conveyor belt systems, some assumptions are made. First of all, the impact of loads on the
belt are neglected. This simplification is justified by the negligible mass of transported materials in the
systems of interest in this research, compared to the other masses in the systems. Consequently, we
do not simulate transverse belt displacement in our model, although it may be relevant for systems with
long belts [10]. Additionally, we assume that there is no slip between the belt and the rollers, allowing
us to directly relate the movement of a point on the belt with the corresponding movement of the roller
at that point. This assumption is reasonable as the rollers are made from materials ensuring minimal
relative motion between the belt and the roller. Lastly, we assume the absence of gravity in the system.





3
One-dimensional model of a conveyor

belt system

To develop an understanding of the model that simulates belt movement, we derive the dynamic equa-
tions for a simple one-dimensional belt system. First the finite element method is explained for the
equations governing the motion on the free-belt segments in section 3.1. Next, we consider the al-
gebraic constraints that define the boundary conditions in section 3.2. In section 3.3, the system of
equations is assembled and in section 3.4, different approaches are outlined to solve this system of
equations. Finally, in section 3.5, the interpolation step for this one-dimensional model is explained.

In this one-dimensional model, the belt is modeled as a string with a cross-sectional area 𝐴. This
string has the same length as the length of the belt path, that is the path over which the string moves
around the roller. The two rollers have the same radius 𝑟 and roller 1 is the drive roller that rotates
with a constant velocity of 𝜔𝑟1

radians per second. The other roller is an idle roller, which means that
it moves along with the belt without slipping and that there is no torque applied on this body, i.e. we
have 𝑇𝑟2

= 0 on the right roller in Figure 3.1. The displacement of the belt is of interest and will be
determined with finite element analysis. In the finite element equations, nodal displacements are the
unknowns. In Figure 3.1 the node indexing is shown. The index starts at the incoming contactline of
roller 1 and increases with the direction of movement of the belt. 𝑛 is the total number of elements, 𝑛𝑟𝑖
is the number of elements on roller 𝑖 and 𝑛𝑓𝑖

is the number of elements on free-belt segment 𝑖.

𝜔𝑟1

𝑟
𝑇𝑟2

= 0
𝑢𝑛𝑟1

𝑢𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2

𝑢1𝑢2
Ω1 Ω𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2

Ω𝑛

𝑢𝑛𝑟1 +𝑛𝑓1

𝑢𝑛

Figure 3.1: Schematic drawing of a one dimensional setup of a belt moving around two rollers with the same radius. The left
roller is roller 1, the right roller is roller 2.

The movement of the belt is modeled with a dynamic equations on the free-belt segments and an
algebraic description of the movement on the roller segments. The dynamic equations are a result of
finite element analysis on a PDE. The algebraic equations and the dynamical equations are combined
in the full system of equations, a differential algebraic equation.

9
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3.1. Free-belt segments
Newton’s second law results in the equation of motion on the free-belt segments [20],

𝜌𝑑2u
𝑑𝑡2 − ∇ ⋅ 𝜎 = f. (3.1)

where u is the displacement vector that depends on the position vector x and time 𝑡, 𝜎 is the stress
tensor and f is the body force per unit volume. That is, f = 𝑓

𝐴 , where 𝑓 is the body force per unit length.
In one dimension, we have

𝜌𝑑2𝑢
𝑑𝑡2 − 𝑑𝜎𝑥

𝑑𝑥 = 𝑓
𝐴, (3.2)

where 𝜎𝑥 is the strain in 𝑥 direction. From Hooke’s law, the strain/stress equation in one dimension is

𝜎𝑥 = 𝐸𝜖𝑥, (3.3)

where 𝐸 is the Young’s coefficient of the belt material and 𝜖𝑥 is the strain over the 𝑥 direction given by

𝜖𝑥 = 𝑑𝑢
𝑑𝑥. (3.4)

This gives the PDE

𝜌𝐴𝑑2𝑢
𝑑𝑡2 − 𝐸𝐴𝑑2𝑢

𝑑𝑥2 = 𝑓. (3.5)

In this finite element analysis, Equation 3.5 is referred to as the strong form. To derive the finite element
equations, we first have to derive the weak form. For this, we enforce that the weighted residual has
to be zero in a pointwise manner, that is

∫
Ω

𝜌𝐴𝑑2𝑢
𝑑𝑡2 𝑤 𝑑𝑥 − ∫

Ω
𝐸𝐴𝑑2𝑢

𝑑𝑥2 𝑤 𝑑𝑥 − ∫
Ω

𝑓𝑤 𝑑𝑥 = 0, (3.6)

where 𝑤 are the test functions that have to be in some test space. We use the constraint 𝑤|𝜕Ω = 0 on
this test space to derive

∫
Ω

𝜌𝐴𝑑2𝑢
𝑑𝑡2 𝑤 𝑑𝑥 + ∫

Ω
𝐸𝐴𝑑𝑢

𝑑𝑥
𝑑𝑤
𝑑𝑥 𝑑𝑥 − ∫

Ω
𝑓𝑤 𝑑𝑥 = 0, (3.7)

with integration by parts on the second integral. This is the continuous weak form. The solution to this
continuous problem will be approximated using finite elements.

3.1.1. Meshing the domain
For setting up the system of finite element equations, the free-belt segment is partitioned into a number
of elements, as is visible in Figure 3.1. One mesh element is depicted in Figure 3.2 and is defined to be
the open interval (𝑥𝑖, 𝑥𝑖+1). With this mesh, the finite element solution is approximated. The following

𝐹𝑖+1
𝑢𝑖+1

𝐹𝑖
𝑢𝑖

ℓ𝑖𝑥
Figure 3.2: Element 𝑖 in the one dimensional belt of length ℓ𝑖, with cross-sectional area 𝐴 and density 𝜌. The external forces

are given separately on both nodes. 𝑢𝑖 is the nodal displacement.

analysis will be done for the first free-belt segment, but is similar for the second free-belt segment.
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3.1.2. Construction of finite dimensional function spaces
Now that we have created a mesh for Ω, we will use it to define finite dimensional function spaces on
Ω. One of the most common choices for a finite element space is used, namely the hat functions. That
is, for each node we have one linear basis function that is 1 on the node itself and 0 on the rest of the
nodes:

𝑁𝑖(𝑥) =
⎧{
⎨{⎩

1 − 1
ℓ𝑖−1

(𝑥𝑖 − 𝑥) if 𝑥𝑖−1 < 𝑥 < 𝑥𝑖
1 − 1

ℓ𝑖
(𝑥 − 𝑥𝑖) if 𝑥𝑖 < 𝑥 < 𝑥𝑖+1
0 otherwise.

(3.8)

The first and last basis function on one free-belt element is half a hat function, that is, for example for
the first basis function on the first free-belt segment:

𝑁𝑛𝑟1 +1(𝑥) = {
1 − 1

ℓ𝑛𝑟1 +1
(𝑥 − 𝑥𝑛𝑟1 +1) if 𝑥𝑛𝑟1 +1 < 𝑥 < 𝑥𝑛𝑟1 +2,
0 otherwise.

(3.9)

Any function, in particular the solution and test functions 𝑢 and 𝑤, can be approximated by a linear
combination of these basis functions. The function 𝑢ℎ is the discretized solution of the weak form. For
the first free-belt segment, we have

𝑢ℎ(𝑥, 𝑡) =
𝑛𝑟1 +𝑛𝑓1 +1

∑
𝑖=𝑛𝑟1 +1

𝑢𝑖(𝑡)𝑁𝑖(𝑥), (3.10)

𝑤ℎ(𝑥, 𝑡) =
𝑛𝑟1 +𝑛𝑓1 +1

∑
𝑖=𝑛𝑟1 +1

𝑤𝑖(𝑡)𝑁𝑖(𝑥). (3.11)

When we have derived the weak form, we have used the constraint 𝑤|𝜕Ω = 0. This means that the
factors 𝑤𝑛𝑟1 +1(𝑡) and 𝑤𝑛𝑟1 +𝑛𝑓1 +1(𝑡) are zero. Thus, we have for 𝑤ℎ:

𝑤ℎ(𝑥, 𝑡) =
𝑛𝑟1 +𝑛𝑓1

∑
𝑖=𝑛𝑟1 +2

𝑤𝑖(𝑡)𝑁𝑖(𝑥). (3.12)

The boundary conditions for one free-belt segment are expressed as algebraic equations. These con-
ditions are assumed to be known for the purpose of constructing the finite element equations. So the
functions 𝑢𝑛𝑟1 +1(𝑡) and 𝑢𝑛𝑟1 +𝑛𝑓1 +1(𝑡) for the first free-belt segment are provided as time-dependent
values. Let us assume with

𝑢𝑛𝑟1 +1(𝑡) = 𝑔0(𝑡), (3.13)

𝑢𝑛𝑟1 +𝑛𝑓1 +1(𝑡) = 𝑔𝐿(𝑡). (3.14)

This results in the discretized solution of the form

𝑢ℎ(𝑥, 𝑡) = 𝑔0(𝑡)𝑁𝑛𝑟1 +1(𝑥) +
𝑛𝑟1 +𝑛𝑓1

∑
𝑖=𝑛𝑟1 +2

𝑢𝑖(𝑡)𝑁𝑖(𝑥) + 𝑔𝐿(𝑡)𝑁𝑛𝑟1 +𝑛𝑓1 +1(𝑥). (3.15)

3.1.3. Discretized weak problem
When we substitute these in the continuous weak problem in Equation 3.7, we derive the discretized
weak problem. The solution has to satisfy the weak problem for every function 𝑤ℎ in the test space.
Because the (inner) hat functions are a basis for this test space, we can say that the weak problem will
be satisfied for all functions, when it is satisfied for all the basis functions with

∫
Ω

𝜌𝐴 𝑑2

𝑑𝑡2
⎛⎜
⎝

𝑛𝑟1 +𝑛𝑓1 +1

∑
𝑖=𝑛𝑟1 +1

𝑢𝑖(𝑡)𝑁𝑖(𝑥)⎞⎟
⎠

𝑁𝑗(𝑥) 𝑑𝑥 + ∫
Ω

𝐸𝐴 𝑑
𝑑𝑥

⎛⎜
⎝

𝑛𝑟1 +𝑛𝑓1 +1

∑
𝑖=𝑛𝑟1 +1

𝑢𝑖(𝑡)𝑁𝑖(𝑥)⎞⎟
⎠

𝑑𝑁𝑗
𝑑𝑥 (𝑥) 𝑑𝑥 (3.16)

− ∫
Ω

𝑓 ⋅ 𝑁𝑗(𝑥) = 0 ∀𝑗 = 𝑛𝑟1
+ 2, ..., 𝑛𝑟1

+ 𝑛𝑓1
.
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By interchanging the integral and the sum and taking the variables independent of 𝑥 out of the integral,
we get

𝑛𝑟1 +𝑛𝑓1 +1

∑
𝑖=𝑛𝑟1 +1

𝜌𝐴𝑑2𝑢𝑖
𝑑𝑡2 (𝑡) ∫

Ω
𝑁𝑖(𝑥)𝑁𝑗(𝑥) 𝑑𝑥 +

𝑛𝑟1 +𝑛𝑓1 +1

∑
𝑖=𝑛𝑟1 +1

𝐸𝐴𝑢𝑖(𝑡) ∫
Ω

𝑑𝑁𝑖
𝑑𝑥 (𝑥)𝑑𝑁𝑗

𝑑𝑥 (𝑥) 𝑑𝑥 (3.17)

− ∫
Ω

𝑓𝑁𝑗(𝑥) 𝑑𝑥 = 0 ∀𝑗 = 𝑛𝑟1
+ 2, ..., 𝑛𝑟1

+ 𝑛𝑓1
.

The terms where all values are known, so 𝑢𝑖 on the boundaries and 𝑓 , will be put in the right hand side.
Then the equations can be written into a linear system for the unknowns 𝑢𝑖 and

𝑑2𝑢𝑖
𝑑𝑡2 = 𝑢̈𝑖, given by

⎡
⎢
⎣

𝜌𝐴 ∫Ω 𝑁𝑛𝑟1 +2(𝑥)𝑁𝑛𝑟1 +2(𝑥)𝑑𝑥 … 𝜌𝐴 ∫Ω 𝑁𝑛𝑟1 +𝑛𝑓1
(𝑥)𝑁𝑛𝑟1 +2(𝑥)𝑑𝑥

⋮ ⋱ ⋮
𝜌𝐴 ∫Ω 𝑁𝑛𝑟1 +2(𝑥)𝑁𝑛𝑟1 +𝑛𝑓1

(𝑥)𝑑𝑥 … 𝜌𝐴 ∫Ω 𝑁𝑛𝑟1 +𝑛𝑓1
(𝑥)𝑁𝑛𝑟1 +𝑛𝑓1

(𝑥)𝑑𝑥
⎤
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀𝑓1

⎡
⎢⎢⎢
⎣

𝑢̈𝑛𝑟1 +2(𝑡)
𝑢̈𝑛𝑟1 +3(𝑡)

⋮
𝑢̈𝑛𝑟1 +𝑛𝑓1

(𝑡)

⎤
⎥⎥⎥
⎦

+
⎡⎢⎢
⎣

𝐸𝐴 ∫Ω
𝑑𝑁𝑛𝑟1 +1

𝑑𝑥 (𝑥) 𝑑𝑁𝑛𝑟1 +2
𝑑𝑥 (𝑥) 𝑑𝑥 … 𝐸𝐴 ∫Ω

𝑑𝑁𝑛𝑟1 +𝑛𝑓1 +1
𝑑𝑥 (𝑥) 𝑑𝑁𝑛𝑟1 +2

𝑑𝑥 (𝑥) 𝑑𝑥
⋮ ⋱ ⋮

𝐸𝐴 ∫Ω
𝑑𝑁𝑛𝑟1 +1

𝑑𝑥 (𝑥)
𝑑𝑁𝑛𝑟1 +𝑛𝑓1

𝑑𝑥 (𝑥) 𝑑𝑥 … 𝐸𝐴 ∫Ω
𝑑𝑁𝑛𝑟1 +𝑛𝑓1 +1

𝑑𝑥 (𝑥)
𝑑𝑁𝑛𝑟1 +𝑛𝑓1

𝑑𝑥 (𝑥) 𝑑𝑥

⎤⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐾𝑓1

⎡
⎢⎢⎢
⎣

𝑢𝑛𝑟1 +2(𝑡)
𝑢𝑛𝑟1 +3(𝑡)

⋮
𝑢𝑛𝑟1 +𝑛𝑓1

(𝑡)

⎤
⎥⎥⎥
⎦

= ⎡
⎢
⎣

∫Ω 𝑓𝑁𝑛𝑟1 +2(𝑥) 𝑑𝑥
⋮

∫Ω 𝑓𝑁𝑛𝑟1 +𝑛𝑓1
(𝑥) 𝑑𝑥

⎤
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐹𝑓1

(3.18)

− ⎡
⎢
⎣

𝜌𝐴 ∫Ω 𝑁𝑛𝑟1 +1(𝑥)𝑁𝑛𝑟1 +2(𝑥)𝑑𝑥 𝜌𝐴 ∫Ω 𝑁𝑛𝑟1 +𝑛𝑓1 +1(𝑥)𝑁𝑛𝑟1 +2(𝑥)𝑑𝑥
⋮ ⋮

𝜌𝐴 ∫Ω 𝑁𝑛𝑟1 +1(𝑥)𝑁𝑛𝑟1 +𝑛𝑓1
(𝑥)𝑑𝑥 𝜌𝐴 ∫Ω 𝑁𝑛𝑟1 +𝑛𝑓1 +1(𝑥)𝑁𝑛𝑟1 +𝑛𝑓1

(𝑥)𝑑𝑥
⎤
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺𝑀,𝑓1

[ ̈𝑔0(𝑡)
̈𝑔𝐿(𝑡) ]

−
⎡⎢⎢
⎣

𝐸𝐴 ∫Ω
𝑑𝑁𝑛𝑟1 +1

𝑑𝑥 (𝑥) 𝑑𝑁𝑛𝑟1 +2
𝑑𝑥 (𝑥) 𝑑𝑥 𝐸𝐴 ∫Ω

𝑑𝑁𝑛𝑟1 +𝑛𝑓1 +1
𝑑𝑥 (𝑥) 𝑑𝑁𝑛𝑟1 +2

𝑑𝑥 (𝑥) 𝑑𝑥
⋮ ⋮

𝐸𝐴 ∫Ω
𝑑𝑁𝑛𝑟1 +1

𝑑𝑥 (𝑥)
𝑑𝑁𝑛𝑟1 +𝑛𝑓1

𝑑𝑥 (𝑥) 𝑑𝑥 𝐸𝐴 ∫Ω
𝑑𝑁𝑛𝑟1 +𝑛𝑓1 +1

𝑑𝑥 (𝑥)
𝑑𝑁𝑛𝑟1 +𝑛𝑓1

𝑑𝑥 (𝑥) 𝑑𝑥

⎤⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺𝐾,𝑓1

[ 𝑔0(𝑡)
𝑔𝐿(𝑡) ] .

3.1.4. Assembly of equation matrices
The integrals in Equation 3.18 will be evaluated using local assembly. The integral over Ω is broken
up into integrals over the elements Ω𝑖. These 𝑖-th element integrals are nonzero on a few elements,
since every 𝑁𝑖(𝑥) and 𝑑𝑁𝑖

𝑑𝑥 is only nonzero for 𝑥 ∈ Ω𝑖−1 ∪ Ω𝑖. In the end, the total mass matrix 𝑀𝑓𝑖
is

the sum of the local mass matrices,

𝑀𝑓1
=

𝑛𝑟1 +𝑛𝑓1

∑
𝑖=𝑛𝑟1 +1

𝑀𝑓1
|Ω𝑖

, (3.19)

where

𝑀𝑓1
|Ω𝑖

= ⎡
⎢
⎣

𝜌𝐴 ∫Ω𝑖
𝑁𝑛𝑟1 +2(𝑥)𝑁𝑛𝑟1 +2(𝑥)𝑑𝑥 … 𝜌𝐴 ∫Ω𝑖

𝑁𝑛𝑟1 +𝑛𝑓1
(𝑥)𝑁𝑛𝑟1 +2(𝑥)𝑑𝑥

⋮ ⋱ ⋮
𝜌𝐴 ∫Ω𝑖

𝑁𝑛𝑟1 +2(𝑥)𝑁𝑛𝑟1 +𝑛𝑓1
(𝑥)𝑑𝑥 … 𝜌𝐴 ∫Ω𝑖

𝑁𝑛𝑟1 +𝑛𝑓1
(𝑥)𝑁𝑛𝑟1 +𝑛𝑓1

(𝑥)𝑑𝑥
⎤
⎥
⎦

. (3.20)
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Similarly for the stiffness matrix 𝐾𝑓1
, we have

𝐾𝑓1
=

𝑛𝑟1 +𝑛𝑓1

∑
𝑖=𝑛𝑟1 +1

𝐾𝑓1
|Ω𝑖

, (3.21)

𝐾𝑓1
|Ω𝑖

=
⎡
⎢⎢
⎣

𝐸𝐴 ∫Ω𝑖

𝑑𝑁𝑛𝑟1 +2
𝑑𝑥 (𝑥) 𝑑𝑁𝑛𝑟1 +2

𝑑𝑥 (𝑥) 𝑑𝑥 … 𝐸𝐴 ∫Ω𝑖

𝑑𝑁𝑛𝑟1 +𝑛𝑓1
𝑑𝑥 (𝑥) 𝑑𝑁𝑛𝑟1 +2

𝑑𝑥 (𝑥) 𝑑𝑥
⋮ ⋱ ⋮

𝐸𝐴 ∫Ω𝑖

𝑑𝑁𝑛𝑟1 +2
𝑑𝑥 (𝑥)

𝑑𝑁𝑛𝑟1 +𝑛𝑓1
𝑑𝑥 (𝑥) 𝑑𝑥 … 𝐸𝐴 ∫Ω𝑖

𝑑𝑁𝑛𝑟1 +𝑛𝑓1
𝑑𝑥 (𝑥)

𝑑𝑁𝑛𝑟1 +𝑛𝑓1
𝑑𝑥 (𝑥) 𝑑𝑥

⎤
⎥⎥
⎦

. (3.22)

When we look at any element on one free-belt partΩ𝑚, only𝑁𝑚 and𝑁𝑚+1 are nonzero on this element.
Therefore 𝑀𝑓1

[𝑖, 𝑗]|Ω𝑚
= 0 and 𝐾𝑓1

[𝑖, 𝑗]|Ω𝑚
= 0 when 𝑖 and 𝑗 are not 𝑚 or 𝑚 + 1 1. For the other terms

in 𝑀𝑓1
|Ω𝑚

, we have

𝑀𝑓1
[𝑚, 𝑚 + 1]|Ω𝑚

= 𝑀𝑓1
[𝑚 + 1, 𝑚]|Ω𝑚

= 𝜌𝐴 ∫
Ω𝑚

𝑁𝑚(𝑥)𝑁𝑚+1(𝑥)𝑑𝑥 ≈ 0. (3.23)

by the Newton-Cotes rule which says

∫
Ω𝑚

𝑁𝑚(𝑥)𝑁𝑚+1(𝑥)𝑑𝑥 ≈ 1
2ℓ𝑚 [𝑁𝑚(𝑥𝑚)𝑁𝑚+1(𝑥𝑚) + 𝑁𝑚(𝑥𝑚+1)𝑁𝑚+1(𝑥𝑚+1)] = 0, (3.24)

since 𝑁𝑚+1(𝑥𝑚) = 0 and 𝑁𝑚(𝑥𝑚+1) = 0. Next to that, we have

𝑀𝑓1
[𝑚, 𝑚]|Ω𝑚

= ∫
Ω𝑚

𝑁2
𝑚(𝑥)𝑑𝑥 ≈ 1

2𝜌𝐴ℓ𝑚, (3.25)

𝑀𝑓1
[𝑚 + 1, 𝑚 + 1]|Ω𝑚

= ∫
Ω𝑚

𝑁2
𝑚+1(𝑥)𝑑𝑥 ≈ 1

2𝜌𝐴ℓ𝑚. (3.26)

by Newton-Cotes and the fact that 𝑁𝑚(𝑥𝑚) = 𝑁𝑚+1(𝑥𝑚+1) = 1 and 𝑁𝑚(𝑥𝑚+1) = 𝑁𝑚+1(𝑥𝑚) = 0. This
is the same result when taking the lumped mass as in [21]. For the terms in 𝐾𝑓1

|Ω𝑚
, we have

𝐾𝑓1
[𝑚, 𝑚 + 1]|Ω𝑚

= 𝐾𝑓1
[𝑚 + 1, 𝑚]|Ω𝑚

= 𝐸𝐴 ∫
Ω𝑚

𝑑𝑁𝑚
𝑑𝑥

𝑑𝑁𝑚+1
𝑑𝑥 = 𝐸𝐴 ∫

Ω𝑚

− 1
ℓ𝑚

⋅ 1
ℓ𝑚

𝑑𝑥 (3.27)

= − 𝐸𝐴
(ℓ𝑚)2 (𝑥𝑚+1 − 𝑥𝑚) = −𝐸𝐴

ℓ𝑚
. (3.28)

Next to that, we have

𝐾𝑓1
[𝑚, 𝑚]|Ω𝑚

= 𝐸𝐴 ∫
Ω𝑚

(𝑑𝑁𝑚
𝑑𝑥 )2𝑑𝑥 = 𝐸𝐴 ∫

Ω𝑚

(− 1
ℓ𝑚

)
2

𝑑𝑥 = 𝐸𝐴
(ℓ𝑚)2 (𝑥𝑚+1 − 𝑥𝑚) = 𝐸𝐴

ℓ𝑚
,

(3.29)

𝐾𝑓1
[𝑚 + 1, 𝑚 + 1]|Ω𝑚

= 𝐸𝐴 ∫
Ω𝑚

(𝑑𝑁𝑚+1
𝑑𝑥 )2𝑑𝑥 = 𝐸𝐴 ∫

Ω𝑚

( 1
ℓ𝑚

)
2

𝑑𝑥 = 𝐸𝐴
(ℓ𝑚)2 (𝑥𝑚+1 − 𝑥𝑚) = 𝐸𝐴

ℓ𝑚
.

(3.30)

And likewise, we get

𝐺𝐾,𝑓1
=

⎡⎢⎢
⎣

− 1
ℓ𝑛𝑟1 +1

0
⋮ ⋮
0 − 1

ℓ𝑛𝑟1 +𝑛𝑓1

⎤⎥⎥
⎦

, (3.31)

𝐺𝑀,𝑓1
= ⎡⎢

⎣

0 0
⋮ ⋮
0 0

⎤⎥
⎦

. (3.32)

1Note that we simplified the indices of matrix 𝑀𝑓1 and 𝐾𝑓1 : by index 𝑖, 𝑗, we actually mean index 𝑖 − 𝑛𝑟1 − 1, 𝑗 − 𝑛𝑟1 − 1. This
simplification will be used in the rest of this subsection.
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3.1.5. Assembly of system
The value 𝑓 is the body force per unit length. On the free-belt segments in this one-dimensional model,
this is given to be zero. Therefore, the right-hand side only consists of the boundary values. The
element stiffness matrices and the element mass matrices are combined to the general stiffness and
mass matrix on the free-belt segments. For the first free-belt segment, we call the resulting matrices
𝐾𝑓1

and 𝑀𝑓1
.

𝐾𝑓1
= 𝐸𝐴

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
ℓ𝑛𝑟1 +1

+ 1
ℓ𝑛𝑟1 +2

− 1
ℓ𝑛𝑟1 +2

0 …
− 1

ℓ𝑛𝑟1 +2
1

ℓ𝑛𝑟1 +2
+ 1

ℓ𝑛𝑟1 +3
− 1

ℓ𝑛𝑟1 +3

− 1
ℓ𝑛𝑟1 +3

1
ℓ𝑛𝑟1 +3

+ 1
ℓ𝑛𝑟1 +4

− 1
ℓ𝑛𝑟1 +4

⋮ ⋱ ⋱
− 1

ℓ𝑛𝑟1 +𝑛𝑓1−1

1
ℓ𝑛𝑟1 +𝑛𝑓1 −1

+ 1
ℓ𝑛𝑟1 +𝑛𝑓1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

𝑀𝑓1
= 1

2𝜌𝐴
⎡
⎢
⎢
⎢
⎢
⎣

ℓ𝑛𝑟1 +1 + ℓ𝑛𝑟1 +2 0 0 … 0
0 ℓ𝑛𝑟1 +2 + ℓ𝑛𝑟1 +3 0 ⋮

0 ℓ𝑛𝑟1 +3 + ℓ𝑛𝑟1 +4 …
⋮ ⋱ ⋱

ℓ𝑛𝑟1 +𝑛𝑓1
+ ℓ𝑛𝑟1 +𝑛𝑓1 +1

⎤
⎥
⎥
⎥
⎥
⎦

.

The dynamics on one free-belt segment can now be described as

𝐾𝑓u𝑓 + 𝑀𝑓 ü𝑓 = −𝐺𝐾,𝑓 [ 𝑔0(𝑡)
𝑔𝐿(𝑡) ] . (3.33)

3.2. Roller segments
In the dynamical systems in Equation 3.33, we still have to define the boundary conditions. The bound-
ary conditions describe the displacement of the two nodes on the adjacent contactlines. The displace-
ment of the grid points of the roller is a result of the rotation of the roller with the relation,

𝑢̇𝑟(𝑡) = 𝑟 ̇𝛼𝑟(𝑡). (3.34)

The given boundary condition does not correspond to a Neumann boundary condition. Neumann con-
ditions typically involve derivatives with respect to spatial coordinates, whereas the provided condition
involves a derivative with respect to time. Consequently, it cannot be directly incorporated into the
system of equations. To address this, we reinterpret it to have a modified Dirichlet boundary condition.
We reformulate the condition by discretizing in time using Backward Euler:

𝑢𝑟𝑖
(𝑡) = 𝑢𝑟𝑖

(𝑡 − Δ𝑡) + Δ𝑡𝑢̇𝑟𝑖
(𝑡)

𝑢𝑟𝑖
(𝑡) = 𝑢𝑟𝑖

(𝑡 − Δ𝑡) + Δ𝑡𝑟 ̇𝛼𝑟𝑖
(𝑡)

𝑢𝑟𝑖
(𝑡) = 𝑢𝑟𝑖

(𝑡 − Δ𝑡) + Δ𝑡𝑟 (
𝛼𝑟𝑖

(𝑡) − 𝛼𝑟𝑖
(𝑡 − Δ𝑡)

Δ𝑡 )

𝑢𝑟𝑖
(𝑡) − 𝑟𝛼𝑟𝑖

(𝑡) = 𝑢𝑟𝑖
(𝑡 − Δ𝑡) − 𝑟𝛼𝑟𝑖

(𝑡 − Δ𝑡). (3.35)

In the configuration treated in this chapter, the rotation of the first roller is given and and can be sub-
stituted here directly in 𝛼𝑟1

. However, the rotation of the second roller is unknown and is determined
by the torque/force balance on the roller. Without loss of generality, we assume that the roller rotation
is unknown for all rollers. Therefore, in Equation 3.33, 𝑔0(𝑡) and 𝑔𝐿(𝑡) are not given functions in time,
but dependent on the unknowns. Hence, we will not include this boundary condition in the right-hand
side. In the existing simulation program, the circumvention of this issue is including 𝑢𝑟 and 𝛼 in the set
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of unknowns and therefore 𝐺𝐾,𝑓 and 𝐾𝑓1
will be merged into

𝐾̄𝑓1
= 𝐸𝐴

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 1
ℓ𝑛𝑟1 +1

1
ℓ𝑛𝑟1 +1

+ 1
ℓ𝑛𝑟1 +2

− 1
ℓ𝑛𝑟1 +2

0 … 0
− 1

ℓ𝑛𝑟1 +2
1

ℓ𝑛𝑟1 +2
+ 1

ℓ𝑛𝑟1 +3
− 1

ℓ𝑛𝑟1 +3
⋮

− 1
ℓ𝑛𝑟1 +3

1
ℓ𝑛𝑟1 +3

+ 1
ℓ𝑛𝑟1 +4

− 1
ℓ𝑛𝑟1 +4

⋮ ⋱ ⋱
− 1

ℓ𝑛𝑟1 +𝑛𝑓1−1

1
ℓ𝑛𝑟1 +𝑛𝑓1 −1

+ 1
ℓ𝑛𝑟1 +𝑛𝑓1

− 1
ℓ𝑛𝑟1 +𝑛𝑓1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

This results in the dynamical equation

𝐾̄𝑓 ū𝑓 + 𝑀𝑓 ü𝑓 = 0. (3.36)

Note that we use ū𝑓 here, because the system is also dependent on the displacement of the two nodes
on the adjacent contactlines. The relation between the unknowns 𝑢𝑟 and 𝛼 is added in the full set of
equations as an algebraic equation.

3.2.1. Torque balance
We assume that there is no slip between the rollers and the belt. This is modeled by pinning the
belt to the rollers, that is, the belt movement is directly related to the movement of the roller. In this
case, the stress tensor does not contribute to the forces. Therefore, we only have a contribution of
the acceleration and mass in the force on the belt. The total torque/force on one roller can either be
specified so that the total forces have to be exactly equal to this value, or it can be a result of the
displacements.

On the idle roller (roller 2), an external applied torque is given. The total torque is the sum of the
external applied torque and the torque applied by the belt. The torque applied on the belt is a result of
the force applied on the belt and the radius of the roller,

𝑇 = 𝑇𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙⏟
=0

+ 𝑇𝑏𝑒𝑙𝑡⏟
=−𝑟×𝐹

. (3.37)

The total torque has to be 𝐼 ̈𝛼, where 𝐼 = 1
2 𝑚𝑟𝑟2, assuming the roller is a solid cylinder with radius 𝑟

and mass 𝑚𝑟. This results in the equation

𝑟 × 𝐹 + 1
2𝑚𝑟𝑟2 ̈𝛼 = 𝑇𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙⏟

=0
. (3.38)

𝐹 is the sum of the local nodal forces, 𝐹𝑗 = ∫Ω 𝑓𝑁𝑗(𝑥) 𝑑𝑥. The nodal forces are calculated by the
acceleration and the lumped mass of the nodes on the roller. The nodal force on the contactline also
consists of a stiffness term. For roller 2, this is

⎡
⎢⎢⎢
⎣

𝐹𝑛𝑟1 +𝑛𝑓1 +1
𝐹𝑛𝑟1 +𝑛𝑓1 +2

⋮
𝐹𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2 +1

⎤
⎥⎥⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

− 𝐴𝐸
ℓ𝑛𝑟1 +𝑛𝑓1

𝐴𝐸
ℓ𝑛𝑟1 +𝑛𝑓1

0 … 0
0 0 ⋮⋮ ⋱
0 … 0 𝐴𝐸

ℓ𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2 +1
− 𝐴𝐸

ℓ𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2 +1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑢𝑛𝑟1 +𝑛𝑓1
𝑢𝑛𝑟1 +𝑛𝑓1 +1
𝑢𝑛𝑟1 +𝑛𝑓1 +2

⋮
𝑢𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2 +1
𝑢𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2 +2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ 𝜌𝐴
2

⎡
⎢⎢⎢
⎣

ℓ𝑛𝑟1 +𝑛𝑓1
+ ℓ𝑛𝑟1 +𝑛𝑓1 +1 0

0 ℓ𝑛𝑟1 +𝑛𝑓1 +1 + ℓ𝑛𝑟1 +𝑛𝑓1 +2 0
⋱ ⋱ ⋱

0 ℓ𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2
+ ℓ𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2 +1

⎤
⎥⎥⎥
⎦

⎡
⎢⎢⎢
⎣

𝑢̈𝑛𝑟1 +𝑛𝑓1 +1
𝑢̈𝑛𝑟1 +𝑛𝑓1 +2

⋮
𝑢̈𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2 +1

⎤
⎥⎥⎥
⎦

.

The torque applied by the belt should be equal to the column sum of the system above multiplied with
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the radius 𝑟, that is,

𝑇𝑏𝑒𝑙𝑡 = −𝑟 × 𝐹

= − 𝑟 [− 𝐴𝐸
ℓ𝑛𝑟1 +𝑛𝑓1

𝐴𝐸
ℓ𝑛𝑟1 +𝑛𝑓1

0 … 0 𝐴𝐸
ℓ𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2 +1

− 𝐴𝐸
ℓ𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2 +1

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝐾𝑇𝑟2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑢𝑛𝑟1 +𝑛𝑓1
𝑢𝑛𝑟1 +𝑛𝑓1 +1
𝑢𝑛𝑟1 +𝑛𝑓1 +2

⋮
𝑢𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2 +1
𝑢𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2 +2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.39)

− 𝑟𝜌𝐴
2 [(ℓ𝑛𝑟1 +𝑛𝑓1

+ ℓ𝑛𝑟1 +𝑛𝑓1 +1) … (ℓ𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2
+ ℓ𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2 +1)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝑀𝑇𝑟2

⎡
⎢⎢⎢
⎣

𝑢̈𝑛𝑟1 +𝑛𝑓1 +1
𝑢̈𝑛𝑟1 +𝑛𝑓1 +2

⋮
𝑢̈𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2 +1

⎤
⎥⎥⎥
⎦

.

3.3. System of equations
Every displacement of the belt on the roller is treated as unknowns in the system of equations. Next
to that, all the roller rotations are treated as unknowns in the system. The full system of equations
consists of the equations for the dynamics on the free-belt segments (Equation 3.36), equations for
the displacement on the roller segments (Equation 3.35) and the equations that determine the rotation
(indirectly with Equation 3.38 or trivially when it is givenwith𝛼𝑟𝑖

(𝑡) = 𝑡⋅𝜔𝑟𝑖
). For the system in Figure 3.1,

where 𝛼𝑟1
and 𝑇𝑟2

are given, this is given as

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐼 −𝑟1
𝐾̄𝑓1

𝐼 −𝑟1
𝐾̄𝑓2

1
𝐾𝑇𝑟2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

u𝑟1
u𝑓1
u𝑟2
u𝑓2
𝛼𝑟1
𝛼𝑟2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.40)

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑀𝑓1

𝑀𝑓2

𝑀𝑇𝑟2
1
2 𝑚𝑟𝑟2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ü𝑟1
ü𝑓1
ü𝑟2
ü𝑓2

̈𝛼𝑟1
̈𝛼𝑟2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

u𝑟1
(𝑡 − Δ𝑡) − 𝑟𝛼𝑟1

(𝑡 − Δ𝑡)
0

u𝑟2
(𝑡 − Δ𝑡) − 𝑟𝛼𝑟2

(𝑡 − Δ𝑡)
0

𝑡𝜔𝑟1
0

⎤
⎥
⎥
⎥
⎥
⎦

,

where1 is a column-vector with ones. Since we combine algebraic equations with dynamical equations,
this is a DAE.

3.4. Solving the differential algebraic equations
The DAE for timestep 𝑚 can be written as

𝐾x𝑚 + 𝑀 ẍ𝑚 = 𝐹(x𝑚−1). (3.41)

DAEs generally have a singular mass matrix, which is also true for this system. Normally, a second
order ODE can be solved by rewriting it into an first order ODE in the explicit form of 𝑦′ = 𝑓(𝑦, 𝑡):

̇
[ x
ẋ ]

𝑚
= [ 0 𝐼

−𝑀−1𝐾 0 ] [ x
ẋ ]

𝑚
+ [ 0

𝑀−1𝐹(x𝑚−1) ] . (3.42)

But in DAEs with a singular mass matrix, this is not possible since the inverse of a singular matrix does
not exist. There are different ways to tackle this issue in a numerical simulation of a DAE.
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3.4.1. Naive approach
In the existing simulation software, the strategy to solve this system is the following. A system is created
that incorporates this equation, but also the relationship between the displacement and velocity and
the velocity and the acceleration using the Backward Euler scheme. By combining these relations, the
system of equations that is created is non-singular:

⎡⎢
⎣

𝐾 0 𝑀
𝐼 −𝑑𝑡 ⋅ 𝐼 0
0 𝐼 −𝑑𝑡 ⋅ 𝐼

⎤⎥
⎦

⎡⎢
⎣

x𝑚
ẋ𝑚
ẍ𝑚

⎤⎥
⎦

= ⎡⎢
⎣

𝐹(x𝑚−1)
x𝑚−1
ẋ𝑚−1

⎤⎥
⎦

. (3.43)

This is referred to as the ’naive approach’. Note that the right-hand side vector has to be generated
again for each timestep. Then in each timestep this system is solved to get x𝑚, ẋ𝑚 and ẍ𝑚.

3.4.2. Index reduction
Yet, the method for solving a DAE that is most found in literature is index reduction. The index of a
DAE is the number of analytical differentiations needed for a system to transform it into an explicit ODE
system for all of the unknowns [22]. So by analytical differentiations, the index of one DAE can be
reduced. By differentiating the algebraic constraints twice with respect to 𝑡, we have

𝑢̈𝑟 = 𝑟 ̈𝛼𝑟, (3.44)
̈𝛼𝑟1

= 0, (3.45)

and the ODE

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐾̄𝑓1

𝐾̄𝑓2

𝐾𝑇𝑟2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

u𝑟1
u𝑓1
u𝑟2
u𝑓2
𝛼𝑟1
𝛼𝑟2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.46)

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐼 −𝑟1
𝑀𝑓1

𝐼 −𝑟1
𝑀𝑓2

1
𝑀𝑇𝑟2

− 1
2 𝑚𝑟𝑟2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ü𝑟1
ü𝑓1
ü𝑟2
ü𝑓2

̈𝛼𝑟1
̈𝛼𝑟2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎦

,

is obtained. Therefore this is a DAE of index 2. The solution to this ODE can be approximated by using
a suitable time integration scheme.

One advantage of the index reduction approach is that the right hand side of the system of equations
is not dependent on the unknowns in the previous timestep. However, a significant disadvantage is that
some information is lost when using Equation 3.44 instead of Equation 3.35. This will cause problems
in some MOR techniques.

In addition, algebraic equations should hold as well in the reduced model [23] and reducing the
algebraic equations would give unrealistic results. In the following approach the algebraic equations
are eliminated before reducing, which would be more suitable when considering MOR.

3.4.3. Elimination of variables
Another way of solving a DAE is by elimination of variables. With Equation 3.35, we can describe 𝑢
and 𝑢̈ on this roller and substitute this in Equation 3.36 and Equation 3.38. u𝑟1

is known explicitly and
u𝑟2

is known implicitly as a function of 𝛼𝑟2
. With this approach, we have a system of 𝑛𝑓1

+ 𝑛𝑓2
− 1

equations for 𝑛𝑓1
+ 𝑛𝑓2

− 1 unknowns (u𝑓1
∈ ℝ𝑛𝑓1 −1, u𝑓2

∈ ℝ𝑛𝑓2 −1 and 𝛼𝑟𝑜𝑙𝑙𝑒𝑟2
∈ ℝ).

The advantage of the elimination of variables is that a ODE is obtained with a non-singular mass
and stiffness matrix. In this approach, however, the extra step of eliminating the algebraic variables
might be time-consuming.

A general way of elimination of variables is comparable to static condensation [24]. Assume that
the algebraic equations do not include first and second derivatives. Let x𝑓 be the variables in the
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system that will not be eliminated and x𝑒 be the variables for which we have algebraic constraints and
therefore will be eliminated. By reordering the equations and the unknowns, the system of equations
can be written as

[ 𝑀𝑓𝑓 𝑀𝑓𝑒
0 0 ] [ ẍ𝑓

ẍ𝑒
] + [ 𝐾𝑓𝑓 𝐾𝑓𝑒

𝐾𝑒𝑓 𝐾𝑒𝑒
] [ x𝑓

x𝑒
] = [ 𝐹𝑓

𝐹𝑒
] . (3.47)

Then we can eliminate the variables x𝑒 by expressing it as a function of x𝑓 with

x𝑒 = 𝐾−1
𝑒𝑒 (𝐹𝑒 − 𝐾𝑒𝑓x𝑓), (3.48)

̈x𝑒 = 𝐾−1
𝑒𝑒 ( ̈𝐹𝑒 − 𝐾𝑒𝑓 ̈x𝑓). (3.49)

By substituting these into the dynamical system in Equation 3.47, it leads to the dynamical system for
x𝑓 , given by

(𝑀𝑓𝑓 − 𝑀𝑓𝑒(𝐾−1
𝑒𝑒 𝐾𝑒𝑓))ẍ𝑓 + (𝐾𝑓𝑓 − 𝐾𝑓𝑒(𝐾−1

𝑒𝑒 𝐾𝑒𝑓))x𝑓 = 𝐹𝑓 − 𝑀𝑓𝑒𝐾−1
𝑒𝑒 ̈𝐹𝑒 − 𝐾𝑓𝑒𝐾−1

𝑒𝑒 𝐹𝑒. (3.50)

After solving this system, an extra step of obtaining the eliminated unknowns has to be done using
Equation 3.48. This eliminated system can be solved with a suitable time integration scheme, possibly
even an explicit time-integration scheme. Note that, explicit time-integration should account for the
stability conditions, which is hard for this simulation since the ODE does not represent the full system.
Information on the interpolation step, that corrects for movement of the grid points after one timestep2,
should be included as well in the stability analysis for explicit time-integration.

As mentioned before, this elimination approach is preferred over the index reduction approach when
using MOR, because the algebraic variables are treated separately. Consequently, these will not be
reduced with MOR. However, while ideally the matrices in Equation 3.50 have to be inverted only
once, small non-linearities may result in the matrices changing over time. Therefore, it can turn out that
these matrices have to be computed every timestep again, which makes this approach computationally
expensive.

3.4.4. Direct time integration
A widely used method for time integration in finite element analysis is the Newmark-beta method [25]:

ẋ𝑛+1 = ẋ𝑛 + Δ𝑡(1 − 𝛾)ẍ𝑛 + Δ𝑡𝛾ẍ𝑛+1, (3.51)

x𝑛+1 = x𝑛 + Δ𝑡ẋ𝑛 + Δ𝑡2 (1
2 − 𝛽) ẍ𝑛 + Δ𝑡2𝛽ẍ𝑛+1, (3.52)

where the subscript denotes it is the solution after timestep 𝑛 or 𝑛 + 1. We should have 0 ≤ 𝛾 ≤ 1 and
0 ≤ 2𝛽 ≤ 1 and the choice 𝛾 = 1

2 and 𝛽 = 1
4 is often taken because this leads to an unconditionally

stable time integration. However, in the existing software for belt simulation, the Backward Euler time
integration scheme is used [26] (see Equation 3.43). Therefore, we have decided to use this scheme
as well in all approaches. The Backward Euler scheme is stable for stable systems.

For DAEs with a non-singular combination of 𝑀 and Δ𝑡2𝐾, the Backward Euler scheme can be
applied directly, without any index reduction or elimination of variables. The Backward Euler scheme
is obtained by substituting the following Backward Euler equations into the dynamical system,

x𝑛+1 = x𝑛 + Δ𝑡ẋ𝑛+1,
ẋ𝑛+1 = ẋ𝑛 + Δ𝑡ẍ𝑛+1. (3.53)

This leads to

(𝑀 + Δ𝑡2𝐾)ẍ𝑛+1 = 𝐹 − 𝐾(x𝑛 + Δ𝑡ẋ𝑛). (3.54)

This is solved for ẍ𝑛+1 and with this, also the first derivative ẋ𝑛+1 and the unknown x𝑛+1 can be derived
using Equation 3.53. For this system of equations, 𝑀 +Δ𝑡2𝐾 is non-singular, so Backward Euler could
be applied directly. This is more efficient than the other approaches for handeling DAEs, therefore this
will be used. However, the elimination approach will be considered as well when using MOR, because
the algebraic equations should be treated separately from the differential equations in some MOR
techniques.
2This interpolation step will be explained in section 3.5
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Initial conditions
When a translation is set for one of the rollers, the belt has an initial displacement before starting the
simulation. This initial displacement is obtained by solving𝐾x = 0 for x. Furthermore, the initial velocity
is zero except for the rotational speed of the drive roller and the velocity of the nodes on the drive roller
according to Equation 3.34.

3.5. Interpolation step
Since the system of equations described in the preceding section is constructed based on equations
that hold for displacement at grid points that are fixed in space and not fixed on the belt material, it
becomes necessary to interpolate the displacement after each timestep onto these grid points. We call
this process the interpolation step and it ensures that we can start each timestep with a comparable
set of governing equations. The interpolation step is implemented as follows: the final displacement on

𝑢̃𝑖+1𝑢̃𝑖
𝑥𝑖 𝑥𝑖+1

ℓ𝑖

ℓ𝑖 − 𝑢̃𝑖 𝑢̃𝑖+1

𝑎 (1 − 𝑎)

Figure 3.3: Visualization of the interpolation step for grid node 𝑖 + 1. 𝑢̃ denotes the temporary solution before interpolation.

a grid point 𝑖 + 1 after one timestep is a combination of the displacement of grid point 𝑖 and grid point
𝑖 + 1, resulted from solving the system of equations described in the preceding section. It is assumed
that the belt moves in the direction from grid point 𝑖 to 𝑖 + 1. The resulting nodal displacement will be in
reference to a moving grid that also is displaced by the mean displacement of the belt. Therefore, the
mean displacement is subtracted from the resulting nodal displacement. This summarizes to

𝑢𝑖+1 = 𝑎𝑖+1 ⋅ 𝑢̃𝑖 + (1 − 𝑎𝑖+1) ⋅ 𝑢̃𝑖+1 − ū. (3.55)

To ensure that grid points closer to the final displacement have a greater influence, we introduced a
weight factor, denoted as 𝑎𝑖+1, with the value

𝑎𝑖+1 = 𝑢̃𝑖+1
ℓ𝑖 − 𝑢̃𝑖 + 𝑢̃𝑖+1

. (3.56)

This weight factor contains values for intermediate displacements 𝑢̃𝑖+1 and 𝑢̃𝑖. Because the weight
factor is multiplied by the intermediate displacement itself, a quadratic term appears. This makes the
interpolation step non-linear.

By subtracting the mean in this interpolation step, the displacement in 𝑥 will remain small. For
every roller, the rotation in 𝑧 direction (direction of the movement of the belt) will be ’interpolated’ as
well. Because it is only one value, this interpolation means that the mean, which is the value itself, is
subtracted and the rotation is set to zero after each timestep.

It is important to note that the interpolation step relies on the assumption that a grid point at the
current timestep does not move farther than the adjacent grid point from the previous timestep. In other
words, the displaced grid point remains between its original position and the next grid point from the
previous timestep. This ensures that the interpolation step only involves values between adjacent grid
points, and no extrapolation is required. To ensure this behavior, wemust select a timestep that satisfies
the Courant-Friedrichs-Lewy (CFL) condition [27]. The CFL condition requires that the timestep is
sufficiently small such that the displacement of any grid point within one timestep is less than the
distance to the next grid point. If this condition is violated, the numerical domain of dependence would
no longer align with the true physical domain of dependence, leading to instability or inaccurate results.

During the interpolation step, the mass is also transported. For one element 𝑖, a part of the mass of
the previous element is added and also a part of the mass of the element is subtracted, which results
in

𝑚𝑝
𝑖 = 𝑚𝑝−1

𝑖 + 𝑎𝑖−1 ⋅ 𝑚𝑝−1
𝑖−1 − 𝑎𝑖 ⋅ 𝑚𝑝−1

𝑖 , (3.57)
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after timestep 𝑝. This becomes particularly significant when the displacement on the left grid point of
an element is notably greater than the displacement on the right grid point. In such cases, the incoming
mass to the element is higher the outgoing mass, resulting in an increase in the mass of that element.
This increase then also has to be updated in the dynamical system, which introduces non-linearities in
the mass matrix as well.

Due to this interpolation step, the non-linearities mentioned in this subsection appear. Additionally,
we cannot directly relate the displacement of the nodes on the roller with the roller motion. Because
of that, the governing algebraic and differential equations need to be recomputed after each timestep.
This makes the modeling very inefficient. One solution would be to use floating frame of reference
formulation. This is one of the most common approaches for modeling multibody systems. In [7],
multibody dynamics is used to develop a finite element model of a conveyor belt, with the belt modeled
as a one-dimensional string. Furthermore, model order reduction has been applied on simulations that
use this approach by Nowakowski et al. [28]. Nonetheless, in this study we focus on this modeling
choice as it is part of the existing software and remodeling is out of the scope of this research.



4
Extension to the two-dimensional model

In this section, we discuss the extension of the previous one-dimensional model to the two-dimensional
model that is used in available simulation software [14]. The equations for the free-belt segments and
roller segments are treated in section 4.1 and section 4.2, respectively. In section 4.3, the system
of equations is assembled and in section 4.4, different methods for solving the resulting DAE are de-
scribed. Finally, the differences regarding the interpolation step are explained in section 4.5.

This two-dimensional model can capture all translations and rotations in the three-dimensional
space and provides a fuller description of the effect of misalignments of rollers. With this model, we
can analyse both longitudinal and lateral displacement.

In the one-dimensional model, the belt is modeled as a string. In this two-dimensional model, the
belt is modeled as a two-dimensional plane. This two-dimensional plane rotates around rollers that are
defined in a three-dimensional space. Because of this, these rollers can translate and rotate around
three dimensions. Therefore, first it is established how to project the belt plane in the three-dimensional
space onto a two-dimensional plane. The result of the projection is shown in Figure 4.1. Note that the
𝑧 direction is the same for the two-dimensional belt and three-dimensional space, but the 𝑥 direction is
not. Therefore, we will indicate 𝑥3𝐷 as the 𝑥-coordinate in the three-dimensional space and 𝑥 as the
𝑥-coordinate of the two-dimensional belt. For conveniency, we will do the same for 𝑦3𝐷 and 𝑧3𝐷.

The belt is composed of free-belt segments and of roller segments. The first segment in the two-
dimensional belt is the segment that is on roller 1 (the numbering of the rollers is defined as in chapter 2,
and is in order of the belt path).
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(a) Belt in the three-dimensional space. Taken
from [14].

𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

𝑥
(b) Belt in a two-dimensional space.

Figure 4.1: Result from the projection of belt from a three-dimensional space to a two-dimensional space.

We have discretized the two-dimensional domain of the belt, which we will refer to as Ω. Belt
segment 𝑖 is indicated with Ω𝑖. The contactline left from Ω𝑖 is 𝜕Ω𝑖,𝑙 and the contactline right from
this segment is 𝜕Ω𝑖,𝑟. A free-belt segment is shown in Figure 4.2. One free-belt segment does not
include the contactlines, marked in red. One roller segment Ω

𝑖
, shown in Figure 4.3, does include

the contactlines. The 𝑥-coordinates of all nodes will not change over time and the interpolation step

21



22 4. Extension to the two-dimensional model

will account for movement of grid points. The 𝑧-coordinate of all nodes can change over time and the
𝑧-coordinate will not be interpolated.

𝜕Ω𝑖,𝑙 𝜕Ω𝑖,𝑟

𝑧

𝑥
Figure 4.2: Free-belt segment Ω𝑖.

𝜕Ω𝑖,𝑟
𝜕Ω𝑖,𝑙

Figure 4.3: Roller segment Ω𝑖.

On one roller, both translational and rotational displacements can be defined. A translational dis-
placement can also be combined with a rotational displacement to get a displaced roller. Both the types
of displacements can be defined on all three directions that are depicted in Figure 2.3. The translational
displacement will be defined by either setting a translation or a force. The rotational displacement
can be defined by either setting a rotation or a torque. It is not possible to set a force/torque together
with a translation/rotation in one direction. When there is neither a force/torque or a translation/rotation
set, the roller is assumed to be fixed in that direction, so with a translation/rotation of zero. In this case,
the values for force/torque can be nonzero and will be calculated during post-processing as an effect
of the displacement resulting from the dynamical system.

4.1. Free-belt segments
On the free-belt parts, we will consider the belt to be under plane stress. It is assumed that the belt is not
able to move in the transverse direction, perpendicular to the plane. Furthermore, there is no difference
in displacement over the thickness of the belt. This is justified, since the thickness of the belt is very
small related to the width and length of the belt. Therefore, we can assume that the normal stress and
the shear stresses perpendicular to the plane are zero, which is crucial in applying the concept of plane
stress [21].

The two-dimensional state of stress in one element is illustrated in Figure 4.4. The normal stresses
𝜎𝑥 and 𝜎𝑧 act in the 𝑥 and 𝑧 directions and the shear stresses 𝜏𝑥𝑧 and 𝜏𝑧𝑥 act on the edges of the
element. Because the moments about the axis normal to the plane have to be summed to zero, we
have 𝜏𝑥𝑧 = 𝜏𝑧𝑥 (for a proof, see [21]). The three stresses are contained in the vector,

𝜎 = ⎡⎢
⎣

𝜎𝑥
𝜎𝑧
𝜏𝑥𝑧

⎤⎥
⎦

. (4.1)



4.1. Free-belt segments 23

𝑑𝑥

𝑑𝑧

𝜎𝑧

𝜎𝑧

𝜎𝑥 𝜎𝑥

𝜏𝑥𝑧

𝜏𝑧𝑥

𝜏𝑥𝑧

𝜏𝑧𝑥

𝑥

𝑧

Figure 4.4: Two dimensional state of stress. Based on [21].

Hooke’s law for two-dimensional plane stress is

𝜎 =𝐷𝜖, (4.2)

𝐷 = 𝐸
1 − 𝜈2

⎡⎢
⎣

1 𝜈 0
𝜈 1 0
0 0 1−𝜈

2

⎤⎥
⎦

, (4.3)

𝜖 = ⎡⎢
⎣

𝜖𝑥
𝜖𝑧

𝛾𝑥𝑧

⎤⎥
⎦

, (4.4)

where 𝜖 is the strain on the element. The longitudinal strains are the changes in length per unit length
of material fibers originally parallel to the 𝑥 and 𝑧 axes when the element undergoes deformation.
The shear strain is the change in the original right angle made between 𝑑𝑥 and 𝑑𝑧 when the element
undergoes deformation. The strain can be obtained from the derivatives of the displacement in the 𝑥
and 𝑧 direction with

𝜖𝑥 = 𝜕𝑑𝑥
𝜕𝑥 , 𝜖𝑧 = 𝜕𝑑𝑧

𝜕𝑧 , 𝛾𝑥𝑧 = 𝜕𝑑𝑥
𝜕𝑧 + 𝜕𝑑𝑧

𝜕𝑥 . (4.5)

4.1.1. Meshing the domain
For the finite element analysis, a finite element discretization has to be defined on the two-dimensional
belt. The belt is discretized into a rectangular grid of 𝑛𝜉 × 𝑛𝜂 grid points. The number of grid points in
the 𝑧 direction is equal over the whole length of the belt. The number of grid points in the 𝑥 direction
is defined per segment. There are grid points located exactly at the contactlines, represented in red in
Figure 4.1b. Every grid point has an index (𝑖, 𝑗) starting in the lower left corner. With lexicographical
reordering of the indices we get an index 𝑘 = 𝑗 + 𝑛𝜂(𝑖 − 1) for each grid point. The lexicographical
reordering is done such that the grid points over the width of the belt are consecutive. In this way, the
segments can be separated clearly in the system of equations.

Using this discretization, rectangular grid elements are created, each with four connecting nodes,
shown in Figure 4.5. The coordinates of the node 𝑘 are represented by (𝑥𝑘, 𝑧𝑘) or (𝑥𝑖,𝑗, 𝑧𝑖,𝑗). Each
node has two degrees of freedom, the displacement in the in 𝑥 and 𝑧 directions, notated as 𝑢𝑘 and 𝑣𝑘,
respectively (𝑢𝑖,𝑗 and 𝑣𝑖,𝑗 are used as well for clarity in this chapter).

ℓ

𝑤

𝑣𝑘+1

𝑢𝑘+𝑛𝜉

(𝑖, 𝑗) = (𝑘)

(𝑖, 𝑗 + 1) = (𝑘 + 1)

(𝑖 + 1, 𝑗) = (𝑘 + 𝑛𝜉)

(𝑖 + 1, 𝑗 + 1) = (𝑘 + 𝑛𝜉 + 1)

Figure 4.5: One grid element.
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4.1.2. Construction of finite dimensional function spaces
For setting up the finite element problem, the basis functions for the finite element space have to be
chosen. For every grid element there are four bilinear basis functions defined. For the element in
Figure 4.5, the four basis functions are

𝑁𝑖,𝑗(𝑥, 𝑧) = 1
𝑙𝑤(𝑥 − 𝑥𝑖+1,𝑗)(𝑧 − 𝑧𝑖,𝑗+1), (4.6)

𝑁𝑖,𝑗+1(𝑥, 𝑧) = − 1
𝑙𝑤(𝑥 − 𝑥𝑖+1,𝑗+1)(𝑧 − 𝑧𝑖,𝑗), (4.7)

𝑁𝑖+1,𝑗(𝑥, 𝑧) = − 1
𝑙𝑤(𝑥 − 𝑥𝑖,𝑗)(𝑧 − 𝑧𝑖+1,𝑗+1), (4.8)

𝑁𝑖+1,𝑗+1(𝑥, 𝑧) = 1
𝑙𝑤(𝑥 − 𝑥𝑖,𝑗+1)(𝑧 − 𝑧𝑖+1,𝑗). (4.9)

With these four basis functions, we can describe a displacement at any interior point (𝑥, 𝑧) in this
element from the discrete displacement on the four nodes connected to one grid element with

u(𝑥, 𝑧) = ∑
𝑖,𝑗

𝑁𝑖,𝑗(𝑥, 𝑧) ⋅ [ 𝑢𝑖,𝑗
𝑣𝑖,𝑗

] , (4.10)

or equivalently,

u(𝑥, 𝑧) = [ 𝑁𝑖,𝑗 0 𝑁𝑖,𝑗+1 0 𝑁𝑖+1,𝑗 0 𝑁𝑖+1,𝑗+1 0
0 𝑁𝑖,𝑗 0 𝑁𝑖,𝑗+1 0 𝑁𝑖+1,𝑗 0 𝑁𝑖+1,𝑗+1

]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑢𝑖,𝑗
𝑣𝑖,𝑗

𝑢𝑖,𝑗+1
𝑣𝑖,𝑗+1
𝑢𝑖+1,𝑗
𝑣𝑖+1,𝑗

𝑢𝑖+1,𝑗+1
𝑣𝑖+1,𝑗+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.11)

In Figure 4.6, the four basis functions are depicted. Note that the finite element basis functions satisfy

Figure 4.6: Basis functions per grid element.

the boundary Kronecker-Delta property. That is, every basis functions is 1 on the associated grid point
and 0 on the other grid points. This Kronecker-Delta property assures that on the grid nodes, the
displacement u(𝑥𝑘, 𝑧𝑘) is the same as the discrete displacement on that grid point (𝑢𝑘, 𝑣𝑘), obtained by
the finite element solver. Finally, we have that 𝑁𝑖,𝑗 + 𝑁𝑖,𝑗+1 + 𝑁𝑖+1,𝑗 + 𝑁𝑖+1,𝑗+1 = 1 for every point in
the grid element.

4.1.3. Assembly of equations matrices
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Derive the stiffness matrix
We can describe the strain with the discrete displacement as

𝜖𝑥 = 𝜕𝑑𝑥
𝜕𝑥 = ∑

𝑖,𝑗

𝜕𝑁𝑖,𝑗
𝜕𝑥 (𝑥, 𝑧) ⋅ 𝑢𝑖,𝑗, (4.12)

𝜖𝑧 = 𝜕𝑑𝑧
𝜕𝑧 = ∑

𝑖,𝑗

𝜕𝑁𝑖,𝑗
𝜕𝑧 (𝑥, 𝑧) ⋅ 𝑣𝑖,𝑗, (4.13)

𝛾𝑥𝑧 = 𝜕𝑑𝑥
𝜕𝑧 + 𝜕𝑑𝑧

𝜕𝑥 = ∑
𝑖,𝑗

𝜕𝑁𝑖,𝑗
𝜕𝑧 (𝑥, 𝑧) ⋅ 𝑢𝑖,𝑗 + 𝜕𝑁𝑖,𝑗

𝜕𝑥 (𝑥, 𝑧) ⋅ 𝑣𝑖,𝑗. (4.14)

In matrix/vector expressions, this is equivalent with

⎡
⎢
⎢
⎣

𝜖𝑥

𝜖𝑧

𝛾𝑥𝑧

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝜕𝑁𝑖,𝑗
𝜕𝑥 0 𝜕𝑁𝑖,𝑗+1

𝜕𝑥 0 𝜕𝑁𝑖+1,𝑗
𝜕𝑥 0 𝜕𝑁𝑖+1,𝑗+1

𝜕𝑥 0
0 𝜕𝑁𝑖,𝑗

𝜕𝑧 0 𝜕𝑁𝑖,𝑗+1
𝜕𝑧 0 𝜕𝑁𝑖+1,𝑗

𝜕𝑧 0 𝜕𝑁𝑖+1,𝑗+1
𝜕𝑧

𝜕𝑁𝑖,𝑗
𝜕𝑧

𝜕𝑁𝑖,𝑗
𝜕𝑥

𝜕𝑁𝑖,𝑗+1
𝜕𝑧

𝜕𝑁𝑖,𝑗+1
𝜕𝑥

𝜕𝑁𝑖+1,𝑗
𝜕𝑧

𝜕𝑁𝑖+1,𝑗
𝜕𝑥

𝜕𝑁𝑖+1,𝑗+1
𝜕𝑧

𝜕𝑁𝑖+1,𝑗+1
𝜕𝑥

⎤
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝐵

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑢𝑖,𝑗

𝑣𝑖,𝑗

𝑢𝑖,𝑗+1

𝑣𝑖,𝑗+1

𝑢𝑖+1,𝑗

𝑣𝑖+1,𝑗

𝑢𝑖+1,𝑗+1

𝑣𝑖+1,𝑗+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(4.15)

For all grid points, the principle of minimum potential energy is used to create an equation for the
discrete displacements. This principle states that a system will be displaced in a way that minimized
the potential energy. The potential energy is given by

𝑃 = 𝑈 − 𝐹𝑒𝑙𝑒𝑚𝑒𝑛𝑡u𝑒𝑙𝑒𝑚𝑒𝑛𝑡, (4.16)

where 𝑈 is the strain energy, 𝐹𝑒𝑙𝑒𝑚𝑒𝑛𝑡 the total force on an element and u𝑒𝑙𝑒𝑚𝑒𝑛𝑡 the displacements on
the nodes. The strain energy is given by

𝑈 = 1
2 ∫

𝑉
𝜖⊤𝜎𝑑𝑉 , (4.17)

with 𝑉 the volume of the element. Because we have a constant thickness 𝑡𝑏 of the element, we can
get this out of the integral. Using this and Hooke’s law as in Equation 4.2, we get

𝑈 = 1
2𝑡𝑏 ∫

𝑧𝑖+1

𝑧𝑖

∫
𝑥𝑖+1

𝑥𝑖

𝜖⊤𝐷𝜖 𝑑𝑥 𝑑𝑧. (4.18)

By the relation in Equation 4.15, the strain energy is expressed in terms of displacement like

𝑈 = 1
2𝑡𝑏 ∫

𝑧𝑖+1

𝑧𝑖

∫
𝑥𝑖+1

𝑥𝑖

u⊤
𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐵⊤𝐷𝐵u𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑑𝑥 𝑑𝑧. (4.19)

Because the terms in u𝑒𝑙𝑒𝑚𝑒𝑛𝑡 are displacements on the nodes, and are therefore not dependent on 𝑥
or 𝑧, they can be taken out of the integral, which results in

𝑈 = 1
2𝑡𝑏u⊤

𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ∫
𝑧𝑖+1

𝑧𝑖

∫
𝑥𝑖+1

𝑥𝑖

𝐵⊤𝐷𝐵 𝑑𝑥 𝑑𝑧 u𝑒𝑙𝑒𝑚𝑒𝑛𝑡. (4.20)
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As we are looking for the minimum of the potential energy, we want the derivative of 𝑃 with respect to
u𝑒𝑙𝑒𝑚𝑒𝑛𝑡 to be zero. This results in

𝜕𝑃
𝜕u = [𝑡𝑏 ∫

𝑧𝑖+1

𝑧𝑖

∫
𝑥𝑖+1

𝑥𝑖

𝐵⊤𝐷𝐵 𝑑𝑥 𝑑𝑧]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝐾𝑒𝑙𝑒𝑚𝑒𝑛𝑡

u𝑒𝑙𝑒𝑚𝑒𝑛𝑡 − 𝐹𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 0 (4.21)

⇒ (4.22)
𝐹𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 𝐾𝑒𝑙𝑒𝑚𝑒𝑛𝑡u𝑒𝑙𝑒𝑚𝑒𝑛𝑡. (4.23)

Derive the mass matrix
Similar to the one-dimensional case, we have that Newton’s second law of motion states that the total
forces have to be equal to the mass times the acceleration. We likewise take the lumped mass for
generating the mass matrix 𝑀𝑖, which is

𝑚𝑖 = 𝜌𝑡𝑏𝑤𝑖ℓ𝑖
4 , (4.24)

𝐹𝑖 = 𝐾𝑖u𝑖 + 𝑀𝑖ü𝑖. (4.25)

𝐹𝑖 is the eight-dimensional force vector of the forces in 𝑥 and 𝑧 direction on all the four connecting
nodes,

𝐹𝑖 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐹𝑥,(𝑖,𝑗)
𝐹𝑧,(𝑖,𝑗)

𝐹𝑥,(𝑖,𝑗+1)
𝐹𝑧,(𝑖,𝑗+1)
𝐹𝑥,(𝑖+1,𝑗)
𝐹𝑧,(𝑖+1,𝑗)

𝐹𝑥,(𝑖+1,𝑗+1)
𝐹𝑧,(𝑖+1,𝑗+1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.26)

4.2. Roller segments
The boundary condition is analogous to the one-dimensional case. The motion of the grid points on the
rollers is described algebraically. The assumption is made that the belt sticks to the rollers, ensuring
the displacement of the belt on the roller is a result of the displacement of the roller in the following way:

u̇𝑟 = 𝑅𝑟 [ ḋ𝑟
̇𝛼𝑟

] . (4.27)

When rotations are defined on rollers, the order of the rotations is of importance. First, the rotation in
the 𝑥3𝐷 direction is applied, then in the 𝑦3𝐷 direction and finally in the 𝑧3𝐷 direction. It can be verified
that the resulting displacement is different when the order of the rotations is different.

The location of the grid points first have to be expressed in the three-dimensional space. After that,
the rotations and displacements will be applied. Finally, the displacement on the two-dimensional belt
will be calculated by subtracting the old location on the two-dimensional belt from the new location on
the two-dimensional belt. All these operations are incorporated within the transformation 𝑅𝑟. Because
we want a Dirichlet boundary condition as in the one-dimensional case, we discretize in time here first
with Backward Euler to describe u𝑟(𝑡) (based on Equation 3.35) with

u𝑟(𝑡) − 𝑅𝑟 [ d𝑟(𝑡)
𝛼𝑟(𝑡) ] = u𝑟(𝑡 − Δ𝑡) − 𝑅𝑟 [ d𝑟(𝑡 − Δ𝑡)

𝛼𝑟(𝑡 − Δ𝑡) ] . (4.28)

The matrix 𝑅𝑟 also incorporates the length of the node to the center of the roller. This is for calculating
the influence of the rotations in the three-dimensional space to a displacement on the two-dimensional
belt. For a rotation in 𝑧3𝐷 direction, this value is the radius of the node, so constant over the total
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simulation (if the roller does not contain thickenings or other imperfections). But for a rotation in 𝑥3𝐷

and 𝑦3𝐷, the value is dependent on the 𝑧 coordinate of the node on the roller. This 𝑧 coordinate will
change if the belt moves in the 𝑧 direction, which happens when misalignments are set or the belt is
stretched (due to the effect of the Poisson’s ratio). This causes the operation 𝑅𝑟 to be non-linear. Note
that, because the non-linearity is small, we could ignore this in the discretization step in time to obtain
Equation 4.28.

4.2.1. Torque and force balance
Next to these algebraic equations, the equations for the torque and forces will be added to the system.
When there is a force or torque set on the roller, we use the finite element approach to describe the
equations that have to hold for this force or torque. Similar to the one-dimensional case, we only have
a mass contribution to the forces at the elements on the rollers. This is the same lumped mass matrix
as in Equation 4.24.

In the one-dimensional model, only a torque in one dimension can be set. In this case, however,
we have a force in two dimensions on the belt, while seeking to satisfy a force in the three-dimensional
space. So the two-dimensional force first has to be described in the three-dimensional space. After
that, the force and torque in every dimension can be described with the sum of the nodal forces. For
the force and torque in the 𝑥3𝐷-direction, this will be done in the following way:

𝐹𝑟,𝑥 = ∑ 𝐹𝑥,𝑘, (4.29)

𝑇𝑟,𝑥 = ∑ r𝑥,𝑘 × [ 𝐹𝑦,𝑘
𝐹𝑧,𝑘

] , (4.30)

where r𝑥,𝑘 is the vector from grid point 𝑘 to the rotational 𝑥 axis of the roller, i.e. the absolute difference
between the 𝑦3𝐷, 𝑧3𝐷 coordinate of the node and the 𝑦3𝐷, 𝑧3𝐷 coordinate of the rotational 𝑥 axis. Note
that this radius r𝑥,𝑘 can change over time when the 𝑦3𝐷 or 𝑧3𝐷 coordinate of the node changes. This
can happen when the roller is misaligned in a different axis, but also when the belt is stretched, because
of the Poisson effect. This is also true for r𝑦,𝑘 and causes small non-linearities.

For the nodal forces 𝐹𝑥,𝑘 on the contactlines, the stiffness of the element on the adjacent free-belt
segment has to be taken into account. As a result, the equations that describe the torque and force
on one roller also involve displacements of the contactlines and adjacent free-belt nodes next to the
accelerations of the nodes on the roller.

4.3. System of equations
Every displacement of the belt on the rollers is treated as an unknown in the system of equations. Next
to these, the unknowns include all the displacements on the free-belt segments and the translations
and rotations of the rollers. Each node in Ω has two degrees of freedom: 𝑢𝑘 and 𝑣𝑘, in the 𝑥 and
𝑧 direction respectively. u is the displacement in 𝑥 and 𝑧 directions of all the grid nodes in Ω and is
ordered alternately, where 𝑛𝜉 is the number of grid points in 𝑥 direction and 𝑛𝜂 the number of grid points
in the 𝑧 direction. 𝑛 is the total number of unknowns on the grid points and u is given by

u =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑢𝑘
𝑣𝑘

𝑢𝑘+1
𝑣𝑘+1

⋮
𝑢𝑛𝜂
𝑣𝑛𝜂

⋮
𝑢𝑛𝜉𝑛𝜂
𝑣𝑛𝜉𝑛𝜂

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ𝑛, 𝑛 = 2𝑛𝜉𝑛𝜂. (4.31)

Furthermore, we treat the rotations and translations (in three directions) on the rollers as unknowns.
For every roller, that adds six unknowns to the system, indicated with

𝜒𝑟 = [ d𝑟
𝛼𝑟

] ∈ ℝ6. (4.32)
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For 𝑝 rollers, we have a total of 𝑁 = 𝑛 + 6𝑝 unknowns:

x =
⎡
⎢⎢
⎣

u
𝜒𝑟1

⋮
𝜒𝑟𝑝

⎤
⎥⎥
⎦

. (4.33)

The system that includes the dynamics on the free-belt parts, the algebraic equations on the roller parts
and the equations for rotation/translation of the rollers, for a system with three rollers is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐼 … 𝑅𝑟1

𝐾̄𝑓1

… 𝐼 … 𝑅𝑟2

𝐾̄𝑓2

… 𝐼 … 𝑅𝑟3

𝐾̄𝑓3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u𝑟1
u𝑓1
u𝑟2
u𝑓2
u𝑟3
u𝑓3
𝜒𝑟1
𝜒𝑟2
𝜒𝑟3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦𝑚

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 …
𝑀𝑓1

… 0 …
𝑀𝑓2

… 0 …
𝑀𝑓3

𝑅 𝑅 𝑅

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ü𝑟1
ü𝑓1
ü𝑟2
ü𝑓2
ü𝑟3
ü𝑓3
𝜒̈𝑟1
𝜒̈𝑟2
𝜒̈𝑟3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦𝑚

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u𝑟1
(𝑡𝑚−1) − 𝑅𝑟1

𝜒𝑟1
(𝑡𝑚−1)

𝐹𝑓1

u𝑟2
(𝑡𝑚−1) − 𝑅𝑟2

𝜒𝑟2
(𝑡𝑚−1)

𝐹𝑓2

u𝑟3
(𝑡𝑚−1) − 𝑅𝑟3

𝜒𝑟3
(𝑡𝑚−1)

𝐹𝑓3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The equations for the translation and rotation of each roller will be added to this system. This is a
dynamical equation if the force or torque is prescribed and an algebraic (trivial) equation if the translation
or rotation is set to be fixed or static. Each roller is subject to six equations. When the equation for the
translation or rotation is trivial, the given translation or rotation is put in 𝐹 .

4.4. Solving the differential algebraic equations
In section 3.4, different methods for solving a DAE are described. Because the system matrices have
the same structure, the different approaches can be applied to the DAE for the two-dimensional case as
well. Hence, we use direct time integration with Backward Euler here as well. Elimination of variables
will also be considered when applying MOR.

4.4.1. Initial conditions
In case the rollers are misaligned, the belt has an initial displacement. For this initial displacement, the
following system of equations is solved:

𝐾x = 𝐹. (4.34)

We assume u𝑟𝑖
(𝑡−1) − 𝑅𝑟𝑖

𝜒𝑟𝑖
(𝑡−1) = 0. With that, we have in the initial condition that the displacement

of the belt on the rollers has to be exactly equal to the displacement caused by the rotations and
displacements on the rollers. Note that in 𝐹 , the values for the static rotation and translation are given
in the last 6𝑝 entries in 𝐹 .

There is no belt velocity/acceleration involved yet in the displacements of the free-belt, so it is
assumed that a dynamical simulation starts with a free-belt without a velocity. The belt on the idle
rollers and the idle rollers itself have no initial velocity as well. The belt on the drive roller and the drive
roller itself have an initial velocity. These are taken to be as in Equation 4.27, where ̇𝛼𝑟 is given.

For DAEs, it is necessary to have consistent initial conditions [29]. This means that the initial con-
ditions should satisfy the algebraic constraints that are present in the DAE. In this case, the DAE is
satisfied because we use Equation 4.34 to calculate the initial conditions.
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4.5. Interpolation step
The interpolation step is similar to the interpolation step in the one-dimensional case. For this two-
dimensional system, the displacement in the 𝑥 direction is interpolated. The 𝑧 displacement will not be
interpolated. Next to that, the displacements of the nodes on rollers is interpolated differently as the
displacements of the nodes on free-belt segments.

The interpolated displacement is a result of the displacement in the horizontally adjacent grid point
and the grid point itself. Whether the left or the right node is taken as adjacent grid point depends on the
direction of displacement. The interpolation step is visualized in Figure 4.7. In this interpolation step,
the mass is updated as well and the roller rotation in 𝑧3𝐷-direction (not in the 𝑥3𝐷 and 𝑦3𝐷 directions)
is interpolated in a similar way as it is done in the one-dimensional model. As explained in section 3.5,
extrapolation is not possible in the interpolation step. Therefore, the timestep is chosen to ensure that
the CFL condition is satisfied.

Free belt interpolation of nodal information

Free belt transport of mass

Roller surface interpolation of nodal information

i-1
i-1

i

i
i+1 i+1

i+1
i+1

i

i

i-1

i-1

i-1 i

Figure 4.7: Interpolation for a free-belt (upper-left) and on the radius-surface (upper-right) and transfer of mass (lower) for the
interpolation phase after one time-step. Taken from [14].

In section 4.2, we explained that the operation𝑅𝑟 in the stiffnessmatrix contains small non-linearities.
In addition, the interpolation step brings non-linearities into the system. First of all, the interpolation of
nodal information is based on a comparable weight factor as in section 3.5. This introduces a quadratic
term in the update operation. Furthermore, the element mass is transported and therefore not constant
for the dynamic simulation. Therefore, the mass matrix also contains non-linearities.

In this chapter, we have shown how the two-dimensional model is set up. The structure of the
equations and the modeling steps in the two-dimensional case are analogous to those for the simple
one-dimensional case derived in the previous chapter. Therefore, we will apply MOR on the two-
dimensional case in the same way as we would in the one-dimensional case. We expect comparable
characteristics of the different MOR methods when applying them on the one- and two-dimensional
models.





5
Model order reduction

This chapter introduces methods for reducing the dynamical system that describes the movement of
a one- and two-dimensional belt. In section 5.1, general projection based model order reduction is
explained of which two projection based methods are outlined, modal decomposition and POD. In sec-
tion 5.2, DMD is explained. The three MOR methods mentioned in this chapter will be applied on the
system of equations. The methods are proposed for linear systems of equations. However, as seen in
chapter 3 and chapter 4, the system is nonlinear because of the weakly nonlinear governing equations
and the nonlinear interpolation step. Except, since we expect that our conveyor belt system becomes
weakly nonlinear, we will focus on linear MOR.

As discussed in the introduction, non-intrusive MOR methods operate by constructing a ROM while
not requiring explicit knowledge of the original model equations. Therefore, non-intrusive MOR meth-
ods use data obtained from high-order simulations or experiments (data-driven). These methods are
particularly useful when the system’s dynamics are highly complex or when the governing equations
are difficult to access or modify. Some example methods of non-intrusive MOR are Dynamic Mode
Decomposition [30], Deep Convolutional Autoencoders [31] and methods using neural networks [32].
Dynamic Mode Decomposition is intended for linear systems. An autoencoder can also be used to
describe the states of non-linear systems in a reduced setting. With neural networks, both non-linear
and linear dynamical systems can be learned. It is also possible to include known information of the
system when using neural networks, with physics-informed neural networks [33].
On the other hand, intrusive MOR methods involve directly modifying the governing equations of the
original model to derive a ROM. For this reduction, we can use properties of the underlying equations
of the system (model-driven) or use simulation data (data-driven). While intrusive methods may re-
quire additional effort to implement, they can offer significant advantages in terms of accuracy because
detailed knowledge of the system dynamics is used, which is not the case for non-intrusive MOR meth-
ods. Some examples are Proper Orthogonal Decomposition [34] (data-driven), modal decomposition
[35] (model-driven) and balanced truncation [36] (model-driven).

We want to reduce the model for different misalignments of rollers. The misalignments can be seen
as parameters that determine the dynamical system. For parametric systems, intrusive parametric
model order reduction techniques have been developed [37]. These techniques provide a ROM for
the full set of parameters. Once the model is reduced, the result for all the different parameters can
be computed efficiently with this reduced model. The reduction of this system can be extended to
parametric model order reduction when model order reduction appears to be not efficient enough, but
this will be outside of the scope of this research.

For selecting either a non-intrusive or intrusive method, the computational effort of simulations and
prior knowledge are considered. In this case, where simulations are computationally expensive and
there exists prior knowledge of the dynamical system, we will start by employing intrusive MOR tech-
niques. By directly modifying the governing equations, intrusive methods can preserve important sys-
tem properties and ensure the accuracy and robustness of the reduced order model. Next to that, there
is no need for results from computationally expensive simulations. However, when we want to apply
MOR on the full simulation, not only on the dynamical system step, we still have a part of the simula-
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tion where the underlying equations are considered unknown, namely the interpolation step. For this
reason, also non-intrusive MOR will be investigated.

5.1. Projection-based model order reduction
Projection-based methods in MOR aim to construct a reduced-order model by projecting the high-
dimensional system onto a lower-dimensional subspace [38]. This subspace captures the dominant
behavior of the system while discarding less significant dynamics. The reduced-order model is typi-
cally expressed in terms of a low-dimensional state vector z(𝑡) ∈ ℝ𝑟, where 𝑟 is the desired reduced
order. First, we will introduce a general projection-based MOR method. Then, two methods to find the
projection are described.

Let us consider a high-dimensional system described by the equations

𝐾x + 𝑀 ẍ = 𝐹, (5.1)

where 𝐾 ∈ ℝ𝑁×𝑁 and 𝑀 ∈ ℝ𝑁×𝑁 are the stiffness and mass matrices, respectively, x(𝑡) ∈ ℝ𝑁

represents the state vector and 𝐹 ∈ ℝ𝑁 denotes the time-dependent external forcing. Projection-based
MOR involves finding a transformation matrix 𝑉 ∈ ℝ𝑁×𝑟 that matches the high-dimensional state x(𝑡)
to a low-dimensional space via a linear transformation 𝑉 . This projection is represented as

x(𝑡) ≈ 𝑉 z(𝑡), (5.2)

where z(𝑡) ∈ ℝ𝑟 is the reduced state vector. Substituting x from Equation 5.2 into Equation 5.1, we
obtain the system for the reduced state:

𝐾𝑉 z + 𝑀𝑉 z̈ = 𝐹. (5.3)

However, the system in Equation 5.3 is typically overdetermined for z, as it has 𝑁 equations and only
𝑟 unknowns. To address this, we enforce orthogonality to some space spanned by the columns of a
matrix 𝑊 ∈ ℝ𝑁×𝑟. This leads to

𝑊 ⊤𝐾𝑉 z + 𝑊 ⊤𝑀𝑉 z̈ = 𝑊 ⊤𝐹. (5.4)

The reduced-order model is obtained by defining

𝐾̂ ∶= 𝑊 ⊤𝐾𝑉 ,
𝑀̂ ∶= 𝑊 ⊤𝑀𝑉 ,

̂𝐹 ∶= 𝑊 ⊤𝐹.

When 𝑊 = 𝑉 and 𝑉 is orthonormal, this is called the Galerkin projection, otherwise it is the more
general Petrov-Galerkin projection [38].

5.1.1. Modal decomposition
In the context of structural dynamics and finite element analysis, modal decomposition is often em-
ployed to identify the characteristic modes of vibration of a mechanical structure [39]. These modes
represent the natural oscillations within the structure and can be used to understand its dynamic re-
sponse to external forces.

Modal decomposition identifies the characteristic modes of a system by solving the generalized
eigenvalue problem of the free vibration problem of Equation 5.1 given by

(𝐾 − 𝜔2
𝑖 𝑀)𝜙𝑖 = 0, (5.5)

where the eigenvalue 𝜆𝑖 = 𝜔2
𝑖 is one natural frequency of the system and 𝜙 is the eigenvector (or

eigenmode). When the slowly varying dynamics of the system are considered, the response can be
accurately approximated by 𝑟 low frequency modes [39].

x(𝑡) ≈
𝑟

∑
𝑖=1

𝜙𝑖𝑧𝑖(𝑡) = Φz(𝑡). (5.6)
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Given that 𝑟 << 𝑁 , we achieve a reduced state z(𝑡) through a Petrov-Galerkin projection where 𝑉 =
𝑊 = Φ. Note that Φ is not orthonormal, but generally is constructed to be 𝑀 -orthogonal, that is

𝜙𝑗𝑀𝜙𝑖 = 𝛿𝑖𝑗 = { 0 if 𝑖 ≠ 𝑗,
1 if 𝑖 = 𝑗. (5.7)

5.1.2. Proper Orthogonal Decomposition
POD is a widely used technique for MOR that aims to capture the dominant modes of a dynamical
system [34]. Given a set of snapshots x1,x2, ...,x𝑚, where each x𝑖 ∈ ℝ𝑁 represents the state at a
particular time. These snapshots are arranged in a snapshot matrix

𝑋 = [x1,x2, ...,x𝑚] ∈ ℝ𝑁×𝑚. (5.8)

The key step in POD is to compute the largest 𝑟 eigenvalues with their corresponding eigenvectors of
the correlation matrix 𝑋⊤𝑋. Or, equivalently, we can compute the singular value decomposition (SVD),
where Σ contains the singular values in decreasing order. The SVD of 𝑋 is

𝑋 = 𝑈Σ𝑉 ⊤, (5.9)
𝑈 ∈ ℝ𝑁×𝑁 , Σ ∈ ℝ𝑁×𝑚, 𝑉 ∈ ℝ𝑚×𝑚. (5.10)

The first 𝑟 columns of 𝑈 capture the most dominant variations in the data and will therefore be used
as POD basis. Usually, the dimension 𝑟 of the lower-dimensional subspace will be chosen after the
computation of the SVD. This is because the singular values give an impression of how much of the
total energy is contained in the basis spanned by the corresponding singular vectors. The goal is to
choose 𝑟 such that the energy contained in the basis, defined by the following statement, is close to
one:

𝐸(𝑟) =
∑𝑟

𝑗=1 𝜎2
𝑗

∑𝑚
𝑗=1 𝜎2

𝑗
. (5.11)

After truncating the SVD with 𝑟 we get

𝑋 ≈ ̃𝑈Σ̃ ̃𝑉 ⊤, (5.12)
̃𝑈 ∈ ℝ𝑁×𝑟, Σ̃ ∈ ℝ𝑟×𝑟, ̃𝑉 ∈ ℝ𝑚×𝑟. (5.13)

Now, the POD basis is defined as ̃𝑈 and the reduced system is obtained by taking 𝑉 = 𝑊 = ̃𝑈 in
Equation 5.4.

The process of selecting snapshots is fundamental to the accuracy and efficiency of POD. It involves
determining the subset of system states or configurations that adequately represent the system’s be-
havior over time and space.

5.2. Dynamic Mode Decomposition
Contrary to the previous methods, this method is equation free. There is no need to project a known
equation onto a reduced space, it is fully based on the gathered input data [30]. This method uses the
same snapshot matrix as the one used in POD. For this snapshot matrix, however, it is important that
this matrix is ordered. Each pair of consecutive snapshots should be separated by the same timestep
Δ𝑡 and assembled like

𝑋 = [x1,x2, ...,x𝑚] ∈ ℝ𝑁×𝑚. (5.14)

To apply DMD, the assumption is made that the state after one timestep of Δ𝑡 is obtained by a linear
map 𝐴 on the previous state. We assume here that this linear map approximates the operation in the
full simulation with

x𝑖+1 ≈ 𝐴x𝑖. (5.15)
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By introducing the succeeding sequence of snapshots in the snapshot matrix

𝑋′ = [x2,x3, ...,x𝑚+1] ∈ ℝ𝑁×𝑚, (5.16)

it follows

𝑋′ ≈ 𝐴𝑋. (5.17)

Dynamic Mode Decomposition identifies the best approximation of the linear map 𝐴. This is done with
the use of the pseudo-inverse of 𝑋, where the compact singular value decomposition is used, given by

𝑋 = 𝑈Σ𝑉 ⊤, (5.18)
𝑈 ∈ ℝ𝑁×𝑚, Σ ∈ ℝ𝑚×𝑚, 𝑉 ∈ ℝ𝑚×𝑚. (5.19)

Because normally, the dimension of 𝑋 is large and to be reduced, we use the truncated singular value
decomposition, given by

𝑋 ≈ ̃𝑈Σ̃ ̃𝑉 ⊤, (5.20)
̃𝑈 ∈ ℝ𝑁×𝑟, Σ̃ ∈ ℝ𝑟×𝑟, ̃𝑉 ∈ ℝ𝑚×𝑟. (5.21)

The operator 𝐴 in DMD is approximated by

𝐴 ≈ 𝑋′𝑋+ = 𝑋′ ̃𝑉 Σ̃−1 ̃𝑈⊤. (5.22)

We reduce this operator by projecting it onto the left singular values of 𝑋 with
̃𝐴 = ̃𝑈⊤𝐴 ̃𝑈 = ̃𝑈⊤𝑋′ ̃𝑉 Σ̃−1. (5.23)

Once ̃𝐴 is determined, the DMD modes and associated dynamics can be extracted. By Equation 5.15,
we calculate x𝑘 with the use of 𝐴𝑘. This can be efficiently calculated by determining the eigenvalues
and eigenvectors of 𝐴: Φ and Λ. Then, we can say

x𝑘 ≈ ΦΛ𝑘Φ−1x0. (5.24)

The eigenvalues are obtained by computing the eigenvectors and eigenvalues of ̃𝐴, that is
̃𝐴𝑊 = 𝑊Λ. (5.25)

When 𝑊, Λ are the eigenvectors and values of ̃𝐴, we know that Φ, Λ are eigenvectors and values of
𝐴. Φ is calculated as done in the exact DMD approach demonstrated by Tu [40]. In this approach,

Φ = 𝑋′ ̃𝑉 Σ̃−1𝑊. (5.26)

To see that Φ are eigenvectors of 𝐴, we write out 𝐴Φ as

𝐴Φ = 𝐴𝑋′ ̃𝑉 Σ̃−1𝑊 = 𝑋′ ̃𝑉 Σ̃−1 ̃𝑈⊤𝑋′ ̃𝑉 Σ̃−1⏟⏟⏟⏟⏟
̃𝐴

𝑊 (5.27)

= 𝑋′ ̃𝑉 Σ̃−1 ̃𝐴𝑊 = 𝑋′ ̃𝑉 Σ̃−1𝑊Λ = ΦΛ. (5.28)

Note that these are not all the eigenvalues and vectors of 𝐴, because ̃𝐴 is of a smaller size.
For calculating the trajectory with Equation 5.24, we cannot use Φ−1, because it is not square. Next

to that, it is not preferred to use the pseudo-inverse, because it can be of high dimension. Therefore
we use the lower dimensional approximation x0 = ̃𝑈v0. And we use a vector b that can approximate
Φ−1x0, that is

x0 = Φb
̃𝑈v0 = 𝑋′ ̃𝑉 Σ̃−1𝑊b

̃𝑈⊤ ̃𝑈v0 = ̃𝑈⊤𝑋′ ̃𝑉 Σ̃−1⏟⏟⏟⏟⏟
̃𝐴

𝑊b

v0 = ̃𝐴𝑊b
v0 = 𝑊Λb
b = (𝑊Λ)+ v0 = (𝑊Λ)+ ( ̃𝑈⊤x0) . (5.29)
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To put all things together, we can describe the trajectory of x by

x𝑘 ≈ ΦΛ𝑘b =
𝑟

∑
𝑖=1

𝑏𝑖𝜙𝑖𝜆𝑘
𝑖 . (5.30)

When we write 𝜆 = 𝑒𝜔Δ𝑡, we have

x𝑘 ≈
𝑟

∑
𝑖=1

𝑏𝑖𝜙𝑖𝑒𝜔𝑘Δ𝑡 =
𝑟

∑
𝑖=1

𝑏𝑖𝜙𝑖⏟
=∶𝜃𝑖

𝑒𝜔𝑡. (5.31)

𝜃𝑖 are the scaled modes and describe the behaviour of the state over time. The selection of modes
is not unique [41]. We will examine the selection of modes for this specific application in the following
chapters.

In some cases, it can happen that x0 is not a correct representation of the state over time. Hence, it
can be inconvenient to use b in the scaled mode. Alternatively, we can describe the trajectory starting
at time 𝑡0 = 𝑘0Δ𝑡 with

x𝑘 ≈ ΦΛ𝑘−𝑘0 b̃, (5.32)

where we compute ̃𝑏 to satisfy x𝑘0
≈ Φb̃ with the same method as in Equation 5.29. When we write

𝜆 = 𝑒𝜔Δ𝑡, we have

x𝑘 ≈
𝑟

∑
𝑖=1

̃𝑏𝑖𝜙𝑖𝑒𝜔(𝑘−𝑘0)Δ𝑡 =
𝑟

∑
𝑖=1

̃𝑏𝑖𝜙𝑖𝑒𝜔(𝑡−𝑡0). (5.33)

DMDoffers several advantages, including its data-driven nature, which allows it to be applied directly
to observational data without the need for detailed knowledge of the underlying system dynamics.
This makes DMD particularly useful when system models are unavailable or when dealing with highly
complex and nonlinear systems. Additionally, DMD provides a clear and interpretable representation
of the system’s dominant coherent structures and their associated temporal behaviors, making it a
valuable tool for understanding complex dynamical systems. However, DMD also has some limitations.
For example, it assumes linear dynamics between consecutive snapshots, which may not always hold
true for nonlinear systems. Moreover, DMD can be sensitive to noise present in the data, which may
affect the accuracy of the extracted modes and temporal dynamics.





6
Numerical results for the
one-dimensional model

We first apply model order reduction methods to the simplified one-dimensional model derived in chap-
ter 3. In section 6.1, the performance measures are introduced and in section 6.2 to section 6.4, details
on the implementations are explained and results are shown.

The one-dimensional model is implemented from scratch and all characteristics of the underlying
equations are known. The results when applying model order reduction on this model are theoretically
substantiated with the knowledge about the model. In the next chapter, we will show whether the
expectation based on these results applies in the two-dimensional belt model as well.

We will apply the three model order reduction methods explained in chapter 5 on this model. The
model is divided into two parts. Each timestep, first the dynamical system is solved and after that the
interpolation step is executed. Because the interpolation step is not a conventional way of modeling
and not fully known for the two-dimensional model, we will treat this interpolation step as a black-box.
That means, we do not know anything about this step except that we can execute it.

Modal decomposition is fully based on the governing equations of the system, POD is based on
the governing equations in combination with simulation data and DMD is fully based on simulation
data. Because we have treated the interpolation step as a black-box, we cannot include that in modal
decomposition and POD. Therefore modal decomposition and POD are only applied on the first part
of each timestep, that is, solving the dynamical system. DMD can include both solving the dynamical
system and the interpolation step in the reduction because it is not based on any of the equations, only
the simulation data.

When reducing the dynamical system with intrusive MOR, we have to be aware that the dynamical
system in this case consists of both algebraic equations and differential equations. Benner and Stykel
[15] have discussed different MOR methods for differential algebraic equations. Most methods rely on
separating the dynamic with the algebraic variables. The algebraic equations are the constraints in the
system. These constraints should also be satisfied exactly in the reduced model [23]. Therefore we
can only reduce the dynamic part of the system. We will first eliminate the algebraic equations with the
procedure as explained in section 3.4. This results in a system of ordinary differential equations.

6.1. Performance measures
We use the Root Mean Squared Error (RMSE) and the Relative Root Mean Squared Error (RRMSE) to
compare two trajectories. Let x and x̃ be the vectors of the actual and approximated states, respectively.
When we have 𝑁 unknowns, the RMSE is defined as

𝑅𝑀𝑆𝐸(x, x̃) = ( 1
𝑁

𝑁
∑
𝑖=1

|𝑥𝑖 − ̃𝑥𝑖|2)
1/2

. (6.1)

Because this has a unit of millimeters, it is easy to see how significant the error is. Next to that, it has
the advantage not to cancel errors out, as is the case, for example, with the bias.

37



38 6. Numerical results for the one-dimensional model

The RRMSE, in literature sometimes referred to as the Normalized Root Mean Squared Error [42],
is defined as

𝑅𝑅𝑀𝑆𝐸(x, x̃) = (
𝑁

∑
𝑖=1

|𝑥𝑖 − ̃𝑥𝑖|2/
𝑁

∑
𝑖=1

|𝑥𝑖|2)
1/2

. (6.2)

The RRMSE normalizes the error, which makes it easier to compare the accuracy of different models
and to see how large the error relative to the solution is. However, the disadvantage is that when the
actual state is small in norm, the RRMSE can blow up.

6.1.1. Computational speed
To evaluate the effectiveness of the MOR methods, it is also necessary to compare the computational
speed. In addition to solving the system, two extra processes are executed that are dominant in terms
of computational speed.

• Update system equations: firstly, we have the construction of the system, which must be per-
formed at each timestep due to the changing governing equations.

• Interpolation: secondly, the interpolation step will be conducted at the end of each timestep.
This is only reduced with non-intrusive MOR.

• Solve system: lastly, we have the step of solving the system, which is the step that will be
reduced by all MOR techniques.

The first two steps are not expected to have a speedup when applying intrusive MOR, as intrusive
MOR cannot be applied to processes where the computations are treated as a black-box. For the one-
dimensional setup, a single simulation will be done, and the mean computational time across all time
steps will be used. In the two-dimensional setup, the mean computational time will be derived from all
time steps of five simulations.

6.2. Modal decomposition
We will start by reducing the dynamical system with modal decomposition. As explained in section 3.4,
for reducing the system, the algebraic equations are eliminated. This resulting dynamical system in
Equation 3.50 consists of a set of ordinary differential equations. Note as well, that this reduction is
based on the generalized eigenvalues resulting from Equation 5.5. The eigenvalues are a indication
of the frequency of the corresponding mode. When the reduction is applied on differential-algebraic
equations, it can result in eigenvalues with infinite value, because we have a singular mass matrix.
This indicates that some modes have infinite frequency, which is a non-physical result and therefore
gives another reason to eliminate the algebraic variables from the governing equations before applying
modal decomposition.

We will demonstrate modal decomposition by considering the example system configuration that is
also evaluated in chapter 3 and Figure 3.1. We use 40 nodes on the roller segments and 70 nodes on
the free-belt segments. By adding the translations and rotations of the four rollers, this results in a dy-
namical system with 𝑁 = 224. After eliminating the algebraic variables (the displacements of the roller
nodes and the given translations and rotations) the number of unknowns in the system is decreased
to 139. The modes that are calculated with Equation 5.5 are depicted in Figure 6.1. These modes are
representations of the solution in the eliminated system in Equation 3.50. The algebraic variables are
eliminated here, so are not included in the plot for the modes. The modes are therefore only the values
for displacement on the free-belt segment and the rotation of roller two. In Figure 6.1a, each row rep-
resents a mode. The modes are ordered with frequency: the mode with the lowest mode number has
the lowest frequency. The modes appear to be composed of two parts by the clear seperation of the
figure into two parts at unknown with index 69. The two parts are the displacements of the nodes on
the two free-belt segments. The last column (column 139) represents the rotation of roller two. This is
a different physical quantity as the displacement values (the rest of the non-eliminated unknowns). In
Figure 6.1b, the rotation is therefore listed in the legend separately. This figure shows the displacement
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(a) All full modes. The mode number indicates the frequency order
(a low mode number corresponds to a low frequency).

.

(b) Displacement of six modes with the lowest frequency with
corresponding roller rotation 𝑟2. Even modes are shown with a solid

line and odd modes with a dashed line.

Figure 6.1: Modes resulting from modal decomposition for a system with 40 elements on one roller segment and 70 elements
on one free-belt segment.

of the six modes with the lowest frequency.

In Figure 6.1b, we have made a distinction between the odd and the even modes. The odd modes
seem to have more influence in the reduced order model than the even modes. The reason for this is
that the crucial information in the right-hand side is not visible in the even modes. When eliminating
algebraic variables, we have in the first equation on the first free-belt segment a term with 𝑢𝑛𝑟1 +1. This
term can be found in subsection 3.1.5 and is

𝐾[𝑛𝑟1
+ 2, 𝑛𝑟1

+ 1] = − 𝐸𝐴
ℓ𝑛𝑟1 +1

. (6.3)

For the last equations on the first free-belt segment, we have a term with 𝑢𝑛𝑟1 +𝑛𝑓1
which is

𝐾[𝑛𝑟1
+ 𝑛𝑓1

, 𝑛𝑟1
+ 𝑛𝑓1

+ 1] = − 𝐸𝐴
ℓ𝑛𝑟1 +𝑛𝑓1

. (6.4)

On the second free-belt segment, we have comparable values, given by

𝐾[𝑛𝑟1
+ 𝑛𝑓1

+ 𝑛𝑟2
+ 2, 𝑛𝑟1

+ 𝑛𝑓1
+ 𝑛𝑟2

+ 1] = − 𝐸𝐴
ℓ𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2 +1

, (6.5)

𝐾[𝑛, 1] = −𝐸𝐴
ℓ𝑛

. (6.6)

These displacements are for grid points on one roller segment and are therefore algebraic and deter-
mined by the solution in the previous equation and the roller rotation as

𝑢𝑖 = 𝑢𝑖(𝑡 − Δ𝑡) − 𝑟𝛼𝑟1
(𝑡 − Δ𝑡) + 𝛼𝑟1

(𝑡) for 𝑖 = 1, 𝑛𝑟1
+ 1, (6.7)

𝑢𝑖 = 𝑢𝑖(𝑡 − Δ𝑡) − 𝑟𝛼𝑟2
(𝑡 − Δ𝑡) + 𝛼𝑟2

(𝑡) for 𝑖 = 𝑛𝑟1
+ 𝑛𝑓1

+ 1, 𝑛𝑟1
+ 𝑛𝑓1

+ 𝑛𝑟2
+ 1. (6.8)

When we substitute the algebraic variables into the dynamic equations, the terms appear in the right-
hand side. The variable 𝛼𝑟2

(𝑡) is not substituted, because this is not an algebraic variable since it is
determined by the torque balance of roller 2. This results in a right-hand side

𝐹 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐸𝐴
ℓ𝑓2

⋅ (𝑢𝑛𝑟1 +1(𝑡 − Δ𝑡) − 𝑟𝛼𝑟1
(𝑡 − Δ𝑡) + 𝛼𝑟1

(𝑡))
0

𝐸𝐴
ℓ𝑓1

⋅ (𝑢𝑛𝑟1 +𝑛𝑓1 +1(𝑡 − Δ𝑡) − 𝑟𝛼𝑟2
(𝑡 − Δ𝑡))

𝐸𝐴
ℓ𝑓1

⋅ (𝑢𝑛𝑟1 +𝑛𝑓1 +𝑛𝑟2 +1(𝑡 − Δ𝑡) − 𝑟𝛼𝑟2
(𝑡 − Δ𝑡))

0
𝐸𝐴
ℓ𝑓2

⋅ (𝑢1(𝑡 − Δ𝑡) − 𝑟𝛼𝑟1
(𝑡 − Δ𝑡) + 𝛼𝑟1

(𝑡))
...

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.9)
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When projecting the right-hand side 𝐹 onto the space spanned by the columns of Φ, only the vectors
that have some resemblance with 𝐹 , appear in the projection. In this example setting, the second
roller eventually rotates with the same speed as the first (drive) roller. Hence, also, the displacements
on these rollers will eventually have approximately the same value. In that case, when looking at
Equation 6.9, the first and second to last value will be approximately the same and the two middle
values will be approximately the same. If a mode has this structure as well, they will have some
resemblance with 𝐹 and appear in the projection. In Figure 6.1, we can see that this is the case for the
odd modes and not the case for the even modes.

Figure 6.2: Values for Φ⊤𝐹 . Modes that do not have resemblance with the right-hand side have a small 𝜙⊤𝐹 .

This can also be observed in Figure 6.2. Note that, since the right-hand side changes over time,
the values in this figure will also change over time. In this example setup, the difference between the
inner product with the odd modes and with the even modes remains substantial over time.

This problem appears because in Equation 5.5, we can see that the right-hand side takes no part
in the computation of modes. As a consequence, relevant information in the right-hand side is not
included in the modes. In this system, there is relevant information of the system in the right-hand side.
Namely, the boundary conditions that are eliminated are included in the right-hand side. Therefore the
modal analysis misses crucial information about the governing system. This results in modes that have
do not include information on the forcing vector, but still have a low frequency. Modal decomposition
recognizes these modes as high influence modes because of the low frequency. However these modes
are actually of low influence, because when projecting onto these modes, information of the right-hand
side is lost.

When running this simulation for a different number of modes with modal decomposition, we get
the result in Figure 6.3. First, we treated the modes with the lowest frequency as most important. In
the other simulations, we treated odd modes as more important than even modes, and within the odd
and even modes the lowest frequency as most important.

Figure 6.3: RMSE for a modal decomposition ROM for the configuration with 40 modes on one roller segment and 70 modes
on one free-belt segment.

We can conclude for this example setup that treating the odd modes as more important modes in
the projection gives better results. However, since the right-hand side in Equation 6.9 changes for
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different boundary conditions on the rollers and changes over time, we cannot define a general way
to include the most important modes for this situation. Next to that, the information in the right-hand
side is not included in the modal analysis, so also in the modes itself (not the ordering only), crucial
information can be missing.

For other time-invariant systems, this issue can arise because the forcing term is not involved in the
computation of modes here as well. One solution can be to find a way of involving 𝐹 in the computation
of modes. Another potential solution involves reordering the importance of the modes based on the
inner product with the right-hand side of the dynamic equations. For example, the ordering could be
done based on the frequency divided by the inner product with the right-hand side. For POD, an
approach where the modes are selected in a different order than the conventional ordering, is found
in [43], where the selection of modes is modified by including both the frequency and the energy of
modes, instead of only including the energy as is done in regular POD. However, since the approach
we suggested requires the right-hand side to be known over time, it is not applicable to the system
addressed in this thesis. It would be interesting to explore whether this method could be effective for
systems where this issue occurs and the right-hand side is known in advance.

6.3. Proper Orthogonal Decomposition
In this section, we discuss the application of POD to the one-dimensional dynamical system. As previ-
ously stated, the algebraic constraints are not subject to reduction so will be eliminated from the system.
This gives a full order model with a dimension of 139 as explained in section 6.2. For POD, the number
of snapshots and reduction order have to be decided. In this section, we outline the necessary val-
ues and the considerations for their selection. In the next chapter, these considerations are taken into
account for selecting the values for the two-dimensional system.

Snapshots
First of all, we have to choose the data which will be used in the POD analysis. We want to reduce only
the dynamical system part by projecting it onto a smaller space in which the solution lives. Therefore
we choose to use the data of solutions before interpolation (x̃𝑖+1 in Equation 6.10). The solutions after
interpolation (x𝑖) are not a correct representation of the solution after the dynamical system step.

x𝑖
Dynamical system
−−−−−−−−−−→ x̃𝑖+1

Interpolation
−−−−−−−→ x𝑖+1. (6.10)

There are two options on how to choose which simulation data is used for POD.

1. One choice for the simulation data that will be used in the POD, is to run part of the simulation
and use those snapshots to predict the rest of the trajectory. This could lead to a better ROM,
because we are sure that relevant and compatible data is used. However, for this, still a (shorter)
full order simulation has to be done.

2. Another option is to use data of different simulations to calculate the POD modes. With this, we
have to gather data from different simulations, which may take some time. But then, the same
data will be used to reduce more than one simulation. As a result, after the data is gathered, we
never have to run the full order model anymore.

Both options are investigated in this section.

Dimension of the reduced order model
Another parameter that has to be chosen, is the dimension of the ROM. The choice for this dimension
is a trade-off between the energy that is captured in the basis and the computational speedup. We
will make this trade-off on the one-dimensional model in this section and this will be done in the same
manner for the two-dimensional model in the next chapter.

6.3.1. Snapshot generation and POD: single configuration
First, POD is implemented with snapshots generated with the first part of the simulation. For long
simulations, the steady state is most important. Therefore, it is expected that when the snapshots
contain information on the steady state, the ROMwould be accurate for long simulations. In Figure 6.4a,
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the trajectory of a simulation with one roller that is translated by 10 mm is shown. After 0.5 seconds
(100 timesteps), the displacement nearly has reached a constant value. Consequently, it is expected
that using the solution prior to 0.5 seconds as snapshots will effectively capture the relevant behavior
of the solution for a long simulation. In Figure 6.4b, we have shown the resulting RMSE for the same
one-dimensional configuration for different number of snapshots. Note that this comparison is done for
one specific setup of rollers and the belt, so the numbers are not directly applicable to other simulations.
We can conclude for this simulation that taking 50 snapshots gives an appropriate error.

(a) Trajectory of displacement of tracer points in 𝑥 direction for the first
5 seconds of the one-dimensional simulation with one translated roller.

(b) RMSE for a POD ROM using different number of snapshots and
different number of modes.

Figure 6.4: Determination of number of modes for a configuration with one roller translated by 10 mm. The full order model has
a dimension of 139.

With these snapshots, the reduced model is determined and executed for the rest of the simulation.
The energy that a number of modes can capture is based on the singular values. For 50 snapshots, we
have 50 different singular vectors in the POD analysis. The singular values and the resulting maximum
error for a simulation of 1000 timesteps is shown in Figure 6.5 for two different configurations. In Fig-
ure 6.6, the computation time for different number of modes is shown. There seems to be a slight trend
with slower computations for a higher number of modes, with some outliers, which is in accordance with
the expectations. Note that the degrees of freedom is much lower than in a two-dimensional model.
So also the size of the system is much lower and this may cause the overhead of the simulation to
dominate in the computational time. The computational time required for the two-dimensional model
will be evaluated more comprehensively.

(a) Relative singular values of the snapshot matrix based on two
different configurations.

(b) RMSE for a POD reduced order model trained on a single
configuration.

Figure 6.5: Results for a different number of modes in POD for the one-dimensional setup. In both cases, the full order model
has a dimension of 139 and the reduced order model has a size equal to the number of modes included.
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Figure 6.6: The mean computation time for the different code segements in one timestep. The number of modes correspond
with the size of the reduced model. The purple boxes represent the full order model with a dimension of 139.

6.3.2. Snapshot generation and POD: multiple configurations
From the previous section, we could conclude that 50 snapshots are sufficient to capture the behaviour
of one simulation. Therefore, for the approach to use different simulation data, the same number of
snapshots for training the data is used. In the one-dimensional toy model, we do not have that many
different configurations to choose from. Just the rotational speed and the translation of the rollers can
be changed. In this example, training data listed in Table 6.1 is used. We want to test if we can simulate
the system for other settings using POD trained on this data.

Table 6.1: Training data used in POD. Both training runs have been executed for 50 timesteps.

Rotational velocity Translation
roller 1: 𝑧 roller 1: 𝑥

Training run 1 10 rad/s 10 mm
Training run 2 7 rad/s 4 mm

In Figure 6.7, the RMSE for different runs is shown. These runs are all reduced by POD using the
training data from Table 6.1. The reduced simulations for different setups give sufficiently small errors.
Therefore, the expectation for the two-dimensional model is that POD trained on different simulation
data can give a sufficient ROM.

Figure 6.7: RMSE for a POD reduced order model trained on multiple configurations from Table 6.1. The full order simulations
has a dimension of 139.

The advantage of training on multiple configurations is that the full order model does not need to be
simulated again for generating snapshots. Instead, we will save some full order snapshot data, which
can then be used for multiple other simulations with different configurations.
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6.4. Dynamic Mode Decomposition
The advantage of Dynamic Mode Decomposition is, that it is not based on any of the governing equa-
tions, only on some simulation data. Therefore, with a satisfactory reduced model, the effect of the
interpolation step is included in the DMD model and need not to be executed separately. In modal
decomposition and POD, we reduced the eliminated system with only differential equations. In DMD
however, because we want to keep the advantage of not using the governing equations, we do not
want to calculate the eliminated variables from the dynamic variables, because this will be done using
the governing equations. Therefore, the snapshots are build from both the algebraic and dynamic vari-
ables. Hence, for the one-dimensional model with two rollers that can have a translation and rotation,
the state has the structure

x =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u𝑟1
u𝑓1
u𝑟2
u𝑓2
𝑑1
𝛼1
𝑑2
𝛼2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ𝑁 . (6.11)

The model is based on 40 nodes on the roller segments and 70 nodes on the free-belt segment and
therefore 𝑁 = 224. DMD is designed for first order dynamical systems, so we have to transform the
second order dynamical system to a first order dynamical system. Consequently, we use

[ x
ẋ ]

as snapshots in the DMD analysis. This gives a snapshots matrix of size (2𝑁 ×𝑚) = (448×𝑚). where
𝑚 is the number of snapshots. There are four things to decide when applying DMD on this system.

1. Taking snapshots before interpolation or after interpolation (x̃𝑖+1 versus x𝑖+1 in Equation 6.10).

2. Training with snapshots of the same single configuration or training with snapshots of multiple
different configurations.

3. The number of snapshots.

4. The dimension of the reduced order model.

5. How to select the modes that are relevant in the solution.

Considering the first decision: the snapshots before interpolation contain more information on the sys-
tem, specifically the mean displacement (that is subtracted in the interpolation step, so not observable
after interpolating). Therefore it became apparent that better results are obtained when the state be-
fore interpolation is used as snapshots. Interpolation can then be seen as a post-processing step. That
means, with DMD, we will approximate the operation from x̃𝑘 to x̃𝑘+1.

The other three decisions will be explained in the following two subsections. First, training with
snapshots of the same single configuration is discussed and after that, training with multiple different
configurations.

6.4.1. Snapshot generation and DMD: single configuration
When snapshots are taken from the same simulation, a linear model is created with DMD on these
snapshots, which can be used for the rest of the simulation. For a different number of snapshots, the
eigenvalues of the full matrix 𝐴 are shown in Figure 6.8 with and without translation. The snapshots
from the full order model have a dimension of 448, so the matrix 𝐴 is of size 448 × 448 and has in
total 448 eigenvalues, for each number of snapshots. The modes with an eigenvalues greater than 1 in
absolute value can diverge, because the solution increases exponentially with the number of timesteps
𝑘, as 𝑒𝜆𝑘. Without translation and 50 snapshots, the are some diverging modes with a significant norm
of their scaled mode 𝜃. This gives the impression that these modes do not give a correct representation
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of the solution. When using 150 snapshots, the modes with an eigenvalue greater than 1 in absolute
value have a low norm. This gives a reason to classify them as insignificant and to ignore these modes.
In the DMD analysis with translation, no diverging modes can be found for 50 and 150 snapshots as is
visible in Figure 6.8.

It is decided that for the DMD analysis of these simulations, 150 snapshots will be used. This results
in a ROM with a dimension of 1 to 150, depending on how much modes will be included in the solution.

(a) 50 snapshots with no translation. (b) 50 snapshots with translation of 10 mm.

(c) 150 snapshots with no translation. (d) 150 snapshots with translation of 10 mm.

Figure 6.8: DMD eigenvalues in the complex plane. The color indicates the norm of toe associated scaled mode.

For the case with one roller translated by 10 mm, we look at the singular values and the error to
determine howmany modes should be taken into account. The singular values and RMSE for a dataset
of 150 snapshots are shown in Figure 6.9. The number of modes that are included in the analysis is
based on the amplitude of the corresponding eigenvalues. In the DMD analysis, we exclude the DMD
modes that have an eigenvalue with an amplitude higher than 1 in the solution state.

To summarize, the solution over time can be approximated by DMD. The one-dimensional model of
dimension 224 will be rewritten into a first order dynamical system with 448 unknowns. For generating
a ROM with DMD, 150 snapshots are used. The number of modes needed for simulating an accurate
reduced model is roughly 20. Note that, the two-dimensional model has some differences with this
one-dimensional model, so this is not generalizable to the two-dimensional setup. However, we will
use a similar approach to select the number of snapshots, the dimension of the reduced order model
and the selection of relevant modes.

6.4.2. Snapshot generation and DMD: multiple configurations
Like in POD with multiple configurations (subsection 6.3.2), we will also consider DMD that is trained
on multiple different configurations. With DMD, the snapshot matrix is based on one trajectory, but
this can be extended to multiple trajectories [40]. When we use 𝑞 different trajectories, the snapshot
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(a) Relative singular values of the snapshot matrix.
.

(b) RMSE for a DMD reduced order model trained on a single
configuration.

Figure 6.9: Results for DMD trained on a single configuration where one roller is translated with 10 mm.

matrices look like

𝑋 = [x1
1, ...,x1

𝑚+1,x2
1, ...,x2

𝑚+1, ...,x𝑞
1, ...,x𝑞

𝑚+1] ∈ ℝ𝑁×𝑞𝑚, (6.12)
𝑋′ = [x1

2, ...,x1
𝑚+1,x2

2, ...,x2
𝑚+1, ...,x𝑞

2, ...,x𝑞
𝑚+1] ∈ ℝ𝑁×𝑞𝑚. (6.13)

This is possible because the operator 𝐴 relates the columns of 𝑋 to those of 𝑋′ in a pairwise fashion.
In this way, one set of simulation snapshots can be used for reducing a number of different new

configurations. Once the simulation data is generated, no full order simulation has to be done for
reducing a simulation with new configurations. So the initial value determines the trajectory of one
simulation. For testing this approach on the one-dimensional system, the same setup is used as in
subsection 6.3.2, so with snapshots of size 2𝑁 = 448. Because DMD appears to need more snapshots
than POD when training on data from the same configuration, we use more snapshots here as well.
DMD is trained on 150 snapshots with both setups from Table 6.1.

The eigenvalues of the operator𝐴 are depicted in Figure 6.10a. While some eigenvalues are located
within the unit circle, a considerable number has an amplitude exceeding 1. The norm of these scaled
modes, represented by the color in Figure 6.10a, is substantial. This observation leads to the conjecture
that the operator 𝐴 does not accurately approximate the system. Even when the unstable modes are
excluded from the solution, the result remains inaccurate. The resulting RMSE, both with and without
the exclusion of unstable modes, is illustrated in Figure 6.10b.

(a) DMD eigenvalues in the complex plane.
The color indicates the norm of the

associated scaled mode.

(b) RMSE for a DMD reduced order model trained on multiple configurations. The
dashed lines indicate the RMSE when the unstable modes are ignored in the solution.

.

Figure 6.10: Results for DMD trained on multiple configurations.

It can be concluded that DMD does not give appropriate results when training on simulations with
different misalignments. This may be due to the fitted operator 𝐴 accounting for the specific misalign-
ments, which differ in the test simulations. One potential solution is to treat the misalignments as control
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variables. The method introduced by Proctor et al. [44], known as Dynamic Mode Decomposition with
control (DMDc), has the capability to distinguish between the underlying dynamics and the effects of
actuation, leading to an accurate reduced DMD model. Due to time constraints, this thesis will not
investigate or implement DMDc. Future research could explore this approach to potentially accelerate
the conveyor belt model.





7
Numerical results for the
two-dimensional model

In the previous chapter, we demonstrated that modal decomposition is unsuitable for generating an ac-
curate reduced order model for this application. PODwas shown to produce an accurate reduced-order
model when an appropriate set of snapshots was selected. POD did not facilitate the reduction of the
interpolation step. Conversely, DMD allowed for the inclusion of the interpolation step in the reduction
process, yielding an accurate reduced order model when trained on snapshots from simulations with
identical configurations. However, when DMD was trained on snapshots from simulations with different
configurations, the resulting DMD modes failed to produce an accurate reduced order model.

Given the unsuitability of modal decomposition for this application, and considering that the ar-
gumentation in the previous chapter extends to the two-dimensional model, we opted not to imple-
ment modal decomposition on the two-dimensional model. We will apply POD and DMD to the two-
dimensional model using the same methodologies described in the previous chapter. The results will
be evaluated in this chapter.

Firstly, the performance measures used for the one-dimensional model are extended to the two-
dimensional model in section 7.1. Here, the code segments that contribute the most to the total com-
putational time are explained, as they are defined differently compared to the one-dimensional model.
The results in this chapter are based on one general setup, detailed in section 7.2. For other setups,
the structure of the equations remains consistent, with dynamic equations on the free-belt segments
and algebraic equations on the roller segments. Consequently, similar results are expected, and other
setups are not considered in this thesis. In section 7.3, we present the details and results for the two
approaches of POD. In section 7.4, we present the results for DMD, briefly mentioning the approach
of DMD based on data from simulations with different configurations to show that it yields the same
inaccurate result as for the one-dimensional setup. In section 7.5, we compare the results of POD and
DMD.

There are some key differences between the one-dimensional and two-dimensional models that
need to be addressed. In a two-dimensional conveyor belt system, there are more degrees of freedom
for the belt and the motion of the rollers, resulting in a larger full order model. We cannot directly
transfer the parameters from the previous section, such as the number of snapshots and the number
of modes, and these will be reanalyzed in this chapter. Additionally, the number of cases with different
misalignments is significantly higher, resulting in more misalignment combinations to investigate.

7.1. Performance measures
In the previous chapter, the Root Mean Square Error and Relative Root Mean Square Error were
introduced and explained in section 6.1. These metrics will also be used in this chapter. To evaluate the
performance of a method without simulating the full order model, error bounds or error estimations can
be calculated as suggested in various studies [45], [46], [47], [48]. However, since these estimators
involve computations with the governing equations of the entire model (this would mean including the

49
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interpolation step) or the development and training of new machine learning models, they are beyond
the scope of this thesis.

In addition to the error metrics, the computational time of the most dominant code segments is
evaluated. For the two-dimensional setup, the following functions are the most significant in terms of
computational time:

• SolveDynamicSystem: Similar to ‘solve system’ in the one-dimensional case, this function solves
the system of dynamic and algebraic equations.

• TransportDisplacements: Similar to ‘interpolation’ in the one-dimensional case, this function
interpolates the solution after solving the system.

• CreateEquationMatrix: Similar to ‘update system equations’ in the one-dimensional case, this
function creates the system of equations.

• SubstituteODE: This additional function is executed when algebraic variables are eliminated as
described in subsection 3.4.3. In this function involves both the substitution of algebraic variables
into the system of dynamic equations before solving, and the calculation of the algebraic variables
from the dynamic variables after solving.

The measured timing values are the mean of the computational time of the function over all timesteps.
To measure the computational time, five consecutive simulations were conducted on a computer with a
12th Gen Intel(R) Core(TM) i7-12700 with 12 cores, 20 threads, 2.1 GHz, and 16GB of internal memory
using Matlab R2024a.

7.2. Test setup
We use a setup with three rollers, as illustrated in Figure 7.1. This setup is chosen because a system
with three rollers is expected to exhibit more complex behavior than a system with two rollers. Although
the simulation program can be used for systems with up to six rollers, adding more than three rollers
is not expected to significantly increase complexity. In this test setup, the three rollers are positioned
upright, sharing the same central 𝑧 position and length, but differing in radius. Roller 1, located at
position (0,0), functions as the drive roller such that the system has a belt velocity of 1 m/s. The total
duration of the simulation is 100 seconds.

(a) Side view. (b) Top view.

Figure 7.1: Test setup used in this chapter. Axes are given in millimeters.

The grid size is variable, allowing us to test the computational time for different full order model
sizes. After setting the grid size, tracer points are placed at specific nodes on the belt. During the
simulation, the displacement of these tracer points is recorded. The RMSE and RRMSE are computed
based on the tracer points only. The placement of tracer points can be customized according to user
preferences. In this thesis, five tracer points are evenly distributed per belt segment for all simulations.

In the one-dimensional toy model, misalignment could only be introduced through translation in a
single direction. In this two-dimensional system, misalignments can be introduced through rotations in
two directions (excluding the moving direction) and translations in three directions.
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7.2.1. Computational complexity and creating a baseline
The two-dimensional full order model can be simulated with the approaches explained in section 3.4.
The most efficient approach will be used as baseline when analyzing the results generated by the
reduced order models. The computational complexity of the different approaches is summarized in
Table 7.1. This complexity is based on the expected number of flops (floating-point operations). The
number of unknowns 𝑁 is generally in the order of a few thousands. The bandwidth 𝑏 for this system is
in the order of the number of grid elements in the 𝑧-direction 𝑛𝜂, because the indices of two connected
nodes in the 𝑥 direction are separated by 2𝑛𝜂. The number of algebraic equations is approximated to
be 1/3𝑁 , since approximately 1/3rd of the belt is on a roller segment.

Table 7.1: Computational complexity of different approaches for a system with 𝑁 unknowns. The number of unknowns for the
algebraic equations is indicated with 𝑁𝑎 and the bandwidth of the stiffness matrix is indicated with 𝑏.

Code segment Naive approach Elimination of variables Direct time integration
TransportDisplacements 𝒪(𝑁) 𝒪(𝑁) 𝒪(𝑁)
CreateEquationMatrix 𝒪 (𝑁) 𝒪 (𝑁) 𝒪 (𝑁)
SubstituteODE - 𝒪 (𝑁𝑎) -
SolveDynamicSystem 𝒪(3𝑁𝑏2) 𝒪((𝑁 − 𝑁𝑎)𝑏2) 𝒪(𝑁𝑏2)

In the function TransportDisplacements, the interpolation step is performed. For each grid point,
the displacement in the 𝑥 direction must be interpolated, and the mass must be transported. Since this
function is treated as a black-box, we estimate its complexity to be of order 𝑁 (since 𝑁 is approximately
twice the number of grid points), because for each node, a small number of flops have to be done.

In the function CreateEquationMatrix, the matrix used in the naive approach is set up. Each row
is filled with one equation involving a small number of unknowns. Investigating and optimizing this
function is beyond the scope of this thesis; thus, the computational complexity to compute a small
number of values (in the order of 1) for all 𝑁 rows is estimated to be of order 𝑁 .

The function SubstituteODE is used only in the elimination of variables approach. To determine
the computational complexity, we define 𝑁𝑎 to be the number of variables that are determined by the
algebraic equations. For each of these variables, the corresponding row must be subtracted from all
the rows where this variable contributes to. Both the number of rows where this variable contributes
to, and the number of nonzeros in these rows are assumed to be in the order of 1. Therefore, this
operation approximately uses 𝑁𝑎 flops.

The function SolveDynamicSystem solves the dynamical system. In the naive approach, we solve
a linear system of 3𝑁 unknowns with a bandwidth 𝑏. This has a time complexity of 3𝑁𝑏2. This is reduced
to𝑁𝑏2 when direct time integration with Backward Euler is used. The Backward Euler scheme is shown
in Equation 7.1. The first step is solving a sparse system of size 𝑁 with a bandwidth 𝑏, which has a
time complexity of order 𝑁𝑏2.

Solve (𝑀 + Δ𝑡2𝐾)ẍ𝑘 = 𝐹 − 𝐾(x𝑘−1 + Δ𝑡 ⋅ ẋ𝑘−1) for ẍ𝑘,
ẋ𝑘 = ẋ𝑘−1 + Δ𝑡 ⋅ ẍ𝑘, (7.1)
x𝑘 = x𝑘−1 + Δ𝑡 ⋅ ẋ𝑘.

To establish a baseline, we compare the naive approach and direct time integration across different
grid sizes. The elimination of variables is not considered here, as it appeared to introduce additional
computational time due to the separation of the time integration into the SubstituteODE and SolveDy-
namicSystem functions, making it less efficient than direct time integration in terms of computational
time. For smaller grid sizes, the upper bound for the timestep is more restrictive due to the CFL con-
dition for the interpolation step, resulting in an increased number of timesteps required to simulate a
fixed time interval. We ensure that there are at least five grid elements in the moving direction on the
smallest roller. The other element sizes are adjusted so that all elements are approximately the same
size and close to square. The total number of unknowns on the elements is denoted by 𝑛. Figure 7.2
illustrates the computational time for solving the dynamical system. These simulations do not include
misalignments, as the primary focus here is to evaluate computational time.

From Table 7.1, we observe that, theoretically, the computational time can be reduced by a factor of
3 when using direct time integration instead of the naive approach. The difference shown in Figure 7.2
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Figure 7.2: Computational time gain for different mesh sizes by reformulation of the system. The shaded area indicates the
maximum and minimum over the timings.

between the two approaches does not reflect this factor of 3. However, the reduction of computational
time increases with the number of grid elements. This may be due to additional operations required in
the reformulation of the system when using direct time integration, which have less impact on the total
computational time as the number of elements increases.

Based on this analysis, direct time integration will be used to simulate the full order model in the
rest of this chapter.

7.3. Proper Orthogonal Decomposition
In this section, POD will be applied by training on the same single configuration and by training on
multiple configurations. In both cases, the number of snapshots and number of modes needed for an
accurate reduced order model have to be determined. Additionally, for the reduced model trained on
different simulations, we have to specify how to choose the training data.

7.3.1. Snapshot generation and POD: single configuration
The implementation is analogous to PODwith snapshots from the same simulation in the one-dimensional
case (see subsection 6.3.1). First, we simulate a a number of timesteps of Δ𝑡 = 0.02 seconds with the
full order model. The snapshots generated in those timesteps will be used for the POD analysis. The
resulting ROM will be used to simulate the rest of the simulation. A grid of 18 × 104, corresponding to
3762 unknowns, is used with the following misalignment configuration.

Table 7.2: Settings for POD using snapshots with the same configuration.

Translation Rotation Translation
roller 1: 𝑦3𝐷 roller 2: 𝑥3𝐷 roller 3: 𝑥3𝐷

Test run 1 3 mm 4e-4 rad -1 mm

Number of snapshots
The trajectory of the 𝑥 and 𝑧 displacement of this simulation for the first 20 seconds is shown in Fig-
ure 7.3. When running long simulations, the belt will approach a state in which the belt maintains a
constant velocity. This state is referred to as the ’steady state’ in this context. For a ROM that can pre-
dict a long simulation accurately, it is important that the snapshots contain information on the steady
state. By visually observing the trajectory of the start of the simulation, we take the trajectory of the first
8 seconds, corresponding to 400 snapshots of Δ𝑡 = 0.02, as snapshot data. In this way, the snapshots
should contain information on the steady state.

Number of modes
With 400 snapshots, the snapshot matrix is created and a singular value decomposition is computed.
The singular values of the snapshots matrix are shown in Figure 7.4a. Based on the rapid decrease
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(a) Trajectory of the (interpolated) 𝑥 displacement. (b) Trajectory of the 𝑧 displacement.

Figure 7.3: Trajectory of displacement of tracer points in 𝑥 and 𝑧 direction for the first 20 seconds of one simulation with the
configuration in Table 7.2.

for the first singular values, we can expect not to need a lot of modes for an appropriate reduced
model. After around 70modes, the singular values are close to zero and not decreasingmuch anymore.
Therefore we can expect that the error does not decrease much after 70 modes as well.

(a) Relative singular values of the snapshot matrix based on a single
configuration.

(b) RMSE for a POD reduced order model at 100 seconds.
.

Figure 7.4: Results for a different number of modes in POD for the two-dimensional setup using 400 timesteps as snapshot
data. The settings are listed in Table 7.2. In both cases, the full order model has a dimension of 18 × 104 and the reduced

order model has a size equal to the number of modes included.

The RMSE of simulations with varying numbers of modes is shown in Figure 7.4b. Including too
many modes can reduce the impact of the most important modes in the reduced order model, which
could explain the fact that higher errors occur with an increased number of modes after using more
than 60 modes. For the conveyor belt systems studied in this thesis, the precision tolerance is 20 µm.
Since the RMSE is in mm, a RMSE of 0.02 mm meets this tolerance requirement. When including
20 modes or more, the RMSE is below 0.02 mm. The RMSE over the total simulation when using
400 snapshots and 20 modes is shown in Figure 7.5. The mean computational time per timestep for
solving the system (SolveDynamicSystem) and substituting the algebraic variables (SubstituteODE)
after generation of snapshots is shown in Figure 7.6.

The two figures demonstrate that using POD it is possible to obtain a reduced order model that can
accurately replicate the full order model while reducing simulation time when training on snapshots with
the same configuration.

The number of snapshots required for an accurate reduced order model should be determined
by analyzing the initial phase of the simulation. For simulations with a similar setup and drive roller
velocity, we expect the number of snapshots for an accurate reduced order model to be approximately
the same. This is because the belt will be in a comparable state after a fixed period of time for different
misalignments with the same belt velocity.
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Figure 7.5: RMSE for a POD reduced order model trained on a single configuration (Table 7.2) using 400 snapshots.

The number of modes to include in the reduced order model will be based on the singular value
decomposition of the snapshot matrix. To assure that the error is well below the tolerance and we still
obtain a speedup, we can conclude that modes where

𝜎2

1
𝑚 ∑𝑚

𝑖=1 𝜎2
𝑖

< 10−20 (7.2)

will be included in the reduced order model.

Figure 7.6: The mean computation time for solving the system in one timestep in POD reduced order models with different
number of modes.

To evaluate the scalability of POD, the method was applied to a larger system of equations. The
singular values for these systems, along with those for the reference system of 18 × 104, are presented
in Figure 7.7. This indicates that a similar number of modes is required to achieve an accurate reduced
order model. The RMSE for a system with a grid of 21×122, resulting in 2580 unknowns, shows this as
well, shown in Figure 7.8. This demonstrates that even for systems with a higher number of grid points,
the dimension of the reduced order model remains comparable, thereby confirming the scalability of
POD.
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Figure 7.7: Relative singular values of the snapshot matrix based on a single configuration for two different system sizes.

Figure 7.8: RMSE for a POD reduced order model trained on a single configuration (Table 7.2) with a grid of 21 × 122 using
400 snapshots.

7.3.2. Snapshot generation and POD: multiple configurations
In this section, the POD reduced order model will be constructed using snapshots from multiple config-
urations. The same setup with a grid of 18 × 104 as in the previous section is used. The key difference
from POD trained on a single configuration lies in the selection of the training data. Once the training
data is chosen, the next step is to determine the number of modes to include in the reduced order
model.

Training data
In section 6.3, we have trained with snapshots from two simulations. These simulations contained
misalignments in only one direction. In two-dimensional conveyor belt systems, we can vary rotations in
two directions (not the rotation in moving direction) and translations in three directions 1. This increases
the amount of possibly useful training data. Therefore, it is important to have a clear method for defining
the training data. The first rule we establish is that the testing datamust include the samemisalignments
as the training data, only possibly with different values. This means that translations or rotations in
directions not present in the training data should not be used in the testing data.

In Table 7.3, an initial example of training and testing data is shown. The timestep and the rotational
velocity of the drive roller are the same for all the runs. Because of the rule mentioned in the previous
paragraph, this training data cannot be used for a simulation where a translation in 𝑦3𝐷 direction is
1The rotation in moving direction is not varied since the belt always has a speed of around 1 m/s in the applications considered
in this thesis.
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applied on the third roller for example. We perform POD on simulations that vary in how closely they
match the training data. These simulations of 10 seconds, help us to evaluate the effectiveness of
the POD trained on multiple different configurations. After analysing these results, we will formulate a
general way to determine the correct training data.

Table 7.3: Training data and test data used in POD. Both training runs have been executed for 50 timesteps.

Translation Rotation Translation
roller 1: 𝑦3𝐷 roller 2: 𝑥3𝐷 roller 3: 𝑥3𝐷

Training run 1 1 mm 5e-4 rad -1 mm
Training run 2 2 mm 2e-4 rad 1 mm

Test run 1 3 mm 4e-4 rad -1 mm
Test run 2 1 mm 1e-3 rad 2 mm
Test run 3 2 mm 5e-4 rad -0.5 mm
Test run 4 1 mm 5e-4 rad -1 mm
Test run 5 2 mm 2e-4 rad 1 mm
Test run 6 1.5 mm 3e-4 rad 0.5 mm

The resulting RRMSE for these runs is shown in Figure 7.9. For this initial example, the POD
reduced order model contains 100 modes. The number of modes will be reduced later in this section.
The actual displacement will differ for all test runs. Therefore, to make a fair comparison of the accuracy,
the RRMSE is compared here instead of the RMSE.

For test runs 1 and 2, the RRMSE in both directions is relatively high compared to the other test
runs. This may be because, in both of these test runs, one of the misalignment values is outside the
range set by the training runs. It is noteworthy that test run 4 also has a relatively high RRMSE in the 𝑥
direction, despite being identical to training run 1. This could be due to a too low number of snapshots in
the training data. Additionally, the values continue to increase for most test runs, which could introduce
problems when the simulation time exceeds 10 seconds. However, this issue might be resolved as
well by taking a higher number of snapshots.

Figure 7.9: RRMSE for a POD reduced order model trained and tested on multiple configurations from Table 7.3.

Based on these initial observations, we will continue to investigate POD trained on multiple simula-
tions with a more systematic approach. In this systematic approach, we aim to avoid any randomness
in choosing the training set. First, the maximum rotational and translational misalignment are estab-
lished, which are 0.5 milliradians (mrad, where 1 mrad = 10−3 rad) and 5 mm, respectively. For a
comprehensive study, two different misalignments are examined on each roller. For the first roller, we
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consider combinations of translations in the 𝑥3𝐷 and 𝑦3𝐷 directions. These translations do not interact;
this means that when a translation in 𝑦3𝐷 is applied, the translation in 𝑥3𝐷 remains constant for every
grid point. For the second roller, we apply combinations of rotations in the 𝑥3𝐷 and 𝑦3𝐷 directions. Here,
the interactions are more complex: when a rotation in 𝑥3𝐷 is applied, both the 𝑦3𝐷 and 𝑧3𝐷 coordinates
of the grid points change. When the rotation in 𝑦3𝐷 is applied, the 𝑥3𝐷 coordinates change, and the
𝑧3𝐷 coordinates change again. On the third roller, a rotation in 𝑥3𝐷 and a translation in 𝑦3𝐷 direction
are applied, which do also interact. The training data is generated by setting each misalignment to the
maximum value and the other misalignments to zero. With this, six training runs are executed for 50
timesteps, listed in Table 7.4.

Table 7.4: Systematic set of training data used for POD. All training runs have been executed for 50 timesteps.

Translation Translation Rotation Rotation Rotation Translation
roller 1: 𝑥3𝐷 roller 1: 𝑦3𝐷 roller 2: 𝑥3𝐷 roller 2: 𝑦3𝐷 roller 3: 𝑥3𝐷 roller 3: 𝑦3𝐷

Training run 1 5 mm - - - - -
Training run 2 - 5 mm - - - -
Training run 3 - - 0.5 mrad - - -
Training run 4 - - - 0.5 mrad - -
Training run 5 - - - - 0.5 mrad -
Training run 6 - - - - - 5 mm

Number of modes
Due to an implementation choice, the first three timesteps of a simulation correspond to an initialization
process and will not be used as snapshots. As a result, this training data set contains a total of 282
snapshots. The SVD of this snapshot matrix yields the singular values shown in Figure 7.10. The same
criterium for selecting the number of modes is applied here as in the previous method: modes with a
singular value that satisfies

𝜎2

1
𝑚 ∑𝑚

𝑖=1 𝜎2
𝑖

< 10−20 (7.3)

are included in the reduced order model. In this example, this results in 108 modes being selected.

Figure 7.10: Relative singular values of the snapshot matrix based on configurations from Table 7.4.

Different test runs are simulated with POD trained on this data. The full list of test runs is summarized
in Appendix A. The full order model has dimension of order 3762 and the reduced order model a
dimension of 108. The results of three test runs will be discussed. The configuration of these test runs
is shown in Table 7.5. The resulting RMSE for these test runs is plotted in Figure 7.11. The resulting
RRMSE for the rest of the test runs can be found in Appendix A. Run 4 and 5 both have a relatively
high error compared to all the test runs, but the RMSE is still below the tolerance of 0.02 mm. Run
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Table 7.5: Testing runs used for POD.

Translation Translation Rotation Rotation Rotation Translation
roller 1: 𝑥3𝐷 roller 1: 𝑦3𝐷 roller 2: 𝑥3𝐷 roller 2: 𝑦3𝐷 roller 3: 𝑥3𝐷 roller 3: 𝑦3𝐷

Test run 4 12.5 mm - - - - -
Test run 5 - - - - -0.55 mrad -
Test run 11 2.5 mm 2.5 mm 2.5 mrad 0.25 mrad 0.25 mrad 2.5 mm

11 includes an extreme outlier of the range defined by the training data: the rotation of roller 2 is five
times as high as the maximum in the training data. Even with this configuration, the POD basis seems
to approximate the solution space accurately. The resulting displacement on the tracer points in the
last ten seconds of the simulation with the full order model and the reduced order model is shown in
Figure 7.12. There is only a small visual difference between the 𝑧-displacements generated by the full
order model and the reduced order model.

Figure 7.11: RMSE for a POD reduced order model with configurations from Table 7.5 trained on data with multiple
configurations from Table 7.4.

The computational time of running the reduced order model is equivalent to that required for per-
forming POD training on a single configuration for the same number of modes, as the same reduction
method is applied to the full order model after mode selection. Therefore, the running time of the re-
duced order model is depicted in Figure 7.6. In this case, 108 modes are selected, which results in a
computational speedup of approximately 2. This is lower than the speedup observed when executing
one reduced order model timestep trained with the same configuration, since this requires less modes.
However, this method eliminates the need to rerun full order simulations for reducing systems with new
configurations, when the available training data already suffices.

7.3.3. Computational complexity POD
When considering the two options within POD—training on a single configuration versus training on
multiple configurations-the computational complexity of running the reduced order model is equal. The
differences of running the total simulation lie in the complexity of gathering the training data. The
POD analysis, which has a very low computational cost, needs to be executed once. Therefore, we
focus solely on the complexity of running a single timestep of the resulting reduced order model. The
computational complexity of one reduced order model timestep with POD is listed in Table 7.6. In
comparison to the complexity of the full order model, two key aspects become evident. First, POD is
unable to reduce the functions TransportDisplacements and CreateEquationMatrix. Next to that, we
observe that the reduced order model results in a dense system of equations. Consequently, even a
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Figure 7.12: The trajectory of displacements of tracer points with the full order model (solid line) and the POD reduced order
model (dashed line) for configurations from run 11 in Table 7.5 trained on data from Table 7.4.

small increase in the number of modes can quickly lead to longer computational times.

Table 7.6: Computational complexity of the POD ROM for a full system with 𝑁 unknowns. The number of unknowns for the
algebraic equations is indicated with 𝑁𝑎 and the bandwidth of the stiffness matrix is indicated with 𝑏. The number of modes

included in the POD ROM is indicated with 𝑟.

Code segment Proper Orthogonal Decomposition
TransportDisplacements 𝒪(𝑁)
CreateEquationMatrix 𝒪 (𝑁)
SubstituteODE 𝒪 (𝑁𝑎)
SolveDynamicSystem 𝒪(𝑟3)

7.4. Dynamic Mode Decomposition
In Dynamic Mode Decomposition, we observed that training on different simulation data for the one-
dimensional conveyor belt system resulted in substantial errors. This observation also holds true for
the two-dimensional belt simulation. As shown in Figure 7.13, the error in the 𝑧 direction at the end
of a 4 second simulation is depicted. This error is a result from training with the simulation data from
Table 7.3 (a total of 100 snapshots) and testing it with the first test run. The resulting displacements are
entirely different. We tested it for different configurations and settings as well and based on this result,
we can conclude that training DMD with incorrect data yields insufficient results. Therefore, in our DMD
analysis, we will focus on a reduced order model using snapshots with the same single configuration.

7.4.1. Snapshot generation and DMD: single configuration
To test DMD using snapshots from the same simulation, the same settings as for POD trained on a
single configuration are used, shown in Table 7.2. We again use 18×104 grid elements that correspond
to 3762 unknowns.

Number of snapshots
First, the number of snapshots required for an accurate approximation of the dynamical system is
determined. The maximum number of modes are used here and the number of modes will be reduced
later in this section. For DMD, it is crucial that the snapshots capture information on the steady state,
as the DMD ROM relies solely on these snapshots and not on the governing equations. In Figure 7.14,
the RMSE is shown for different number of snapshots.
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Figure 7.13: Displacements after 4 seconds for the FOM and the DMD ROM trained on multiple configurations.

It can be observed that using fewer snapshots can increase accuracy. One reason for this can be
that in this figure, all modes are included in the reduced order model. When using 400 snapshots,
some modes may not be relevant and could potentially increase the error. Despite that, we do not want
to determine the number of snapshots based on the errors from different simulations, as this would
require executing those simulations. Instead, we base the number of snapshots on the trajectory of the
initial part of the simulation to maintain generality, and thus, 400 snapshots will be used in this analysis.
For the same reason as with POD, 400 snapshots is sufficient to construct an accurate ROM, because
this number of snapshots captures the steady state characteristics.

Figure 7.14: RMSE for a DMD reduced order model trained on a single configuration. All the DMD modes are included in this
simulation (except for the unstable modes).

Selection of modes
In Figure 7.15, the eigenvalues in the DMD analysis for 400 snapshots are shown. Eigenvalues and
eigenvectors for the real matrix 𝐴 exist in complex conjugate pairs. When 𝜆 is a eigenvector with
eigenvalue 𝑣, 𝜆̄ is also a eigenvalue with eigenvector ̄𝑣. This is also visible in Figure 7.15, since it is
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symmetric in the real axis. Modes with an eigenvalue with an amplitude larger than 1 will be ignored

Figure 7.15: DMD eigenvalues in the complex plane of 400 snapshots. The color indicates the norm of the associated scaled
mode.

in the reduced solution. When these modes are included, the solution increases exponentially. This is
not realistic for this system, because it is not possible that the displacement in 𝑧 direction or 𝑥 direc-
tion increases exponentially. In Figure 7.14, the unstable modes are ignored as well. The difference
between ignoring the increasing modes and including them is shown in Figure 7.16. This figure is in
logarithmic scale, so it is clearly visible that when the unstable modes are used, the error increases
exponentially.

Figure 7.16: RMSE for a DMD reduced order model trained on a single configuration. The unstable modes are either ignored in
the solution or included. This result is generated using 100 snapshots to obtain the the DMD ROM.

There are two considerations that determine the complexity of the reduced model.

• The truncation order: this is the number 𝑟 in Equation 5.21. Instead of computing the eigenvalues
of ̃𝐴 = ̃𝑈⊤𝑋′ ̃𝑉 Σ̃−1, the eigenvalues of ̃𝐴 based on the truncated ̃𝑈 , ̃𝑉 and Σ̃ are computed.

• The number of modes included in the solution: after the computation of the DMD eigenvalues and
DMD modes, we can choose to not include some of the modes in the solution (Equation 5.30) to
reduce the complexity of the ROM further.
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By reducing the truncation order, the computational time for the DMD analysis will be reduced. This
is because the computation involves finding the eigenvalues of the matrix ̃𝐴 ∈ ℝ𝑟×𝑟 instead of 𝐴 ∈
ℝ𝑛𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑠×𝑛𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑠 . The focus in this research is to develop a reduced order model for long simu-
lations. The time required for this operation is negligible compared to the time needed to generate
snapshots using the full order model. Therefore, we have decided not to truncate the singular value
decomposition.

Yet, certain DMD modes will be excluded from the solution. Modes with eigenvalues having an
amplitude close to 1 do not change significantly over time, so these modes define the steady state
and are dominant in the solution for long simulations. Conversely, modes with eigenvalues having an
amplitude close to zero only influence the initial phase of the simulation. The influence is also deter-
mined by the norm of the scaled mode. Modes with a norm much smaller than the maximum norm of
all modes do not affect the solution at any point in time. Given that the primary objective of the reduced
order models in this thesis is to perform long simulations, the significance of the modes is determined
by the amplitude of the DMD eigenvalues.

In Appendix B, themost relevant modes can be found with their corresponding eigenvalue. Complex
modes exist in conjugate pairs, so the mode for one conjugate pair is shown in one figure. Next to that,
only the real part is shown. This is the part that will appear in the solution in Equation 5.30, because
the imaginary part of one conjugate pair cancels out when the pairs are added in the solution:

𝑏𝑖𝜙𝑖𝜆𝑘
𝑖 + 𝑏̄𝑖 ̄𝜙𝑖𝜆̄𝑘

𝑖 = 𝑏𝑖𝜙𝑖𝜆𝑘
𝑖 + 𝑏𝑖𝜙𝑖𝜆𝑘

𝑖 = 2 ⋅ Re(𝑏𝑖𝜙𝑖𝜆𝑘
𝑖 ). (7.4)

The resulting RMSE of the reducedmodel with 10modes is shown in Figure 7.17. The plot starts at 8
seconds, because before that time, the full order model is executed to generate snapshots. Therefore,
there is no need to simulate the first 8 seconds with the reduced model as well. As mentioned before,
the tolerance in this application is 20 µm. Based on the RMSE, we can conclude that DMD gives
accurate results, when a proper number of snapshots is chosen.

Figure 7.17: RMSE for a DMD reduced order model trained on a single configruation with 400 snapshots.

7.4.2. Computational complexity DMD
After the computation of 400 snapshots, the solution for the remainder of the simulation can be deter-
mined using DMD analysis. This analysis involves two computationally intensive operations. Firstly,
the SVD of the snapshot matrix must be computed. Secondly, the eigenvalues and eigenvectors of
the matrix 𝐴 need to be determined. However, since the size of this matrix is at most 𝑛𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑠, this
operation is not computationally demanding. For 400 snapshots, these computations together require
less than the time needed for one timestep in the full order simulation. Therefore, the DMD analysis will
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be neglected. The computational complexity is shown in Table 7.7. Once the DMD analysis is done,
the equations needed for the full order model do not have to be assembled. Therefore the function
CreateEquationMatrix does not need to be executed anymore. Next to that the function Transport-
Displacements only has to be executed for the timesteps where the interpolated displacements are of
interest.

Table 7.7: Computational complexity of the DMD ROM for a full system with 𝑁 unknowns. The number of modes included in
the DMD ROM is indicated with 𝑟.

Code segment Dynamic Mode Decomposition
TransportDisplacements 𝒪(𝑁) (optional)
CreateEquationMatrix -
SubstituteODE -
SolveDynamicSystem 𝒪(𝑟𝑁)

7.5. Comparison
In this chapter, POD and DMD were applied on the two-dimensional conveyor belt model with different
sets of training data and different number of modes. The summary of the computational complexity is
shown in Table 7.8.

Table 7.8: Computational complexity of different methods for a system with 𝑁 unknowns. The number of unknowns for the
algebraic equations is indicated with 𝑁𝑎 and the bandwidth of the stiffness matrix is indicated with 𝑏. The number of modes

included in the ROM is indicated with 𝑟.

Code segment Direct time integration POD DMD
TransportDisplacements 𝒪(𝑁) 𝒪(𝑁) 𝒪(𝑁) (optional)
CreateEquationMatrix 𝒪 (𝑁) 𝒪 (𝑁) -
SubstituteODE - 𝒪 (𝑁𝑎) -
SolveDynamicSystem 𝒪(𝑁𝑏2) 𝒪(𝑟3) 𝒪(𝑁𝑟)

In Figure 7.18, the result for solving the system (and substituting the algebraic variables) is shown.
With DMD, the resulting displacement for the total simulation is obtained after generation of the training

Figure 7.18: The computation time for solving the system in one timestep. The time shown is obtained after generating the
snapshots. So generation of the snapshots is not included here.

data and DMD analysis. Therefore, after generation of training data, the result can be obtained with
a speedup of 7.2 and for a simulation of 5000 timesteps with 400 modes, this gives a speedup of the
total simulation of

5000
400 + 1

7.2 ⋅ 4600 ≈ 4.8. (7.5)
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POD has the advantage that it can be trained on different data. When the setup of the system of equa-
tions and the interpolation step can be avoided or optimized, this gives an advantage for POD. If a broad
set of training data is already generated, the full order model does not need to be simulated anymore
for extra simulations, but we do need 108 modes for an accurate reduced order model. Therefore, the
speedup over the total simulation when training on multiple simulations is 2.0. When POD is trained
on the same simulation, we have a speedup of

5000
400 + 1

3.3 ⋅ 4600 ≈ 2.8. (7.6)

Figure 7.19: The computation time for the different code segments in one timestep. The time shown is obtained after
generating the snapshots. So generation of the snapshots is not included here.

The computational time for running the full simulation, after generating the snapshots, is shown in
Figure 7.19. POD does not seem to reduce the complete simulation significantly because of the time
consuming extra processes. With DMD, however, the time consuming extra processes are included
in the ROM and therefore the computation time of running the reduced order model is negligible. In
Figure 7.20, the computational time for the functions TransportDisplacements and CreateEquationMa-
trix with a different number of grid elements is shown. The computational time and the number of
grid elements is both plotted in log scale. Because the slope for the computational time of CreateE-
quationMatrix is around 2, it may suggest a quadratic relation between 𝑛 and the computational time
of CreateEquationMatrix. Therefore, the computational time do not seem to align with the expected
computational complexities. Further research is needed to investigate this discrepancy.

(a) (b)

Figure 7.20: Computational time for CreateEquationMatrix and TransportDisplacements for different number of grid elements.

Optimizing the computational time of these functions is beyond the scope of this thesis, but we
would recommend to analyze the computational time for these functions as well. Because improving
their efficiency would significantly reduce the overall computational time.
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Based on the results in this chapter, all methods can generate a sufficient reduced order model
with a speedup for solving the system in the time integration. For this, the right training configurations,
number of snapshots and modes have to be chosen. The speedup for a system with a grid of 18 × 104
is of 2 to 5, but for similar systems with more grid points, the same number of modes is needed for an
accurate reduced order model. Therefore, the speedup will be higher for systems with the same setup
and more grid points.

The same process of training and selecting snapshots and modes is applied on a setup with one
tension roller as well, the results are shown and discussed in Appendix C. Because this system behaves
more complex than the system examined in this chapter, further research is required to optimize the
selection of training data, as well as the appropriate number of snapshots and modes.





8
Conclusion and future research

This study focuses on reducing the simulation of conveyor-belt movement using model order reduction.
We started with an existing model for conveyor belt systems. To get an understanding of this model, we
derived an analogous model where the belt is modeled as a one-dimensional string instead of a two-
dimensional plane in the existing model. Both models involve a DAE to simulate the solution in every
timestep. This DAE is different for each time step and is based on the solution of the previous timestep.
An equivalent ODE was derived with elimination of variables for model order reduction techniques to be
applicable. To correct for movement of the grid points, an interpolation step is applied in each timestep.
Every modeling step is the same in both the one- and two-dimensional model, which results in two
models with the same structure. Only, in the two-dimensional model, misalignments in three directions
can be applied instead of one and the interpolation step is more complex. Nonetheless, because these
differences did not interfere the structure of the equations, similar results were expected for applying
model order reduction on the two models.

In literature, only one-dimensional belt models are developed and MOR is applied for models with
long belt paths. However, the research on two-dimensional belt systems (without transverse displace-
ment) is lacking. In this research, the known theory on the model for a one-dimensional belt system is
extended to a two-dimensional belt system by examining an existing model for simulating the move-
ment a two-dimensional belt. The two-dimensional model is studied to answer the following research
question:

To what extent can model order reduction techniques accelerate the existing simulations for a two-
dimensional conveyor belt system to enable faster detection of issues arising from manufacturing im-
perfections?

To answer this question, we have addressed the following subquestions.

1. Is it possible to enhance the performance of the existing simulation program for the full order
DAEs without yet employing MOR techniques?

2. What is the nature of the nonlinearities in the full order model?

3. What are suitable MOR techniques for accelerating the simulations?

• In case the systems non-linearities are weak, can we use linear MOR techniques to reduce
the the two-dimensional conveyor belt systems?

4. How can we handle the interpolation step when applying MOR?

Is it possible to enhance the performance of the existing simulation program for the full order DAEs
without yet employing MOR techniques?
Initially, the solution at each timestep was obtained by forming a single linear system with the dynamical
system and the Backward Euler expressions. This approach proved to be time-consuming. We discov-
ered that the process could be accelerated by directly incorporating the Backward Euler expressions

67
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into the dynamical system. This led to a more efficient method for simulating the full order DAE. Fur-
thermore, the algebraic equations within the DAE could be eliminated, resulting in a system of ODEs.
However, due to the time-varying nature of the dynamical system, part of the elimination process had
to be repeated at each timestep. This step did increase the overall computational time compared to
direct time integration with Backward Euler. Consequently, the most efficient method for simulating the
full order DAE remained the application of a single time integration method, such as Backward Euler.

What is the nature of the nonlinearities in the full order model?
To apply model order reduction techniques to the system, it is necessary to know the characteristics of
the system. In the model, several sources of non-linearities are present. First of all, the radius of the
roller that is used in the governing equations can change over time. For rotations in other directions
than the moving direction, this radius is not the given radius of the roller, but the length of the node to
the rotational axis of the roller. Because of misalignments, this changes over time which introduces
non-linearities in the model.

Next to that, the interpolation step is non-linear in the unknowns and results in a changing element
mass, which thereby makes changes to the governing equations as well. The result of these three
components is that the system is non-linear. However, since the radius and the mass do not rapidly in
time, the non-linearities in the governing equations are small.

What are suitable MOR techniques for accelerating the simulations?
After answering the first subquestion, a baseline for the computational time was created. Three model
order reduction techniques were explored to further accelerate the dynamic simulation. Because the
non-linearities appeared to be small, we focused on linear MOR. Modal decomposition was found to
be unsuitable for this type of system, as the modes lack information on the forcing term in the dynamic
equations. A novel approach to address this issue was considered but proved inapplicable due to the
time-invariant nature of the system of equations that are studied in this thesis.

Secondly, Proper Orthogonal Decomposition was investigated. POD uses simulation data, thereby
avoiding the problem of modes not containing information on the right-hand side, encountered in modal
decomposition. POD provided accurate results when using the initial iterations of one simulation as
snapshot data to reduce the rest of the simulation. Additionally, POD yielded accurate results when
simulations from other setups were used as snapshot data. This latter approach is more efficient,
as we do not need for full-order simulations to do one simulation. Instead, only a few simulations
can be run and saved to obtain a reduced model for various simulations with comparable, but different,
configurations. However, one drawback of POD is its applicability to only ordinary differential equations.
Because of this, algebraic equationsmust be eliminated at each timestep. This adds computational time
to the simulation of the reduced order model. However, for a low enough number of modes, the total
computational time could still improve. Next to that, everything except for solving the dynamical system,
could not be reduced with POD. Because the other steps are dominant in the total computational time,
the speedup obtained by POD is practically very small.

Finally, the non-intrusive Dynamic Mode Decomposition was applied. DMD is entirely based on
simulation data. This has the advantage that every step in the simulation can be included in the reduced
order model. DMD trained on initial simulation results provided an accurate solution and was highly
time-efficient and the elimination of algebraic equations was unnecessary. However, DMD did not give
accurate results when trained on simulations with different configurations. This error could be due to the
approximated operation including assumptions about different misalignments present in the snapshot
data.

How can we handle the interpolation step when applying MOR?
In the non-intrusive DMD, it was easy to incorporate the interpolation step in the reduced order model.
For this, snapshots that account for the interpolation step are used. Modal decomposition and POD,
however, could not reduce the interpolation step. In these two methods, the interpolation step was
treated separately and only the dynamic DAE was reduced. Therefore, this implementation required
switching between the full order state and the reduced order state in each timestep.

The main conclusion of this research is that DMD gives the best reduced model in terms of compu-
tational time and accuracy. DMD is able to include all the steps for one simulation in the reduced order
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model, in contrast with modal decomposition and POD. By simulating 8 seconds of the belt motion and
performing a DMD analysis almost instantaneously, the solution for the remaining 100 seconds of the
simulation could be obtained directly with a RMSE in the order of at most 10−8. With POD, an accurate
reduced order model could be obtained with a RMSE in the order of 10−2 having a significant lower
dimension than the full order model. For only solving the system in the time integration, a speedup
of 3 to 2 was obtained with POD for a system with a grid of 18 × 104. And, based on the scalabil-
ity, this speedup will be higher if a larger grid is used for the same setup. Despite the speedup for
solving the system, POD did not result in significant speedup over the total simulation, because of the
time-consuming code segments involving the interpolation step and updating the system of equations.

8.1. Future research
Because solving the system in the time integration requires almost negligible time in the full simulation,
the focus shifts to reducing the time required for setting up the dynamical system at each timestep (the
function CreateEquationMatrix) and the time required for the interpolation step (the function Trans-
portDisplacements). These dominate the overall computational time, computing the time integration
is almost negligible. To further speed up the simulations, this setup process should be optimized for
computational efficiency. Furthermore, it can be useful to directly formulate the ODE in the setup of the
system without generating the full system matrix needed for the naive approach. This approach can in-
herently incorporate the substitution of algebraic variables within this code segment, so this substitution
process does not need to be performed anymore based on the DAE.

If the simulations are still too computational expensive, parallelizing computations in both the setup
of the system and the time integration could be considered.

Additionally, the unconventional modeling of the interpolation step gave some challenges in this
thesis. The modeling choice of the interpolation step has as consequence that the right-hand side is
dependent on the previous solution, which makes the governing equations discrete in time. This results
in limited applicability for the standard model order reduction methods, because these are meant for
dynamical systems continuous in time. Hence, it is desirable to adopt conventional modeling choices
for correcting for movement of the grid points and thereby avoiding the interpolation step. For example
with the floating frame of reference approach [28]. A conventional way of modeling will also allow us
to analyze the stability of the system better. Next to that, the creation of the equation matrix can be
simplified.

This suggestion would allow the application of POD to the model including the interpolation step
as well. Alternatively, the interpolation step can be rewritten into a system of equations and could be
projected onto a reduced space obtained by POD, to reduce the computational time of the interpolation
step. However, with this improvement, the equation matrix still has to be created each timestep.

In modal decomposition, it would be interesting to investigate whether the issue of not accounting
for the right-hand side arises in other models as well. A proposed solution to this problem was briefly
mentioned in section 6.2 and could be explored further for these type of models.

The last considered MOR method, Dynamic Mode Decomposition, could not be trained on different
simulation data to obtain a accurate solution. An option to resolve this, would be to try Dynamic Mode
Decomposition with control [44] or parametric Dynamic Mode Decomposition [49].

Finally, in this thesis, the methods were implemented with the number of snapshots determined
somewhat heuristically. Further investigation is needed to establish a general procedure for obtain-
ing the number of snapshots required for an accurate reduced model for any type of belt and roller
configuration. For example with the error estimators proposed in [46], [47], [48].
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A
POD results: multiple configurations

In this appendix, extra results for POD training on multiple simulations are shown. The test runs are
executed with POD trained on the data listed in Table 7.4.

Table A.1: Systematic set of training data used for POD. All training runs have been executed for 50 timesteps.

Translation Translation Rotation Rotation Rotation Translation
roller 1: 𝑥3𝐷 roller 1: 𝑦3𝐷 roller 2: 𝑥3𝐷 roller 2: 𝑦3𝐷 roller 3: 𝑥3𝐷 roller 3: 𝑦3𝐷

Test run 1 2.5 mm 2.5 mm 0.25 mrad 0.25 mrad 0.25 mrad 2.5 mm
Test run 2 - 5 mm - - - -
Test run 3 - - - 0.5 mrad 0.5 mrad -
Test run 4 12.5 mm - - - - -
Test run 5 - - - - -0.55 mrad -
Test run 6 2.5 mm 2.5 mm 0.9 mrad 0.25 mrad 0.25 mrad 2.5 mm
Test run 7 2.5 mm 2.5 mm 0.25 mrad -0.4 mrad 0.25 mrad 2.5 mm
Test run 8 1.25 mm 3.33 mm 0.167 mrad 0.25 mrad 0.1 mrad 5 mm
Test run 9 5 mm - 0.5 mrad 0.5 mrad 0.5 mrad -
Test run 10 - - 1.25 mrad - - -
Test run 11 2.5 mm 2.5 mm 2.5 mrad 0.25 mrad 0.25 mrad 2.5 mm
Test run 12 2.5 mm -4 mm 0.25 mrad -0.8 mrad 0.25 mrad 2.5 mm
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76 A. POD results: multiple configurations

Figure A.1: RRMSE for a POD reduced order model for configurations from Table 7.5 trained on data with multiple
configurations from Table 7.4 using 108 modes.

Figure A.2: RRMSE for a POD reduced order model for configurations from Table 7.5 trained on data with multiple
configurations from Table 7.4 using 108 modes.



B
DMD scaled modes: single configuration

Figure B.1: 𝑥 displacement of some DMD modes with the corresponding eigenvalue.
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78 B. DMD scaled modes: single configuration

Figure B.2: 𝑧 displacement of some DMD modes with the corresponding eigenvalue.



C
Results for configurations with a tension

roller
The setup is the same as the setup considered in chapter 7, only the second roller is defined as a
tension roller. That means there is a force applied on the roller that results in a small tension on the
system. The initial state is shown in Figure C.1.

(a) Side view of initial displacement.

𝐹𝑟2

(b) Top view.

Figure C.1: Test setup with a tension roller. Axes are given in millimeters.

POD and DMD are applied on this setup with configurations listed in Table A.1. The same method
is used to select the training data, number of snapshots and modes.
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80 C. Results for configurations with a tension roller

C.1. POD: single configuration
POD trained on a single configuration is applied on run 1 from Table A.1. Based on the singular values
depicted in Figure C.2a, 152 modes have to be included. The error is shown in Figure C.2b. The error
oscillates with a high frequency. The trajectory of the solution and approximated solution is depicted
in Figure C.3 and does also show oscillations. The oscillations in the error can be explained by the
oscillations in the trajectory.

(a) Relative singular values of the snapshot
matrix based on one configuration using 400

timesteps.

(b) RMSE for a POD reduced order model trained on a single configuration from run 1 in
Table A.1 including 152 modes.

.

Figure C.3: The trajectory of displacements of tracer points with the FOM and the POD ROM of run 1 in Table A.1.



C.2. POD: multiple configurations 81

C.2. POD: multiple configurations
To train POD on multiple configurations, the training data from Table 7.4 and test data from Table A.1
is used. Based on the singular values depicted in Figure C.4a, 113 modes are selected. The error
for multiple runs is shown in Figure C.4b. As in POD with a single configuration, this error shows
oscillations with a high frequency as well. This is also due to oscillations in the solution trajectory. The
error in the 𝑥-direction slightly exceeds the precision tolerance. To be certain of an accurate reduced
order model, a higher number of modes, or a higher number of snapshots, should be included.

(a) Relative singular values of the snapshot
matrix based on the configurations from

Table 7.4.
(b) RMSE for a POD reduced order model with configurations from Table 7.5 trained on

multiple configurations from Table 7.4.

C.3. DMD: single configuration
DMD trained on a single configuration is applied on run 1 from Table A.1. The eigenvalues are shown
in Figure C.5a with the norm of the corresponding scaled mode. A lot of modes have an eigenvalue
outside of the unit circle and a high scaled mode norm. When ignoring the modes with |𝜆| > 1, and
including the 50 modes with the highest eigenvalue, we get a approximation with the error shown in
Figure C.5b. The oscillations that have appeared in POD also appear in this method. Next to that,
the RMSE is above tolerance in the 𝑥-direction and increasing. This gives the impression that, with
this number of snapshots and modes, DMD is not able to capture the dynamics of the full order model.
Further research can be done on the selection of snapshots and modes in DMD for this setup.

(a) DMD eigenvalues in the complex plane of 400
snapshots. The color indicates the norm of the associated

scaled mode.

(b) RMSE for a DMD reduced order model trained on a single configuration using 400
snapshots.

.
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