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Abstract: We compare the results of simulated and measured power efficiency and far-field 
beam pattern, for two reflective Fourier phase gratings, designed to generate 2 × 2 and 2 × 4 
beams respectively from a single-beam, coherent source at 1.4 THz. The designed surface 
structures were manufactured on aluminum plates by a computer numerical control (CNC) 
micro-milling machine. Despite small differences between the designed and fabricated 
gratings, we measured power efficiencies of both gratings to be around 70%, which is in a 
good agreement with the simulated values. We also find a good agreement between the 
simulated and measured diffracted beam size and spatial distribution. We demonstrate the 
application of both gratings as multiple beam local oscillators to simultaneously pump (or 
operate) a 4-pixel array of superconducting heterodyne mixers. 
© 2017 Optical Society of America 

OCIS codes: (050.1950) Diffraction gratings; (040.2840) Heterodyne; (040.2235) Far infrared or terahertz; 
(040.1240) Arrays; (350.1260) Astronomical optics. 
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1. Introduction 

Terahertz heterodyne receivers, typically consisting of a superconducting mixer and a 
coherent local oscillator (LO) source, are approaching quantum-noise limited sensitivity [1,2]. 
Therefore, to further improve spatial observing efficiency, multi-pixel heterodyne receivers 
[3] are necessary, in particular, for sky mapping from astronomical telescopes. Historically, 
the utilization of large, multi-pixel heterodyne arrays has been held back by the cost and high 
complexity of multi-beam, frequency or phase matched, local oscillators. One approach is to 
generate multiple beams from a single beam source by manipulation of its phase by means of 
a phase grating [4,5]. Considering the challenges in providing suitable THz sources and 
complexities to synchronize the frequency or phase of many individual sources, this approach 
is more favourable and practical than providing each pixel with a separate LO. For the 
application of such a grating, a key figure of merit when converting a single beam into 
multiple beams is the power efficiency of the conversion, that is, the ratio between the total 
power of the resulting multiple beams and that of the input single beam. 

A phase grating consists of a periodic structure made up of unit cells whereby each cell 
modulates the phase of the incident electro-magnetic wave in order to produce a series of 
diffraction orders with different traveling angles. The intensity and angular distribution of the 
diffraction orders are determined by the unit cell modulation pattern and size. To effectively 
match the beam pattern to that of a mixer array, additional optics, such as a parabolic mirror 
or lens, is typically needed for both properly collimating the diffracted beams and controlling 
spatial distribution. 

Since the first grating design for 90-110 GHz [6], several milestones have been reached 
towards developing THz phase gratings. Sorting by the operating frequency, the following 
phase gratings have been reported: 7-pixel grating at 345 GHz has been realized with 80% 
efficiency [7], 8-pixel grating at 500 GHz with 83% efficiency [8], 8-pixel grating at 490 & 
810 GHz [9] and 3-pixel grating at 1.1 THz [10]. Beyond these frequencies, little work can be 
found in the literature. Although a 7-pixel grating at 1.9 THz has been reported [11] no 
information on the grating measurements and analysis has been given. 

Although waveguide based multiple beam generators [12,13] may provide high efficiency, 
very few experiments are found in the literature. Furthermore, manufacturing of the 
waveguides, in particular, at the supra-THz frequency range (>1 THz), such as the frequency 
band centered at 4.7 THz, which is significant for astronomical applications, becomes 
increasing difficult and costly. Moreover, this approach has also difficulties to make use of 
existing sources, such as quantum cascade lasers [14]. Therefore, we choose to develop a 
phase grating, namely with a quasi-optical coupling to a mixer array approach in contrast to 
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the waveguide approach. In this work we present two different phase gratings of 4 and 8-
pixels, designed to operate at 1.4 THz. This frequency was chosen because of the availability 
of a high power gas laser source, facilitating the experimental study of the grating with the 
goal of improving understanding of the performance, namely the efficiency and the spatial 
distribution of diffracted beams by comparing the simulations with measurements. 

2. Fourier Phase Gratings, design and manufacturing 

In a Fourier phase grating, the surface topology of a unit cell is derived based on a Fourier 
series with a certain number of coefficients. Increasing this number in the design makes the 
calculated surface structure closer to the ideal, leading to greater power efficiency. However, 
to balance accuracy of the end result with increasing computation demand, we typically limit 
the calculation to 13 Fourier coefficients to design our gratings, which ensure at least 98% of 
the maximum achievable efficiency if an infinite number of coefficients were to be used [5]. 
Having built a proper algorithm in MATLAB, we find 13 coefficients to satisfy the following 
condition for 2 and 4 diffraction orders in one dimension (1D), respectively: 
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diffraction order. By minimizing these summations, we come up with final selected 
coefficients. The 2D surface profile of a unit cell is then generated by superimposing two sets 
of such 1D Fourier coefficients orthogonally. Therefore, the power efficiency is calculated by 
the product of summation of all fractional powers in both directions. 

The divergence of the diffracted beams is inversely proportional to the unit cell size. The 
direction of each diffraction order can be calculated by the expression, sinβ = sinα + mλ/Λ, 
where Λ is the side length of the square unit cells, which also defines the periodicity of the 
grating, α and β are the angles of incidence and the m’th diffraction order, respectively. Both 
angles are with respect to the normal incidence on the grating. In this work, we chose a unit 
cell with an area of 2 × 2 mm2 (Λ = 2 mm) to reach a suitable angular distribution of the 
diffracted beams, to be measurable with available experimental setup, and also for later 
matching a mixer array. Figure 1 shows the surface profiles of unit cells in 3D, designed for 4 
(2 × 2) and 8 (2 × 4)-pixel gratings which are repeated 15 times in two orthogonal directions 
to form the gratings with a total area of 30 × 30 mm2. We note that the design of the 4-pixel 
grating and the initial measurements have been reported by us previously in [15]. 

 

Fig. 1. 3D surface profiles of unit cells of 4 (a) and 8-pixel (b) gratings with exaggerated z axis 
and a photograph of the manufactured 8-pixel grating (c). 

Unlike traditional Dammann gratings with sharp step like variations in the surface 
structure [16], the smooth and continuous surface of the Fourier phase gratings can be 
accurately machined on a metallic plate to make a reflection grating. A KERN EVO micro-
milling machine with a ball end mill is used to transfer the designed pattern onto aluminum, 
which is expected to have more than 99% surface reflectivity at THz frequencies [17]. A 
micrograph of the manufactured 8-pixel grating is also shown in Fig. 1. The manufacturing 
accuracy is limited by the radius of the ball end-mill machine tool, which defines the 
minimum radius of curvature that can be patterned. Ideally, the latter should match to the 
designed value. In practice, the minimum radius of curvature becomes smaller with a larger 
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Fig. 3. Schematic view of the experimental setup for measuring the beam patterns diffracted 
from the grating. 

We measure the output beams diffracted by the grating by scanning a pyro-electric 
detector, mounted on a X-Y motor controlled translation stage. The scanning plane is 60 mm 
away from the grating and is normal to the imaginary line drawn from the centre of the 
grating to the centre of the beam pattern, ensuring symmetric results. The lens is chosen as 
such to produce a focal point at the scanning plane, giving cleaner measured diffracted beams. 
Because the entrance aperture of the pyro-electric detector is 2 mm in diameter, we choose 1 
mm as the scanning step size to effectively scan the whole target area. Since the output power 
of the gas laser fluctuates in time, we introduce a beam splitter and an additional pyro-electric 
detector to monitor the instantaneous power as reference to correct the fluctuations in the 
acquired diffracted beam pattern. 

We repeat the measurement for two different incident beams with orthogonal azimuth 
angles, by 90° rotation of the grating on the fixed plane. To distinguish these two cases, we 
show the arrows schematically to represent the diffracted beams, each with a different colour, 
as well as the incident beam in red, in the Figs. 4(a) and 4(b), which are the results from the 
3D simulations in COMSOL. The measurement results for the case of θ = 25° are plotted in 
the left side of Figs. 4(c) and 4(d), corresponding to the cases shown in Figs. 4(a) and 4(b), 
respectively. We find that in the first case (Fig. 4(c)) the power is more uniformly distributed 
among the diffracted beams, which are symmetrically distributed in space, making it more 
favorable for the application as local oscillator for a mixer array. For comparison, the 
simulation results are plotted next to the measured results in Figs. 4(c) and 4(d), where they 
show a good agreement in terms of the diffracted beam distribution and the size of the beam 
pattern. The cause of the different beam patterns produced by different applied incident 
beams is the unit cell profile asymmetry of the 8-pixel grating. In fact, the projection of the 
incident beam on the grating surface is perpendicular to 1 × 2 (Fig. 2 left) for the first incident 
beam and to 1 × 4 (Fig. 2 right) grating 1D profile for the second incident beam. It is worth 
mentioning that in the simulation, we take the same size as the experimental incident beam, 
but with a single Gaussian-like profile instead of the double peaked beam produced by the gas 
laser. Because of this, the simulation does not reproduce the exact shape of the experimental 
diffracted beams. 

Since the beam patterns are measured along a flat, not a spherical plane, they look slightly 
distorted and stretched. For clarity, the simulated beam pattern in Fig. 4(c), is plotted on a 
spherical surface and included in Fig. 4(e), which illustrates clearly that the beams are 
actually distributed in straight rows and columns. 
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Fig. 4. (a,b) Arrow schematics illustrate the simulation results of diffraction orders, 
corresponding to two incident beams with 90° azimuth angle difference on the 8-pixel grating; 
(c,d) Planar measured (left) and simulated (right) far-field beam patterns at 60 mm from the 
grating with incident beams corresponding to (a) and (b) respectively; (e) the simulated far-
field beam pattern of the case corresponding to (a) shown on a spherical surface; (f) Measured 
incident beam on the grating. 

To obtain the efficiency experimentally, we integrate the measured intensity of all 8 
beams, excluding other orders, and divide it by the integrated intensity of the incoming beam 
at the grating position. Taking the air absorption in the optical path between the grating and 
the scanning plane into account, we end up with a measured efficiency of 73 ± 1%. The 2% 
uncertainty originates from both the air loss estimation and the background noise of the pyro-
electric (room temperature) detector. Comparing to the expected values of 73.8% from the 3D 
COMSOL simulations and 72% from the Fourier series calculation in the design, for the same 
incident angle (θ = 25°), we conclude that the measured efficiency is in good agreement with 
that predicted by the simulations. 

An interesting question is: how much does the deviation of the manufactured grating 
surface structure from the design affect the efficiency? For this, we perform the simulation, 
by taking the measured grating surface profile as the input to the 3D COMSOL, where we 
find a drop of about 0.3% in the efficiency and a negligible difference in the beam pattern, 
calculated using the designed surface profile. Taking advantage of this capability in 
COMSOL simulations, allows us to conclude for the first time that, even with non-ideal 
machining, one can reach nearly the theoretically predicted efficiency and beam pattern. This 
conclusion has a high impact on the manufacturability of a grating, making its fabrication less 
critical. 

We also study the effect of different incident angles θ on the far-field angular and power 
distributions of the diffracted beams and on the grating power efficiency, for the case 
corresponding to Fig. 4(a). The simulation results are plotted in Fig. 5 for four incident angles 
of 15°, 20°, 25° and 30°, where each sub-figure contains the azimuth angle and the elevation 
angle with respect to the grating surface, together with the power fraction of all diffracted 
beams that are separated by circles filled by different colours, corresponding to the arrows in 
Fig. 4(a). This figure shows that by increasing the angle with respect to the normal incidence, 
the power distribution becomes less uniform whilst the power efficiency decreases negligibly 
by less than 2%. 
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Fig. 5. Angular and power distributions of diffracted beams for the case shown in Fig. 4(a), for 
four different incident angles. The power fractions in the top and bottom plots of each section 
are shown versus the azimuth angle and the elevation angle with respect to the grating surface, 
for different diffracted orders, respectively. Each diffraction order is distinguished by the 
colour of the corresponding arrow in Fig. 4(a). In the elevation angle plots, the doubled circles 
indicate the overlapping of two corresponding diffracted beams. 

We apply a similar measurement setup, to characterize the beam pattern of the 4-pixel 
grating. Figure 6 shows the measured incident beam on the grating with θ = 25°, and also the 
measured and simulated diffracted beams, both of which are at a plane, being 12 cm away 
from the grating. Very similar overall beam shapes and sizes show a high correlation between 
the measurements and simulations. All diffracted beams actually duplicate the detailed profile 
of the incident beam. 

 

Fig. 6. Measured incident beam (right) and measured (middle) and simulated (right) diffracted 
beam patterns of the 4-pixel grating at a plane, which is 12 cm away from the grating. Small 
differences in the measured beam profiles are likely due to the FIR laser, the profile of which 
is found to vary in time. 

To derive the efficiency of the 4-pixel grating, we apply a slightly modified measurement 
setup, where two identical lenses with 50 mm focal distance were used, one placed before the 
grating, and the other between the grating and the scanning plane to collimate the diffracted 
beams, which are needed to match those of a mixer array as described in the following 
paragraph. Using an integration similar to the 8-pixel grating case, we derive an efficiency of 
66 ± 1%, where 2% uncertainty comes from the loss calculation of the lens. COMSOL 
simulation and the calculation in design predict power efficiencies to be 66.4% and 65%, 
respectively, which again show a good agreement to the experimental value. 

To complete the study, we implement both gratings in a heterodyne experiment using a 
2x2 HEB mixer array. We apply the 4-pixel grating together with the 1.4 THz gas laser to 
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optically pump the array. Since we have no 8-pixel mixer array available, we examine the 8-
pixel grating by coupling three groups of four left, four centre or four right beams to the 
array. We succeeded in pumping all the mixers to reach their optimal (for the best sensitivity) 
operating current-voltage curves simultaneously. Applying the isothermal technique [19] to 
estimate the beam power at the detector and having estimated all the losses in the optical path 
from the laser to the mixer array and also taking the efficiency of the grating into account, we 
end up with about 25 µW for the total required input power, and about 50 µW for an 8-pixel 
mixer array. This order of power is reachable at lower frequencies (< 2 THz) by multiplier 
based solid state sources [13] and at higher frequencies by quantum cascade lasers [14]. 

4. Conclusion 

We modelled and also experimentally demonstrated two Fourier phase gratings generating 2 
× 2 and 2 × 4 beams from a single, coherent beam at 1.4 THz. Good agreements between the 
measurements and simulations are found for both the diffracted beam pattern and power 
efficiency. The measured efficiency is 66% for the 2x2 and 73% for the 2x4 grating, 
respectively. We also find that the incident angle can affect the distribution of power among 
the diffracted beams, but affects the efficiency negligibly. Furthermore, we confirm that the 
diffracted beams of the 4-pixel grating and 8-pixel grating are able to optically pump an array 
of superconducting HEB mixers. Thus, we demonstrate that the grating is an extremely 
promising technology for generating a multiple beam local oscillator for a heterodyne array at 
the supra-THz, required for future astronomic observatories, such as NASA Galactic-
extragalactic ultra-long-duration spectroscopic stratospheric observatory (GUSTO). 
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