
A Shared Control Interface for
Online Teleoperated Teaching
of Combined High- and Low-
level Skills
A.W.E. Rots

A Shared Control Interface for
Online Teleoperated Teaching

of Combined High- and
Low-level Skills

by

A.W.E. Rots
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Wednesday October 11th, 2023 at 1:00 PM.

Student number: 4589726
Project duration: February 13, 2023 – October 11, 2023
Thesis committee: Dr. ir. L. Peternel, TU Delft, supervisor, chair

Prof. dr. ir. D.A. Abbink, TU Delft, member
Dr. ir. W. Mugge, TU Delft, member

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This thesis marks the conclusion of my Master’s in Robotics at Delft University of Technology. Over the
past eight months, I developed a novel shared control interface for teleoperated teaching of combined
high- and low-level skills.

I would like to thank my supervisor, Luka Peternel, for his invaluable guidance and advice during my
literature study and thesis. He was always ready to help. His critical thinking, encouragement and
support ensured that I left our weekly meetings feeling challenged, full of new ideas and positive en-
ergy. Of course, I want to thank Professor Abbink and Winfred Mugge for making time to review my
thesis as committee members. During the project, I had the privilege of working with Sigma.7 haptic
device. I want to thank Micah Prendergast for helping me understand the complexities of the device. I
want to express my gratitude to Corrado Pezzato and Chadi Salmi from AIRLab for providing me the
simulation environment of the remote robot and helping me out when needed. Also, I want to thank
Giovanni Franzese for his help with the controller and the discussion about stiffness ellipsoids.

Finally, I want to thank my brother for his insight in suggesting that the Robotics master would perfectly
match my interests. He was right. I became truly fascinated by Human-Robot Interaction and I feel
grateful for the opportunity to have immersed myself in research within this field. I hope the results and
findings presented in this work contribute to further advancements in teleoperation-based skill transfer.

Astrid Rots
Delft, October 2023

iii

Contents

1 Paper 1

A Appendix - ROS Communication Structure Overview 15
A.1 Main Components . 16
A.2 Additional Functionalities. 17

A.2.1 Window switching . 17
A.2.2 Kinematic Trajectory for Low-level Teaching . 17
A.2.3 RViz Ellipsoid Visualization . 18

B Appendix - Predefined Behaviour Tree 19
B.1 Preliminaries . 19
B.2 Pick-and-Place BT . 20

B.2.1 Future Work. 20

C Appendix - Dynamic Movement Primitives 21
C.1 Preliminaries . 21

C.1.1 Classical Point-to-Point DMP Formulation . 21
C.1.2 Using DMPs to encode SPD matrices. 22

C.2 Reproduction of the demonstrated stiffness trajectory . 22
C.2.1 Data Pre-processing . 22
C.2.2 Results . 22

Bibliography 23

v

MASTER THESIS, A.W.E. ROTS, OCTOBER 2023 1

A Shared Control Interface for Online Teleoperated
Teaching of Combined High- and Low-level Skills

A.W.E. Rots
Supervised by: Dr. ir. L. Peternel

Abstract—We propose a novel shared control interface that
enables teleoperated teaching of both high-level decision-making
skills and low-level impedance modulation skills using a single
haptic device. In the proposed method, high-level teaching is
achieved by repurposing the haptic device to remotely modify
Behaviour Trees (BTs), allowing human operators to guide
decision-making. Repurposing of the haptic device is achieved
by exploiting its degrees of freedom for different functionalities.
Low-level skill teaching involves an impedance command inter-
face, that is used to command endpoint stiffness by manipulating
a 3D virtual stiffness ellipsoid with the haptic device. Both
teaching modes are connected: a newly demonstrated low-level
skill appears in the BT at a user-specified index. Control is shared
between the human and the autonomous system on a high- and
low-level. At the higher level, the human can change the BT
online, while ongoing execution of the low-level actions within
behavior tree remains uninterrupted. During low-level teaching,
shared control is implemented between the robotic motion skill
and human-demonstrated stiffness. To provide a proof-of-concept
and demonstrate the main features of the proposed interface, we
performed several experiments in a teleoperation setup operating
a remote shelf-stocker robot in a supermarket environment. A
predefined BT encodes high-level decisions for a pick-and-place
task. The impedance command interface is evaluated in a “peg-
in-hole”-like task of placing a product on a cluttered shelf.
Ultimately, the proposed interface can facilitate teleoperation-
based Learning from Demonstration for the transfer of both
high- and low-level skills in an integrated manner.

Index Terms—shared control, teleoperation, robot teaching,
high-level decision-making, physical interaction skills, impedance
control, Behaviour Trees.

I. INTRODUCTION

ULTIMATELY, we strive for autonomous robots that
seamlessly integrate into our daily lives to assist us or

execute tasks independently. To achieve this vision, intuitive
programming methods are essential, allowing and even en-
couraging the use of robots by non-experts.

Learning from Demonstration (LfD) offers an effective
approach to realize this goal and enables humans to teach robot
skills by simply demonstrating desired behaviours [1]. The
LfD algorithm uses these demonstrations to generate a policy
that mimics the demonstrated behaviour. LfD incorporates
human cognitive capacity into the programming of robots in a
natural and user-friendly manner. The demonstrations can be
obtained through passive observation (robot observes human,
executes a task based on sensor-derived data), kinesthetic
teaching (human directly moves robot joints in the desired
position), or teleoperation [2].

Teleoperation allows humans to remotely operate a robot
by sending motion control commands from a haptic device to

the remote robot. Devices typically used for teleoperated com-
manding are graphical user interfaces, joysticks or exoskele-
tons [3]. The advantage of teleoperation is that it provides a
solution for tasks that cannot be directly executed by a human
physically present in the environment, due to potentially
hazardous conditions posing safety risks and/or inaccessibil-
ity of the environment. Another advantage of teleoperation-
based LfD compared to passive observation and kinesthetic
teaching is the physical decoupling that prevents demonstrator-
induced dynamics from affecting learned policies [4]. A third
advantage of teleoperation-based methods is that they facilitate
shared control, due to the inherent human-in-the-loop design.
Shared control enables the human operator to share the control
of the teleoperated robot with an autonomous controller [5].
On the contrary, kinesthetic teaching has limited human-in-the-
loop control and interaction possibilities (only joint movement
can be demonstrated), preventing continuously and effectively
shifting control authority between human and robot [6]. Many
teleoperation-based LfD methods employ shared control dur-
ing the robot execution phase to guide online teaching and
improve skill transfer [6]–[14].

Literature shows that teleoperation-based LfD has been
successfully implemented for the transfer of low-level phys-
ical interaction skills [15]. Low-level skills are the primitive
movements the robot can execute, such as pushing, reaching,
grasping and placing. These skills can be based on motion
control [7]–[10], [16]–[19], impedance control [4], [6], [11],
[12], [20]–[22] or hybrid force/motion control strategies [13],
[14]. As teleoperated robots often operate in unpredictable
and/or unstructured environments to perform in-contact and
interaction-based tasks, such as assembly [23], surgery [24]
and collaborative tasks [21], these low-level skills are vital for
dealing with the associated complex dynamics.

To achieve our goal of autonomous robots, it is essential
to teach robots not only low-level skills but also high-level
decision-making skills. LfD for the learning of high-level
skills has three main components. First, segmentation, which
involves identifying the repeated structures within the provided
demonstrations. Second, the learning of low-level skills, as
previously explained. Finally, sequencing, which denotes in-
ferring and learning the transitions between the learned low-
level actions [25]. Teaching robots high-level skills greatly
increases robot capabilities. The nature of interaction tasks
is highly complex, often demanding anticipation instead of
single reactive, primitive actions. With high-level reasoning,
the robot can adapt its overall action sequence. Additionally,
employing a joint approach that integrates high- and low-

MASTER THESIS, A.W.E. ROTS, OCTOBER 2023 2

level skill transfer reduces state space complexity, yielding
increased planning efficiency [26]. Utilizing only low-level
skills without high-level actions requires a larger number of
demonstrations to effectively cover a certain behaviour or
problem [27].

High-level LfD requires a model to represent the high-
level decision-making. Existing methods use Behaviour Trees
(BTs) [25], [28], Finite State Machines (FSMs) [29]–[31],
Hierarchical Task Networks (HTNs) [32], [33] or symbolic
reasoning [34]–[37]. Existing high-level LfD methods rely
on kinesthetic teaching [28], [30], [31], [34]–[37] to record
demonstrations, rather than teleoperation. However, given the
previously mentioned advantages of teleoperation-based LfD
over kinesthetic teaching-based LfD, there is a clear need to
explore the extension of teleoperation-based LfD to encompass
high-level skill acquisition and integrate it with existing low-
level LfD. Notably, some high-level LfD methods use a GUI
to demonstrate action sequences [25], [32] showing the benefit
of a communication tool between human and robot to guide
the learning. As teleoperated teaching through shared control
has proven to be successful for low-level skill learning, we
argue that shared control could also be effectively applied to
guide high-level teleoperation-based LfD. Furthermore, exist-
ing high-level LfD methods only incorporate motion skills as
the low-level primitive actions [25], [28]–[37]. The inclusion
of low-level force and impedance skills would allow for
representing increasingly complex interaction behaviours.

Addressing this gap in the field of teleoperation-based LfD,
we propose and develop a novel shared control interface for
facilitating online multi-modal teleoperated teaching of both
high-level decision-making skills and low-level physical inter-
action skills. The contributions of this research are summarized
as follows:

1) Teleoperated teaching through shared control of both high-
and low-level skills using a single master device.

2) High-level teaching is achieved by temporarily repurposing
the master device. Behaviour Trees (BTs) are used to
represent high-level decision-making. Hence, high-level
teaching involves remotely modifying the BT using the
haptic device.

3) Inclusion of a novel 3D impedance command interface to
teach stiffness modulation as the low-level skill.

These extensions are essential to facilitate a transition towards
remote autonomous robots that can be programmed intuitively.
Fig. 1 provides a schematic overview of the proposed teaching
approach. It is crucial to emphasize that our research objective
is centered around teaching, rather than learning. Teaching
denotes the exact replication of the demonstrated action.
The goal is to develop an interface that simplifies remotely
commanding a robot on a high- and low-level in an integrated
manner using a single master device. Ultimately, such an
interface could facilitate the machine learning aspect of LfD
on both levels.

The teleoperated teaching framework is based around the
Force Dimension Sigma.7 as the master device. The remote
robot is a Franka Emika Panda. The proposed framework and

HUMAN

TEACHING INTERFACE

HUMAN
MOTOR

COMMANDS

LOW-LEVEL

BEHAVIOUR
TREE

ROBOT

VISUAL FEEDBACK

SHARED CONTROL SYSTEM

ACTUAL
COMMANDS

NEW TREE

NEW ACTION

LOW-LEVEL
ACTIONS

HIGH-LEVEL
DECISIONS

TAKE-OVER REQUEST

HIGH-LEVEL
BEHAVIOUR TREE

MODULATION

6DoF IMPEDANCE
MODULATION

Fig. 1: The proposed teaching approach for combined high-
and low-level skills with shared control between the robotic
skills and human commands. Human operator uses Sigma.7
master device for teaching.

interface are evaluated in a supermarket scenario. The growing
importance of retail robotics [38] highlights the potential for
robots to enhance efficiency in supermarkets.

A predefined BT is used to encode pick-and-place behaviour
for a robot operating in a supermarket [39]. A human op-
erator remotely supervises the robot from a shared control1

perspective, retaining the authority to interrupt tasks at varying
levels. At the higher level, the human supervisor can modify
the BT to achieve different action sequences. So either human
or BT is controlling the high-level decisions. Note that, if the
human takes over high-level control, the ongoing execution
of the BT low-level actions remains uninterrupted. At the
lower level, the operator can take control during product
placement to teach variable stiffness trajectories for increased
placing precision. At this level, shared control is implemented
between the robotic motion skill and human-demonstrated
stiffness: the human specifies the stiffness along a kinematic
trajectory established by the autonomous system. These newly
demonstrated low-level actions will immediately appear in the
BT, connecting both levels.

Haptic devices for teleoperation are primarily designed for
low-level skill transfer, i.e. to command motion (end-effector
poses) [8] and/or force [11]. This makes them less suitable
for teaching high-level decision-making skills, for example
specifying the order of an action sequence or a condition-
action relation. Additionally, operating a haptic device is gen-
erally more challenging than simple joint movements used in
kinesthetic teaching. Given the already considerable difficulty
in high-level LfD, researchers may opt for the easier method
of kinesthetic teaching for recording demonstrations. This
has hindered further progress in the field of teleoperation-
based LfD. In summary, repurposing existing haptic devices to
achieve high-level teaching in an intuitive manner represents
a critical challenge we aim to address through our research.

While teleoperated teaching of high-level skills could theo-
retically be achieved using a computer mouse and/or keyboard,
repurposing the haptic device offers several advantages over
these conventional input devices. First, as explained earlier,

1We implemented traded control, a subset of shared control in which the
shared control percentage is either fully on the human or the robot.

MASTER THESIS, A.W.E. ROTS, OCTOBER 2023 3

it is desired to combine high- and low-level teaching. This
is impossible with a computer mouse, as the human operator
must switch between different teaching interfaces. Switching
involves cognitive changes, and maybe even requires physical
movement, which is inconvenient for the human operator.
Furthermore, it is time-consuming and complicates real-time
teaching. The use of a single haptic device is a first step
towards a paradigm in which humans can teach a complete
skill set to remote robots using a portable setup, without
dependence on other hardware. Finally, another advantage that
underscores our design choice is that the haptic device has the
ability to provide multi-dimensional inputs, which opens up a
broader spectrum of teaching possibilities for complex high-
level decision-making, compared to 2D mouse inputs.

We chose BTs as the high-level decision-making framework
because they facilitate high-level teaching, due to their ad-
vantages in terms of modularity and reactivity compared to
other frameworks [40], [41]. First, these features make BTs
transparent and understandable [41] for the human operator.
The human can easily grasp the structure and flow of the tree,
making it straightforward to teach high-level sequences to the
robot. Second, the modular nature allows for generation of a
library of sub-trees. This simplifies the process of teaching by
enabling the assembly of complex sequences from predefined,
reusable building blocks. Third, the reactiveness makes BTs
suitable for unpredictable environments. This aligns perfectly
with our objective of achieving teleoperated teaching, consid-
ering that teleoperation setups are typically employed in such
environments. Finally, the reactivity of BTs not only enables
quick responses to environmental changes but also allows the
human operator to take control and teach a new sequence or
modify an existing one on-the-fly.

II. METHOD DESIGN

The main objective of the proposed system is to enable
teleoperated teaching of both high-level decision-making and
low-level impedance modulation skills using a single haptic
device. The proposed method is based on repurposing the
haptic device, i.e. exploiting its different degrees of freedom
(DoF) for different functionalities. To get these DoF, we prac-
tically employed Sigma.7 haptic device. The human operator
can manipulate the endpoint of the haptic device in 6 DoF
and control a finger-operated gripper. The gripper can be
fully opened or closed by the user’s finger movements, and
a button click function is emulated by rapidly moving the
gripper back and forth. Fig. 2 provides a system overview
with the main software blocks, signals and apparatus. Key
elements are the manipulating of the BT with the repurposed
haptic device and modulation of the stiffness ellipsoid in
3D, both highlighted in yellow blocks. To enhance operator
immersion, we implemented a graphical user interface (GUI)
that provides visual feedback for both teaching modes. Section
II-A describes requirements, while Sections II-B and II-C
elaborate on both teaching modes separately.

A. Design Requirements
The following requirements served as the basis for the

interface development:

1) On-the-fly-usage: The human operator must be able to use
the shared control interface on-the-fly. Teaching and then
updating of the BT must be achieved in an online manner.

2) Single haptic device: Teaching of both the high- and low-
level skills is achieved with the haptic device alone, i.e.
no additional devices are required for successful use of the
interface.

3) Multi-axis impedance commanding: The low-level teach-
ing mode of the interface should allow impedance com-
manding in 6 DoF.

4) Visual feedback: The interface should provide visual
feedback to the human operator regarding the current robot
state and the BT.

5) Multi-modality: The interface should allow the human
operator to make a wide range of changes to the BT, to
address a wide variety of unforeseen situations.

a) High-level teaching:
• Changing the structure of the tree
• Adding nodes

b) Low-level teaching:
• Demonstrating a new skill

6) Shared control: The interface must enable teaching in a
shared control manner.

a) Human operator detects a problem and overtakes control
b) Robot detects own insufficiency and asks the human

operator for a contingency plan

B. High-level Teaching

High-level teaching involves demonstrating decision-
making to the robot. Among the three types of high-level
decision-making (segmentation, sequencing, and conditioning)
our focus is on sequencing: determining the order in which a
series of actions should be executed to achieve a particular
goal. When teaching sequencing skills, the human operator
demonstrates the correct sequence of actions to achieve a de-
sired outcome. We employed BTs as the framework for high-
level decision-making. In our high-level teaching mode, the
human operator can modify the sequence of actions described
by the BT in an online manner using the haptic device. This
BT was created beforehand using a set of predefined skills.

To enable the human operator to command a new action
sequence and manipulate the structure of the BT effectively, a
set of functionalities and operations is essential. This includes
the ability to remove existing nodes, add new ones, or insert
nodes at specific positions within the tree. We repurposed
the haptic device to provide these functionalities, capitalizing
on its DoF. The functionalities are presented to the human
operator on the GUI. Two translational DoF are employed
for selecting a node and specifying the desired operation
(removing, adding, prepending or inserting). One rotational
DoF is used for selecting the index at which a new node must
be inserted. Finally, the emulated button click action, executed
with the finger-operated gripper, is used for implementing the

MASTER THESIS, A.W.E. ROTS, OCTOBER 2023 4

HUMAN HAPTIC DEVICE SOFTWARE ROBOT REMOTE

Environment

Operator

Physical
interaction

High-level visualizations

Low-level visualizations

K

Low-level

High-level

Behaviour Tree
commanding

py_trees_ros

f

policy

𝒙o , ϕo 𝒙h ,

ϕh

OpenGL
stiffness
ellipsoid

RViz
stiffness
ellipsoid

Robot State

PyQt GUI rqt_py_trees

𝒙a , ሶ𝒙a

Visual
feedback Stiffness

commanding
Impedance
Controller

Fig. 2: System overview depicting core software blocks, signals and apparatus. The human operator and remote environment
(blue components) interact with the haptic device and remote robot (green components), respectively. The human operator
provides 3D position xo, orientation ϕo and emulated button click inputs to the haptic device. The haptic device sends
position xh and orientation ϕh to the GUI. The yellow section highlights the software structure for both high- and low-level
teaching modes. For each teaching mode, the visualization elements are shown in the purple blocks, and connected to their
corresponding software part. The yellow blocks highlight the two fundamental elements of the teleoperated teaching interface.

selected changes within the BT. Once the human operator
finishes teaching, he/she can fully open the finger-operated
gripper to return to the main window. The BT is updated
at runtime and any changes will immediately appear in the
visualization tool of the tree. The upper part of Fig. 2 shows
the structure of the high-level teaching mode, and how the
software blocks are connected to relevant visualizations.

C. Low-level Teaching
The low-level teaching mode aims to teach stiffness mod-

ulation through a novel impedance command interface. The
human operator supervises BT execution and can take control
during product placement to command a variable stiffness
trajectory. The demonstrated stiffness is recorded to allow for
subsequent reuse of this skill within the BT. Robot endpoint
stiffness can be represented as an ellipsoid defined by three
parameters: size (the area of the planar ellipses), shape (ratio of
principle axes) and orientation (direction of major axis) [42].
In [43] a method was proposed that achieves independent con-
trol of all these aspects using a virtual stiffness ellipsoid on a
touchscreen device. We have built upon the interface proposed
in [43], by implementing a virtual stiffness ellipsoid command
interface that repurposes the haptic device to manipulate the
stiffness ellipsoid. Our method extends the existing state-of-
the-art in three ways: 1) 3D representation of the stiffness
ellipsoid, 2) changing the stiffness ellipsoid across all 6 DoF,
and 3) increased intuitiveness by using spatial inputs from a
haptic device instead of a 2D touchscreen.

The virtual ellipsoid is visualized on a GUI and controlled
with the haptic device. The GUI is split into four sections,

each showing a different view of the stiffness ellipsoid: three-
dimensional, X-Y plane, Y-Z plane and X-Z plane. The
stiffness ellipsoid is represented in the robot base frame (which
is aligned with the world frame). Three translational DoF
of the haptic device are employed for scaling the size and
changing the shape of the stiffness ellipsoid along its principal
axes. Three rotational DoF are used for rotating the stiffness
ellipsoid along the X, Y, and Z axes. Finally, the emulated
button click action, executed with the finger-operated gripper,
serves a dual purpose: selecting the principal axis to be
controlled and starting/stopping the recording of a stiffness
trajectory.

Singular value decomposition (SVD) shows that multiplying
the unit sphere by any mxn matrix M , yields a stretched
and rotated shape, forming an ellipsoid. The goal of the
low-level teaching mode is to construct a symmetric positive
definite (SPD) stiffness matrix K. For SPD matrices, singular
value decomposition is equal to the eigenvalue decomposition
(EVD). Because endpoint stiffness can be represented as
an ellipsoid, we can exploit the properties of ellipsoids to
determine the eigenvalues Σ and eigenvectors V and then use
eigendecomposition to construct the remote robot’s endpoint
stiffness matrix according to

Knew
T = V ΣV T , (1)

where Knew
T ∈ R3×3 is the new translational part of the

stiffness matrix K ∈ R6×6, and Σ ∈ R3×3 and V ∈ R3×3

denote the eigenvalues and eigenvectors, respectively.
The human operator can directly set the lengths of each

of the semi-axes using the translational DoF of the haptic

MASTER THESIS, A.W.E. ROTS, OCTOBER 2023 5

device. The lengths of the semi-axes of the stiffness ellipsoid
correspond to the eigenvalues of K2. The semi-major axis
represents the direction along which the end-effector is stiffest.
Note that the eigenvalue matrix Σ is pre-multiplied by a
diagonal matrix to obtain the right units, converting from
pixels [px] to robot stiffness [N/m].

The human operator can change the roll ϕ, pitch θ and yaw
ψ angles of the ellipsoid in the robot base frame using the
rotational DoF of the haptic device. These Euler angles denote
rotations around the fixed axes X, Y, and Z respectively. The
three consecutive rotations form the orthogonal rotation matrix
R ∈ R3×3,

R = Rz(ψ)Ry(θ)Rx(ϕ), (2)

which represents the directions of the semi-axes in the robot
base frame. These direction vectors of the semi-axes of the
stiffness ellipsoid correspond to eigenvectors of the stiffness
matrix, making R equivalent to the eigenvector matrix V .

The full robot stiffness matrix K ∈ R6×6 is given by

K =

[
Knew

T 0
0 Knew

R

]
, (3)

The proposed low-level teaching mode does not implement a
method for commanding the magnitude of rotational stiffness
component Knew

R ∈ R3×3, but the rotation R must also be
applied to the rotational axes through

Knew
R = V KRV

T , (4)

where Knew
R ∈ R3×3 is the new rotational part of the stiffness

matrix and KR ∈ R3×3 is the predefined rotational stiffness.
To control the remote robot with the derived stiffness matrix

K we employed Cartesian impedance control (see the lower
part of the yellow section in Fig. 2), which models the robot’s
physical interaction at the end-effector a mass-spring-damper
mechanism. Cartesian impedance control is defined as

f = K(xr − xa) +D(ẋr − ẋa), (5)

where f ∈ R6 is the interaction force acting from the remote
robot endpoint on the environment, xr ∈ R6 and xa ∈ R6

are the reference (i.e., desired) and actual endpoint pose,
respectively, K ∈ R6×6 is the Cartesian stiffness matrix
continuously obtained from 3, and D ∈ R6×6 is the positive
definite Cartesian damping matrix. When low-level teaching
mode is chosen, the human teaches the stiffness along a
predefined path xr. This motion was generated by specifying
a set of waypoints and no further emphasis is placed on how
these kinematic trajectories are established.

The damping matrix D is calculated at each time-step based
on the commanded stiffness matrix and rotated to match its
orientation. To achieve this, we need the eigendecomposition
of the new stiffness matrix

K = QK0Q
T , (6)

where Q ∈ R6×6 and K0 ∈ R6×6 are eigenvectors and
eigenvalues. We can now use D = 2ξ

√
K with damping ratio

2The eigenvalues are equal to the inverse of the semi-axes lengths squared,
however, this yields the isopotential stiffness ellipse which is not a direct
representation of endpoint stiffness values [42], [44]. This research therefore
uses the semi-axes lengths directly.

ξ set to 0.7 for a critically damped system [45] to determine
the damping matrix D through

D = 2QDξ

√
K0Q

T (7)

where the diagonal matrix Dξ ∈ R6×6 contains the damping
ratios for each DoF.

The commanded stiffness matrix K is stored at each
timestep. Once the teaching is finished, a new node is added
to the BT skill library, which achieves the product placement
in the shelf by utilizing the demonstrated stiffness.

III. EXPERIMENTS & RESULTS

To demonstrate the proposed shared control interface for
teleoperated teaching of combined high- and low-level skills
using a single haptic device, we conducted proof-of-concept
experiments. The teleoperation setup consisted of a Force
Dimension Sigma.7 haptic device and a simulated Franka
Emika Panda robotic arm mounted on a Clearpath mobile
base. The Gazebo simulation of the robot and the supermarket
environment were provided by AIRLab Delft3. Section III-A
describes how the haptic device was repurposed and elaborates
on the software and experimental setup used to implement
the high- and low-level teaching modes. The proof-of-concept
experiments involved both teaching modes. The goal of the
high-level task (Section III-B) was to change the sequence of
the BT by removing and inserting nodes. The low-level task is
product placement, in which a variable stiffness trajectory is
necessary to ensure both safe interaction and precise execution.
To show how the low-level teaching interface can be used to
change size, shape and orientation of the stiffness ellipsoid,
two separate product placement tasks are evaluated: from a
frontal shelf-facing position (Section III-C), and from a 45-
degree angle relative to the shelf (Section III-D). In Section
III-E, we illustrate how both teaching modes can be combined
through the interface: the newly demonstrated product-placing
skill is added to the skill library and can be inserted in the BT
using the haptic device.

A. Experimental Setup

The interface is developed using the ROS software frame-
work. The Sigma.7 has a gripper, three translational and
three rotational DoF. Its force feedback functionality was
not utilized in this study. Repurposing of the haptic device
is achieved by exploiting the incoming data from Sigma.7
through the ROS publisher/subscriber communication struc-
ture. The graphical user interface (GUI) that is provided to
the human operator for visual feedback and guidance during
both teaching modes is created with PyQt. The main window
of the GUI has the option to select either the high- or low-
level teaching mode. Fig. 3 shows the overview and internal
structure of the GUI. Fig. 4 visualizes the repurposing of the
haptic device for both high- and low-level teaching modes on a
conceptual level. Appendix A provides a detailed visualization
and discussion of the ROS communication structure.

3https://icai.ai/airlab-delft/

https://icai.ai/airlab-delft/

MASTER THESIS, A.W.E. ROTS, OCTOBER 2023 6

BT MODULATION

START

STIFFNESS MODULATION

rqt_py_trees RViz

NEW SKILL

Fig. 3: Overview of the internal structure of the graphical
user interface (GUI), used to guide the teaching. The human
operator navigates the GUI using the Sigma.7 haptic device.
The human selects high- or low-level teaching mode. The high-
level window (green block) has artificial buttons for each BT
node. If a button is selected, the human operator can choose
to add/prepend/remove it or insert the same node at another
index. The BT is updated at runtime and visualized with
rqt_py_trees (left purple block). The low-level window
(red block) shows a 3D visualization of the endpoint stiffness
ellipsoid that the human operator can modulate in 6 DoF using
the haptic device. A visualization of the commanded ellipsoid
is shown in red in RViz (right purple block). If the user finishes
low-level teaching, a new skill is added to the high-level GUI.

If the high-level teaching mode is selected, the human
operator sees the window highlighted green in Fig. 3 and Fig.
4. The interface displays buttons that directly correspond to the
nodes in the BT. The BT is modelled with py_trees_ros
and visualized with rqt_py_trees (see purple block in
Fig. 3). The buttons match the nodes in the tree, both in
name and structure. The BT is set up beforehand using a skill
library. This skill library contains simple actions necessary
for achieving pick-and-place behaviour in a supermarket, like
“LookToShelf”, “MoveBase”, “PickItem”, “DropItem”. These
low-level actions were created using the MoveIt motion
planning framework for ROS. During these actions, the robot
arm is position controlled. Appendix B further elaborates on
the predefined BT. The high-level teaching window of the
GUI gives the human operator the capability to manipulate
the sequence of the initial BT, by navigating the GUI using
the haptic device as explained in Section II-B and shown in
Fig. 4.

If the low-level teaching mode is selected, the human
operator sees the window that is highlighted red in Fig. 3

X Z ROLL

Fig. 4: Repurposing the haptic device for both teaching modes.
The top layer shows the haptic device and its reference frame.
In the low-level teaching mode (red GUI sections), the user can
move the haptic device back and forth along the translational
axes to change the length of the ellipsoid principal axes. The
user can rotate the haptic device around its rotational axes
to change the orientation of the ellipsoid in the robot base
frame. In the high-level teaching mode (green GUI sections),
the user can move the haptic device back and forth along the
translational axes to select nodes and operations to perform.
The user can rotate the haptic device around the X-rotational
axis to specify the index for insertion in the BT.

and Fig. 4. The low-level teaching window of the GUI gives
the human operator the capability to control robot endpoint
stiffness in all 6 DoF, using the haptic device as explained in
Section II-C and shown in Fig. 4. When the low-level teaching
is started, the BT execution is paused through the blackboard4.
Furthermore, the ROS controller switching functionality is
used to stop the position controller used by MoveIt and start
the Cartesian impedance controller. We used and adapted the
Cartesian impedance controller for Franka Emika Panda from
[46].

The low-level teaching window provides four options to the
human operator for commanding the DoF: commanding all
6 DoF simultaneously, commanding X-axis length and roll
angle, Y-axis length and pitch angle, Z-axis length and yaw
angle. The human operator can select the desired axes with the
emulated button click action. Every time the button is clicked,
the next axis is selected. This way, the human operator can
sequentially set stiffness in the X, Y, and Z axis, or he/she can
choose to control stiffness in all directions at once. The GUI
displays the commanded stiffness values for each principal
axis along with its corresponding angle around that axis. This
feature helps users understand the order of magnitude of the
stiffness commands.

The emulated button click action is also used to start/stop
recording of the stiffness trajectory. When recording starts,
a predefined kinematic reference trajectory (xr in equation
5) to a designated spot in the shelf is sent to the Cartesian
impedance controller. No assumptions are made on how the

4The blackboard is a key/value storage system that can be accessed by all
nodes in the BT.

MASTER THESIS, A.W.E. ROTS, OCTOBER 2023 7

A B C D

B

A

C

D

A

B

C D

User utilizes the haptic device translational x-axis to set the
horizontal slider in the GUI to a specific node.

User utilizes the emulated button click action to select this
node (“PlaceItem”): the corresponding button in the GUI
turns green. The vertical slider is enabled.

User utilizes the haptic device translational y-axis to set
the vertical slider to the operation he/she wants to
perform on the selected node.

User utilizes the emulated button click action to select an
operation (“Remove”). The specified node is removed from
the Behaviour Tree.

Fig. 5: Results of the high-level task: the human operator uses the haptic device to change the BT online. The left column
shows consecutive screenshots of the GUI (green sections) and the visualization of the current BT (dotted purple sections).
The graph in the bottom right shows the haptic device inputs (translational X and Y and finger-operated gripper) used to
navigate the GUI and change the BT. Four consecutive phases (A,B,C,D) in the haptic device movements can be distinguished,
which are elaborated on in the legend.

kinematic trajectory is established beforehand: for example, it
could be generated remotely with the same haptic device used
for stiffness demonstration.

The 3D visualization of the stiffness ellipsoid is created
with OpenGL bindings for PyQt, that enable simple graphics
rendering inside the GUI window. During teaching, the human
operator can see a visualization in RViz of the endpoint
stiffness ellipsoid that he/she is commanding. If the human
operator finishes demonstrating and stops the recording, the
new skill is added to the skill library. The human operator
can then return to the high-level window and use the haptic
device to insert the new product-placing skill, that uses the
demonstrated stiffness, in the BT at a specific index. Returning
to the main window is indicated by the dotted arrows in Fig.
3 and is accomplished by an additional repurposing of the
haptic device. If the human operator uses his/her finger to
move the gripper to its fully opened position, the main window
is opened.

The haptic device inputs were scaled to match the maximum
pixel width and height of the screen. This scaling was applied
to ensure that the ellipsoid renderings spanned the entire
screen. The obtained eigenvalue matrix Σ is premultiplied by
a diagonal matrix with values of 5 [N/(m·px)], to obtain the
right stiffness units and set the maximum translational stiffness
to 3000 N/m in each DoF. The rotational stiffness matrix KR

was preset to 30 Nm/rad in each rotational DoF.

B. High-level Task: Demonstrating a New Action Sequence

This Section covers the high-level teaching part of the
proof-of-concept experiments and shows how our proposed
interface facilitates the online modification of the BT through
the repurposed haptic device. The results of the task are shown
in Fig. 5, which shows how the human operator used the haptic
device to navigate the GUI to change the BT. The haptic device
movements can be categorized into four consecutive phases.

The translational X-axis of the haptic device is used for
selecting a node, this is reflected by the increasing red graph
(Phase A). The Sigma.7 haptic device is difficult to operate in a
single DoF only, as it is very sensitive to small movements; this
is reflected by the translational Y-axis position that increases
at the same time (green graph). In this phase, we do not want
to utilize the translational Y-axis yet, so the vertical slider
remains disabled until a node is selected. Once the position of
the slider is underneath the node to be selected (in this case
“PlaceItem”), which is reflected by the red graph remaining
constant, the user utilizes the emulated button click action with
the finger-operated gripper. This is indicated by the sudden
drop in the purple graph (Phase B). The vertical slider is
now enabled. The GUI starts listening to the translational Y-
axis data. The horizontal slider is disabled and the GUI stops
listening to translational X-axis data. The user moves the slider
to the operation he/she wants to perform on the selected node:
this is reflected by the green graph decreasing (Phase C). Once

MASTER THESIS, A.W.E. ROTS, OCTOBER 2023 8

1. APPROACH 2. ALIGN 3. INSERT

1 2 3

Fig. 6: Result of the product placement task from a position perpendicular to the shelf, highlighting how stiffness in the X-Y
plane was varied for each phase (approach, align, insert). The top layer shows three consecutive screenshots of the robot
end-effector during product placement. In the corner, the RViz visualization of the commanded stiffness ellipsoid is depicted.
The robot base frame is indicated. The user controlled the haptic device translational DoF to modify the stiffness ellipsoid
through the GUI as shown in the second layer. The user controls stiffness in the robot base frame. For clarity, only the X-Y
plane section of the GUI is displayed. The third layer shows the graph of the actual Cartesian end-effector position during
placement. The fourth layer shows the Sigma.7 haptic device movements (dark coloured) and the corresponding principal
axes lengths of the ellipsoid (light coloured), i.e. the principal stiffness components in the robot base frame. The fifth layer
shows the X-Y plane of the commanded stiffness ellipsoid over time.

the user has the haptic device steady (in this case at the
“Remove” operation), he/she uses the emulated button click
action again (Phase D). The ROS service/client structure is
utilized to send the request to the BT (see Appendix A). The
requested node is removed from the tree (see purple dotted
block). After phase D, we see an increase in the gripper
angle to its maximum value (i.e., fully opened position). We
repurposed this DoF of the haptic device for navigating back
to the main window to start low-level teaching.

C. Low-level Task 1: Changing Size and Shape of the Stiffness
Ellipsoid

This Section describes how the ellipsoid interface is used to
command stiffness in multiple axes during the low-level skill
of placing a product on the supermarket shelf, which resembles
the classic “peg-in-hole” task. The results are shown in Fig. 6.
During the placing, we can distinguish three different phases in
terms of the desired size and shape of the stiffness ellipsoid:
1) approaching the designated drop-off spot in the shelf, 2)

alignment with the drop-off location and 3) inserting the
product. In the experiment, the mobile base of the robot was
positioned perpendicular to the shelf, therefore the stiffness
ellipsoid did not have to be rotated and the stiffness matrix
K was diagonal. The direction of alignment and insertion
correspond with the robot base frame Y-axis and X-axis,
respectively. Endpoint stiffness in the Z direction is kept
constant at a relatively high value, to account for the unknown
mass of the product. Once the low-level teaching mode is
started, the user can preset the stiffness ellipsoid to the size,
shape and orientation desired for the start of the task. Then the
emulated button click action is utilized, which starts playback
of the predefined reference kinematic trajectory, xr. Fig. 6
shows how the human operator changes the X and Y principal
axes of the stiffness ellipsoid during each phase using the
corresponding translational DoF of the haptic device.

During approach (phase 1), the robot must be compliant to
ensure a safe interaction with the unpredictable supermarket
environment, where customers might be in close proximity.

MASTER THESIS, A.W.E. ROTS, OCTOBER 2023 9

1. APPROACH 2. ALIGN 3. INSERT

1 2 3

Fig. 7: Result of the product placement task from a 45-degree angle relative to the shelf. The robot base frame is rotated with
respect to the shelf as depicted in the top layer. The top layer shows the three phases of product placement. The second layer
shows the corresponding GUI windows. The first graph is the actual end-effector position. The second graph shows how the
haptic device rotational Z-axis is used to rotate the stiffness ellipsoid around its principal Z-axis. The last graph shows how
the ellipsoid changes in size, shape and orientation during product placement.

The human operator therefore commands equally low stiffness
in X and Y. The X-Y intersection of the ellipsoid becomes
circular.

During alignment (phase 2), it is important to reject per-
turbations in Y to ensure precise positioning in front of the
designated drop-off location. The human operator selects the
option to command the Y-axis with the emulated button click
action. The user moves the haptic device in the Y direction
(dark green line in the second graph) to increase the Y-axis
length (light green line) of the ellipsoid depicted in the GUI.
As the human operator moves the haptic device in Y, the
position in X (dark red line) is also changed, however, this
does not affect the X-axis length of the ellipsoid (light red
line), because the user selected Y-axis commanding for this
stage. Stiffness in X direction remains the same as during
approach, to prevent high contact forces.

During insertion (phase 3), a “peg-in-the-hole” strategy [4],
[47] is followed. Stiffness in the Y-axis is decreased slightly
to make the robot more compliant in this direction, which
is needed to prevent the other products from being pushed
over at the slightest misalignment. Then the user selects X-
axis commanding to increase stiffness along the X-axis. This

is reflected in the second graph: the X-axis length of the
ellipsoid increases according to the haptic device translational
X position. This increased rigidity in the insertion direction
forces the product to be “pushed” into the right spot.

From the second graph in Fig. 6 it follows that a delay is
present between the haptic device movement and the ellipsoid
principal axes size: the latter (lighter coloured lines) lag
behind. The delay is caused by the update and refresh rate
of the GUI being considerably lower than the Sigma.7 node
refresh rate. The third graph in Fig. 6 shows how the X-Y
plane of the ellipsoid changes in size and shape during the
product placement: small and circular for compliant behaviour
(1), principal Y-axis becomes the semi-major axis of the ellipse
for precise alignment (2) and principal X-axis becomes the
semi-major axis of the ellipse to force the product to the
designated spot (3).

D. Low-level Task 2: Changing Orientation of the Stiffness
Ellipsoid

To demonstrate the functionality of the interface to change
the orientation of the ellipsoid in the robot base frame, a
second low-level task was executed: product placement from

MASTER THESIS, A.W.E. ROTS, OCTOBER 2023 10

a 45-degree angle with respect to the shelf. This scenario
could become relevant if a customer obstructs the robot from
positioning itself directly in front of the shelf. The results are
shown in Fig. 7.

During approach, (phase 1), the same compliant behaviour
in both X and Y direction is necessary for safe interaction.
The orientation of the ellipse is still aligned with the robot’s
base frame.

During alignment (phase 2), the user increases stiffness in
the Y direction of the robot base frame for perturbation re-
jection. The user gradually starts rotating the ellipsoid around
its principal Z-axis (t = 1.5s). This rotation is visualized in
the second graph of Fig. 7, where the user manipulates the
haptic device’s rotational Z-axis (dark blue line), resulting in a
corresponding increase in the ellipsoid’s yaw angle (light blue
line). The user rotates the ellipsoid until its principal Y-axis
coincides with the required direction of alignment to place the
product on the shelf (45 degrees). The bottom graph illustrates
the rotational adjustment of the ellipsoid. At last, the Y-axis
length is slightly decreased to mitigate the risk of high contact
forces during the impending insertion phase.

During insertion (phase 3), the orientation of the ellipsoid,
now properly aligned, is kept constant. Notably, the “peg-in-
the-hole” strategy, i.e. increased stiffness in the insertion direc-
tion to force the product into the right spot, was intentionally
omitted during this experiment. The reason for this omission
lies in the specific task context. Due to the robot’s angled
positioning, pushing the product forcefully in the insertion
direction would risk displacing other nearby products. The
angled configuration limits how far the product can be inserted
into the shelf, making the conventional strategy less relevant
in this context.

We took initial steps of using the proposed interface for
low-level skill learning, by using Dynamic Movement Prim-
itives (DMPs) to encode the stiffness trajectory for product
placement at an angle relative to the shelf, see Appendix C
for the preliminary results.

E. Skill Integration in the Behaviour Tree

The ultimate goal of demonstrating a new skill is for the
robot to use it in future tasks. When the low-level teaching
ends, a new button is added in the high-level GUI. This
button encodes the previously demonstrated variable stiffness
trajectory. This is indicated by the pink arrow in the high-level
window (green section) in Fig. 8. Using the haptic device, the
user can choose to insert this new skill. This is similar to the
process described in Section III-B. Once the “Insert” option is
selected, a dial mechanism in the GUI is enabled to allow the
user to specify at which position in the BT the skill must be
inserted. The user controls the dial with the rotational X-axis
of the haptic device. This is highlighted by phase A. Once the
index is specified, the user utilizes the emulated button click
action executed via the finger-operated gripper (phase B), and
the node is inserted in the BT (purple dotted block).

This shows how the proposed interface can connect both
teaching modes. From a high-level perspective, the human
supervises BT execution and decides a new skill is needed.

A B

A

B

Fig. 8: Overview of how the newly demonstrated low-level
skill can be implemented in the BT, so the robot can employ
it for later use. After low-level teaching, a new skill appears
in the high-level window (green section). The user can select
this skill and operation using the haptic device. In phase A, the
user uses the haptic device rotational Z-axis to select the index
at which the skill must be inserted. In phase B, the user utilizes
the emulated button click action to implement the insertion.
The new skill is added to the tree, as seen in the purple dotted
block.

First, the high-level sequence must be changed, and then the
low-level skill is demonstrated. Using the high-level teaching
mode, the user can integrate the new skill in the BT for future
use. It is important to highlight that the skill replacement
is tackled from a high-level perspective: the human operator
uses the high-level teaching mode to make decisions about the
sequence of actions, reflecting a higher level of understanding.

IV. DISCUSSION

The results of the proof-of-concept experiments show that
the proposed interface can be used for teleoperated teaching of
both high- and low-level skills. The main advantage of the pro-
posed method is the use of a single haptic device for both high-
and low-level teaching. This is important because existing
high-level Learning from Demonstration (LfD) methods have
refrained from using teleoperation to record demonstrations,
due to the fact that state-of-the-art haptic devices are typically
designed for low-level skill transfer. We showed that it is
possible to repurpose the haptic device, and transformed it

MASTER THESIS, A.W.E. ROTS, OCTOBER 2023 11

into a tool to change the robot behaviour at a high level.
This marks an important advancement in the field of field of
teleoperation-based LfD. Our interface enables high-level skill
teaching through teleoperation and retains the option to teach
low-level stiffness modulation when needed.

All of the design requirements outlined in Section II-A
are successfully implemented, except the shared control meta
mode in which the robot seeks a contingency plan from the
human operator. Equipping the robot with such an autonomous
insufficiency-detection mechanism can only be achieved in a
meaningful way if the BT skill library can be extended online
through learning.

The repurposing of the haptic device is achieved through a
GUI. Some existing high-level LfD methods [25], [32] have
used a keyboard and computer mouse-controlled GUI for high-
level skill transfer, however, these methods were restricted
to offline learning and the GUIs were tailored to the task at
hand. An advantage of our interface is that it facilitates online
teaching, as both the high-level and low-level demonstrations
are reflected in the robot behaviour in real-time. Additionally,
the proposed method can accommodate any predefined BT.
The buttons in the GUI are generated based on this initial BT,
allowing the user to remotely modulate any BT on-the-fly.

One of the main advantages of a single haptic device
is that this eliminates the dependency on other hardware.
However, the inclusion of a GUI to achieve the repurposing of
the haptic device could potentially compromise this essential
advantage. In the process of repurposing the haptic device, the
most significant challenge we faced was effectively allocating
specific DoF for distinct actions while data was continuously
coming in. The use of a GUI provided an elegant solution:
certain parts of the GUI can be (de)activated, making it
possible to “ignore” some of the incoming data when it is
not needed. The GUI could be adapted to run on a portable
device like a tablet or even a VR headset, maintaining the
desired flexibility of the setup. Furthermore, we argue that
a GUI might be crucial in creating an intuitive high-level
teaching mode for the human operator. To demonstrate high-
level decision-making, a communication tool like the GUI is
necessary to prevent the process from becoming too abstract.

With the proposed method we have demonstrated the haptic
device can effectively be repurposed for high-level teaching,
by exploiting two translational and one rotational DoF. This
can easily be extended to leverage other DoF as well. For
example, additional DoF of the haptic device could be used
to integrate the teaching of conditioning skills, so the human
operator can modify the pre-and post-conditions that guide
BT ticking. Furthermore, specific DoF could be utilized to
change the type of nodes within the tree, such as transforming
a sequence node into a fallback node. A potential limitation
of the high-level teaching mode is that its current design only
allows for the leaf nodes of the BT to be modified. To give the
user control over the entire BT, the slider mechanism to select
nodes (as explained in Section III-B) should be extended to
the higher hierarchical layers of the tree.

With the low-level teaching mode, we successfully achieved
independent control over all aspects of the stiffness ellipsoid.
However, the practical implementation posed challenges for

the human operator due to the high sensitivity of the haptic
device. We took initial steps to mitigate these effects by
implementing the feature of cycling through the different
control options with the emulated button click. This allows
for decoupled control of the principal axes lengths. However,
principal axis length and rotation around this axis are still
coupled: when changing the axis length, this unavoidably leads
to slight changes in orientation. Promising solutions to further
mitigate the effects of the haptic device sensitivity could be
to implement virtual fixtures that constrain the human arm
motion along the haptic device coordinate axes or to scale the
inputs that are sent to the virtual ellipsoid interface.

The proposed method enables teleoperated teaching of high-
level sequencing and low-level stiffness modulation skills in an
integrated manner using a single haptic device. The scope of
this research was to introduce the novel method and perform
proof-of-concept experiments. In future work, we will conduct
a human factors study to examine the usability and cognitive
load of the proposed interface. Regarding usability, we want
to investigate whether the proposed interface can intuitively
and effectively be used in a real-world supermarket scenario.
In terms of cognitive load, the proposed method must be
compared to conventional mouse/keyboard input devices to
confirm whether our proposed use of a single haptic device
decreases workload. This user study will guide potential
improvements for redesign to enhance the value of the system
for human operators.

To further improve the functionality of the proposed method,
we have identified two important possible extensions. First, the
proposed interface allows teleoperation-based LfD methods to
be extended to high-level skill transfer. Future work should
focus on how machine learning algorithms can use the demon-
strated sequence changes to learn a policy for autonomous BT
adaptation. Second, the control approach should be extended
to shared control. The interface is currently based on traded
control, in which the human enters the control loop temporar-
ily. However, as the current capabilities of autonomous robots
still often require quick and timely human intervention, it is
necessary to keep the human in the loop continuously. Another
motivation for improving the human-in-the-loop design lies in
the supervisory role of the human operator within the proposed
system: the human operator must constantly supervise BT ex-
ecution. In such supervisory tasks a human-in-the-loop design
is especially important for maintaining situational awareness
[48]. Therefore, future research on teleoperation-based high-
level LfD should explore shared control mechanisms that
gradually shift the control percentage between the human and
the robot, for example by taking into account the robot’s
confidence in its learned policy. This way, the human operator
can engage in collaborative high-level decision-making with
the robot through the haptic device.

V. CONCLUSION

This research proposed a shared control interface for teleop-
erated teaching of combined high-level sequencing skills and
low-level stiffness modulation using a single haptic device.
High-level teaching is achieved by repurposing the haptic

MASTER THESIS, A.W.E. ROTS, OCTOBER 2023 12

device through a graphical user interface, capitalizing on
its degrees of freedom. Low-level teaching involves a novel
virtual ellipsoid interface that allows for commanding stiffness
in 6 DoF using the haptic device. This research addresses a
limitation in teleoperation-based Learning from Demonstration
(LfD) methods, where the absence of an intuitive device
for demonstrating decision-making has complicated high-level
skill learning. By showing the feasibility of teleoperated
teaching of high- and low-level skills using a single haptic
device through proof-of-concept experiments, we have laid the
foundation for advancing teleoperation-based LfD to incorpo-
rate high-level skill transfer.

REFERENCES

[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot Programming
by Demonstration”, Springer Handbook of Robotics, pp. 1371–1394,
2008.

[2] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 3, no. 1, pp. 297–330,
2020.

[3] S. Calinon, “Learning from Demonstration (Programming by Demon-
stration)”, Encyclopedia of Robotics, Springer Berlin Heidelberg, pp 1-8,
2018.

[4] L. Peternel, T. Petric, and J. Babič, “Robotic assembly solution by human-
in-the-loop teaching method based on real-time stiffness modulation,”
Autonomous Robots, vol. 42, pp. 1–17, 01 2018.

[5] G. Li, Q. Li, C. Yang, Y. Su, Z. Yuan and X. Wu, “The Classification
and New Trends of Shared Control Strategies in Telerobotic Systems: A
Survey”, IEEE Transactions on Haptics, vol. 16, no. 2, pp. 118-133, 2023

[6] L. Peternel, T. Petric, E. Oztop, and J. Babič, “Teaching robots to
cooperate with humans in dynamic manipulation tasks based on multi-
modal human-in-the-loop approach,” Autonomous Robots, vol. 36, pp.
1–14, 01 2014.

[7] M. A. Zamani and E. Oztop, “Simultaneous human-robot adaptation for
effective skill transfer,” International Conference on Advanced Robotics
(ICAR), pp. 78–84, 2015.

[8] M. J. A. Zeestraten, I. Havoutis, and S. Calinon, “Programming by
demonstration for shared control with an application in teleoperation,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1848–1855,
2018.

[9] Havoutis and S. Calinon, “Learning from demonstration for semi-
autonomous teleoperation,” Autonomous Robots, vol. 43, 03 2019.

[10] L. Peternel and J. Babič, “Humanoid robot posture-control learning in
real-time based on human sensorimotor learning ability,” IEEE Interna-
tional Conference on Robotics and Automation, pp. 5329–5334, 2013.

[11] Y. Michel, R. Rahal, C. Pacchierotti, P. R. Giordano, and D. Lee, “Bi-
lateral teleoperation with adaptive impedance control for contact tasks,”
IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5429–5436,
2021.

[12] L. Peternel, E. Oztop, and J. Babič, “A shared control method for online
human-in-the-loop robot learning based on locally weighted regression,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 3900–3906, 2016.

[13] W. Si, Y. Guan, and N. Wang, “Adaptive compliant skill learning for
contact-rich manipulation with human in the loop,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 5834–5841, 2022.

[14] W. Si, T. Yue, Y. Guan, N. Wang, and C. Yang, “A novel robot
skill learning framework based on bilateral teleoperation,” in 2022 IEEE
18th International Conference on Automation Science and Engineering
(CASE), pp. 758–763, 2022.

[15] W. Si, N. Wang, and C. Yang, “A review on manipulation skill acquisi-
tion through teleoperation-based learning from demonstration,” Cognitive
Computation and Systems, vol. 3, no. 1, pp. 1–16, 2021.

[16] A. Jha and S. S. Chiddarwar, “Robot programming by demonstration
using teleoperation through imitation,” Ind. Robot, vol. 44, pp. 142–154,
2017.

[17] I. Havoutis and S. Calinon, “Supervisory teleoperation with online
learning and optimal control,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), pp. 1534–1540, 2017.

[18] A. Mandlekar, D. Xu, R. Mart’in-Mart’in, Y. Zhu, L. Fei-Fei, and S.
Savarese, “Human-in-the-loop imitation learning using remote teleopera-
tion,” ArXiv, vol. abs/2012.06733, 2020.

[19] M. Rigter, B. Lacerda, and N. Hawes, “A framework for learning
from demonstration with minimal human effort,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 2023–2030, 2020.

[20] C. Zeng, C. Yang, H. Cheng, Y. Li, and S.-L. Dai, “Simultaneously
encoding movement and semg-based stiffness for robotic skill learn-
ing,” IEEE Transactions on Industrial Informatics, vol. 17, no. 2, pp.
1244–1252, 2021.

[21] P. Evrard, E. Gribovskaya, S. Calinon, A. Billard, and A. Kheddar,
“Teaching physical collaborative tasks: object-lifting case study with a hu-
manoid,” in 2009 9th IEEE-RAS International Conference on Humanoid
Robots, pp. 399–404, 2009.

[22] J.-K. Lee and J.-H. Ryu, “Learning robotic rotational manipulation
skill from bilateral teleoperation,” in 19th International Conference on
Ubiquitous Robots (UR), pp. 318–325, 2022.

[23] Z. Zhu and H. Hu, “Robot learning from demonstration in robotic
assembly: A survey,” Robotics, vol. 7, no. 2, 2018.

[24] T. Osa, K. Harada, N. Sugita, and M. Mitsuishi, “Trajectory planning
under different initial conditions for surgical task automation by learning
from demonstration,” in 2014 IEEE International Conference on Robotics
and Automation (ICRA), pp. 6507–6513, 2014.

[25] K. French, S. Wu, T. Pan, Z. Zhou, and O. C. Jenkins, “Learning
behavior trees from demonstration,” in 2019 International Conference
on Robotics and Automation (ICRA), pp. 7791–7797, 2019.

[26] Konidaris, L. Kaelbling, and T. Lozano-Perez, “From skills to symbols:
Learning symbolic representations for abstract high-level planning,” Jour-
nal of Artificial Intelligence Research, vol. 61, 01 2018.

[27] G. Canal, E. Pignat, G. Alenyà, S. Calinon, and C. Torras, “Joining
high-level symbolic planning with low-level motion primitives in adaptive
hri: Application to dressing assistance,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 3273–3278, 2018.

[28] O. Gustavsson, M. Iovino, J. Styrud, and C. Smith, “Combining context
awareness and planning to learn behavior trees from demonstration,”
in 2022 31st IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN), pp. 1153–1160, 2022.

[29] D.H. Grollman, O.C. Jenkins, “Can We Learn Finite State Machine
Robot Controllers from Interactive Demonstration?,” in From Motor
Learning to Interaction Learning in Robots. Studies in Computational
Intelligence, vol 264, 2010.

[30] S. Niekum, S. Osentoski, G. Konidaris, S. Chitta, B. Marthi, and A. G.
Barto, “Learning grounded finite-state representations from unstructured
demonstrations,” The International Journal of Robotics Research, vol. 34,
no. 2, pp. 131–157, 2015.

[31] E. Orendt, M. Riedl, and D. Henrich, “Robust one-shot robot program-
ming by demonstration using entity-based resources,”, 2018 27th IEEE
International Symposium on Robot and Human Interactive Communica-
tion (RO-MAN), pp. 573–582, 06 2018

[32] A. Mohseni-Kabir, C. Rich, S. Chernova, C. L. Sidner, and D. Miller,
“Interactive hierarchical task learning from a single demonstration,”
in 2015 10th ACM/IEEE International Conference on Human-Robot
Interaction (HRI), pp. 205–212, 2015.

[33] Y. Cheng, L. Sun, and M. Tomizuka, “Human-aware robot task planning
based on a hierarchical task model,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 1136–1143, 2021.

[34] S. R. Ahmadzadeh, A. Paikan, F. Mastrogiovanni, L. Natale, P. Kormu-
shev, and D. G. Caldwell, “Learning symbolic representations of actions
from human demonstrations,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3801–3808, 2015.

[35] Y. S. Liang, D. Pellier, H. Fiorino, and S. Pesty, “Evaluation of a
robot programming framework for non-experts using symbolic planning
representations,” in 2017 26th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), pp. 1121–1126, 2017.

[36] R. Cubek, W. Ertel, and G. Palm, “High-level learning from demonstra-
tion with conceptual spaces and subspace clustering,” in 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 2592–2597,
2015.

[37] A. Agostini, M. Saveriano, D. Lee, and J. Piater, “Manipulation plan-
ning using object centered predicates and hierarchical decomposition of
contextual actions,” IEEE Robotics and Automation Letters, vol. 5, no. 4,
pp. 5629–5636, 2020.

[38] R. Bogue, “Strong prospects for robots in retail”, Industrial Robot, vol.
46, no. 3, pp. 326-331, 2019.

[39] C. Pezzato, C. H. Corbato, S. Bonhof and M. Wisse, “Active Inference
and Behavior Trees for Reactive Action Planning and Execution in

MASTER THESIS, A.W.E. ROTS, OCTOBER 2023 13

Robotics”, IEEE Transactions on Robotics, vol. 39, no. 2, pp. 1050-1069,
2023.

[40] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A survey
of behavior trees in robotics and ai,” Robotics and Autonomous Systems,
vol. 154, p. 104096, 2022.

[41] O. Biggar, M. Zamani, and I. Shames, “A principled analysis of behavior
trees and their generalisations,” ArXiv, vol. abs/2008.11906, 2020.

[42] F.A. Mussa-Ivaldi, N. Hogan, and E. Bizzi, “Neural, mechanical, and
geometric factors subserving arm posture in humans,” The Journal of
neuroscience : the official journal of the Society for Neuroscience, vol.
5(10), pp. 2732–2743, 1985.

[43] L. Peternel, N. Beckers and D. A. Abbink, “Independently Com-
manding Size, Shape and Orientation of Robot Endpoint Stiffness in
Tele-Impedance by Virtual Ellipsoid Interface,” 2021 20th International
Conference on Advanced Robotics (ICAR), pp. 99-106, 2021.

[44] C. E. English, D.L. Russell, “Representations of multi-joint stiffness for
prosthetic limb design,” Mechanism and Machine Theory, vol. 43, pp.
297-309, 2008.

[45] A. Albu-Schaffer, C. Ott, U. Frese, and G. Hirzinger, “Cartesian
impedance control of redundant robots: Recent results with the DLR-
light-weight-arms,” in 2003 IEEE International Conference on Robotics
and Automation, vol. 3, pp. 3704-3709, 2003.

[46] G. Franzese, A. Mészáros, L. Peternel, and J. Kober, “ILoSA: Interactive
Learning of Stiffness and Attractors,” 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 7778-7785,
2021.

[47] M. Laghi, A. Ajoudani, M.G. Catalano and A. Bicchi, “Unifying
bilateral teleoperation and tele-impedance for enhanced user experience,”
The International Journal of Robotics Research, vol. 39, pp. 514-539,
2020.

[48] H. Boessenkool, D. A. Abbink, C. J. M. Heemskerk, F. C. T. van
der Helm and J. G. W. Wildenbeest, “A Task-Specific Analysis of the
Benefit of Haptic Shared Control During Telemanipulation,” in IEEE
Transactions on Haptics, vol. 6, no. 1, pp. 2-12, 2013.

A
Appendix - ROS Communication

Structure Overview
The proposed method for teleoperated teaching of combined high-and low-level skills through a single
haptic device is implemented in Robot Operating System (ROS, Noetic). The ROS framework allows
for independent design of separate software components (nodes) and provides several communication
methods for connecting these components. In our implementation, we have leveraged ROS topics
and services to establish connections between the different software modules. Fig. A.1 provides an
overview of the communication structure, illustrating the flow of data between Sigma.7, the GUI, the BT
(for high-level teaching), and the Cartesian impedance controller (for low-level teaching). Section A.1
elaborates on the main components of the proposed interface and highlights how they are connected.
Section A.2 discusses three software components that, while not explicitly shown in Fig. A.1, play
important roles in the system’s functionality.

Sigma.7
Publisher

/pose /button /gripper_angle

Qt WORKER THREAD

Subscriber

Subscriber

Subscriber

PyQt GUI

HIGH-LEVEL

LOW-LEVEL

[X, Y, Z,
ψ, θ, φ]

[0,1]

[α]

Signals

Slots

Behaviour
Tree Node

Cartesian
Impedance
Controller
Subscriber

Service
/change_tree

SERVICE
SERVER

SERVICE
CLIENT

Request

Response

/eigenvectors

/eigenvalues

Publisher

New skill

Figure A.1: Overview of the ROS communication structure. Nodes are shown as blue ovals, the orange block denotes the PyQt
thread used to handle the incoming data and offload the main GUI, the grey block denotes the GUI, the blue block highlights
the service used for modifying the BT, topics are denoted as green blocks and the pink elements indicate the PyQt signal/slot
communication. The data flow starts at the Sigma.7 node. The gripper angle signal is denoted with 𝛼, the binary state signal of
the emulated button click with [0,1], and the 6 DoF haptic device signals are denoted with X, Y, Z, 𝜓,𝜃,𝜙. Note: for brevity, we
represent the two subscribers within the “Cartesian Impedance Controller” nodes using a single block. However, both topics of
course have separate subscribers.

15

16 A. Appendix - ROS Communication Structure Overview

A.1. Main Components
The communication structure is composed of five main connections:

• Sigma.7→Qt Worker Thread: The Sigma.7 haptic device publishes onto several topics. We uti-
lize three streams of data. The /pose topic receives the 6 DoF pose (position [m] and orientation
[rad]) of the haptic device endpoint that is controlled by the human operator. The /button topic
receives the binary state of the emulated button click action, executed with the finger-operated
button. When the state goes from 0 to 1 this indicates a button click. The /gripper_angle
topic receives the angular position in [rad] of the finger-operated gripper of Sigma.7. We have
implemented a PyQt worker thread (orange block in Fig. A.1) dedicated to listening to these in-
coming data streams. The use of threads for subscribing to the topics was necessary to prevent
freezing of the PyQt GUI.

• Qt Worker Thread→PyQt GUI: The subscribers in the Worker Thread are connected to callback
functions. When data arrives at these callback functions, they trigger the emission of PyQt signals.
A signal essentially is a message sent by one part of the program (the Worker Thread) to another
(the PyQt GUI). The GUI has specific predefined slot functions for each possible signal. These
slot functions interpret the data, update the GUI and trigger specific actions in the GUI based on
the received information. Repurposing of the haptic device was achieved by making effective use
of the signal/slot mechanism, as it allowed for using the data for specific purposes while efficiently
“ignoring” data that is not currently needed. In the high-level GUI, the slot functions were used
to control the sliders, button clicks and dial. In the low-level GUI, the slot functions were used to
scale the 6 DoF haptic device endpoint data to match the screen width and height. The scaled
translational inputs were used to set the principal axes lengths of the ellipsoid render. The scaled
rotational inputs were used to define the rotation of the ellipsoid. This way, the user is able to
manipulate the virtual ellipsoid in 6 DoF. Furthermore, the button click slot function was used to
select the axis to control. The signal/slot communication mechanism is indicated in pink in Fig.
A.1.

• High-level GUI→Behaviour Tree Node: When high-level teaching is selected, the user oper-
ates the high-level GUI with the haptic device. The interaction with the GUI follows a three-step
process: 1) selection of a BT node1, 2) selection of an operation to perform on the node, 3) if
the insert operation is selected, specifying the desired index. The GUI guides the user through
these steps, ensuring that only the relevant options are enabled and responsive at any given
moment. For example, when selecting a node, the options to choose an operation and specify
an index are temporarily greyed out and unresponsive to haptic device inputs until the user has
completed the previous step. To establish communication between the high-level GUI and the BT
for implementing the requested changes, we designed a custom service (/change_tree) and
a corresponding message type. The high-level GUI is the service client and the “Behaviour Tree”
node is the server. A request message is sent from the client to the server, which contains 1)
the name of the node, 2) the operation to be executed on the the node, 3) if applicable, the index
at which a node must be inserted. Upon receiving this request message, the server processes
the user’s command and modifies the BT. It then sends a response message back to the client,
indicating whether the requested change was successfully implemented.

• Low-level GUI→Cartesian Impedance Controller: When low-level teaching is selected, the
service /controller_manager/switch_controller (this service is not shown in Fig. A.1)
is used to start the Cartesian impedance controller. The user operates the low-level GUI with the
haptic device. The user can change size, shape and orientation of the endpoint stiffness ellip-
soid of the robot by moving the haptic device in 6 DoF. The ellipsoid graphics are rendered by
implementing a QOpenGLWidget in the low-level PyQt GUI. To continuously command endpoint
stiffness, we chose topics as the communication type. The low-level GUI publishes the com-
manded principal axes lengths of the ellipsoid (i.e., the eigenvalues of the stiffness matrix), and
the commanded orientation with respect to the robot base frame (i.e., the eigenvectors) onto the
respective topics, /eigenvalues and /eigenvectors. The “Cartesian Impedance Controller”
node is subscribed to these topics and uses the data to construct the endpoint stiffness matrix.

1Note the difference between ROS nodes and Behaviour Tree nodes

A.2. Additional Functionalities 17

• Low-level GUI→High-level GUI: As visualized by the pink arrow between both windows (“New
skill”), there is also a signal/slot connection present to allow for use of the newly demonstrated
low-level skill in the BT. Once the low-level teaching has finished, a signal is emitted from the
low-level window to the high-level window to request for addition of a new BT node to the skill
library. Furthermore, upon receiving this signal, the high-level window uses the service /con-
troller_manager/switch_controller to stop the Cartesian impedance controller and start
the position controller used by MoveIt.

A.2. Additional Functionalities
A.2.1. Window switching
The START window of the GUI, used to select a teaching mode, is not visualized in Fig. A.1. However,
this GUI part does have one important role we need to address. The high- and low-level GUI windows
use the same incoming signals and therefore both have slot functions that simultaneously respond to
a signal. An important design challenge was ensuring that only the actively selected teaching mode
responds to these signals while preventing the non-selected mode from doing so. To solve this prob-
lem, we designed the GUI as a QTabWidget. When a user selects either the high-level or low-level
teaching mode by switching tabs, the QTabWidget registers this change. The START window of the
GUI continuously stores the index of the currently opened tab (i.e., the high- or low-level window) and
publishes this value onto a designated topic. The Qt Worker Thread has a separate subscriber for
listening to these GUI tab changes. The index of the currently opened tab is sent as a signal to the
high-and low-level teaching modes. This then ensures that only the slot functions associated with the
active tab remain responsive to incoming haptic device-related signals. This solution is illustrated in
Fig. A.2.

Figure A.2: The role of the START window of the GUI. We implemented a topic-based solution implemented to avoid interference
between slot functions for both teaching modes. The main window has index 0, the high-level teaching window has index 1 and
the low-level window has index 2. This illustration extends Fig. A.1, in which the START window was left out for brevity.

A.2.2. Kinematic Trajectory for Low-level Teaching
Once the human operator starts recording of the stiffness by using the emulated button click action
(executed with the finger-operated gripper of the haptic device), a predefined kinematic trajectory is sent
to the Cartesian impedance controller. This is visualized in Fig. A.3. To offload the GUI, we created a
separate thread to handle the motion trajectory playback. The motion trajectories required to reach the
shelf, from both the perpendicular position (Section III.C) and the position at a 45-degree angle relative
to the shelf (Section III.D) were established by trial-and-error. The trajectory is composed of several
waypoints that finally position the end-effector of the robot in the right location to drop off the product.
The thread publishes the waypoints that create the trajectory to the /equilibrium_pose topic. This

18 A. Appendix - ROS Communication Structure Overview

equilibrium pose is the desired or reference position, i.e. 𝑥𝑟 in Eq. 5 in Section II. The “Cartesian
Impedance Controller” node continuously publishes the current or actual end-effector position, i.e. 𝑥𝑎,
and orientation to /cartesian_pose.

A.2.3. RViz Ellipsoid Visualization
Fig. A.3 shows the ROS nodes and topics used to provide the human operator with an RViz visualiza-
tion of the endpoint ellipsoid he/she is commanding. The visualization was based on a simple example
provided in [1]. The “Ellipsoid visualization” node is both a subscriber and a publisher. It listens to
the data being streamed onto /eigenvalues and /eigenvectors, to get the size, shape and ori-
entation of the ellipsoid. Furthermore, it subscribes to the /cartesian_pose topic, so the ellipsoid
can correctly be positioned at the end-effector of the robot. It publishes a Marker() message to the
/visualization_marker topic, which is used by RViz to create the ellipsoid.

HIGH-LEVEL

LOW-LEVEL

/eigenvectors

/eigenvalues

Publisher

Ellipsoid
visualization

Subscriber

Publisher /visualization_marker

RViz
Subscriber

Cartesian
Impedance
Controller
Subscriber

Publisher /cartesian_pose

MOTION THREAD

Publisher

/equilibrium_pose

Figure A.3: ROS nodes and topics used to 1) send the pre-configured kinematic trajectory to the Cartesian impedance controller,
and 2) to create a visualization of the endpoint ellipsoid in RViz. The RViz screenshots show three different views of the endpoint
ellipsoid. From left to right: X-Y plane, Y-Z plane and 3D. Note: for brevity, we represent the multiple subscribers within the
“Cartesian Impedance Controller” and “Ellipsoid Visualization” nodes using a single block. However, each topic of course has
separate subscribers. This overview extends Fig. A.1.

B
Appendix - Predefined Behaviour Tree

We employed Behaviour Trees (BTs) as the model to represent the high-level decision-making for a
pick-and-place task in a supermarket environment. In the high-level teaching mode, as explained in
Sections II.B, III.B and III.E, the human operator uses the haptic device to remotely modify the action
sequence encoded by the predefined BT. Section B.1 provides an explanation of the fundamental prin-
ciples underlying BTs. In Section B.2, we examine the BT constructed for this research and we provide
recommendations for future work.

B.1. Preliminaries
BTs represent the state transition logic through an hierarchical tree structure [2]. BTs map states to
actions. The tree-structured diagrams represent a policy, i.e. they specify the order and relationships
between the available actions, and take into account the conditions under which those actions must
be executed. There exist two types of nodes used to construct a BT: control flow nodes (Sequence,
Fallback, Parallel, Decorator) and execution nodes (Action, Condition). Action nodes are referred to
as leafs as they have no children. They reflect the physical (i.e., low-level) skills of the robotic system.
The root node of a BT starts the execution by sending so-called ticks at a certain frequency to its
children. The tick propagates through the tree. A node is executed if and only if it receives ticks [3].
The execution nodes return either Running, Success or Failure to the parent node. These outputs of
the ticked node determine which action is taken next. The ticking process guides the exploration of the
BT.

Figure B.1: The predefined BT used for this research at three different modes. The colours indicate the state of the nodes: blue
means “running”, green is “success”, red is “failure” and grey denotes “unvisited”. Top: the BT children are being executed in
sequential order. Middle: all children are successfully executed and BT remains in idle mode. Bottom: the “PauseCondition”
node returns success, and because the “Root” node is a Fallback node, this prevents “BehaviorExecution” from being ticked.

19

20 B. Appendix - Predefined Behaviour Tree

B.2. Pick-and-Place BT
We constructed the predefined BT using py_trees_ros, which occurs in the “Behaviour Tree Node”
shown in Fig. A.1 in Appendix A. Fig. B.1 shows the full BT in three different states. This visualization
of the BT was obtained with rqt_py_trees.

The “Root” node is a fallback node, and ticks its first child: “PauseCondition”. This is a condition
node, that checks if the tree execution must be paused (for example when the Low-level teaching
mode is started). If the condition returns False, the root ticks the next child: “BehaviorExecution”,
which is a sequence node. A sequence node succeeds only if all children return success. All children
of this node are action nodes and executed in the following order: “LooktoShelf”, “PickItem”, “Move-
Base”, “PlaceItem”, “DropItem”, “MoveBaseToStart”, “LooktoShelfAgain”, “PickItem2”, “MoveBase2”,
“Idle”. Execution of these manually coded low-level skills occurs through the ROS actionlib Action
Server/Client interaction mechanism. The nodes in the BT are the clients that request goals, which are
executed by their corresponding server. The action servers use MoveIt for motion planning and are
launched with a dedicated roslaunch file.

B.2.1. Future Work
As follows from Fig. B.1, the predefined BT encodes the behaviour for two different pick-and-place
sequences: once the first product is placed in the shelf, the robot returns to the initial base location
to start a second pick-and-place sequence. This was necessary, because the py_trees_ros pack-
age for ROS1 only allows for sending pre-configured goals to the actionlib action server. How-
ever, py_trees_ros for ROS2 does have the functionality to send new goals to the server at runtime
through the blackboard. To increase modularity of the BT, migrating all software parts to ROS2 is an
essential recommendation for future work.

Furthermore, the current design of the BT follows an “explicit design”. To increase the robustness
and reactivity of the BT an “implicit” sequence is necessary. To achieve this, the the sequence “Be-
haviorExecution” node must be replaced by a fallback node, the order of the low-level actions must
be reversed and the appropriate preconditions must be added, following a postcondition-precondition-
action pattern (PPA) [3] [4].

C
Appendix - Dynamic Movement

Primitives
Ultimately, the proposed shared control interface can facilitate the machine learning aspect of LfD on
both a high- and low-level. We took initial steps of using the interface for low-level skill learning, by
using Dynamic Movement Primitives (DMPs) to encode the stiffness trajectories. Section C.1 provides
an overview of the DMP framework. In Section C.2, we present preliminary results that show our
progress in using DMPs to reproduce a skill that was demonstrated with our proposed interface.

C.1. Preliminaries
C.1.1. Classical Point-to-Point DMP Formulation
The main idea of DMPs, as introduced in [5], is to describe movements as a set of differential equations
that ensures some desired behaviour. DMPs are defined for discrete and rhythmic movements. Given
that we are only interested in discrete point-to-point motions, we focus on the point attractor formulation
(discrete DMPs) [6]. A DMP for a single DoF trajectory 𝑦 of a desired discrete movement is defined by
the following set of nonlinear differential equations [7]

𝜏�̇� = 𝛼𝑧(𝛽𝑧(𝑔 − 𝑦) − 𝑧) + 𝑓(𝑥) (C.1)

𝜏�̇� = 𝑧 (C.2)
𝜏�̇� = −𝛼𝑥𝑥 (C.3)

where 𝑔 is the goal configuration, 𝑧 is the scaled velocity and 𝑥 is the phase variable, which serves
as a replacement of time, 𝛼𝑧 and 𝛽𝑧 are positive constants that define the 2nd-order system, and 𝑓(𝑥)
is a nonlinear forcing term which enables a smooth trajectory from the initial position 𝑦0 to the final
configuration 𝑔. By choosing time constant 𝜏 > 0 and 𝛽𝑧 = 𝛼𝑧/4 (critical damping), and 𝛼𝑥 > 0,
convergence of the system to the unique attractor point at 𝑦 = 𝑔 and 𝑧 = 0 is ensured. The forcing
term 𝑓(𝑥) can be learned from demonstrations and is defined as

𝑓(𝑥) =
∑𝑁𝑖=1𝑤𝑖Ψ𝑖(𝑥)
∑𝑁𝑖=1Ψ𝑖(𝑥)

𝑥 (C.4)

with N nonlinear Radial Basis Functions (RBFs),

Ψ𝑖(𝑥) = exp (−ℎ𝑖(𝑥 − 𝑐𝑖)2) (C.5)

where 𝑐𝑖 and ℎ𝑖 are the centers and the widths of Gaussians distributed along the movement phase.
For each DoF, the weights 𝑤𝑖 must be adjusted to achieve the desired movement to the goal. Learning
these weights, i.e. learning 𝑓(𝑥), is typically achieved with Locally Weighted Regression (LWR) [8].
Every DoF has its own transformation system (Eq. C.1-C.2), but with a common canonical system (Eq.
C.3) to synchronize them. DMPs describe the dynamical system as a damped spring model, that pulls
a DoF to a goal state along a learned trajectory.

21

22 C. Appendix - Dynamic Movement Primitives

C.1.2. Using DMPs to encode SPD matrices
Our goal is to learn stiffness trajectories using DMPs. The classical formulation of discrete DMPs as
presented in Eq. C.1-C.3, is limited to data in Euclidean space, i.e. when the evolution of movements
in different DoF is independent [8]. Therefore, DMPs cannot directly be applied for learning skills that
are subject to specific geometry constraints, such as the SPD stiffness matrix. In order to use DMPs to
encode stiffness skills, [9] extended the DMP framework to allow for encoding SPD matrix trajectories.
Their proposed method for “Geometry-aware” DMPs is based on exploiting Riemannian metrics to re-
formulate DMPs, such that the set of SPD matrices forms a Riemannian manifold. Using the properties
of Riemannian manifolds, they prepare the demonstrated SPD matrices for DMP formulation. In-depth
discussion of these steps is outside the scope of this Appendix.

The resulting geometry-aware DMP formulation is as follows. By defining 𝐗 ∈ 𝑺𝑚++ as an arbitrary
SPD matrix, and 𝚵 as the set of SPD matrices recorded in one demonstration, where 𝑺𝑚++ defines the
set of 𝑚 ×𝑚 SPD matrices, they rewrote Eq. C.1 and C.2 as:

𝜏�̇� = 𝛼𝑧 (𝛽𝑧𝑣𝑒𝑐 (𝔹𝐗𝑙→𝐗1 (Log𝐗𝑙 (𝐗𝑔))) − 𝝈) + 𝑭(𝑥) (C.6)

𝜏�̇� = 𝝈 (C.7)

where 𝝈 = 𝑣𝑒𝑐(𝚺) is the Mandel representation of 𝚺, 𝚺 is the time derivative of 𝚵 and 𝝃 is the vectoriza-
tion of 𝚵. 𝐗𝑔 is the goal SPD matrix. 𝑭(𝑥) is the recalculated forcing term. For an extensive explanation
of all terms, we refer to [9].

C.2. Reproduction of the demonstrated stiffness trajectory
We applied the geometry-aware DMP framework as introduced by [9] to a dataset of SPD matrices
recorded with the low-level teaching mode of our proposed interface. We used the code that was made
available in [8]. The data was recorded during the experiment described in Section III.D: placing the
product at the designated location at a 45 degree angle with respect to the shelf. During demonstration,
the stiffness matrices and the Cartesian end-effector positions of the robot were recorded using the
rosbag package.

C.2.1. Data Pre-processing
As the product placement required a variable stiffness trajectory in the X and Y directions, the recorded
3 × 3 stiffness matrices 𝑲 were simplified into 2 × 2 matrices (excluding the Z direction dependent
elements) to remove any unnecessary complexity of the dataset.

The GUI dictates the update rate of the stiffness matrix, while the Cartesian impedance controller
node determines the update rate of the Cartesian end-effector position. Because the update rate of
the GUI is considerably lower, the number of recorded stiffness matrices did not match the number
of recorded poses, necessitating a pre-processing step. This step involved comparing the recorded
timestamps to filter out redundant end-effector poses.

C.2.2. Results
Fig. C.1 shows the geometry-aware DMP reproduction of the variable stiffness trajectory that was
demonstrated with our virtual ellipsoid interface. During the demonstrated product placement, the hu-
man operator increases stiffness in Y direction and rotates the ellipse to ensure precise alignment, see
top graph in Fig. C.1. This demonstration is then encoded with the geometry-aware DMPs using Eq.
C.6-C.7 to reproduce the green ellipses in the bottom graph of Fig. C.1. There is match between the
demonstration and the reproduced skill: stiffness in Y is increased and the ellipses is rotated 45 de-
grees. However, it is clear that the learned skill does not yet perfectly match the demonstration. This
could be due to the following reasons.

First, it is important to note that we have not conducted any parameter tuning of the constants in
Eq. C.6-C.7 yet. We used the default settings from the open source implementation [8] for the control
gains 𝛼𝑥 , 𝛽𝑧 , 𝛼𝑥 and the number of Gaussian basis functions in the forcing term 𝑁. While these settings
provide a starting point, they should be fine-tuned to increase performance.

Second, the mismatch could be attributed to the low refresh and update rate of the GUI. To generate
smooth trajectories using DMPs, smooth training data is required [5]. A smooth trajectory is charac-
terized by minimal jerk, which implies that the time derivative of acceleration must be minimized. Hu-

C.2. Reproduction of the demonstrated stiffness trajectory 23

man movements naturally exhibit this characteristic [7], referred to as minimum-jerk trajectories. Even
though the human operator smoothly modulates the size and shape of the ellipsoid, the low update rate
of the GUI leads to an insufficient number of data points being recorded. This leads to abrupt changes
in the recorded stiffness matrices between consecutive time steps. Consequently, this compromises
the minimum-jerk aspect of the demonstrated trajectory. This lack of data points results in the removal
of the inherent smoothness that is associated with the demonstrated skill by the human operator. The
consequence of these sharp discontinuities in the recorded data is evident in Fig. C.1, where the DMP
cannot handle such abrupt changes effectively. To address this challenge and enhance the compatibil-
ity of the recorded data with the DMP framework, future work should explore interpolation techniques
that can mitigate the impact of abrupt changes caused by the low GUI update rate and restore the
smoothness of the training data.

Figure C.1: Learning and reproduction of a variable stiffness trajectory using SPD DMPs [9] for product placement at a 45
degree angle relative to the shelf. Top: demonstrated stiffness ellipses in the X-Y plane in 𝑇 = 102 s. This training data is
used to learn the weights of 𝑁 = 40 Gaussian basis functions. Bottom: the reproduced stiffness ellipses over time. For clarity,
not all ellipses are plotted. Results are obtained with the open source implementation available at https://gitlab.com/
dmp-codes-collection [8].

https://gitlab.com/dmp-codes-collection
https://gitlab.com/dmp-codes-collection

Bibliography
[1] T. Coleman, G. Franzese, and P. Borja, “Damping design for robot manipulators,” in Human-

Friendly Robotics 2022: HFR: 15th International Workshop on Human-Friendly Robotics, Springer,
2023, pp. 74–89.

[2] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A survey of behavior trees in robotics
and ai,” Robotics and Autonomous Systems, vol. 154, p. 104 096, 2022, ISSN: 0921-8890. DOI:
https://doi.org/10.1016/j.robot.2022.104096. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0921889022000513.

[3] M. Colledanchise and P. Ogren, Behavior Trees in Robotics and AI: An Introduction. Jul. 2018,
ISBN: 9781138593732. DOI: 10.1201/9780429489105.

[4] E. Dortmans and T. Punter, “Behavior trees for smart robots practical guidelines for robot soft-
ware development,” Journal of Robotics, vol. 2022, pp. 1–9, Sep. 2022. DOI: 10.1155/2022/
3314084.

[5] A. Ijspeert, J. Nakanishi, and S. Schaal, “Trajectory formation for imitation with nonlinear dynamical
systems,” vol. 2, Feb. 2001, 752–757 vol.2, ISBN: 0-7803-6612-3. DOI: 10.1109/IROS.2001.
976259.

[6] A. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with nonlinear dynamical systems
in humanoid robots,” vol. 2, Feb. 2002, pp. 1398–1403, ISBN: 0-7803-7272-7. DOI: 10.1109/
ROBOT.2002.1014739.

[7] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical movement primi-
tives: Learning attractor models for motor behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–
373, 2013. DOI: 10.1162/NECO_a_00393.

[8] M. Saveriano, F. J. Abu-Dakka, A. Kramberger, and L. Peternel, Dynamic movement primitives in
robotics: A tutorial survey, 2021. arXiv: 2102.03861 [cs.RO].

[9] F. J. Abu-Dakka and V. Kyrki, “Geometry-aware dynamic movement primitives,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), 2020, pp. 4421–4426. DOI: 10.
1109/ICRA40945.2020.9196952.

25

https://doi.org/https://doi.org/10.1016/j.robot.2022.104096
https://www.sciencedirect.com/science/article/pii/S0921889022000513
https://www.sciencedirect.com/science/article/pii/S0921889022000513
https://doi.org/10.1201/9780429489105
https://doi.org/10.1155/2022/3314084
https://doi.org/10.1155/2022/3314084
https://doi.org/10.1109/IROS.2001.976259
https://doi.org/10.1109/IROS.2001.976259
https://doi.org/10.1109/ROBOT.2002.1014739
https://doi.org/10.1109/ROBOT.2002.1014739
https://doi.org/10.1162/NECO_a_00393
https://arxiv.org/abs/2102.03861
https://doi.org/10.1109/ICRA40945.2020.9196952
https://doi.org/10.1109/ICRA40945.2020.9196952

