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Overview

The contribution of aviation to anthropogenic climate
change results from CO, and non-CO, emissions. The
latter emissions comprise of nitrogen oxides, water
vapour, and aerosols as well as contrail and contrail-
cirrus effects. A series of updates can be noted in recent
studies related to the effects of NO,-emissions; the
inclusion of two physical processes and an updated
radiation calculation (see below). However, in our
opinion, two further published methodological short-
comings have not been fully considered which leads to
a considerable underestimation of the contribution of
aviation’s NO,, emissions to climate change. First,
methane response calculations implicitly assume
steady-state instead of an adequate transient develop-
ment. Second, most studies determine ozone changes
are caused by switching off or reducing aviation NO,
emissions, instead of calculating aviation contribu-
tions to the ozone. Such methodological simplifica-
tions largely underestimate the contribution of the
aviation NO,, emissions to climate change by a factor
of 6 to 7 and can thereby be considered as flaws. Note
that the contribution of an emission to climate change
(="‘status report’) and the contribution of a change in
emissions to climate change (=‘mitigation option’)
require different calculation methods [1, 2]. While for
calculating the contribution of emissions to atmo-
spheric compositions (and hence climate change), to
which we are referring here, a clear recommendation
was made (e.g. [1]), the methodological approach for
evaluating mitigation measures might still be ambig-
uous, but should certainly not ignore the results of
contribution calculations [3].

Aviation’s contribution to climate change

Current estimates of the contribution of aviation to
the near-surface temperature change amount to

roughly 5% of the total anthropogenic warming, with
an uncertainty range of 2%—14% [4]. The larger part of
the warming results from non-CO, effects among
which the formation of contrails and its transition into
contrail-cirrus has been recently widely discussed [5].
Contrail formation depends on the atmospheric con-
ditions (temperature and humidity), aircraft charac-
teristics (overall propulsion efficiency) and fuel
characteristics (H,O-emission index and specific heat
content). The hot and moist exhaust mixes with the
ambient air and becomes saturated with respect to
liquid water, leading to the formation of droplets,
which freeze if the temperature is low enough; and
they persist if the ambient air is saturated with respect
to ice. Water vapour emissions are not only triggering
contrails, but also lead to an enhancement of the
atmospheric water vapour concentration, which in
total contributes only little to the aviation’s contrib-
ution to climate change. However, for individual
flights operated at higher altitudes water vapour
emissions may have a larger effect than on average [6].
Aviation particle emissions have a small contribution
to the atmospheric particle concentration and hence
their direct contribution to climate change is small
(e.g. [7]). However, they may largely affect contrail
properties and a reduction of the number of soot
particles also leads to a reduction of the formed ice
particles in the contrail, which reduces their impact on
climate [8].

Finally, aviation NO, emissions play an important
role. Besides playing a role in air quality effects [9],
they contribute to climate change by formation of
ozone and destruction of methane. As both are green-
house gases, ozone build up adds to global warming,
while the destruction of methane reduces global
warming. Altogether, the warming effect largely dom-
inates [4, 10—14]. In addition, the methane change has
further implications on the atmospheric composition.
Methane is a precursor for ozone, so a decrease in

© 2019 IOP Publishing Ltd
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Table 1. Estimates of the contribution of aviation NO, emissions to the climate change in terms of RF for the year 2005. Starting with the
results presented in Lee et al (2009) [4] (column 1) and adding additional processes such as PMO and SWV (column 2). PMO is taken with a
mean factor of 40% of the methane RF, based on different estimates (29% [21], 58% [22],23% [17],47% [16] and 42% [23]); and SWV with a
factor of 15% [ 18, 24]. The revised formula for calculating the methane RF (column 3) can be found in Etminan et al (2016) [19]; original in
Myhre et al (1998) [25] (see also supplementary material for the calculation). Note that the SWV and PMO RF-calculation is not affected by

the revision of the RF-methane formula, since the relationship is established with the original one. Instead, the transient calculation of
methane changes also affects the feedback on ozone (PMO) and stratospheric water vapour (SWV). Corrections for methane lifetime
(column 4) and ozone contribution method (column 5) are applied as explained in this work. The ozone contribution from aviation is taken
from Dahlmann et al (2011) ([26] see their supplementary material for the time period 2000-2009).

Correction of flaws
Radiative forcing of aviation
NO, emission in 2005 in Leeetal Additional processes  Revised methane #1 Methane #2 Ozone contrib-
mW m™? 2009 (PMO, SWV) RF formula lifetime ution method
Ozone 26.3 26.3 26.3 26.3 41.2
Methane —12.5 —12.5 —154 —10.0 —10.0
PMO —5.0 —5.0 —3.3 —3.3
SWv —-1.9 —-1.9 —1.2 —1.2
Total NO,-RF 13.8 6.9 4.0 11.8 26.7

methane due to aviation NO, emissions leads to a
decrease in background ozone, which is called ‘pri-
mary mode ozone’ (PMO) [15-17]. Additionally, less
methane enters the stratosphere, where it is decom-
posed into carbon dioxide and water vapour. Even-
tually, this reduces the stratospheric water vapour
(SWV) concentration and since water vapour is a
greenhouse gas, it reduces climate warming [18].
Finally, the formula of calculating the radiative forcing
(RF) for methane concentration changes was recently
updated, now including the representation of short-
wave radiation effects [19]. This leads to a stronger
negative methane RF of aviation NO, emissions.
Available literature shows that the estimate of the total
NO,-RF decreased by adding the effects of PMO,
SWYV, and the revised RF-formula from 13.8 mW m >
[4] to 4.0 mW m ™ for the year 2005 (table 1), leading
to the conclusion that besides CO, only contrails play
a significant role in aviation’s contribution to climate
change [20].

Two methodological flaws

We think that in addition to the two new process-
based effects (PMO and SWV) and the revision of the
RF-formula, two additional methodological revisions
have to be taken into account to avoid two major flaws.
These have been already published, but have not
adequately entered the scientific discussions: first, the
calculation of the aviation methane concentration
changes relies on the calculation of the methane
lifetime change due to aviation NO, emissions,
commonly expressed in relative lifetime changes (6).
These relative lifetime changes are applied to the
methane concentration (C) to obtain the resulting
concentration change (AC = § x C). This approach
implicitly assumes steady-state for the methane
response. However, the perturbation lifetime of
methane is 12 years, contradicting to the steady-state
assumption (see also the supplementary material,

available online at stacks.iop.org/ERL/14/121003/
mmedia and e.g. [27]). Taking this lifetime change as a
transient response [28], which it actually is, reduces
the respective methane RF response by 35% [29] and
since the PMO and SWV effects are directly related to
the methane concentration change this reduction also
extends to the estimate of RF due to PMO and SWV
(table 1).

The second flaw concerns the method for estimat-
ing the contribution of NO, emissions to the ozone
concentration. Most studies compare two simula-
tions, with and without (or reduced) aviation emis-
sions. This is called sensitivity or perturbation
approach. Clappier et al (2017) [1] (in agreement with
other studies, e.g. [2, 30]) have clearly stated that
‘when the relationship between emissions and con-
centrations is nonlinear, sensitivity approaches are not
suitable to retrieve source contributions’. To over-
come this short-coming, contribution approaches
have been introduced in the past [31-33]. And their
use reveals that the sensitivity method largely under-
estimates contributions, e.g. for biomass burning by a
factor of two to four [34] and for land transportation
by a factor of two [35]. Dahlmann et al [26] applied a
source contribution method, and the results for avia-
tion in the year 2005 are about a factor of 1.8 larger
than those values reported for using the sensitivity
approach and hence this methodological discrepancy
agrees well with the above mentioned studies [34, 35].
Taking the values from Dahlmann et al [26] largely
increases the estimate of the contribution of aviation
NO, emissions to climate change from 4 mW m ™ to
26.7mW m 2, i.e. by a factor of 6 to 7 (table 1). Note
that the source contribution and perturbation
approach leads to identical results, in linear systems,
only (Clappier et al (2017), Grewe et al (2010), Grewe
(2013)). NO,-ozone chemistry, however, is strongly
nonlinear, showing an ozone depletion for low NO,
concentration (e.g. tropical oceanic regions) and very
high NO, concentrations (e.g. polluted cities) and

2


http://stacks.iop.org/ERL/14/121003/mmedia
http://stacks.iop.org/ERL/14/121003/mmedia

10P Publishing

Environ. Res. Lett. 14 (2019) 121003

peaking positive net-ozone production rates when
both groups of ozone precursors, (a) the carbon com-
pounds, such as methane, carbon monoxide and other
hydrocarbons and (b) nitrogen oxides are well
balanced ([36, 37] Dahlmann et al (2011)).

Implications

Itis important to stress that this correction of flaws has
two major implications: first on the weighting of
individual aviation non-CO, effects with respect to
their impact on climate and second how to assess
mitigation options. Concerning the first implication,
the aviation CO, and NO,. emissions lead to a RF in the
year 2005 in the range of 25 to 30 mW m 2 ([4] and
this work) and contrails to around 50 mW m 2[5, 38].
With respect to the near-surface temperature change,
this weighting changes; and the contribution of avia-
tion NO, emissions to climate change is getting a
larger weight, whereas that of contrails is reduced [39].
This larger weight results from two effects: First, the
climate sensitivity parameter is larger for aviation
ozone changes compared to CO, and especially
contrail-cirrus. Second, the temperature change is
based on the temporal evolution of radiation changes,
whereas the RF ignores those. For increasing emission
scenarios, as for aviation, short-term effects are
thereby stronger weighted. Finally, this leads to the
conclusion that all three effects, CO,, NO, and contra-
ils have a similar importance with respect to their
contribution to climate change [39].

The second implication relates to the question of
how to evaluate mitigation options in strongly non-
linear relationships, such as the NO,-ozone relation-
ship. While Clappier et al [1] raised the point that
‘source apportionment methods’ are not appropriate
to evaluate the impact of abatement strategies’, Grewe
et al [3] clearly stated that ‘the use of the tagging
method (see footnote 1) makes the evaluation of miti-
gation measures more robust’, since this evaluation
becomes largely independent on other conditions, e.g.
the timing of the mitigation option, implementation
of other mitigation options, and background con-
centrations. Note that this agrees with the limitations
of the perturbation or sensitivity approach given in
Clappier et al [1], who stressed the point that ‘the cal-
culated impacts will only provide information for the
exact conditions’. Hence using the perturbation
approach for evaluating the potential of mitigation
options makes this assessment vulnerable to any other
emission reduction (also in other sectors), whereas
using the contribution method results in a much more
robust assessment.

As a consequence, assessments of climate mitiga-
tion options for aviation are recommended to

3 . .
Note that source apportion and tagging methods are largely
synonyms for contribution methods.

V Grewe et al

consider these methodological aspects and to address
CO, and non-CO, effects, including the climate
impact from NO, emissions and contrail formation.

Any data that support the findings of this study are
included within the article.
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